Nothing Special   »   [go: up one dir, main page]

WO2015170651A1 - 装置 - Google Patents

装置 Download PDF

Info

Publication number
WO2015170651A1
WO2015170651A1 PCT/JP2015/062896 JP2015062896W WO2015170651A1 WO 2015170651 A1 WO2015170651 A1 WO 2015170651A1 JP 2015062896 W JP2015062896 W JP 2015062896W WO 2015170651 A1 WO2015170651 A1 WO 2015170651A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
weight set
reference signal
base station
weight
Prior art date
Application number
PCT/JP2015/062896
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to MX2016014258A priority Critical patent/MX2016014258A/es
Priority to US15/307,604 priority patent/US10454539B2/en
Priority to EP15789481.7A priority patent/EP3142276A4/en
Publication of WO2015170651A1 publication Critical patent/WO2015170651A1/ja
Priority to US16/583,258 priority patent/US11206063B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • This disclosure relates to an apparatus.
  • the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements).
  • a technique is a form of a technique called large-scale MIMO or massive MIMO.
  • the half width of the beam becomes narrow. That is, a sharp beam is formed.
  • by arranging the multiple antenna elements on a plane it is possible to form a beam in a desired three-dimensional direction.
  • Patent Document 1 discloses a technique for realizing beam forming by a base station even when the uplink channel and the downlink channel have different frequency bands.
  • an appropriate cell may not be selected for the terminal device when beamforming is performed.
  • cell selection for a terminal device is a beam.
  • CRS Cell-specific Reference Signal
  • the cell selected as a result is a cell that is good for receiving a signal transmitted without beamforming, but is not necessarily a cell that is good for receiving a signal transmitted with beamforming. Therefore, when beam forming is performed, there is a possibility that an appropriate cell is not selected for the terminal device. This can be particularly noticeable when the beamforming is performed using a directional antenna including a large number of antenna elements.
  • an acquisition unit that acquires a plurality of weight sets for beamforming, and a reference signal for measurement to a radio resource previously associated with the weight set
  • a control unit that performs mapping and multiplies the reference signal by the weight set.
  • an apparatus comprising: an acquisition unit that acquires a measurement result of the reference signal multiplied by a set; and a report unit that performs a measurement report to a base station based on the measurement result.
  • the present disclosure it is possible to select an appropriate cell for the terminal device when beamforming is performed.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
  • FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a communication system according to an embodiment of the present disclosure.
  • FIG. It is the 1st explanatory view for explaining the example of the beam forming of large scale MIMO.
  • FIG. 10 is a sequence diagram illustrating a first example of a schematic flow of a process according to a third modification of the embodiment.
  • FIG. 10 is a sequence diagram illustrating a second example of a schematic flow of a process according to a third modification of the embodiment.
  • FIG. 10 is a sequence diagram illustrating a third example of a schematic flow of a process according to a third modification of the embodiment.
  • elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals.
  • a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as the terminal devices 200A, 200B, and 200C.
  • the terminal devices 200A, 200B, and 200C are simply referred to as the terminal device 200 when it is not necessary to distinguish between them.
  • 8-layer MIMO can be realized in the case of SU-MIMO (Single-User Multi-Input Multiple-Input Multiple-Output).
  • 8-layer MIMO is a technique for spatially multiplexing eight independent streams.
  • two layers of MU-MIMO can be realized for four users.
  • UE User Equipment
  • the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements).
  • a technique is one form of a technique called large-scale MIMO or massive MIMO.
  • the half width of the beam becomes narrow. That is, a sharp beam is formed.
  • by arranging the multiple antenna elements on a plane it is possible to form a beam in a desired three-dimensional direction. For example, it has been proposed to transmit a signal to a terminal device existing at the position by forming a beam directed to a position higher than the base station (for example, an upper floor of a high-rise building).
  • the typical beam forming In typical beam forming, it is possible to change the beam direction in the horizontal direction. Therefore, it can be said that the typical beam forming is two-dimensional beam forming.
  • the beam direction can be changed in the vertical direction in addition to the horizontal direction. Therefore, it can be said that large-scale MIMO beamforming is three-dimensional beamforming.
  • MU-MIMO since the number of antennas increases, the number of users in MU-MIMO can be increased.
  • Such a technique is another form of a technique called large scale MIMO or massive MIMO.
  • the number of antennas of the UE is two, the number of spatially independent streams for one UE is two, and therefore, MU-MIMO rather than increasing the number of streams for one UE. It is more reasonable to increase the number of users.
  • Weight set A weight set for beam forming (that is, a set of weight coefficients for a plurality of antenna elements) is expressed as a complex number.
  • a weight set for beam forming of large scale MIMO will be described with reference to FIG.
  • FIG. 1 is an explanatory diagram for describing a weight set for large-scale MIMO beamforming.
  • antenna elements arranged in a lattice shape are shown. Also shown are two axes x, y orthogonal to the plane on which the antenna element is arranged, and one axis z orthogonal to the plane.
  • the direction of the beam to be formed is represented by, for example, an angle phi (Greek letter) and an angle theta (Greek letter).
  • the angle phi (Greek letter) is an angle formed between the x-axis component and the xy plane component in the beam direction.
  • the angle theta (Greek letter) is an angle formed by the beam direction and the z axis.
  • the weighting factor V m, n of the antenna element arranged m-th in the x-axis direction and n-th arranged in the y-axis direction can be expressed as follows.
  • f is the frequency and c is the speed of light.
  • J is an imaginary unit in a complex number.
  • D x is the distance between the antenna elements in the x-axis direction, and dy is the distance between the antenna elements in the y-axis direction.
  • the coordinates of the antenna element are expressed as follows.
  • the weight set for typical beam forming is decomposed into a weight set for forming a beam in a desired horizontal direction and a weight set for adjusting the transfer between antennas. obtain. Therefore, the large-scale MIMO beamforming weight set includes a first weight set for forming a beam in a desired vertical direction and a second weight set for forming a beam in a desired horizontal direction. And a third set of weights for adjusting the transfer between antennas.
  • a terminal device performs measurement about CRS (Cell-specific Reference Signal) transmitted by a base station. Specifically, the terminal device measures the quality of the propagation path between the base station and the terminal device by receiving the CRS transmitted by the base station. This measurement is referred to as “RRM (Radio Resource Management) measurement” or simply “measurements”.
  • RRM Radio Resource Management
  • the result of the above measurement is used to select a cell for the terminal device. Specifically, for example, the result of the measurement is used for cell selection / cell reselection by a terminal device that is RRC (Radio Resource Control) idle (RRC Idle). Further, for example, the result of the measurement is reported to the base station by a terminal device that is RRC connected (RRC Connected), and is used for handover determination (Handover Decision) by the base station.
  • RRC Radio Resource Control
  • the measurement is performed by receiving CRS. Since the CRS is a signal for measuring the quality of a non-directional radio wave transmission path, the CRS is transmitted without beamforming. That is, the CRS is transmitted without being multiplied by the beamforming weight set.
  • DM-RS Demodulation Reference Signal
  • UE-specific reference signal UE-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • FIG. 2 is an explanatory diagram for explaining the relationship between weighting coefficient multiplication and reference signal insertion.
  • the transmission signal 92 corresponding to each antenna element 91 is complex-multiplied by a weighting factor 93 in a multiplier 94.
  • a transmission signal 92 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91.
  • the DR-MS 95 is inserted in front of the multiplier 94, and the multiplier 94 multiplies the weight coefficient 93 in a complex manner.
  • the DR-MS 95 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91.
  • the CRS 96 (and CSI-RS) is inserted after the multiplier 94.
  • the CRS 96 (and CSI-RS) is transmitted from the antenna element 91 without being multiplied by the weight coefficient 93.
  • CRS measurements are RSRP (Reference Signal Received Power) and / or RSRQ (Reference Signal Received Quality) measurements.
  • the terminal device acquires RSRP and / or RSRQ as a result of measurement on CRS.
  • RSRQ is calculated from RSRP and RSSI (Received Signal Strength Indicator).
  • RSRP is CRS received power per single resource element. That is, RSRP is the average value of CRS received power.
  • the CRS received power is obtained by detecting the correlation between the received signal in the CRS resource element and the known signal CRS. RSRP corresponds to the desired signal “S (Signal)”.
  • RSSI is the total power of signals per OFDMA (Orthogonal Frequency Division Multiple Access) symbol. Therefore, RSSI includes a desired signal, an interference signal, and noise. That is, RSSI corresponds to “S (Signal) + I (Interference) + N (Noise)”.
  • RSRQ is RSRP / (RSSI / N). N is the number of resource blocks used for calculating RSSI.
  • the resource block is a resource block arranged in the frequency direction. Therefore, RSRQ is a value obtained by dividing RSRP by RSSI per resource block. That is, RSRQ corresponds to SINR (Signal-to-Interference-plus-Noise Ratio).
  • the reception power that is, RSRP
  • the reception quality that is, RSRQ
  • SINR the reception quality
  • Cell selection A
  • the terminal device performs cell selection / cell reselection. That is, the terminal device selects a cell for communication (for example, a cell for receiving paging).
  • the base station makes a handover decision. That is, the base station selects a target cell for the terminal device and determines a handover from the serving cell for the terminal device to the target cell.
  • the base station adds a Scell (Secondary Cell) for carrier aggregation.
  • the Scell is also called SCC (Secondary Component Carrier).
  • the “cell” here may mean a communication area of the base station, or may mean a frequency band used by the base station.
  • the “cell” here may be a Pcell (Primary Cell) or Scell of carrier aggregation.
  • the Pcell is also called PCC (Primary Component Carrier), and the Scell is also called SCC (Secondary Component Carrier).
  • the base station has a large number of antenna elements (for example, about 100 antenna elements). Beam forming is performed using a directional antenna including In this case, the base station can change the beam direction not only in the horizontal direction but also in the vertical direction. Therefore, as an example, the base station can improve the throughput at a high position by forming a beam toward a position higher than the base station (for example, an upper floor of a high-rise building). As another example, a small base station can reduce interference with neighboring base stations by forming a beam to a nearby area.
  • a terminal apparatus transmits and receives a signal in a cell selected based on a CRS measurement result
  • a larger interference occurs in a sharp beam from an adjacent base station.
  • the result of CRS measurement for one cell is better than the result of CRS measurement for another cell, if beamforming is performed, There is a possibility that the communication quality is better than the communication quality in a certain cell.
  • an appropriate cell may not be selected for the terminal device when beamforming is performed.
  • FIG. 3 is an explanatory diagram illustrating an example of a schematic configuration of the communication system 1 according to the embodiment of the present disclosure.
  • the communication system 1 includes a base station 100 and a terminal device 200.
  • the communication system 1 is, for example, a system that conforms to LTE, LTE-Advanced, or a communication standard based on these.
  • the base station 100 performs wireless communication with the terminal device 200.
  • the base station 100 performs wireless communication with the terminal device 200 located in the communication area of the base station 100.
  • the terminal device 200 performs wireless communication with the base station 100 when located in the communication area of the base station 100.
  • the base station 100 performs beam forming.
  • the beam forming is large-scale MIMO beam forming.
  • the beam forming may also be referred to as massive MIMO beam forming or three-dimensional beam forming.
  • the base station 100 includes a directional antenna that can be used for large-scale MIMO. Further, the base station 100 performs large-scale MIMO beamforming by multiplying the transmission signal by a weight set for the directional antenna. For example, the weight set is determined for each terminal device 200. As a result, a beam directed toward the terminal device 200 is formed.
  • large-scale MIMO beamforming will be described with reference to FIGS. 4 and 5.
  • FIG. 4 is a first explanatory diagram for explaining an example of large-scale MIMO beamforming.
  • a directional antenna 101 that can be used for large scale MIMO is shown.
  • the directional antenna 101 can form a sharp beam in a desired three-dimensional direction.
  • the beam 21A and the beam 21B are formed by the directional antenna 101.
  • FIG. 5 is a second explanatory diagram for explaining an example of large-scale MIMO beamforming.
  • the beams 21A and 21B described with reference to FIG. 4 are shown.
  • the beam 21A reaches the area 23A
  • the beam 21B reaches the area 23B. Therefore, the terminal device 200A located in the area 23A can receive a signal transmitted as the beam 21A.
  • the terminal device 200B located in the area 23B can receive a signal transmitted as the beam 21B.
  • the base station 100 transmits a signal addressed to the terminal device 200A as a beam 21A, and transmits a signal addressed to the terminal device 200B as a beam 21B.
  • the base station 100 can transmit a signal without performing beamforming, for example.
  • the base station 100 includes an omnidirectional antenna and transmits a signal as an omnidirectional radio wave.
  • the base station 100 may include a sector antenna and transmit a signal as a sector beam.
  • FIG. 6 is a block diagram illustrating an exemplary configuration of the base station 100 according to the embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • the antenna unit 110 radiates the signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the antenna unit 110 includes a directional antenna.
  • the directional antenna is a directional antenna that can be used for large scale MIMO.
  • the antenna unit 110 further includes an omnidirectional antenna.
  • the antenna unit 110 may include a sector antenna instead of the omnidirectional antenna or together with the omnidirectional antenna.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device 200 and receives an uplink signal from the terminal device 200.
  • Network communication unit 130 The network communication unit 130 communicates with other nodes. For example, the network communication unit 130 communicates with other base stations 100 and core network nodes.
  • the storage unit 140 stores a program and data for the operation of the base station 100.
  • the processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes an information acquisition unit 151 and a communication control unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • the information acquisition unit 151 acquires a plurality of weight sets for beam forming.
  • the beam forming is large-scale MIMO beam forming. Further, the plurality of weight sets are weight tangent sets for large-scale MIMO beamforming.
  • the beam forming may be referred to as massive MIMO beam forming or three-dimensional beam forming.
  • each of the plurality of weight sets includes a weight coefficient for each antenna element included in the directional antenna included in the base station 100.
  • the plurality of weight sets are some of the weight sets for the directional antenna.
  • the partial weight set may be determined automatically by the base station 100 or the core network node, or may be set by an operator of the cellular system. Note that the plurality of weight sets may be all the weight sets instead of the partial weight sets.
  • the plurality of weight sets are stored in the storage unit 140.
  • the information acquisition unit 151 acquires the plurality of weight sets from the storage unit 140.
  • Communication control unit 153 (1) Control of reference signal transmission for measurement
  • the communication control unit 153 maps the reference signal for measurement to the radio resource previously associated with the weight set for each weight set included in the plurality of weight sets, The reference signal is multiplied by the weight set.
  • the radio resource previously associated with the weight set is the data area of the subframe including the control area and the data area.
  • Wireless resources That is, the communication control unit 153 maps the reference signal for measurement to the radio resource in the data area previously associated with the weight set.
  • control area is an area (time) in which a control channel is arranged
  • data area is an area (time) in which a data channel is arranged
  • control channel includes a PDCCH (Physical Downlink Control Channel)
  • data channel includes a PDSCH (Physical Downlink Shared Channel).
  • the control region is the first to Mth symbols of the N OFDMA symbols
  • the data region Are M + 1 to Nth symbols of the N OFDMA symbols.
  • N is 14 and M is 3.
  • the radio resource previously associated with the weight set is a resource element other than the resource element for CRS among the resource elements in the data area.
  • the radio resource previously associated with the weight set is a resource element other than the resource element for CRS among the resource elements in the data area.
  • FIG. 7 is an explanatory diagram for describing a first example of radio resources associated in advance with a weight set.
  • subframe 30 includes 14 OFDMA symbols.
  • the control area 31 includes the first to third OFDMA symbols, and the data area 33 includes the fourth to fourteenth OFDMA symbols.
  • the communication control unit 153 maps the reference signal for measurement to the resource element.
  • the control area is not changed by mapping the reference signal for measurement to the radio resource in the data area in this way. Therefore, for example, a device (legacy device) to which the technology of the present embodiment is not applied can acquire control information transmitted through a control channel (for example, PDCCH).
  • a device (legacy device) to which the technology of the present embodiment is not applied can appropriately measure CRS. become. Thus, backward compatibility is ensured.
  • the radio resource previously associated with the weight set is a radio resource of a specific subframe.
  • the special subframe may be an MBSFN (MBMS (Multimedia Broadcast Multicast Services) over a Single Frequency Network) subframe.
  • MBSFN Multimedia Broadcast Multicast Services
  • FIG. 8 is an explanatory diagram for explaining a second example of radio resources associated in advance with a weight set.
  • subframe 30 is an MBSFN subframe and includes 14 OFDMA symbols.
  • the control area 31 includes the first to third OFDMA symbols, and the data area 33 includes the fourth to fourteenth OFDMA symbols.
  • no CRS is transmitted in the data area 33.
  • the communication control unit 153 maps the reference signal for measurement to the resource element.
  • FIG. 9 is an explanatory diagram for explaining a third example of radio resources associated in advance with a weight set.
  • the communication control unit 153 maps the reference signal for measurement to the resource element.
  • the MBSFN subframe By using the MBSFN subframe in this way, for example, it is possible to map the reference signal for measurement to more radio resources in the data area while ensuring backward compatibility.
  • each of the plurality of weight sets is associated with a radio resource in the data region.
  • Radio resources in the control area and the data area may be associated with at least one of the plurality of weight sets.
  • a fourth example of radio resources associated in advance with a weight set will be described with reference to FIG.
  • FIG. 10 is an explanatory diagram for explaining a fourth example of radio resources associated in advance with a weight set.
  • two resource blocks arranged in the time direction in the subframe 30 are shown.
  • the communication control unit 153 maps the reference signal for measurement to the resource element.
  • the radio resource previously associated with the weight set is a radio resource of a specific subframe. That is, the communication control unit 153 maps the reference signal for measurement to a radio resource associated with a weight set in advance among radio resources of a specific subframe.
  • the specific subframe is one or more of 10 subframes in a radio frame.
  • the specific subframe may be a subframe with an odd subframe number, or may be a subframe with an even subframe number.
  • the specific subframe is not limited to such an example.
  • the specific subframe is set for each base station, for each group of base stations, or for each cellular system.
  • the communication control unit 153 notifies the terminal device 200 of the specific subframe.
  • the specific subframe may be a predefined subframe. Thereby, for example, overhead due to notification of the specific subframe may be eliminated.
  • the special subframe may be an MBSFN subframe.
  • the measurement reference signal is mapped to a radio resource of a specific subframe.
  • the radio resource previously associated with the weight set may be a radio resource of each subframe.
  • a subframe including radio resources previously associated with a weight set may be different among the plurality of weight sets.
  • (A-3) Acquisition of Radio Resource by Terminal Device-Notification of Radio Resource For example, the communication control unit 153 notifies the terminal device 200 of radio resources associated with each of the plurality of weight sets.
  • the communication control unit 153 notifies the radio resource to the terminal device 200 located in the communication area of the base station 100. Specifically, for example, the communication control unit 153 notifies the radio resource in the system information (System Information).
  • System Information is, for example, any SIB (System Information Block).
  • the communication control unit 153 may individually notify the terminal device 200 of the radio resource. Specifically, the communication control unit 153 may notify the terminal device 200 of the radio resource by signaling.
  • the signaling may be RRC signaling.
  • the communication control unit 153 notifies the terminal device 200 of information (hereinafter, referred to as “radio resource information”) for specifying the radio resource associated with each of the plurality of weight sets. .
  • the radio resource associated with each of the plurality of weight sets is a radio resource of a specific subframe.
  • the radio resource information includes information indicating the specific subframe, for example.
  • the radio resource information includes information indicating a resource block including radio resources associated with each of the plurality of weight sets among the resource blocks of the subframe.
  • the radio resource information includes a resource block common to the plurality of weight sets (that is, the same resource block). Contains information to indicate.
  • the radio resource information includes, for each of the plurality of weight sets, the radio associated with the weight set. Contains information indicating a resource block containing the resource.
  • the radio resource information includes information indicating resource elements associated with each of the plurality of weight sets.
  • the radio resource information includes identification information corresponding to the radio resource associated with each of the plurality of weight sets.
  • the identification information can also be said to be identification information corresponding to the weight set.
  • the identification information is resource identification information (for example, a radio resource index) for identifying the radio resource.
  • the identification information may be weight identification information (for example, a codebook index of a weight set) for identifying a weight set associated with the radio resource.
  • the terminal device 200 can notify the base station 100 of a radio resource or a weight set corresponding to the measurement report at the time of measurement reporting. .
  • the communication control unit 153 notifies the terminal device 200 of the radio resources associated with each of the plurality of weight sets. Thereby, for example, the terminal device 200 can perform measurement on the reference signal for measurement. In addition, the radio resource associated with the weight set can be flexibly changed.
  • the radio resource associated with each of the plurality of weight sets may be a predefined radio resource.
  • the radio resource associated with each of the plurality of weight sets may be a radio resource defined in advance in the standard of the cellular system, similarly to the CRS.
  • information for identifying a radio resource associated with each of the plurality of weight sets may be defined in advance. In such a case, the radio resource may not be notified to the terminal device 200 by the base station 100. Thereby, for example, overhead due to notification may be eliminated.
  • the base station 100 or the core network node may associate one predefined radio resource with any one weight set dynamically or semi-statically. That is, one weight set associated with one predefined radio resource can be changed dynamically or semi-statically.
  • the measurement reference signal is a signal specific to the cell.
  • the measurement reference signal is a signal having the same sequence as the CRS sequence.
  • the reference signal for measurement may be another signal specific to a cell similar to CRS.
  • the measurement is an RRM measurement, which is a measurement of received power or received quality. More specifically, for example, the measurement is measurement of RSRP or RSRQ.
  • the communication control unit 153 uses the measurement reference signal mapped to the radio resource previously associated with the weight set for each weight set included in the plurality of weight sets. , Multiply the weight set.
  • the weight set is a set of weight coefficients for a plurality of antenna elements, and the communication control unit 153 multiplies the measurement reference signal by a weight coefficient corresponding to the antenna element for each antenna element.
  • the communication control unit 153 multiplies the measurement reference signal by a weight coefficient corresponding to the antenna element for each antenna element.
  • FIG. 11 is an explanatory diagram for explaining the multiplication of the weighting factor to the reference signal for measurement.
  • transmission signal 73 corresponding to each antenna element 71 is complex-multiplied by weighting factor 75 in multiplier 77. Then, a transmission signal 73 obtained by complex multiplication of the weight coefficient 75 is transmitted from the antenna element 71.
  • the reference signal 79 for measurement is inserted before the multiplier 77 (that is, mapped to a radio resource), and the multiplier 77 performs complex multiplication with the weight coefficient 75.
  • a measurement reference signal 79 obtained by complex multiplication of the weight coefficient 75 is transmitted from the antenna element 71.
  • the communication control unit 153 maps the reference signal for measurement to the radio resource previously associated with the weight set for each weight set included in the plurality of weight sets, and sets the weight set to the reference signal. Multiply Thereby, for example, when beam forming is performed, it is possible to select an appropriate cell for the terminal device 200.
  • the terminal device 200 can perform measurement on a reference signal for measurement multiplied by a weighting set for beamforming instead of CRS transmitted as an omnidirectional radio wave. Become. That is, the terminal device 200 can measure the quality of the directional beam transmission path, not the quality of the non-directional radio wave transmission path. Therefore, the base station 100 or the terminal device 200 can select, for example, a cell with a good directional beam transmission path.
  • C Others (c-1) CRS
  • the base station 100 transmits not only the measurement reference signal but also the CRS. That is, the communication control unit 153 maps the CRS to the CRS radio resource.
  • the CRS is not multiplied by the weight set. Accordingly, for example, a device (legacy device) to which the technology of the present embodiment is not applied can perform measurement. That is, backward compatibility is ensured.
  • the communication control unit 153 selects a cell for the terminal device 200 based on a measurement report performed by the terminal device 200. That is, the communication control unit 153 selects a cell for the terminal device 200 based on the measurement report information provided in the measurement report by the terminal device 200.
  • the base station 100 supports carrier aggregation.
  • the cell is a carrier aggregation Pcell (ie, PCC) or Scell (ie, SCC).
  • the base station 100 may not support carrier aggregation, and in this case, the cell may mean a communication area of the base station 100 or a frequency band used by the base station 100. May be.
  • (B) Handover Determination For example, the communication control unit 153 determines a handover of the terminal device 200. That is, the communication control unit 153 performs handover determination for the terminal device 200. The communication control unit 153 selects a target cell for the terminal device 200 when determining the handover.
  • the communication control unit 153 selects a target cell for the terminal device 200 based on a measurement report performed by the terminal device 200 and determines a handover to the target cell.
  • the measurement report is a report that is performed based on the measurement result of the reference signal for measurement.
  • the base station 100 supports carrier aggregation, and the handover is a handover of a carrier aggregation Pcell (ie, PCC).
  • the target cell is a new Pcell (ie, PCC).
  • the base station 100 does not support carrier aggregation, and the handover may be a handover between base stations or an inter-frequency handover.
  • the communication control unit 153 adds a Scell (that is, SCC) for the terminal device 200.
  • the communication control unit 153 selects a Scell to be added.
  • the communication control unit 153 selects a Scell for the terminal device 200 based on a measurement report performed by the terminal device 200 and activates the Scell.
  • the measurement report is a report that is performed based on the measurement result of the reference signal for measurement.
  • FIG. 12 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • the antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives a downlink signal from the base station 100 and transmits an uplink signal to the base station 100.
  • the storage unit 230 stores a program and data for the operation of the terminal device 200.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes a measurement unit 241, an information acquisition unit 243, a report unit 245, and a communication control unit 247.
  • the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • the measurement unit 241 is a measurement reference signal transmitted using a radio resource associated with a weight set for each weight set included in the plurality of beam forming weight sets, and multiplies the weight set.
  • the measured reference signal is measured.
  • the base station 100 uses, for each weight set included in the plurality of weight sets, a radio resource associated with the weight set, and the reference signal for measurement multiplied by the weight set. Send. Then, the measurement unit 241 performs measurement on the reference signal for measurement transmitted using the radio resource for each weight set included in the plurality of weight sets.
  • (A) Acquisition of Radio Resources As described above, for example, the base station 100 notifies the terminal device 200 of radio resources associated with each of the plurality of weight sets. In this case, the measurement unit 241 performs measurement on a reference signal for measurement transmitted using the radio resource notified by the base station 100.
  • the radio resource associated with each of the plurality of weight sets may be a predefined radio resource.
  • information for specifying the radio resource may be stored in the storage unit 230.
  • the measurement unit 241 performs measurement on the reference signal for measurement transmitted using the radio resource specified from the information stored in the storage unit 230 (that is, the predefined radio resource). Do.
  • the measurement is a measurement of reception power or reception quality. That is, the measurement unit 241 measures the reception power or reception quality of the reference signal for measurement.
  • the measurement is measurement of RSRP or RSRQ. That is, the measurement unit 241 measures RSRP or RSRQ of the measurement reference signal.
  • the measurement unit 241 can measure the reference signal for measurement using the same method as the measurement for CRS.
  • the measurement unit 241 does not measure the reference signal for measurement for one base station 100 but measures the reference signal for measurement for each of the plurality of base stations 100. .
  • a base station 100 (or a cell of the base station 100) desirable for the terminal device 200 can be selected.
  • the base station 100 does not measure the reference signal for measurement with respect to one frequency band used by the base station 100, but uses a plurality of frequency bands (for example, a plurality of frequency bands used by the base station 100).
  • the reference signal for measurement is measured for each of (CC).
  • a desired frequency band for example, PCC or SCC
  • the information acquisition unit 243 is a reference signal for measurement transmitted using a radio resource associated with a weight set for each weight set included in the plurality of weight sets, and is multiplied by the weight set. The result of the measurement for the reference signal is acquired.
  • the measurement unit 241 performs the measurement for each weight set included in the plurality of weight sets. As a result, the measurement unit 241 generates the measurement result for each weight set included in the plurality of weight sets. Then, the information acquisition unit 243 acquires the result of the generated measurement.
  • the reporting unit 245 performs a measurement report to the base station 100 based on the result of the measurement.
  • Event-triggered reporting For example, the report unit 245 performs a measurement report to the base station 100 in response to the occurrence of an event related to the result of the measurement.
  • the event is, for example, one or more of events A1 to A6 and events B1 to B2 defined in 3GPP.
  • the event may be one or more events respectively similar to any of the events A1 to A6 and the events B1 to B2 defined in 3GPP.
  • the report unit 245 performs a measurement report to the base station 100 for each weight set included in the plurality of weight sets.
  • the report unit 245 determines, for each weight set included in the plurality of weight sets, whether an event has occurred based on the result of the measurement. Then, when determining that an event has occurred based on the result of the measurement, the reporting unit 245 performs a measurement report on the result of the measurement.
  • the reporting unit 245 performs measurement reporting to the base station 100 by providing measurement report information to the base station 100.
  • the measurement report information includes the result of the measurement. More specifically, for example, the measurement result is RSRP and / or RSRQ.
  • the measurement report information includes cell identification information (for example, cell ID) of the cell to which the measurement reference signal is transmitted.
  • the measurement report information includes identification information corresponding to the radio resource that is the measurement target (that is, the radio resource to which the measurement reference signal is transmitted).
  • the identification information can also be said to be identification information corresponding to the weight set.
  • the identification information is resource identification information (for example, a radio resource index) for identifying the radio resource that is the target of the measurement.
  • the identification information may be weight identification information (for example, a codebook index of a weight set) for identifying a weight set associated with the radio resource subjected to the measurement.
  • the terminal device 200 can notify the base station 100 of the radio resource or the weight set corresponding to the measurement report.
  • the measurement report information includes information indicating that the measurement report is based on the measurement result of the measurement reference signal multiplied by the weight set.
  • (B) Periodic reporting For example, the report unit 245 periodically performs measurement reports to the base station 100.
  • the report unit 245 performs measurement reports to the base station 100 at a period specified by the base station 100.
  • the reporting unit 245 may perform a measurement report to the base station 100 at a predefined period.
  • the report unit 245 performs a measurement report for the plurality of weight sets as a whole.
  • the report unit 245 performs the measurement report by providing the base station 100 with measurement report information including measurement results for each of the plurality of weight sets.
  • the measurement report information corresponds to the measurement results and the radio resources subjected to the measurement for each weight set of the plurality of weight sets.
  • the identification information may be resource identification information for identifying the radio resource, or may be weight identification information for identifying a weight set associated with the radio resource. .
  • the report unit 245 may perform a measurement report to the base station 100 for each weight set included in the plurality of weight sets.
  • the reporting unit 245 may provide the measurement report information including the measurement result to the base station 100 for each weight set included in the plurality of weight sets, thereby performing the measurement report. Good.
  • the specific description of the measurement report information is the same as the measurement report information described in relation to the event trigger report. Therefore, the overlapping description is omitted here.
  • the reporting unit 245 performs a measurement report to the base station 100 based on the result of the measurement. Thereby, for example, when beam forming is performed, the base station 100 can select an appropriate cell for the terminal device 200.
  • the communication control unit 247 selects a cell for the terminal device 200 based on the result of the measurement.
  • the communication control unit 247 when the terminal device 200 is in an idle state, the communication control unit 247 performs cell selection / cell reselection based on the result of the measurement. More specifically, for example, when the terminal device 200 is RRC idle, the communication control unit 247 performs a cell (for example, paging reception) for the terminal device 200 to perform communication based on the result of the measurement. Cell for).
  • a cell for example, paging reception
  • the base station 100 supports carrier aggregation.
  • the cell is a carrier aggregation Pcell (ie, PCC).
  • the base station 100 may not support carrier aggregation, and in this case, the cell may mean a communication area of the base station 100 or a frequency band used by the base station 100. May be.
  • FIG. 13 is a sequence diagram illustrating an example of a schematic flow of processing according to the embodiment of the present disclosure.
  • the base station 100 (communication control unit 153) notifies the terminal device 200 of radio resources associated with each of a plurality of beamforming weight sets (S301). For example, the base station 100 notifies the terminal device 200 of information for specifying the radio resource associated with each of the plurality of weight sets (that is, radio resource information). The terminal device 200 acquires the radio resource information.
  • the base station 100 uses a radio resource previously associated with the weight set, and generates a measurement reference signal (RS) multiplied by the weight set. Transmit (S303).
  • the base station 100 information acquisition unit 151) acquires the plurality of weight sets.
  • the base station 100 (communication control unit 153) maps the reference signal for measurement to the radio resource previously associated with the weight set for each weight set included in the plurality of weight sets, and adds the reference signal to the reference signal. Multiply the weight set.
  • the terminal device 200 (measurement unit 241), for each weight set included in the plurality of weight sets, transmits a measurement reference signal (using the weight set) transmitted using a radio resource associated with the weight set. Measurement is performed for the multiplied measurement reference signal) (S305).
  • the terminal device 200 acquires the result of the measurement for each weight set included in the plurality of weight sets, and the terminal device 200 (report unit 245) acquires the result of the measurement. Based on the above, a measurement report is made to the base station 100 (S307). For example, the terminal device 200 (report unit 245) provides measurement report information to the base station 100 by providing measurement report information to the base station 100.
  • the radio resource associated with each of the plurality of weight sets transmits the measurement reference signal multiplied by the beam forming weight set in order to transmit the measurement reference signal. It is different from radio resources used by neighboring base stations.
  • the terminal device 200 can more accurately measure the reference signal for measurement.
  • Base station 100 communication control unit 153
  • the communication control unit 153 applies a measurement reference to a radio resource previously associated with the weight set. The signal is mapped and the reference signal is multiplied by the weight set.
  • (A) Reference signal mapping In the first modification of the present embodiment, the radio resource previously associated with the weight set transmits a reference signal for measurement multiplied by a weight set for beamforming.
  • the radio resources used by the base stations adjacent to the base station 100 are different.
  • the base station 100 transmits a reference signal for measurement multiplied by the weight set using radio resources previously associated with the weight set.
  • the adjacent base station also transmits a reference signal for measurement multiplied by the weight set using radio resources previously associated with the weight set.
  • the radio resource used by the base station 100 is different from the radio resource used by the adjacent base station.
  • the radio resource pre-associated with the weight set exists in the same subframe as the radio resource used by the neighboring base station.
  • the radio resource previously associated with the weight set is included in a resource block in the same band as the radio resource used by the adjacent base station.
  • the radio resource previously associated with the weight set is included in a resource block in the same band as the radio resource used by the adjacent base station.
  • FIG. 14 is an explanatory diagram for explaining a first example of a relationship between radio resources associated in advance with a weight set and radio resources used by adjacent base stations.
  • two resource blocks arranged in the time direction in the subframe 30 are shown.
  • the base station 100 is a base station of the cell 0, and the communication control unit 153 transmits a reference signal for measurement to a resource element reserved for the cell 0 (resource element previously associated with the weight set V). To map.
  • the base station 100 transmits the reference signal for measurement multiplied by the weight set V using the resource element reserved for the cell 0.
  • a reference signal for measurement multiplied by the set V is transmitted.
  • the radio resource associated in advance with the weight set may be included in a resource block in a band different from the radio resource used by the adjacent base station.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 15 is an explanatory diagram for describing a second example of the relationship between radio resources associated in advance with the weight set and radio resources used by adjacent base stations.
  • a resource block pair 40 of a subframe 30 is shown.
  • the pairs 40 are arranged in the frequency direction.
  • Each pair 40 includes two resource blocks arranged in the time direction.
  • the base station 100 is a base station of the cell 0, and the communication control unit 153 maps the reference signal for measurement to the radio resource included in the resource block pair 40A, 40E.
  • the base station 100 transmits a reference signal for measurement multiplied by the weight set V using radio resources included in the resource block pairs 40A and 40E.
  • the base stations of the cells 1 to 3 are adjacent base stations of the base station 100, for example. Then, the base station of the cell 1 transmits a reference signal for measurement multiplied by the weight set V using radio resources included in the resource block pairs 40B and 40F. Further, the base station of the cell 2 transmits a reference signal for measurement multiplied by the weight set V using radio resources included in the resource block pairs 40C, 40G and the like. Further, the base station of the cell 3 transmits a reference signal for measurement multiplied by the weight set V using radio resources included in the resource block pairs 40D, 40H and the like.
  • the measurement reference signal multiplied by the same weight set need not be transmitted over all frequencies. This is because the effect of beam forming is not particularly different between frequency bands. This is particularly noticeable when the frequency band is a high frequency band such as a 5 GHz band.
  • the radio resource previously associated with the weight set exists in the same subframe as the radio resource used by the adjacent base station.
  • an increase in overhead due to the measurement reference signal multiplied by the weight set can be limited to a smaller number of subframes.
  • the radio resources pre-associated with the weight set may be in different subframes than the radio resources used by the neighboring base stations.
  • FIG. 16 is an explanatory diagram for explaining a third example of the relationship between radio resources associated in advance with the weight set and radio resources used by adjacent base stations.
  • a radio frame including 10 subframes is shown.
  • the base station 100 is a base station of the cell 0, and the communication control unit 153 maps the reference signal for measurement to radio resources of subframes whose subframe numbers are 0 and 5.
  • the base station 100 transmits the measurement reference signal multiplied by the weight set V in the subframes whose subframe numbers are 0 and 5.
  • the base stations of the cells 1 to 3 are adjacent base stations of the base station 100, for example.
  • the base station of cell 1 transmits a reference signal for measurement multiplied by a weight set V in subframes having subframe numbers 1 and 6.
  • the base station of cell 2 transmits a reference signal for measurement multiplied by the weight set V in subframes having subframe numbers 2 and 7.
  • the base station of the cell 3 transmits a measurement reference signal multiplied by the weight set V in subframes having subframe numbers 3 and 8.
  • an increase in overhead due to the reference signal for measurement multiplied by the weight set can be distributed among the subframes.
  • the terminal device 200 can more accurately perform the measurement on the reference signal for measurement. More specifically, for example, when two or more base stations transmit the measurement reference signal multiplied by the beamforming weight set using the same radio resource, depending on the beam direction, it is large. Interference can occur. In particular, if the beam forming is large-scale MIMO beam forming, very large interference may occur. As a result, the terminal device may not be able to accurately measure the reference signal for measurement. Therefore, if radio resources used for transmission of the measurement reference signal multiplied by the beamforming weight set are different between adjacent base stations, the terminal device 200 determines that the measurement reference signal Can be measured more accurately.
  • the base station 100 multiplies the reference signal for demodulation by the weight set selected from the plurality of weight sets. Also, the base station 100 notifies the terminal device 200 of information regarding the selected weight set.
  • the terminal device 200 performs measurement on the reference signal multiplied by the selected weight set among the plurality of weight sets.
  • the information regarding the selected weight set is information that the base station 100 notifies the terminal device 200 of.
  • the reference signal is a measurement reference signal transmitted using a radio resource associated with the selected weight set, and the measurement reference multiplied by the selected weight set. And a reference signal for demodulation multiplied by the selected weight set.
  • the terminal device 200 can use more reference signals multiplied by the weight set for measurement. As a result, the measurement accuracy can be higher.
  • the base station 100 can reduce the number of measurement reference signals to be transmitted. That is, the radio resources used for transmitting the reference signal for measurement can be reduced.
  • the communication control unit 153 uses the selected weight set of the plurality of weight sets as a demodulation reference signal.
  • the terminal device 200 is notified of identification information corresponding to the selected weight set (hereinafter referred to as “weight correspondence identification information”).
  • the selected weight set is a weight set selected to transmit a signal to a terminal device by beamforming.
  • the demodulation reference signal is a DM-RS (or UE-specific reference signal) for demodulation by the terminal device. That is, the communication control unit 153 selects a weight set in order to transmit a signal to the terminal device by beam forming, and multiplies the selected weight set by the DM-RS.
  • the terminal device may be the terminal device 200 according to the present embodiment, or may be a terminal device (legacy terminal) to which the technology of the present embodiment is not applied.
  • the communication control unit 153 notifies the terminal device 200 of the weight-corresponding identification information in downlink control information (DCI).
  • DCI downlink control information
  • the communication control unit 153 generates DCI including the weight correspondence identification information. Then, the communication control unit 153 maps the DCI signal to the PDCCH radio resource. A specific example of this point will be described with reference to FIG.
  • FIG. 17 is an explanatory diagram for explaining an example of transmission of a demodulation reference signal and weight correspondence identification information.
  • the base station 100 transmits the DM-RS using the resource element in the data area 33.
  • the base station 100 transmits DCI including the weight correspondence identification information using the PDCCH resource element of the control region 31.
  • the weight-corresponding identification information can be notified to the terminal device 200 every time a demodulation reference signal is transmitted.
  • the weight correspondence identification information (that is, the identification information corresponding to the selected weight set) is a resource identification for identifying a radio resource associated with the selected weight set. Information (for example, an index of radio resources).
  • the weight correspondence identification information may be weight identification information for identifying the selected weight set (for example, a codebook index of the weight set).
  • the terminal device 200 can know the radio resource to which the measurement reference signal multiplied by the selected weight set is transmitted. Therefore, the terminal device 200 can use both the reference signal for measurement and the reference signal for demodulation for measurement of the reference signal multiplied by the selected weight set. That is, the terminal device 200 may use more reference signals multiplied by the weight set for measurement. As a result, the measurement accuracy can be higher.
  • the base station 100 can reduce the number of measurement reference signals to be transmitted. That is, the radio resources used for transmitting the reference signal for measurement can be reduced.
  • the measurement unit 241 performs measurement on a reference signal multiplied by a selected weight set from the plurality of weight sets.
  • the selected weight set is a weight set selected to transmit a signal to the terminal apparatus by beamforming.
  • the terminal device may be the terminal device 200 itself, another terminal device 200, or a terminal device (legacy terminal) to which the technology of the present embodiment is not applied.
  • the identification information corresponding to the selected weight set is information that the base station 100 notifies the terminal device 200 of.
  • the weight correspondence identification information is resource identification information for identifying a radio resource associated with the selected weight set.
  • the weight correspondence identification information may be weight identification information for identifying the selected weight set. Therefore, the terminal device 200 (measurement unit 241) can know the radio resource to which the measurement reference signal multiplied by the selected weight set is transmitted.
  • the reference signal multiplied by the selected weight set is a reference signal for measurement (the selected weight is transmitted using a radio resource associated with the selected weight set).
  • a reference signal for measurement multiplied by the set) and a reference signal for demodulation multiplied by the selected weight set are a reference signal for measurement multiplied by the selected weight set. That is, the measurement unit 241 performs measurement on the reference signal including the measurement reference signal and the demodulation reference signal multiplied by the selected weight set.
  • the terminal device 200 can use more reference signals multiplied by the weight set for measurement. As a result, the measurement accuracy can be higher.
  • the base station 100 can reduce the number of measurement reference signals to be transmitted. That is, the radio resources used for transmitting the reference signal for measurement can be reduced.
  • the reference signal multiplied by the selected weight set may include only the demodulation reference signal satisfying a predetermined condition among the demodulation reference signals multiplied by the selected weight set.
  • the predetermined condition is that the radio resource used for transmitting the demodulation reference signal multiplied by the selected weight set is transmitted the measurement reference signal multiplied by the selected weight set. It may be located in the vicinity of the radio resource used for the.
  • FIG. 18 is a sequence diagram illustrating an example of a schematic flow of a process according to the second modification example of the embodiment of the present disclosure.
  • the base station 100 (communication control unit 153) notifies the terminal device 200 of radio resources associated with each of a plurality of beamforming weight sets (S321). For example, the base station 100 notifies the terminal device 200 of information for specifying the radio resource associated with each of the plurality of weight sets (that is, radio resource information). The terminal device 200 acquires the radio resource information.
  • the base station 100 uses, for each weight set included in the plurality of weight sets, a radio resource previously associated with the weight set, and multiplies the weight set for measurement.
  • a reference signal (RS) is transmitted (S323).
  • the base station 100 (communication control unit 153), for example, in DCI, provides the terminal device 200 with identification information (that is, weight correspondence identification information) corresponding to the selected weight set among the plurality of weight sets. Notice. Also, the base station 100 (communication control unit 153) transmits a demodulation reference signal multiplied by the selected weight set (S325).
  • the terminal device 200 performs measurement on the reference signal multiplied by the weight set for each weight set included in the plurality of weight sets (S327).
  • the terminal device 200 performs measurement on a reference signal multiplied by a weight set selected from the plurality of weight sets.
  • the reference signal includes a measurement reference signal and a demodulation reference signal multiplied by the selected weight set.
  • the terminal device 200 acquires the result of the measurement for each weight set included in the plurality of weight sets, and the terminal device 200 (report unit 245) acquires the result of the measurement. Based on the above, a measurement report is made to the base station 100 (S329).
  • the terminal device 200 (report unit 245) provides measurement report information to the base station 100 by providing measurement report information to the base station 100.
  • the terminal device 200 can use more reference signals multiplied by the weight set for measurement. As a result, the measurement accuracy can be higher.
  • the base station 100 can reduce the number of measurement reference signals to be transmitted. That is, the radio resources used for transmitting the reference signal for measurement can be reduced.
  • the plurality of weight sets for beamforming are weight sets for one or more subsets of a plurality of antenna elements included in a directional antenna that can be used for large-scale MIMO. It is.
  • the base station 100 can reduce the number of measurement reference signals to be transmitted. That is, the radio resources used for transmitting the reference signal for measurement can be reduced.
  • Base station 100 information acquisition unit 151
  • the information acquisition unit 151 acquires a plurality of weight sets for beam forming.
  • the plurality of weight sets are weights for one or more subsets of a plurality of antenna elements included in a directional antenna that can be used for large-scale MIMO. Is a set.
  • the plurality of antenna elements included in the directional antenna are arranged in a first direction and a second direction.
  • the one or more subsets are arranged in a first subset including the antenna elements arranged in the first direction among the plurality of antenna elements, and arranged in the second direction among the plurality of antenna elements.
  • a second subset including antenna elements For example, the first direction and the second direction are orthogonal to each other.
  • FIG. 19 is an explanatory diagram for explaining a subset of a plurality of antenna elements included in a directional antenna.
  • the directional antenna 101 includes a plurality of antenna elements 103 (100 antenna elements). More specifically, in this example, in the directional antenna 101, 10 antenna elements 103 are arranged in the first direction 51 and 10 antenna elements are arranged in the second direction 53 orthogonal to the first direction 51. 103 are lined up.
  • the plurality of weight sets includes a weight set for the first subset 105 including the antenna elements 103 arranged in the first direction 51 and a second subset 107 including the antenna elements 103 arranged in the second direction 53.
  • the first direction is a substantially vertical direction
  • the second direction is a substantially horizontal direction
  • Base station 100 communication control unit 153
  • the communication control unit 153 applies a measurement reference to a radio resource previously associated with the weight set. The signal is mapped and the reference signal is multiplied by the weight set.
  • FIG. 20 is an explanatory diagram for describing a first example of radio resources associated in advance with a weight set according to a third modification.
  • the communication control unit 153 maps the reference signal for measurement to these resource elements.
  • the communication control unit 153 uses the measurement reference signal mapped to the radio resource previously associated with the weight set for each weight set included in the plurality of weight sets. , Multiply the weight set.
  • the set V1 (i) is multiplied.
  • the measurement reference signal multiplied by the weight set V1 (i) is transmitted from the first subset (that is, the antenna elements arranged in the first direction).
  • the measurement reference signal multiplied by the weight set V2 (i) is transmitted from the second subset (that is, antenna elements arranged in the second direction).
  • the measurement unit 241 multiplies the reference signal for measurement (multiplied by the weight set) transmitted using the radio resource associated with the weight set.
  • the reference signal The reference signal
  • the RSRP and RSRQ of the reference signal for measurement transmitted using the resource element associated with is measured.
  • the measurement unit 241 performs the above measurement on all resource blocks including resource elements associated with the weight set V1 (i).
  • the RSRP and RSRQ of the reference signal for measurement are measured.
  • the measurement unit 241 performs the above measurement on all resource blocks including resource elements associated with the weight set V2 (i).
  • the reporting unit 245 performs the measurement on the reference signal multiplied by the weight set of the first subset and the measurement on the reference signal multiplied by the weight set of the second subset. Based on the result, a measurement report to the base station 100 is performed.
  • the reporting unit 245 uses the measurement result of the reference signal multiplied by the weight set of the first subset and the reference signal multiplied by the weight set of the second subset. Based on the result of the measurement, an integrated measurement result is generated. And the report part 245 performs the measurement report to the base station 100 based on the result of the integrated measurement.
  • the reporting unit 245 multiplies RSRP (dBm), which is a result of measurement on the reference signal multiplied by the weight set of the first subset, and the weight set of the second subset. By adding the RSRP (dBm) that is the result of the measurement for the reference signal, the integrated RSRP that is the result of the integrated measurement is generated. Then, the reporting unit 245 performs a measurement report to the base station 100 based on the integrated RSRP. Note that the reporting unit 245 can generate an integrated RSRQ, for example, in the case where the measurement result is RSRQ, as in the case where the measurement result is RSRP.
  • the cell can be selected in the same manner as when the measurement reference signals are transmitted from the plurality of antenna elements included in the directional antenna.
  • the base station 100 may generate the integrated measurement result. That is, the base station 100 (communication control unit 153) performs the measurement on the reference signal multiplied by the weight set of the first subset and the reference signal multiplied by the weight set of the second subset. Based on the measurement result, an integrated measurement result may be generated. In this case, the terminal apparatus 200 (report unit 245) uses the measurement result of the reference signal multiplied by the weight set of the first subset and the reference signal multiplied by the weight set of the first subset. The measurement results may be provided to the base station 100 in the measurement report.
  • the base station 100 may generate the integrated measurement result. That is, the base station 100 (communication control unit 153) performs the measurement on the reference signal multiplied by the weight set of the first subset and the reference signal multiplied by the weight set of the second subset. Based on the measurement result, an integrated measurement result may be generated. In this case, the terminal apparatus 200 (report unit 245) uses the measurement result of the reference signal multiplied by the weight set of the first subset and
  • the plurality of weight sets is a weight set for one or more subsets of the plurality of antenna elements.
  • the one or more subsets include the first subset including the antenna elements arranged in the first direction and the second subset including the antenna elements arranged in the second direction.
  • the third modification is not limited to such an example.
  • the plurality of weight sets may be a subset including antenna elements arranged in one of the first direction and the second direction. That is, the plurality of weight sets may be one of the first subset and the first subset.
  • the one of the first direction and the second direction may be a substantially vertical direction or a substantially horizontal direction.
  • FIG. 21 is a sequence diagram illustrating a first example of a schematic flow of processing according to a third modification of the embodiment of the present disclosure.
  • the base station 100 (communication control unit 153) notifies the terminal device 200 of radio resources associated with each of a plurality of beamforming weight sets (S341). For example, the base station 100 notifies the terminal device 200 of information for specifying the radio resource associated with each of the plurality of weight sets (that is, radio resource information). The terminal device 200 acquires the radio resource information.
  • the first subset includes antenna elements arranged in a first direction among a plurality of antenna elements included in a directional antenna that can be used for large scale MIMO, and the second subset includes the plurality of antenna elements. Of the antenna elements arranged in the second direction.
  • the terminal device 200 measures a reference signal for measurement (using the weight set described above) transmitted using radio resources associated with the weight set. Measurement for the multiplied measurement reference signal) is performed (S345).
  • the terminal device 200 (measurement unit 241), for each weight set for the second subset, transmits a reference signal for measurement (the weight set described above) transmitted using the radio resource associated with the weight set. Measurement for the multiplied measurement reference signal) is performed (S347).
  • the terminal device 200 (information acquisition unit 243) performs the measurement obtained by multiplying the measurement reference signal multiplied by the weight set of the first subset and the weight set of the second subset. And the result of the measurement for the reference signal. Further, the terminal device 200 (report unit 245) performs the measurement on the measurement reference signal multiplied by the weight set of the first subset and the measurement result multiplied by the weight set of the second subset. An integrated measurement result is generated based on the measurement result of the reference signal (S349).
  • the terminal device 200 performs a measurement report to the base station 100 based on the integrated measurement result (S351).
  • the terminal device 200 provides measurement report information to the base station 100 by providing measurement report information to the base station 100.
  • the measurement report information includes, for example, the integrated measurement result.
  • FIG. 22 is a sequence diagram illustrating a second example of a schematic flow of a process according to a third modification of the embodiment of the present disclosure.
  • steps S361 to S367 is the same as the description of steps S341 to S347 described with reference to FIG. Therefore, only steps S371 to S373 will be described here.
  • the terminal device 200 (information acquisition unit 243) performs the measurement on the measurement reference signal multiplied by the weight set of the first subset and the measurement result multiplied by the weight set of the second subset. Obtain the measurement results for the reference signal. Then, the terminal device 200 (report unit 245) performs a measurement report to the base station 100 based on the acquired measurement result (S371). For example, the terminal device 200 (report unit 245) provides measurement report information to the base station 100 by providing measurement report information to the base station 100.
  • the measurement report information includes, for example, the measurement result of the measurement reference signal multiplied by the weight set of the first subset and the measurement reference signal multiplied by the weight set of the second subset. Including the results of measurements.
  • the base station 100 (communication control unit 153) performs the measurement multiplied by the measurement result of the reference signal for measurement multiplied by the weight set of the first subset and the weight set of the second subset.
  • An integrated measurement result is generated based on the measurement result of the reference signal for use (S373).
  • FIG. 23 is a sequence diagram illustrating a third example of a schematic flow of processing according to a third modification of the embodiment of the present disclosure.
  • the base station 100 (communication control unit 153) notifies the terminal device 200 of radio resources associated with each of a plurality of beamforming weight sets (S381). For example, the base station 100 notifies the terminal device 200 of information for specifying the radio resource associated with each of the plurality of weight sets (that is, radio resource information). The terminal device 200 acquires the radio resource information.
  • the first subset includes antenna elements arranged in a first direction among a plurality of antenna elements included in a directional antenna that can be used for large-scale MIMO.
  • the terminal device 200 measures a reference signal for measurement (using the weight set described above) transmitted using radio resources associated with the weight set. Measurement for the multiplied measurement reference signal) is performed (S385).
  • the terminal device 200 acquires the measurement result of the reference signal for measurement multiplied by the weight set of the first subset. Furthermore, the terminal device 200 (report unit 245) performs a measurement report to the base station 100 based on the acquired measurement result (S387). For example, the terminal device 200 (report unit 245) provides measurement report information to the base station 100 by providing measurement report information to the base station 100.
  • the measurement report information includes, for example, a measurement result of a measurement reference signal multiplied by the weight set of the first subset.
  • the third modification of the present embodiment has been described above. According to the third modification, for example, it is possible to reduce the number of weight sets to be multiplied by the measurement reference signal. As a result, the base station 100 can reduce the number of measurement reference signals to be transmitted. That is, the radio resources used for transmitting the reference signal for measurement can be reduced.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 24 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 24, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 24 shows an example in which the eNB 800 has a plurality of antennas 810, the eNB 800 may have a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 24, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 24, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • 24 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the information acquisition unit 151 and the communication control unit 153 described with reference to FIG. 6 may be implemented in the wireless communication interface 825. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the radio communication interface 825 and / or the controller 821, and the information acquisition unit 151 and the communication control unit 153 are mounted in the module. May be.
  • the module executes a program for causing the processor to function as the information acquisition unit 151 and the communication control unit 153 (in other words, a program for causing the processor to execute the operations of the information acquisition unit 151 and the communication control unit 153). You may memorize
  • a program for causing a processor to function as the information acquisition unit 151 and the communication control unit 153 is installed in the eNB 800, and the radio communication interface 825 (for example, the BB processor 826) and / or the controller 821 executes the program. May be.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the information acquisition unit 151 and the communication control unit 153, and the processor functions as the information acquisition unit 151 and the communication control unit 153.
  • a program may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the radio communication unit 120 described with reference to FIG. 6 may be implemented in the radio communication interface 825 (for example, the RF circuit 827) in the eNB 800 illustrated in FIG. Further, the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • FIG. 25 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 25, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 25 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 24 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • 25 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 25, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 25 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
  • the information acquisition unit 151 and the communication control unit 153 described with reference to FIG. 6 may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or all of the wireless communication interface 855 and / or the controller 851, and the information acquisition unit 151 and the communication control unit 153 are mounted in the module. May be.
  • the module executes a program for causing the processor to function as the information acquisition unit 151 and the communication control unit 153 (in other words, a program for causing the processor to execute the operations of the information acquisition unit 151 and the communication control unit 153).
  • a program for causing the processor to function as the information acquisition unit 151 and the communication control unit 153 is installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 executes the program. May be.
  • the eNB 830, the base station device 850, or the module may be provided as a device including the information acquisition unit 151 and the communication control unit 153, and the processor functions as the information acquisition unit 151 and the communication control unit 153.
  • a program may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 6 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • FIG. 26 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 26 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. 26 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 26 via a power supply line partially illustrated by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • one or more components included in the processing unit 240 described with reference to FIG. May be implemented in the wireless communication interface 912.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 12 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • FIG. 27 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 27 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 27 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 27 through a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • one or more components included in the processing unit 240 described with reference to FIG. 247) may be implemented in the wireless communication interface 933.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be.
  • the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 12 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the one or more components (the measurement unit 241, the information acquisition unit 243, the report unit 245, and / or the communication control unit 247).
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the base station 100 associates, in advance, an information acquisition unit 151 that acquires a plurality of weight sets for beamforming and a weight set for each weight set included in the plurality of weight sets.
  • a communication control unit 153 that maps a reference signal for measurement to the received radio resource and multiplies the reference signal by the weight set.
  • the terminal device 200 uses the radio resource associated with the weight set for each weight set included in the plurality of beam forming weight sets for measurement.
  • Information acquisition unit 243 that acquires a measurement result of the reference signal multiplied by the weight set, and a report unit that performs a measurement report to the base station based on the measurement result 245.
  • the communication system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these has been described, but the present disclosure is not limited to such an example.
  • the communication system may be a system that complies with other communication standards.
  • processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram.
  • the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
  • a processor for example, a base station, a base station device for the base station, a module for the base station device, a terminal device, or a module for the terminal device
  • a computer program for example, causing the processor to execute the operation of the component of the device
  • a component of the device for example, an information acquisition unit and a communication control unit.
  • Computer programs can also be created.
  • a recording medium on which the computer program is recorded may be provided.
  • An apparatus for example, a finished product or a module for a finished product (a component, a processing circuit, a chip, or the like) including a memory that stores the computer program and one or more processors that can execute the computer program May also be provided.
  • a method including the operation of the components of the device for example, an information acquisition unit and a communication control unit is also included in the technology according to the present disclosure.
  • a device comprising: (2) The apparatus according to (1), wherein the radio resource is a radio resource of the data area in a subframe including a control area and a data area.
  • wireless resource is an apparatus as described in said (2) which is resource elements other than the resource element for CRS (Cell-specific Reference Signal) among the resource elements of the said data area.
  • the radio resource is a radio resource of a specific subframe.
  • the specific subframe is an MBSFN (Multimedia Broadcast Multicast Services (MBMS) over a Single Frequency Network) subframe.
  • the said control part is an apparatus as described in said (4) or (5) which notifies the said specific sub-frame to a terminal device.
  • the control unit notifies a terminal device of radio resources associated with each of the plurality of weight sets.
  • a radio resource associated with each of the plurality of weight sets is a predefined radio resource.
  • the apparatus is a base station, a base station apparatus for the base station, or a module for the base station apparatus.
  • the radio resource is different from a radio resource used by an adjacent base station of the base station to transmit a measurement reference signal multiplied by a beamforming weight set. .
  • the radio resource pre-associated with the weight set exists in the same subframe as the radio resource used by the neighboring base station.
  • the apparatus according to (12), wherein the radio resource pre-associated with the weight set is included in a resource block in the same band as the radio resource used by the neighboring base station.
  • the radio resource pre-associated with the weight set is included in a resource block of a band different from the radio resource used by the neighboring base station.
  • the apparatus according to (11), wherein the radio resource pre-associated with the weight set exists in a subframe different from the radio resource used by the neighboring base station.
  • the control unit multiplies a demodulation reference signal by a weight set selected from the plurality of weight sets, and notifies the terminal device of identification information corresponding to the selected weight set, (1) The apparatus according to any one of (15) to (15).
  • the control unit notifies the terminal device of the identification information corresponding to the selected weight set in downlink control information.
  • the plurality of weight sets are weight sets for one or more subsets of a plurality of antenna elements included in a directional antenna that can be used for large-scale MIMO.
  • the plurality of antenna elements are arranged in a first direction and a second direction,
  • the one or more subsets include a first subset including antenna elements arranged in the first direction among the plurality of antenna elements, and an antenna element arranged in the second direction among the plurality of antenna elements.
  • a second subset including The apparatus according to (18) above.
  • the control unit based on the measurement result for the reference signal multiplied by the weight set of the first subset and the measurement result for the reference signal multiplied by the weight set of the second subset, The device according to (19), which generates an integrated measurement result.
  • the plurality of antenna elements are arranged in a first direction and a second direction,
  • the one or more subsets are subsets including antenna elements arranged in one of the first direction and the second direction among the plurality of antenna elements.
  • (22) The apparatus according to any one of (19) to (21), wherein the first direction and the second direction are orthogonal to each other.
  • (23) The apparatus according to any one of (1) to (17), wherein the beamforming is large-scale MIMO beamforming.
  • the measurement is a measurement of RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality).
  • the reference signal is a signal specific to a cell.
  • a device comprising: (28) The apparatus according to (27), wherein the reporting unit performs measurement reporting to a base station for each weight set included in the plurality of weight sets.
  • a measurement unit that performs the measurement for each weight set included in the plurality of weight sets;
  • the measurement unit measures a reference signal multiplied by a weight set selected from the plurality of weight sets;
  • the reference signal multiplied by the selected weight set is a reference signal for measurement transmitted using a radio resource associated with the selected weight set, and the selected weight set is A reference signal for measurement multiplied by, and a reference signal for demodulation multiplied by the selected weight set,
  • the identification information corresponding to the selected weight set is information that the base station notifies the terminal device,
  • the plurality of weight sets are weight sets for one or more subsets of a plurality of antenna elements included in a directional antenna that can be used for large scale MIMO;
  • the plurality of antenna elements are arranged in a first direction and a second direction,
  • the one or more subsets include a first subset including antenna elements arranged in the first direction among the plurality of antenna elements, and an antenna element arranged in the second direction among the plurality of antenna elements.
  • a second subset including The reporting unit is based on a measurement result for the reference signal multiplied by the weight set of the first subset and a measurement result for the reference signal multiplied by the weight set of the second subset, Generate an integrated measurement result and report the measurement to the base station based on the integrated measurement result;
  • the apparatus according to any one of (27) to (30).
  • a reference signal for measurement transmitted using a radio resource associated with a weight set for each weight set included in a plurality of weight sets for beamforming, wherein the reference signal is multiplied by the weight set Obtaining the measurement results for Performing a measurement report to a base station based on the result of the measurement;
  • a readable recording medium on which a program for causing a processor to execute is recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

【課題】ビームフォーミングが行われる場合に端末装置のために適切なセルを選択することを可能にする。 【解決手段】ビームフォーミング用の複数の重みセットを取得する取得部と、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する制御部と、を備える装置が提供される。

Description

装置
 本開示は、装置に関する。
 現在、3GPP(Third Generation Partnership Project)では、爆発的に増加するトラフィックを収容するために、セルラーシステムの容量を向上するための様々な技術が検討されている。将来、現在の1000倍程度の容量が必要とも言われている。MU-MIMO(Multi-User Multi-Input Multiple-Input Multiple-Output)及びCoMP(Coordinated Multipoint)などの技術では、セルラーシステムの容量は数倍程度しか増加しないと考えられる。そのため、画期的な手法が求められている。
 例えば、セルラーシステムの容量を大幅に増加させるための手法として、多数のアンテナ素子(例えば、100個程度のアンテナ素子)を含む指向性アンテナを使用して基地局がビームフォーミングを行うことが考えられる。このような技術は、ラージスケール(Large-Scale)MIMO、又はマッシブ(Massive)MIMOと呼ばれる技術の一形態である。このようなビームフォーミングによれば、ビームの半値幅は狭くなる。即ち、鋭いビームが形成される。また、上記多数のアンテナ素子を平面上に配置することにより、所望の3次元方向へのビームを形成することも可能になる。
 なお、ビームフォーミングについての様々な技術が提案されている。例えば、特許文献1には、上りチャネルと下りチャネルとの周波数帯域が異なる場合であっても基地局によるビームフォーミングを実現する技術が、開示されている。
特開2011-004056
 しかし、ビームフォーミングが行われる場合に端末装置のために適切なセルが選択されない可能性がある。
 具体的には、通常、端末装置のためのセルの選択(例えば、端末装置によるセル選択(Cell Selection)/セル再選択(cell reselection)及び基地局によるハンドオーバ決定(Handover Decision)など)は、ビームフォーミングなしで送信されるCRS(Cell-specific Reference Signal)についての測定(measurements)の結果に基づいて行われる。そのため、結果として選択されるセルは、ビームフォーミングなしで送信される信号の受信には良好なセルであるが、ビームフォーミングありで送信される信号の受信に良好なセルであるとは限らない。そのため、ビームフォーミングが行われる場合には、端末装置のために適切なセルが選択されない可能性がある。これは、とりわけ、多数のアンテナ素子を含む指向性アンテナを使用して上記ビームフォーミングが行われる場合に顕著になり得る。
 そこで、ビームフォーミングが行われる場合に端末装置のために適切なセルを選択することを可能にする仕組みが提供されることが望ましい。
 本開示によれば、ビームフォーミング用の複数の重みセットを取得する取得部と、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する制御部と、を備える装置が提供される。
 また、本開示によれば、ビームフォーミング用の複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、上記重みセットを乗算された上記リファレンス信号についての測定の結果を取得する取得部と、上記測定の上記結果に基づいて、基地局への測定報告を行う報告部と、を備える装置が提供される。
 以上説明したように本開示によれば、ビームフォーミングが行われる場合に端末装置のために適切なセルを選択することが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
ラージスケールMIMOのビームフォーミング用の重みセットを説明するための説明図である。 重み係数の乗算とリファレンス信号の挿入との関係を説明するための説明図である。 本開示の実施形態に係る通信システムの概略的な構成の一例を示す説明図である。 ラージスケールMIMOのビームフォーミングの例を説明するための第1の説明図である。 ラージスケールMIMOのビームフォーミングの例を説明するための第2の説明図である。 同実施形態に係る基地局の構成の一例を示すブロック図である。 重みセットにあらかじめ関連付けられた無線リソースの第1の例を説明するための説明図である。 重みセットにあらかじめ関連付けられた無線リソースの第2の例を説明するための説明図である。 重みセットにあらかじめ関連付けられた無線リソースの第3の例を説明するための説明図である。 重みセットにあらかじめ関連付けられた無線リソースの第4の例を説明するための説明図である。 測定用のリファレンス信号への重み係数の乗算を説明するための説明図である。 同実施形態に係る端末装置の構成の一例を示すブロック図である。 同実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。 重みセットにあらかじめ関連付けられた無線リソースと隣接基地局により使用される無線リソースとの関係の第1の例を説明するための説明図である。 重みセットにあらかじめ関連付けられた無線リソースと隣接基地局により使用される無線リソースとの関係の第2の例を説明するための説明図である。 重みセットにあらかじめ関連付けられた無線リソースと隣接基地局により使用される無線リソースとの関係の第3の例を説明するための説明図である。 復調用のリファレンス信号及び重み対応識別情報の送信の例を説明するための説明図である。 同実施形態の第2の変形例に係る処理の概略的な流れの一例を示すシーケンス図である。 指向性アンテナに含まれる複数のアンテナ素子のサブセットを説明するための説明図である。 第3の変形例に係る、重みセットにあらかじめ関連付けられた無線リソースの第1の例を説明するための説明図である。 同実施形態の第3の変形例に係る処理の概略的な流れの第1の例を示すシーケンス図である。 同実施形態の第3の変形例に係る処理の概略的な流れの第2の例を示すシーケンス図である。 同実施形態の第3の変形例に係る処理の概略的な流れの第3の例を示すシーケンス図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて端末装置200A、200B及び200Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、端末装置200A、200B及び200Cを特に区別する必要が無い場合には、単に端末装置200と称する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.通信システムの概略的な構成
 3.各装置の構成
  3.1.基地局の構成
  3.2.端末装置の構成
 4.処理の流れ
 5.変形例
  5.1.第1の変形例
  5.2.第2の変形例
  5.3.第3の変形例
 6.応用例
  6.1.基地局に関する応用例
  6.2.端末装置に関する応用例
 7.まとめ
 <<1.はじめに>>
 まず、図1及び図2を参照して、ビームフォーミング、測定(measurements)、及びセルの選択を説明する。
 (ビームフォーミング)
 (a)ラージスケールMIMOの必要性
 現在、3GPPでは、爆発的に増加するトラフィックを収容するために、セルラーシステムの容量を向上するための様々な技術が検討されている。将来、現在の1000倍程度の容量が必要とも言われている。MU-MIMO及びCoMPなどの技術では、セルラーシステムの容量は数倍程度しか増加しないと考えられる。そのため、画期的な手法が求められている。
 3GPPのリリース10では、eNodeBが8本のアンテナを搭載することが規格化されている。よって、当該アンテナによれば、SU-MIMO(Single-User Multi-Input Multiple-Input Multiple-Output)の場合に8レイヤのMIMOを実現することができる。8レイヤのMIMOとは、独立な8つのストリームを空間的に多重する技術である。また、4ユーザに2レイヤのMU-MIMOを実現することもできる。
 UE(User Equipment)ではアンテナの配置のためのスペースが小さいこと、及びUEの処理能力には限界があることに起因して、UEのアンテナのアンテナ素子を増やすことは難しい。しかし、近年のアンテナ実装技術の進歩により、100個程度のアンテナ素子を含む指向性アンテナをeNodeBに配置することは不可能ではなくなってきている。
 例えば、セルラーシステムの容量を大幅に増加させるための手法として、多数のアンテナ素子(例えば、100個程度のアンテナ素子)を含む指向性アンテナを使用して基地局がビームフォーミングを行うことが考えられる。このような技術は、ラージスケール(Large-Scale)MIMO又はマッシブ(Massive)MIMOと呼ばれる技術の一形態である。このようなビームフォーミングによれば、ビームの半値幅は狭くなる。即ち、鋭いビームが形成される。また、上記多数のアンテナ素子を平面上に配置することにより、所望の3次元方向へのビームを形成することも可能になる。例えば、基地局よりも高い位置(例えば、高層ビルの上層階)に向けたビームを形成することにより、当該位置に存在する端末装置への信号を送信することが、提案されている。
 典型的なビームフォーミングでは、水平方向でビームの方向を変えることが可能である。そのため、当該典型的なビームフォーミングは、2次元ビームフォーミングとも言える。一方、ラージスケールMIMO(又はマッシブMIMO)のビームフォーミングでは、水平方向に加えて垂直方向にもビームの方向を変えることが可能である。そのため、ラージスケールMIMOのビームフォーミングは、3次元ビームフォーミングとも言える。
 なお、アンテナ本数が増えるので、MU-MIMOでのユーザ数を増やすことが可能になる。このような技術は、ラージスケールMIMO又はマッシブMIMOと呼ばれる技術の別の形態である。なお、UEのアンテナ数が2本である場合には、1つのUEについての空間的に独立したストリームの数は2本であるので、1つのUEについてのストリーム数を増やすよりも、MU-MIMOのユーザ数を増やす方が合理的である。
 (b)重みセット
 ビームフォーミング用の重みセット(即ち、複数のアンテナ素子のための重み係数のセット)は、複素数として表される。以下、図1を参照して、とりわけラージスケールMIMOのビームフォーミング用の重みセットの例を説明する。
 図1は、ラージスケールMIMOのビームフォーミング用の重みセットを説明するための説明図である。図1を参照すると、格子状に配置されたアンテナ素子が示されている。また、アンテナ素子が配置された平面上の直行する2つの軸x、y、及び、当該平面に直行する1つの軸zも示されている。ここで、形成すべきビームの方向は、例えば、角度phi(ギリシャ文字)及び角度theta(ギリシャ文字)で表される。角度phi(ギリシャ文字)は、ビーム方向のうちのxy平面の成分とx軸とのなす角度である。また、角度theta(ギリシャ文字)は、ビーム方向とz軸とのなす角度である。この場合に、例えば、x軸方向においてm番目に配置され、y軸方向においてn番目に配置されるアンテナ素子の重み係数Vm,nは、以下のように表され得る。
Figure JPOXMLDOC01-appb-M000001
 fは周波数であり、cは光速である。また、jは複素数における虚数単位である。また、dは、x軸方向におけるアンテナ素子の間隔であり、dは、y軸方向におけるアンテナ素子間の間隔である。なお、アンテナ素子の座標は、以下のように表される。
Figure JPOXMLDOC01-appb-M000002
 なお、典型的なビームフォーミング(2次元ビームフォーミング)用の重みセットは、所望の水平方向へのビームを形成するための重みセットと、アンテナ間の移送の調整のための重みセットとに分解され得る。そのため、ラージスケールMIMOのビームフォーミング用の重みセットは、所望の垂直方向へのビームを形成するための第1の重みセットと、所望の水平方向へのビームを形成するための第2の重みセットと、アンテナ間の移送の調整のための第3の重みセットとに分解され得る。
 (c)ラージスケールMIMOのビームフォーミングによる環境の変化
 ラージスケールMIMOのビームフォーミングが行われる場合には、利得は10dB以上に達する。上記ビームフォーミングを採用するセルラーシステムでは、従来のセルラーシステムと比べて、電波環境の変化が激しくなり得る。
 (d)ラージスケールMIMOのビームフォーミングが行われるケース
 例えば、都市部の基地局が高層ビルに向けたビームを形成することが考えられる。また、郊外であっても、スモールセルの基地局が当該基地局の周辺のエリアに向けたビームを形成することが考えられる。なお、郊外のマクロセルの基地局はラージスケールMIMOのビームフォーミングを行わない可能性が高い。
 (測定)
 (a)CRSについての測定
 LTE(Long Term Evolution)では、端末装置は、基地局により送信されるCRS(Cell-specific Reference Signal)についての測定を行う。具体的には、端末装置は、基地局により送信されるCRSの受信により、当該基地局と当該端末装置との間の伝搬路の品質の測定を行う。この測定は、「RRM(Radio Resource Management)測定」、又は単に「測定(measurements)」と呼ばれる。
 上記測定の結果は、端末装置のためのセルを選択するために使用される。具体的には、例えば、上記測定の結果は、RRC(Radio Resource Control)アイドル(RRC Idle)である端末装置によるセル選択(Cell Selection)/セル再選択(cell reselection)に使用される。また、例えば、上記測定の結果は、RRC接続(RRC Connected)である端末装置により基地局に報告され、当該基地局によるハンドオーバ決定(Handover Decision)に使用される。
 上述したように、上記測定は、CRSの受信により行われる。CRSは、無指向性の電波の伝送路の品質を測定するための信号であるので、ビームフォーミングなしで送信される。即ち、CRSは、ビームフォーミング用の重みセットを乗算されずに送信される。
 なお、DM-RS(Demodulation Reference Signal)又はUE固有リファレンス信号(UE specific Reference Signal)と呼ばれる復調用のリファレンス信号もある。当該復調用のリファレンス信号は、ビームフォーミング用の重みセットを乗算されるので、無指向性の電波の伝送路の品質を測定するのには望ましくない。また、CSI-RS(Channel State Information Reference Signal)と呼ばれるリファレンス信号もある。CSI-RSは、CRSと同様に、ビームフォーミングなしで送信される。しかし、CSI-RSの送信頻度が低いので、CSI-RSの受信による測定には長い時間がかかる。以下、図2を参照して、重み係数の乗算とリファレンス信号の挿入(又はマッピング)との関係を説明する。
 図2は、重み係数の乗算とリファレンス信号の挿入との関係を説明するための説明図である。図2を参照すると、各アンテナ素子91に対応する送信信号92は、乗算器94において重み係数93を複素乗算される。そして、重み係数93を複素乗算された送信信号92が、アンテナ素子91から送信される。また、DR-MS95は、乗算器94の前に挿入され、乗算器94において重み係数93が複素乗算される。そして、重み係数93が複素乗算されたDR-MS95が、アンテナ素子91から送信される。一方、CRS96(及びCSI-RS)は、乗算器94の後に挿入される。そして、CRS96(及びCSI-RS)は、重み係数93を乗算されることなく、アンテナ素子91から送信される。
 (b)RSRP及びRSRQ
 LTEでは、CRSについての測定は、RSRP(Reference Signal Received Power)及び/又はRSRQ(Reference Signal Received Quality)の測定である。換言すると、端末装置は、CRSについての測定の結果として、RSRP及び/又はRSRQを取得する。RSRQは、RSRPとRSSI(Received Signal Strength Indicator)から算出される。
 RSRPは、単一のリソースエレメントあたりのCRSの受信電力である。即ち、RSRPは、CRSの受信電力の平均値である。CRSの受信電力は、CRSのリソースエレメントにおける受信信号と既知信号であるCRSとの相関の検出により得られる。RSRPは、所望信号「S(Signal)」に対応する。
 RSSIは、OFDMA(Orthogonal Frequency Division Multiple Access)シンボルあたりの信号の総電力である。そのため、RSSIは、所望信号、干渉信号及び雑音を含む。即ち、RSSIは、「S(Signal)+I(Interference)+N(Noise)」に対応する。
 RSRQは、RSRP/(RSSI/N)である。Nは、RSSIの算出に用いられるリソースブロックの数である。当該リソースブロックは、周波数方向に並ぶリソースブロックである。したがって、RSRQは、リソースブロック1個あたりのRSSIでRSRPを割ることにより得られる値である。即ち、RSRQは、SINR(Signal-to-Interference-plus-Noise Ratio)に対応する。
 以上のように、CRSについての測定により、受信電力(即ち、RSRP)と、SINRのような受信品質(即ち、RSRQ)とが得られる。
 (c)平均化による効果
 RSRP及びRSRQを取得するためには、数ミリ秒から数十ミリ秒にわたって信号を受信し、受信電力の平均化を行う必要がある。1スロット又は1サブセットのみの平均化によりRSRP及びRPRQを取得すると、フェージングなどのチャネルの瞬間的な変動に影響されやすくなるからである。
 なお、上記平均化の手法は、端末装置ごとに実装されるのであり、規格において具体的に定められていない。
 (セルの選択)
 (a)セルの選択の例
 例えば、端末装置は、RRCアイドル(RRC Idle)である場合に、セル選択(Cell Selection)/セル再選択(cell reselection)を行う。即ち、端末装置は、通信を行うためのセル(例えば、ページングの受信のためのセル)を選択する。
 また、例えば、基地局は、ハンドオーバ決定(Handover Decision)を行う。即ち、基地局は、端末装置のためのターゲットセルを選択し、端末装置のためのサービングセルから上記ターゲットセルへのハンドオーバを決定する。
 また、例えば、基地局は、キャリアアグリゲーションのScell(Secondary Cell)の追加を行う。当該Scellは、SCC(Secondary Component Carrier)とも呼ばれる。
 なお、ここでの「セル」は、基地局の通信エリアを意味してもよく、又は基地局が使用する周波数帯域を意味してもよい。また、ここでの「セル」は、キャリアアグリゲーションのPcell(Primary Cell)又はScellであってもよい。上記Pcellは、PCC(Primary Component Carrier)とも呼ばれ、上記Scellは、SCC(Secondary Component Carrier)とも呼ばれる。
 (b)ビームフォーミングが行われる場合のセルの選択
 上述したように、ラージスケールMIMO又はマッシブMIMOと呼ばれる技術の一形態では、基地局は、多数のアンテナ素子(例えば、100個程度のアンテナ素子)を含む指向性アンテナを使用してビームフォーミングを行う。この場合に、基地局は、水平方向のみではなく垂直方向にもビームの方向を変えることができる。そのため、一例として、基地局は、基地局よりも高い位置(例えば、高層ビルの上層階)に向けたビームを形成することにより、高い位置でのスループットを向上させることができる。別の例として、小型の基地局は、近傍のエリアへのビームを形成することにより、隣接基地局との間の干渉を減らすことができる。
 ここで、ラージスケールMIMOのビームフォーミングによる信号の送受信が主流になった場合に、CRSについての測定の結果に基づいてセルの選択が行われてよいのかという疑問が生じる。
 具体的には、CRSについての測定から分かるのは、あくまで、無指向性の電波の伝送路の品質である。しかし、無指向性の電波の伝送路は、ラージスケールMIMOのビームフォーミングにより形成される鋭いビームの伝送路とは全く異なる。そのため、当該ビームフォーミングによる信号の送受信が前提である場合には、CRSについての測定の結果に基づくセルの選択では、適切なセルが選択されない可能性がある。
 一例として、CRSの測定の結果に基づいて選択されたセルで端末装置が信号を送受信すると、隣接基地局からの鋭いビームにより大きい干渉が発生してしまう可能性がある。別の例として、あるセルについてのCRSの測定の結果が、別のセルについてのCRSの測定の結果よりも良好であったとしても、ビームフォーミングが行われる場合には、上記別のセルでの通信品質の方が上記あるセルでの通信品質よりも良好である可能性もある。
 以上のように、ビームフォーミングが行われる場合に端末装置のために適切なセルが選択されない可能性がある。
 (c)CRSについての測定が望ましくないケース
 上述したように、例えば、ラージスケールMIMOのビームフォーミングは都市部の基地局又はスモールセルの基地局により行われると考えられる。そのため、これらの基地局のセルの選択がCRSについての測定に基づいて行われることは望ましくない。
 <<2.通信システムの概略的な構成>>
 続いて、図3~図5を参照して、本開示の実施形態に係る通信システム1の概略的な構成を説明する。図3は、本開示の実施形態に係る通信システム1の概略的な構成の一例を示す説明図である。図3を参照すると、通信システム1は、基地局100及び端末装置200を含む。通信システム1は、例えば、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである。
 基地局100は、端末装置200との無線通信を行う。例えば、基地局100は、基地局100の通信エリア内に位置する端末装置200との無線通信を行う。換言すると、端末装置200は、基地局100の通信エリア内に位置する場合に、基地局100との無線通信を行う。
 とりわけ本開示の実施形態では、基地局100は、ビームフォーミングを行う。例えば、当該ビームフォーミングは、ラージスケールMIMOのビームフォーミングである。当該ビームフォーミングは、マッシブMIMOのビームフォーミング、又は3次元ビームフォーミングとも呼ばれ得る。
 具体的には、例えば、基地局100は、ラージスケールMIMOに使用可能な指向性アンテナを備える。また、基地局100は、当該指向性アンテナのための重みセットを送信信号に乗算することにより、ラージスケールMIMOのビームフォーミングを行う。例えば、当該重みセットは端末装置200ごとに決定される。その結果、端末装置200に向けたビームが形成される。以下、図4及び図5を参照して、ラージスケールMIMOのビームフォーミングの例を説明する。
 図4は、ラージスケールMIMOのビームフォーミングの例を説明するための第1の説明図である。図4を参照すると、ラージスケールMIMOに使用可能な指向性アンテナ101が示されている。指向性アンテナ101は、所望の3次元方向への鋭いビームを形成することができる。例えば、指向性アンテナ101によりビーム21A及びビーム21Bが形成される。
 図5は、ラージスケールMIMOのビームフォーミングの例を説明するための第2の説明図である。図5を参照すると、図4を参照して説明したビーム21A、21Bが示されている。例えば、ビーム21Aはエリア23Aに到達し、ビーム21Bはエリア23Bに到達する。そのため、エリア23A内に位置する端末装置200Aは、ビーム21Aとして送信される信号を受信することができる。また、エリア23B内に位置する端末装置200Bは、ビーム21Bとして送信される信号を受信することができる。基地局100は、端末装置200A宛の信号をビーム21Aとして送信し、端末装置200B宛の信号をビーム21Bとして送信する。
 なお、基地局100は、例えば、ビームフォーミングを行わずに信号を送信することができる。一例として、基地局100は、無指向性アンテナを備え、無指向性の電波として信号を送信する。別の例として、基地局100は、セクタアンテナを備え、セクタビームとして信号を送信してもよい。
 <<3.各装置の構成>>
 続いて、図6~図12を参照して、本開示の実施形態に係る基地局100及び端末装置200の構成を説明する。
 <3.1.基地局の構成>
 まず、図6~図11を参照して、本開示の実施形態に係る基地局100の構成の一例を説明する。図6は、本開示の実施形態に係る基地局100の構成の一例を示すブロック図である。図6を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
 (アンテナ部110)
 アンテナ部110は、無線通信部120により出力された信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 とりわけ本開示の実施形態では、アンテナ部110は、指向性アンテナを含む。例えば、当該指向性アンテナは、ラージスケールMIMOに使用可能な指向性アンテナである。
 また、例えば、アンテナ部110は、無指向性アンテナをさらに含む。なお、アンテナ部110は、無指向性アンテナの代わりに、又は無指向性アンテナとともに、セクタアンテナを含んでもよい。
 (無線通信部120)
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置200へのダウンリンク信号を送信し、端末装置200からのアップリンク信号を受信する。
 (ネットワーク通信部130)
 ネットワーク通信部130は、他のノードと通信する。例えば、ネットワーク通信部130は、他の基地局100及びコアネットワークノードと通信する。
 (記憶部140)
 記憶部140は、基地局100の動作のためのプログラム及びデータを記憶する。
 (処理部150)
 処理部150は、基地局100の様々な機能を提供する。処理部150は、情報取得部151及び通信制御部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
 (情報取得部151)
 情報取得部151は、ビームフォーミング用の複数の重みセットを取得する。
 (a)重みセット
 例えば、上記ビームフォーミングは、ラージスケールMIMOのビームフォーミングである。また、上記複数の重みセットは、ラージスケールMIMOのビームフォーミング用の重み接セットである。なお、当該ビームフォーミングは、マッシブMIMOのビームフォーミング、又は3次元ビームフォーミングと呼ばれてもよい。
 例えば、上記複数の重みセットの各々は、基地局100が備える指向性アンテナに含まれるアンテナ素子ごとの重み係数を含む。
 例えば、上記複数の重みセットは、上記指向性アンテナのための全ての重みセットのうちの一部の重みセットである。当該一部の重みセットは、基地局100又はコアネットワークノードにより自動的に決定されてもよく、又は、セルラーシステムのオペレータにより設定されてもよい。なお、上記複数の重みセットは、上記一部の重みセットではなく、上記全ての重みセットであってもよい。
 (b)具体的な処理
 例えば、上記複数の重みセットは、記憶部140に記憶される。情報取得部151は、記憶部140から、上記複数の重みセットを取得する。
 (通信制御部153)
 (1)測定用のリファレンス信号の送信の制御
 通信制御部153は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する。
 (a)リファレンス信号のマッピング
 (a-1)フレームフォーマット
 -データ領域の無線リソース
 例えば、上記重みセットにあらかじめ関連付けられた上記無線リソースは、制御領域及びデータ領域を含むサブフレームのうちの上記データ領域の無線リソースである。即ち、通信制御部153は、重みセットにあらかじめ関連付けられたデータ領域の無線リソースに、上記測定用のリファレンス信号をマッピングする。
 例えば、上記制御領域は、制御チャネルが配置される領域(時間)であり、上記データ領域は、データチャネルが配置される領域(時間)である。例えば、上記制御チャネルは、PDCCH(Physical Downlink Control Channel)を含み、上記データチャネルは、PDSCH(Physical Downlink Shared Channel)を含む。
 より具体的には、例えば、上記サブフレームは、N個のOFDMAシンボルを含む場合に、上記制御領域は、上記N個のOFDMAシンボルのうちの1番目からM番目のシンボルであり、上記データ領域は、上記N個のOFDMAシンボルのうちのM+1番目からN番目のシンボルである。一例として、Nは14であり、Mは3である。
 さらに、例えば、上記重みセットにあらかじめ関連付けられた上記無線リソースは、上記データ領域のリソースエレメントのうちの、CRSのためのリソースエレメント以外のリソースエレメントである。以下、図7を参照して、重みセットにあらかじめ関連付けられた無線リソースの第1の例を説明する。
 図7は、重みセットにあらかじめ関連付けられた無線リソースの第1の例を説明するための説明図である。図7を参照すると、サブフレーム30内で時間方向に並ぶ2つのリソースブロックが示されている。この例では、サブフレーム30は14個のOFDMAシンボルを含む。また、制御領域31は、1番目~3番目のOFDMAシンボルを含み、データ領域33は、4番目~14番目のOFDMAシンボルを含む。例えば、データ領域33のリソースエレメントが、重みセットV(i)(i=0~3)に関連付けられている。そして、通信制御部153は、当該リソースエレメントに測定用のリファレンス信号をマッピングする。
 このようにデータ領域の無線リソースに上記測定用のリファレンス信号をマッピングすることにより、制御領域は変更されない。そのため、例えば、本実施形態の技術が適用されない装置(レガシー装置)が、制御チャネル(例えば、PDCCH)で送信される制御情報を取得することができる。また、CRSのリソースエレメント以外のリソースエレメントに上記測定用のリファレンス信号をマッピングすることにより、例えば、本実施形態の技術が適用されない装置(レガシー装置)がCRSについての測定を適切に行うことが可能になる。このように、後方互換性(Backward Compatibility)が担保される。
  --MBSFNサブフレームの無線リソース
 例えば、上記重みセットにあらかじめ関連付けられた上記無線リソースは、特定のサブフレームの無線リソースである。さらに、当該特別のサブフレームは、MBSFN(MBMS(Multimedia Broadcast Multicast Services) over a Single Frequency Network)サブフレームであってもよい。以下、図8を参照して、重みセットにあらかじめ関連付けられた無線リソースの第2の例及び第3の例を説明する。
 図8は、重みセットにあらかじめ関連付けられた無線リソースの第2の例を説明するための説明図である。図8を参照すると、サブフレーム30内で時間方向に並ぶ2つのリソースブロックが示されている。この例では、サブフレーム30は、MBSFNサブフレームであり、14個のOFDMAシンボルを含む。また、制御領域31は、1番目~3番目のOFDMAシンボルを含み、データ領域33は、4番目~14番目のOFDMAシンボルを含む。この例では、サブフレーム30がMBSFNサブフレームであるので、データ領域33ではCRSが送信されない。例えば、データ領域33のリソースエレメントが、重みセットV(i)(i=0~19)に関連付けられる。そして、通信制御部153は、当該リソースエレメントに測定用のリファレンス信号をマッピングする。
 図9は、重みセットにあらかじめ関連付けられた無線リソースの第3の例を説明するための説明図である。図9を参照すると、この例では、データ領域33のリソースエレメントが、重みセットV(i)(i=0~11)に関連付けられる。そして、通信制御部153は、当該リソースエレメントに測定用のリファレンス信号をマッピングする。
 このようにMBSFNサブフレームを使用することにより、例えば、後方互換性を担保しつつ、データ領域のより多くの無線リソースに上記測定用のリファレンス信号をマッピングすることが可能になる。
 -制御領域の無線リソース
 上述したように、例えば、上記複数の重みセットの各々には、データ領域の無線リソースが関連付けられている。しかし、本実施形態は係る例に限定されない。上記複数の重みセットのうちの少なくとも1つの重みセットに、制御領域及びデータ領域(又は制御領域のみ)の無線リソースが関連付けられていてもよい。以下、図9を参照して、重みセットにあらかじめ関連付けられた無線リソースの第4の例を説明する。
 図10は、重みセットにあらかじめ関連付けられた無線リソースの第4の例を説明するための説明図である。図10を参照すると、サブフレーム30内で時間方向に並ぶ2つのリソースブロックが示されている。この例では、サブフレーム全体にわたるリソースエレメントが重みセットV(i)(i=0~11)に関連付けられる。そして、通信制御部153は、当該リソースエレメントに測定用のリファレンス信号をマッピングする。
 (a-2)対象のサブフレーム
 例えば、上記重みセットにあらかじめ関連付けられた上記無線リソースは、特定のサブフレームの無線リソースである。即ち、通信制御部153は、特定のサブフレームの無線リソースのうちの、重みセットにあらかじめ関連付けられた無線リソースに、上記測定用のリファレンス信号をマッピングする。
 例えば、上記特定のサブフレームは、無線フレーム(Radio Frame)の中の10個のサブフレームのうちの1つ以上のサブフレームである。上記特定のサブフレームは、サブフレーム番号が奇数であるサブフレームであってもよく、あるいは、サブフレーム番号が偶数であるサブフレームであってもよい。当然ながら、上記特定のサブフレームは係る例に限られない。
 これにより、例えば、上記測定用のリファレンス信号によるオーバーヘッドを抑えることが可能になる。
 例えば、上記特定のサブフレームは、基地局ごとに、基地局のグループごとに、又はセルラーシステムごとに、設定される。この場合に、通信制御部153は、上記特定のサブフレームを端末装置200に通知する。これにより、例えば、必要に応じた設定が可能になる。なお、上記特定のサブフレームは、あらかじめ定義されたサブフレームであってもよい。これにより、例えば、上記特定のサブフレームの通知に起因するオーバーヘッドがなくなり得る。
 上述したように、当該特別のサブフレームは、MBSFNサブフレームであってもよい。
 以上のように、例えば、特定のサブフレームの無線リソースに、上記測定用のリファレンス信号がマッピングされる。しかしながら、本実施形態は係る例に限定されない。一例として、上記重みセットにあらかじめ関連付けられた上記無線リソースは、各サブフレームの無線リソースであってもよい。別の例として、重みセットにあらかじめ関連付けられた無線リソースが含まれるサブフレームが、上記複数の重みセット間で異なっていてもよい。
 (a-3)端末装置による無線リソースの知得
 -無線リソースの通知
 例えば、通信制御部153は、上記複数の重みセットの各々に関連付けられた無線リソースを端末装置200に通知する。
  --通知の手法
 例えば、通信制御部153は、基地局100の通信エリア内に位置する端末装置200に向けて上記無線リソースを報知する。具体的には、例えば、通信制御部153は、システム情報(System Information)の中で上記無線リソースを報知する。当該システム情報は、例えば、いずれかのSIB(System Information Block)である。
 なお、通信制御部153は、上記無線リソースを端末装置200に個別に通知してもよい。具体的には、通信制御部153は、シグナリングにより、上記無線リソースを端末装置200に通知してもよい。当該シグナリングは、RRCシグナリングであってもよい。
  --通知情報
 例えば、通信制御部153は、上記複数の重みセットの各々に関連付けられた上記無線リソースを特定するための情報(以下、「無線リソース情報」と呼ぶ)を端末装置200に通知する。
 上述したように、例えば、上記複数の重みセットの各々に関連付けられた上記無線リソースは、特定のサブフレームの無線リソースである。この場合に、上記無線リソース情報は、例えば、上記特定のサブフレームを示す情報を含む。
 また、例えば、上記無線リソース情報は、サブフレームのリソースブロックのうちの、上記複数の重みセットの各々に関連付けられた無線リソースを含むリソースブロックを示す情報を含む。上記複数の重みセットに関連付けられる上記無線リソースが、同一のリソースブロックに含まれる場合には、上記無線リソース情報は、上記複数の重みセットに共通のリソースブロック(即ち、上記同一のリソースブロック)を示す情報を含む。一方、上記複数の重みセットに関連付けられる上記無線リソースが、必ずしも同一のリソースブロックに含まれない場合には、上記無線リソース情報は、上記複数の重みセットの各々について、重みセットに関連付けられた無線リソースを含むリソースブロックを示す情報を含む。
 また、例えば、上記無線リソース情報は、上記複数の重みセットの各々に関連付けられたリソースエレメントを示す情報を含む。具体例として、図7を再び参照すると、上記無線リソース情報は、重みセットV(i)(i=0~3)の各々について、2つのリソースブロックの中の、重みセットV(i)に関連付けられているリソースエレメントを示す情報を含む。
 また、例えば、上記無線リソース情報は、上記複数の重みセットの各々に関連付けられた上記無線リソースに対応する識別情報を含む。当該識別情報は、重みセットに対応する識別情報とも言える。一例として、上記識別情報は、上記無線リソースを識別するためのリソース識別情報(例えば、無線リソースのインデックス)である。別の例として、上記識別情報は、当該無線リソースが関連付けられた重みセットを識別するための重み識別情報(例えば、重みセットのコードブックインデックス)であってもよい。このような識別情報により、後述するように、端末装置200は、測定報告(measurement reporting)の際に、当該測定報告に対応する無線リソース又は重みセットを基地局100に通知することが可能になる。
 以上のように、例えば、通信制御部153は、上記複数の重みセットの各々に関連付けられた無線リソースを端末装置200に通知する。これにより、例えば、端末装置200は、上記測定用のリファレンス信号についての測定を行うことが可能になる。また、重みセットに関連付けられる無線リソースが柔軟に変更され得る。
 -あらかじめ定められた無線リソース
 なお、上記複数の重みセットの各々に関連付けられた無線リソースは、あらかじめ定義された無線リソースであってもよい。例えば、上記複数の重みセットの各々に関連付けられた無線リソースは、CRSと同様に、セルラーシステムの規格においてあらかじめ定義された無線リソースであってもよい。また、上記複数の重みセットの各々に関連付けられた無線リソースを識別するための情報も、あらかじめ定義されてもよい。このような場合に、当該無線リソースは、基地局100により端末装置200に通知されなくてもよい。これにより、例えば、通知に起因するオーバーヘッドがなくなり得る。
 なお、基地局100又はコアネットワークノードは、動的に(dynamically)、又は準静的に(semi-statically)、1つのあらかじめ定義された無線リソースをいずれか1つの重みセットに関連付け得る。即ち、1つのあらかじめ定義された無線リソースが関連付けられた1つの重みセットは、動的に、又は準静的に、変更され得る。
 (a-4)測定用のリファレンス信号
 -セルに固有の信号
 例えば、上記測定用のリファレンス信号は、セルに固有の信号である。
 一例として、上記測定用のリファレンス信号は、CRSのシーケンスと同一のシーケンスを有する信号である。あるいは、上記測定用のリファレンス信号は、CRSに類似する、セルに固有の別の信号であってもよい。
 これにより、例えば、セルの選択のための測定を行うことが可能になる。
 -測定
 例えば、上記測定は、RRM測定(RRM measurements)であり、受信電力又は受信品質の測定である。より具体的には、例えば、上記測定は、RSRP又はRSRQの測定である。
 (b)重み係数の乗算
 上述したように、通信制御部153は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースにマッピングされた測定用のリファレンス信号に、当該重みセットを乗算する。
 重みセットは、複数のアンテナ素子のための重み係数のセットであり、通信制御部153は、アンテナ素子ごとに、アンテナ素子に対応する重み係数を上記測定用のリファレンス信号に乗算する。以下、この点について図11を参照して具体例を説明する。
 図11は、測定用のリファレンス信号への重み係数の乗算を説明するための説明図である。図11を参照すると、各アンテナ素子71に対応する送信信号73は、乗算器77において重み係数75を複素乗算される。そして、重み係数75を複素乗算された送信信号73が、アンテナ素子71から送信される。また、測定用のリファレンス信号79は、乗算器77の前に挿入され(即ち、無線リソースにマッピングされ)、乗算器77において重み係数75が複素乗算される。そして、重み係数75が複素乗算された測定用のリファレンス信号79は、アンテナ素子71から送信される。
 具体例として、図7を再び参照すると、重みセットV(i)(i=0~3)に関連付けられたリソースエレメントにマッピングされた測定用のリファレンス信号は、重みセットV(i)を乗算される。また、図8を再び参照すると、重みセットV(i)(i=0~19)に関連付けられたリソースエレメントにマッピングされた測定用のリファレンス信号は、重みセットV(i)を乗算される。
 以上のように、通信制御部153は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する。これにより、例えば、ビームフォーミングが行われる場合に端末装置200のために適切なセルを選択することが可能になる。
 より具体的には、例えば、端末装置200は、無指向性の電波として送信されるCRSではなく、ビームフォーミング用の重みセットを乗算された測定用のリファレンス信号についての測定を行うことが可能になる。即ち、端末装置200は、無指向性の電波の伝送路の品質ではなく、指向性ビームの伝送路の品質を測定することができる。そのため、基地局100又は端末装置200は、例えば、指向性ビームの伝送路が良好であるセルを選択することが可能になる。
 (c)その他
 (c-1)CRS
 例えば、基地局100は、上記測定用のリファレンス信号のみではなく、CRSも送信する。即ち、通信制御部153は、CRS用の無線リソースにCRSをマッピングする。当該CRSは、重みセットを乗算されない。これにより、例えば、本実施形態の技術が適用されない装置(レガシー装置)が測定(measurements)を行うことが可能になる。即ち、後方互換性(Backward Compatibility)が担保される。
 (2)セルの選択
 例えば、通信制御部153は、端末装置200により行われる測定報告に基づいて、端末装置200のためのセルを選択する。即ち、通信制御部153は、端末装置200による測定報告の中で提供される測定報告情報に基づいて、端末装置200のためのセルを選択する。
 (a)セル
 例えば、基地局100は、キャリアアグリゲーションをサポートする。この場合に、上記セルは、キャリアアグリゲーションのPcell(即ち、PCC)又はScell(即ち、SCC)である。
 なお、基地局100は、キャリアアグリゲーションをサポートしなくてもよく、この場合に、上記セルは、基地局100の通信エリアを意味してもよく、又は基地局100が使用する周波数帯域を意味してもよい。
 (b)ハンドオーバ決定
 例えば、通信制御部153は、端末装置200のハンドオーバを決定する。即ち、通信制御部153は、端末装置200についてのハンドオーバ決定(Handover Decision)を行う。通信制御部153は、上記ハンドオーバ決定の際に、端末装置200のためのターゲットセルを選択する。
 より具体的には、例えば、通信制御部153は、端末装置200により行われる測定報告に基づいて、端末装置200のためのターゲットセルを選択し、当該ターゲットセルへのハンドオーバを決定する。後述するように、当該測定報告は、上記測定用のリファレンス信号についての測定の結果に基づいて行われる報告である。
 例えば、基地局100は、キャリアアグリゲーションをサポートし、上記ハンドオーバは、キャリアアグリゲーションのPcell(即ち、PCC)のハンドオーバである。また、上記ターゲットセルは、新たなPcell(即ち、PCC)である。
 なお、基地局100は、キャリアアグリゲーションをサポートせず、上記ハンドオーバは、基地局間のハンドオーバ、又は周波数間ハンドオーバであってもよい。
 (b)Scellの追加
 例えば、通信制御部153は、端末装置200のためのScell(即ち、SCC)の追加を行う。通信制御部153は、追加するScellを選択する。
 より具体的には、例えば、通信制御部153は、端末装置200により行われる測定報告に基づいて、端末装置200のためのScellを選択し、当該Scellのアクティベーションを行う。後述するように、当該測定報告は、上記測定用のリファレンス信号についての測定の結果に基づいて行われる報告である。
 <3.2.端末装置の構成>
 次に、図12を参照して、本開示の実施形態に係る端末装置200の構成の一例を説明する。図12は、本開示の実施形態に係る端末装置200の構成の一例を示すブロック図である。図12を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
 (アンテナ部210)
 アンテナ部210は、無線通信部220により出力された信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 (無線通信部220)
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局100からのダウンリンク信号を受信し、基地局100へのアップリンク信号を送信する。
 (記憶部230)
 記憶部230は、端末装置200の動作のためのプログラム及びデータを記憶する。
 (処理部240)
 処理部240は、端末装置200の様々な機能を提供する。処理部240は、測定部241、情報取得部243、報告部245、及び通信制御部247を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
 (測定部241)
 測定部241は、ビームフォーミング用の複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、上記重みセットを乗算された上記リファレンス信号についての測定を行う。
 上述したように、基地局100は、上記複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して、当該重みセットを乗算された上記測定用のリファレンス信号を送信する。そして、測定部241は、上記複数の重みセットに含まれる重みセットごとに、当該無線リソースを使用して送信される上記測定用のリファレンス信号についての測定を行う。
 (a)無線リソースの知得
 上述したように、例えば、基地局100は、上記複数の重みセットの各々に関連付けられた無線リソースを端末装置200に通知する。この場合に、測定部241は、基地局100が通知する当該無線リソースを使用して送信される測定用のリファレンス信号についての測定を行う。
 なお、上述したように、上記複数の重みセットの各々に関連付けられた無線リソースは、あらかじめ定義された無線リソースであってもよい。この場合に、当該無線リソースを特定するための情報が、記憶部230に記憶されてもよい。そして、測定部241は、記憶部230に記憶される当該情報から特定される当該無線リソース(即ち、上記あらかじめ定義された無線リソース)を使用して送信される測定用のリファレンス信号についての測定を行う。
 (b)測定
 例えば、上記測定は、受信電力又は受信品質の測定である。即ち、測定部241は、上記測定用のリファレンス信号の受信電力又は受信品質の測定を行う。
 より具体的には、例えば、上記測定は、RSRP又はRSRQの測定である。即ち、測定部241は、上記測定用のリファレンス信号のRSRP又はRSRQの測定を行う。
 なお、測定部241は、CRSについての測定と同様の手法で、上記測定用のリファレンス信号についての測定を行い得る。
 (c)具体例
 一例として、図7を再び参照すると、測定部241は、重みセットV(i)(i=0~3)ごとに、重みセットV(i)に関連付けられたリソースエレメントを使用して送信される上記測定用のリファレンス信号のRSRP及びRSRQの測定を行う。なお、図7には、2つのリソースブロックのみが示されているが、測定部241は、重みセットV(i)に関連付けられたリソースエレメントを含む全てのリソースブロックを対象として、上記測定を行う。その結果、測定部241は、重みセットV(i)(i=0~3)ごとの測定の結果として、重みセットV(i)(i=0~3)ごとのRSRP及びRSRQを生成する。
 (d)対象となる基地局100
 当然ながら、測定部241は、1つの基地局100について、上記測定用のリファレンス信号についての測定を行うのではなく、複数の基地局100の各々について、上記測定用のリファレンス信号についての測定を行う。これにより、例えば、端末装置200にとって望ましい基地局100(又は基地局100のセル)が選択され得る。
 また、例えば、基地局100は、基地局100が使用する1つの周波数帯域について、上記測定用のリファレンス信号についての測定を行うのではなく、基地局100が使用する複数の周波数帯域(例えば、複数のCC)の各々について、上記測定用のリファレンス信号についての測定を行う。これにより、例えば、端末装置200にとって望ましい周波数帯域(例えば、PCC又はSCC)が選択され得る。
 (情報取得部243)
 情報取得部243は、上記複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される上記測定用のリファレンス信号であって、上記重みセットを乗算された上記リファレンス信号についての測定の結果を取得する。
 上述したように、例えば、測定部241は、上記複数の重みセットに含まれる重みセットごとに、上記測定を行う。その結果、測定部241は、上記複数の重みセットに含まれる重みセットごとに、上記測定の結果を生成する。そして、情報取得部243は、生成される当該測定の当該結果を取得する。
 (報告部245)
 報告部245は、上記測定の上記結果に基づいて、基地局100への測定報告を行う。
 (a)イベントトリガ報告(event-triggered reporting)
 例えば、報告部245は、上記測定の上記結果に関するイベントの発生に応じて、基地局100への測定報告を行う。
 -イベント
 上記イベントは、例えば、3GPPにおいて定義されるイベントA1~A6及びイベントB1~B2のうちの1つ以上のイベントである。あるいは、上記イベントは、3GPPにおいて定義されるイベントA1~A6及びイベントB1~B2のうちのいずれかにそれぞれ類似する1つ以上のイベントであってもよい。
 -測定報告
  --単位
 例えば、報告部245は、上記複数の重みセットに含まれる重みセットごとに、基地局100への測定報告を行う。
 具体的には、例えば、報告部245は、上記複数の重みセットに含まれる重みセットごとに、上記測定の上記結果に基づいてイベントが発生したかを判定する。そして、報告部245は、上記測定の上記結果に基づいて、イベントが発生したと判定する場合に、当該測定の当該結果についての測定報告を行う。
 これにより、例えば、いずれかのビームの伝送路の品質が良好である場合に、当該ビームが形成されるセルを選択することが可能になる。
  --基地局100に提供される情報
 例えば、報告部245は、測定報告情報を基地局100に提供することにより、基地局100への測定報告を行う。
 例えば、上記測定報告情報は、上記測定の上記結果を含む。より具体的には、例えば、上記測定の上結果は、RSRP及び/又はRSRQである。
 また、例えば、上記測定報告情報は、上記測定用のリファレンス信号が送信されたセルのセル識別情報(例えば、セルID)を含む。
 また、例えば、上記測定報告情報は、上記測定の対象となった無線リソース(即ち、上記測定用のリファレンス信号が送信された無線リソース)に対応する識別情報を含む。当該識別情報は、重みセットに対応する識別情報とも言える。一例として、上記識別情報は、上記測定の対象となった無線リソースを識別するためのリソース識別情報(例えば、無線リソースのインデックス)である。あるいは、上記識別情報は、上記測定の対象となった無線リソースが関連付けられた重みセットを識別するための重み識別情報(例えば、重みセットのコードブックインデックス)であってもよい。このような識別情報により、端末装置200は、測定報告に対応する無線リソース又は重みセットを基地局100に通知することが可能になる。
 また、例えば、上記測定報告情報は、測定報告が、重みセットを乗算された測定用のリファレンス信号についての測定の結果に基づくものであること、を示す情報を含む。
 (b)周期的な報告(periodic reporting)
 例えば、報告部245は、周期的に、基地局100への測定報告を行う。
 -周期
 一例として、報告部245は、基地局100により指定される周期で、基地局100への測定報告を行う。別の例として、報告部245は、あらかじめ定義された周期で、基地局100への測定報告を行ってもよい。
 -測定報告
  --重みセット全体についての測定報告
 第1の例として、報告部245は、上記複数の重みセット全体についての測定報告を行う。
 具体的には、例えば、報告部245は、上記複数の重みセットの各々についての測定の結果を含む測定報告情報を基地局100に提供することにより、上記測定報告を行う。なお、各重みセットに対応する測定の結果を識別するために、上記測定報告情報は、上記複数の重みセットの重みセットごとに、測定の結果と、当該測定の対象となった無線リソースに対応する識別情報を含む。上述したように、当該識別情報は、上記無線リソースを識別するためのリソース識別情報あってもよく、又は、上記無線リソースが関連付けられた重みセットを識別するための重み識別情報であってもよい。
  --重みセットごとの測定報告
 第2の例として、報告部245は、上記複数の重みセットに含まれる重みセットごとに、基地局100への測定報告を行ってもよい。
 具体的には、例えば、報告部245は、上記複数の重みセットに含まれる重みセットごとに、測定の結果を含む測定報告情報を基地局100に提供することにより、上記測定報告を行ってもよい。当該測定報告情報の具体的な内容の説明は、イベントトリガ報告に関連して説明した測定報告情報と同じである。よって、ここでは重複する記載を省略する。
 以上のように、報告部245は、上記測定の上記結果に基づいて、基地局100への測定報告を行う。これにより、例えば、ビームフォーミングが行われる場合に基地局100が端末装置200のために適切なセルを選択することが可能になる。
 (通信制御部247)
 通信制御部247は、上記測定の上記結果に基づいて、端末装置200のためのセルを選択する。
 例えば、通信制御部247は、端末装置200がアイドル状態である場合に、上記測定の上記結果に基づいて、セル選択(Cell Selection)/セル再選択(cell reselection)を行う。より具体的には、例えば、通信制御部247は、端末装置200がRRCアイドルである場合に、上記測定の上記結果に基づいて、端末装置200が通信を行うためのセル(例えば、ページングの受信のためのセル)を選択する。
 例えば、基地局100は、キャリアアグリゲーションをサポートする。この場合に、上記セルは、キャリアアグリゲーションのPcell(即ち、PCC)である。
 なお、基地局100は、キャリアアグリゲーションをサポートしなくてもよく、この場合に、上記セルは、基地局100の通信エリアを意味してもよく、又は基地局100が使用する周波数帯域を意味してもよい。
 <<4.処理の流れ>>
 続いて、図13を参照して、本開示の実施形態に係る処理の例を説明する。図13は、本開示の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。
 基地局100(通信制御部153)は、ビームフォーミング用の複数の重みセットの各々に関連付けられた無線リソースを端末装置200に通知する(S301)。例えば、基地局100は、上記複数の重みセットの各々に関連付けられた上記無線リソースを特定するための情報(即ち、無線リソース情報)を端末装置200に通知する。端末装置200は、当該無線リソース情報を取得する。
 そして、基地局100は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースを使用して、当該重みセットを乗算された測定用のリファレンス信号(RS)を送信する(S303)。例えば、基地局100(情報取得部151)は、上記複数の重みセットを取得する。そして、基地局100(通信制御部153)は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する。
 また、端末装置200(測定部241)は、上記複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号(上記重みセットを乗算された測定用のリファレンス信号)についての測定を行う(S305)。
 その後、端末装置200(情報取得部243)は、上記複数の重みセットに含まれる重みセットごとに、上記測定の上記結果を取得し、端末装置200(報告部245)は、上記測定の上記結果に基づいて、基地局100への測定報告を行う(S307)。例えば、端末装置200(報告部245)は、測定報告情報を基地局100に提供することにより、基地局100への測定報告を行う。
 <<5.変形例>>
 続いて、図14~図23を参照して、本実施形態の第1~第3の変形例を説明する。
 <5.1.第1の変形例>
 まず、図14~図16を参照して、本実施形態の第1の変形例を説明する。
 本実施形態の第1の変形例では、上記複数の重みセットの各々に関連付けられた無線リソースは、ビームフォーミング用の重みセットを乗算された測定用のリファレンス信号を送信するために基地局100の隣接基地局により使用される無線リソースとは異なる。
 これにより、例えば、端末装置200は上記測定用のリファレンス信号についての測定をより正確に行うことが可能になる。
 (基地局100:通信制御部153)
 (1)測定用のリファレンス信号の送信の制御
 上述したように、通信制御部153は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する。
 (a)リファレンス信号のマッピング
 本実施形態の第1の変形例では、上記重みセットにあらかじめ関連付けられた上記無線リソースは、ビームフォーミング用の重みセットを乗算された測定用のリファレンス信号を送信するために基地局100の隣接基地局により使用される無線リソースとは異なる。
 即ち、基地局100は、重みセットにあらかじめ関連付けられた無線リソースを使用して、当該重みセットが乗算された測定用のリファレンス信号を送信する。また、上記隣接基地局も、基地局100と同様に、重みセットにあらかじめ関連付けられた無線リソースを使用して、当該重みセットが乗算された測定用のリファレンス信号を送信する。とりわけ第1の変形例では、基地局100により使用される上記無線リソースは、上記隣接基地局により使用される上記無線リソースとは異なる。
 -同一のサブフレーム
 例えば、上記重みセットにあらかじめ関連付けられた上記無線リソースは、上記隣接基地局により使用される上記無線リソースと同じサブフレームに存在する。
 さらに、例えば、上記重みセットにあらかじめ関連付けられた上記無線リソースは、上記隣接基地局により使用される上記無線リソースと同じの帯域のリソースブロックに含まれる。以下、この点について、図14を参照して具体例を説明する。
 図14は、重みセットにあらかじめ関連付けられた無線リソースと隣接基地局により使用される無線リソースとの関係の第1の例を説明するための説明図である。図14を参照すると、サブフレーム30内で時間方向に並ぶ2つのリソースブロックが示されている。例えば、データ領域33のリソースエレメントが、セルi(i=0~3)のために確保される。例えば、基地局100は、セル0の基地局であり、通信制御部153は、セル0のために確保されたリソースエレメント(重みセットVにあらかじめ関連付けられたリソースエレメント)に、測定用のリファレンス信号をマッピングする。その結果、基地局100は、セル0のために確保されたリソースエレメントを使用して、重みセットVを乗算された測定用のリファレンス信号を送信する。また、セルi(i=1~3)の基地局は、例えば基地局100の隣接基地局であり、セルiの基地局は、セルiのために確保されたリソースエレメントを使用して、重みセットVを乗算された測定用のリファレンス信号を送信する。
 なお、上記重みセットにあらかじめ関連付けられた上記無線リソースは、上記隣接基地局により使用される上記無線リソースとは異なる帯域のリソースブロックに含まれてもよい。以下、この点について、図15を参照して具体例を説明する。
 図15は、重みセットにあらかじめ関連付けられた無線リソースと隣接基地局により使用される無線リソースとの関係の第2の例を説明するための説明図である。図15を参照すると、サブフレーム30のリソースブロックのペア40が示されている。ペア40は、周波数方向に並んでいる。また、各ペア40は、時間方向に並ぶ2つのリソースブロックを含む。例えば、基地局100は、セル0の基地局であり、通信制御部153は、リソースブロックのペア40A、40Eなどに含まれる無線リソースに、測定用のリファレンス信号をマッピングする。その結果、基地局100は、リソースブロックのペア40A、40Eなどに含まれる無線リソースを使用して、重みセットVを乗算された測定用のリファレンス信号を送信する。また、セル1~3の基地局は、例えば基地局100の隣接基地局である。そして、セル1の基地局は、リソースブロックのペア40B、40Fなどに含まれる無線リソースを使用して、重みセットVを乗算された測定用のリファレンス信号を送信する。また、セル2の基地局は、リソースブロックのペア40C、40Gなどに含まれる無線リソースを使用して、重みセットVを乗算された測定用のリファレンス信号を送信する。また、セル3の基地局は、リソースブロックのペア40D、40Hなどに含まれる無線リソースを使用して、重みセットVを乗算された測定用のリファレンス信号を送信する。
 図15に示されるように、同一の重みセットが乗算された測定のリファレンス信号は全ての周波数にわたって送信されなくてもよい。ビームフォーミングの効果は、周波数帯域間で特段の違いはないからである。これは、とりわけ周波数帯域が5GHz帯のような高い周波数帯域である場合には顕著である。
 例えば以上のように、上記重みセットにあらかじめ関連付けられた上記無線リソースは、上記隣接基地局により使用される上記無線リソースと同じサブフレームに存在する。これにより、例えば、重みセットを乗算された測定用のリファレンス信号によるオーバーヘッドの増加をより少ないサブフレーム内に限定することが可能になる。
 -異なるサブフレーム
 上記重みセットにあらかじめ関連付けられた上記無線リソースは、上記隣接基地局により使用される上記無線リソースとは異なるサブフレームに存在してもよい。以下、この点について、図16を参照して具体例を説明する。
 図16は、重みセットにあらかじめ関連付けられた無線リソースと隣接基地局により使用される無線リソースとの関係の第3の例を説明するための説明図である。図16を参照すると、10個のサブフレームを含む無線フレームが示されている。例えば、基地局100は、セル0の基地局であり、通信制御部153は、サブフレーム番号が0、5であるサブフレームの無線リソースに、測定用のリファレンス信号をマッピングする。その結果、基地局100は、サブフレーム番号が0、5であるサブフレームで、重みセットVを乗算された測定用のリファレンス信号を送信する。また、セル1~3の基地局は、例えば基地局100の隣接基地局である。セル1の基地局は、サブフレーム番号が1、6であるサブフレームで、重みセットVを乗算された測定用のリファレンス信号を送信する。また、セル2の基地局は、サブフレーム番号が2、7であるサブフレームで、重みセットVを乗算された測定用のリファレンス信号を送信する。また、セル3の基地局は、サブフレーム番号が3、8であるサブフレームで、重みセットVを乗算された測定用のリファレンス信号を送信する。
 これにより、例えば、重みセットを乗算された測定用のリファレンス信号によるオーバーヘッドの増加をサブフレーム間で分散させることが可能になる。
 -その他
 なお、図14~図15を参照して説明したような手法が、組み合せられてもよい。これにより、例えば、多数の測定用のリファレンス信号を送信することが可能になる。
 以上、本実施形態の第1の変形例を説明した。第1の変形例によれば、例えば、端末装置200は上記測定用のリファレンス信号についての測定をより正確に行うことが可能になる。より具体的には、例えば、2つ以上の基地局が、同一の無線リソースを使用して、ビームフォーミング用の重みセットを乗算された測定用のリファレンス信号を送信すると、ビーム方向によっては、大きい干渉が発生する可能性がある。とりわけ上記ビームフォーミングがラージスケールMIMOのビームフォーミングであれば、非常の大きい干渉が発生する可能性がある。その結果、端末装置は、上記測定用のリファレンス信号についての測定を正確に行えない可能性がある。そこで、ビームフォーミング用の重みセットを乗算された測定用のリファレンス信号の送信のために使用される無線リソースが、隣接する基地局間で異なっていれば、端末装置200は上記測定用のリファレンス信号についての測定をより正確に行い得る。
 <5.2.第2の変形例>
 次に、図17及び図18を参照して、本実施形態の第2の変形例を説明する。
 本実施形態の第2の変形例では、基地局100は、上記複数の重みセットのうちの選択された重みセットを復調用のリファレンス信号に乗算する。また、基地局100は、当該選択された重みセットに関する情報を端末装置200に通知する。
 また、本実施形態の第2の変形例では、端末装置200は、上記複数の重みセットのうちの選択された重みセットを乗算されたリファレンス信号についての測定を行う。当該選択された重みセットに関する情報は、基地局100が端末装置200に通知する情報である。また、当該リファレンス信号は、上記選択された重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、上記選択された重みセットを乗算された上記測定用のリファレンス信号と、上記選択された重みセットを乗算された復調用のリファレンス信号とを含む。
 これにより、例えば、端末装置200は、重みセットを乗算されたより多くのリファレンス信号を測定のために利用することが可能になる。その結果、測定の精度がより高くなり得る。あるいは、基地局100は、送信する測定用のリファレンス信号の数を減らし得る。即ち、測定用のリファレンス信号の送信に使用する無線リソースが減少し得る。
 (基地局100:通信制御部153)
 (c)その他
 (c-2)復調用のリファレンス信号
 本実施形態の第2の変形例では、通信制御部153は、上記複数の重みセットのうちの選択された重みセットを復調用のリファレンス信号に乗算し、上記選択された重みセットに対応する識別情報(以下、「重み対応識別情報」と呼ぶ)を端末装置200に通知する。
 -復調用の信号への選択された重みセットの乗算
 例えば、上記選択された重みセットは、ビームフォーミングにより端末装置へ信号を送信するために選択された重みセットである。また、上記復調用のリファレンス信号は、当該端末装置による復調のためのDM-RS(又はUE固有リファレンス信号)である。即ち、通信制御部153は、ビームフォーミングにより端末装置へ信号を送信するために重みセットを選択し、選択された重みセットをDM-RSに乗算する。
 なお、上記端末装置は、本実施形態に係る端末装置200であってもよく、又は、本実施形態の技術を適用されない端末装置(レガシー端末)であってもよい。
 -重み対応識別情報の通知
  --通知の手法
 例えば、通信制御部153は、ダウンリンク制御情報(Downlink Control Information:DCI)の中で、上記重み対応識別情報を端末装置200に通知する。
 具体的には、例えば、通信制御部153は、上記重み対応識別情報を含むDCIを生成する。そして、通信制御部153は、当該DCIの信号をPDCCHの無線リソースにマッピングする。この点について、図17を参照して具体例を説明する。
 図17は、復調用のリファレンス信号及び重み対応識別情報の送信の例を説明するための説明図である。図17を参照すると、サブフレーム30内で時間方向に並ぶ2つのリソースブロックが示されている。例えば、基地局100は、データ領域33のリソースエレメントを使用してDM-RSを送信する。また、基地局100は、制御領域31のPDCCHのリソースエレメントを使用して、上記重み対応識別情報を含むDCIを送信する。
 これにより、例えば、復調用のリファレンス信号の送信のたびに、上記重み対応識別情報を端末装置200に通知することが可能になる。
  --重み対応識別情報
 例えば、上記重み対応識別情報(即ち、上記選択された重みセットに対応する上記識別情報)は、上記選択された重みセットに関連付けられた無線リソースを識別するためのリソース識別情報(例えば、無線リソースのインデックス)である。あるいは、上記重み対応識別情報は、上記選択された重みセットを識別するための重み識別情報(例えば、重みセットのコードブックインデックス)であってもよい。
 これにより、例えば、端末装置200は、上記選択された重みセットを乗算される測定用のリファレンス信号が送信される無線リソースを知ることが可能になる。そのため、端末装置200は、上記選択された重みセットを乗算されるリファレンス信号についての測定のために、測定用のリファレンス信号及び復調用のリファレンス信号の両方を利用し得る。即ち、端末装置200は、重みセットを乗算されたより多くのリファレンス信号を測定のために利用し得る。その結果、測定の精度がより高くなり得る。あるいは、基地局100は、送信する測定用のリファレンス信号の数を減らし得る。即ち、測定用のリファレンス信号の送信に使用する無線リソースが減少し得る。
 (端末装置200:測定部241)
 本実施形態の第2の変形例では、測定部241は、上記複数の重みセットのうちの選択された重みセットを乗算されたリファレンス信号についての測定を行う。
 -選択された重みセット
 上述したように、例えば、上記選択された重みセットは、ビームフォーミングにより端末装置へ信号を送信するために選択された重みセットである。なお、当該端末装置は、端末装置200自身、他の端末装置200、又は、本実施形態の技術を適用されない端末装置(レガシー端末)であってもよい。
 上述したように、例えば、上記選択された重みセットに対応する識別情報(即ち、重み対応識別情報)は、基地局100が端末装置200に通知する情報である。当該重み対応識別情報は、上記選択された重みセットに関連付けられた無線リソースを識別するためのリソース識別情報である。あるいは、上記重み対応識別情報は、上記選択された重みセットを識別するための重み識別情報であってもよい。そのため、端末装置200(測定部241)は、上記選択された重みセットを乗算される測定用のリファレンス信号が送信される無線リソースを知ることができる。
 -リファレンス信号
 また、上記選択された重みセットを乗算された上記リファレンス信号は、上記選択された重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号(上記選択された重みセットを乗算された測定用のリファレンス信号)と、上記選択された重みセットを乗算された復調用のリファレンス信号とを含む。即ち、測定部241は、上記選択された重みセットを乗算された上記測定用のリファレンス信号及び復調用のリファレンス信号を含むリファレンス信号についての測定を行う。
 これにより、例えば、端末装置200は、重みセットを乗算されたより多くのリファレンス信号を測定のために利用することが可能になる。その結果、測定の精度がより高くなり得る。あるいは、基地局100は、送信する測定用のリファレンス信号の数を減らし得る。即ち、測定用のリファレンス信号の送信に使用する無線リソースが減少し得る。
 なお、上記選択された重みセットを乗算された上記リファレンス信号は、上記選択された重みセットを乗算された復調用のリファレンス信号のうちの、所定の条件を満たす復調用のリファレンス信号のみを含んでもよい。例えば、当該所定の条件は、上記選択された重みセットを乗算された復調用のリファレンス信号の送信に使用された無線リソースが、上記選択された重みセットを乗算された測定用のリファレンス信号の送信に使用された無線リソースの近傍に位置することであってもよい。
 (処理の流れ)
 図18は、本開示の実施形態の第2の変形例に係る処理の概略的な流れの一例を示すシーケンス図である。
 基地局100(通信制御部153)は、ビームフォーミング用の複数の重みセットの各々に関連付けられた無線リソースを端末装置200に通知する(S321)。例えば、基地局100は、上記複数の重みセットの各々に関連付けられた上記無線リソースを特定するための情報(即ち、無線リソース情報)を端末装置200に通知する。端末装置200は、当該無線リソース情報を取得する。
 そして、基地局100(通信制御部153)は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースを使用して、当該重みセットを乗算された測定用のリファレンス信号(RS)を送信する(S323)。
 また、基地局100(通信制御部153)は、例えばDCIの中で、上記複数の重みセットのうちの選択された重みセットに対応する識別情報(即ち、重み対応識別情報)を端末装置200に通知する。また、基地局100(通信制御部153)は、上記選択された重みセットを乗算された復調用のリファレンス信号を送信する(S325)。
 また、端末装置200(測定部241)は、上記複数の重みセットに含まれる重みセットごとに、上記重みセットを乗算されたリファレンス信号についての測定を行う(S327)。とりわけ、端末装置200(測定部241)は、上記複数の重みセットのうちの選択された重みセットを乗算されたリファレンス信号についての測定を行う。当該リファレンス信号は、上記選択された重みセットを乗算された測定用のリファレンス信号及び復調用のリファレンス信号を含む。
 その後、端末装置200(情報取得部243)は、上記複数の重みセットに含まれる重みセットごとに、上記測定の上記結果を取得し、端末装置200(報告部245)は、上記測定の上記結果に基づいて、基地局100への測定報告を行う(S329)。例えば、端末装置200(報告部245)は、測定報告情報を基地局100に提供することにより、基地局100への測定報告を行う。
 以上、本実施形態の第2の変形例を説明した。第2の変形例によれば、例えば、端末装置200は、重みセットを乗算されたより多くのリファレンス信号を測定のために利用することが可能になる。その結果、測定の精度がより高くなり得る。あるいは、基地局100は、送信する測定用のリファレンス信号の数を減らし得る。即ち、測定用のリファレンス信号の送信に使用する無線リソースが減少し得る。
 <5.3.第3の変形例>>
 次に、図19~図23を参照して、本実施形態の第3の変形例を説明する。
 本実施形態の第3の変形例では、ビームフォーミング用の上記複数の重みセットは、ラージスケールMIMOに使用可能な指向性アンテナに含まれる複数のアンテナ素子の1つ以上のサブセットのための重みセットである。
 これにより、例えば、測定用のリファレンス信号が乗算される重みセットの数を減らすことが可能になる。その結果、基地局100は、送信する測定用のリファレンス信号の数を減らし得る。即ち、測定用のリファレンス信号の送信に使用する無線リソースが減少し得る。
 (基地局100:情報取得部151)
 上述したように、情報取得部151は、ビームフォーミング用の複数の重みセットを取得する。
 (a)重みセット
 本実施形態の第4の変形例では、上記複数の重みセットは、ラージスケールMIMOに使用可能な指向性アンテナに含まれる複数のアンテナ素子の1つ以上のサブセットのための重みセットである。
 例えば、上記指向性アンテナに含まれる上記複数のアンテナ素子は、第1の方向及び第2の方向に並ぶ。また、上記1つ以上のサブセットは、上記複数のアンテナ素子のうちの上記第1の方向に並ぶアンテナ素子を含む第1のサブセットと、上記複数のアンテナ素子のうちの上記第2の方向に並ぶアンテナ素子を含む第2のサブセットとを含む。また、例えば、上記第1の方向及び上記第2の方向は、互いに直交する。以下、この点について図19を参照して具体例を説明する。
 図19は、指向性アンテナに含まれる複数のアンテナ素子のサブセットを説明するための説明図である。図19を参照すると、指向性アンテナ101が示されている。指向性アンテナ101は、複数のアンテナ素子103(100個のアンテナ素子)を含む。より具体的には、この例では、指向性アンテナ101において、第1の方向51に10個のアンテナ素子103が並び、第1の方向51に直交する第2の方向53に10個のアンテナ素子103が並ぶ。例えば、上記複数の重みセットは、第1の方向51に並ぶアンテナ素子103を含む第1のサブセット105のための重みセットと、第2の方向53に並ぶアンテナ素子103を含む第2のサブセット107のための重みセットとを含む。即ち、情報取得部151は、第1のサブセット105のための重みセットと第2のサブセット107のための重みセットとを含む複数の重みセットを取得する。
 一例として、上記第1の方向は略鉛直方向であり、上記第2の方向は略水平方向である。
 (基地局100:通信制御部153)
 (1)測定用のリファレンス信号の送信の制御
 上述したように、通信制御部153は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する。
 (a)リファレンス信号のマッピング
 図20を参照して、第3の変形例に係る、重みセットにあらかじめ関連付けられた無線リソースの例を説明する。図20は、第3の変形例に係る、重みセットにあらかじめ関連付けられた無線リソースの第1の例を説明するための説明図である。図20を参照すると、サブフレーム30内で時間方向に並ぶ2つのリソースブロックが示されている。例えば、データ領域33のリソースエレメントが、第1のサブセットのための重みセットV1(i)(i=0,1)に関連付けられている。また、データ領域33の別のリソースエレメントが、第2のサブセットのための重みセットV2(i)(i=0,1)に関連付けられている。そして、通信制御部153は、これらのリソースエレメントに測定用のリファレンス信号をマッピングする。
 (b)重み係数の乗算
 上述したように、通信制御部153は、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースにマッピングされた測定用のリファレンス信号に、当該重みセットを乗算する。
 具体例として、図20を再び参照すると、上記第1のサブセットのための重みセットV1(i)(i=0,1)に関連付けられたリソースエレメントにマッピングされた測定用のリファレンス信号は、重みセットV1(i)を乗算される。そして、重みセットV1(i)を乗算された上記測定用のリファレンス信号は、上記第1のサブセット(即ち、第1の方向に並ぶアンテナ素子)から送信される。また、上記第2のサブセットのための重みセットV2(i)(i=0,1)に関連付けられたリソースエレメントにマッピングされた測定用のリファレンス信号は、重みセットV2(i)を乗算される。そして、重みセットV2(i)を乗算された上記測定用のリファレンス信号は、上記第2のサブセット(即ち、第2の方向に並ぶアンテナ素子)から送信される。
 (端末装置200:測定部241)
 上述したように、測定部241は、上記複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号(上記重みセットを乗算されたリファレンス信号)についての測定を行う。
 (c)具体例
 一例として、図20を再び参照すると、測定部241は、上記第1のサブセットのための重みセットV1(i)(i=0,1)ごとに、重みセットV1(i)に関連付けられたリソースエレメントを使用して送信される上記測定用のリファレンス信号のRSRP及びRSRQの測定を行う。図20には、2つのリソースブロックのみが示されているが、測定部241は、重みセットV1(i)に関連付けられたリソースエレメントを含む全てのリソースブロックを対象として、上記測定を行う。その結果、測定部241は、重みセットV1(i)(i=0,1)ごとの測定の結果として、重みセットV1(i)(i=0,1)ごとのRSRP及びRSRQを生成する。また、測定部241は、上記第2のサブセットのための重みセットV2(i)(i=0,1)ごとに、重みセットV2(i)に関連付けられたリソースエレメントを使用して送信される上記測定用のリファレンス信号のRSRP及びRSRQの測定を行う。図20には、2つのリソースブロックのみが示されているが、測定部241は、重みセットV2(i)に関連付けられたリソースエレメントを含む全てのリソースブロックを対象として、上記測定を行う。その結果、測定部241は、重みセットV2(i)(i=0,1)ごとの測定の結果として、重みセットV2(i)(i=0,1)ごとのRSRP及びRSRQを生成する。
 (端末装置200:報告部245)
 第3の変形例では、報告部245は、上記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果と、上記第2のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果とに基づいて、基地局100への測定報告を行う。
 第3の変形例では、例えば、報告部245は、上記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果と、上記第2のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果とに基づいて、統合された測定の結果を生成する。そして、報告部245は、当該統合された測定の結果に基づいて、基地局100への測定報告を行う。
 具体的には、例えば、報告部245は、上記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果であるRSRP(dBm)と、上記第2のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果であるRSRP(dBm)とを加算することにより、統合された測定の結果である統合RSRPを生成する。そして、報告部245は、当該統合RSRPに基づいて、基地局100への測定報告を行う。なお、報告部245は、例えば、測定の結果がRSRQであるケースでも、測定の結果がRSRPである上記ケースと同様に、統合RSRQを生成することができる。
 これにより、例えば、上記指向性アンテナに含まれる上記複数のアンテナ素子から測定用のリファレンス信号が送信される場合と同様に、セルの選択が行われ得る。
 なお、端末装置200(報告部245)が、上記統合された測定の結果(例えば、統合RSRP)を生成する代わりに、基地局100が、上記統合された測定の結果を生成してもよい。即ち、基地局100(通信制御部153)が、上記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果と、上記第2のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果とに基づいて、統合された測定の結果を生成してもよい。この場合に、端末装置200(報告部245)は、上記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果と、上記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果とを、測定報告の中で、基地局100に提供してもよい。
 (一方のサブセットのみのケース)
 上述したように、例えば、上記複数の重みセットは、上記複数のアンテナ素子の1つ以上のサブセットのための重みセットである。また、当該1つ以上のサブセットは、上記第1の方向に並ぶアンテナ素子を含む上記第1のサブセットと、上記第2の方向に並ぶアンテナ素子を含む上記第2のサブセットとを含む。しかしながら、第3の変形例は係る例に限定されない。
 上記複数の重みセットは、上記第1の方向及び上記第2の方向の一方に並ぶアンテナ素子を含むサブセットであってもよい。即ち、上記複数の重みセットは、上記第1のサブセット及び上記第1のサブセットのうちの一方であってもよい。
 図20を再び参照すると、例えば、データ領域33のリソースエレメントが、第1のサブセットのための重みセットV1(i)(i=0,1)に関連付けられていてもよい。そして、通信制御部153は、当該リソースエレメントに測定用のリファレンス信号をマッピングしてもよい。一方、データ領域33のいずれのリソースエレメントも、第2のサブセットのための重みセットV2(i)(i=0,1)に関連付けられていなくてもよい。
 一例として、上記第1の方向及び上記第2の方向の上記一方は、略鉛直方向であってもよく、あるいは略水平方向であってもよい。
 これにより、例えば、測定用のリファレンス信号が乗算される重みセットの数をさらに減らすことが可能になる。
 (処理の流れ)
 (a)第1の例
 図21は、本開示の実施形態の第3の変形例に係る処理の概略的な流れの第1の例を示すシーケンス図である。
 基地局100(通信制御部153)は、ビームフォーミング用の複数の重みセットの各々に関連付けられた無線リソースを端末装置200に通知する(S341)。例えば、基地局100は、上記複数の重みセットの各々に関連付けられた上記無線リソースを特定するための情報(即ち、無線リソース情報)を端末装置200に通知する。端末装置200は、当該無線リソース情報を取得する。
 そして、基地局100は、第1のサブセットのための重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースを使用して、当該重みセットを乗算された測定用のリファレンス信号(RS)を送信する(S343)。また、基地局100は、第2のサブセットのための重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースを使用して、当該重みセットを乗算された測定用のリファレンス信号(RS)を送信する(S343)。上記第1のサブセットは、ラージスケールMIMOに使用可能な指向性アンテナに含まれる複数のアンテナ素子のうちの第1の方向に並ぶアンテナ素子を含み、上記第2のサブセットは、上記複数のアンテナ素子のうちの第2の方向に並ぶアンテナ素子を含む。
 また、端末装置200(測定部241)は、上記第1のサブセットのための重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号(上記重みセットを乗算された測定用のリファレンス信号)についての測定を行う(S345)。
 また、端末装置200(測定部241)は、上記第2のサブセットのための重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号(上記重みセットを乗算された測定用のリファレンス信号)についての測定を行う(S347)。
 その後、端末装置200(情報取得部243)は、上記第1のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果と、上記第2のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果とを取得する。さらに、端末装置200(報告部245)は、上記第1のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果と、上記第2のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果とに基づいて、統合された測定の結果を生成する(S349)。
 そして、端末装置200(報告部245)は、上記統合された測定の結果に基づいて、基地局100への測定報告を行う(S351)。例えば、端末装置200(報告部245)は、測定報告情報を基地局100に提供することにより、基地局100への測定報告を行う。当該測定報告情報は、例えば、上記統合された測定の結果を含む。
 (b)第2の例
 図22は、本開示の実施形態の第3の変形例に係る処理の概略的な流れの第2の例を示すシーケンス図である。ここで、ステップS361~S367についての説明は、図21を参照して説明したステップS341~S347についての説明と同じである。よって、ここでは、ステップS371~S373のみを説明する。
 端末装置200(情報取得部243)は、上記第1のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果と、上記第2のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果とを取得する。そして、端末装置200(報告部245)は、取得された測定の結果に基づいて、基地局100への測定報告を行う(S371)。例えば、端末装置200(報告部245)は、測定報告情報を基地局100に提供することにより、基地局100への測定報告を行う。当該測定報告情報は、例えば、上記第1のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果と、上記第2のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果とを含む。
 その後、基地局100(通信制御部153)は、上記第1のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果と、上記第2のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果とに基づいて、統合された測定の結果を生成する(S373)。
 (c)第3の例
 図23は、本開示の実施形態の第3の変形例に係る処理の概略的な流れの第3の例を示すシーケンス図である。
 基地局100(通信制御部153)は、ビームフォーミング用の複数の重みセットの各々に関連付けられた無線リソースを端末装置200に通知する(S381)。例えば、基地局100は、上記複数の重みセットの各々に関連付けられた上記無線リソースを特定するための情報(即ち、無線リソース情報)を端末装置200に通知する。端末装置200は、当該無線リソース情報を取得する。
 そして、基地局100は、第1のサブセットのための重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースを使用して、当該重みセットを乗算された測定用のリファレンス信号(RS)を送信する(S383)。上記第1のサブセットは、ラージスケールMIMOに使用可能な指向性アンテナに含まれる複数のアンテナ素子のうちの第1の方向に並ぶアンテナ素子を含む。
 また、端末装置200(測定部241)は、上記第1のサブセットのための重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号(上記重みセットを乗算された測定用のリファレンス信号)についての測定を行う(S385)。
 その後、端末装置200(情報取得部243)は、上記第1のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果を取得する。さらに、端末装置200(報告部245)は、取得された測定の結果に基づいて、基地局100への測定報告を行う(S387)。例えば、端末装置200(報告部245)は、測定報告情報を基地局100に提供することにより、基地局100への測定報告を行う。当該測定報告情報は、例えば、上記第1のサブセットの重みセットを乗算された測定用のリファレンス信号についての測定の結果を含む。
 以上、本実施形態の第3の変形例を説明した。第3の変形例によれば、例えば、測定用のリファレンス信号が乗算される重みセットの数を減らすことが可能になる。その結果、基地局100は、送信する測定用のリファレンス信号の数を減らし得る。即ち、測定用のリファレンス信号の送信に使用する無線リソースが減少し得る。
 <<6.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
 <6.1.基地局に関する応用例>
 (第1の応用例)
 図24は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図24に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図24にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図24に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図24に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図24には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図24に示したeNB800において、図6を参照して説明した情報取得部151及び通信制御部153は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又コントローラ821を含むモジュールを搭載し、当該モジュールにおいて情報取得部151及び通信制御部153が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部151及び通信制御部153として機能させるためのプログラム(換言すると、プロセッサに情報取得部151及び通信制御部153の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部151及び通信制御部153として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又コントローラ821が当該プログラムを実行してもよい。以上のように、情報取得部151及び通信制御部153を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを情報取得部151及び通信制御部153として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図24に示したeNB800において、図6を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。
 (第2の応用例)
 図25は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図25に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図25にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図24を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図24を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図25に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図25には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図25に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図25には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図25に示したeNB830において、図6を参照して説明した情報取得部151及び通信制御部153は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又コントローラ851を含むモジュールを搭載し、当該モジュールにおいて情報取得部151及び通信制御部153が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部151及び通信制御部153として機能させるためのプログラム(換言すると、プロセッサに情報取得部151及び通信制御部153の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部151及び通信制御部153として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又コントローラ851が当該プログラムを実行してもよい。以上のように、情報取得部151及び通信制御部153を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを情報取得部151及び通信制御部153として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図25に示したeNB830において、例えば、図6を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。
 <6.2.端末装置に関する応用例>
 (第1の応用例)
 図26は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図26に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図26には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図26に示したように複数のアンテナ916を有してもよい。なお、図26にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図26に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図26に示したスマートフォン900において、図12を参照して説明した処理部240に含まれる1つ以上の構成要素(測定部241、情報取得部243、報告部245及び/又は通信制御部247)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図26に示したスマートフォン900において、例えば、図12を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。
 (第2の応用例)
 図27は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図27に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図27には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図27に示したように複数のアンテナ937を有してもよい。なお、図27にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図27に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図27に示したカーナビゲーション装置920において、図12を参照して説明した処理部240に含まれる1つ以上の構成要素(測定部241、情報取得部243、報告部245及び/又は通信制御部247)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図27に示したカーナビゲーション装置920において、例えば、図12を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、上記1つ以上の構成要素(測定部241、情報取得部243、報告部245及び/又は通信制御部247)を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<7.まとめ>>
 ここまで、図3~図27を参照して、本開示の実施形態に係る装置及び処理を説明した。
 本開示に係る実施形態によれば、基地局100は、ビームフォーミング用の複数の重みセットを取得する情報取得部151と、上記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する通信制御部153と、を備える。
 また、本開示に係る実施形態によれば、端末装置200は、ビームフォーミング用の複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、上記重みセットを乗算された上記リファレンス信号についての測定の結果を取得する情報取得部243と、上記測定の上記結果に基づいて、基地局への測定報告を行う報告部245と、を備える。
 これにより、例えば、ビームフォーミングが行われる場合に端末装置200のために適切なセルを選択することが可能になる。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、通信システムがLTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである例を説明したが、本開示は係る例に限定されない。例えば、通信システムは、他の通信規格に準拠したシステムであってもよい。
 また、本明細書の処理における処理ステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理における処理ステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、本明細書の装置(例えば、基地局、基地局のための基地局装置、若しくは基地局装置のためのモジュール、又は、端末装置、若しくは端末装置のためのモジュール)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記装置の構成要素(例えば、情報取得部及び通信制御部など)として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記装置の構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記録した記録媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、完成品、又は完成品のためのモジュール(部品、処理回路若しくはチップなど))も提供されてもよい。また、上記装置の構成要素(例えば、情報取得部及び通信制御部など)の動作を含む方法も、本開示に係る技術に含まれる。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、又は上記効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 ビームフォーミング用の複数の重みセットを取得する取得部と、
 前記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する制御部と、
を備える装置。
(2)
 前記無線リソースは、制御領域及びデータ領域を含むサブフレームのうちの前記データ領域の無線リソースである、前記(1)に記載の装置。
(3)
 前記無線リソースは、前記データ領域のリソースエレメントのうちの、CRS(Cell-specific Reference Signal)のためのリソースエレメント以外のリソースエレメントである、前記(2)に記載の装置。
(4)
 前記無線リソースは、特定のサブフレームの無線リソースである、前記(1)~(3)のいずれか1項に記載の装置。
(5)
 前記特定のサブフレームは、MBSFN(MBMS(Multimedia Broadcast Multicast Services) over a Single Frequency Network)サブフレームである、前記(4)に記載の装置。
(6)
 前記制御部は、前記特定のサブフレームを端末装置に通知する、前記(4)又は(5)に記載の装置。
(7)
 前記特定のサブフレームは、あらかじめ定義されたサブフレームである、前記(4)又は(5)に記載の装置。
(8)
 前記制御部は、前記複数の重みセットの各々に関連付けられた無線リソースを端末装置に通知する、前記(1)~(7)のいずれか1項に記載の装置。
(9)
 前記複数の重みセットの各々に関連付けられた無線リソースは、あらかじめ定義された無線リソースである、前記(1)~(7)のいずれか1項に記載の装置。
(10)
 前記装置は、基地局、当該基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(1)~(9)のいずれか1項に記載の装置。
(11)
 前記無線リソースは、ビームフォーミング用の重みセットを乗算された測定用のリファレンス信号を送信するために前記基地局の隣接基地局により使用される無線リソースとは異なる、前記(10)に記載の装置。
(12)
 前記重みセットにあらかじめ関連付けられた前記無線リソースは、前記隣接基地局により使用される前記無線リソースと同じサブフレームに存在する、前記(11)に記載の装置。
(13)
 前記重みセットにあらかじめ関連付けられた前記無線リソースは、前記隣接基地局により使用される前記無線リソースと同じの帯域のリソースブロックに含まれる、前記(12)に記載の装置。
(14)
 前記重みセットにあらかじめ関連付けられた前記無線リソースは、前記隣接基地局により使用される前記無線リソースとは異なる帯域のリソースブロックに含まれる、前記(12)に記載の装置。
(15)
 前記重みセットにあらかじめ関連付けられた前記無線リソースは、前記隣接基地局により使用される前記無線リソースとは異なるサブフレームに存在する、前記(11)に記載の装置。
(16)
 前記制御部は、前記複数の重みセットのうちの選択された重みセットを復調用のリファレンス信号に乗算し、前記選択された重みセットに対応する識別情報を端末装置に通知する、前記(1)~(15)のいずれか1項に記載の装置。
(17)
 前記制御部は、ダウンリンク制御情報の中で、前記選択された重みセットに対応する前記識別情報を端末装置に通知する、前記(16)に記載の装置。
(18)
 前記複数の重みセットは、ラージスケールMIMOに使用可能な指向性アンテナに含まれる複数のアンテナ素子の1つ以上のサブセットのための重みセットである、前記(1)~(17)のいずれか1項に記載の装置。
(19)
 前記複数のアンテナ素子は、第1の方向及び第2の方向に並び、
 前記1つ以上のサブセットは、前記複数のアンテナ素子のうちの前記第1の方向に並ぶアンテナ素子を含む第1のサブセットと、前記複数のアンテナ素子のうちの前記第2の方向に並ぶアンテナ素子を含む第2のサブセットとを含む、
前記(18)に記載の装置。
(20)
 前記制御部は、前記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果と、前記第2のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果とに基づいて、統合された測定の結果を生成する、前記(19)に記載の装置。
(21)
 前記複数のアンテナ素子は、第1の方向及び第2の方向に並び、
 前記1つ以上のサブセットは、前記複数のアンテナ素子のうちの前記第1の方向及び前記第2の方向の一方に並ぶアンテナ素子を含むサブセットである、
前記(18)に記載の装置。
(22)
 前記第1の方向及び前記第2の方向は、互いに直交する、前記(19)~(21)のいずれか1項に記載の装置。
(23)
 前記ビームフォーミングは、ラージスケールMIMOのビームフォーミングである、前記(1)~(17)のいずれか1項に記載の装置。
(24)
 前記測定は、受信電力又は受信品質の測定である、前記(1)~(23)のいずれか1項に記載の装置。
(25)
 前記測定は、RSRP(Reference Signal Received Power)又はRSRQ(Reference Signal Received Quality)の測定である、前記(24)に記載の装置。
(26)
 前記リファレンス信号は、セルに固有の信号である、前記(1)~(25)のいずれか1項に記載の装置。
(27)
 ビームフォーミング用の複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、前記重みセットを乗算された前記リファレンス信号についての測定の結果を取得する取得部と、
 前記測定の前記結果に基づいて、基地局への測定報告を行う報告部と、
を備える装置。
(28)
 前記報告部は、前記複数の重みセットに含まれる重みセットごとに、基地局への測定報告を行う、前記(27)に記載の装置。
(29)
 前記複数の重みセットに含まれる重みセットごとに、前記測定を行う測定部、
をさらに備える、前記(27)又は(28)に記載の装置。
(30)
 前記測定部は、前記複数の重みセットのうちの選択された重みセットを乗算されたリファレンス信号についての測定を行い、
 前記選択された重みセットを乗算された前記リファレンス信号は、前記選択された重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、前記選択された重みセットを乗算された前記測定用のリファレンス信号と、前記選択された重みセットを乗算された復調用のリファレンス信号とを含み、
 前記選択された重みセットに対応する識別情報は、基地局が端末装置に通知する情報である、
前記(29)に記載の装置。
(31)
 前記複数の重みセットは、ラージスケールMIMOに使用可能な指向性アンテナに含まれる複数のアンテナ素子の1つ以上のサブセットのための重みセットであり、
 前記複数のアンテナ素子は、第1の方向及び第2の方向に並び、
 前記1つ以上のサブセットは、前記複数のアンテナ素子のうちの前記第1の方向に並ぶアンテナ素子を含む第1のサブセットと、前記複数のアンテナ素子のうちの前記第2の方向に並ぶアンテナ素子を含む第2のサブセットとを含み、
 前記報告部は、前記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果と、前記第2のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果とに基づいて、統合された測定の結果を生成し、当該統合された測定の結果に基づいて、基地局への測定報告を行う、
前記(27)~(30)のいずれか1項に記載の装置。
(32)
 前記装置は、端末装置、又は端末装置のためのモジュールである、前記(27)~(31)のいずれか1項に記載の装置。
(33)
 ビームフォーミング用の複数の重みセットを取得することと、
 プロセッサにより、前記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算することと、
を含む方法。
(34)
 ビームフォーミング用の複数の重みセットを取得することと、
 前記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算することと、
をプロセッサに実行させるためのプログラム。
(35)
 ビームフォーミング用の複数の重みセットを取得することと、
 前記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(36)
 ビームフォーミング用の複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、前記重みセットを乗算された前記リファレンス信号についての測定の結果を取得することと、
 プロセッサにより、前記測定の前記結果に基づいて、基地局への測定報告を行うことと、
を含む方法。
(37)
 ビームフォーミング用の複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、前記重みセットを乗算された前記リファレンス信号についての測定の結果を取得することと、
 前記測定の前記結果に基づいて、基地局への測定報告を行うことと、
をプロセッサに実行させるためのプログラム。
(37)
 ビームフォーミング用の複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、前記重みセットを乗算された前記リファレンス信号についての測定の結果を取得することと、
 前記測定の前記結果に基づいて、基地局への測定報告を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
 1    通信システム
 30   サブフレーム
 31   制御領域
 33   データ領域
 51   第1の方向
 53   第2の方向
 100  基地局
 101  指向性アンテナ
 103  アンテナ素子
 105  第1のサブセット
 107  第2のサブセット
 151  情報取得部
 153  通信制御部
 200  端末装置
 241  測定部
 243  情報取得部
 245  報告部
 247  通信制御部
 

Claims (32)

  1.  ビームフォーミング用の複数の重みセットを取得する取得部と、
     前記複数の重みセットに含まれる重みセットごとに、重みセットにあらかじめ関連付けられた無線リソースに測定用のリファレンス信号をマッピングし、当該リファレンス信号に当該重みセットを乗算する制御部と、
    を備える装置。
  2.  前記無線リソースは、制御領域及びデータ領域を含むサブフレームのうちの前記データ領域の無線リソースである、請求項1に記載の装置。
  3.  前記無線リソースは、前記データ領域のリソースエレメントのうちの、CRS(Cell-specific Reference Signal)のためのリソースエレメント以外のリソースエレメントである、請求項2に記載の装置。
  4.  前記無線リソースは、特定のサブフレームの無線リソースである、請求項1に記載の装置。
  5.  前記特定のサブフレームは、MBSFN(MBMS(Multimedia Broadcast Multicast Services) over a Single Frequency Network)サブフレームである、請求項4に記載の装置。
  6.  前記制御部は、前記特定のサブフレームを端末装置に通知する、請求項4に記載の装置。
  7.  前記特定のサブフレームは、あらかじめ定義されたサブフレームである、請求項4に記載の装置。
  8.  前記制御部は、前記複数の重みセットの各々に関連付けられた無線リソースを端末装置に通知する、請求項1に記載の装置。
  9.  前記複数の重みセットの各々に関連付けられた無線リソースは、あらかじめ定義された無線リソースである、請求項1に記載の装置。
  10.  前記装置は、基地局、当該基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項1に記載の装置。
  11.  前記無線リソースは、ビームフォーミング用の重みセットを乗算された測定用のリファレンス信号を送信するために前記基地局の隣接基地局により使用される無線リソースとは異なる、請求項10に記載の装置。
  12.  前記重みセットにあらかじめ関連付けられた前記無線リソースは、前記隣接基地局により使用される前記無線リソースと同じサブフレームに存在する、請求項11に記載の装置。
  13.  前記重みセットにあらかじめ関連付けられた前記無線リソースは、前記隣接基地局により使用される前記無線リソースと同じの帯域のリソースブロックに含まれる、請求項12に記載の装置。
  14.  前記重みセットにあらかじめ関連付けられた前記無線リソースは、前記隣接基地局により使用される前記無線リソースとは異なる帯域のリソースブロックに含まれる、請求項12に記載の装置。
  15.  前記重みセットにあらかじめ関連付けられた前記無線リソースは、前記隣接基地局により使用される前記無線リソースとは異なるサブフレームに存在する、請求項11に記載の装置。
  16.  前記制御部は、前記複数の重みセットのうちの選択された重みセットを復調用のリファレンス信号に乗算し、前記選択された重みセットに対応する識別情報を端末装置に通知する、請求項1に記載の装置。
  17.  前記制御部は、ダウンリンク制御情報の中で、前記選択された重みセットに対応する前記識別情報を端末装置に通知する、請求項16に記載の装置。
  18.  前記複数の重みセットは、ラージスケールMIMOに使用可能な指向性アンテナに含まれる複数のアンテナ素子の1つ以上のサブセットのための重みセットである、請求項1に記載の装置。
  19.  前記複数のアンテナ素子は、第1の方向及び第2の方向に並び、
     前記1つ以上のサブセットは、前記複数のアンテナ素子のうちの前記第1の方向に並ぶアンテナ素子を含む第1のサブセットと、前記複数のアンテナ素子のうちの前記第2の方向に並ぶアンテナ素子を含む第2のサブセットとを含む、
    請求項18に記載の装置。
  20.  前記制御部は、前記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果と、前記第2のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果とに基づいて、統合された測定の結果を生成する、請求項19に記載の装置。
  21.  前記複数のアンテナ素子は、第1の方向及び第2の方向に並び、
     前記1つ以上のサブセットは、前記複数のアンテナ素子のうちの前記第1の方向及び前記第2の方向の一方に並ぶアンテナ素子を含むサブセットである、
    請求項18に記載の装置。
  22.  前記第1の方向及び前記第2の方向は、互いに直交する、請求項19に記載の装置。
  23.  前記ビームフォーミングは、ラージスケールMIMOのビームフォーミングである、請求項1に記載の装置。
  24.  前記測定は、受信電力又は受信品質の測定である、請求項1に記載の装置。
  25.  前記測定は、RSRP(Reference Signal Received Power)又はRSRQ(Reference Signal Received Quality)の測定である、請求項24に記載の装置。
  26.  前記リファレンス信号は、セルに固有の信号である、請求項1に記載の装置。
  27.  ビームフォーミング用の複数の重みセットに含まれる重みセットごとに、重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、前記重みセットを乗算された前記リファレンス信号についての測定の結果を取得する取得部と、
     前記測定の前記結果に基づいて、基地局への測定報告を行う報告部と、
    を備える装置。
  28.  前記報告部は、前記複数の重みセットに含まれる重みセットごとに、基地局への測定報告を行う、請求項27に記載の装置。
  29.  前記複数の重みセットに含まれる重みセットごとに、前記測定を行う測定部、
    をさらに備える、請求項27に記載の装置。
  30.  前記測定部は、前記複数の重みセットのうちの選択された重みセットを乗算されたリファレンス信号についての測定を行い、
     前記選択された重みセットを乗算された前記リファレンス信号は、前記選択された重みセットに関連付けられた無線リソースを使用して送信される測定用のリファレンス信号であって、前記選択された重みセットを乗算された前記測定用のリファレンス信号と、前記選択された重みセットを乗算された復調用のリファレンス信号とを含み、
     前記選択された重みセットに対応する識別情報は、基地局が端末装置に通知する情報である、
    請求項29に記載の装置。
  31.  前記複数の重みセットは、ラージスケールMIMOに使用可能な指向性アンテナに含まれる複数のアンテナ素子の1つ以上のサブセットのための重みセットであり、
     前記複数のアンテナ素子は、第1の方向及び第2の方向に並び、
     前記1つ以上のサブセットは、前記複数のアンテナ素子のうちの前記第1の方向に並ぶアンテナ素子を含む第1のサブセットと、前記複数のアンテナ素子のうちの前記第2の方向に並ぶアンテナ素子を含む第2のサブセットとを含み、
     前記報告部は、前記第1のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果と、前記第2のサブセットの重みセットを乗算されたリファレンス信号についての測定の結果とに基づいて、統合された測定の結果を生成し、当該統合された測定の結果に基づいて、基地局への測定報告を行う、
    請求項27に記載の装置。
  32.  前記装置は、端末装置、又は端末装置のためのモジュールである、請求項27に記載の装置。
     
PCT/JP2015/062896 2014-05-08 2015-04-28 装置 WO2015170651A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2016014258A MX2016014258A (es) 2014-05-08 2015-04-28 Dispositivo.
US15/307,604 US10454539B2 (en) 2014-05-08 2015-04-28 Beamforming device for providing weight sets
EP15789481.7A EP3142276A4 (en) 2014-05-08 2015-04-28 Device
US16/583,258 US11206063B2 (en) 2014-05-08 2019-09-26 Beamforming device for providing weight sets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014096868A JP2015216449A (ja) 2014-05-08 2014-05-08 装置
JP2014-096868 2014-05-08

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/307,604 A-371-Of-International US10454539B2 (en) 2014-05-08 2015-04-28 Beamforming device for providing weight sets
US15307604 A-371-Of-International 2016-10-28
US16/583,258 Continuation US11206063B2 (en) 2014-05-08 2019-09-26 Beamforming device for providing weight sets

Publications (1)

Publication Number Publication Date
WO2015170651A1 true WO2015170651A1 (ja) 2015-11-12

Family

ID=54392503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062896 WO2015170651A1 (ja) 2014-05-08 2015-04-28 装置

Country Status (6)

Country Link
US (2) US10454539B2 (ja)
EP (1) EP3142276A4 (ja)
JP (1) JP2015216449A (ja)
MX (1) MX2016014258A (ja)
TW (1) TWI713448B (ja)
WO (1) WO2015170651A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145008A1 (ja) * 2019-01-09 2020-07-16 ソニー株式会社 通信装置、通信制御装置、通信方法、及び通信制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126842A1 (en) * 2009-04-27 2010-11-04 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
JP2015216449A (ja) * 2014-05-08 2015-12-03 ソニー株式会社 装置
JP6634982B2 (ja) 2016-07-29 2020-01-22 ソニー株式会社 端末装置、基地局、方法及び記録媒体
US10716110B2 (en) * 2017-03-02 2020-07-14 Micron Technology, Inc. Wireless devices and systems including examples of configuration modes for baseband units and remote radio heads
US10070432B1 (en) 2017-03-02 2018-09-04 Micron Technology, Inc. Wireless devices and systems including examples of configuration modes for baseband units and remote radio heads
EP3685619A4 (en) * 2017-09-28 2021-04-07 Samsung Electronics Co., Ltd. METHOD AND NETWORK NODE FOR PERFORMING DATA TRANSMISSION AND MEASUREMENTS ON MULTIPLE PARTS OF BANDWIDTH
CN108900999B (zh) * 2018-05-25 2021-05-18 北京星网锐捷网络技术有限公司 一种提高无线接入可靠性的方法和接入管理服务器
US11101570B2 (en) 2019-11-22 2021-08-24 Microsoft Technology Licensing, Llc Projected geometry antenna array
US11764850B2 (en) * 2020-05-07 2023-09-19 Qualcomm Incorporated Compensating for transmit-receive spatial filter asymmetries in upper millimeter wave bands

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142406A (ja) * 2010-01-05 2011-07-21 Ntt Docomo Inc 無線基地局装置、移動端末装置及び無線通信方法
JP2012231493A (ja) * 2009-03-19 2012-11-22 Nec Corp 改良されたチャネル品質指標の方法
JP2013511896A (ja) * 2009-11-17 2013-04-04 クゥアルコム・インコーポレイテッド Lteアドバンストにおけるサブフレーム依存送信モード
JP2014030135A (ja) * 2012-07-31 2014-02-13 Ntt Docomo Inc 基地局装置、ユーザ端末、通信システム及び通信制御方法
JP2014053811A (ja) * 2012-09-07 2014-03-20 Ntt Docomo Inc 無線通信方法、ユーザ端末、無線基地局及び無線通信システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257259B2 (ja) 2009-06-17 2013-08-07 富士通株式会社 受信装置、移動端末、通信システムおよび通信方法
JP5388356B2 (ja) * 2010-01-20 2014-01-15 株式会社Nttドコモ プリコーディングウェイト生成方法、移動局装置及び基地局装置
JP5437310B2 (ja) * 2011-05-02 2014-03-12 株式会社Nttドコモ 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
GB2493154A (en) * 2011-07-25 2013-01-30 Nec Corp Communicating control channel reference signal patterns in the control region of a sub-frame in a cellular communication system
WO2013125900A1 (ko) * 2012-02-23 2013-08-29 엘지전자 주식회사 C-ran 시스템에서 핸드오버를 수행하는 방법 및 이를 위한 장치
US9225449B2 (en) * 2012-05-11 2015-12-29 Intel Corporation Performing a handover in a heterogeneous wireless network
TWI617148B (zh) * 2012-09-28 2018-03-01 內數位專利控股公司 用於報告回饋的無線發射/接收單元及方法
WO2014171658A1 (ko) * 2013-04-16 2014-10-23 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
JP2015216449A (ja) * 2014-05-08 2015-12-03 ソニー株式会社 装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231493A (ja) * 2009-03-19 2012-11-22 Nec Corp 改良されたチャネル品質指標の方法
JP2013511896A (ja) * 2009-11-17 2013-04-04 クゥアルコム・インコーポレイテッド Lteアドバンストにおけるサブフレーム依存送信モード
JP2011142406A (ja) * 2010-01-05 2011-07-21 Ntt Docomo Inc 無線基地局装置、移動端末装置及び無線通信方法
JP2014030135A (ja) * 2012-07-31 2014-02-13 Ntt Docomo Inc 基地局装置、ユーザ端末、通信システム及び通信制御方法
JP2014053811A (ja) * 2012-09-07 2014-03-20 Ntt Docomo Inc 無線通信方法、ユーザ端末、無線基地局及び無線通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3142276A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145008A1 (ja) * 2019-01-09 2020-07-16 ソニー株式会社 通信装置、通信制御装置、通信方法、及び通信制御方法
JPWO2020145008A1 (ja) * 2019-01-09 2021-11-25 ソニーグループ株式会社 通信装置、通信制御装置、通信方法、及び通信制御方法
JP7392665B2 (ja) 2019-01-09 2023-12-06 ソニーグループ株式会社 通信装置、通信制御装置、通信方法、及び通信制御方法

Also Published As

Publication number Publication date
MX2016014258A (es) 2017-02-06
JP2015216449A (ja) 2015-12-03
TW201545574A (zh) 2015-12-01
EP3142276A4 (en) 2017-12-20
EP3142276A1 (en) 2017-03-15
US20200044697A1 (en) 2020-02-06
US11206063B2 (en) 2021-12-21
US10454539B2 (en) 2019-10-22
TWI713448B (zh) 2020-12-21
US20170126292A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
JP6680384B2 (ja) 通信装置、方法、及びプログラム
US11206063B2 (en) Beamforming device for providing weight sets
US10194333B2 (en) Terminal apparatus, base station, and program
US11528647B2 (en) Device and method for measuring a channel state
US10721048B2 (en) Apparatus and method
JP6863275B2 (ja) 装置
US11750259B2 (en) Apparatus and method
US11251852B2 (en) Device for calculating a received quality of reference signal
WO2016121196A1 (ja) 装置
WO2016121252A1 (ja) 装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15307604

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015789481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/014258

Country of ref document: MX

Ref document number: 2015789481

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE