WO2015169979A1 - System for generating electric power - Google Patents
System for generating electric power Download PDFInfo
- Publication number
- WO2015169979A1 WO2015169979A1 PCT/ES2015/000061 ES2015000061W WO2015169979A1 WO 2015169979 A1 WO2015169979 A1 WO 2015169979A1 ES 2015000061 W ES2015000061 W ES 2015000061W WO 2015169979 A1 WO2015169979 A1 WO 2015169979A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subsystem
- electric power
- power generation
- generation system
- module
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a regulated, modular and non-polluting regulated power generation system, based on the modular implementation of stacks of PEM-type fuel cells powered by hydrogen, together with instrumentation, control and monitoring systems included It is applicable in the electricity generation sector.
- PEM proton exchange membrane
- the known PEM cells are cooled by water and require a very high pressure hydrogen supply (5-10 bar), which only in some designs is able to be reduced to 2 bars.
- Water cooling requires a complex, bulky, heavy and expensive thermal management mechanism. Water is not only the product of the electrochemical reaction of the stack, but it is also critical to ensure efficient and stable operation. Therefore, by simplifying the thermal management system, costs and complexity would be reduced.
- the invention consists of an electric power generation system, which produces electric power regulated directly from hydrogen by means of an electrochemical reaction, which is intrinsically more efficient than combustion and minimizes the adverse effects associated with the combustion process (among others , excessive noise, polluting emissions and maintenance).
- the system can operate continuously (24h / day for 365 days a year), that is, for as long as hydrogen is supplied, so unlike other sources of renewable energy, the production of electrical energy from the System object of the invention is independent of the weather conditions.
- the system comprises a series of modules, so that it can work with the number of them required at any time, which allows it to generate a regulated power in its range from 0 to "n * p", being "n "the number of modules and” p "the power of each of them assumptions all the same. If this were not the case, it could be from 0 to (p1 + p2 + ... + pn).
- the system object of the invention monitors each of its cells (voltage and current measurements) to, by means of the control system incorporated, manage and mitigate its aging.
- the developed system also has two additional features that make it especially simple: it is air-cooled and does not require high hydrogen supply pressure, since it can actually operate at ambient pressure (similar to 1 bar). For this, the bipolar plates that delimit each cell of the stack will be carried out properly, with mechanized channels whose geometric configuration and diameter will allow this low pressure.
- the first of the features allows that there are no moving or liquid parts in the cooling system, facilitating and simplifying their integration.
- the second provides security to the system as it is not necessary to work with high hydrogen pressures. Both features provide reduced volumes, weights and costs and simplify the design.
- the invention is, therefore, an electrical power generation system with a series of modules, at least two, but preferably more, each with a stack of Proton exchange membrane (PEM) cells and other necessary subsystems, individual or shared by several stacks.
- the set of modules is fed by a hydrogen source or several, which are part of a hydrogen subsystem (preferably at near ambient pressure (close to 1 bar) and with a purge line).
- the system of the invention comprises a control and monitoring subsystem of each module, which controls them, being able to activate and deactivate them individually.
- each module can have the same power, which facilitates the management, or different powers, which provides flexibility to activate the modules at their nominal power when the electric charge requires power levels below the maximum.
- the control and monitoring subsystem can monitor each stacking of each module by receiving, for each stacking, the signal of an ammeter and a voltmeter, as well as a cell voltage detection system for each stacking cell. This reception can be done at a first level of the control and monitoring subsystem, by means of local controllers for each module, which are coordinated at a higher level by a single higher control unit.
- the cell voltage detection system will communicate, through the control and monitoring subsystem, with a cell management system, capable of detecting its anomalous operation to act accordingly, for example by communicating it to the upper control unit.
- a cell management system capable of detecting its anomalous operation to act accordingly, for example by communicating it to the upper control unit.
- the control and monitoring subsystem is accessible online, either by a local network or by internet.
- the upper control unit will homogeneously distribute the operating hours among all the modules so that the aging of their stacks is similar.
- the modules have their respective oxygenation / cooling subsystems that provide air to the cells, with the dual function of refrigerant and oxygen supply to the cathode.
- the system is complemented by a simulator of the operation (non-linear) of the system. Preferably it will be able to simulate faults and breakdowns.
- Figure 1 represents a schematic of a module, which comprises the stacking of cells and the oxygenation / cooling, hydrogen and electrical subsystems.
- Figure 2 represents the general scheme of the control and monitoring subsystem for each module and the complete system.
- Figure 3 represents a connection scheme for the case where a conditioning subsystem with multiple inputs is used.
- the system of the invention is based on a series of modules (1) consisting of stacks of proton exchange membrane cells (2), preferably air-cooled to avoid the need for external humidification, in addition to the corresponding sub-systems of oxygenation / cooling, hydrogen and electric.
- each module (1) is made up of a scheme similar to that of Figure 1, although they can share elements, for example, the source of hydrogen (8) can be shared by all or part of the modules (1).
- Air cooling is carried out by means of an oxygenation / cooling subsystem, which on the one hand provides oxygen from the air to the cathode, and on the other hand is responsible for cooling the cell stack.
- the amount of air injected into the cell stack must be such that it guarantees that it works at its optimum operating temperature. This requires a temperature sensor of operation (3) of each cell stack (2), an incoming air temperature sensor (4), and a ventilation (5) or air extraction system with the ability to adjust the flow of injected or extracted air from each stacking of cells, and modifying the relationship between the volume of air aspirated and the volume theoretically necessary for a correct reaction (lambda parameter ⁇ ).
- an oxygen sensor (6) which will send information to the control system described below to avoid situations of low oxygen concentration in the surrounding atmosphere, and therefore insufficient oxidant in the cathode of each stacking cell, and a relative humidity sensor (7) to avoid extreme environmental conditions.
- Hydrogen is fed to the anode of each cell (2) in the stack by the hydrogen subsystem.
- This comprises a source of hydrogen (8), and a conduction line to each cell stack (2), with its supply valves (9), pressure gauges (10) and pressure regulators (11) for control.
- the hydrogen source (8) can be individual or shared by all or part of the modules (1).
- the pressure regulator (11) will be necessary when the high pressure of the hydrogen stored in the bottle must be regulated at the low supply pressure, but it is not necessary if the hydrogen source (8) already supplies the hydrogen at the required pressure.
- Hydrogen must be supplied to the anode of each cell stacking module at the corresponding pressure and flow. In practice, not all of the hydrogen that enters each anode is consumed. In the anodes water vapor, nitrogen and other inert gases accumulate, so it is advisable to purge them periodically.
- a purge valve (12) is required in the outlet or purge line of each cell stack to expel unused hydrogen along with the inert gases into the surrounding environment.
- a hydrogen sensor (13) it is desirable to add a hydrogen sensor (13) to avoid concentrations in the surrounding air that pose a risk of being within the limits considered in an explosive atmosphere (less than a quarter of the lower flammability limit).
- each stack (2) The use of the electrical power generated by each stack (2) is carried out by means of the electrical subsystem.
- This subsystem connects the stacking of cells to an electric load (14), providing a contactor (15) by stacking to isolate it from the electric load (14) and a blocking diode (16) to avoid reverse currents that can damage the stacking.
- an electric load 14
- a contactor 15
- a blocking diode 16
- As protection measures for cell stacking (2) it can also have a stacking ammeter (17) and a stacking voltmeter (18), which is connected to the electrical terminals of each cell stacking (2), as well as a voltage monitoring subsystem of each cell individually (not shown) connected to all stacking cells.
- the cell monitoring system monitors that no cell goes into reverse operation, which would significantly damage it.
- the ammeter and the voltmeter of the cell stack (17,18) allow the control and monitoring subsystem to have information and act so that each stack, designed to operate within a range of current and voltage values, is not degrade if these ranges are exceeded.
- the combination of the cell stacking voltmeter (18) and the cell voltage detection subsystem ensure that none of the cells that make up each stacking operate in reverse, with a voltage equal to or less than zero volts.
- Each module (1) will have a battery (not shown) to power the different elements of it at the start of the module. This battery can be recharged with part of the power generated by the module itself.
- the invention can also comprise a control and monitoring subsystem, which guarantees the optimal operation of the system. For this, it will control the modules (1) of which the system is composed, so that they are active depending on the demand requested by the load and its state of use. This will bring the following benefits: ⁇ Each module will only be active when the load demands it, which will result in a smaller number of hours of operation and, therefore, in a longer overall duration of the system, prolonging its life time, fundamentally of Your cell stacking.
- Each module will operate at nominal power, which will mean better performance and use of each operating time. •
- the modules can operate a similar number of hours, with which the natural wear of the system, mainly from the stacking of cells of each module, will be balanced. ⁇ The modules can be not only launched on demand, but also interconnected according to requirements.
- the system object of the invention provides a regulated power in the range from 0 to "n * p", "n” being the number of modules and "p" the power of each , assumptions all the same. If this were not the case, it could be from 0 to (p1 + p2 + ... + pn).
- the control element is configured in two levels: a first level consisting of the local controllers (20) of each module (1), which control the oxygenation / cooling, hydrogen and electrical subsystems and their power conditioner, and a unit of superior control (21) that supervises and governs each local controller (20) according to the general requirements of the system.
- the upper control unit (21) depending on the requirements requested to the system, will connect or disconnect each module (1) of the hydrogen supply line and the electrical connection line to the load.
- this control and monitoring subsystem measures all the variables of interest, stores them for consultation by the user and supplies them to the control. On the other hand, it allows online access (referring to real-time access through the Internet-network (23) and / or local network-through a computer application as a virtual instrument) to the system. In addition, the monitoring of the system is completed with the visualization of alarms through the computer application (22), which will notify the user of anomalous situations (excess or defect of pressure or temperature, excessive demand for current, reduced operating voltage, etc.).
- each module (1) may not have the necessary quality to feed the electric load (14), so it can be inserted in parallel, between the stacking of cells (2) and the load (14 ), an electrical power conditioning subsystem (24) that ensures that the electrical output of each module (or the complete system of Figure 2, according to the possible connections for the modules described below) is a regulated electrical power suitable for Power any electric charge.
- This regulation may be DC / DC or include a DC / AC investment.
- This subsystem is of specific design for the system object of the invention, since it has to govern the electrical output of each module to be able to supply at all times the changing requirements of regulated electrical power demanded by the load.
- a cell management subsystem for monitoring and control of the different effects that contribute to the deterioration of the stacks and, therefore, of the modules that contain them.
- This subsystem works from the data supplied by the control and monitoring subsystem.
- the corrosion current in the cells that form each stack can cause a reduction in the cell voltage, even reaching 0 V. This is a serious problem for the affected cell which can lead to irreversible deterioration.
- the reduction of the cell voltage may be caused by a non-harmful effect, such as the high demand for load current. This has to be able to detect the cell management subsystem.
- the first is due to the fact that in a PEM type fuel cell, in the Electrolyte-Membrane-Electrolyte structure, the catalyst that favors the dissociation of hydrogen is suspended in a thin layer of carbon that covers the membrane on both sides.
- the hydrogen-oxygen interface hereinafter hydrogen-air since the oxygen with which the fuel cell reacts it comes directly from the surrounding air
- oxygen-oxygen hereinafter air-air.
- This corrosion current appears during the starting of the battery (degradation by start / stop), and also appears if there are fuel leaks, or if the supply valve or the purge valve are leaking.
- the corrosion current also has the effect of consuming the carbon from the catalyst layer.
- the cell management subsystem must detect that air-to-air regions have been produced to allow corrective action. For this, it detects that the voltage produced by the cell is lower than the theoretical one, due to the presence of the two air-air and hydrogen-air regions. Thus, in the case of corrosion currents, the cell voltage will be 0.2V or similar instead of approximately 1V. On the other hand, if there are fuel leaks in the valve, the cell will produce tension with the hydrogen valve closed, even after completely consuming the remaining hydrogen that may remain in the circuit (approximately 30 minutes). In the case of starting the cell after being stopped for a while, until the remaining hydrogen has been consumed, the start / stop corrosion currents will be unavoidable, so the system must recognize that this is the case.
- Starvation or lack of fuel causes an effect similar to corrosion currents on a fuel cell.
- it is replaced by the carbon in the catalyst layer, so that the carbon reacts with the water to generate protons and electrons, in order to supply the demand of the charge.
- the cell voltage can drop below 0 V, reaching an irreversible inverse situation that will result in the definitive disabling of it.
- a measuring device formed by the cell voltage detection system has been developed, which is not the subject of the invention.
- the connection with each module together with the development of the virtual instrument for monitoring are not part of the invention.
- the operation procedure begins with the start of the power supply: switching on and adjusting the battery, then adjusting hydrogen, opening the supply valve (9) and its flow. Finally the adjustment of the oxygenation / cooling subsystem, setting the lambda parameter, ⁇ .
- the sensors carry out continuous checks, the result of which may lead to the control and monitoring subsystem to the activation of alarms and even to shutdown due to failure, which would activate an inactive module (1), if any, to supply the missing power.
- the shutdown of the modules (1) is carried out with the closing of the corresponding valves and actuators, so that the detection of an abnormal condition would also lead to the activation of alarms.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
The invention relates to a system for generating electric power, which has a series of PEM cell stack modules (1), supplied by a source of hydrogen (8), the pressure of which must be adjusted preferably to almost atmospheric pressure. The system also includes a subsystem for controlling and monitoring each stack, which can activate and deactivate same individually. The control and monitoring subsystem can monitor the modules by receiving, from each module, the signal from an ammeter and a voltmeter of the stack, as well as from a subsystem for detecting cell voltage for each cell of the module stack. Said reception can take place in a first level of the control and monitoring subsystem, via local controllers for each module, which are coordinated at a higher level by a single higher control unit. A cell management subsystem uses said signals to verify that the cell is not exposed to corrosion currents.
Description
SISTEMA DE GENERACIÓN DE POTENCIA ELÉCTRICA ELECTRICAL POWER GENERATION SYSTEM
SECTOR DE LA TÉCNICA La presente invención se refiere a un sistema de generación de potencia eléctrica regulada, modular y no contaminante, basado en la implementación modular de apilamientos de celdas de combustible tipo PEM alimentadas por hidrógeno, junto con sistemas de instrumentación, control y monitorización incluidos. Es de aplicación en el sector de la generación de electricidad. TECHNICAL SECTOR The present invention relates to a regulated, modular and non-polluting regulated power generation system, based on the modular implementation of stacks of PEM-type fuel cells powered by hydrogen, together with instrumentation, control and monitoring systems included It is applicable in the electricity generation sector.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
El funcionamiento de las celdas de membrana de intercambio protónico (PEM) apiladas para generar energía eléctrica a partir de hidrógeno sufre de problemas que las deterioran, lo cual origina que su tiempo de vida sea relativamente corto (por término medio entre 4.000 y 5.000 horas). The operation of the proton exchange membrane (PEM) cells stacked to generate electrical energy from hydrogen suffers from problems that deteriorate them, which causes their lifetime to be relatively short (on average between 4,000 and 5,000 hours) .
Las celdas PEM conocidas se refrigeran por agua y requieren un suministro de hidrógeno a presión muy alta (5-10 bares), que sólo en algunos diseños es capaz de reducirse a 2 bares. La refrigeración por agua requiere un mecanismo de gestión térmica complejo, voluminoso, pesado y caro. El agua no es sólo el producto de la reacción electroquímica del apilamiento, sino también es crítica para garantizar un funcionamiento eficaz y estable. Por lo tanto, simplificando el sistema de gestión térmica, se reducirían los costes y la complejidad. The known PEM cells are cooled by water and require a very high pressure hydrogen supply (5-10 bar), which only in some designs is able to be reduced to 2 bars. Water cooling requires a complex, bulky, heavy and expensive thermal management mechanism. Water is not only the product of the electrochemical reaction of the stack, but it is also critical to ensure efficient and stable operation. Therefore, by simplifying the thermal management system, costs and complexity would be reduced.
En cuanto a la alimentación de hidrógeno a altas presiones, implica un mayor coste de diseño así como mayor riesgo de fuga y explosión. As for the feeding of hydrogen at high pressures, it implies a higher design cost as well as a greater risk of leakage and explosion.
Igualmente, los sistemas de generación de energía eléctrica mediante apilamiento de celdas de combustible conocidos son elementos de gestión rígida, en cuanto no permiten variar su capacidad de forma rápida, produciéndose en ocasiones sobrecargas que dañan las celdas. Similarly, electric power generation systems by stacking known fuel cells are rigid management elements, as they do not allow to vary their capacity quickly, sometimes causing overloads that damage the cells.
No se conoce tampoco ningún sistema que permita gestionar las horas de funcionamiento de los diferentes apilamientos, distribuyendo la generación de electricidad para reducir las probabilidades de deterioro o agotamiento del tiempo de vida operativo. l
BREVE EXPLICACIÓN DE LA INVENCIÓN There is also no known system that allows managing the operating hours of the different stacks, distributing the generation of electricity to reduce the chances of deterioration or depletion of the operating life time. l BRIEF EXPLANATION OF THE INVENTION
La invención consiste en un sistema de generación de potencia eléctrica, que produce potencia eléctrica regulada directamente a partir de hidrógeno mediante una reacción electroquímica, que es intrínsecamente más eficiente que la combustión y reduce al mínimo los efectos adversos asociados al proceso de combustión (entre otros, ruido excesivo, emisiones contaminantes y mantenimiento). El sistema puede funcionar de forma continua (24h/día durante 365 días al año), esto es, durante todo el tiempo que el hidrógeno le sea suministrado, por lo que al contrario de otras fuentes de energía renovable, la producción de energía eléctrica del sistema objeto de la invención es independiente de las condiciones climatológicas. The invention consists of an electric power generation system, which produces electric power regulated directly from hydrogen by means of an electrochemical reaction, which is intrinsically more efficient than combustion and minimizes the adverse effects associated with the combustion process (among others , excessive noise, polluting emissions and maintenance). The system can operate continuously (24h / day for 365 days a year), that is, for as long as hydrogen is supplied, so unlike other sources of renewable energy, the production of electrical energy from the System object of the invention is independent of the weather conditions.
El sistema comprende una serie de módulos, de forma que puede funcionar con el número de ellos que requiera en cada momento, lo cual le permite generar a su salida una potencia regulada en el rango desde 0 hasta "n*p", siendo "n" el número de módulos y "p" la potencia de cada uno de ellos supuestos todos iguales. Si así no fuera, se podría tener desde 0 hasta (p1 + p2 + ... + pn). The system comprises a series of modules, so that it can work with the number of them required at any time, which allows it to generate a regulated power in its range from 0 to "n * p", being "n "the number of modules and" p "the power of each of them assumptions all the same. If this were not the case, it could be from 0 to (p1 + p2 + ... + pn).
Con objeto de aumentar su tiempo de vida, el sistema objeto de la invención monitoriza cada una de sus celdas (medidas de tensión y corriente) para, mediante el sistema de control que lleva incorporado, gestionar y mitigar su envejecimiento. In order to increase its lifetime, the system object of the invention monitors each of its cells (voltage and current measurements) to, by means of the control system incorporated, manage and mitigate its aging.
El sistema desarrollado tiene además dos características adicionales que lo hacen especialmente simple: es refrigerado por aire y no requiere alta presión de suministro de hidrógeno, ya que de hecho puede funcionar a presión ambiente (similar a 1 bar). Para ello, los platos bipolares que delimitan cada celda del apilamiento se realizarán de forma adecuada, con canales mecanizados cuya configuración geométrica y diámetro permitirán esta baja presión. La primera de las características permite que no existan partes móviles ni líquidas en el sistema de refrigeración, facilitando y simplificando su integración. La segunda aporta seguridad al sistema al no ser necesario trabajar con altas presiones de hidrógeno. Ambas características aportan reducción de volúmenes, pesos y costes y simplifican el diseño. The developed system also has two additional features that make it especially simple: it is air-cooled and does not require high hydrogen supply pressure, since it can actually operate at ambient pressure (similar to 1 bar). For this, the bipolar plates that delimit each cell of the stack will be carried out properly, with mechanized channels whose geometric configuration and diameter will allow this low pressure. The first of the features allows that there are no moving or liquid parts in the cooling system, facilitating and simplifying their integration. The second provides security to the system as it is not necessary to work with high hydrogen pressures. Both features provide reduced volumes, weights and costs and simplify the design.
La invención es, por lo tanto, un sistema de generación de potencia eléctrica con una serie de módulos, como mínimo dos, pero preferentemente más, cada uno con un apilamiento de
celdas de membrana de intercambio protónico (PEM) y otros subsistemas necesarios, individuales o compartidos por varios apilamientos. El conjunto de módulos es alimentado por una fuente de hidrógeno o varias, que forman parte de un subsistema de hidrógeno (preferentemente a presión casi ambiente (próxima a 1 bar) y con una línea de purga). The invention is, therefore, an electrical power generation system with a series of modules, at least two, but preferably more, each with a stack of Proton exchange membrane (PEM) cells and other necessary subsystems, individual or shared by several stacks. The set of modules is fed by a hydrogen source or several, which are part of a hydrogen subsystem (preferably at near ambient pressure (close to 1 bar) and with a purge line).
El sistema de la invención comprende un subsistema de control y monitorización de cada módulo, que los controla, pudiendo activar y desactivarlos individualmente. The system of the invention comprises a control and monitoring subsystem of each module, which controls them, being able to activate and deactivate them individually.
Como se ha reseñado, cada módulo puede tener la misma potencia, con lo que se facilita la gestión, o potencias diferentes, lo cual aporta flexibilidad para activar los módulos en su potencia nominal cuando la carga eléctrica requiera niveles de potencia inferiores a la máxima. As described, each module can have the same power, which facilitates the management, or different powers, which provides flexibility to activate the modules at their nominal power when the electric charge requires power levels below the maximum.
El subsistema de control y monitorización puede monitorizar cada apilamiento de cada módulo mediante la recepción, por cada apilamiento, de la señal de un amperímetro y un voltímetro, así como un sistema de detección de tensión de celda por cada celda del apilamiento. Esta recepción se puede hacer en un primer nivel del subsistema de control y monitorización, por medio de controladores locales por cada módulo, los cuales son coordinados en un nivel superior por una única unidad de control superior. The control and monitoring subsystem can monitor each stacking of each module by receiving, for each stacking, the signal of an ammeter and a voltmeter, as well as a cell voltage detection system for each stacking cell. This reception can be done at a first level of the control and monitoring subsystem, by means of local controllers for each module, which are coordinated at a higher level by a single higher control unit.
El sistema de detección de tensión de celda se comunicará, a través del subsistema de control y monitorización, con un sistema de gestión de celda, capaz de detectar su funcionamiento anómalo para actuar en consecuencia, por ejemplo comunicándolo a la unidad de control superior. Preferentemente, el subsistema de control y monitorización es accesible en línea, ya sea por una red local o por internet. The cell voltage detection system will communicate, through the control and monitoring subsystem, with a cell management system, capable of detecting its anomalous operation to act accordingly, for example by communicating it to the upper control unit. Preferably, the control and monitoring subsystem is accessible online, either by a local network or by internet.
Más preferentemente, cuando la exigencia de potencia sea inferior a la máxima, la unidad de control superior distribuirá homogéneamente las horas de funcionamiento entre todos los módulos para que el envejecimiento de sus apilamientos sea similar. More preferably, when the power requirement is lower than the maximum, the upper control unit will homogeneously distribute the operating hours among all the modules so that the aging of their stacks is similar.
Es preferido que los módulos posean sus respectivos subsistemas de oxigenación/refrigeración que aporten aire a las celdas, con la doble función de refrigerante y de aporte de oxígeno al cátodo.
El sistema se complementa de un simulador del funcionamiento (no lineal) del sistema. Preferiblemente éste será capaz de simular fallos y averías. It is preferred that the modules have their respective oxygenation / cooling subsystems that provide air to the cells, with the dual function of refrigerant and oxygen supply to the cathode. The system is complemented by a simulator of the operation (non-linear) of the system. Preferably it will be able to simulate faults and breakdowns.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para una mejor comprensión de la invención, se incluyen las siguientes figuras. For a better understanding of the invention, the following figures are included.
Figura 1 : representa un esquema de un módulo, el cual comprende el apilamiento de celdas y los subsistemas de oxigenación/refrigeración, de hidrógeno y eléctrico. Figure 1: represents a schematic of a module, which comprises the stacking of cells and the oxygenation / cooling, hydrogen and electrical subsystems.
Figura 2: representa el esquema general del subsistema de control y monitorización para cada módulo y del sistema completo. Figure 2: represents the general scheme of the control and monitoring subsystem for each module and the complete system.
Figura 3: representa un esquema de conexión para el caso en que se emplee un subsistema acondicionador con múltiples entradas. Figure 3: represents a connection scheme for the case where a conditioning subsystem with multiple inputs is used.
MODOS DE REALIZACIÓN DE LA INVENCIÓN A continuación se pasa a describir de manera breve un modo de realización de la invención, como ejemplo ilustrativo y no limitativo de ésta. EMBODIMENTS OF THE INVENTION Next, an embodiment of the invention will be described briefly as an illustrative and non-limiting example thereof.
El sistema de la invención parte de una serie de módulos (1 ) que constan de apilamientos de celdas (2) de membrana de intercambio protónico (PEM), preferiblemente refrigerados por aire para evitar la necesidad de humidificación externa, además de los correspondientes subsistemas de oxigenación/refrigeración, de hidrógeno y eléctrico. En esencia, cada módulo (1 ) está conformado por un esquema similar al de la Figura 1 , aunque pueden compartir elementos, así por ejemplo, la fuente de hidrógeno (8) puede ser compartida por todos o parte de los módulos (1 ). The system of the invention is based on a series of modules (1) consisting of stacks of proton exchange membrane cells (2), preferably air-cooled to avoid the need for external humidification, in addition to the corresponding sub-systems of oxygenation / cooling, hydrogen and electric. In essence, each module (1) is made up of a scheme similar to that of Figure 1, although they can share elements, for example, the source of hydrogen (8) can be shared by all or part of the modules (1).
La refrigeración por aire se realiza por medio de un subsistema de oxigenación/refrigeración, que por un lado aporta el oxígeno del aire al cátodo, y por otro se encarga de refrigerar el apilamiento de celdas. La cantidad de aire inyectada al apilamiento de celdas debe ser tal que garantice que trabaja en su temperatura óptima de funcionamiento. Para ello requiere un sensor de temperatura
de funcionamiento (3) de cada apilamiento de celdas (2), un sensor de temperatura del aire (4) entrante, y un sistema de ventilación (5) o extracción de aire con capacidad de ajustar el flujo de aire inyectado o extraído de cada apilamiento de celdas, y modificar la relación entre el volumen de aire aspirado y el volumen teóricamente necesario para una correcta reacción (parámetro lambda λ). Air cooling is carried out by means of an oxygenation / cooling subsystem, which on the one hand provides oxygen from the air to the cathode, and on the other hand is responsible for cooling the cell stack. The amount of air injected into the cell stack must be such that it guarantees that it works at its optimum operating temperature. This requires a temperature sensor of operation (3) of each cell stack (2), an incoming air temperature sensor (4), and a ventilation (5) or air extraction system with the ability to adjust the flow of injected or extracted air from each stacking of cells, and modifying the relationship between the volume of air aspirated and the volume theoretically necessary for a correct reaction (lambda parameter λ).
Preferentemente incorporará un sensor de oxígeno (6), que mandará información al sistema de control descrito más abajo para evitar situaciones de baja concentración de oxígeno en la atmósfera circundante, y por lo tanto insuficiencia de oxidante en el cátodo de cada celda del apilamiento, y un sensor de humedad relativa (7) para evitar condiciones ambientales extremas. Preferably it will incorporate an oxygen sensor (6), which will send information to the control system described below to avoid situations of low oxygen concentration in the surrounding atmosphere, and therefore insufficient oxidant in the cathode of each stacking cell, and a relative humidity sensor (7) to avoid extreme environmental conditions.
La alimentación de hidrógeno al ánodo de cada celda (2) del apilamiento se realiza por el subsistema de hidrógeno. Éste comprende una fuente de hidrógeno (8), y una línea de conducción a cada apilamiento de celdas (2), con sus válvulas (9) de suministro, manómetros (10) y reguladores de presión (11 ) para su control. La fuente de hidrógeno (8) puede ser individual o compartida por todos o parte de los módulos (1 ). El regulador de presión (11 ) será necesario cuando haya que regular la alta presión del hidrógeno almacenado en la botella a la baja presión de suministro, pero no es necesario si la fuente de hidrógeno (8) aporta ya el hidrógeno a la presión requerida. Hydrogen is fed to the anode of each cell (2) in the stack by the hydrogen subsystem. This comprises a source of hydrogen (8), and a conduction line to each cell stack (2), with its supply valves (9), pressure gauges (10) and pressure regulators (11) for control. The hydrogen source (8) can be individual or shared by all or part of the modules (1). The pressure regulator (11) will be necessary when the high pressure of the hydrogen stored in the bottle must be regulated at the low supply pressure, but it is not necessary if the hydrogen source (8) already supplies the hydrogen at the required pressure.
El hidrógeno debe ser suministrado al ánodo de cada módulo de apilamiento de celdas a la presión y flujo correspondiente. En la práctica, no todo el hidrógeno que entra en cada ánodo se consume. En los ánodos se va acumulando vapor de agua, nitrógeno y otros gases inertes, por lo que es recomendable purgarlos periódicamente. Hydrogen must be supplied to the anode of each cell stacking module at the corresponding pressure and flow. In practice, not all of the hydrogen that enters each anode is consumed. In the anodes water vapor, nitrogen and other inert gases accumulate, so it is advisable to purge them periodically.
Por ello, normalmente se instalarán dos líneas de hidrógeno: una para la entrada de éste en cada apilamiento y otra para la purga del mismo. En la línea de salida o purga de cada apilamiento de celdas se necesita una válvula de purga (12) para expulsar el hidrógeno no usado junto con los gases inertes al medio circundante. Además, es deseable añadir un sensor de hidrógeno (13) para evitar concentraciones en el aire circundante que supongan riesgo por estar dentro de los límites considerados en atmósfera explosiva (inferior a la cuarta parte del límite de inflamabilidad inferior). Therefore, two hydrogen lines will normally be installed: one for the entry of the latter in each stack and another for the purge of the same. A purge valve (12) is required in the outlet or purge line of each cell stack to expel unused hydrogen along with the inert gases into the surrounding environment. In addition, it is desirable to add a hydrogen sensor (13) to avoid concentrations in the surrounding air that pose a risk of being within the limits considered in an explosive atmosphere (less than a quarter of the lower flammability limit).
El aprovechamiento de la potencia eléctrica generada por cada apilamiento (2) se lleva a cabo mediante el subsistema eléctrico. Este subsistema conecta el apilamiento de celdas a
una carga eléctrica (14), disponiendo un contactor (15) por apilamiento para aislarlo de la carga eléctrica (14) y un diodo (16) de bloqueo para evitar corrientes inversas que puedan dañar el apilamiento. Como medidas de protección del apilamiento de celdas (2), éste puede disponer también de un amperímetro del apilamiento (17) y un voltímetro del apilamiento (18), que se conecta a los terminales eléctricos de cada apilamiento de celdas (2), así como un subsistema de monitorización de la tensión de cada celda individualmente (no representado) conectado a todas las celdas del apilamiento. The use of the electrical power generated by each stack (2) is carried out by means of the electrical subsystem. This subsystem connects the stacking of cells to an electric load (14), providing a contactor (15) by stacking to isolate it from the electric load (14) and a blocking diode (16) to avoid reverse currents that can damage the stacking. As protection measures for cell stacking (2), it can also have a stacking ammeter (17) and a stacking voltmeter (18), which is connected to the electrical terminals of each cell stacking (2), as well as a voltage monitoring subsystem of each cell individually (not shown) connected to all stacking cells.
El sistema de monitorización de celda vigila que ninguna celda entre en operación inversa, lo cual la dañaría significativamente. Por su parte, el amperímetro y el voltímetro del apilamiento de celdas (17,18) permiten al subsistema de control y monitorización tener información y actuar para que cada apilamiento, diseñado para operar dentro de un rango de valores de corriente y tensión, no se degrade si se sobrepasan estos rangos. The cell monitoring system monitors that no cell goes into reverse operation, which would significantly damage it. On the other hand, the ammeter and the voltmeter of the cell stack (17,18) allow the control and monitoring subsystem to have information and act so that each stack, designed to operate within a range of current and voltage values, is not degrade if these ranges are exceeded.
Además, la combinación del voltímetro del apilamiento (18) de celdas y el subsistema de detección de tensión de celda garantizan que ninguna de las celdas que conforman cada apilamiento opere en situación inversa, con una tensión igual o inferior a cero voltios. In addition, the combination of the cell stacking voltmeter (18) and the cell voltage detection subsystem ensure that none of the cells that make up each stacking operate in reverse, with a voltage equal to or less than zero volts.
Cada módulo (1 ) poseerá una batería (no representada) para la alimentación de los diferentes elementos del mismo en el arranque del módulo. Esta batería podrá ser recargada con parte de la potencia generada por el propio módulo. La invención puede comprender igualmente un subsistema de control y monitorización, que garantiza el óptimo funcionamiento del sistema. Para ello controlará los módulos (1 ) de los que se componga el sistema, con objeto de que éstos estén activos en función de la demanda solicitada por la carga y de su estado de uso. Esto traerá los beneficios siguientes: · Cada módulo sólo estará activo cuando la carga lo demande, lo cual redundará en un menor número de horas de funcionamiento y, por tanto, en una mayor duración global del sistema, prolongando su tiempo de vida, fundamentalmente de su apilamiento de celdas. Each module (1) will have a battery (not shown) to power the different elements of it at the start of the module. This battery can be recharged with part of the power generated by the module itself. The invention can also comprise a control and monitoring subsystem, which guarantees the optimal operation of the system. For this, it will control the modules (1) of which the system is composed, so that they are active depending on the demand requested by the load and its state of use. This will bring the following benefits: · Each module will only be active when the load demands it, which will result in a smaller number of hours of operation and, therefore, in a longer overall duration of the system, prolonging its life time, fundamentally of Your cell stacking.
• Cada módulo funcionará a potencia nominal, lo cual supondrá un mejor rendimiento y aprovechamiento de cada tiempo de funcionamiento.
• Los módulos podrán funcionar un número de horas similar, con lo cual el desgaste natural del sistema, fundamentalmente del apilamiento de celdas de cada módulo, será equilibrado. · Los módulos pueden ser no sólo puestos en marcha bajo demanda, sino también interconectados según requerimientos. • Each module will operate at nominal power, which will mean better performance and use of each operating time. • The modules can operate a similar number of hours, with which the natural wear of the system, mainly from the stacking of cells of each module, will be balanced. · The modules can be not only launched on demand, but also interconnected according to requirements.
• En el caso de que algún módulo se deteriore, con mayor probabilidad su apilamiento de celdas, el sistema podrá funcionar con el resto, siempre que la potencia máxima requerida no sobrepase la disponible. • In the event that any module deteriorates, with more probability its stacking of cells, the system may operate with the rest, provided that the maximum power required does not exceed that available.
Con este subsistema de control y monitorización, el sistema objeto de la invención suministra una potencia regulada en el rango desde 0 a hasta "n*p", siendo "n" el número de módulos y "p" la potencia de cada uno de ellos, supuestos todos iguales. Si así no fuera se podría tener desde 0 hasta (p1 + p2 + ... +pn). With this control and monitoring subsystem, the system object of the invention provides a regulated power in the range from 0 to "n * p", "n" being the number of modules and "p" the power of each , assumptions all the same. If this were not the case, it could be from 0 to (p1 + p2 + ... + pn).
El elemento de control se configura en dos niveles: un primer nivel constituido por los controladores locales (20) de cada módulo (1), que controlan los subsistemas de oxigenación/refrigeración, de hidrógeno y eléctrico y su acondicionador de potencia, y una unidad de control superior (21 ) que supervisa y gobierna cada controlador local (20) de acuerdo a los requisitos generales del sistema. The control element is configured in two levels: a first level consisting of the local controllers (20) of each module (1), which control the oxygenation / cooling, hydrogen and electrical subsystems and their power conditioner, and a unit of superior control (21) that supervises and governs each local controller (20) according to the general requirements of the system.
La unidad de control superior (21), en función de los requerimientos solicitados al sistema, conectará o desconectará cada módulo (1) de la línea de suministro de hidrógeno y de la línea de conexión eléctrica a la carga. The upper control unit (21), depending on the requirements requested to the system, will connect or disconnect each module (1) of the hydrogen supply line and the electrical connection line to the load.
En lo referente a la monitorización, este subsistema de control y monitorización mide todas las variables de interés, las almacena para su consulta por el usuario y las suministra al control. Por otro lado, permite el acceso en línea (refiriéndonos a acceso en tiempo real a través de la red-Internet (23) y/o red local-mediante una aplicación informática como un instrumento virtual) al sistema. Además, la monitorización del sistema se completa con la visualización de alarmas a través de la aplicación informática (22), la cual avisará al usuario de situaciones anómalas (exceso o defecto de presión o temperatura, demanda excesiva de corriente, tensión de funcionamiento reducida, etc.).
La potencia eléctrica que se genera en cada módulo (1) puede no poseer la calidad necesaria para alimentar a la carga eléctrica (14), por lo que se puede intercalar en paralelo, entre el apilamiento de celdas (2) y la carga (14), un subsistema acondicionador de potencia eléctrica (24) que garantice que la salida eléctrica de cada módulo (o del sistema completo de la Figura 2, según las conexiones posibles para los módulos que se describen más adelante) sea una potencia eléctrica regulada apta para alimentar cualquier carga eléctrica. Esta regulación podrá ser DC/DC o incluir una inversión DC/AC. With regard to monitoring, this control and monitoring subsystem measures all the variables of interest, stores them for consultation by the user and supplies them to the control. On the other hand, it allows online access (referring to real-time access through the Internet-network (23) and / or local network-through a computer application as a virtual instrument) to the system. In addition, the monitoring of the system is completed with the visualization of alarms through the computer application (22), which will notify the user of anomalous situations (excess or defect of pressure or temperature, excessive demand for current, reduced operating voltage, etc.). The electrical power generated in each module (1) may not have the necessary quality to feed the electric load (14), so it can be inserted in parallel, between the stacking of cells (2) and the load (14 ), an electrical power conditioning subsystem (24) that ensures that the electrical output of each module (or the complete system of Figure 2, according to the possible connections for the modules described below) is a regulated electrical power suitable for Power any electric charge. This regulation may be DC / DC or include a DC / AC investment.
Este subsistema es de diseño específico para el sistema objeto de la invención, ya que ha de gobernar la salida eléctrica de cada módulo para poder suministrar en todo momento los requerimientos cambiantes de potencia eléctrica regulada demandados por la carga. This subsystem is of specific design for the system object of the invention, since it has to govern the electrical output of each module to be able to supply at all times the changing requirements of regulated electrical power demanded by the load.
Para el subsistema acondicionador de potencia eléctrica (24) se pueden aplicar diferentes configuraciones básicas de conexión de pilas o módulos : en serie, en paralelo, en serie/paralelo y conectadas a un subsistema acondicionador con múltiples entradas. Cada una con las ventajas conocidas por un experto en la materia. Para el sistema en serie, se obtiene mayor tensión de salida y la misma corriente en todas las celdas. El sistema en paralelo permite que sólo trabaje un módulo. El sistema serie/paralelo permite diferentes configuraciones de tensión y corriente de salida, mientras que un subsistema con entradas diferentes (Figura 3) permite que trabajen uno o más módulos, cada uno en un punto de operación diferente. En esta figura sólo se han representado dos apilamientos, pero puede aplicarse a cualquier otro número. For the electric power conditioning subsystem (24) different basic configurations of connection of batteries or modules can be applied: in series, in parallel, in series / in parallel and connected to a conditioning subsystem with multiple inputs. Each with the advantages known to a person skilled in the art. For the series system, higher output voltage and the same current are obtained in all cells. The parallel system allows only one module to work. The series / parallel system allows different voltage and output current configurations, while a subsystem with different inputs (Figure 3) allows one or more modules to work, each at a different operating point. Only two stacks have been represented in this figure, but can be applied to any other number.
Para controlar los efectos de deterioro de los módulos (fundamentalmente sus apilamientos de celdas), se complementará con un subsistema de gestión de celdas para la monitorización y control de los diferentes efectos que contribuyen al deterioro de los apilamientos y, por ende, de los módulos que los contienen. Este subsistema trabaja a partir de los datos suministrados por el subsistema de control y monitorización. A modo de ejemplo del interés de este subsistema, se puede mencionar que la corriente de corrosión en las celdas que forman cada apilamiento puede originar una reducción de la tensión de celda, llegando incluso a 0 V. Esto supone un grave problema para la celda afectada que puede llevarla a un deterioro irreversible. Sin embargo, la reducción de la tensión de celda puede estar originada por un efecto no nocivo, como es la alta demanda de corriente en la carga. Esto tiene que ser capaz de detectarlo el subsistema de gestión de celdas.
Este subsistema de diseño específico es capaz de detectar si la reducción de la tensión de celda es originada por un efecto nocivo que hay que evitar o por otro que desaparece en el tiempo sin causar daños. Si el diseño y control de los diferentes subsistemas que complementan al apilamiento de celdas de cada módulo no se hace de forma correcta, o no se conocen con detalle los posibles efectos adversos, la tensión de celda puede disminuir hasta en 0,8 V. Sabiendo que la tensión máxima de una celda (tensión en circuito abierto) es de 1 V y la mínima (tensión a plena carga = máxima potencia) de 0,5 V; el deterioro de varias celdas en un mismo apilamiento tiene efectos negativos significativos en su comportamiento eléctrico. Las dos principales causas de deterioro que contribuyen a la pérdida de 0,8 V/celda son la corrosión del carbón que se emplea para depositar el catalizador y la inanición de combustible. To control the effects of deterioration of the modules (mainly their cell stacks), it will be complemented with a cell management subsystem for monitoring and control of the different effects that contribute to the deterioration of the stacks and, therefore, of the modules that contain them. This subsystem works from the data supplied by the control and monitoring subsystem. As an example of the interest of this subsystem, it can be mentioned that the corrosion current in the cells that form each stack can cause a reduction in the cell voltage, even reaching 0 V. This is a serious problem for the affected cell which can lead to irreversible deterioration. However, the reduction of the cell voltage may be caused by a non-harmful effect, such as the high demand for load current. This has to be able to detect the cell management subsystem. This specific design subsystem is able to detect if the reduction in cell voltage is caused by a harmful effect that must be avoided or by another that disappears over time without causing damage. If the design and control of the different subsystems that complement the stacking of cells of each module is not done correctly, or the possible adverse effects are not known in detail, the cell voltage can decrease up to 0.8 V. Knowing that the maximum voltage of a cell (open circuit voltage) is 1 V and the minimum (full load voltage = maximum power) of 0.5 V; The deterioration of several cells in the same stack has significant negative effects on their electrical behavior. The two main causes of deterioration that contribute to the loss of 0.8 V / cell are the corrosion of the carbon used to deposit the catalyst and the starvation of fuel.
La primera se debe a que en una celda de combustible tipo PEM, en la estructura Electrolito- Membrana-Electrolito, el catalizador que favorece la disociación del hidrógeno está suspendido en una fina capa de carbono que cubre a la membrana por ambos lados. Cuando esta capa de carbono desaparece (como consecuencia de la reacción del mismo con agua para formar C02, iones H+ y electrones), la interfaz hidrógeno-oxígeno (en lo sucesivo hidrógeno-aire ya que el oxígeno con el que reacciona la celda de combustible procede directamente del aire circundante) que existe en la membrana, se convierte en oxígeno-oxígeno (en lo sucesivo aire-aire). En este caso se generan dos zonas de diferente tensión y por tanto una corriente denominada corriente de corrosión. Esta corriente de corrosión aparece durante el arranque de la pila (degradación por arranque/parada), y también aparece si hay pérdidas de combustible, o si la válvula de suministro o la válvula de purga tienen fugas. The first is due to the fact that in a PEM type fuel cell, in the Electrolyte-Membrane-Electrolyte structure, the catalyst that favors the dissociation of hydrogen is suspended in a thin layer of carbon that covers the membrane on both sides. When this carbon layer disappears (as a result of its reaction with water to form C02, H + ions and electrons), the hydrogen-oxygen interface (hereinafter hydrogen-air since the oxygen with which the fuel cell reacts it comes directly from the surrounding air) that exists in the membrane, becomes oxygen-oxygen (hereinafter air-air). In this case two zones of different voltage and therefore a current called corrosion current are generated. This corrosion current appears during the starting of the battery (degradation by start / stop), and also appears if there are fuel leaks, or if the supply valve or the purge valve are leaking.
La corriente de corrosión tiene también el efecto de consumir el carbono de la capa catalizadora. The corrosion current also has the effect of consuming the carbon from the catalyst layer.
El subsistema de gestión de celdas deberá detectar que se ha producido regiones aire-aire para permitir la actuación correctora. Para ello detecta que la tensión producida por la celda es inferior a la teórica, por la presencia de las dos regiones aire-aire e hidrógeno-aire. Así, en caso de existencia de corrientes de corrosión, la tensión de celda será de 0,2V o similar en vez de aproximadamente 1V. En cambio, si hay fugas de combustible en la válvula, la celda producirá tensión con la válvula de hidrógeno cerrada, incluso tras consumirse completamente los remanentes de hidrógeno que puedan quedar en el circuito (aproximadamente 30 minutos).
En el caso de arranque de la celda tras estar un tiempo parada, hasta haberse consumido el remanente de hidrógeno, las corrientes de corrosión de arranque/parada serán inevitables, por lo que el sistema deberá reconocer que éste es el caso. The cell management subsystem must detect that air-to-air regions have been produced to allow corrective action. For this, it detects that the voltage produced by the cell is lower than the theoretical one, due to the presence of the two air-air and hydrogen-air regions. Thus, in the case of corrosion currents, the cell voltage will be 0.2V or similar instead of approximately 1V. On the other hand, if there are fuel leaks in the valve, the cell will produce tension with the hydrogen valve closed, even after completely consuming the remaining hydrogen that may remain in the circuit (approximately 30 minutes). In the case of starting the cell after being stopped for a while, until the remaining hydrogen has been consumed, the start / stop corrosion currents will be unavoidable, so the system must recognize that this is the case.
La inanición o falta de combustible provoca un efecto similar a las corrientes de corrosión sobre una celda de combustible. Cuando no existe suficiente hidrógeno con el que reaccionar, éste es sustituido por el carbono de la capa catalizadora, de forma que el carbono reacciona con el agua para generar protones y electrones, con el fin de abastecer la demanda de la carga. En esta situación, la tensión de celda puede bajar por debajo de 0 V, llegando a una situación inversa irreversible que supondrá la inhabilitación definitiva de la misma. Starvation or lack of fuel causes an effect similar to corrosion currents on a fuel cell. When there is not enough hydrogen to react with, it is replaced by the carbon in the catalyst layer, so that the carbon reacts with the water to generate protons and electrons, in order to supply the demand of the charge. In this situation, the cell voltage can drop below 0 V, reaching an irreversible inverse situation that will result in the definitive disabling of it.
Para la implementación del subsistema de gestión de celdas, se ha desarrollado un equipo de medida formado por el sistema de detección de tensión de celda, que no es objeto de la invención. El conexionado con cada módulo junto con el desarrollo del instrumento virtual para la monitorización no forman parte de la invención. For the implementation of the cell management subsystem, a measuring device formed by the cell voltage detection system has been developed, which is not the subject of the invention. The connection with each module together with the development of the virtual instrument for monitoring are not part of the invention.
Es especialmente interesante complementar la invención con un equipo de simulación implementado por medio de hardware y/o software, que puede funcionar tanto a nivel de módulo (1) como de sistema completo (correspondiente a la Figura 2), y que permite replicar el funcionamiento real (no lineal) del sistema objeto de la invención, y que además permita simular fallos y averías. Esto proporciona al simulador unas posibilidades de gran valor: formativas, de seguridad, de ahorro de costes, etc.; dotando además al sistema objeto de la invención de un gran valor añadido. It is especially interesting to complement the invention with a simulation device implemented by means of hardware and / or software, which can work at both the module (1) and the complete system level (corresponding to Figure 2), and which allows the operation to be replicated. real (nonlinear) of the system object of the invention, and which also allows to simulate failures and breakdowns. This provides the simulator with great value possibilities: training, security, cost savings, etc .; also providing the system object of the invention with a great added value.
El procedimiento de operación se inicia con el inicio de la alimentación eléctrica: encendido y ajuste de la batería, posteriormente el ajuste de hidrógeno, apertura de válvula (9) de suministro y su caudal. Finalmente el ajuste del subsistema de oxigenación/refrigeración, fijando el parámetro lambda, λ. The operation procedure begins with the start of the power supply: switching on and adjusting the battery, then adjusting hydrogen, opening the supply valve (9) and its flow. Finally the adjustment of the oxygenation / cooling subsystem, setting the lambda parameter, λ.
Durante el funcionamiento y generación de potencia eléctrica, los sensores realizan chequeos continuos, cuyo resultado podrá llevar al subsistema de control y monitorización a la activación de las alarmas e incluso al apagado por fallo, con lo que se activaría un módulo (1 ) inactivo, en caso de existir alguno, para suministrar la potencia que falte.
El apagado de los módulos (1 ) se realiza con el cierre de las válvulas y actuadores correspondientes, de forma que la detección de una condición anómala igualmente conllevaría la activación de alarmas.
During the operation and generation of electrical power, the sensors carry out continuous checks, the result of which may lead to the control and monitoring subsystem to the activation of alarms and even to shutdown due to failure, which would activate an inactive module (1), if any, to supply the missing power. The shutdown of the modules (1) is carried out with the closing of the corresponding valves and actuators, so that the detection of an abnormal condition would also lead to the activation of alarms.
Claims
REIVINDICACIONES
1- Sistema de generación de potencia eléctrica caracterizado por que comprende al menos dos módulos (1 ) de apilamientos de celdas (2) de membrana de intercambio protónico (PEM), alimentados por al menos una fuente de hidrógeno (8), de un subsistema de hidrógeno, y por que dispone de un subsistema de control y monitorización de cada módulo (1 ) y cada apilamiento, que controla los módulos (1 ) y con capacidad de activar y desactivar los módulos (1 ) individualmente. 2- Sistema de generación de potencia eléctrica, según la reivindicación 1 , caracterizado porque cada módulo (1 ) tiene una potencia diferente. 1- Electric power generation system characterized in that it comprises at least two modules (1) of stacks of proton exchange membrane cells (2), fed by at least one source of hydrogen (8), from a subsystem hydrogen, and because it has a control and monitoring subsystem of each module (1) and each stack, which controls the modules (1) and with the ability to activate and deactivate the modules (1) individually. 2- Electric power generation system according to claim 1, characterized in that each module (1) has a different power.
3- Sistema de generación de potencia eléctrica, según cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de control y monitorización recibe de cada módulo (1 ) la señal de un amperímetro del apilamiento (17) y de un voltímetro del apilamiento (18) así como de un subsistema de detección de tensión de celda en cada una de las celdas (2) del apilamiento. 3- Electric power generation system, according to any of the preceding claims, characterized in that the control and monitoring subsystem receives from each module (1) the signal of a stacking ammeter (17) and a stacking voltmeter (18 ) as well as a cell voltage detection subsystem in each of the cells (2) of the stack.
4- Sistema de generación de potencia eléctrica, según la reivindicación 3, caracterizado por que el sistema de detección de tensión de celda está comunicado con un sistema de gestión de celda, capaz de detectar el funcionamiento anómalo de la celda y avisar al subsistema de control y monitorización. 4- Electric power generation system according to claim 3, characterized in that the cell voltage detection system is communicated with a cell management system, capable of detecting the abnormal operation of the cell and alerting the control subsystem and monitoring.
5- Sistema de generación de potencia eléctrica, según cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de control y monitorización posee un primer nivel formado por un controlador local (20) por cada módulo y un nivel superior formado por una unidad de control superior (21 ) que coordina los controladores locales (20). 5- Electric power generation system, according to any of the preceding claims, characterized in that the control and monitoring subsystem has a first level formed by a local controller (20) for each module and a higher level formed by a control unit superior (21) that coordinates the local controllers (20).
6- Sistema de generación de potencia eléctrica, cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de control y monitorización es accesible en línea. 6- Electric power generation system, any of the preceding claims, characterized in that the control and monitoring subsystem is accessible online.
7- Sistema de generación de potencia eléctrica, cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de control y monitorización distribuye homogéneamente las horas de funcionamiento entre todos los módulos (1 ) cuando la potencia solicitada es inferior a la máxima.
8- Sistema de generación de potencia eléctrica, cualquiera de las reivindicaciones anteriores, caracterizado por que los módulos (1 ) comprenden un subsistema de oxigenación/refrigeración que aporta aire a las celdas (2) como refrigerante y como aporte de oxígeno al cátodo. 7- Electric power generation system, any of the preceding claims, characterized in that the control and monitoring subsystem homogeneously distributes the operating hours among all modules (1) when the requested power is less than the maximum. 8- Electric power generation system, any of the preceding claims, characterized in that the modules (1) comprise an oxygenation / cooling subsystem that provides air to the cells (2) as refrigerant and as oxygen supply to the cathode.
9- Sistema de generación de potencia eléctrica, cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de hidrógeno aporta hidrógeno a presión ambiente a las celdas (2). 9- Electric power generation system, any of the preceding claims, characterized in that the hydrogen subsystem provides hydrogen at ambient pressure to the cells (2).
10- Sistema de generación de potencia eléctrica, cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de hidrógeno comprende una línea de purga del módulo (1). 11- Sistema de generación de potencia eléctrica, cualquiera de las reivindicaciones anteriores, caracterizado por que comprende un equipo de simulación para replicar el funcionamiento de dicho sistema.
10- Electric power generation system, any of the preceding claims, characterized in that the hydrogen subsystem comprises a purge line of the module (1). 11- Electric power generation system, any of the preceding claims, characterized in that it comprises simulation equipment to replicate the operation of said system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201430656A ES2553303B1 (en) | 2014-05-06 | 2014-05-06 | ELECTRICAL POWER GENERATION SYSTEM |
ESP201430656 | 2014-05-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015169979A1 true WO2015169979A1 (en) | 2015-11-12 |
Family
ID=54392184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2015/000061 WO2015169979A1 (en) | 2014-05-06 | 2015-05-05 | System for generating electric power |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2553303B1 (en) |
WO (1) | WO2015169979A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018218333A1 (en) | 2018-10-26 | 2020-04-30 | Audi Ag | Electrical energy system with fuel cells |
DE102019200447A1 (en) | 2019-01-16 | 2020-07-16 | Audi Ag | Fuel cell stack with partial stacks, fuel cell device and method for operating a fuel cell device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10332336A1 (en) * | 2003-07-16 | 2005-02-17 | Siemens Ag | Fuel cell assembly for marine vehicle, has several cell modules and controller which switches additional modules on or off depending on efficiency of first power supply module |
WO2005041339A1 (en) * | 2003-10-23 | 2005-05-06 | Hydrogenics Corporation | A fuel cell power system having multiple fuel cell modules |
WO2007125368A1 (en) * | 2006-04-27 | 2007-11-08 | Afc Energy Plc | A fuel-cell system |
US20110189568A1 (en) * | 2010-01-29 | 2011-08-04 | Sanyo Electric Co., Ltd. | Fuel cell system |
EP2360766A2 (en) * | 2010-02-12 | 2011-08-24 | Chung-Hsin Electric and Machinery Manufacturing Corp. | Parallel Fuel Cell Electrical Power System |
-
2014
- 2014-05-06 ES ES201430656A patent/ES2553303B1/en active Active
-
2015
- 2015-05-05 WO PCT/ES2015/000061 patent/WO2015169979A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10332336A1 (en) * | 2003-07-16 | 2005-02-17 | Siemens Ag | Fuel cell assembly for marine vehicle, has several cell modules and controller which switches additional modules on or off depending on efficiency of first power supply module |
WO2005041339A1 (en) * | 2003-10-23 | 2005-05-06 | Hydrogenics Corporation | A fuel cell power system having multiple fuel cell modules |
WO2007125368A1 (en) * | 2006-04-27 | 2007-11-08 | Afc Energy Plc | A fuel-cell system |
US20110189568A1 (en) * | 2010-01-29 | 2011-08-04 | Sanyo Electric Co., Ltd. | Fuel cell system |
EP2360766A2 (en) * | 2010-02-12 | 2011-08-24 | Chung-Hsin Electric and Machinery Manufacturing Corp. | Parallel Fuel Cell Electrical Power System |
Non-Patent Citations (3)
Title |
---|
BARBIR, F ET AL.: "Optimal operating temperature and pressure of PEM fuel cell systems in automotive applications.", 218 ACS NATIONAL MEETING, 1999, pages 979 - 980 * |
GUANGSHENG ZHANG ET AL.: "A critical review of cooling techniques in proton exchange membrane fuel cell stacks.", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 37, no. 3, 2 November 2011 (2011-11-02), pages 2412 - 2429, XP028441455 * |
WANG L ET AL.: "A parametric study of PEM fuel cell performances.", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 28, no. 11, 1 November 2003 (2003-11-01), pages 1263 - 1272, XP004433961 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018218333A1 (en) | 2018-10-26 | 2020-04-30 | Audi Ag | Electrical energy system with fuel cells |
DE102019200447A1 (en) | 2019-01-16 | 2020-07-16 | Audi Ag | Fuel cell stack with partial stacks, fuel cell device and method for operating a fuel cell device |
Also Published As
Publication number | Publication date |
---|---|
ES2553303A1 (en) | 2015-12-07 |
ES2553303B1 (en) | 2016-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2438007T3 (en) | Operating procedure of a passive hybrid power supply per fuel cell / battery | |
US20110200906A1 (en) | Parallel fuel cell electrical power system | |
ES2397784T3 (en) | Rehydration of fuel cells | |
US20120164498A1 (en) | Systems and methods for redox flow battery scalable modular reactant storage | |
US10277095B2 (en) | Cooling arrangement using an electrochemical cell | |
US9397362B2 (en) | Modular fuel cell power system | |
CN111029629A (en) | Power supply system and control method for indoor communication data machine room | |
US8765318B2 (en) | System and method for electrochemical cell system and leak detection and indication | |
ES2553303B1 (en) | ELECTRICAL POWER GENERATION SYSTEM | |
ES2325848B1 (en) | HYDROGEN AND ELECTRICAL ENERGY PRODUCTION SYSTEM FROM PHOTOVOLTAIC ENERGY. | |
KR20180085970A (en) | Multi-channels fuel cell test station | |
RU2646530C2 (en) | Portable hydrogen electric power supply | |
JP6058746B1 (en) | Container assembly for hydrogen system | |
CN115939455B (en) | Hydrogen energy fuel cell power generation system | |
KR101447865B1 (en) | Fuel cell system for ship | |
KR101466105B1 (en) | Fuel cells system and method for load following thereof | |
KR102603061B1 (en) | Power generation control system and control method of fuel cell | |
KR102016163B1 (en) | Individual control type tube shpae solid oxide battery stack module | |
KR20140039554A (en) | Fuel cell system for ship | |
TWI726516B (en) | Flow battery system and control method of the same | |
US20110189570A1 (en) | System and method for passivating a fuel cell power plant | |
CN115249827B (en) | Control and regulation system applied to proton membrane fuel cell | |
JP6924925B2 (en) | Fuel cell system and how to operate it | |
KR100906902B1 (en) | Safety system of fuel cell stack and method for the same | |
Anderson | Development of reversible fuel cell systems at Proton Energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15788924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15788924 Country of ref document: EP Kind code of ref document: A1 |