WO2015173916A1 - Body fluid component analysis device and body fluid component analysis method - Google Patents
Body fluid component analysis device and body fluid component analysis method Download PDFInfo
- Publication number
- WO2015173916A1 WO2015173916A1 PCT/JP2014/062859 JP2014062859W WO2015173916A1 WO 2015173916 A1 WO2015173916 A1 WO 2015173916A1 JP 2014062859 W JP2014062859 W JP 2014062859W WO 2015173916 A1 WO2015173916 A1 WO 2015173916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light receiving
- body fluid
- measurement chamber
- fluid component
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
Definitions
- the present invention relates to a body fluid component analyzer and body fluid component analysis method for analyzing biological fluid components such as glucose, neutral fat, uric acid, cholesterol, and HbA1c.
- Patent Document 1 an apparatus for analyzing a body fluid component by optically measuring a color reaction occurring in the measurement chamber using a test piece configured to react a body fluid sample with a reagent in the measurement chamber is known (see Patent Document 1).
- the body fluid component analyzer according to Patent Document 1 includes a light emitting unit that irradiates light to a measurement chamber of a test piece, a light receiving unit that receives transmitted light that has passed through the measurement chamber, and a calculation unit that calculates absorbance based on the transmitted light. It has.
- the body fluid component analyzer measures the absorbance at a plurality of points in the measurement chamber, and appropriately selects and averages the absorbance obtained at the plurality of points, for example, when bubbles or the like exist in the measurement chamber
- it is configured to calculate the appropriate absorbance of the measurement chamber and to analyze the body fluid component. Therefore, the light emitting part that irradiates the measurement chamber of the test piece with light at a pinpoint and the light receiving part that receives the transmitted light that has passed through the pinpoint of the measurement chamber are integrated, and moved within the measurement chamber area by driving means.
- it is configured to measure the absorbance at a plurality of points in one measurement chamber by performing measurement.
- the test piece is provided with a plurality of measurement chambers, and each measurement chamber is configured to measure absorbance at a plurality of points, and a plurality of body fluid components can be analyzed with one test piece.
- the problem to be solved by the present invention is to provide a body fluid component analyzer and body fluid component analysis method that can quickly obtain an analysis result, suppress the size of a test piece, and reduce the cost required for the analysis. That is.
- the present invention has been made to solve the above-described problems.
- the invention according to claim 1 is directed to the absorbance of the color reaction between the analyte in the body fluid and the reagent in the measurement chamber provided in the test piece.
- a body fluid component analyzer for analyzing body fluid components, wherein an irradiation unit for irradiating light to the measurement chamber of the test piece and a two-dimensional imaging in which a plurality of light receiving elements are arranged in a two-dimensional plane
- a light receiving unit that receives light emitted from a light receiving range including the measurement chamber and having a two-dimensional spread, and calculates the light intensity obtained for each light receiving element to calculate the absorbance in the measurement chamber
- a humor component analyzing apparatus comprising: an arithmetic means for performing the operation.
- the first aspect of the present invention it is possible to measure the absorbance of the measurement chamber without moving the irradiation unit and the light receiving unit with respect to the test piece, and to analyze the body fluid component so that the analysis result can be obtained quickly.
- a possible body fluid component analyzer can be provided.
- the invention according to claim 2 is characterized in that the irradiation section includes a light source made of a light emitting diode that emits light of a predetermined wavelength, and a diffusion plate disposed between the light source and the test piece.
- the invention according to claim 3 is characterized in that a plurality of the measurement chambers are provided in the test piece, the irradiation unit irradiates an irradiation range including a plurality of the measurement chambers and having a two-dimensional spread.
- a body fluid component analyzer that can simultaneously analyze a plurality of components by calculating the absorbance for a plurality of measurement chambers at the same time.
- the invention according to claim 4 further includes a storage unit that stores a normal part selection rule for selecting only a light receiving element that has received light transmitted through a normal region in the measurement chamber, and the calculation means includes the light receiving range.
- the absorbance in the measurement chamber is calculated based on an average value of light intensity in a part selected based on the normal part selection rule from the light receiving elements that have received the light. This is a body fluid component analyzer.
- a body fluid component analyzer capable of performing an appropriate analysis by calculating the absorbance after excluding an abnormal part in the measurement chamber.
- the storage unit stores a dark value selection rule for selecting a dark value
- the computing means receives the light in the light receiving range from the light intensity of the light receiving element. 5.
- the dark value is selected on the basis of a dark value selection rule, and the dark value is uniformly subtracted from the light intensity of all the light receiving elements that have received light in the light receiving range, and corrected.
- This is a body fluid component analyzer.
- the fifth aspect of the present invention it is possible to provide a body fluid component analyzer that can perform dark correction without imaging a test piece a plurality of times and can obtain an appropriate analysis result quickly.
- the invention according to claim 6 is characterized in that a bar code is provided on the test piece, and the light receiving unit receives light emitted from the bar code and reads the bar code.
- the body fluid component analyzer according to any one of the above.
- a body fluid component analyzer that is easy to manage, such as identifying an individual specimen and identifying a subject who has provided a sample.
- the invention according to claim 7 is a body fluid component analyzing method for analyzing the body fluid component by measuring the absorbance of the color reaction between the analyte in the body fluid and the reagent in the measurement chamber provided in the test piece. Irradiating the measurement chamber of the test piece with light, and receiving light emitted from a light-receiving range including the measurement chamber and having a two-dimensional extent, a plurality of light receiving elements arranged in a two-dimensional plane
- a body fluid component analyzing method comprising: a step of receiving light by a unit; and a step of calculating an absorbance in the measurement chamber by calculating a light intensity obtained for each of the light receiving elements.
- the seventh aspect of the present invention it is possible to analyze the body fluid component so that the absorbance of the measurement chamber can be measured without moving the irradiation unit and the light receiving unit with respect to the test piece, and the analysis result can be obtained quickly.
- a possible body fluid component analysis method can be provided.
- the step of calculating the absorbance only the light receiving element that has received light transmitted through a normal region of the measurement chamber is selected from the light receiving elements that have received light in the light receiving range.
- the eighth aspect of the invention it is possible to provide a body fluid component analysis method capable of performing an appropriate analysis by calculating the absorbance after excluding an abnormal portion in the measurement chamber.
- the step of calculating the absorbance includes the step of selecting a dark value from the light intensity of the light receiving element that has received the light in the light receiving range, and the light in the light receiving range is received.
- the present invention it is possible to measure the absorbance of the measurement chamber without moving the irradiation unit and the light receiving unit with respect to the test piece, and to quickly analyze the body fluid component capable of analyzing the body fluid component.
- Analytical apparatus and methods can be provided.
- FIG. 4 is an arrow view showing an arrow AA in FIG. 3, and is a schematic diagram illustrating a two-dimensional imaging device and light that has reached through one measurement chamber of a test piece.
- 5 is a graph showing the light intensity in a row of light receiving elements indicated by a cross section BB in FIG.
- FIG. 5A and 5B are graphs showing light intensity in a row of light receiving elements shown by a cross section BB in FIG. 4, where FIG. 4A shows a case where light having a main wavelength ⁇ m is irradiated, and FIG. It is. It is a perspective view which shows the other example of the test piece used when analyzing a bodily fluid component using the bodily fluid component analyzer which concerns on this invention.
- test pieces First, the structure of the test piece used with the body fluid component analyzer which concerns on this invention is demonstrated based on FIG.
- the test piece 10 is configured in the same manner as the test piece described in Patent Document 1, and the supplied body fluid sample is transferred to the measurement chamber to cause a color reaction with the reagent provided in the test piece 10.
- the color reaction can be measured optically.
- the test piece 10 communicates with the supply port 11 through which the bodily fluid sample is supplied, the flow channel 12 serving as a transfer path of the bodily fluid sample, and the flow channel 12, and the bodily fluid sample is transferred to cause a color reaction. It has a measuring chamber 13 that takes place.
- the body fluid sample is transferred from the supply port 11 to the measurement chamber by an appropriate method such as pressing or suction.
- a reagent (not shown) that causes a color reaction with a component contained in the body fluid sample is provided between the supply port 11 and the measurement chamber 13.
- the test piece 10 is configured by coupling a plate 14 and a plate 15, the supply port 11 is provided in the plate 14, and the flow path 12 and the measurement chamber 13 are provided in the plate 15.
- the plate 15 is transparent so as to have light transmission in the place where the measurement chamber 13 is provided so that the measurement chamber 13 can be optically measured, and light is not transmitted in places other than the measurement chamber 13. It is colored black.
- the test piece 10 shown in FIG. 1 is provided with twelve substantially circular transparent measurement chambers 13 so that twelve different components can be analyzed.
- a bar code 16 is attached to the plate 14 of the test piece 10.
- the bar code 16 is used to identify 10 test pieces, and the bar code 16 is used to identify the subject who provided the sample.
- the barcode 16 either a one-dimensional barcode or a two-dimensional barcode can be used.
- the body fluid component analyzer 100 is configured to irradiate light toward the measurement chamber 13 of the test piece 10, receive light transmitted through the measurement chamber 13, and obtain the absorbance in the measurement chamber 13 based on the light intensity.
- the irradiation part 20 which irradiates light to the test piece 10, and the light-receiving part 30 which receives the light emitted from the test piece 10 are provided. Further, as shown in FIG. 3, while functioning as a calculation means for calculating the absorbance based on the light intensity, the CPU 50 for controlling the entire apparatus, the rules for calculating the absorbance, etc.
- the body fluid component analyzer 100 includes a heater 90 that heats the test piece 10, thereby maintaining an appropriate temperature condition for the reaction.
- the irradiating unit 20 includes a housing 21, and inside thereof, light sources 22, 23, and 24 made of bullet-type LEDs (light emitting diodes) that are closely arranged, and a diffusion plate 25 that is provided apart from each other. , 26.
- the light emitted from the light sources 22, 23, 24 is configured to reach the test piece 10 via the diffusion plates 25, 26, thereby enabling the test piece 10 to be irradiated with substantially parallel light.
- the irradiated range has a two-dimensional spread.
- a bullet-type LED it is possible to configure the irradiation unit 20 that can irradiate light of a predetermined wavelength at a low cost.
- the irradiating unit 20 is configured to be capable of irradiating at least two wavelengths of light, and is selected such that the light sources 22 and 23 emit light of the main wavelength ⁇ m and the light source 24 emits light of the sub wavelength ⁇ s. Then, the light sources 22 and 23 and the light source 24 are controlled to be lit separately. The description of the main wavelength ⁇ m and the sub wavelength ⁇ s will be described later.
- the light receiving unit 30 is disposed to face the irradiation unit 20 with the test piece 10 interposed therebetween.
- the light receiving unit 30 includes a two-dimensional imaging element 31 and a lens 32, and is configured to receive (image) light emitted from the two-dimensional light receiving range J.
- the two-dimensional imaging element 31 receives light emitted from the portion of the test piece 10 that falls within the light receiving range J by imaging one side of the test piece 10 through the lens 32.
- the light receiving range J captured by the two-dimensional imaging device 31 is a surface opposite to the surface irradiated by the irradiation unit 20 and is configured to supplement light emitted from the irradiation unit 20 and transmitted through the measurement chamber 13. Yes.
- the two-dimensional image pickup device 31 includes a plurality of light receiving elements arranged in a two-dimensional plane, and detects the light intensity for each light receiving element.
- a CCD image sensor, a CMOS image sensor, or the like is preferably used as the two-dimensional image sensor 31.
- the light receiving range J shown in FIG. 2 is set to be narrower than the area of the region in which the measurement chamber 13 is disposed, and the entire measurement chamber 13 of the test piece 10 cannot be covered by one imaging. Therefore, by using the driving means (not shown in FIG. 2), by moving the test piece 10 relative to the light receiving range J (left and right direction in FIG. 2), the region where the measurement chamber 13 is arranged is changed. It is possible to divide and take an image, so that the entire measurement chamber 13 can be covered.
- the driving means can be constituted by an appropriate device such as a rack and pinion.
- the bar code 16 is attached to the test piece 10, it can be configured to be read by the two-dimensional image sensor 31. In that case, it is possible to use the above-described driving means that moves the test piece 10 relative to the light receiving range J so that the barcode 16 enters the light receiving range J. In addition, when all the measurement chambers 13 of the test piece 10 and the barcode 16 are in the light receiving range J, no driving means is required.
- the light source of the irradiation unit 20 is configured by a plurality of bullet-type LEDs, but a chip LED that irradiates light of a plurality of wavelengths can be employed instead. With this configuration, the size of the apparatus can be reduced, and there is no need to finely adjust the direction of light.
- the irradiation unit 20 is configured to irradiate the test piece 10 with substantially parallel light by using the diffusion plates 25 and 26.
- the reason is that by irradiating the irradiation region of the irradiation unit 20 with light of uniform light intensity, the SN ratio is uniformly increased for each measurement chamber 13 existing in the irradiation region, and a highly accurate measurement result is obtained. It is in that it can be obtained. Therefore, although it is preferable to use the diffusion plates 25 and 26, it is not essential. When the diffusion plates 25 and 26 are not used, accuracy can be compensated by performing blank correction. In the blank correction, correction information is acquired by receiving light from a dummy test piece simulating the shape of the measurement chamber 13 or by receiving light from the irradiation unit 20 without using any test piece. The analysis result is corrected based on the correction information.
- the body fluid component analyzer 100 calculates the absorbance based on the irradiation unit 20, the light receiving unit 30, the driving unit 40 that moves the light receiving unit 30 relative to the test piece 10, and the light intensity received by the light receiving unit 30.
- the main configuration includes a CPU 50 for controlling the entire apparatus, a rule for calculating absorbance, a storage unit 60 for storing light intensity information received by the light receiving unit, and a display unit 70 for displaying analysis results. Element. These elements transmit information via the bus 80.
- FIG. 4 is an arrow view of the image sensor as viewed in the direction of arrows AA in FIG. 3, and passes through one measurement chamber 13 of the test piece 10 and reaches the two-dimensional image sensor 31 of the light receiving unit 30. It is a schematic diagram showing light. A circle surrounded by the boundary B represents light that has passed through the measurement chamber 13 and reached the two-dimensional imaging device 31 of the light receiving unit 30. The light receiving element Pi (shown by dark hatching) that is completely within the circle surrounded by the boundary B detects the light transmitted through the measurement chamber 13. As shown in FIG.
- the light receiving element Pe (shown by thin hatching) on the boundary B is irradiated with light only on a part of the light receiving element, and thus the light intensity is lower than the light intensity of the light receiving element Pe.
- the light receiving element Po outside the boundary B does not receive light (however, a dark value may be detected as described later). Therefore, in order to calculate an appropriate absorbance in the measurement chamber 13, it is necessary to perform an operation after excluding light received by the light receiving elements Pe and Po.
- FIG. 5 is a graph showing the light intensity in one row of light receiving elements indicated by a section BB in FIG.
- the light receiving element Pi since the light receiving element Pi receives transmitted light, high light intensity is detected. Although the light passing through the measurement chamber 13 is not detected by the light receiving element Po, the dark value is detected. In the light receiving element Pe, the light intensity is a value between Pi and Po. Therefore, the light receiving element that detects the light intensity that deviates from the preset numerical range is determined as the light receiving element Pe or the light receiving element Po, and is excluded from the calculation of the absorbance in the measurement chamber 13. Then, by averaging the light intensity received by the light receiving element Pi, the absorbance of the measurement chamber 13 can be calculated.
- the absorbance of the measurement chamber 13 can be calculated. Accordingly, it is possible to measure an appropriate absorbance with one imaging without requiring two imaging when the test piece is irradiated and when the light is shielded.
- the light intensity in a place where light is not transmitted can be used by an appropriate method such as selecting an intermediate point between the plurality of measurement chambers 13.
- the numerical range set for selecting the light receiving elements Pe and Po to be excluded from the calculation of the absorbance can be defined as an absolute value, and is defined based on the highest light intensity (Li). It is also possible to do.
- This numerical range is stored in the storage unit 60, and is read out and calculated by the CPU 50.
- a rule for selecting a dark value for performing dark correction is also stored in the storage unit 60 and is read out by the CPU 50 to perform dark correction.
- noise may be generated due to dark current in a two-dimensional imaging device such as a CCD image sensor or a CMOS image sensor.
- a two-dimensional imaging device such as a CCD image sensor or a CMOS image sensor.
- dark correction can be performed.
- FIG. 6 is a graph showing the light intensity in a row of light receiving elements shown in section BB in FIG. 4, where (a) shows the light with the sub-wavelength ⁇ s when (a) is irradiated with the light with the main wavelength ⁇ m. Is the case of irradiation.
- the main wavelength ⁇ m is a wavelength belonging to the light absorption band of the color reaction occurring in the measurement chamber 13, and the sub wavelength ⁇ s is a wavelength not belonging to the light absorption band of the color reaction.
- the light intensity at the main wavelength ⁇ m is higher than the light intensity Lim around it, while the light intensity at the sub-wavelength ⁇ s is lower than the light intensity Lis around it. .
- This tendency suggests that there are large bubbles in region V. That is, for the main wavelength ⁇ m, the amount of transmission increases due to a color loss state in a large bubble, and for the sub-wavelength ⁇ s, light is reflected by the inner interface of the large bubble, and the amount of transmission decreases.
- the light intensity of the transmitted light tends to be opposite between the main wavelength ⁇ m and the sub wavelength ⁇ s.
- the light intensity in the region V where the bubbles are present is excluded, and the absorbance of the measurement chamber 13 is calculated.
- bubbles exist in the region of the light receiving element that detects the light intensity that deviates from the preset numerical range, and in which the tendency is reversed between the main wavelength ⁇ m and the subwavelength ⁇ s.
- the region V is determined and excluded from the calculation of the absorbance of the measurement chamber 13. Then, by averaging the light intensities received by the light receiving elements Pi other than the region V, it is possible to calculate the absorbance of the measurement chamber 13.
- the numerical range for determining the region V can be defined as an absolute value, or can be defined based on the highest level of light intensity (Lim, Lis).
- the numerical range described above is stored in the storage unit 60 as a normal part selection rule, is read by the CPU 50, and is calculated according to the normal part selection rule.
- the sub-wavelength ⁇ s is not absorbed by the color reaction dye in the measurement chamber, and thus the absorbance in the measurement chamber 13 should be essentially zero.
- the transmitted light is reduced due to reflection by small bubbles, and the absorbance is reduced.
- the increase in absorbance due to small bubbles also occurs at the dominant wavelength ⁇ m. Therefore, by subtracting the absorbance at the sub-wavelength ⁇ s from the absorbance at the main wavelength ⁇ m, it is possible to calculate the absorbance excluding the increase in absorbance due to small bubbles.
- the method of calculating the absorbance by excluding the bubble portion using the body fluid component analyzer moves the irradiation unit and the light receiving unit very slightly to perform irradiation / reception. It is not necessary to repeat the light receiving cycle, and the measurement result can be obtained quickly.
- the method for obtaining an appropriate absorbance in the measurement chamber has been described.
- the light receiving unit uses a two-dimensional image sensor, it is possible to image a plurality of measurement chambers at a time. Therefore, it is possible to simultaneously measure the absorbances of a plurality of measurement chambers, that is, to simultaneously analyze a plurality of components contained in a body fluid sample. Of course, an appropriate correction can be performed to calculate an appropriate absorbance for each measurement chamber.
- the color reaction that occurs is also different.
- the light receiving elements arranged in a line as shown in FIGS. 5 and 6 are taken up in order to explain the rules for selecting the light receiving elements to be excluded when calculating the absorbance.
- the light receiving elements are two-dimensionally arranged, the light receiving elements to be excluded when calculating the absorbance are selected by comparing the light intensities in the two-dimensional plane.
- the test piece 10 shown in FIG. 1 is configured to have a measurement chamber 13 in which a reagent is placed in advance inside a plate 15 that is formed by stacking.
- the test piece that can be used in the body fluid component analyzer 100 according to the present invention is not limited to this, and for example, a test piece 110 configured as shown in FIG. 7 can be used.
- the test piece 110 is configured such that a color reagent is generated by adding a liquid reagent to the body fluid sample introduced into the measurement chamber, and the color reaction can be optically measured.
- the test piece 110 shown in FIG. 7 is entirely composed of a resin having optical transparency, and a measurement chamber 113 is provided therein.
- a supply port 111 through which a body fluid sample is supplied, a reagent introduction port 117 through which a reagent is introduced, and an air hole 118 through which air in the measurement chamber is extracted are provided.
- the supply port 111 communicates with the measurement chamber 113 via the flow path 112, and the reagent introduction port 117 and the air hole 118 also communicate with the measurement chamber 113, respectively.
- a body fluid sample is supplied to the supply port 111, and the body fluid sample is guided to the measurement chamber 113.
- a liquid reagent is introduced from the reagent inlet.
- the body fluid sample and the liquid reagent are mixed and a color reaction is caused in the measurement chamber 113. Since the air in the measurement chamber 113 is discharged from the air hole 118, the body fluid sample and the liquid reagent are introduced into the measurement chamber 113 without resistance.
- the order in which the body fluid sample and the liquid reagent are introduced into the measurement chamber 113 may be reversed.
- the method of optically measuring the color reaction in the measurement chamber 113 with the body fluid component analyzer 100 according to the present invention is the same as when the test piece 10 is used. That is, instead of the test piece 10 shown in FIG. 2, the test piece 110 may be arranged in the body fluid component analyzer 100 and the absorbance in the measurement chamber 113 may be measured using this.
- test piece 110 shown in FIG. 7 includes two measurement chambers 113 and can measure two different items of body fluid components.
- the body fluid sample supplied to the supply port 111 is configured to branch into the two measurement chambers 113 through the flow path 112, but the reagent introduction port 117 communicated with each measurement chamber 113 for the reagent.
- different liquid reagents are introduced.
- the number of measurement chambers 113 can be changed as appropriate.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Provided are a body fluid component analysis device and body fluid component analysis method whereby analysis results are rapidly obtained, specimen size is kept small, and cost of analysis is low. The body fluid component analysis device (100) pertaining to the present invention measures absorbance of a color reaction between a reagent and an analysis subject in a body fluid in a measurement chamber (13) provided to a specimen (10) and analyzes a body fluid component, and is provided with: a radiating unit (20) for radiating light to the measurement chamber (13) of the specimen (10); a light-receiving unit (30) for receiving light emitted from a light-receiving range (J) including the measurement chamber (13) and having a two-dimensional spread, the light-receiving unit (30) having a two-dimensional imaging element (31) in which a plurality of light-receiving elements are arranged in a two-dimensional plane; and a calculation means (50) for calculating a light intensity obtained for each light-receiving element and computing the absorbance in the measurement chamber (13).
Description
この発明は、例えばグルコース、中性脂肪、尿酸、コレステロール、HbA1cなどの生体の体液成分を分析する体液成分分析装置および体液成分分析方法に関する。
The present invention relates to a body fluid component analyzer and body fluid component analysis method for analyzing biological fluid components such as glucose, neutral fat, uric acid, cholesterol, and HbA1c.
従来の体液成分分析装置として、体液試料を測定室で試薬と反応するよう構成された試験片を用い、その測定室で起こる呈色反応を光学的に測定することにより、体液成分を分析する装置が知られている(特許文献1参照)。特許文献1に係る体液成分分析装置は、試験片の測定室に光を照射する発光部と、測定室を透過した透過光を受光する受光部と、透過光に基づき吸光度を演算する演算手段とを備えている。
As a conventional body fluid component analyzer, an apparatus for analyzing a body fluid component by optically measuring a color reaction occurring in the measurement chamber using a test piece configured to react a body fluid sample with a reagent in the measurement chamber Is known (see Patent Document 1). The body fluid component analyzer according to Patent Document 1 includes a light emitting unit that irradiates light to a measurement chamber of a test piece, a light receiving unit that receives transmitted light that has passed through the measurement chamber, and a calculation unit that calculates absorbance based on the transmitted light. It has.
特許文献1に係る体液成分分析装置は、測定室の複数点において吸光度を測定し、複数点において得られた吸光度を適宜に選択・平均化することによって、例えば測定室内に気泡などが存在した場合でも、測定室の適正な吸光度を演算し、体液成分が分析可能となるよう構成されている。そのため、試験片の測定室にピンポイントで光を照射する発光部と、測定室のピンポイントを透過した透過光を受光する受光部とが一体となり、測定室の領域内を、駆動手段により移動しつつ測定することによって、一つの測定室の複数点における吸光度を測定するよう構成されている。そして、試験片には複数の測定室が設けられており、各測定室について、複数点における吸光度を測定するよう構成されており、一つの試験片で複数の体液成分を分析することができる。
The body fluid component analyzer according to Patent Document 1 measures the absorbance at a plurality of points in the measurement chamber, and appropriately selects and averages the absorbance obtained at the plurality of points, for example, when bubbles or the like exist in the measurement chamber However, it is configured to calculate the appropriate absorbance of the measurement chamber and to analyze the body fluid component. Therefore, the light emitting part that irradiates the measurement chamber of the test piece with light at a pinpoint and the light receiving part that receives the transmitted light that has passed through the pinpoint of the measurement chamber are integrated, and moved within the measurement chamber area by driving means. However, it is configured to measure the absorbance at a plurality of points in one measurement chamber by performing measurement. The test piece is provided with a plurality of measurement chambers, and each measurement chamber is configured to measure absorbance at a plurality of points, and a plurality of body fluid components can be analyzed with one test piece.
しかし、上述の分析装置では、一つの測定室における分析結果を算出するために、駆動手段によるごく僅かな移動、および照射・受光・演算のサイクルを、複数回繰り返す必要があり、そのため、迅速に分析結果を得ることが困難となっていた。そして、複数の測定室を備える試験片については、一つの測定室での測定が終わるたびに、次の測定室まで発光部と受光部とを移動させ、その測定室で移動・照射・受光・演算のサイクルを繰り返す必要があり、分析が終了するまでに多くの時間を必要としていた。また、複数点において吸光度を測定可能に構成しようとすると、測定室をある程度大きくする必要が生じる。そして複数の測定室を有する試験片の場合、測定室を大きくすると試験片全体が大きくなりコストが増加するという問題があった。一方、測定室を小さくすると、駆動手段について、ごく僅かな移動距離の制御が必要となるという問題があった。
However, in the above-described analyzer, in order to calculate the analysis result in one measurement chamber, it is necessary to repeat the slight movement by the driving means and the cycle of irradiation / light reception / calculation a plurality of times. It was difficult to obtain analysis results. For a test piece having a plurality of measurement chambers, each time measurement in one measurement chamber is completed, the light-emitting unit and the light-receiving unit are moved to the next measurement chamber. It was necessary to repeat the calculation cycle, and much time was required until the analysis was completed. In addition, if it is intended to measure the absorbance at a plurality of points, it is necessary to enlarge the measurement chamber to some extent. In the case of a test piece having a plurality of measurement chambers, there is a problem that if the measurement chamber is enlarged, the entire test piece is enlarged and the cost is increased. On the other hand, when the measurement chamber is made small, there is a problem that it is necessary to control a very small moving distance of the driving means.
本発明が解決しようとする課題は、迅速に分析結果が得られるとともに、試験片の大きさを抑え、分析に要するコストが低廉となるような、体液成分分析装置および体液成分分析方法を提供することである。
The problem to be solved by the present invention is to provide a body fluid component analyzer and body fluid component analysis method that can quickly obtain an analysis result, suppress the size of a test piece, and reduce the cost required for the analysis. That is.
本発明は、上述の課題を解決するためになされたもので、請求項1に係る発明は、試験片に設けられた測定室における、体液中の分析対象物と試薬との呈色反応の吸光度を測定して、体液成分を分析する体液成分分析装置であって、前記試験片の前記測定室に光を照射する照射部と、複数の受光素子が二次元平面に配列されてなる二次元撮像素子を有し、前記測定室を含み二次元的な広がりを有する受光範囲から発せられる光を受ける受光部と、前記受光素子ごとに得られた光強度を演算して前記測定室における吸光度を算出する演算手段とを備えることを特徴とする体液成分分析装置である。
The present invention has been made to solve the above-described problems. The invention according to claim 1 is directed to the absorbance of the color reaction between the analyte in the body fluid and the reagent in the measurement chamber provided in the test piece. Is a body fluid component analyzer for analyzing body fluid components, wherein an irradiation unit for irradiating light to the measurement chamber of the test piece and a two-dimensional imaging in which a plurality of light receiving elements are arranged in a two-dimensional plane A light receiving unit that receives light emitted from a light receiving range including the measurement chamber and having a two-dimensional spread, and calculates the light intensity obtained for each light receiving element to calculate the absorbance in the measurement chamber A humor component analyzing apparatus, comprising: an arithmetic means for performing the operation.
請求項1に係る発明によれば、試験片に対して照射部および受光部を動かすことなく測定室の吸光度を測定することができ、迅速に分析結果が得られるような、体液成分の分析が可能な体液成分分析装置を提供することができる。
According to the first aspect of the present invention, it is possible to measure the absorbance of the measurement chamber without moving the irradiation unit and the light receiving unit with respect to the test piece, and to analyze the body fluid component so that the analysis result can be obtained quickly. A possible body fluid component analyzer can be provided.
請求項2に係る発明は、前記照射部が、所定の波長の光を発する発光ダイオードからなる光源と、前記光源と前記試験片との間に配置された拡散板とを有することを特徴とする請求項1に記載の体液成分分析装置である。
The invention according to claim 2 is characterized in that the irradiation section includes a light source made of a light emitting diode that emits light of a predetermined wavelength, and a diffusion plate disposed between the light source and the test piece. The body fluid component analyzer according to claim 1.
請求項2に係る発明によれば、低コストで所定の波長を有する光を照射することが可能となり、SN比が高く、高精度の体液成分分析装置を提供することができる。
According to the invention of claim 2, it is possible to irradiate light having a predetermined wavelength at a low cost, and it is possible to provide a highly accurate body fluid component analyzer having a high SN ratio.
請求項3に係る発明は、前記試験片に前記測定室が複数設けられており、複数の前記測定室を包含し、二次元的な広がりを有する照射範囲を前記照射部が照射することを特徴とする請求項2に記載の体液成分分析装置である。
The invention according to claim 3 is characterized in that a plurality of the measurement chambers are provided in the test piece, the irradiation unit irradiates an irradiation range including a plurality of the measurement chambers and having a two-dimensional spread. The body fluid component analyzer according to claim 2.
請求項3に係る発明によれば、複数の測定室について同時に吸光度を算出することにより、同時に複数の成分を分析することが可能な体液成分分析装置を提供することができる。
According to the invention of claim 3, it is possible to provide a body fluid component analyzer that can simultaneously analyze a plurality of components by calculating the absorbance for a plurality of measurement chambers at the same time.
請求項4に係る発明は、前記測定室のうち正常な領域を透過した光を受けた受光素子のみを選択する正常部選択規則を記憶する記憶部をさらに備え、前記演算手段が、前記受光範囲の光を受光した前記受光素子の中から、前記正常部選択規則に基づき選択された一部における光強度の平均値により、前記測定室における吸光度を算出することを特徴とする請求項3に記載の体液成分分析装置である。
The invention according to claim 4 further includes a storage unit that stores a normal part selection rule for selecting only a light receiving element that has received light transmitted through a normal region in the measurement chamber, and the calculation means includes the light receiving range. The absorbance in the measurement chamber is calculated based on an average value of light intensity in a part selected based on the normal part selection rule from the light receiving elements that have received the light. This is a body fluid component analyzer.
請求項4に係る発明によれば、測定室における正常でない部分を除外した上で吸光度を算出することにより、適正な分析をすることが可能な体液成分分析装置を提供することができる。
According to the invention of claim 4, it is possible to provide a body fluid component analyzer capable of performing an appropriate analysis by calculating the absorbance after excluding an abnormal part in the measurement chamber.
請求項5に係る発明は、前記記憶部が、ダーク値を選定するダーク値選定規則を記憶し、前記演算手段が、前記受光範囲の光を受光した前記受光素子の光強度の中から、前記ダーク値選定規則に基づきダーク値を選定し、前記受光範囲の光を受光した全ての前記受光素子の光強度から前記ダーク値を一律に減算して補正することを特徴とする請求項4に記載の体液成分分析装置である。
According to a fifth aspect of the present invention, the storage unit stores a dark value selection rule for selecting a dark value, and the computing means receives the light in the light receiving range from the light intensity of the light receiving element. 5. The dark value is selected on the basis of a dark value selection rule, and the dark value is uniformly subtracted from the light intensity of all the light receiving elements that have received light in the light receiving range, and corrected. This is a body fluid component analyzer.
請求項5に係る発明によれば、試験片を複数回撮像することなくダーク補正を行うことができ、迅速に適正な分析結果を得ることが可能な体液成分分析装置を提供することができる。
According to the fifth aspect of the present invention, it is possible to provide a body fluid component analyzer that can perform dark correction without imaging a test piece a plurality of times and can obtain an appropriate analysis result quickly.
請求項6に係る発明は、前記試験片にバーコードが設けられており、前記受光部が前記バーコードから発せられる光を受光して前記バーコードを読み取ることを特徴とする請求項1~5のいずれかに記載の体液成分分析装置である。
The invention according to claim 6 is characterized in that a bar code is provided on the test piece, and the light receiving unit receives light emitted from the bar code and reads the bar code. The body fluid component analyzer according to any one of the above.
請求項6に係る発明によれば、試験片の個体を識別するとともに、試料を提供した被験者を識別するような管理が容易な体液成分分析装置を提供することができる。
According to the sixth aspect of the invention, it is possible to provide a body fluid component analyzer that is easy to manage, such as identifying an individual specimen and identifying a subject who has provided a sample.
請求項7に係る発明は、試験片に設けられた測定室における、体液中の分析対象物と試薬との呈色反応の吸光度を測定して、体液成分を分析する体液成分分析方法であって、前記試験片の前記測定室に光を照射するステップと、前記測定室を含み二次元的な広がりを有する受光範囲から発せられる光を、複数の受光素子が二次元平面に配列されてなる受光部で受光するステップと、前記受光素子ごとに得られた光強度を演算して前記測定室における吸光度を算出するステップとを備えることを特徴とする体液成分分析方法である。
The invention according to claim 7 is a body fluid component analyzing method for analyzing the body fluid component by measuring the absorbance of the color reaction between the analyte in the body fluid and the reagent in the measurement chamber provided in the test piece. Irradiating the measurement chamber of the test piece with light, and receiving light emitted from a light-receiving range including the measurement chamber and having a two-dimensional extent, a plurality of light receiving elements arranged in a two-dimensional plane A body fluid component analyzing method comprising: a step of receiving light by a unit; and a step of calculating an absorbance in the measurement chamber by calculating a light intensity obtained for each of the light receiving elements.
請求項7に係る発明によれば、試験片に対して照射部および受光部を動かすことなく測定室の吸光度を測定することができ、迅速に分析結果が得られるような、体液成分の分析が可能な体液成分分析方法を提供することができる。
According to the seventh aspect of the present invention, it is possible to analyze the body fluid component so that the absorbance of the measurement chamber can be measured without moving the irradiation unit and the light receiving unit with respect to the test piece, and the analysis result can be obtained quickly. A possible body fluid component analysis method can be provided.
請求項8に係る発明は、前記吸光度を算出するステップが、前記受光範囲の光を受光した前記受光素子の中から、前記測定室の正常な領域を透過した光を受けた受光素子のみを選択するステップと、選択された前記受光素子おける光強度の平均値により、前記測定室における吸光度を算出するステップとを備えることを特徴とする請求項7に記載の体液成分分析方法である。
In the invention according to claim 8, in the step of calculating the absorbance, only the light receiving element that has received light transmitted through a normal region of the measurement chamber is selected from the light receiving elements that have received light in the light receiving range. The body fluid component analyzing method according to claim 7, further comprising: calculating the absorbance in the measurement chamber based on an average value of light intensity in the selected light receiving element.
請求項8に係る発明によれば、測定室における正常でない部分を除外した上で吸光度を算出することにより、適正な分析をすることが可能な体液成分分析方法を提供することができる。
According to the eighth aspect of the invention, it is possible to provide a body fluid component analysis method capable of performing an appropriate analysis by calculating the absorbance after excluding an abnormal portion in the measurement chamber.
請求項9に係る発明は、前記吸光度を算出するステップが、前記受光範囲の光を受光した前記受光素子の光強度の中から、ダーク値を選定するステップと、前記受光範囲の光を受光した全ての前記受光素子の光強度から、前記ダーク値を一律に減算して補正するステップとをさらに備えることを特徴とする請求項8に記載の体液成分分析方法である。
In the invention according to claim 9, the step of calculating the absorbance includes the step of selecting a dark value from the light intensity of the light receiving element that has received the light in the light receiving range, and the light in the light receiving range is received. The body fluid component analysis method according to claim 8, further comprising a step of uniformly subtracting and correcting the dark value from the light intensity of all the light receiving elements.
請求項9に係る発明によれば、試験片を複数回撮像することなくダーク補正を行うことができ、迅速に適正な分析結果を得ることが可能な体液成分分析方法を提供することができる。
According to the invention of claim 9, it is possible to provide a body fluid component analysis method that can perform dark correction without imaging a test piece a plurality of times and can obtain an appropriate analysis result quickly.
本発明によれば、試験片に対して照射部および受光部を動かすことなく測定室の吸光度を測定することができ、迅速に分析結果が得られるような、体液成分の分析が可能な体液成分分析装置および方法を提供することができる。
According to the present invention, it is possible to measure the absorbance of the measurement chamber without moving the irradiation unit and the light receiving unit with respect to the test piece, and to quickly analyze the body fluid component capable of analyzing the body fluid component. Analytical apparatus and methods can be provided.
次に、本発明の実施形態について図面に基づき説明する。なお、以下に述べる実施形態は、本発明の好適な実施形態であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
Next, an embodiment of the present invention will be described with reference to the drawings. The embodiments described below are preferred embodiments of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. As long as there is no description of the effect, it is not restricted to these aspects.
(試験片)
まず、本発明に係る体液成分分析装置とともに用いる試験片の構成について、図1に基づき説明する。試験片10は、特許文献1に記載された試験片と同様に構成されており、供給された体液試料を測定室に移送して、試験片10に設けられた試薬とで呈色反応を起こし、その呈色反応が光学的に測定可能となるよう構成されている。 (Test pieces)
First, the structure of the test piece used with the body fluid component analyzer which concerns on this invention is demonstrated based on FIG. Thetest piece 10 is configured in the same manner as the test piece described in Patent Document 1, and the supplied body fluid sample is transferred to the measurement chamber to cause a color reaction with the reagent provided in the test piece 10. The color reaction can be measured optically.
まず、本発明に係る体液成分分析装置とともに用いる試験片の構成について、図1に基づき説明する。試験片10は、特許文献1に記載された試験片と同様に構成されており、供給された体液試料を測定室に移送して、試験片10に設けられた試薬とで呈色反応を起こし、その呈色反応が光学的に測定可能となるよう構成されている。 (Test pieces)
First, the structure of the test piece used with the body fluid component analyzer which concerns on this invention is demonstrated based on FIG. The
したがって、試験片10は、体液試料を供給する供給口11、体液試料の移送経路となる流路12、および流路12を介して供給口11に連通し、体液試料が移送され呈色反応が起こる測定室13を備えている。体液試料は押圧や吸引など適宜の方法により、供給口11から測定室に移送される。なお、体液試料に含まれる成分と呈色反応を起こす試薬(図示省略)が、供給口11から測定室13までの間にいずれかの場所に設けられている。
Therefore, the test piece 10 communicates with the supply port 11 through which the bodily fluid sample is supplied, the flow channel 12 serving as a transfer path of the bodily fluid sample, and the flow channel 12, and the bodily fluid sample is transferred to cause a color reaction. It has a measuring chamber 13 that takes place. The body fluid sample is transferred from the supply port 11 to the measurement chamber by an appropriate method such as pressing or suction. Note that a reagent (not shown) that causes a color reaction with a component contained in the body fluid sample is provided between the supply port 11 and the measurement chamber 13.
試験片10はプレート14およびプレート15が結合されて構成されており、供給口11はプレート14に設けられており、流路12および測定室13はプレート15の内部に設けられている。プレート15は、測定室13が光学的に測定可能となるよう、測定室13が設けられている場所においては光透過性を有するよう透明であり、測定室13以外の場所では光が透過しないよう、黒色に着色されている。図1に示す試験片10には、略円形の透明な測定室13が12個設けられており、12の異なる成分を分析可能に構成されている。
The test piece 10 is configured by coupling a plate 14 and a plate 15, the supply port 11 is provided in the plate 14, and the flow path 12 and the measurement chamber 13 are provided in the plate 15. The plate 15 is transparent so as to have light transmission in the place where the measurement chamber 13 is provided so that the measurement chamber 13 can be optically measured, and light is not transmitted in places other than the measurement chamber 13. It is colored black. The test piece 10 shown in FIG. 1 is provided with twelve substantially circular transparent measurement chambers 13 so that twelve different components can be analyzed.
なお、試験片10のプレート14にはバーコード16が付されている。このバーコード16を用いて試験片10個体が識別され、また、このバーコード16により試料を提供した被験者が識別されるよう管理される。バーコード16として、一次元または二次元バーコードの、いずれも使用可能である。
A bar code 16 is attached to the plate 14 of the test piece 10. The bar code 16 is used to identify 10 test pieces, and the bar code 16 is used to identify the subject who provided the sample. As the barcode 16, either a one-dimensional barcode or a two-dimensional barcode can be used.
(体液成分分析装置)
次に、本発明に係る体液成分分析装置の実施形態について、図2,3に基づき説明する。体液成分分析装置100は、試験片10の測定室13に向けて光を照射するとともに、測定室13を透過した透過光を受光し、この光強度に基づき、測定室13における吸光度を求めるよう構成されており、試験片10に光を照射する照射部20、および試験片10から発せられる光を受光する受光部30を備えている。また、図3に示すように、光強度に基づき吸光度を演算する演算手段として機能するとともに、装置全体を制御するCPU50、吸光度を演算する際の規則などを記憶し、受光部30が受けた光強度の情報を記憶する記憶部60、および分析結果を表示する表示部70を備えている。また、この体液成分分析装置100は、試験片10を加温するヒータ90を備えており、これにより反応に適切な温度条件が保たれる。 (Body fluid component analyzer)
Next, an embodiment of a body fluid component analyzer according to the present invention will be described with reference to FIGS. The bodyfluid component analyzer 100 is configured to irradiate light toward the measurement chamber 13 of the test piece 10, receive light transmitted through the measurement chamber 13, and obtain the absorbance in the measurement chamber 13 based on the light intensity. The irradiation part 20 which irradiates light to the test piece 10, and the light-receiving part 30 which receives the light emitted from the test piece 10 are provided. Further, as shown in FIG. 3, while functioning as a calculation means for calculating the absorbance based on the light intensity, the CPU 50 for controlling the entire apparatus, the rules for calculating the absorbance, etc. are stored, and the light received by the light receiving unit 30 A storage unit 60 for storing the intensity information and a display unit 70 for displaying the analysis result are provided. In addition, the body fluid component analyzer 100 includes a heater 90 that heats the test piece 10, thereby maintaining an appropriate temperature condition for the reaction.
次に、本発明に係る体液成分分析装置の実施形態について、図2,3に基づき説明する。体液成分分析装置100は、試験片10の測定室13に向けて光を照射するとともに、測定室13を透過した透過光を受光し、この光強度に基づき、測定室13における吸光度を求めるよう構成されており、試験片10に光を照射する照射部20、および試験片10から発せられる光を受光する受光部30を備えている。また、図3に示すように、光強度に基づき吸光度を演算する演算手段として機能するとともに、装置全体を制御するCPU50、吸光度を演算する際の規則などを記憶し、受光部30が受けた光強度の情報を記憶する記憶部60、および分析結果を表示する表示部70を備えている。また、この体液成分分析装置100は、試験片10を加温するヒータ90を備えており、これにより反応に適切な温度条件が保たれる。 (Body fluid component analyzer)
Next, an embodiment of a body fluid component analyzer according to the present invention will be described with reference to FIGS. The body
照射部20は、筐体21を有し、その内部には、密集して配置された砲弾型LED(発光ダイオード)からなる光源22,23,24と、互いに離隔して設けられた拡散板25,26とを備える。光源22,23,24から発せられる光は、拡散板25,26を介して試験片10に到達するよう構成されており、これによりほぼ平行光を試験片10に照射することが可能となる。そして照射される範囲は、二次元的な広がりを有する。また、砲弾型LEDを使用することにより、低コストで所定の波長の光を照射可能な照射部20を構成することが可能となる。なお、照射部20は、少なくとも二波長の光を照射可能に構成されており、光源22,23が主波長λmの光を、光源24が副波長λsの光を発するよう選択されている。そして、光源22,23と光源24とは、別々に点灯するよう制御される。なお、主波長λmおよび副波長λsの説明については後述する。
The irradiating unit 20 includes a housing 21, and inside thereof, light sources 22, 23, and 24 made of bullet-type LEDs (light emitting diodes) that are closely arranged, and a diffusion plate 25 that is provided apart from each other. , 26. The light emitted from the light sources 22, 23, 24 is configured to reach the test piece 10 via the diffusion plates 25, 26, thereby enabling the test piece 10 to be irradiated with substantially parallel light. The irradiated range has a two-dimensional spread. In addition, by using a bullet-type LED, it is possible to configure the irradiation unit 20 that can irradiate light of a predetermined wavelength at a low cost. The irradiating unit 20 is configured to be capable of irradiating at least two wavelengths of light, and is selected such that the light sources 22 and 23 emit light of the main wavelength λm and the light source 24 emits light of the sub wavelength λs. Then, the light sources 22 and 23 and the light source 24 are controlled to be lit separately. The description of the main wavelength λm and the sub wavelength λs will be described later.
受光部30は、試験片10を挟み照射部20に対向して配置されている。受光部30は、二次元撮像素子31とレンズ32とを有し、二次元的な受光範囲Jから発せられる光を受光(撮像)するよう構成されている。二次元撮像素子31は、レンズ32を介して試験片10の片面を撮像することにより、受光範囲J内に入っている試験片10の部分から発せられる光を受光する。なお、二次元撮像素子31が撮像する受光範囲Jは、照射部20が照射する面の反対側の面であり、照射部20から発せられ測定室13を透過する光も補足するよう構成されている。二次元撮像素子31は、複数の受光素子が二次元平面に配列されてなり、受光素子ごとに光強度を検知する。なお、二次元撮像素子31としては、CCDイメージセンサ、CMOSイメージセンサなどが好適に用いられる。
The light receiving unit 30 is disposed to face the irradiation unit 20 with the test piece 10 interposed therebetween. The light receiving unit 30 includes a two-dimensional imaging element 31 and a lens 32, and is configured to receive (image) light emitted from the two-dimensional light receiving range J. The two-dimensional imaging element 31 receives light emitted from the portion of the test piece 10 that falls within the light receiving range J by imaging one side of the test piece 10 through the lens 32. The light receiving range J captured by the two-dimensional imaging device 31 is a surface opposite to the surface irradiated by the irradiation unit 20 and is configured to supplement light emitted from the irradiation unit 20 and transmitted through the measurement chamber 13. Yes. The two-dimensional image pickup device 31 includes a plurality of light receiving elements arranged in a two-dimensional plane, and detects the light intensity for each light receiving element. As the two-dimensional image sensor 31, a CCD image sensor, a CMOS image sensor, or the like is preferably used.
なお、図2に示す受光範囲Jは、測定室13が配置されている領域の面積より狭く設定されており、一度の撮像で試験片10の測定室13の全てをカバーすることはできない。そこで、駆動手段(図2においては図示省略)を用いて、受光範囲Jに対して試験片10を相対的に動かすことにより(図2における左右方向)、測定室13が配置されている領域を分割して撮像することが可能になり、これによって測定室13の全てをカバーできるよう構成されている。駆動手段は、ラックアンドピニオンなど、適宜の装置により構成することができる。
Note that the light receiving range J shown in FIG. 2 is set to be narrower than the area of the region in which the measurement chamber 13 is disposed, and the entire measurement chamber 13 of the test piece 10 cannot be covered by one imaging. Therefore, by using the driving means (not shown in FIG. 2), by moving the test piece 10 relative to the light receiving range J (left and right direction in FIG. 2), the region where the measurement chamber 13 is arranged is changed. It is possible to divide and take an image, so that the entire measurement chamber 13 can be covered. The driving means can be constituted by an appropriate device such as a rack and pinion.
また、試験片10にはバーコード16が付されているが、二次元撮像素子31により読み取るよう構成することが可能である。その場合、バーコード16が受光範囲Jに入るように、受光範囲Jに対して試験片10を相対的に移動させる上述の駆動手段を用いることが可能である。なお、試験片10の測定室13の全ておよびバーコード16が両方とも受光範囲Jに入る場合には、駆動手段は必要としない。
Further, although the bar code 16 is attached to the test piece 10, it can be configured to be read by the two-dimensional image sensor 31. In that case, it is possible to use the above-described driving means that moves the test piece 10 relative to the light receiving range J so that the barcode 16 enters the light receiving range J. In addition, when all the measurement chambers 13 of the test piece 10 and the barcode 16 are in the light receiving range J, no driving means is required.
また、上述の実施形態では、照射部20の光源が複数の砲弾型LEDから構成されているが、これに代えて複数波長の光を照射するチップLEDを採用することも可能である。このように構成すれば、装置のサイズを小さくすることができ、また光の向きについて細かく調整する必要がない。
Further, in the above-described embodiment, the light source of the irradiation unit 20 is configured by a plurality of bullet-type LEDs, but a chip LED that irradiates light of a plurality of wavelengths can be employed instead. With this configuration, the size of the apparatus can be reduced, and there is no need to finely adjust the direction of light.
さらに、上述の実施形態では、照射部20は、拡散板25,26を用いることにより、ほぼ平行光を試験片10に照射するよう構成されている。この理由は、照射部20の照射領域に一様な光強度の光を照射することにより、照射領域内に存在する各測定室13について一様にSN比を高めて、高精度な測定結果を得ることができるという点にある。したがって、拡散板25,26を用いることは、好適ではあるが必須ではない。拡散板25,26を用いない場合、ブランク補正を行うことにより精度を補償することが可能である。ブランク補正は、測定室13の形状を模擬したダミーの試験片からの光を受光することにより、または試験片を全く使用することなく照射部20からの光を受光することにより、補正情報を取得し、この補正情報に基づいて分析結果を補正することにより行われる。
Furthermore, in the above-described embodiment, the irradiation unit 20 is configured to irradiate the test piece 10 with substantially parallel light by using the diffusion plates 25 and 26. The reason is that by irradiating the irradiation region of the irradiation unit 20 with light of uniform light intensity, the SN ratio is uniformly increased for each measurement chamber 13 existing in the irradiation region, and a highly accurate measurement result is obtained. It is in that it can be obtained. Therefore, although it is preferable to use the diffusion plates 25 and 26, it is not essential. When the diffusion plates 25 and 26 are not used, accuracy can be compensated by performing blank correction. In the blank correction, correction information is acquired by receiving light from a dummy test piece simulating the shape of the measurement chamber 13 or by receiving light from the irradiation unit 20 without using any test piece. The analysis result is corrected based on the correction information.
次に、本実施形態に係る体液成分分析装置100内における情報のやり取りについて、図3に示すブロック図に基づき説明する。体液成分分析装置100は、既に説明した照射部20、受光部30、試験片10に対して受光部30を相対的に移動させる駆動部40、受光部30の受けた光強度に基づき吸光度を演算するとともに、装置全体を制御するCPU50、吸光度を演算する際の規則などを記憶し、受光部が受けた光強度の情報を記憶する記憶部60、および分析結果を表示する表示部70を主たる構成要素とする。そしてこれらの要素はバス80を介して情報を伝達する。
Next, the exchange of information in the body fluid component analyzer 100 according to the present embodiment will be described based on the block diagram shown in FIG. The body fluid component analyzer 100 calculates the absorbance based on the irradiation unit 20, the light receiving unit 30, the driving unit 40 that moves the light receiving unit 30 relative to the test piece 10, and the light intensity received by the light receiving unit 30. In addition, the main configuration includes a CPU 50 for controlling the entire apparatus, a rule for calculating absorbance, a storage unit 60 for storing light intensity information received by the light receiving unit, and a display unit 70 for displaying analysis results. Element. These elements transmit information via the bus 80.
(吸光度の算出)
ここで受光部30が受光した光強度に基づき、測定室13の吸光度を算出する手順について、図4に基づき説明する。図4は、図3における矢視A-Aで撮像素子を見た矢視図であって、試験片10の一つの測定室13を透過して受光部30の二次元撮像素子31に到達した光を表す模式図である。境界Bで囲まれる円が、測定室13を透過して受光部30の二次元撮像素子31に到達した光を表す。境界Bで囲まれる円内に完全に入っている受光素子Pi(濃いハッチングで示す)は、測定室13の透過光を検知することになる。図4に示すように、多数の受光素子Piが透過光を受けるため、一度の照射で測定室13の複数個所における光強度を検知し、吸光度を得ることが可能となる。そしてこの複数箇所における光強度を使用して、測定室の適正な吸光度を算出することが可能となる。 (Calculation of absorbance)
Here, the procedure for calculating the absorbance of themeasurement chamber 13 based on the light intensity received by the light receiving unit 30 will be described with reference to FIG. FIG. 4 is an arrow view of the image sensor as viewed in the direction of arrows AA in FIG. 3, and passes through one measurement chamber 13 of the test piece 10 and reaches the two-dimensional image sensor 31 of the light receiving unit 30. It is a schematic diagram showing light. A circle surrounded by the boundary B represents light that has passed through the measurement chamber 13 and reached the two-dimensional imaging device 31 of the light receiving unit 30. The light receiving element Pi (shown by dark hatching) that is completely within the circle surrounded by the boundary B detects the light transmitted through the measurement chamber 13. As shown in FIG. 4, since a large number of light receiving elements Pi receive transmitted light, it is possible to detect the light intensity at a plurality of locations in the measurement chamber 13 and obtain the absorbance by one irradiation. And it becomes possible to calculate the appropriate light absorbency of a measurement chamber using the light intensity in these multiple places.
ここで受光部30が受光した光強度に基づき、測定室13の吸光度を算出する手順について、図4に基づき説明する。図4は、図3における矢視A-Aで撮像素子を見た矢視図であって、試験片10の一つの測定室13を透過して受光部30の二次元撮像素子31に到達した光を表す模式図である。境界Bで囲まれる円が、測定室13を透過して受光部30の二次元撮像素子31に到達した光を表す。境界Bで囲まれる円内に完全に入っている受光素子Pi(濃いハッチングで示す)は、測定室13の透過光を検知することになる。図4に示すように、多数の受光素子Piが透過光を受けるため、一度の照射で測定室13の複数個所における光強度を検知し、吸光度を得ることが可能となる。そしてこの複数箇所における光強度を使用して、測定室の適正な吸光度を算出することが可能となる。 (Calculation of absorbance)
Here, the procedure for calculating the absorbance of the
なお、境界B上に乗っている受光素子Pe(薄いハッチングで示す)は、受光素子の一部にのみ光が照射されるため、その光強度は受光素子Peの光強度より低い。境界Bより外側の受光素子Poについては、光を受けない(ただし後述のようにダーク値が検知される場合がある)。そのため、測定室13の適正な吸光度を算出するためには、受光素子Pe,Poが受光した光を除外した上で演算を行う必要がある。
The light receiving element Pe (shown by thin hatching) on the boundary B is irradiated with light only on a part of the light receiving element, and thus the light intensity is lower than the light intensity of the light receiving element Pe. The light receiving element Po outside the boundary B does not receive light (however, a dark value may be detected as described later). Therefore, in order to calculate an appropriate absorbance in the measurement chamber 13, it is necessary to perform an operation after excluding light received by the light receiving elements Pe and Po.
受光素子Pe,Poが受光した光を除外して、受光素子Piが受光した光を選択する方法について、図5を用いて説明する。図5は、図4の断面B-Bで示す一列の受光素子における光強度を表すグラフである。図5に示すように、受光素子Piでは透過光を受光するため、高い光強度が検知される。受光素子Poでは測定室13の透過光は検出されないものの、ダーク値が検知される。そして、受光素子Peでは、その光強度はPiとPoとの間の値となる。したがって、あらかじめ設定しておいた数値範囲から外れるような光強度を検知した受光素子を、受光素子Peまたは受光素子Poと判断して、測定室13の吸光度の算出から除外する。そして、受光素子Piが受光した光強度を平均することにより、測定室13の吸光度を算出することが可能となる。
A method for excluding light received by the light receiving elements Pe and Po and selecting light received by the light receiving element Pi will be described with reference to FIG. FIG. 5 is a graph showing the light intensity in one row of light receiving elements indicated by a section BB in FIG. As shown in FIG. 5, since the light receiving element Pi receives transmitted light, high light intensity is detected. Although the light passing through the measurement chamber 13 is not detected by the light receiving element Po, the dark value is detected. In the light receiving element Pe, the light intensity is a value between Pi and Po. Therefore, the light receiving element that detects the light intensity that deviates from the preset numerical range is determined as the light receiving element Pe or the light receiving element Po, and is excluded from the calculation of the absorbance in the measurement chamber 13. Then, by averaging the light intensity received by the light receiving element Pi, the absorbance of the measurement chamber 13 can be calculated.
この時、受光素子Piが受光した光強度から、受光素子Poが受光した、ダーク値たる光強度を減算する「ダーク補正」を施してから、測定室13の吸光度を算出することができる。これにより、試験片を照射した場合と遮光した場合の二回の撮像を必要とすることなく、一回の撮像で適正な吸光度を測定することが可能となる。ダーク値たる光強度は、複数の測定室13同士の中間点を選択するなど、適宜な方法で、光を透過しない場所における光強度を用いることができる。
At this time, after the light intensity received by the light receiving element Po is subtracted from the light intensity received by the light receiving element Pi, “dark correction” is performed to subtract the light intensity as a dark value, and then the absorbance of the measurement chamber 13 can be calculated. Accordingly, it is possible to measure an appropriate absorbance with one imaging without requiring two imaging when the test piece is irradiated and when the light is shielded. For the light intensity that is a dark value, the light intensity in a place where light is not transmitted can be used by an appropriate method such as selecting an intermediate point between the plurality of measurement chambers 13.
なお、吸光度の算出から除外する受光素子Pe,Poを選定するために設定しておく数値範囲は、絶対値として規定することも可能であり、最も高レベルの光強度(Li)を基準に規定することも可能である。この数値範囲は、記憶部60に記憶されており、CPU50により読み出され、演算される。また、ダーク補正を行うためのダーク値を選定する規則もまた、記憶部60に記憶されており、CPU50により読み出され、ダーク補正がなされる。
The numerical range set for selecting the light receiving elements Pe and Po to be excluded from the calculation of the absorbance can be defined as an absolute value, and is defined based on the highest light intensity (Li). It is also possible to do. This numerical range is stored in the storage unit 60, and is read out and calculated by the CPU 50. A rule for selecting a dark value for performing dark correction is also stored in the storage unit 60 and is read out by the CPU 50 to perform dark correction.
なお、CCDイメージセンサやCMOSイメージセンサのような二次元撮像素子において、暗電流に起因するノイズが発生する場合がある。そのノイズをキャンセルするため、試験片を照射した場合の試験片の画像を撮像した後、遮光した場合の試験片の画像を撮像し、照射した場合の画像から遮光した場合の画像を減算することにより、ダーク補正することも可能である。
Note that noise may be generated due to dark current in a two-dimensional imaging device such as a CCD image sensor or a CMOS image sensor. In order to cancel the noise, after taking an image of the test piece when the test piece is irradiated, take an image of the test piece when the light is shielded, and subtract the image when the light is shielded from the image when the light is irradiated. Thus, dark correction can be performed.
また、本実施形態に係る体液成分分析器具を用いれば、測定室13内に気泡が存在する場合でも、気泡の部分を除外して、測定室13の正常な領域を透過した光のみを用いて吸光度を算出することが可能である。その方法を図6に基づき説明する。図6は、図4の断面B-Bで示す一列の受光素子における光強度を表すグラフであって、(a)が主波長λmの光を照射した場合、(b)が副波長λsの光を照射した場合である。なお、主波長λmは、測定室13で起こる呈色反応の吸光帯に属する波長であり、副波長λsは、呈色反応の吸光帯に属さない波長である。図6の領域Vにおいて、主波長λmの光強度は、その周辺の光強度Limより高くなっており、その一方で、副波長λsの光強度は、その周辺の光強度Lisより低くなっている。この傾向は、領域Vにおいて大きな気泡が存在することを示唆している。すなわち、主波長λmについては大きな気泡において色抜けの状態のために透過量が増加し、副波長λsについては大きな気泡の内側界面による光の反射が起こり、透過量が減少する。このように、大きな気泡が存在する領域においては、主波長λmと副波長λsとでは、透過光の光強度が逆の傾向を示す。
In addition, when the body fluid component analyzer according to the present embodiment is used, even when bubbles are present in the measurement chamber 13, only the light that has passed through the normal region of the measurement chamber 13 is excluded, excluding the bubbles. Absorbance can be calculated. The method will be described with reference to FIG. FIG. 6 is a graph showing the light intensity in a row of light receiving elements shown in section BB in FIG. 4, where (a) shows the light with the sub-wavelength λs when (a) is irradiated with the light with the main wavelength λm. Is the case of irradiation. The main wavelength λm is a wavelength belonging to the light absorption band of the color reaction occurring in the measurement chamber 13, and the sub wavelength λs is a wavelength not belonging to the light absorption band of the color reaction. In the region V of FIG. 6, the light intensity at the main wavelength λm is higher than the light intensity Lim around it, while the light intensity at the sub-wavelength λs is lower than the light intensity Lis around it. . This tendency suggests that there are large bubbles in region V. That is, for the main wavelength λm, the amount of transmission increases due to a color loss state in a large bubble, and for the sub-wavelength λs, light is reflected by the inner interface of the large bubble, and the amount of transmission decreases. As described above, in the region where large bubbles are present, the light intensity of the transmitted light tends to be opposite between the main wavelength λm and the sub wavelength λs.
そこで、気泡が存在する領域Vの光強度は除外して、測定室13の吸光度を算出する。そのためには、あらかじめ設定しておいた数値範囲から外れるような光強度を検知した受光素子の領域であって、主波長λmと副波長λsとで傾向が逆になる領域を、気泡が存在する領域Vとして判断し、測定室13の吸光度の算出から除外する。そして領域V以外の受光素子Piが受光した光強度を平均することにより、測定室13の吸光度を算出することが可能となる。なお、領域Vを決めるための数値範囲は、絶対値として規定することも可能であり、また最も高レベルの光強度(Lim,Lis)を基準に規定することも可能である。上述の数値範囲は、正常部選択規則として記憶部60に記憶されており、CPU50により読み出され、この正常部選択規則に沿って演算される。
Therefore, the light intensity in the region V where the bubbles are present is excluded, and the absorbance of the measurement chamber 13 is calculated. For this purpose, bubbles exist in the region of the light receiving element that detects the light intensity that deviates from the preset numerical range, and in which the tendency is reversed between the main wavelength λm and the subwavelength λs. The region V is determined and excluded from the calculation of the absorbance of the measurement chamber 13. Then, by averaging the light intensities received by the light receiving elements Pi other than the region V, it is possible to calculate the absorbance of the measurement chamber 13. The numerical range for determining the region V can be defined as an absolute value, or can be defined based on the highest level of light intensity (Lim, Lis). The numerical range described above is stored in the storage unit 60 as a normal part selection rule, is read by the CPU 50, and is calculated according to the normal part selection rule.
また、大きな気泡が存在する場合とは対照的に、主波長λmと副波長λsとで光強度分布の傾向が合致する場合、すなわち、ある領域において主波長λmと副波長λsとでともに光強度が減少している場合には、その領域に異物が存在して光の透過が阻害されていることが示唆される。そのため、その領域については、大きな気泡が存在する領域Vと同様の方法で、測定室13の吸光度の算出から除外する。
In contrast to the case where large bubbles exist, when the tendency of the light intensity distribution matches at the main wavelength λm and the subwavelength λs, that is, the light intensity at both the main wavelength λm and the subwavelength λs in a certain region. Is reduced, it is suggested that there is a foreign substance in the region and light transmission is inhibited. Therefore, the region is excluded from the calculation of the absorbance in the measurement chamber 13 by the same method as that for the region V where large bubbles exist.
なお、副波長λsは、測定室の呈色反応の色素に吸光されないため、本来測定室13の吸光度はゼロになるはずであるが、実際は小さな気泡による反射により透過する光が減少し、吸光度が増加する。そして小さな気泡による吸光度の増加は、主波長λmについても発生している。したがって、主波長λmの吸光度から副波長λsの吸光度を減算することにより、小さな気泡による吸光度の増加分を除外した吸光度を算出することができる。
The sub-wavelength λs is not absorbed by the color reaction dye in the measurement chamber, and thus the absorbance in the measurement chamber 13 should be essentially zero. However, in actuality, the transmitted light is reduced due to reflection by small bubbles, and the absorbance is reduced. To increase. The increase in absorbance due to small bubbles also occurs at the dominant wavelength λm. Therefore, by subtracting the absorbance at the sub-wavelength λs from the absorbance at the main wavelength λm, it is possible to calculate the absorbance excluding the increase in absorbance due to small bubbles.
本発明に係る体液成分分析装置を用いて気泡の部分を除外して吸光度を算出する方法は、特許文献1に記載の方法とは異なり、照射部および受光部をごく僅かに移動させて照射・受光するサイクルを繰り返す必要がなく、迅速に測定結果を得ることができる。
Unlike the method described in Patent Document 1, the method of calculating the absorbance by excluding the bubble portion using the body fluid component analyzer according to the present invention moves the irradiation unit and the light receiving unit very slightly to perform irradiation / reception. It is not necessary to repeat the light receiving cycle, and the measurement result can be obtained quickly.
なお、上述の説明においては、測定室における適正な吸光度を求める方法について説明した。ここで、受光部は二次元撮像素子を用いているため、一度に複数の測定室を撮像することができる。そのため、同時に複数の測定室の吸光度を測定する、すなわち、体液試料に含まれる複数の成分について同時に分析することが可能となる。勿論、各々の測定室について適正な吸光度を算出するため適宜な補正を行うことも可能である。
In the above description, the method for obtaining an appropriate absorbance in the measurement chamber has been described. Here, since the light receiving unit uses a two-dimensional image sensor, it is possible to image a plurality of measurement chambers at a time. Therefore, it is possible to simultaneously measure the absorbances of a plurality of measurement chambers, that is, to simultaneously analyze a plurality of components contained in a body fluid sample. Of course, an appropriate correction can be performed to calculate an appropriate absorbance for each measurement chamber.
各測定室において分析対象となる体液成分が異なれば、発生する呈色反応も異なる。そして主波長λmおよび副波長λsは、呈色反応に応じて選定される。そのため、各測定室の呈色反応についてカバーできるよう、複数の砲弾型LEDを用いて、光源が複数の波長の光を照射できるよう構成することが好適である。例えば、λ=450nm,570nm,630nm,810nmの四波長を、それぞれの測定室について主波長および副波長として適宜に選択して照射するよう構成することができる。
¡If the body fluid components to be analyzed in each measurement chamber are different, the color reaction that occurs is also different. The main wavelength λm and the sub wavelength λs are selected according to the color reaction. Therefore, it is preferable to use a plurality of bullet-type LEDs so that the light source can irradiate light having a plurality of wavelengths so as to cover the color reaction in each measurement chamber. For example, four wavelengths of λ = 450 nm, 570 nm, 630 nm, and 810 nm can be appropriately selected and irradiated as the main wavelength and the sub wavelength for each measurement chamber.
また、本実施形態についての説明では、吸光度算出の際に除外する受光素子を選択するための規則を説明するために、図5,6に示したように一列に並んだ受光素子を取り上げたが、実際には受光素子が二次元的に配列されているため、二次元平面における光強度を比較することにより、吸光度算出の際に除外する受光素子を選択する。
In the description of the present embodiment, the light receiving elements arranged in a line as shown in FIGS. 5 and 6 are taken up in order to explain the rules for selecting the light receiving elements to be excluded when calculating the absorbance. Actually, since the light receiving elements are two-dimensionally arranged, the light receiving elements to be excluded when calculating the absorbance are selected by comparing the light intensities in the two-dimensional plane.
(試験片の他の例)
なお、先の説明における、図1に示した試験片10は、積層されて構成されたプレート15の内部に、予め試薬が配置された測定室13を有するよう構成されたものであった。しかし、本発明に係る体液成分分析装置100で使用できる試験片はこれに限られず、例えば、図7に示すように構成された試験片110を使用することも可能である。この試験片110は、測定室に導入した体液試料に液体の試薬を加えて呈色反応を生じさせ、その呈色反応を光学的に測定可能となるよう構成されている。 (Other examples of specimens)
In the above description, thetest piece 10 shown in FIG. 1 is configured to have a measurement chamber 13 in which a reagent is placed in advance inside a plate 15 that is formed by stacking. However, the test piece that can be used in the body fluid component analyzer 100 according to the present invention is not limited to this, and for example, a test piece 110 configured as shown in FIG. 7 can be used. The test piece 110 is configured such that a color reagent is generated by adding a liquid reagent to the body fluid sample introduced into the measurement chamber, and the color reaction can be optically measured.
なお、先の説明における、図1に示した試験片10は、積層されて構成されたプレート15の内部に、予め試薬が配置された測定室13を有するよう構成されたものであった。しかし、本発明に係る体液成分分析装置100で使用できる試験片はこれに限られず、例えば、図7に示すように構成された試験片110を使用することも可能である。この試験片110は、測定室に導入した体液試料に液体の試薬を加えて呈色反応を生じさせ、その呈色反応を光学的に測定可能となるよう構成されている。 (Other examples of specimens)
In the above description, the
図7に示す試験片110は、全体が光透過性を有する樹脂により構成され、その内部に測定室113が設けられている。そして、体液試料が供給される供給口111、試薬を導入する試薬導入口117、および測定室の空気を抜く空気孔118が設けられている。供給口111は流路112を介して測定室113に連通しており、試薬導入口117および空気孔118も、それぞれ測定室113に連通している。
The test piece 110 shown in FIG. 7 is entirely composed of a resin having optical transparency, and a measurement chamber 113 is provided therein. A supply port 111 through which a body fluid sample is supplied, a reagent introduction port 117 through which a reagent is introduced, and an air hole 118 through which air in the measurement chamber is extracted are provided. The supply port 111 communicates with the measurement chamber 113 via the flow path 112, and the reagent introduction port 117 and the air hole 118 also communicate with the measurement chamber 113, respectively.
測定室113において呈色反応を起こすには、まず供給口111に体液試料を供給し、測定室113に体液試料を導く。その次に、液体の試薬を試薬流入口から液体の試薬を導入する。そして、体液試料と液体の試薬とを混合して、測定室113にて呈色反応を起こさせる。なお、測定室113内の空気は空気孔118から排出されるため、体液試料および液体の試薬は抵抗なく測定室113に導入される。また、体液試料および液体の試薬を測定室113に導入する順序は、逆でもよい。
In order to cause a color reaction in the measurement chamber 113, first, a body fluid sample is supplied to the supply port 111, and the body fluid sample is guided to the measurement chamber 113. Next, a liquid reagent is introduced from the reagent inlet. Then, the body fluid sample and the liquid reagent are mixed and a color reaction is caused in the measurement chamber 113. Since the air in the measurement chamber 113 is discharged from the air hole 118, the body fluid sample and the liquid reagent are introduced into the measurement chamber 113 without resistance. The order in which the body fluid sample and the liquid reagent are introduced into the measurement chamber 113 may be reversed.
測定室113における呈色反応を、本発明に係る体液成分分析装置100で光学的に測定する方法は、試験片10を用いた場合と同様である。すなわち、図2に示す試験片10に代えて、試験片110を体液成分分析装置100に配置して、これを用いて測定室113の吸光度を測定すればよい。
The method of optically measuring the color reaction in the measurement chamber 113 with the body fluid component analyzer 100 according to the present invention is the same as when the test piece 10 is used. That is, instead of the test piece 10 shown in FIG. 2, the test piece 110 may be arranged in the body fluid component analyzer 100 and the absorbance in the measurement chamber 113 may be measured using this.
なお、図7に示す試験片110は測定室113を二つ備えており、体液成分の二つの異なる項目について測定することが可能である。供給口111に供給された体液試料は、流路112で分岐して二つの測定室113に流入するように構成されているが、試薬については、それぞれの測定室113に連通する試薬導入口117から、それぞれ異なる液体の試薬が導入されるよう構成されている。なお、測定室113の数は適宜に変更可能である。
Note that the test piece 110 shown in FIG. 7 includes two measurement chambers 113 and can measure two different items of body fluid components. The body fluid sample supplied to the supply port 111 is configured to branch into the two measurement chambers 113 through the flow path 112, but the reagent introduction port 117 communicated with each measurement chamber 113 for the reagent. Thus, different liquid reagents are introduced. Note that the number of measurement chambers 113 can be changed as appropriate.
10 試験片
16 バーコード
20 照射部
22,23,24 光源
25 拡散板
30 受光部
31 二次元撮像素子
50 CPU(演算手段)
60 記憶部
100 体液成分分析装置
λm 主波長
λs 副波長
DESCRIPTION OFSYMBOLS 10 Test piece 16 Barcode 20 Irradiation part 22,23,24 Light source 25 Diffusing plate 30 Light-receiving part 31 Two-dimensional image sensor 50 CPU (calculation means)
60Storage unit 100 Body fluid component analyzer λm Main wavelength λs Subwavelength
16 バーコード
20 照射部
22,23,24 光源
25 拡散板
30 受光部
31 二次元撮像素子
50 CPU(演算手段)
60 記憶部
100 体液成分分析装置
λm 主波長
λs 副波長
DESCRIPTION OF
60
Claims (9)
- 試験片に設けられた測定室における、体液中の分析対象物と試薬との呈色反応の吸光度を測定して、体液成分を分析する体液成分分析装置であって、
前記試験片の前記測定室に光を照射する照射部と、
複数の受光素子が二次元平面に配列されてなる二次元撮像素子を有し、前記測定室を含み二次元的な広がりを有する受光範囲から発せられる光を受ける受光部と、
前記受光素子ごとに得られた光強度を演算して前記測定室における吸光度を算出する演算手段とを備える
ことを特徴とする体液成分分析装置。 A body fluid component analyzer for analyzing a body fluid component by measuring the absorbance of a color reaction between an analyte in a body fluid and a reagent in a measurement chamber provided in a test piece,
An irradiation unit for irradiating light to the measurement chamber of the test piece;
A light receiving unit having a two-dimensional imaging element in which a plurality of light receiving elements are arranged in a two-dimensional plane, and receiving light emitted from a light receiving range including the measurement chamber and having a two-dimensional extent;
An apparatus for calculating a body fluid component, comprising: calculating means for calculating the light intensity obtained for each of the light receiving elements to calculate the absorbance in the measurement chamber. - 前記照射部が、
所定の波長の光を発する発光ダイオードからなる光源と、
前記光源と前記試験片との間に配置された拡散板とを有する
ことを特徴とする請求項1に記載の体液成分分析装置。 The irradiation unit is
A light source composed of a light emitting diode that emits light of a predetermined wavelength;
The humor component analyzing apparatus according to claim 1, further comprising: a diffusion plate disposed between the light source and the test piece. - 前記試験片に前記測定室が複数設けられており、
複数の前記測定室を包含し、二次元的な広がりを有する照射範囲を前記照射部が照射する
ことを特徴とする請求項2に記載の体液成分分析装置。 The test piece is provided with a plurality of the measurement chambers,
The body fluid component analyzer according to claim 2, wherein the irradiation unit irradiates an irradiation range including a plurality of the measurement chambers and having a two-dimensional spread. - 前記測定室のうち正常な領域を透過した光を受けた受光素子のみを選択する正常部選択規則を記憶する記憶部をさらに備え、
前記演算手段が、前記受光範囲の光を受光した前記受光素子の中から、前記正常部選択規則に基づき選択された一部における光強度の平均値により、前記測定室における吸光度を算出する
ことを特徴とする請求項3に記載の体液成分分析装置。 A storage unit for storing a normal part selection rule for selecting only a light receiving element that has received light transmitted through a normal region in the measurement chamber;
The calculation means calculates the absorbance in the measurement chamber based on an average value of light intensity in a part selected based on the normal part selection rule from the light receiving elements that have received light in the light receiving range. 4. The body fluid component analyzer according to claim 3. - 前記記憶部が、ダーク値を選定するダーク値選定規則を記憶し、
前記演算手段が、前記受光範囲の光を受光した前記受光素子の光強度の中から、前記ダーク値選定規則に基づきダーク値を選定し、前記受光範囲の光を受光した全ての前記受光素子の光強度から前記ダーク値を一律に減算して補正する
ことを特徴とする請求項4に記載の体液成分分析装置。 The storage unit stores a dark value selection rule for selecting a dark value,
The calculation means selects a dark value based on the dark value selection rule from the light intensities of the light receiving elements that have received the light in the light receiving range, and all of the light receiving elements that have received the light in the light receiving range. The humor component analyzing apparatus according to claim 4, wherein the dark value is uniformly subtracted from the light intensity for correction. - 前記試験片にバーコードが設けられており、
前記受光部が前記バーコードから発せられる光を受光して前記バーコードを読み取る
ことを特徴とする請求項1~5のいずれかに記載の体液成分分析装置。 The test piece is provided with a barcode,
6. The body fluid component analyzer according to claim 1, wherein the light receiving unit receives light emitted from the barcode and reads the barcode. - 試験片に設けられた測定室における、体液中の分析対象物と試薬との呈色反応の吸光度を測定して、体液成分を分析する体液成分分析方法であって、
前記試験片の前記測定室に光を照射するステップと、
前記測定室を含み二次元的な広がりを有する受光範囲から発せられる光を、複数の受光素子が二次元平面に配列されてなる受光部で受光するステップと、
前記受光素子ごとに得られた光強度を演算して前記測定室における吸光度を算出するステップとを備える
ことを特徴とする体液成分分析方法。 A body fluid component analysis method for analyzing a body fluid component by measuring the absorbance of a color reaction between an analyte in a body fluid and a reagent in a measurement chamber provided in a test piece,
Irradiating the measurement chamber of the test piece with light;
Receiving light emitted from a light receiving range including the measurement chamber and having a two-dimensional spread by a light receiving unit in which a plurality of light receiving elements are arranged in a two-dimensional plane;
And calculating the absorbance in the measurement chamber by calculating the light intensity obtained for each of the light receiving elements. - 前記吸光度を算出するステップが、
前記受光範囲の光を受光した前記受光素子の中から、前記測定室の正常な領域を透過した光を受けた受光素子のみを選択するステップと、
選択された前記受光素子おける光強度の平均値により、前記測定室における吸光度を算出するステップとを備える
ことを特徴とする請求項7に記載の体液成分分析方法。 Calculating the absorbance comprises:
Selecting only a light receiving element that has received light transmitted through a normal region of the measurement chamber from the light receiving elements that have received light in the light receiving range;
The humor component analysis method according to claim 7, further comprising: calculating an absorbance in the measurement chamber based on an average value of the light intensity in the selected light receiving element. - 前記吸光度を算出するステップが、
前記受光範囲の光を受光した前記受光素子の光強度の中から、ダーク値を選定するステップと、
前記受光範囲の光を受光した全ての前記受光素子の光強度から、前記ダーク値を一律に減算して補正するステップとをさらに備える
ことを特徴とする請求項8に記載の体液成分分析方法。
Calculating the absorbance comprises:
Selecting a dark value from the light intensity of the light receiving element that has received light in the light receiving range; and
The body fluid component analysis method according to claim 8, further comprising a step of uniformly subtracting and correcting the dark value from the light intensity of all the light receiving elements that have received light in the light receiving range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/062859 WO2015173916A1 (en) | 2014-05-14 | 2014-05-14 | Body fluid component analysis device and body fluid component analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/062859 WO2015173916A1 (en) | 2014-05-14 | 2014-05-14 | Body fluid component analysis device and body fluid component analysis method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015173916A1 true WO2015173916A1 (en) | 2015-11-19 |
Family
ID=54479486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062859 WO2015173916A1 (en) | 2014-05-14 | 2014-05-14 | Body fluid component analysis device and body fluid component analysis method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015173916A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019078600A (en) * | 2017-10-23 | 2019-05-23 | アークレイ株式会社 | Measurement system |
EP4339598A1 (en) * | 2022-09-13 | 2024-03-20 | Withings | Optical mask for test strip |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10197526A (en) * | 1997-01-09 | 1998-07-31 | Nec Corp | Biochemical analyzing device, test specimen for use therefor and biochemical analyzing method |
JP2002022743A (en) * | 2000-07-07 | 2002-01-23 | Hamamatsu Photonics Kk | Immunochromatographic test apparatus and measuring device for immunochromatographic test piece |
JP2006238354A (en) * | 2005-02-28 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Luminance value arithmetic unit and method, and data reproduction device |
JP2009080044A (en) * | 2007-09-26 | 2009-04-16 | Konica Minolta Sensing Inc | Optical characteristic measuring apparatus |
JP2010256290A (en) * | 2009-04-28 | 2010-11-11 | Terametsukusu Kk | Absorbance measuring device or method of the same |
JP2010276444A (en) * | 2009-05-28 | 2010-12-09 | Terametsukusu Kk | Instrument or method for measuring absorbance |
JP2010539503A (en) * | 2007-09-20 | 2010-12-16 | イリネ ミクロシステムス、エセ.エレ. | Microfluidic device and fluid coagulation time measurement method |
JP2012523571A (en) * | 2009-04-13 | 2012-10-04 | マイクロニクス, インコーポレイテッド | Microfluidic clinical analyzer |
JP2014044049A (en) * | 2012-08-24 | 2014-03-13 | Systemroad Co Ltd | Analyzer |
-
2014
- 2014-05-14 WO PCT/JP2014/062859 patent/WO2015173916A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10197526A (en) * | 1997-01-09 | 1998-07-31 | Nec Corp | Biochemical analyzing device, test specimen for use therefor and biochemical analyzing method |
JP2002022743A (en) * | 2000-07-07 | 2002-01-23 | Hamamatsu Photonics Kk | Immunochromatographic test apparatus and measuring device for immunochromatographic test piece |
JP2006238354A (en) * | 2005-02-28 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Luminance value arithmetic unit and method, and data reproduction device |
JP2010539503A (en) * | 2007-09-20 | 2010-12-16 | イリネ ミクロシステムス、エセ.エレ. | Microfluidic device and fluid coagulation time measurement method |
JP2009080044A (en) * | 2007-09-26 | 2009-04-16 | Konica Minolta Sensing Inc | Optical characteristic measuring apparatus |
JP2012523571A (en) * | 2009-04-13 | 2012-10-04 | マイクロニクス, インコーポレイテッド | Microfluidic clinical analyzer |
JP2010256290A (en) * | 2009-04-28 | 2010-11-11 | Terametsukusu Kk | Absorbance measuring device or method of the same |
JP2010276444A (en) * | 2009-05-28 | 2010-12-09 | Terametsukusu Kk | Instrument or method for measuring absorbance |
JP2014044049A (en) * | 2012-08-24 | 2014-03-13 | Systemroad Co Ltd | Analyzer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019078600A (en) * | 2017-10-23 | 2019-05-23 | アークレイ株式会社 | Measurement system |
EP4339598A1 (en) * | 2022-09-13 | 2024-03-20 | Withings | Optical mask for test strip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9651564B2 (en) | Device and method for measuring hemoglobin | |
JP6010434B2 (en) | Body fluid component analyzer and body fluid component analysis method | |
JP6120842B2 (en) | Method and system for measuring the concentration of a substance in a body fluid | |
JP5955661B2 (en) | Spectrometer, spectroscopic instrument, spectroscopic measurement method, and program | |
JP6426702B2 (en) | Component measuring device, method and program | |
NO331343B1 (en) | Method and system for quantitative determination of hemoglobin in unhemolyzed whole blood | |
JP6032837B2 (en) | Analysis equipment | |
US20220113297A1 (en) | Disposable hemolysis sensor | |
US20190117810A1 (en) | Readers for process monitoring systems and methods of use | |
US20070110621A1 (en) | Method and apparatus for measuring analytes | |
KR20180118661A (en) | Component measuring device, component measuring method and component measuring program | |
WO2015173916A1 (en) | Body fluid component analysis device and body fluid component analysis method | |
JP5427362B2 (en) | Method and apparatus for measuring hematocrit value or blood component concentration | |
KR20140090506A (en) | Test Apparatus and Target Measuring Method Using The Same | |
US8523785B2 (en) | Method and apparatus for measuring analytes | |
JP5290752B2 (en) | Automatic discrimination method of control liquid | |
JP5869937B2 (en) | Method and apparatus for measuring the level of cell culture fluid | |
KR20160019841A (en) | Test method for sample, microfluidic device and test apparatus | |
JP6599855B2 (en) | Method for determining the concentration of a substance in a deformable container | |
US20150110674A1 (en) | Coloration analysis device | |
KR20090088667A (en) | Optic detecting method of urinalysis strip and the optic detecting module using it's | |
US20230408418A1 (en) | Multi-Modal Diagnostic Test Apparatus | |
US20120252131A1 (en) | Biological material analyzer and biological material analysis method | |
JP2016523373A5 (en) | ||
JPH11248622A (en) | Urinalysis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14891687 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14891687 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |