WO2015152171A1 - Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate - Google Patents
Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate Download PDFInfo
- Publication number
- WO2015152171A1 WO2015152171A1 PCT/JP2015/059981 JP2015059981W WO2015152171A1 WO 2015152171 A1 WO2015152171 A1 WO 2015152171A1 JP 2015059981 W JP2015059981 W JP 2015059981W WO 2015152171 A1 WO2015152171 A1 WO 2015152171A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- coating
- weight
- organic resin
- substrate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/067—Polyurethanes; Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F292/00—Macromolecular compounds obtained by polymerising monomers on to inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/08—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/10—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/68—Particle size between 100-1000 nm
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
Definitions
- the present invention relates to a coating liquid for forming a transparent film and a substrate with a transparent film.
- the present invention relates to a coating solution that is suitable for forming a transparent film having high hardness even when the substrate is a resin substrate, and having no cracks even when the substrate is a thick film.
- a transparent film having a hard coat function is provided on the surface of the base material.
- An organic resin film or an inorganic film is used as such a transparent film.
- inorganic particles such as resin particles and silica in the transparent film.
- the particles are dispersed in the coating liquid for forming the transparent film, the particles having low affinity for the matrix forming component and the dispersion medium are aggregated. For this reason, the stability of the coating solution is lowered, and in addition to the transparency and haze of the resulting transparent film, the scratch resistance, strength, scratch strength and the like may be insufficient.
- the particles are surface-treated with a silane coupling agent.
- particles are coated with a resin by a mechanochemical method, a graft polymerization method, or the like to increase the affinity with a matrix component or a dispersion medium.
- Patent Document 5 discloses composite particles having an organic component on the surface of an inorganic particle in which an aromatic skeleton and a structure in which four or more atoms are connected to each other are bonded to the aromatic skeleton. ing. It is disclosed that such composite particles have excellent dispersibility, and according to the resin composition containing the composite particles and a resin component, a cured product having excellent heat resistance and mechanical strength can be obtained. Furthermore, it is described that the composite particles are mixed with a resin and an initiator in a dispersion medium, and then the solvent is degassed with an evaporator or the like to prepare a resin composition. At this time, it is disclosed that the solvent is degassed under a reduced pressure under heating at 100 ° C. or less, and the solvent is degassed in the presence of a high-boiling component.
- a dispersion of metal oxide particles having an average secondary particle size of the order of micrometers using an organic solvent such as ethers, esters, and ketones as a dispersion medium is heat-treated, and then an acrylic resin is added thereto. It is known to mechanochemical treatment. Thereby, resin can be uniformly coated on each metal oxide particle. At this time, the dispersion of the metal oxide particles coated with the resin can be increased to a solid concentration of 50% by weight (Japanese Patent Laid-Open No. 2010-077409 (Patent Document 6)).
- a (meth) acrylate resin having an aromatic ring is added to an organic solvent dispersion of metal oxide particles that has been heat-treated in advance, and then the resin is uniformly coated on individual particles by mechanochemical treatment. it can.
- the resin-coated particles are uniformly dispersed in a low molecular weight resin having a high affinity with the resin-coated particles, and then the organic solvent is removed. Thereby, the resin-coated particles are highly dispersed without being cured, and a composition having excellent stability can be obtained.
- a curing agent is added to the composition, applied, and cured without drying. Thereby, a transparent film with small shrinkage can be formed thickly. This transparent film is dense and excellent in transparency, haze, scratch resistance, etc. (Japanese Patent Laid-Open No. 2012-72288 (Patent Document 7)).
- an organic resin is obtained from a coating containing a (meth) acrylate resin having a fluorene skeleton having an average molecular weight in a specific range, a (meth) acrylate resin having a fluorene skeleton, and (meth) acrylate resin-coated particles.
- a high-concentration paint can be prepared by removing with a rotary evaporator. When such a paint is used, a thick optical film having excellent hardness can be obtained (Japanese Patent Laid-Open No. 2013-10864 (Patent Document 8)).
- an acrylate having a functional group number of 4 or more, an acrylate resin having a functional group number of 2 or 3, an irregularly shaped particle (a particle having a spherical coefficient in a predetermined range or a chain particle), and a coating material containing a dispersion medium are used, Curling is suppressed even with a thin substrate, and a transparent film excellent in adhesion to the substrate, hardness, scratch resistance, etc. can be obtained (Japanese Patent Laid-Open No. 2013-133444 (Patent Document 9)).
- unevenness is formed on the film surface by using a coating liquid for forming a hard coat film composed of metal oxide particles treated with a surfactant having an ethylene oxide-modified skeleton, a hydrophobic matrix forming component, and an organic dispersion medium.
- a coating liquid for forming a hard coat film composed of metal oxide particles treated with a surfactant having an ethylene oxide-modified skeleton, a hydrophobic matrix forming component, and an organic dispersion medium.
- Patent Document 10 Japanese Patent Laid-Open No. 2013-136222
- JP 2010-126675 A Japanese Patent Laid-Open No. 3-163172 JP-A-6-336558 JP-A-6-49251 JP 2000-143230 A JP 2010-37534 A JP 2010-077409 A JP 2012-72288 A JP 2013-10864 A JP 2013-133444 A JP 2013-136222 A JP 2009-35595 A JP 2010-126675 A
- Patent Document 6 discloses a dispersion sol of resin-coated metal oxide particles containing an organic solvent, and its concentration is in the range of approximately 1 to 60% by weight as a solid content. When the concentration of the coating solution exceeds 60% by weight, the stability is lowered, and there is a case where it aggregates and settles. In addition, a resin component is added as a matrix-forming component together with an organic solvent when preparing a coating solution, but there is a limit to the film thickness of the resulting film.
- Patent Document 6 a transparent film having a film thickness of 4 ⁇ m and a pencil hardness exceeding 4H cannot be obtained (Patent Document 6), and a transparent film having a film thickness of 35 ⁇ m and a pencil hardness exceeding 3H cannot be obtained (Patent Document 7). Even a transparent film containing 50% by weight or more cannot exceed 4H (Patent Document 12).
- Patent Document 9 a transparent film having a pencil hardness of 5H or more has not been obtained even if irregularly shaped particles are used. In recent years, even when a resin substrate is used in various display devices, a transparent film having a pencil hardness comparable to that of a glass substrate has been demanded.
- the present inventors thought that the hardness can be increased by decreasing the resin ratio and increasing the particle ratio.
- simply increasing the ratio of the particles has a problem that cracking and shrinkage due to drying during film formation are large as well as stability of the coating solution. Therefore, it has been found that the final resin ratio can be reduced by using an ultraviolet curable resin monomer instead of a conventional solvent as a dispersion sol medium at the time of preparing the coating liquid.
- a stable organic resin dispersion is prepared by preparing an organic dispersion medium dispersion of metal oxide particles surface-treated with a predetermined amount of an organosilicon compound, and replacing the organic dispersion medium with an ultraviolet curable resin monomer having a small number of functional groups. It was found that (sometimes referred to as an organic resin dispersion sol) can be obtained. And when this is mixed with an ultraviolet curable resin monomer having 3 or more functional groups to form a coating solution, the ratio of the resin can be reduced, and even when the coating solution is applied thickly, the shrinkage of the transparent film is small. It was also found that there was no crack, curling was suppressed, and the hardness of the film was significantly improved.
- the coating liquid for forming a transparent film of the present invention contains metal oxide particles having an average particle diameter in the range of 5 to 300 nm and a matrix-forming component, and the concentration of the metal oxide particles as a solid content ( C P ) is 45 to 90% by weight, the concentration (C R ) as a solid content of the matrix forming component is 10 to 50% by weight, the total solid content concentration (C T ) is 60% by weight or more, and the concentration (C R) ) And concentration (C P ) ratio (C R / C P ) is in the range of 0.11 to 1.0, and the matrix-forming component and the first organic resin having 2 or less functional groups and 3 It is comprised with the 2nd organic resin which has the above functional group.
- first organic resin and the second organic resin are ultraviolet curable resin monomers or oligomers.
- (meth) acrylate groups, urethane acrylate groups, and epoxy-modified acrylate groups are suitable as functional groups of the first organic resin and the second organic resin.
- the metal oxide particles are preferably surface treated with an organosilicon compound.
- the method for producing a coating liquid of the present invention comprises a step of preparing a dispersion containing metal oxide particles having an average particle diameter in the range of 5 to 300 nm and an organic dispersion medium, and at least a part of the organic dispersion medium.
- it is suitable as a method for producing the above coating solution.
- the substrate with a transparent coating of the present invention is a substrate on which a transparent coating by the above-described coating solution is provided.
- the transparent coating comprises metal oxide particles having an average particle size of 5 to 300 nm and a matrix component.
- the solid content of metal oxide particles (W P ) is 45 to 90% by weight
- the content of the matrix component as solids (W R ) is 10 to 50% by weight
- the content ratio (W R / W P ) is 0.11 to 1.0
- the average film thickness (T) is 1 to 100 ⁇ m.
- an antireflection layer is provided on the transparent coating.
- Antireflective layer comprises a silica-based hollow particles and the matrix component (M L), the content of the silica-based hollow particles (W PLA) is 5 to 80 wt%, the content of the matrix component (M L) (W ML ) is 20 to 95% by weight, the thickness (T L ) of the antireflection layer is 80 to 200 nm, the average particle diameter (D PA ) of the silica-based hollow particles is 10 to 45 nm, and the silica-based hollow
- the ratio (D PA / T L ) between the average particle diameter (D PA ) of the particles and the thickness (T L ) of the antireflection layer is 0.05 to 0.56.
- the coating solution of the present invention even a thick film has a small film shrinkage, no cracks, curling is suppressed, and a transparent film having high hardness can be formed.
- the coating liquid for forming a transparent film according to the present invention contains metal oxide particles having an average particle diameter of 5 to 300 nm and a matrix forming component.
- metal oxide particles are present as a solid content at a concentration (C P ) of 45 to 90% by weight. In particular, a range of 48 to 80% by weight is preferable.
- the coating solution contains a matrix-forming component as a solid content at a concentration (C R ) of 10 to 50% by weight. In particular, it is preferably in the range of 15 to 40% by weight.
- the total solid content concentration (C T ) of the coating solution is 60% by weight or more. More than 60% by weight is particularly suitable, and more preferably 63% by weight or more.
- the concentration (C P ) of the metal oxide particles in the coating solution is low, the film shrinks greatly, so that a thick film is likely to crack. Moreover, densification is not sufficient and a transparent coating film with high hardness cannot be obtained. On the contrary, when the concentration (C P ) is high, the surface unevenness of the transparent film becomes large. Therefore, external scattering occurs, the haze of the film is deteriorated, and the transparency is lowered. Furthermore, the film is not sufficiently densified, and the scratch resistance of the transparent film and the adhesion to the substrate are insufficient.
- the concentration (C R ) of the matrix-forming component in the coating solution is too low, the concentration (C P ) of the metal oxide particles is increased, the haze of the film is deteriorated as described above, and the transparency is lowered. Furthermore, the densification of the film may be insufficient, and the scratch resistance of the transparent film and the adhesion to the substrate will be insufficient. Even if the concentration (C R ) of the matrix-forming component is too high, the film shrinks more than when a large amount of metal oxide particles are blended, and cracks tend to occur when the film is thick.
- the concentration ratio (C R / C P ) between the concentration of the matrix forming component (C R ) and the concentration of the metal oxide particles (C P ) is set to 0.11 to 1.0.
- the range of 0.18 to 0.8 is particularly preferable.
- the concentration ratio (C R / C P ) is low, since the concentration (C P ) as the solid content of the metal oxide particles is high, the surface unevenness of the transparent coating becomes large. For this reason, the haze of the film is deteriorated due to external scattering, and the transparency is easily lowered. Furthermore, the densification of the film may be insufficient, and the scratch resistance of the transparent coating and the adhesion to the substrate will be insufficient.
- the concentration ratio is too high, the shrinkage of the film increases, and cracks are likely to occur in a thick film. Further, the transparent film is not sufficiently densified, and good hardness cannot be obtained.
- the matrix forming component is composed of a first organic resin (A) and a second organic resin (B).
- the first organic resin is an organic resin having 2 or less functional groups and stably disperses the metal oxide particles.
- the second organic resin is an organic resin having three or more functional groups, and is necessary for increasing the hardness of the coating film.
- the content of the first organic resin (A) in the matrix-forming component as a solid content is 1 to 80% by weight. In particular, it is preferably in the range of 5 to 60% by weight. If the content of the first organic resin (A) is too small, it is difficult to uniformly disperse the metal oxide particles without agglomerating. A transparent film obtained from such a coating solution has low surface smoothness and insufficient densification.
- the second organic resin (B) is small, so that the denseness of the transparent film is not sufficient and good hardness cannot be obtained.
- the second organic resin in the matrix-forming component is set so that the total concentration (C R ) with the first organic resin is in the above range.
- the ratio (C RA / C P ) between the concentration (C RA ) of the first organic resin in the matrix-forming component and the concentration (C P ) of the metal oxide particles is 0.17 to 1.11. In particular, the range of 0.19 to 0.89 is preferable. If it exists in this range, even if there are many metal oxide particles, shrinkage
- Such a coating solution is prepared as follows.
- Step (a) metal oxide particles having an average particle diameter in the range of 5 to 300 nm are dispersed in an organic dispersion medium to prepare an organic dispersion.
- the concentration of the metal oxide particles in the organic dispersion is not particularly limited, but is usually in the range of 30 to 50% by weight as a solid content. If the concentration is low, the amount of solvent substitution increases and it is not efficient. When the concentration is high, the metal oxide particles aggregate. Or even if it does not aggregate, a viscosity will rise and it will be difficult to obtain stability. At this time, the metal oxide particles are preferably surface-treated with an organosilicon compound.
- Step (b) the organic dispersion medium in the dispersion is replaced with a first organic resin having 2 or less functional groups.
- a conventionally well-known method is employable.
- a rotary evaporator method or an evaporator method can be employed. At this time, you may carry out under pressure reduction and also heating as needed.
- the ratio of replacing the organic dispersion medium with the first organic resin is performed so that the concentration of the organic dispersion medium in the coating liquid finally obtained through the step (c) described later is less than 40% by weight. In particular, it is preferably less than 35% by weight. If a large amount of the organic dispersion medium remains, the total solid content concentration (C T ) of the coating solution decreases, and thus the shrinkage from application of the coating solution to drying increases. For this reason, when a thick film, particularly a film having a thickness of 10 ⁇ m or more is obtained, cracks are likely to occur during shrinkage, and curling properties are increased.
- Step (c) Next, the second organic resin having three or more functional groups is mixed in the dispersion liquid containing the first organic resin obtained in the step (b).
- the mixing amount of the second organic resin is set so that the total amount of the first organic resin and the second organic resin, that is, the solid content concentration (C R ) as a matrix forming component is 15 to 50% by weight. To do.
- the coating solution for forming a transparent film thus obtained has a concentration (C P ) of 45 to 90% by weight as a solid content of metal oxide particles, and a total solid content concentration (C T ) of 60% by weight.
- the ratio (C R / C P ) between the concentration (C R ) and the concentration (C P ) is in the range of 0.11 to 1.0.
- the total solid content (C T ) is preferably more than 60% by weight, more preferably 63% by weight or more.
- an organic dispersion medium may be added in order to adjust the viscosity of the coating solution.
- metal oxide particles and matrix forming components contained in the coating solution will be described in detail.
- Metal oxide particles It is preferable to use metal oxide particles derived from a metal oxide sol.
- a metal oxide sol For example, conventionally known silica sol, zirconia sol, titania sol, alumina sol, antimony pentoxide sol, antimony doped tin oxide (ATO), phosphorus doped tin oxide (PTO), indium doped tin oxide (ITO) and the like can be mentioned.
- the average particle size of the metal oxide particles is suitably 5 to 300 nm.
- the range of 5 to 200 nm is particularly preferable.
- the average particle diameter of the metal oxide particles is less than 5 nm, the metal oxide particles are likely to aggregate although depending on the presence or absence of a surface treatment described later. When agglomerated, the haze of the transparent film deteriorates and the transparency is lowered. Even if the average particle diameter exceeds 300 nm, although depending on the content of the metal oxide particles, the haze of the transparent film is deteriorated or the transparency is lowered. Further, the transparent film may be damaged by friction or the like.
- the spherical coefficient of the metal oxide particles is suitably 0.2 to 1.0. In particular, 0.4 to 1.0 is preferable.
- the spherical coefficient is small, the dispersibility in the coating solution is insufficient and the metal oxide particles may aggregate. For this reason, adhesion to the substrate, scratch strength, etc. are insufficient, and cracks may occur in the resulting transparent film.
- the spherical coefficient is represented by “(average short diameter perpendicular to the longest diameter at the midpoint of the longest diameter; D S ) / (average particle longest diameter of the particle; D L )”.
- R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different.
- X represents an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, halogen, or hydrogen, and n represents an integer of 1 to 3.
- substituent include an epoxy group, an alkoxy group, a (meth) acryloyloxy group, a mercapto group, a halogen atom, an amino group, and a phenylamino group.
- the surface treatment amount of the metal oxide particles is suitably 0.1 to 50 parts by weight with respect to 100 parts by weight of the metal oxide particles, with the organosilicon compound being R n —SiO 2 (4-n) / 2 .
- the range of 1 to 40 parts by weight is particularly preferable.
- a conventionally known method can be adopted.
- the metal oxide sol is a water-dispersed sol
- an organosol obtained by solvent substitution with alcohol is added, and a necessary amount of the aforementioned hydrolyzable organosilicon compound is added to the sol and heated as necessary.
- Examples include a method of hydrolyzing an organosilicon compound by adding an acid or an alkali as a decomposition catalyst. After the hydrolysis, it is preferable to replace the dispersion medium containing water or by-products with an organic dispersion medium described later.
- organosilicon compound represented by the formula (1) examples include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldi Ethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoro Propyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxymethyltrimethoxysilane, ⁇ -glycidoxymethyltriethoxysilane, ⁇ -g
- an organosilicon compound having a substituted hydrocarbon group having a (meth) acrylate group as a substituent as R is preferable.
- the compatibility between the metal oxide particles and the ultraviolet curable organic resin is increased, and the dispersibility is improved. Therefore, a transparent film having a uniform and excellent adhesion to the substrate can be obtained.
- organosilicon compounds having a substituted hydrocarbon group with a (meth) acrylate group as a substituent as R ⁇ - (meth) acrylooxymethyltrimethoxysilane, ⁇ - (meth) acrylooxymethyltriexisilane, ⁇ -(Meth) acrylooxyethyltrimethoxysilane, ⁇ - (meth) acryloxyethyltriethoxysilane, ⁇ - (meth) acryloxypropyltrimethoxysilane, ⁇ - (meth) acryloxypropyltriethoxysilane ⁇ - (meth) acrylooxypropyldimethoxysilane, ⁇ - (meth) acryloxypropyldiethoxysilane, and the like.
- Matrix-forming component In the coating liquid for forming a transparent film according to the present invention, as a matrix-forming component, a first organic resin (A) having 2 or less functional groups and a second organic resin having 3 or more functional groups. Of the organic resin (B).
- the first organic resin and the second organic resin are preferably UV curable resin monomers or oligomers.
- the number of functional groups is three or more, so polyethylene terephthalate (PET) or triacetyl cellulose (TAC) It is easy to combine with a resin base material such as, and has excellent adhesion to the base material.
- the second organic resin preferably has at least one functional group selected from a (meth) acrylate group, a urethane acrylate group, and an alkylene oxide-modified acrylate group.
- the bond with the resin substrate is further strengthened, and high adhesion to the substrate can be obtained.
- a transparent coating with higher hardness can be obtained.
- an ultraviolet curable resin monomer or oligomer having 1 to 2 functional groups for the first organic resin.
- the number of functional groups is 1-2, the viscosity of the organic resin is low, and when the organic dispersion medium dispersion of metal oxide particles is replaced with a solvent, the increase in viscosity is small even when the concentration of the organic resin is increased. It can be used suitably. That is, the metal oxide particles can be stably dispersed by the first organic resin, and an organic resin dispersion of metal oxide particles that is stable at a high concentration can be obtained.
- the molecular weight (polystyrene equivalent molecular weight) of the monomer or oligomer of the ultraviolet curable resin is suitably 5,000 or less. In particular, 4,500 or less is preferable. If the molecular weight is too large, the viscosity of the resin is high, and when used as the first organic resin, when the organic dispersion medium dispersion of metal oxide particles is replaced with the dispersion medium, the viscosity of the dispersion increases and the concentration increases. There are cases where it is not possible. Therefore, it becomes difficult to form a thick film, to suppress shrinkage during film formation, to suppress cracks, to suppress curling, and to form a transparent film having excellent hardness. When used as the first organic resin, 1,000 or less is particularly preferable. Further, when used as the second organic resin, the hardness of the resin is lowered, and thus the hardness of the transparent film is hardly exhibited.
- the first organic resin is a hydroxyl group (OH group), an ether group, It preferably contains at least one selected from an amino group, a carboxyl group, and a sulfo group.
- OH group a hydrophilic group
- the affinity with the metal oxide particles is high, and the organic dispersion medium dispersion of the metal oxide particles is solvent-substituted in the coating liquid preparation step (b) described above. In this case, the metal oxide particles can be uniformly dispersed without agglomeration.
- the first organic resin has any functional group such as a hydroxyl group, an ether group, an amino group, a carboxyl group, and a sulfo group. Although it is preferable not to have it, you may have these functional groups.
- the ultraviolet curable resin which can be used suitably for a 1st organic resin is illustrated.
- Monofunctional (meth) acrylic acid monomer or oligomer methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-acryloyloxytetrahydrophthalic acid, 2-acryloyloxyhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2- Acryloyloxypropyltetraphthalic acid, 2-acryloyloxypropylhexaphthalic acid, methacryloyloxyethyl succinic acid, methacryloyloxytetrahydrophthalic acid, methacryloyloxyethyltetrahydrophthalic acid, methacryloyloxyethylhexahydrophthalic acid, methacryloyloxypropylphthalic acid, methacryloyl Oxypropyltetraphthalic acid, methacryloyloxypropylhexaphthalic acid.
- methoxytriethylene glycol acrylate methoxypolyethylene glycol # 400 monoacrylate, methoxypolyethylene glycol # 600 monoacrylate, methoxypolyethylene glycol # 1000 monoacrylate, methoxytripropylene glycol acrylate, Phenoxyethylene glycol acrylate, phenoxydiethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethoxylated ⁇ -phenylphenol propyl acrylate, methoxydiethylene glycol methacrylate, methoxytriethylene glycol methacrylate, methoxytetraethylene glycol methacrylate, methoxy Triethylene glycol methacrylate, methoxy tripropylene glycol dimethacrylate, ethoxylated 2-ethylhexyl methacrylate, butoxy diethylene glycol methacrylate, butoxy diethylene glycol dimethacrylate, polyethylene glycol-
- Those having an alkylene oxide-modified (meth) acrylate group are represented by the following formula (2) as disclosed in JP-A-2005-92198.
- [CH 2 C (R 1 ) COO (R 2 O) n] m R 3 ⁇ Equation (2)
- R 1 is a hydrogen atom or a methyl group
- R 2 is an alkylene group
- R 3 is a hydrocarbon residue.
- m is 1 or more
- n is 1 or more.
- m corresponds to the number of functional groups.
- Those having a bifunctional ethylene oxide-modified (meth) acrylate group tripropylene glycol diacrylate, polypropylene glycol diacrylate, polyethylene glycol # 200 diacrylate, polypropylene glycol # 400 diacrylate, polypropylene glycol # 700 diacrylate, polytetramethylene glycol # 650 diacrylate, polyethylene polypropylene glycol diacrylate, dioxane glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol # 200 dimethacrylate, polyethylene glycol # 400 dimethacrylate Over DOO, polyethylene glycol # 600 dimethacrylate, polyethylene glycol # 1000 dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene polypropylene glycol diacrylate, glycol
- the organic resin which has a specific functional group among the monomer or oligomer of the above-mentioned ultraviolet curable resin is shown below. Having OH group; 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 2-methacryloyloxyethyl acid phosphate 2-acryloyloxyethyl acid phosphate, glycerine methyacrylate, 2-hydroxy-3-methacrylpropyl acrylate, 2-hydroxy-1,3-dimethacryloxypropane, 2-hydroxy-3-phenoxypropyl acrylate.
- Those having an amino group dimethylaminoethyl methacrylate, dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, diethylaminoethyl methacrylate.
- Those having an amide group dimethylacrylamide, acryloylmorpholine, dimethylaminopropylacrylamide, isopropylacrylamide, diethylacrylamide, and hydroxyethylacrylamide.
- methacrylic acid 2-acryloyloxyethyl succinic acid, 2-acryloyloxytetrahydrophthalic acid, 2-acryloyloxyhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2-acryloyloxypropyltetraphthalic acid 2-acryloyloxypropylhexaphthalic acid, methacryloyloxyethylsuccinic acid, methacryloyloxytetrahydrophthalic acid, methacryloyloxyethyltetrahydrophthalic acid, methacryloyloxyethylhexahydrophthalic acid, methacryloyloxypropylphthalic acid, methacryloyloxypropyltetraphthalic acid, Methacryloyloxypropyl hexaphthalic acid.
- Trifunctional acrylate resin pentaerythritol triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate.
- Trifunctional urethane acrylate resin pentaerythritol hexamethylene diisocyanate urethane prepolymer.
- Epoxy group-containing trifunctional acrylate resin cresol novolac type epoxy acrylate, bisphenol A diglycidyl ether acrylic acid adduct.
- Trifunctional (meth) acrylate resin Trifunctional (meth) acrylate resin; trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane trimethacrylate, propoxylated trimethylolpropane trimethacrylate, ethoxylated glycerin trimethacrylate, ethoxylated pentaerythritol trimethacrylate, propoxylated pentaerythritol trimethacrylate.
- Hexafunctional (meth) acrylate resin dipentaerythritol hexaacrylate. Epoxy group-containing hexafunctional (meth) acrylate resin; excited dipentaerythritol polyacrylate, propoxylated dipentaerythritol polyacrylate.
- tetrafunctional urethane (meth) acrylate oligomer resin hexafunctional urethane (meth) acrylate oligomer resin, 8-functional urethane (meth) acrylate oligomer resin, 9-functional urethane (meth) acrylate oligomer resin, 10 Functional urethane (meth) acrylate oligomer resin, 12 functional urethane (meth) acrylate oligomer resin, 15 functional urethane (meth) acrylate oligomer resin and the like can be mentioned.
- urethane (meth) acrylate resin As such urethane (meth) acrylate resin, NK oligo UA-33H, UA-6LR, UA-8LR, UA-12LR, U-10PA, U-10HA, UA-1100H (manufactured by Shin-Nakamura Chemical Co., Ltd.), etc. Is commercially available.
- tetrafunctional or higher functional acrylate resins containing epoxy groups such as cresol novolac type epoxy acrylate, bisphenol A diglycidyl ether acrylic acid adduct, and the like.
- epoxy groups such as cresol novolac type epoxy acrylate, bisphenol A diglycidyl ether acrylic acid adduct, and the like.
- NK oligo EA-6320, EA-6340, EA-7120, EA-7140, EA-7420 manufactured by Shin-Nakamura Chemical Co., Ltd.
- an acrylate resin having 6 to 12 functional groups is most suitable as the second organic resin because it has a high curling suppression effect and excellent hardness.
- an organic dispersion medium may be added to the organic dispersion medium coating solution. It is suitable that the concentration of the organic dispersion medium in the coating liquid is less than 40% by weight. In particular, it is preferably less than 35% by weight.
- the organic dispersion medium in the coating liquid is not limited to the organic dispersion medium remaining when replacing the organic dispersion medium of the metal oxide particles with the first organic resin in the method for preparing the coating liquid for forming the transparent film. In view of the handling property of the coating liquid, it may contain a material added for viscosity adjustment. The same applies to the dispersion medium for dilution contained in the first organic resin and the second organic resin.
- a conventionally known material can be used for this organic dispersion medium.
- alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol
- glycols such as ethylene glycol and hexylene glycol
- diethyl ether ethylene glycol Ethers such as monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; propyl acetate, isobutyl acetate , Butyl acetate, isopentyl acetate, pentyl acetate, 3-acetic acid Esters such as toxibutyl, 2-ethylbutyl
- the boiling point of the organic dispersion medium is preferably in the range of 56.12 ° C. to 200 ° C., more preferably 56.12 to 180 ° C.
- the coating film dries quickly, so that the densification tends to be insufficient and the film thickness tends to be non-uniform. Therefore, the hardness of the obtained transparent film becomes insufficient. If the organic dispersion medium has a high boiling point, the organic dispersion medium may remain, resulting in insufficient film shrinkage and insufficient hardness of the resulting transparent film.
- the amount of the polymerization initiator used is preferably in the range of 2 to 20% by weight, more preferably 4 to 16% by weight, based on the solid content concentration of the organic resin.
- Known polymerization initiators can be used.
- bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide bis (2,6-dimethoxybenzoyl) 2,4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-methyl-2-methyl- Phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- [4- (methylthio) phenyl]- And 2-morpholinopropan-1-one.
- Organic resin dispersion sol The organic resin dispersion sol of the present invention is obtained by dispersing metal oxide particles having an average particle diameter of 5 to 300 nm in a first organic resin having two or less functional groups, or an organic dispersion medium and a first organic resin. Is a sol. A coating solution for a transparent film is prepared using this organic resin dispersion sol.
- the metal oxide particles are desirably surface-treated with an organosilicon compound such as a silane coupling agent.
- the first organic resin an ultraviolet curable resin having 2 or less functional groups is preferable. Since the organic resin having 1 to 2 functional groups has a low viscosity, the increase in the viscosity of the organic dispersion medium sol of metal oxide particles can be reduced.
- the first organic resin functions as a resin for dispersing metal oxide particles.
- the first organic resin is preferably a monomer or oligomer of an ultraviolet curable resin. When the monomer is an ultraviolet curable resin, an organic resin-dispersed sol of metal oxide particles that is stable at a high concentration can be formed.
- the molecular weight (polystyrene equivalent molecular weight) of the first organic resin is suitably 5,000 or less. In particular, it is preferably 4,500 or less. When the molecular weight exceeds 5,000, the viscosity of the sol increases and the concentration of particles cannot be increased. More preferably, it is 1,000 or less.
- organic dispersion medium general organic solvents such as alcohols, ethers, esters, and ketones can be used.
- the organic resin-dispersed sol of metal oxide particles preferably has a concentration (C PS ) as a solid content of the metal oxide particles in the range of 45 to 90% by weight, more preferably 45 to 80% by weight.
- concentration (C RS ) as the solid content of the first organic resin in the sol is suitably 10 to 50% by weight. In particular, 15 to 40% by weight is preferable.
- the total solid content concentration (C TS ) of the sol is 60% by weight or more. More than 60% by weight is preferable, and 65% by weight or more is more preferable. When the total solid content (C TS ) is less than 100% by weight, the remainder is the organic dispersion medium.
- an organic resin dispersed sol having such a composition is stable.
- This organic resin-dispersed sol can be produced according to steps (a) to (b) of the method for preparing a coating liquid described above. Since such an organic resin dispersion sol can stably disperse metal oxide particles for a long period of time, it can be stored as a sol and can be liquefied immediately before use.
- the above-mentioned coating solution is applied to the substrate to form a transparent film on the substrate.
- the transparent coating is formed of metal oxide particles and a matrix component.
- the substrate substrate is preferably at least one transparent resin substrate selected from polyethylene terephthalate (PET), triacetyl cellulose (TAC), acrylic, polycarbonate, and cycloolefin polymer (COP). These resin base materials are excellent in adhesion to the transparent film formed by the coating solution described above, and can provide a base material with a transparent film excellent in hardness, scratch resistance and the like.
- the content (W P ) of the metal oxide particles in the transparent coating as a solid content is preferably in the range of 50 to 90% by weight, more preferably 65 to 85% by weight.
- the content (W P ) is within this range, a transparent film having high hardness and no irregularities, little shrinkage, dense and crack-free even with a thick film can be obtained.
- the content (W P ) is small, the resin is increased, so that densification is not sufficient and the hardness of the transparent film may be lowered. Even if the content (W P ) is too large, surface irregularities become large, haze may deteriorate due to external scattering, transparency may decrease, and film densification may decrease, scratch resistance, substrate Adhesiveness with the ink becomes insufficient.
- the matrix component comprises a first organic resin and a second organic resin.
- these resins are cured in a polymerized state.
- Both the first organic resin and the second organic resin are preferably ultraviolet curable resins.
- ultraviolet curable resins it is possible to obtain a transparent film having excellent adhesion to a resin substrate such as PET or TAC and excellent hardness.
- a substrate with a transparent coating can be produced by a highly productive winding method (roll-to-roll).
- the content of the first organic resin in the matrix component as a solid content is 0.1 to 80% by weight. In particular, it is preferably in the range of 5 to 60% by weight.
- the content of the first organic resin in the matrix component is large, the second organic resin is decreased, so that the denseness of the transparent film is low and the hardness is insufficient.
- the content (W R ) of the matrix component as a solid content in the transparent film is preferably in the range of 10 to 50% by weight, more preferably 15 to 40% by weight.
- the content (W R ) of the matrix component in the transparent film as a solid content is less than 10% by weight, irregularities are generated on the surface, haze of the film is deteriorated due to external scattering, and transparency is lowered.
- the transparent film becomes insufficiently densified, resulting in insufficient adhesion to the substrate, scratch resistance, and hardness.
- the content (W R ) exceeds 50% by weight, the shrinkage of the film increases. Therefore, curling and cracking occur when the film is thick (approximately 10 ⁇ m or more).
- the denseness is low, high hardness cannot be obtained.
- the ratio (W R / W P ) between the content (W R ) of the matrix component in the transparent film and the content (W P ) of the metal oxide particles is 0.11 to 1.0, more preferably 0.18 to It is preferable to be in the range of 0.8.
- this ratio (W R / W P ) is small, the surface unevenness of the transparent film may become large, haze of the film deteriorates due to external scattering, and transparency is lowered. Furthermore, the film is not sufficiently densified, and a transparent film having excellent scratch resistance and adhesion to the substrate may not be obtained. Further, when this ratio (W R / W P ) is large, the film shrinks, and when the film is thick, cracks may occur. Moreover, the densification of the transparent film becomes insufficient, and thus the hardness may be insufficient.
- the average film thickness (T) of the transparent film formed with such a matrix component is suitably 1 to 100 ⁇ m.
- the range of 12 to 80 ⁇ m is particularly preferable. If it is the film thickness of this range, the transparent film by which curling was suppressed with high hardness can be formed on a resin base material.
- the average film thickness (T) of the transparent film is obtained by taking a transmission electron micrograph (TEM) of the cross section of the film, and the distance between the top of the convex portion on the top surface of the film and the bottom immediately below the surface (T And the distance (T-concave) between the deepest part of the concave part adjacent to the convex part and the bottom part directly underneath (T-concave), and the average value is obtained.
- corrugations to measure is 10 sets or more at regular intervals. Thereby, a transparent film having a pencil hardness of 5H or more, and further 6H or more can be formed on the resin substrate.
- the substrate with a transparent coating has a curling characteristic measured under the following conditions of 5 mm or less.
- the curling characteristic is measured by applying a coating solution on a TAC film substrate having a coating surface of 14 cm ⁇ 25 cm and a thickness of 40 ⁇ m so that a 12 ⁇ m-thick transparent film can be formed, and allowing to stand for 20 hours. Thereafter, the film is cut into a size of 10 cm ⁇ 10 cm, placed on a flat plate with the coating surface down, and the height of the apex of the base material that has been curled (curved) and floated is measured.
- a transparent film formed on a conventional resin substrate it is difficult to achieve such curling characteristics and hardness.
- Such a transparent coating is formed by applying a coating solution for forming a transparent coating on a resin substrate to form a coating, drying, and curing.
- wavy irregularities are formed on the surface of the transparent coating (an interface with an antireflection film described later). Since the silica particles (P) and the matrix component are combined at the composition ratio described above, a transparent film having a predetermined surface roughness is formed. If the surface roughness is present, the bonded area is increased when the antireflection film is formed, so that a coated substrate with high adhesion and excellent hardness and scratch resistance can be obtained. Further, since the smoothness of the antireflection film is not hindered, there is little adverse effect of haze of the film due to external scattering, and transparency is not lowered.
- the surface roughness (Ra) is suitably in the range of 1 to 10 nm, more preferably 1 to 5 nm.
- the surface roughness (Ra) can be measured with an atomic force microscope (manufactured by Bruker, Inc .: Dimension 3100).
- the wavy unevenness is considered to be caused by the presence of surface-treated silica particles blended in the coating solution on the surface layer of the film. Therefore, the tendency depending on the content of silica particles in the transparent coating is recognized.
- the transparent coating according to the present invention has a relatively large amount of silica particles (P) and a small amount of matrix components. Therefore, it is considered that the film is cured in a wavy shape without being flattened during curing. This varies depending on the type of matrix component. When there are few matrix components, the surface unevenness
- printing can be performed by a known method such as a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a gravure printing method, or a micro gravure printing method. After printing, it is cured by ultraviolet irradiation or the like.
- the shrinkage ratio (a) of the volume of the coating film in the drying process is set to 25% or less. In particular, it is preferably 20% or less. After drying, the coating film is cured.
- the shrinkage ratio (b) of the coating film during curing is made 10% or less. In particular, 5% or less is preferable. If the shrinkage ratio (a) of the coating film at the time of drying or the shrinkage ratio (b) of the coating film at the time of curing is high, cracks occur in the case of a thick film, and the hardness is insufficient due to low density. .
- the total shrinkage (c) at the time of drying and curing is preferably 35% or less, particularly preferably 30% or less.
- the shrinkage rate (a), shrinkage rate (b), and shrinkage rate (c) are expressed by the following mathematical formulas (A) to (C).
- Shrinkage ratio (a) [%] (1 ⁇ (density of coating solution / density of dry film)) ⁇ 100 Expression
- Shrinkage rate (b) [%] (1 ⁇ (density of dried film / density of cured film)) ⁇ 100
- Shrinkage ratio (c) [%] (1 ⁇ (density of coating solution / density of cured film)) ⁇ 100 Expression (C)
- Antireflection layer An antireflection layer is formed on the above-described transparent film as necessary.
- Antireflection layer contains silica-based hollow particles and the matrix component (M L).
- M L matrix component
- the silica-based hollow particles having a small average particle diameter were combined with the same matrix component as the transparent coating. Thereby, the hardness of a transparent film can be maintained even with a thin antireflection layer.
- Silica-based hollow particles are silica-based particles having cavities inside (disclosed in JP-A-2001-233611 and JP-A-2003-192994), and are particles in a colloidal region having a low refractive index and dispersibility. It is suitable for the antireflection layer.
- the average particle diameter (D PA ) of the silica-based hollow particles is suitably 10 to 45 nm. In particular, 15 to 40 nm is preferable.
- the average particle diameter is less than 10 nm, the void ratio is small, so the refractive index of the particles does not decrease (1.4 or less). Therefore, sufficient antireflection performance cannot be obtained.
- the film thickness (T L ) the silica-based hollow particles are arranged in a multilayer or irregularly (aggregate). Therefore, not only the reflectance but also the film strength is not improved.
- the average particle diameter exceeds 45 nm the adhesion to the transparent coating is lowered and the hardness of the film-coated substrate on which the antireflection layer is formed is also lowered. Although the reason is not clear, it is considered that when the average particle size is larger than the unevenness of the transparent coating, the transparent coating cannot be adhered and bonded.
- the refractive index of silica-based hollow particles is suitably 1.10 to 1.40. In particular, 1.10 to 1.35 is preferable. A refractive index of less than 1.10.
- the ratio (D PA / T L ) between the thickness (T L ) of the antireflection layer and the average particle diameter (D PA ) of the silica-based hollow particles is suitably 0.05 to 0.56. Furthermore, the range of 0.1 to 0.45 is preferable. When this ratio is less than 0.05, the refractive index of the particles is not lowered as described above, and the function as an antireflection layer becomes insufficient. When this ratio exceeds 0.56, the strength of the particles is low and the smoothness of the surface of the antireflection layer cannot be obtained. Therefore, it is difficult to obtain desired strength and hardness.
- the antireflection layer preferably contains not only silica-based hollow particles (A) but also second silica-based particles (B) having an average particle diameter (D PB ) of 4 to 17 nm.
- D PB average particle diameter
- Examples of the second silica-based particles include silica sol, silica-based hollow particles, and chain silica-based particles in which these are connected in a chain.
- the refractive index of the second silica-based particles is 1.15 to 1.46, preferably 1.15 to 1.40.
- Particles having an average particle diameter of less than 4 nm are difficult to realize, and even if obtained, it is difficult to form a uniform dispersion or coating solution. For this reason, the smoothness of the antireflection layer surface is poor. Moreover, since the particles in the layer are not densely packed, sufficient strength and hardness cannot be obtained. When the average particle diameter exceeds 17 nm, the silica hollow particles (A) do not enter the interstices, resulting in insufficient reflectivity and insufficient strength.
- the ratio (D PB / D PA ) between the average particle diameter of the second silica-based particles (B) and the silica-based hollow particles (A) is preferably 0.1 to 0.4. In particular, 0.1 to 0.35 is preferable. When this ratio is less than 0.1, the silica-based hollow particles are aggregated or the arrangement is irregular. As a result, the reflectivity and intensity become insufficient. When this ratio exceeds 0.4, the silica-based hollow particles are irregularly arranged or aggregated because they do not enter the particle gaps of the silica-based hollow particles.
- the average particle diameter of each particle was obtained by taking a transmission electron micrograph (TEM), measuring the particle diameter of 100 particles, and setting the average value.
- TEM transmission electron micrograph
- the silica-based hollow particles (A) and the second silica-based particles (B) used here are represented by the formula (1), similarly to the metal oxide particles contained in the coating liquid for forming the transparent film.
- the surface is preferably treated with an organosilicon compound.
- an antireflection layer excellent in water resistance, water repellency, antifouling property and the like is obtained.
- an example of a surface treatment method using an organosilicon compound will be described.
- Conventionally known methods can be employed.
- a predetermined amount of an organosilicon compound is added to an alcohol dispersion of silica-based particles, and water is added thereto.
- hydrolysis is carried out by adding an acid or alkali as a hydrolysis catalyst.
- the ratio of the weight of the organosilicon compound as R n —SiX (4-n) / 2 to the weight of the silica-based particles (R n —SiX (4-n) / 2 weight / silica-based particle weight) Is preferably 0.01 to 0.5, more preferably 0.02 to 0.25.
- this weight ratio is less than 0.01, the affinity with the matrix-forming component or the dispersion medium in the coating liquid for forming an antireflection film, which will be described later, is low, the stability is insufficient, and the coating liquid is uniform. Cannot be distributed. As a result, silica-based particles may agglomerate, the strength and scratch resistance of the antireflection layer may decrease, and the haze value and reflectance may increase. Even if the weight ratio exceeds 0.5, the dispersibility is not further improved, the refractive index is increased, and the cost is reduced only by increasing the expensive organosilicon compound.
- an organic solvent dispersion of silica-based particles that are replaced with an organic solvent as necessary and subjected to surface treatment is prepared.
- the organic solvent it is preferable to use the same organic solvent as the coating liquid for forming the antireflection layer described later.
- An antireflection layer is formed from the coating solution thus prepared.
- the antireflection layer preferably contains 5 to 80% by weight of silica-based hollow particles (A).
- a content of 10 to 75% by weight is more preferred.
- the content is less than 5% by weight, adhesion to the transparent film, strength, surface flatness, scratch resistance, scratch strength, and the like are insufficient.
- the refractive index of the antireflection layer cannot be lowered, the antireflection performance cannot be improved.
- the content exceeds 80% by weight, there are too many particles, resulting in insufficient film strength, scratch resistance, scratch strength, and the like.
- the haze value of the antireflection film also increases.
- the total content of the silica-based hollow particles and the second silica-based particles is 5 to 80% by weight, more preferably 10 to 75% by weight. It is preferable to use so that it may become the range of%. Further, the ratio of the second silica-based particles is preferably 30% by weight or less, more preferably 20% by weight or less, based on the total silica-based particles.
- the second silica-based particles (B) that do not fit into the gaps of the silica-based hollow particles (A) increase, and the silica-based hollow particles (A) Are randomly arranged or agglomerated.
- the second silica-based particle (B) is contained in the above-mentioned appropriate range, the second silica-based particle (B) is placed in the gap between the silica-based hollow particles (A) on the surface portion of the antireflection layer. Exists to planarize the surface. Therefore, an antireflection layer excellent in scratch resistance and scratch strength can be obtained.
- Matrix component (M L) of the antireflection layer examples include thermosetting resins, thermoplastic resins, and electron beam curable resins, which are organic resins for paints.
- Conventionally used resins such as resins, unsaturated polyester resins, thermosetting acrylic resins, thermosetting resins such as ultraviolet curable acrylic resins, and ultraviolet curable acrylic resins can be exemplified. Further, two or more types of copolymers or modified products of these resins may be used.
- the matrix component (M L ) preferably contains at least one of the first organic resin and the second organic resin used in the above-described transparent film. If at least one part of such an organic resin is contained, when the antireflection layer is formed on the transparent film, two films containing the same matrix component are bonded to each other, so that hardness, scratch resistance, etc. An excellent film-coated substrate can be obtained.
- the content of the matrix component (M L ) in the antireflection layer is preferably 20 to 95% by weight, more preferably 25 to 90% by weight as a solid content.
- the content of the matrix component (M L ) is less than 20% by weight, the strength of the antireflection film, adhesion to the substrate, scratch resistance, etc. are insufficient.
- the content of the matrix component (M L) is more than 95 wt%, due to the low amount of silica-based particles, not a uniform thickness, the surface lacking in flatness, scratch resistance, scratch strength etc. Insufficient and low refractive index cannot be obtained. For this reason, the antireflection performance is insufficient.
- the thickness (T L ) of the antireflection layer is suitably from 80 to 200 nm. Furthermore, 90 to 150 nm is preferable. If the layer is thin, strength and scratch resistance are insufficient. Even if the layer is too thick, cracks are likely to occur, resulting in insufficient strength. Also, the layer may be too thick and the antireflection performance may be reduced. When the thickness is in an appropriate range, an antireflection layer having a low reflectance (bottom reflectance, luminous reflectance) and excellent hardness or the like can be obtained.
- a material comprising a silica-based hollow particles (A) contained in the film and based on the matrix component (M L) include together with a solvent Yes. That is, the coating liquid contains silica-based hollow particles, a matrix forming component, and a solvent.
- the average particle diameter (D PA ) of the silica-based hollow particles is in the range of 10 to 45 nm.
- Matrix-forming component which is a base of the matrix components described in the anti-reflective layer (M L), the same organic resin as described above.
- the matrix forming component contains at least one of the first organic resin and the second organic resin used in the coating liquid for forming the transparent film.
- the coating liquid for forming the antireflection film is applied, dried, and irradiated with ultraviolet rays. Since the bond between the transparent coating containing the antireflection layer and the antireflection layer increases, a film-coated substrate having an antireflection layer excellent in hardness, scratch resistance and the like can be obtained.
- the first organic resin ( AL ) contained in the coating solution for forming the antireflection layer is a monomer or oligomer of an ultraviolet curable resin having 1 to 2 functional groups
- An antireflection layer having a high coating solution stability and a smooth surface can be obtained.
- this coating liquid contains the second organic resin (B L )
- the second organic resin, the first organic resin and the second organic resin contained in the transparent film are easily combined, and the transparent film And an antireflection layer integrated therewith.
- the second organic resin (B L ) contained in the coating solution for forming the antireflection layer is an ultraviolet curable resin monomer or oligomer having three or more functional groups
- the second transparent resin contained in the lower transparent film It is easy to bond with the second organic resin (B), has excellent adhesion to the transparent film, and the transparent film and the antireflection layer are integrated. Moreover, since it couple
- a polymerization initiator can be added to the coating solution for forming the antireflection layer, if necessary.
- the polymerization initiator is not particularly limited as long as it can polymerize and cure the matrix-forming component, and can be appropriately selected depending on the resin, and conventionally known polymerization initiators can be used.
- polymerization initiators such as acylphosphine oxides, acetophenones, propiophenones, benzyls, benzoins, benzophenones, and thioxanthones, cationic photopolymerization initiators and the like can be mentioned. More specifically, the substances exemplified in the coating liquid for forming the transparent film can be used.
- the solid content concentration of the polymerization initiator in the coating solution for forming the antireflection film varies depending on the kind of the matrix forming component, but is 0.1 to 20% by weight, more preferably 0.5 to 10% with respect to the matrix forming component. It is preferably in the range of wt%.
- the content of the polymerization initiator is less than 0.1% by weight of the matrix forming component as a solid content, the antireflection layer is not sufficiently cured. If it exceeds 20% by weight of the matrix forming component, the stability of the coating solution becomes insufficient.
- the solvent used in this coating solution is not particularly limited as long as it can dissolve or disperse the matrix forming component and the polymerization initiator and can uniformly disperse the silica-based hollow particles (A) and the second silica-based particles (B).
- a conventionally known solvent can be used. Specifically, water can be exemplified in addition to the solvent exemplified as the organic solvent for forming the transparent film.
- the total solid concentration of the coating solution is preferably in the range of 1 to 10% by weight, more preferably 1.5 to 8% by weight.
- the total solid content concentration is less than 1% by weight, it is difficult to adjust the film thickness, and there is a risk of uneven coating and uneven drying. If the total solid content exceeds 10% by weight, the film thickness of the anti-reflection film becomes too thick, and sufficient optical properties and anti-reflection performance cannot be obtained. There is a risk that strength and hardness may decrease.
- the concentration of the silica-based hollow particles (A) in this coating solution is preferably 0.25 to 9% by weight, more preferably 0.35 to 8% by weight as the solid content.
- the solid content concentration is less than 0.25% by weight, not only the adhesion with the underlying transparent film, film strength, surface flatness, scratch resistance, scratch strength, etc. are insufficient, but also the antireflection layer. Since the refractive index cannot be lowered, the antireflection performance becomes insufficient.
- the solid content concentration exceeds 9% by weight the amount of particles is too large, and not only the strength, scratch resistance, scratch strength, etc. of the antireflection layer become insufficient, but also the haze value increases.
- the total solid concentration of the coating solution is preferably 0.25 to 9% by weight.
- the ratio of the second silica-based particles in all the silica-based particles is preferably 30% by weight, more preferably 20% by weight or less.
- the second silica-based particles exist in the particle gaps of the silica-based hollow particles in the surface portion of the obtained antireflection layer, and the surface is flattened. Thereby, an antireflection layer excellent in scratch resistance and scratch strength can be obtained.
- the refractive index of the second silica-based particles is lower than that of the matrix-forming component, the refractive index of the antireflection layer can be lowered, and a film having more excellent antireflection performance can be obtained.
- the concentration of the matrix forming component in the coating solution as a solid content is preferably 0.75 to 9.5% by weight, more preferably 0.75 to 8% by weight.
- the solid content concentration is less than 0.75% by weight, there are too many particles relative to the matrix, so that not only the strength, scratch resistance, scratch strength, etc. of the antireflection layer become insufficient, but also the antireflection layer, film Increases the haze value.
- the solid content concentration exceeds 9.5% by weight, there are too few particles relative to the matrix, so that adhesion to the transparent film, film strength, surface flatness, scratch resistance, scratch strength, etc. are insufficient.
- the refractive index of the antireflection film cannot be lowered, the antireflection performance becomes insufficient.
- Examples of the method for applying the coating liquid include the same method as the method for printing the coating liquid for the transparent film. Any method may be used in the drying step as long as the solvent of the coating solution can be substantially removed. Usually, it can be dried by heating at a temperature of 60 to 120 ° C. for several minutes. After drying, it is cured by ultraviolet irradiation, heat treatment, or a combination thereof. Alternatively, the transparent coating and the antireflection layer may be cured simultaneously. That is, a coating solution for forming a transparent film is applied and dried, and then a coating solution for forming an antireflection layer is applied thereon and dried, and then both coating solutions are cured simultaneously by irradiation with ultraviolet rays.
- the transparent film obtained in this example has a function of a hard coat film.
- this invention is not limited by these Examples.
- Example 1 Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5 wt%, dispersion medium: isopropanol, particle refractive index 1.46) to 100 g of ⁇ -meta 7.48 g of acryloxypropyltrimethoxysilane (Shin-Etsu Silicon Co., Ltd .: KBM-503, SiO 2 component 81.2%) is mixed, 3.1 g of ultrapure water is added, and the mixture is stirred at 50 ° C. for 6 hours. .
- Dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, functional) as a first organic resin in 2500 g of silica particle (1) dispersion (Base number: 2, molecular weight: 219, solid content concentration: 100%) 202.5 g is added.
- This resin also has two hydrophilic groups.
- a part of the solvent is removed by a rotary evaporator to prepare an organic resin dispersion (1) of silica particles having a solid content concentration of 76.0% by weight (in the examples, the first organic resin is used for dispersion).
- the organic resin (A) and the second organic resin are referred to as a curing organic resin (B)).
- Coating solution (1) was applied to TAC film (manufactured by Fuji Film Co., Ltd .: FT-PB40UL-M, thickness: 40 ⁇ m, refractive index: 1.51) by bar coater method # 16 And dried at 80 ° C. for 120 seconds.
- the thickness of the coating film is 12 ⁇ m.
- 300 mJ / cm 2 ultraviolet rays are irradiated to cure the coating film, and a transparent film is formed on the substrate.
- the film thickness of the transparent coating is 12 ⁇ m.
- Such a transparent coating functions as a hard coat.
- the obtained film-coated substrate (1) was evaluated as follows, and the results are shown in Tables 2 and 3.
- the shrinkage of the volume from the paint to the drying (shrinkage (a)), the volume shrinkage due to UV curing (shrinkage (b)), and the overall shrinkage (shrinkage (c)) are calculated.
- the density (specific gravity) of the coating solution is measured. After applying the coating solution so that the film thickness after drying becomes about 10 ⁇ m, it is dried at 80 ° C. for 2 minutes to form a dry film. A part of the dried film is collected and the density (specific gravity) is measured.
- the shrinkage rate (a) is calculated by the above-described equation (A).
- the dried film is irradiated with UV and cured. A part of the cured transparent film is collected, and the density (specific gravity) of the cured film is measured.
- the shrinkage rate (b) is calculated by the above-described equation (B). Further, the shrinkage rate (c) is calculated by the above-described equation (C).
- the total light transmittance and the substrate with a haze film are measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.). Further, the refractive index of the transparent film is measured by an ellipsometer (manufactured by ULVAC, EMS-1).
- the uncoated TAC film has a total light transmittance of 93.2%, a haze of 0.2%, and a reflectance of light having a wavelength of 550 nm of 6.0%. To observe the presence or absence of crack crack.
- Curling Curling Test Method A transparent coating film applied to a TAC film having a size of 14 cm ⁇ 25 cm is stored for 20 hours. Cut the film to 10 cm ⁇ 10 cm size. The film is placed with the coated surface down, and the height A of the base material from the floor surface is measured. Pencil hardness Measured with a pencil hardness tester according to JIS-K-5600. Using scratch-resistant # 0000 steel wool, sliding 10 times with a load of 2 kg / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria. Evaluation criteria: No streak injury is found: ⁇ Slightly scratched streak: ⁇ Many scratches are found in the streak: ⁇ The surface has been cut entirely: ⁇
- Example 2 7. Preparation of coating solution (2) To 80.38 g of the silica particle organic resin dispersion (1) prepared in Example 1, urethane acrylate (the same NK oligo UA-33H as in Example 1) was used as the curing organic resin. 88 g, 1.00 g of acrylic silicone leveling agent (Disparon NSH-8430HF same as in Example 1), 0.53 g of photopolymerization initiator (Irgacure 184 same as in Example 1), 0.21 g of PGME, and 9.0 g of acetone Are sufficiently mixed to prepare a coating solution (2) having a solid concentration of 70.6% by weight. Table 2 shows the composition of the coating solution (2) obtained. Preparation of substrate with film (2) A substrate with film (2) is prepared in the same manner as in Example 1 except that the coating solution (2) is used. The film thickness of the transparent coating is 12 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 1.
- urethane acrylate the same NK oligo UA-
- Example 3 In the same manner as in Example 1, a silica particle (1) dispersion having a solid content concentration of 40.5% by weight is prepared. Add 202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion to 2500 g of the silica particle (1) dispersion, and remove part of the solvent with a rotary evaporator. Then, an organic resin dispersion (3) of silica particles having a solid content concentration of 85.0% by weight is prepared.
- dimethylol-tricyclodecane diacrylate the same light acrylate DCP-A as in Example 1
- an organic resin dispersion (3) of silica particles having a solid content concentration of 85.0% by weight is prepared.
- Example 4 267.7 g of dimethylol-tricyclodecanediacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of the silica particle (1) dispersion prepared in Example 1, and a rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (4) of silica particles having a solid content concentration of 72.1% by weight.
- Example 5 153.0 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) was added as an organic resin for dispersion to 2500 g of the silica particle (1) dispersion prepared in Example 1, and the rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (5) of silica particles having a solid concentration of 72.3% by weight.
- coating solution (5) 81.94 g of this organic resin dispersion (5), 6.27 g of urethane acrylate (NK oligo, UA-33H same as in Example 1) as an organic resin for curing, and acrylic silicone leveling 1.00g of the same agent (Disparon NSH-8430HF as in Example 1), 0.46g of photopolymerization initiator (Irgacure 184 as in Example 1), 0.33g of PGME and 10.00g of acetone were mixed thoroughly.
- a coating solution (5) having a partial concentration of 66.1% by weight is prepared.
- Preparation of substrate with film (5) A substrate with film (5) is prepared in the same manner as in Example 1 except that the coating solution (5) is used. The film thickness of the transparent coating is 12 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 1.
- Example 6 To 2,500 g of the silica particle (1) dispersion prepared in Example 1, 85.8 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added, and the rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (6) of silica particles having a solid content concentration of 69.0% by weight.
- a substrate with film (6) is prepared in the same manner as in Example 1 except that the coating solution (6) is used.
- the film thickness of the transparent coating is 12 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 1.
- Example 7 272.1 g of dimethylol-tricyclodecanediacrylate (the same light acrylate DCP-A as in Example), which is an organic resin for dispersion, was added to 2500 g of the dispersion of silica particles (1) prepared in Example 1, and a rotary evaporator was used. A part of the solvent is removed to obtain an organic resin dispersion (7) of silica particles having a solid content concentration of 80.1% by weight.
- Example 8 1,6-hexadiol dimethacrylate as an organic resin for dispersion (manufactured by Sakai Kogyo Co., Ltd .; SR-238F, functional group; acrylate, number of functional groups: 2) , Molecular weight: 226) 202.5 g is added, and a part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (8) of silica particles having a solid content concentration of 76.0% by weight.
- Example 9 3.74 g of ⁇ -methacrylooxypropyltrimethoxysilane (KBM-503, the same as in Example 1) is mixed with 100 g of silica sol dispersion (the same cataloid SI-30 as in Example 1), and ultrapure water is added to 3 g. Add 1 g and stir at 50 ° C. for 6 hours. As a result, a 12 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained. Thereafter, the solvent is replaced in the same manner as in Example 1 to prepare a silica particle (9) dispersion having a solid content concentration of 40.5% by weight.
- silica sol dispersion the same cataloid SI-30 as in Example 1
- a substrate with film (9) is prepared in the same manner as in Example 1 except that the coating solution (9) is used.
- the film thickness of the transparent coating is 12 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 1.
- Example 10 14.96 g of ⁇ -methacrylooxypropyltrimethoxysilane (KBM-503, the same as in Example 1) was mixed with 100 g of silica sol dispersion (the same catalloid SI-30 as in Example 1), and 3% of ultrapure water was added. Add 1 g and stir at 50 ° C. for 6 hours. As a result, a 12 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained. Thereafter, the solvent is replaced in the same manner as in Example 1 to obtain a silica particle (10) dispersion having a solid concentration of 40.5% by weight.
- silica sol dispersion the same catalloid SI-30 as in Example 1
- a substrate with film (10) is prepared in the same manner as in Example 1 except that the coating solution (10) is used.
- the film thickness of the transparent coating is 12 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 1.
- Example 11 7.06 g of ⁇ -acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd .: KBM-5103, SiO 2 component 86.1%) was mixed with 100 g of silica sol dispersion (cataloid SI-30 identical to Example 1). Then, 3.1 g of ultrapure water is added and stirred at 50 ° C. for 6 hours. Thereby, a 12 nm silica sol dispersion surface-treated with a silane coupling agent is obtained (solid content concentration 40.5% by weight). Thereafter, the solvent was replaced in the same manner as in Example 1 to obtain a silica particle (11) dispersion having a solid concentration of 40.5% by weight.
- Example 12 A sodium silicate aqueous solution having a SiO 2 concentration of 24 wt% (SiO 2 / Na 2 O molar ratio: 3.1) 33.4 Kg was diluted with 126.6 Kg of pure water to obtain a sodium silicate aqueous solution having a SiO 2 concentration of 5 wt%. 160 kg of (pH 11) is prepared. The aqueous solution of sodium silicate is neutralized by adding an aqueous sulfuric acid solution having a concentration of 25% so that the pH of the aqueous solution is 4.5, and is kept at room temperature for 5 hours. Thereby, aging is performed to obtain a silica hydrogel.
- This silica hydrogel is sufficiently washed with pure water equivalent to about 120 times the SiO 2 solid content using a filter equipped with a filter cloth.
- This silica hydrogel is dispersed in pure water to prepare a dispersion having a SiO 2 concentration of 3% by weight, and stirred using a powerful stirrer until a fluid slurry is obtained.
- Ammonia water having a concentration of 15% by weight was added so that the pH of the slurry-like silica hydrogel dispersion was 10.5, and stirring was continued at 95 ° C. for 1 hour to perform the deflocculation operation of the silica hydrogel.
- the obtained silica sol was stabilized by heating at 150 ° C. for 1 hour, and then using an ultrafiltration membrane (Asahi Kasei Kogyo Co., Ltd .: SIP-1013) until the SiO 2 concentration became 13% by weight. Concentrated. Further, it was concentrated by a rotary evaporator and filtered through a 44 ⁇ m mesh nylon filter to prepare a silica sol (12) having a SiO 2 concentration of 30% by weight.
- the average particle longest diameter (D L ) of the silica particles of the silica sol (12) is 48 nm
- the average short diameter (D S ) is 16 nm
- the spherical coefficient is 0.33.
- 600 g of silica sol (12), 5,955 g of pure water, and 63.3 g of a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio of 3.1) having a SiO 2 concentration of 24% by weight were mixed and heated to 87 ° C. Warmed and aged for 0.5 hours. Subsequently, 1,120 g of a silicic acid solution having a SiO 2 concentration of 3% by weight was added over 14 hours.
- the obtained silica sol is concentrated using an ultrafiltration membrane (Asahi Kasei Kogyo Co., Ltd .: SIP-1013) until the SiO 2 concentration becomes 12% by weight. Further, it is concentrated by a rotary evaporator and filtered through a 44 ⁇ m mesh nylon filter to obtain a dispersion (12) of non-spherical silica having a solid concentration of 30% by weight.
- an ultrafiltration membrane Asahi Kasei Kogyo Co., Ltd .: SIP-1013
- the average particle longest diameter (D L ) of the non-spherical silica particles (12) was 50 nm, the average short diameter (D S ) was 21 nm, and the spherical coefficient (D S ) / (D L ) was 0.42.
- Example 13 Preparation of substrate with film (13)
- the coating solution (1) prepared in Example 1 is applied to the substrate using the bar coater method # 20 to prepare the substrate with film (13).
- the same procedure as in Example 1 is performed except for the coating method.
- the film thickness of the obtained transparent film is 15 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 1.
- Example 14 Preparation of substrate with film (14)
- the coating solution (1) prepared in Example 1 is applied to the substrate using the bar coater method # 40 to prepare the substrate with film (14).
- the same procedure as in Example 1 is performed except for the coating method.
- the film thickness of the obtained transparent film is 30 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 1.
- a substrate with film (R1) is prepared in the same manner as in Example 1 except that the coating solution (R1) is used.
- the film thickness of the obtained transparent film is 12 ⁇ m.
- This film-coated substrate is evaluated in the same manner as in Example 1.
- a coating solution (R3) is prepared.
- Preparation of substrate with film (R3) A substrate with film (R3) is produced in the same manner as in Example 1 except that the coating solution (R3) is used.
- the film thickness of the obtained transparent film is 12 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 1.
- a substrate with film (R4) is produced in the same manner as in Example 1 except that the coating solution (R4) is used.
- the film thickness of the obtained transparent film is 12 ⁇ m.
- This film-coated substrate is evaluated in the same manner as in Example 1.
- the transparent film is described as a hard coat film.
- Example 15 Silica sol aqueous dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-50; average particle size 25 nm, SiO 2 concentration 48.0 wt%, dispersion medium: water, particle refractive index 1.46) to 1000 g of cation exchange resin 960 g (manufactured by Mitsubishi Chemical Corporation: SK-1BH) is added and stirred for 30 minutes, and then the ion exchange resin is separated. Next, 480 g of an anion exchange resin (Mitsubishi Chemical Corporation: SA-20A) is added and stirred for 30 minutes, and then the ion exchange resin is separated.
- SA-20A anion exchange resin
- silica sol aqueous dispersion having a concentration of 48% by weight is obtained.
- 2000 g of this silica sol aqueous dispersion is subjected to solvent substitution with methanol by an ultrafiltration membrane method to produce a silica sol methanol dispersion having a concentration of 40% by weight as SiO 2 .
- silica particle (15) dispersion 202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1), which is an organic resin for dispersion, was added, and a part of the solvent was removed with a rotary evaporator. Is removed to prepare an organic resin dispersion (15) of silica particles (15) having a solid concentration of 76.0% by weight.
- silica sol manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20 wt%) and 999.5 g of pure water 80 While maintaining this temperature, 1575 g of a 3.0 wt% sodium silicate aqueous solution as SiO 2 and 1575 g of a 1.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added. , SiO 2 ⁇ Al 2 O 3 primary particle dispersion is obtained.
- the molar ratio MO X / SiO 2 (A) 0.25, and the average particle size is 13 nm.
- the pH of the reaction solution is 12.0.
- 8370 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 2790 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to form composite oxide particles (secondary particles). A dispersion is obtained.
- the molar ratio MO X / SiO 2 (B) 0.13, and the average particle size is 30 nm.
- the pH of the reaction solution is 12.0.
- the dispersion of the composite oxide particles was washed with an ultrafiltration membrane until the solid content concentration became 13% by weight. ) was dropped to pH 1.0, and dealumination was performed.
- the aluminum salt dissolved in the ultrafiltration membrane is separated and washed while adding 10 L of pH 3 hydrochloric acid aqueous solution and 5 L of pure water to prepare an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
- Aqueous ammonia was added to this aqueous dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture was cooled to room temperature, and a cation exchange resin (manufactured by Mitsubishi Chemical Corporation). : Ion exchange for 3 hours using 400 g of Diaion SK1B), ion exchange for 3 hours using 200 g of anion exchange resin (Made by Mitsubishi Chemical Co., Ltd .: Diaion SA20A), and cation exchange resin (Mitsubishi) Using 200 g of Chemical Co., Ltd. (Diaion SK1B), ion exchange is performed at 80 ° C. for 3 hours to perform washing, and an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight is obtained.
- a cation exchange resin manufactured by Mitsubishi Chemical Corporation.
- the solvent is replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of silica-based hollow particles having a solid concentration of 20% by weight.
- the average particle diameter and refractive index of the obtained silica-based hollow particles were measured, and the results are shown in the table.
- 3.7 g of a methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of a methanol dispersion of silica-based hollow particles having a solid content concentration of 20% by weight, and heated at 50 ° C. to obtain silica.
- Surface treatment of the system hollow particles is performed by methanol using an ultrafiltration membrane to prepare a methanol dispersion of silica-based hollow particles having a solid concentration of 20% by weight.
- the solvent is replaced with MIBK by a rotary evaporator, and a MIBK dispersion of silica-based hollow particles (A15) subjected to surface treatment with a solid content concentration of 20.5% by weight is prepared.
- the refractive index of the silica-based hollow particles (A15) was measured, and the results are shown in the table.
- a substrate with film (15) is produced in the same manner as in Example 1 using the coating liquid (15) for forming a hard coat film.
- the thickness of the hard coat film is 12 ⁇ m.
- the total light transmittance and haze, cracks, shrinkage, curling properties, pencil hardness, and scratch resistance are evaluated in the same manner as in Example 1.
- the surface roughness (Ra) is measured at 10 ⁇ m ⁇ 10 ⁇ m using an atomic force microscope (manufactured by Bruker, Inc .: Dimension-3100). The results are shown in Table 11.
- Example 15 dealumination treatment, washing with an ultrafiltration membrane, and washing by ion exchange are performed to obtain an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight. Further, through the same process as in Example 15, a MIBK dispersion of silica-based hollow particles (A16) having a solid content concentration of 20.5% by weight and surface-treated is prepared. The refractive index of the silica-based hollow particles (A16) was measured, and the results are shown in the table.
- coating solution (16 L) for forming an antireflection layer A coating solution (16 L) having a solid concentration of 3.0% by weight was prepared in the same manner as in Example 15 except that this dispersion of silica-based hollow particles (A16) was used. ) was prepared.
- Formation of Antireflection Layer A substrate (16) with a hard coat film is produced in the same manner as in Example 15. An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above coating solution (16L) was used. At this time, the thickness of the antireflection layer is 100 nm.
- the base material (16) with the antireflection layer is evaluated in the same manner as in Example 15.
- Example 15 a MIBK dispersion of silica-based hollow particles (A17) having a solid content concentration of 20.5% by weight and surface-treated is prepared.
- the refractive index of the silica-based hollow particles (A17) was measured, and the results are shown in the table.
- coating solution (17 L) for forming antireflection layer A coating solution (17 L) having a solid content concentration of 3.0% by weight was prepared in the same manner as in Example 15 except that this dispersion of silica-based hollow particles (A17) was used. ) was prepared.
- Formation of Antireflection Layer A substrate (17) with a hard coat film is produced in the same manner as in Example 15. An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above coating solution (17L) was used. At this time, the thickness of the antireflection layer is 100 nm.
- the substrate (17) with the antireflection layer is evaluated in the same manner as in Example 15.
- Example 15 a methanol dispersion of silica-based hollow particles having a solid content concentration of 20% by weight in which the solvent is replaced with methanol is prepared. The average particle diameter and refractive index of the silica-based hollow particles obtained here are measured, and the results are shown in the table. Further, according to the same process as in Example 15, a MIBK dispersion of silica-based hollow particles (B18) having a solid content concentration of 20.5% by weight and surface-treated is prepared. The refractive index of the silica-based hollow particles (B18) was measured, and the results are shown in the table.
- a substrate (18) having an antireflection layer is produced in the same manner as in Example 15 except that an antireflection layer is formed using this coating solution (18L). At this time, the thickness of the antireflection layer is 100 nm.
- the substrate (18) with the antireflection layer is evaluated in the same manner as in Example 15.
- Example 19 Preparation of dispersion of silica-based particles (B19) Cation exchange to 1000 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-30, SiO 2 concentration 40.5 wt%, average particle diameter 23 nm, refractive index 1.46) 960 g of resin (manufactured by Mitsubishi Chemical Corporation: SK-1BH) is added and stirred for 30 minutes, and then the ion exchange resin is separated. Further, washing is performed by anion exchange and cation exchange in the same manner as in Example 15 to obtain an aqueous dispersion of silica-based particles having a concentration of 48% by weight.
- Example 15 the same process (methanol solvent substitution, surface treatment, MIBK solvent substitution) as in Example 15 is carried out to prepare a MIBK dispersion liquid of surface-treated silica-based particles (B19) having a solid content concentration of 20.5% by weight.
- the refractive index of the silica-based particles (B19) was measured, and the results are shown in the table.
- coating solution (19 L) for formation of antireflection layer instead of the methanol dispersion of silica-based particles having a solid content concentration of 20.5 wt% in Example 18, silica-based particles having a solid content concentration of 20.5 wt% ( A coating solution (19 L) having a solid content concentration of 3.0% by weight is prepared in the same manner as in Example 18 except that the MIBK dispersion of B19) is used.
- a coating solution (19 L) having an antireflection layer is produced in the same manner as in Example 15 except that the coating solution (19L) is used to form an antireflection layer. At this time, the thickness of the antireflection layer is 100 nm.
- This base material (19) is evaluated in the same manner as in Example 15.
- Example 20 Preparation of coating solution (20 L) for formation of antireflection layer To 8.05 g of a surface-treated silica-based hollow particle (A15) dispersion having a solid content concentration of 20.5% by weight prepared in Example 15, an organic resin for dispersion was used.
- a substrate (15) with a hard coat film is produced in the same manner as in Example 15.
- An antireflection layer material (20) is formed on the hard coat film in the same manner as in Example 15 except that this coating solution (20L) is used. At this time, the thickness of the antireflection layer is 100 nm.
- the base material (20) with the antireflection layer is evaluated in the same manner as in Example 15.
- Example 21 Preparation of substrate (21) with hard coat film
- the coating liquid (15) for forming the hard coat film prepared in Example 15 was applied to the TAC film in the same manner as in Example 1, and a hard coat film having a thickness of 12 ⁇ m was formed. Formed.
- the physical properties and the like of the hard coat film are indicated as the same as in Example 15.
- an antireflection layer was formed in the same manner except that the coating solution (15) for forming an antireflection layer having a solid content concentration of 3.0% by weight prepared in the same manner as in Example 15 was used. .
- the thickness of the antireflection layer was 100 nm.
- the total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with the antireflection layer are shown in the table.
- Example 22 Preparation of coating liquid (22) for forming hard coat film 80.38 g of an organic resin dispersion (15) of silica particles having a solid content concentration of 76.0% by weight prepared in Example 15 was prepared and used for curing. 8.88 g of organic resin urethane acrylate (NK oligo UA-33H same as in Example 1), 1.00 g of acrylic silicone leveling agent (Disparon NSH-8430HF same as in Example 1) and photopolymerization initiator ( The same Irgacure 184 as in Example 1) 0.53 g, 0.21 g of PGME, and 9.0 g of acetone were sufficiently mixed to prepare a coating solution (22) having a solid content concentration of 70.6% by weight. The composition of the coating liquid (22) is shown in the table.
- a substrate (22) with a hard coat film is produced in the same manner as in Example 15 except that this coating solution (22) is used.
- the thickness of the hard coat film is 12 ⁇ m.
- the obtained film-coated substrate (22) is evaluated in the same manner as in Example 15.
- An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the substrate (22) with a hard coat film of this example was used.
- the thickness of the antireflection layer was 100 nm.
- the substrate having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 23 The substrate (3) with a transparent coating prepared by the coating solution prepared in Example 3 is applied as the substrate (23) with a hard coat film of this example.
- the film thickness of the hard coat film was 12 ⁇ m.
- This base material with a hard coat film (23) is evaluated in the same manner as in Example 15.
- An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (23) was used.
- the thickness of the antireflection layer was 100 nm.
- the substrate (23) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 24 The substrate with transparent film (4) produced using the coating solution prepared in Example 4 is applied as the substrate with hard coat film (24) of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with a hard coat film (24) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Film An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with a hard coat film (24) was used.
- the thickness of the antireflection layer is 100 nm.
- the substrate (24) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 25 The base material with a transparent film (5) produced using the coating liquid prepared in Example 5 is applied as the base material with a hard coat film (25) of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with a hard coat film (25) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (25) was used.
- the thickness of the antireflection layer is 100 nm.
- the substrate (25) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 26 The substrate (6) with a transparent coating produced using the coating solution prepared in Example 6 is applied as the substrate (26) with a hard coat film of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with a hard coat film (26) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (26) with a hard coat film was used.
- the thickness of the antireflection layer is 100 nm.
- the substrate (26) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 27 The substrate with transparent film (7) produced using the coating solution prepared in Example 7 is applied as the substrate with hard coat film (27) of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with a hard coat film (27) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (27) with a hard coat film was used.
- the thickness of the antireflection layer is 100 nm.
- the substrate (27) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 28 The substrate with transparent coating (8) produced using the coating solution prepared in Example 8 is applied as the substrate with hard coat film (28) of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with a hard coat film (28) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (28) with a hard coat film was used.
- the thickness of the antireflection layer is 100 nm.
- the substrate (28) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 29 The base material with a transparent film (9) produced using the coating solution prepared in Example 9 is applied as the base material with a hard coat film (29) of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with a hard coat film (29) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (29) was used.
- the thickness of the antireflection layer is 100 nm.
- the substrate (29) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 30 The base material (10) with a transparent coating produced using the coating solution prepared in Example 10 is applied as the base material (30) with a hard coat film of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with a hard coat film (30) is evaluated in the same manner as in Example 15.
- Preparation of formation of antireflection layer An antireflection layer was formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (30) was used.
- the thickness of the antireflection layer is 100 nm.
- the substrate (30) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 31 The base material with a transparent film (11) produced using the coating solution prepared in Example 11 is applied as the base material with a hard coat film (31) of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with hard coat film (31) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (31) was used.
- the thickness of the antireflection layer is 100 nm.
- the base material (31) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 32 The substrate (32) with a transparent coating produced using the coating liquid (12) prepared in Example 12 is applied as the substrate (32) with a hard coat film of this example.
- the thickness of the hard coat film is 12 ⁇ m.
- This base material with hard coat film (32) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (32) with a hard coat film was used. The thickness of the antireflection layer was 100 nm.
- the substrate (32) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 33 The substrate with transparent film (13) produced in Example 13 is applied as the substrate with hard coat film (33) of this example.
- the thickness of the hard coat film is 15 ⁇ m.
- This base material with hard coat film (33) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (33) was used. The thickness of the antireflection layer was 100 nm.
- the base material (33) having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 34 The substrate with a transparent film (14) produced in Example 14 is applied as the substrate with a hard coat film (34) of this example.
- the thickness of the hard coat film is 30 ⁇ m.
- This base material with hard coat film (34) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (34) with a hard coat film was used. The thickness of the antireflection layer was 100 nm.
- the substrate (34) having this antireflection layer is evaluated in the same manner as in Example 15.
- a methanol dispersion of silica-based hollow particles having a solid concentration of 20% by weight is produced through the same process as in Example 15.
- the average particle diameter and refractive index of the obtained silica-based hollow particles were measured, and the results are shown in the table.
- 3 g of an acrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) is added to 100 g of this methanol dispersion and heated at 50 ° C. for surface treatment. Further, the solvent is replaced with MIBK by a rotary evaporator to prepare a dispersion of silica-based hollow particles (RA5) having a solid content concentration of 20.5% by weight.
- the refractive index of the surface-treated silica-based hollow particles (RA5) was measured, and the results are shown in the table.
- coating solution (R5L) for formation of antireflection film Solid content concentration was the same as in Example 15 except that a surface-treated silica-based hollow particle (RA5) dispersion having a solid content concentration of 20.5% by weight was used. A 3.0 wt% coating solution (R5L) is prepared. Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this coating solution (R5L) is used. At this time, the thickness of the antireflection layer is 100 nm. The base material (R5) having the base material with the antireflection layer was evaluated in the same manner as in Example 15.
- the obtained base material with a hard coat film (R6) is evaluated in the same manner as in Example 15. Formation of antireflection film Next, an antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material with hard coat film (R6) was used. At this time, the thickness of the antireflection layer is 100 nm. The base material with the antireflection layer is evaluated in the same manner as in Example 15.
- composition of coating liquid (R7) for forming a hard coat film To 2500 g of the surface-treated silica sol dispersion prepared in Example 15 and having a solid concentration of 40.5% by weight, dimethylol-tricyclodecanedi, an organic resin for dispersion, was used. 202.5 g of acrylate (the same light acrylate DCP-A as in Example 1) was added, a part of the solvent was removed by a rotary evaporator, and organic particles of surface-treated silica particles having a solid content concentration of 76.0% by weight were obtained. A resin dispersion (RA7) is prepared.
- a substrate with film (R7) is produced in the same manner as in Example 15 except that the coating liquid (R7) for forming a hard coat film is used.
- the thickness of the hard coat film is 12 ⁇ m.
- the obtained film-coated substrate (R7) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above-mentioned base material with hard coat film (R7) was used. The thickness of the antireflection layer is 100 nm.
- the film-coated substrate having this antireflection layer is evaluated in the same manner as in Example 15.
- a substrate with film (R8) is produced in the same manner as in Example 15 except that the coating liquid (R8) for forming a hard coat film is used.
- the thickness of the hard coat film is 12 ⁇ m.
- the obtained film-coated substrate (R8) is evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material with hard coat film (R8) described above was used. The thickness of the antireflection layer is 100 nm.
- the film-coated substrate (R8) having this antireflection layer was evaluated in the same manner as in Example 15.
- a substrate with film (R9) is produced in the same manner as in Example 15 except that this coating solution (R9) is used.
- the thickness of the hard coat film is 12 ⁇ m.
- the obtained film-coated substrate (R9) was evaluated in the same manner as in Example 15.
- Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above-mentioned base material with hard coat film (R9) was used.
- the thickness of the antireflection layer is 100 nm.
- the substrate with film (R9) having this antireflection layer is evaluated in the same manner as in Example 15.
- a base material with hard coat film (R10) is produced in the same manner as in Example 15 except that this coating solution (R10) is used.
- the thickness of the hard coat film is 12 ⁇ m.
- the obtained film-coated substrate (R10) is evaluated in the same manner as in Example 15.
- An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material (R10) with an antireflection layer is used.
- the thickness of the antireflection layer is 100 nm.
- the film-coated substrate having this antireflection layer is evaluated in the same manner as in Example 15.
- Example 11 Formation of Antireflective Layer
- the coating solution for forming an antireflective film having a solid content concentration of 3.0% by weight (15 L) prepared in Example 15 was applied to the TAC film used in Example 15 by the bar coater method # 4. After drying at 80 ° C. for 120 seconds, the substrate was cured by irradiation with ultraviolet rays of 600 mJ / cm 2 in an N 2 atmosphere to prepare a base material (R11) with an antireflection layer. Therefore, no hard coat film is provided, and the antireflection layer is formed directly on the substrate. The thickness of the antireflection layer is 100 nm.
- the base material (R11) with the antireflection layer is evaluated in the same manner as in Example 15.
- Example 35 Preparation of base material with hard coat film (35) This example has a configuration in which an antireflection layer is not provided in Example 15, and Examples 1 to 14 differ from the thickness of the base material and the particle size of metal oxide particles. Etc. are different.
- the coating liquid (15) for forming the hard coat film prepared in Example 15 was applied to the TAC film used in Example 15 by the bar coater method # 16, dried at 80 ° C. for 120 seconds, and then in an N 2 atmosphere. Then, the substrate (35) with a hard coat film is prepared by irradiating and curing ultraviolet rays of 300 mJ / cm 2 . The thickness of the hard coat film is 12 ⁇ m. This film-coated substrate is evaluated in the same manner as in Example 15.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
Abstract
The present invention provides a high-strength transparent coating that has high strength in the case of a resin substrate, and, in the case of a thick film, causes little film contraction, does not give rise to cracks, and suppresses curling. Provided is a coating liquid for forming a transparent coating, said coating liquid including metal oxide particles having an average particle size in the range of 5-300 nm and having a matrix-forming component, wherein the matrix-forming component comprises a first organic resin having at most two functional groups and a second organic resin having at least three functional groups, the concentration (CP) of the metal oxide particles as solid content is 45-90 wt%, the concentration (CR) of the matrix-forming component as solid content is 10-50 wt%, the total solid content concentration (CT) is at least 60 wt%, and the ratio (CR/CP) of the concentration (CR) to the concentration (CP) is in the range of 0.11-1.0.
Description
本発明は、透明被膜形成用の塗布液および透明被膜付基材に関する。特に、基材が樹脂基材であっても硬度が高く、厚膜であってもクラックが無くカーリングが抑制された透明被膜の形成に好適な塗布液に関する。
The present invention relates to a coating liquid for forming a transparent film and a substrate with a transparent film. In particular, the present invention relates to a coating solution that is suitable for forming a transparent film having high hardness even when the substrate is a resin substrate, and having no cracks even when the substrate is a thick film.
従来、ガラス、プラスチックシート、プラスチックレンズ等の耐擦傷性を向上させるため、基材表面にハードコート機能を有する透明被膜が設けられている。このような透明被膜として有機樹脂膜や無機膜が用いられている。耐擦傷性をさらに向上させるために、透明被膜中に樹脂粒子やシリカ等の無機粒子を配合することが知られている。
Conventionally, in order to improve the scratch resistance of glass, plastic sheets, plastic lenses, etc., a transparent film having a hard coat function is provided on the surface of the base material. An organic resin film or an inorganic film is used as such a transparent film. In order to further improve the scratch resistance, it is known to mix inorganic particles such as resin particles and silica in the transparent film.
しかしながら、透明被膜形成用の塗布液に粒子を分散させる場合、マトリックス形成成分や分散媒に対して親和性の低い粒子は凝集してしまう。そのため、塗布液の安定性が低下し、得られる透明被膜の透明性、ヘーズ等の他、耐擦傷性、強度、スクラッチ強度等が不充分となることがあった。
However, when the particles are dispersed in the coating liquid for forming the transparent film, the particles having low affinity for the matrix forming component and the dispersion medium are aggregated. For this reason, the stability of the coating solution is lowered, and in addition to the transparency and haze of the resulting transparent film, the scratch resistance, strength, scratch strength and the like may be insufficient.
これを防ぐために、粒子をシランカップリング剤で表面処理することが知られている。また、粒子にメカノケミカル法、グラフト重合法等で樹脂を被覆してマトリックス成分または分散媒との親和性を高めることが知られている。(特開平3-163172号公報(特許文献1)、特開平6-336558号公報(特許文献2)、特開平6-49251号公報(特許文献3)、特開2000-143230号公報(特許文献4))
In order to prevent this, it is known that the particles are surface-treated with a silane coupling agent. In addition, it is known that particles are coated with a resin by a mechanochemical method, a graft polymerization method, or the like to increase the affinity with a matrix component or a dispersion medium. (JP-A-3-163172 (Patent Document 1), JP-A-6-336558 (Patent Document 2), JP-A-6-49251 (Patent Document 3), JP-A 2000-143230 (Patent Document) 4))
また、特開2010-37534号公報(特許文献5)には、芳香族骨格と4個以上の原子が連なった構造が芳香族骨格へ結合した有機成分を無機粒子表面に有する複合粒子が開示されている。このような複合粒子は分散性に優れ、この複合粒子と樹脂成分を含んだ樹脂組成物によれば、耐熱性、機械的強度に優れた硬化物が得られることが開示されている。さらに、複合粒子を樹脂、開始剤とともに分散媒に混合し、ついで、エバポレーター等で溶媒を脱気して樹脂組成物を調製することが記載されている。このとき、100℃以下の加熱下、減圧下で溶媒を脱気すること、高沸点成分共存下で溶媒を脱気することが開示されている。
Japanese Patent Application Laid-Open No. 2010-37534 (Patent Document 5) discloses composite particles having an organic component on the surface of an inorganic particle in which an aromatic skeleton and a structure in which four or more atoms are connected to each other are bonded to the aromatic skeleton. ing. It is disclosed that such composite particles have excellent dispersibility, and according to the resin composition containing the composite particles and a resin component, a cured product having excellent heat resistance and mechanical strength can be obtained. Furthermore, it is described that the composite particles are mixed with a resin and an initiator in a dispersion medium, and then the solvent is degassed with an evaporator or the like to prepare a resin composition. At this time, it is disclosed that the solvent is degassed under a reduced pressure under heating at 100 ° C. or less, and the solvent is degassed in the presence of a high-boiling component.
また、エーテル類、エステル類、ケトン類の有機溶媒を分散媒とする平均二次粒子径がマイクロメートルオーダーの金属酸化物粒子の分散液を加熱処理し、これにアクリル系樹脂を添加し、ついで、メカノケミカル処理することが知られている。これにより、個々の金属酸化物粒子に均一に樹脂を被覆することができる。このとき、樹脂被覆された金属酸化物粒子の分散液を固形分濃度50重量%まで、高濃度にすることができる(特開2010-077409号公報(特許文献6))。
In addition, a dispersion of metal oxide particles having an average secondary particle size of the order of micrometers using an organic solvent such as ethers, esters, and ketones as a dispersion medium is heat-treated, and then an acrylic resin is added thereto. It is known to mechanochemical treatment. Thereby, resin can be uniformly coated on each metal oxide particle. At this time, the dispersion of the metal oxide particles coated with the resin can be increased to a solid concentration of 50% by weight (Japanese Patent Laid-Open No. 2010-077409 (Patent Document 6)).
また、予め加熱処理した金属酸化物粒子の有機溶媒分散液に、芳香族環を有する(メタ)アクリレート系樹脂を添加し、ついで、メカノケミカル処理すると個々の粒子に均一に樹脂を被覆することができる。この樹脂被覆粒子と親和性の高い低分子量の樹脂にこの樹脂被覆粒子を均一に分散させ、その後有機溶媒を除去する。これにより、樹脂被覆粒子が硬化することなく高分散し、安定性に優れた組成物が得られる。この組成物に硬化剤を添加し、塗布し、乾燥することなく硬化させる。これにより収縮の小さい透明被膜を厚く形成できる。この透明被膜は、緻密で透明性、ヘーズ、耐擦傷性等に優れている(特開2012-72288号公報(特許文献7))。
In addition, a (meth) acrylate resin having an aromatic ring is added to an organic solvent dispersion of metal oxide particles that has been heat-treated in advance, and then the resin is uniformly coated on individual particles by mechanochemical treatment. it can. The resin-coated particles are uniformly dispersed in a low molecular weight resin having a high affinity with the resin-coated particles, and then the organic solvent is removed. Thereby, the resin-coated particles are highly dispersed without being cured, and a composition having excellent stability can be obtained. A curing agent is added to the composition, applied, and cured without drying. Thereby, a transparent film with small shrinkage can be formed thickly. This transparent film is dense and excellent in transparency, haze, scratch resistance, etc. (Japanese Patent Laid-Open No. 2012-72288 (Patent Document 7)).
さらに、平均分子量が特定の範囲にあるフルオレン骨格を有さない(メタ)アクリレート系樹脂と、フルオレン骨格を有する(メタ)アクリレート系樹脂と、(メタ)アクリレート樹脂被覆粒子を含む塗料から有機樹脂をロータリーエバポレーターで除去することにより高濃度の塗料を調製できる。このような塗料を用いると硬度に優れた厚い光学膜が得られる(特開2013-10864号公報(特許文献8))。
Furthermore, an organic resin is obtained from a coating containing a (meth) acrylate resin having a fluorene skeleton having an average molecular weight in a specific range, a (meth) acrylate resin having a fluorene skeleton, and (meth) acrylate resin-coated particles. A high-concentration paint can be prepared by removing with a rotary evaporator. When such a paint is used, a thick optical film having excellent hardness can be obtained (Japanese Patent Laid-Open No. 2013-10864 (Patent Document 8)).
また、官能基数が4以上のアクリレートと、官能基数が2または3のアクリレート樹脂と、異形状粒子(球状係数が所定範囲にある粒子または鎖状粒子)と、分散媒を含む塗料を用いると、薄い基材でもカーリングが抑制され、基材との密着性、硬度、耐擦傷性等に優れた透明被膜が得られる(特開2013-133444号公報(特許文献9))。
Further, when an acrylate having a functional group number of 4 or more, an acrylate resin having a functional group number of 2 or 3, an irregularly shaped particle (a particle having a spherical coefficient in a predetermined range or a chain particle), and a coating material containing a dispersion medium are used, Curling is suppressed even with a thin substrate, and a transparent film excellent in adhesion to the substrate, hardness, scratch resistance, etc. can be obtained (Japanese Patent Laid-Open No. 2013-133444 (Patent Document 9)).
また、エチレンオキサイド変性骨格を有する界面活性剤で処理された金属酸化物粒子と疎水性マトリックス形成成分と有機分散媒とからなるハードコート膜形成用塗布液を用いることにより、膜表面に凹凸が形成でき、アンチブロッキング性が向上することが知られている(特開2013-136222号公報(特許文献10))。また、膜硬度が向上するように、有機珪素化合物で表面処理した疎水性粒子を配合することも開示している。
Also, unevenness is formed on the film surface by using a coating liquid for forming a hard coat film composed of metal oxide particles treated with a surfactant having an ethylene oxide-modified skeleton, a hydrophobic matrix forming component, and an organic dispersion medium. And anti-blocking properties are known to improve (Japanese Patent Laid-Open No. 2013-136222 (Patent Document 10)). It also discloses blending hydrophobic particles surface-treated with an organosilicon compound so as to improve the film hardness.
また、ポリマーシランカップリング剤を被覆した表面電荷量が所定の範囲にある金属酸化物粒子と、疎水性有機樹脂マトリックス形成成分と分散媒を含む塗布液を用いることにより、耐アルカリ性に優れ、併せて、基材との密着性、耐擦傷性、硬度等に優れたハードコート膜を形成できる(特開2009-35595号公報(特許文献11))。
In addition, by using a coating liquid containing metal oxide particles coated with a polymer silane coupling agent and having a surface charge amount within a predetermined range, a hydrophobic organic resin matrix forming component and a dispersion medium, the alkali resistance is excellent. Thus, a hard coat film having excellent adhesion to the substrate, scratch resistance, hardness and the like can be formed (Japanese Patent Laid-Open No. 2009-35595 (Patent Document 11)).
また、3官能以上の官能基を有する樹脂と、2官能の有機樹脂モノマーまたはシリコン樹脂モノマーと1官能シリコン樹脂からなる塗料を用いると、ブリードアウトを低減でき、撥水性、撥油性等に優れ指紋、マジック等の拭取性に優れた透明被膜を形成できることが知られている(特開2010-126675号公報(特許文献12))。
In addition, using a resin having a trifunctional or higher functional group and a bifunctional organic resin monomer or a silicone resin monomer and a monofunctional silicone resin can reduce bleed-out and has excellent water and oil repellency. It is known that a transparent film excellent in wiping properties such as magic can be formed (Japanese Patent Laid-Open No. 2010-126675 (Patent Document 12)).
しかしながら、特許文献1~4にあるような従来のメカノケミカル法、グラフト重合法等では、個々の粒子に均一に樹脂を被覆することが困難で、数個以上の凝集した粒子に樹脂が被覆される。このような、樹脂被覆粒子では、樹脂が塗布液の溶媒に溶解することがある。そのため得られる透明被膜は、透明性の低下、ヘーズの上昇、耐擦傷性の低下等の問題があった。
However, in the conventional mechanochemical method and graft polymerization method described in Patent Documents 1 to 4, it is difficult to uniformly coat the resin on individual particles, and the resin is coated on several or more aggregated particles. The In such resin-coated particles, the resin may be dissolved in the solvent of the coating solution. Therefore, the obtained transparent film has problems such as a decrease in transparency, an increase in haze, and a decrease in scratch resistance.
また、特許文献6には、有機溶媒を含む樹脂被覆金属酸化物粒子の分散ゾルが開示され、その濃度は固形分として概ね1~60重量%の範囲にある。塗布液の濃度が60重量%を越えると安定性が低下し、凝集して沈降する場合がある。また、塗布液にする際に有機溶媒とともにマトリックス形成成分として樹脂成分を添加するが、得られる被膜の膜厚には限界があった。
Patent Document 6 discloses a dispersion sol of resin-coated metal oxide particles containing an organic solvent, and its concentration is in the range of approximately 1 to 60% by weight as a solid content. When the concentration of the coating solution exceeds 60% by weight, the stability is lowered, and there is a case where it aggregates and settles. In addition, a resin component is added as a matrix-forming component together with an organic solvent when preparing a coating solution, but there is a limit to the film thickness of the resulting film.
また、膜厚が4μmで鉛筆硬度4Hを上回る透明被膜が得られず(特許文献6)、膜厚35μmで鉛筆硬度3Hを上回る透明被膜が得られず(特許文献7)、表面処理した粒子を50重量%以上配合した透明被膜でも、4Hを上回れない(特許文献12)。
Further, a transparent film having a film thickness of 4 μm and a pencil hardness exceeding 4H cannot be obtained (Patent Document 6), and a transparent film having a film thickness of 35 μm and a pencil hardness exceeding 3H cannot be obtained (Patent Document 7). Even a transparent film containing 50% by weight or more cannot exceed 4H (Patent Document 12).
また、特許文献9のように、異形粒子を用いても鉛筆硬度5H以上の透明被膜は得られていない。
近年、各種表示装置で、樹脂基材を用いた場合でも、ガラス基材と同程度の鉛筆硬度を有する透明被膜が求められている。 Further, as in Patent Document 9, a transparent film having a pencil hardness of 5H or more has not been obtained even if irregularly shaped particles are used.
In recent years, even when a resin substrate is used in various display devices, a transparent film having a pencil hardness comparable to that of a glass substrate has been demanded.
近年、各種表示装置で、樹脂基材を用いた場合でも、ガラス基材と同程度の鉛筆硬度を有する透明被膜が求められている。 Further, as in Patent Document 9, a transparent film having a pencil hardness of 5H or more has not been obtained even if irregularly shaped particles are used.
In recent years, even when a resin substrate is used in various display devices, a transparent film having a pencil hardness comparable to that of a glass substrate has been demanded.
本発明者らは、樹脂の割合を少なくして、粒子の割合を増やせば硬度を高めることができると考えた。しかし、単に粒子の割合を増やすことは、塗布液の安定性はもとより、被膜形成時の乾燥によるひび割れや収縮が大きいという課題がある。そこで、塗布液調製時の分散ゾルの媒体として、従来の溶媒の代わりに、紫外線硬化型樹脂モノマーを使用することで、最終的な樹脂の割合を少なくできることを見出した。
The present inventors thought that the hardness can be increased by decreasing the resin ratio and increasing the particle ratio. However, simply increasing the ratio of the particles has a problem that cracking and shrinkage due to drying during film formation are large as well as stability of the coating solution. Therefore, it has been found that the final resin ratio can be reduced by using an ultraviolet curable resin monomer instead of a conventional solvent as a dispersion sol medium at the time of preparing the coating liquid.
そして、有機珪素化合物で所定量表面処理した金属酸化物粒子の有機分散媒分散液を調製し、当該有機分散媒を官能基数の少ない紫外線硬化型樹脂モノマーで置換することで安定な有機樹脂分散液(有機樹脂分散ゾルということがある)を得ることができことを見出した。そして、これに官能基数が3以上の紫外線硬化型樹脂モノマーを混合して塗布液とすると樹脂の割合を少なくすることが可能であり、塗布液を厚く塗布しても透明被膜の収縮が小さく、またクラックも無く、カーリングが抑制され、膜の硬度が格段に向上することを見出した。
A stable organic resin dispersion is prepared by preparing an organic dispersion medium dispersion of metal oxide particles surface-treated with a predetermined amount of an organosilicon compound, and replacing the organic dispersion medium with an ultraviolet curable resin monomer having a small number of functional groups. It was found that (sometimes referred to as an organic resin dispersion sol) can be obtained. And when this is mixed with an ultraviolet curable resin monomer having 3 or more functional groups to form a coating solution, the ratio of the resin can be reduced, and even when the coating solution is applied thickly, the shrinkage of the transparent film is small. It was also found that there was no crack, curling was suppressed, and the hardness of the film was significantly improved.
すなわち、本発明の透明被膜形成用の塗布液は、平均粒子径が5~300nmの範囲にある金属酸化物粒子とマトリックス形成成分とを含んでおり、金属酸化物粒子の固形分としての濃度(CP)が45~90重量%、マトリックス形成成分の固形分としての濃度(CR)が10~50重量%、全固形分濃度(CT)が60重量%以上であり、濃度(CR)と濃度(CP)との比(CR/CP)が0.11~1.0の範囲にあり、マトリックス形成成分が2個以下の官能基を有する第一の有機樹脂と3個以上の官能基を有する第二の有機樹脂で構成されている。さらに、第一の有機樹脂と第二の有機樹脂は紫外線硬化型樹脂モノマーまたはオリゴマーである。また、第一の有機樹脂と第二の有機樹脂が有する官能基として、(メタ)アクリレート基、ウレタンアクリレート基、エポキシ変性アクリレート基が適している。金属酸化物粒子は有機珪素化合物で表面処理することが好ましい。
That is, the coating liquid for forming a transparent film of the present invention contains metal oxide particles having an average particle diameter in the range of 5 to 300 nm and a matrix-forming component, and the concentration of the metal oxide particles as a solid content ( C P ) is 45 to 90% by weight, the concentration (C R ) as a solid content of the matrix forming component is 10 to 50% by weight, the total solid content concentration (C T ) is 60% by weight or more, and the concentration (C R) ) And concentration (C P ) ratio (C R / C P ) is in the range of 0.11 to 1.0, and the matrix-forming component and the first organic resin having 2 or less functional groups and 3 It is comprised with the 2nd organic resin which has the above functional group. Furthermore, the first organic resin and the second organic resin are ultraviolet curable resin monomers or oligomers. In addition, (meth) acrylate groups, urethane acrylate groups, and epoxy-modified acrylate groups are suitable as functional groups of the first organic resin and the second organic resin. The metal oxide particles are preferably surface treated with an organosilicon compound.
また、本発明の塗布液の製造方法は、平均粒子径が5~300nmの範囲にある金属酸化物粒子と有機分散媒を含む分散液を調製する工程と、有機分散媒の少なくとも一部を2個以下の官能基を有する第一の有機樹脂で置換する工程と、3個以上の官能基を有する第二の有機樹脂を混合する工程とを含んでいる。特に、上述の塗布液を製造する方法として適している。
Further, the method for producing a coating liquid of the present invention comprises a step of preparing a dispersion containing metal oxide particles having an average particle diameter in the range of 5 to 300 nm and an organic dispersion medium, and at least a part of the organic dispersion medium. A step of substituting with a first organic resin having not more than one functional group and a step of mixing a second organic resin having not less than three functional groups. In particular, it is suitable as a method for producing the above coating solution.
また、本発明の透明被膜付基材は、前述の塗布液による透明被膜が表面に設けられた基材であり、この透明被膜は、平均粒子径が5~300nmの金属酸化物粒子とマトリックス成分とを含み、金属酸化物粒子の固形分としての含有量(WP)が45~90重量%であり、マトリックス成分の固形分としての含有量(WR)が10~50重量%であり、含有量比(WR/WP)が0.11~1.0であり、平均膜厚(T)が1~100μmである。さらに、透明被膜上に反射防止層が設けられている。反射防止層は、シリカ系中空粒子とマトリックス成分(ML)を含み、シリカ系中空粒子の含有量(WPLA)が5~80重量%であり、マトリックス成分(ML)の含有量(WML)が20~95重量%であり、反射防止層の厚さ(TL)が80~200nmであり、シリカ系中空粒子の平均粒子径(DPA)が10~45nmであり、シリカ系中空粒子の平均粒子径(DPA)と反射防止層の厚さ(TL)との比(DPA/TL)が0.05~0.56である。
The substrate with a transparent coating of the present invention is a substrate on which a transparent coating by the above-described coating solution is provided. The transparent coating comprises metal oxide particles having an average particle size of 5 to 300 nm and a matrix component. The solid content of metal oxide particles (W P ) is 45 to 90% by weight, the content of the matrix component as solids (W R ) is 10 to 50% by weight, The content ratio (W R / W P ) is 0.11 to 1.0, and the average film thickness (T) is 1 to 100 μm. Further, an antireflection layer is provided on the transparent coating. Antireflective layer comprises a silica-based hollow particles and the matrix component (M L), the content of the silica-based hollow particles (W PLA) is 5 to 80 wt%, the content of the matrix component (M L) (W ML ) is 20 to 95% by weight, the thickness (T L ) of the antireflection layer is 80 to 200 nm, the average particle diameter (D PA ) of the silica-based hollow particles is 10 to 45 nm, and the silica-based hollow The ratio (D PA / T L ) between the average particle diameter (D PA ) of the particles and the thickness (T L ) of the antireflection layer is 0.05 to 0.56.
本発明の塗布液によれば、厚膜であっても膜の収縮が小さく、またクラックも無く、カーリングが抑制され、硬度の高い透明被膜を形成できる。
According to the coating solution of the present invention, even a thick film has a small film shrinkage, no cracks, curling is suppressed, and a transparent film having high hardness can be formed.
以下、先ず、本発明に係る透明被膜形成用の塗布液について説明する。
[透明被膜形成用の塗布液]
本発明に係る塗布液は、平均粒子径が5~300nmの金属酸化物粒子とマトリックス形成成分とを含んでいる。塗布液には、45~90重量%の濃度(CP)で金属酸化物粒子が固形分として存在する。特に、48~80重量%の範囲が好ましい。また、塗布液には、10~50重量%の濃度(CR)でマトリックス形成成分が固形分として存在している。特に、15~40重量%の範囲にあることが好ましい。このとき、塗布液の全固形分濃度(CT)は60重量%以上である。特に60重量%超が適しており、さらに63重量%以上が好ましい。 Hereinafter, first, the coating liquid for forming a transparent film according to the present invention will be described.
[Coating solution for forming transparent film]
The coating liquid according to the present invention contains metal oxide particles having an average particle diameter of 5 to 300 nm and a matrix forming component. In the coating solution, metal oxide particles are present as a solid content at a concentration (C P ) of 45 to 90% by weight. In particular, a range of 48 to 80% by weight is preferable. The coating solution contains a matrix-forming component as a solid content at a concentration (C R ) of 10 to 50% by weight. In particular, it is preferably in the range of 15 to 40% by weight. At this time, the total solid content concentration (C T ) of the coating solution is 60% by weight or more. More than 60% by weight is particularly suitable, and more preferably 63% by weight or more.
[透明被膜形成用の塗布液]
本発明に係る塗布液は、平均粒子径が5~300nmの金属酸化物粒子とマトリックス形成成分とを含んでいる。塗布液には、45~90重量%の濃度(CP)で金属酸化物粒子が固形分として存在する。特に、48~80重量%の範囲が好ましい。また、塗布液には、10~50重量%の濃度(CR)でマトリックス形成成分が固形分として存在している。特に、15~40重量%の範囲にあることが好ましい。このとき、塗布液の全固形分濃度(CT)は60重量%以上である。特に60重量%超が適しており、さらに63重量%以上が好ましい。 Hereinafter, first, the coating liquid for forming a transparent film according to the present invention will be described.
[Coating solution for forming transparent film]
The coating liquid according to the present invention contains metal oxide particles having an average particle diameter of 5 to 300 nm and a matrix forming component. In the coating solution, metal oxide particles are present as a solid content at a concentration (C P ) of 45 to 90% by weight. In particular, a range of 48 to 80% by weight is preferable. The coating solution contains a matrix-forming component as a solid content at a concentration (C R ) of 10 to 50% by weight. In particular, it is preferably in the range of 15 to 40% by weight. At this time, the total solid content concentration (C T ) of the coating solution is 60% by weight or more. More than 60% by weight is particularly suitable, and more preferably 63% by weight or more.
塗布液中の金属酸化物粒子の濃度(CP)が低いと、膜の収縮が大きくなるため、厚膜ではクラックが発生しやすい。また、緻密化が充分ではなく、硬度の高い透明被膜が得られない。逆に、濃度(CP)が高いと、透明被膜の表面凹凸が大きくなる。そのため、外部散乱が生じ、膜のヘーズが悪化し、透明性が低下する。さらに膜の緻密化が充分ではなく、透明被膜の耐擦傷性、基材との密着性が不充分となる。
If the concentration (C P ) of the metal oxide particles in the coating solution is low, the film shrinks greatly, so that a thick film is likely to crack. Moreover, densification is not sufficient and a transparent coating film with high hardness cannot be obtained. On the contrary, when the concentration (C P ) is high, the surface unevenness of the transparent film becomes large. Therefore, external scattering occurs, the haze of the film is deteriorated, and the transparency is lowered. Furthermore, the film is not sufficiently densified, and the scratch resistance of the transparent film and the adhesion to the substrate are insufficient.
塗布液中のマトリックス形成成分の濃度(CR)が低すぎると、金属酸化物粒子の濃度(CP)が高くなり、前述のように膜のヘーズが悪化し、透明性が低下する。さらに、膜の緻密化が不充分となることがあり、透明被膜の耐擦傷性、基材との密着性が不充分となる。マトリックス形成成分の濃度(CR)が高すぎても、金属酸化物粒子が多く配合されている場合と比較して膜の収縮が大きくなり、厚膜にするとクラックが発生しやすい。
また、マトリックス形成成分の濃度(CR)と金属酸化物粒子の濃度(CP)の濃度比(CR/CP)を0.11~1.0とする。特に、0.18~0.8の範囲が好ましい。濃度比(CR/CP)が低い場合は、金属酸化物粒子の固形分としての濃度(CP)が高いので、透明被膜の表面凹凸が大きくなる。そのため、外部散乱による膜のヘーズの悪化、透明性の低下がおきやすい。さらに膜の緻密化が不充分となることがあり、透明被膜の耐擦傷性、基材との密着性が不充分となる。一方、濃度比が高すぎると膜の収縮が大きくなり、厚い膜ではクラックが発生しやすい。さらに、透明被膜の緻密化が充分ではなく、良好な硬度が得られない。 When the concentration (C R ) of the matrix-forming component in the coating solution is too low, the concentration (C P ) of the metal oxide particles is increased, the haze of the film is deteriorated as described above, and the transparency is lowered. Furthermore, the densification of the film may be insufficient, and the scratch resistance of the transparent film and the adhesion to the substrate will be insufficient. Even if the concentration (C R ) of the matrix-forming component is too high, the film shrinks more than when a large amount of metal oxide particles are blended, and cracks tend to occur when the film is thick.
Further, the concentration ratio (C R / C P ) between the concentration of the matrix forming component (C R ) and the concentration of the metal oxide particles (C P ) is set to 0.11 to 1.0. The range of 0.18 to 0.8 is particularly preferable. When the concentration ratio (C R / C P ) is low, since the concentration (C P ) as the solid content of the metal oxide particles is high, the surface unevenness of the transparent coating becomes large. For this reason, the haze of the film is deteriorated due to external scattering, and the transparency is easily lowered. Furthermore, the densification of the film may be insufficient, and the scratch resistance of the transparent coating and the adhesion to the substrate will be insufficient. On the other hand, if the concentration ratio is too high, the shrinkage of the film increases, and cracks are likely to occur in a thick film. Further, the transparent film is not sufficiently densified, and good hardness cannot be obtained.
また、マトリックス形成成分の濃度(CR)と金属酸化物粒子の濃度(CP)の濃度比(CR/CP)を0.11~1.0とする。特に、0.18~0.8の範囲が好ましい。濃度比(CR/CP)が低い場合は、金属酸化物粒子の固形分としての濃度(CP)が高いので、透明被膜の表面凹凸が大きくなる。そのため、外部散乱による膜のヘーズの悪化、透明性の低下がおきやすい。さらに膜の緻密化が不充分となることがあり、透明被膜の耐擦傷性、基材との密着性が不充分となる。一方、濃度比が高すぎると膜の収縮が大きくなり、厚い膜ではクラックが発生しやすい。さらに、透明被膜の緻密化が充分ではなく、良好な硬度が得られない。 When the concentration (C R ) of the matrix-forming component in the coating solution is too low, the concentration (C P ) of the metal oxide particles is increased, the haze of the film is deteriorated as described above, and the transparency is lowered. Furthermore, the densification of the film may be insufficient, and the scratch resistance of the transparent film and the adhesion to the substrate will be insufficient. Even if the concentration (C R ) of the matrix-forming component is too high, the film shrinks more than when a large amount of metal oxide particles are blended, and cracks tend to occur when the film is thick.
Further, the concentration ratio (C R / C P ) between the concentration of the matrix forming component (C R ) and the concentration of the metal oxide particles (C P ) is set to 0.11 to 1.0. The range of 0.18 to 0.8 is particularly preferable. When the concentration ratio (C R / C P ) is low, since the concentration (C P ) as the solid content of the metal oxide particles is high, the surface unevenness of the transparent coating becomes large. For this reason, the haze of the film is deteriorated due to external scattering, and the transparency is easily lowered. Furthermore, the densification of the film may be insufficient, and the scratch resistance of the transparent coating and the adhesion to the substrate will be insufficient. On the other hand, if the concentration ratio is too high, the shrinkage of the film increases, and cracks are likely to occur in a thick film. Further, the transparent film is not sufficiently densified, and good hardness cannot be obtained.
マトリックス形成成分は第一の有機樹脂(A)と第二の有機樹脂(B)で構成されている。第一の有機樹脂は2個以下の官能基を有する有機樹脂であり、金属酸化物粒子を安定に分散させる。第二の有機樹脂は3個以上の官能基を有する有機樹脂であり、塗膜の硬度を高めるために必要である。また、マトリックス形成成分中の第一の有機樹脂(A)の固形分としての含有量は1~80重量%である。特に、5~60重量%の範囲にあることが好ましい。第一の有機樹脂(A)の含有量が少なすぎると、金属酸化物粒子を凝集することなく均一に分散させることが困難である。このような塗布液から得られる透明被膜は表面の平滑性が低く、緻密化が不充分となる。一方、第一の有機樹脂(A)の含有量が多すぎると、第二の有機樹脂(B)は少ないので、透明被膜の緻密性が充分でなく、良好な硬度が得られない。マトリックス形成成分中の第二の有機樹脂は、第一の有機樹脂との合計濃度(CR)が上述の範囲となるように設定される。
The matrix forming component is composed of a first organic resin (A) and a second organic resin (B). The first organic resin is an organic resin having 2 or less functional groups and stably disperses the metal oxide particles. The second organic resin is an organic resin having three or more functional groups, and is necessary for increasing the hardness of the coating film. Further, the content of the first organic resin (A) in the matrix-forming component as a solid content is 1 to 80% by weight. In particular, it is preferably in the range of 5 to 60% by weight. If the content of the first organic resin (A) is too small, it is difficult to uniformly disperse the metal oxide particles without agglomerating. A transparent film obtained from such a coating solution has low surface smoothness and insufficient densification. On the other hand, if the content of the first organic resin (A) is too large, the second organic resin (B) is small, so that the denseness of the transparent film is not sufficient and good hardness cannot be obtained. The second organic resin in the matrix-forming component is set so that the total concentration (C R ) with the first organic resin is in the above range.
マトリックス形成成分中の第一の有機樹脂の濃度(CRA)と、金属酸化物粒子の濃度(CP)との比率(CRA/CP)は、0.17~1.11である。特に、0.19~0.89の範囲が好ましい。この範囲にあれば、金属酸化物粒子が多くても、膜の収縮は小さく、厚膜化が可能であり、クラック発生も抑制できる。最終的に得られる透明被膜は緻密性が高く、このため硬度も高い。
このような塗布液は、以下のように調製される。 The ratio (C RA / C P ) between the concentration (C RA ) of the first organic resin in the matrix-forming component and the concentration (C P ) of the metal oxide particles is 0.17 to 1.11. In particular, the range of 0.19 to 0.89 is preferable. If it exists in this range, even if there are many metal oxide particles, shrinkage | contraction of a film | membrane is small, a film thickness can be increased, and the crack generation can also be suppressed. The finally obtained transparent film is highly dense and therefore has a high hardness.
Such a coating solution is prepared as follows.
このような塗布液は、以下のように調製される。 The ratio (C RA / C P ) between the concentration (C RA ) of the first organic resin in the matrix-forming component and the concentration (C P ) of the metal oxide particles is 0.17 to 1.11. In particular, the range of 0.19 to 0.89 is preferable. If it exists in this range, even if there are many metal oxide particles, shrinkage | contraction of a film | membrane is small, a film thickness can be increased, and the crack generation can also be suppressed. The finally obtained transparent film is highly dense and therefore has a high hardness.
Such a coating solution is prepared as follows.
[透明被膜形成用の塗布液の調製方法]
工程(a)
はじめに、平均粒子径が5~300nmの範囲にある金属酸化物粒子を有機分散媒に分散させ、有機分散液を調製する。有機分散液中の金属酸化物粒子の濃度は、特に制限ないが、通常、固形分として30~50重量%の範囲にある。濃度が低いと、溶媒置換量が増え、効率的でない。濃度が高いと、金属酸化物粒子が凝集する。あるいは、凝集しないまでも粘度が上昇して安定性が得られ難い。この時、金属酸化物粒子は有機珪素化合物で表面処理されていることが望ましい。 [Method for preparing coating solution for forming transparent film]
Step (a)
First, metal oxide particles having an average particle diameter in the range of 5 to 300 nm are dispersed in an organic dispersion medium to prepare an organic dispersion. The concentration of the metal oxide particles in the organic dispersion is not particularly limited, but is usually in the range of 30 to 50% by weight as a solid content. If the concentration is low, the amount of solvent substitution increases and it is not efficient. When the concentration is high, the metal oxide particles aggregate. Or even if it does not aggregate, a viscosity will rise and it will be difficult to obtain stability. At this time, the metal oxide particles are preferably surface-treated with an organosilicon compound.
工程(a)
はじめに、平均粒子径が5~300nmの範囲にある金属酸化物粒子を有機分散媒に分散させ、有機分散液を調製する。有機分散液中の金属酸化物粒子の濃度は、特に制限ないが、通常、固形分として30~50重量%の範囲にある。濃度が低いと、溶媒置換量が増え、効率的でない。濃度が高いと、金属酸化物粒子が凝集する。あるいは、凝集しないまでも粘度が上昇して安定性が得られ難い。この時、金属酸化物粒子は有機珪素化合物で表面処理されていることが望ましい。 [Method for preparing coating solution for forming transparent film]
Step (a)
First, metal oxide particles having an average particle diameter in the range of 5 to 300 nm are dispersed in an organic dispersion medium to prepare an organic dispersion. The concentration of the metal oxide particles in the organic dispersion is not particularly limited, but is usually in the range of 30 to 50% by weight as a solid content. If the concentration is low, the amount of solvent substitution increases and it is not efficient. When the concentration is high, the metal oxide particles aggregate. Or even if it does not aggregate, a viscosity will rise and it will be difficult to obtain stability. At this time, the metal oxide particles are preferably surface-treated with an organosilicon compound.
工程(b)
そして、その分散液中の有機分散媒を2個以下の官能基を有する第一の有機樹脂で置換する。溶媒の置換方法に特に制限はなく従来公知の方法を採用できる。例えば、ロータリーエバポレーター法、蒸発缶法等が採用できる。このとき、必要に応じて減圧下、さらに加温下で行ってもよい。 Step (b)
Then, the organic dispersion medium in the dispersion is replaced with a first organic resin having 2 or less functional groups. There is no restriction | limiting in particular in the substitution method of a solvent, A conventionally well-known method is employable. For example, a rotary evaporator method or an evaporator method can be employed. At this time, you may carry out under pressure reduction and also heating as needed.
そして、その分散液中の有機分散媒を2個以下の官能基を有する第一の有機樹脂で置換する。溶媒の置換方法に特に制限はなく従来公知の方法を採用できる。例えば、ロータリーエバポレーター法、蒸発缶法等が採用できる。このとき、必要に応じて減圧下、さらに加温下で行ってもよい。 Step (b)
Then, the organic dispersion medium in the dispersion is replaced with a first organic resin having 2 or less functional groups. There is no restriction | limiting in particular in the substitution method of a solvent, A conventionally well-known method is employable. For example, a rotary evaporator method or an evaporator method can be employed. At this time, you may carry out under pressure reduction and also heating as needed.
有機分散媒を第一の有機樹脂で置換する割合は、後述する工程(c)を経て最終的に得られる塗布液中の有機分散媒の濃度が40重量%未満になるように行う。特に、35重量%未満とすることが好ましい。
有機分散媒が多く残っていると、塗布液の全固形分濃度(CT)が低くなるため、塗布液を塗布してから乾燥するまでの収縮が大きくなる。そのため、厚膜、特に10μm以上の厚膜を得る場合は収縮時にクラックが発生しやすくなり、カーリング性も大きくなる。 The ratio of replacing the organic dispersion medium with the first organic resin is performed so that the concentration of the organic dispersion medium in the coating liquid finally obtained through the step (c) described later is less than 40% by weight. In particular, it is preferably less than 35% by weight.
If a large amount of the organic dispersion medium remains, the total solid content concentration (C T ) of the coating solution decreases, and thus the shrinkage from application of the coating solution to drying increases. For this reason, when a thick film, particularly a film having a thickness of 10 μm or more is obtained, cracks are likely to occur during shrinkage, and curling properties are increased.
有機分散媒が多く残っていると、塗布液の全固形分濃度(CT)が低くなるため、塗布液を塗布してから乾燥するまでの収縮が大きくなる。そのため、厚膜、特に10μm以上の厚膜を得る場合は収縮時にクラックが発生しやすくなり、カーリング性も大きくなる。 The ratio of replacing the organic dispersion medium with the first organic resin is performed so that the concentration of the organic dispersion medium in the coating liquid finally obtained through the step (c) described later is less than 40% by weight. In particular, it is preferably less than 35% by weight.
If a large amount of the organic dispersion medium remains, the total solid content concentration (C T ) of the coating solution decreases, and thus the shrinkage from application of the coating solution to drying increases. For this reason, when a thick film, particularly a film having a thickness of 10 μm or more is obtained, cracks are likely to occur during shrinkage, and curling properties are increased.
工程(c)
ついで、工程(b)で得られた、第一の有機樹脂を含んだ分散液に3個以上の官能基を有する第二の有機樹脂を混合する。第二の有機樹脂の混合量は、第一の有機樹脂と第二の有機樹脂との合計量、すなわちマトリックス形成成分としての固形分濃度(CR)が15~50重量%となるように設定する。 Step (c)
Next, the second organic resin having three or more functional groups is mixed in the dispersion liquid containing the first organic resin obtained in the step (b). The mixing amount of the second organic resin is set so that the total amount of the first organic resin and the second organic resin, that is, the solid content concentration (C R ) as a matrix forming component is 15 to 50% by weight. To do.
ついで、工程(b)で得られた、第一の有機樹脂を含んだ分散液に3個以上の官能基を有する第二の有機樹脂を混合する。第二の有機樹脂の混合量は、第一の有機樹脂と第二の有機樹脂との合計量、すなわちマトリックス形成成分としての固形分濃度(CR)が15~50重量%となるように設定する。 Step (c)
Next, the second organic resin having three or more functional groups is mixed in the dispersion liquid containing the first organic resin obtained in the step (b). The mixing amount of the second organic resin is set so that the total amount of the first organic resin and the second organic resin, that is, the solid content concentration (C R ) as a matrix forming component is 15 to 50% by weight. To do.
このようにして得られる透明被膜形成用の塗布液は、金属酸化物粒子の固形分としての濃度(CP)が45~90重量%であり、全固形分濃度(CT)が60重量%以上であり、濃度(CR)と濃度(CP)との比(CR/CP)が0.11~1.0の範囲にある。特に、全固形分濃度(CT)は60重量%超が好ましく、63重量%以上がさらに好ましい。このとき、必要に応じて光重合開始剤を添加してもよい。また、工程(c)の後で、全固形分濃度が高すぎる場合、塗布液の粘度を調整するために、有機分散媒を加えてもよい。
The coating solution for forming a transparent film thus obtained has a concentration (C P ) of 45 to 90% by weight as a solid content of metal oxide particles, and a total solid content concentration (C T ) of 60% by weight. The ratio (C R / C P ) between the concentration (C R ) and the concentration (C P ) is in the range of 0.11 to 1.0. In particular, the total solid content (C T ) is preferably more than 60% by weight, more preferably 63% by weight or more. At this time, you may add a photoinitiator as needed. Further, after the step (c), when the total solid concentration is too high, an organic dispersion medium may be added in order to adjust the viscosity of the coating solution.
以下、塗布液に含まれる金属酸化物粒子とマトリックス形成成分について詳細に説明する。
金属酸化物粒子
金属酸化物ゾルに由来する金属酸化物粒子を用いることが好ましい。例えば、従来公知のシリカゾル、ジルコニアゾル、チタニアゾル、アルミナゾル、五酸化アンチモンゾル、アンチモンドープ酸化錫(ATO)、リンドープ酸化錫(PTO)、インジウムドープ酸化錫(ITO)等が挙げられる。 Hereinafter, the metal oxide particles and matrix forming components contained in the coating solution will be described in detail.
Metal oxide particles It is preferable to use metal oxide particles derived from a metal oxide sol. For example, conventionally known silica sol, zirconia sol, titania sol, alumina sol, antimony pentoxide sol, antimony doped tin oxide (ATO), phosphorus doped tin oxide (PTO), indium doped tin oxide (ITO) and the like can be mentioned.
金属酸化物粒子
金属酸化物ゾルに由来する金属酸化物粒子を用いることが好ましい。例えば、従来公知のシリカゾル、ジルコニアゾル、チタニアゾル、アルミナゾル、五酸化アンチモンゾル、アンチモンドープ酸化錫(ATO)、リンドープ酸化錫(PTO)、インジウムドープ酸化錫(ITO)等が挙げられる。 Hereinafter, the metal oxide particles and matrix forming components contained in the coating solution will be described in detail.
Metal oxide particles It is preferable to use metal oxide particles derived from a metal oxide sol. For example, conventionally known silica sol, zirconia sol, titania sol, alumina sol, antimony pentoxide sol, antimony doped tin oxide (ATO), phosphorus doped tin oxide (PTO), indium doped tin oxide (ITO) and the like can be mentioned.
金属酸化物粒子の平均粒子径は5~300nmが適している。特に5~200nmの範囲が好ましい。金属酸化物粒子の平均粒子径が5nm未満のものは、後述する表面処理の有無にも依るが、金属酸化物粒子が凝集しやすくなる。凝集すると、透明被膜のヘーズが悪化し、透明性が低下する。平均粒子径が300nmを超えても、金属酸化物粒子の含有量によっても異なるが、透明被膜のヘーズが悪化したり、透明性が低下する。さらに、摩擦等により透明被膜が損傷する場合がある。
The average particle size of the metal oxide particles is suitably 5 to 300 nm. The range of 5 to 200 nm is particularly preferable. When the average particle diameter of the metal oxide particles is less than 5 nm, the metal oxide particles are likely to aggregate although depending on the presence or absence of a surface treatment described later. When agglomerated, the haze of the transparent film deteriorates and the transparency is lowered. Even if the average particle diameter exceeds 300 nm, although depending on the content of the metal oxide particles, the haze of the transparent film is deteriorated or the transparency is lowered. Further, the transparent film may be damaged by friction or the like.
金属酸化物粒子の球状係数は0.2~1.0が適している。特に、0.4~1.0が好ましい。球状係数が小さいと、塗布液中での分散性が不充分で、金属酸化物粒子が凝集することがある。そのため、基材との密着性、スクラッチ強度等が不充分となり、得られる透明被膜にクラックを生じる場合がある。ここで、球状係数は「(最長径の中点で最長径と直交する平均短径;DS)/(粒子の平均粒子最長径;DL)」で表される。
透過型電子顕微鏡(TEM)で撮影した写真から、100個の粒子について最長径および最長径の中点で直交する短径を測定し、短径の平均値(DS)と最長径の平均値(DL)との比として球状係数を求めることができる。 The spherical coefficient of the metal oxide particles is suitably 0.2 to 1.0. In particular, 0.4 to 1.0 is preferable. When the spherical coefficient is small, the dispersibility in the coating solution is insufficient and the metal oxide particles may aggregate. For this reason, adhesion to the substrate, scratch strength, etc. are insufficient, and cracks may occur in the resulting transparent film. Here, the spherical coefficient is represented by “(average short diameter perpendicular to the longest diameter at the midpoint of the longest diameter; D S ) / (average particle longest diameter of the particle; D L )”.
From a photograph taken with a transmission electron microscope (TEM), the shortest diameter orthogonal to the midpoint of the longest diameter and the longest diameter was measured for 100 particles, and the average value of the shortest diameter (D S ) and the average value of the longest diameter The spherical coefficient can be obtained as a ratio to (D L ).
透過型電子顕微鏡(TEM)で撮影した写真から、100個の粒子について最長径および最長径の中点で直交する短径を測定し、短径の平均値(DS)と最長径の平均値(DL)との比として球状係数を求めることができる。 The spherical coefficient of the metal oxide particles is suitably 0.2 to 1.0. In particular, 0.4 to 1.0 is preferable. When the spherical coefficient is small, the dispersibility in the coating solution is insufficient and the metal oxide particles may aggregate. For this reason, adhesion to the substrate, scratch strength, etc. are insufficient, and cracks may occur in the resulting transparent film. Here, the spherical coefficient is represented by “(average short diameter perpendicular to the longest diameter at the midpoint of the longest diameter; D S ) / (average particle longest diameter of the particle; D L )”.
From a photograph taken with a transmission electron microscope (TEM), the shortest diameter orthogonal to the midpoint of the longest diameter and the longest diameter was measured for 100 particles, and the average value of the shortest diameter (D S ) and the average value of the longest diameter The spherical coefficient can be obtained as a ratio to (D L ).
また、金属酸化物粒子を下記式(1)で表される有機珪素化合物で表面処理することが好ましい。
Rn-SiX4-n ・・・・式(1)
但し、式中、Rは炭素数1~10の非置換または置換炭化水素基で、互いに同一であっても異なっていてもよい。Xは炭素数1~4のアルコキシ基、水酸基、ハロゲン、水素であり、nは1~3の整数を示す。置換基としては、エポキシ基、アルコキシ基、(メタ)アクリロイロキシ基、メルカプト基、ハロゲン原子、アミノ基、フェニルアミノ基などが挙げられる。
Moreover, it is preferable to surface-treat a metal oxide particle with the organosilicon compound represented by following formula (1).
R n -SiX 4-n ···· formula (1)
In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X represents an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, halogen, or hydrogen, and n represents an integer of 1 to 3. Examples of the substituent include an epoxy group, an alkoxy group, a (meth) acryloyloxy group, a mercapto group, a halogen atom, an amino group, and a phenylamino group.
Rn-SiX4-n ・・・・式(1)
但し、式中、Rは炭素数1~10の非置換または置換炭化水素基で、互いに同一であっても異なっていてもよい。Xは炭素数1~4のアルコキシ基、水酸基、ハロゲン、水素であり、nは1~3の整数を示す。置換基としては、エポキシ基、アルコキシ基、(メタ)アクリロイロキシ基、メルカプト基、ハロゲン原子、アミノ基、フェニルアミノ基などが挙げられる。
Moreover, it is preferable to surface-treat a metal oxide particle with the organosilicon compound represented by following formula (1).
R n -SiX 4-n ···· formula (1)
In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X represents an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, halogen, or hydrogen, and n represents an integer of 1 to 3. Examples of the substituent include an epoxy group, an alkoxy group, a (meth) acryloyloxy group, a mercapto group, a halogen atom, an amino group, and a phenylamino group.
金属酸化物粒子の表面処理量は金属酸化物粒子100重量部に対し、有機珪素化合物をRn-SiO(4-n)/2として0.1~50重量部が適している。特に1~40重量部の範囲が好ましい。表面処理量が少ないと金属酸化物粒子の分散性が不充分である。そのため、得られる透明被膜にヘーズが発生したり、基材との密着性や硬度が十分ではない。表面処理量が多すぎても、分散性がさらに向上する訳ではなく、未反応の表面処理剤が残存することがある。すると、金属酸化物粒子の高密度充填が阻害され、硬度や密着性が不充分となる。
The surface treatment amount of the metal oxide particles is suitably 0.1 to 50 parts by weight with respect to 100 parts by weight of the metal oxide particles, with the organosilicon compound being R n —SiO 2 (4-n) / 2 . The range of 1 to 40 parts by weight is particularly preferable. When the surface treatment amount is small, the dispersibility of the metal oxide particles is insufficient. For this reason, haze is generated in the obtained transparent film, and the adhesion and hardness with the substrate are not sufficient. Even if the surface treatment amount is too large, the dispersibility is not further improved, and an unreacted surface treatment agent may remain. Then, the high density filling of metal oxide particles is hindered, and the hardness and adhesion are insufficient.
表面処理の方法としては、従来公知の方法を採用できる。例えば、金属酸化物ゾルが水分散ゾルである場合は、アルコールに溶媒置換したオルガノゾルとし、これに、前述の加水分解性の有機珪素化合物を必要量添加し、必要に応じて加熱したり、加水分解用触媒として酸あるいはアルカリを添加し、有機珪素化合物を加水分解する方法が挙げられる。加水分解後、水あるいは副生物を含む分散媒を後述する有機分散媒に溶媒置換することが好ましい。
As a surface treatment method, a conventionally known method can be adopted. For example, when the metal oxide sol is a water-dispersed sol, an organosol obtained by solvent substitution with alcohol is added, and a necessary amount of the aforementioned hydrolyzable organosilicon compound is added to the sol and heated as necessary. Examples include a method of hydrolyzing an organosilicon compound by adding an acid or an alkali as a decomposition catalyst. After the hydrolysis, it is preferable to replace the dispersion medium containing water or by-products with an organic dispersion medium described later.
式(1)で表される有機珪素化合物として、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエトキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-(β-グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、γ-(メタ)アクリロオキシプロピルジメトキシシラン、γ-(メタ)アクリロオキシプロピルジエトキシシラン等およびこれらの混合物が挙げられる。
Examples of the organosilicon compound represented by the formula (1) include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldi Ethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoro Propyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltriethoxysilane, γ-glycidoxyethyl Rutrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ -(Meth) acrylooxymethyltrimethoxysilane, γ- (meth) acryloxymethyltriethoxysilane, γ- (meth) acryloxyethyltrimethoxysilane, γ- (meth) acrylooxyethyltriethoxysilane , Γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxy Silane, butyltri Ethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) ) Γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane , Γ- (meth) acrylooxypropyldimethoxysilane, γ- (meth) acryloxypropyldiethoxysilane, and the like, and mixtures thereof.
特に、(メタ)アクリレート基を置換基として持つ置換炭化水素基をRとして有する有機珪素化合物が好ましい。このような有機珪素化合物で表面処理すると、金属酸化物粒子と紫外線硬化型の有機樹脂との相溶性が高くなり、分散性が向上する。そのため、均一で基材との密着性に優れた透明被膜が得られる。
In particular, an organosilicon compound having a substituted hydrocarbon group having a (meth) acrylate group as a substituent as R is preferable. When the surface treatment is performed with such an organosilicon compound, the compatibility between the metal oxide particles and the ultraviolet curable organic resin is increased, and the dispersibility is improved. Therefore, a transparent film having a uniform and excellent adhesion to the substrate can be obtained.
加えて、マトリックス形成成分である各樹脂との結合性が向上することから、より硬度の向上した透明被膜を得ることができる。
(メタ)アクリレート基を置換基とする置換炭化水素基をRとして有する有機珪素化合物として、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルジメトキシシラン、γ-(メタ)アクリロオキシプロピルジエトキシシラン等が挙げられる。
In addition, since the bondability with each resin which is a matrix forming component is improved, a transparent film with further improved hardness can be obtained.
As organosilicon compounds having a substituted hydrocarbon group with a (meth) acrylate group as a substituent as R, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriexisilane, γ -(Meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane Γ- (meth) acrylooxypropyldimethoxysilane, γ- (meth) acryloxypropyldiethoxysilane, and the like.
(メタ)アクリレート基を置換基とする置換炭化水素基をRとして有する有機珪素化合物として、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルジメトキシシラン、γ-(メタ)アクリロオキシプロピルジエトキシシラン等が挙げられる。
In addition, since the bondability with each resin which is a matrix forming component is improved, a transparent film with further improved hardness can be obtained.
As organosilicon compounds having a substituted hydrocarbon group with a (meth) acrylate group as a substituent as R, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriexisilane, γ -(Meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane Γ- (meth) acrylooxypropyldimethoxysilane, γ- (meth) acryloxypropyldiethoxysilane, and the like.
マトリックス形成成分
本発明に係る透明被膜形成用の塗布液には、マトリックス形成成分として、2個以下の官能基を有する第一の有機樹脂(A)と、3個以上の官能基を有する第二の有機樹脂(B)を含んでいる。第一の有機樹脂と第二の有機樹脂は、紫外線硬化型樹脂のモノマーまたはオリゴマーであることが好ましい。第二の有機樹脂に、3個以上の官能基を有する紫外線硬化型樹脂のモノマーないしオリゴマーを用いると、官能基数が3個以上であるため、ポリエチレンテレフタラート(PET)やトリアセチルセルロース(TAC)等の樹脂基材と結合しやすく、基材との密着性が優れている。また、マトリックス形成成分として互いに結合するため、硬度に優れた透明被膜が得られる。特に、第二の有機樹脂が(メタ)アクリレート基、ウレタンアクリレート基、アルキレンオキサイド変性アクリレート基から選ばれる少なくとも1種の官能基を有することが好ましい。このような官能基を有していると、樹脂基材との結合をさらに強固にし、基材と高い密着性が得られる。また、さらに高硬度な透明被膜が得られる。 Matrix-forming component In the coating liquid for forming a transparent film according to the present invention, as a matrix-forming component, a first organic resin (A) having 2 or less functional groups and a second organic resin having 3 or more functional groups. Of the organic resin (B). The first organic resin and the second organic resin are preferably UV curable resin monomers or oligomers. When a monomer or oligomer of an ultraviolet curable resin having three or more functional groups is used as the second organic resin, the number of functional groups is three or more, so polyethylene terephthalate (PET) or triacetyl cellulose (TAC) It is easy to combine with a resin base material such as, and has excellent adhesion to the base material. Moreover, since it couple | bonds together as a matrix formation component, the transparent film excellent in hardness is obtained. In particular, the second organic resin preferably has at least one functional group selected from a (meth) acrylate group, a urethane acrylate group, and an alkylene oxide-modified acrylate group. When having such a functional group, the bond with the resin substrate is further strengthened, and high adhesion to the substrate can be obtained. In addition, a transparent coating with higher hardness can be obtained.
本発明に係る透明被膜形成用の塗布液には、マトリックス形成成分として、2個以下の官能基を有する第一の有機樹脂(A)と、3個以上の官能基を有する第二の有機樹脂(B)を含んでいる。第一の有機樹脂と第二の有機樹脂は、紫外線硬化型樹脂のモノマーまたはオリゴマーであることが好ましい。第二の有機樹脂に、3個以上の官能基を有する紫外線硬化型樹脂のモノマーないしオリゴマーを用いると、官能基数が3個以上であるため、ポリエチレンテレフタラート(PET)やトリアセチルセルロース(TAC)等の樹脂基材と結合しやすく、基材との密着性が優れている。また、マトリックス形成成分として互いに結合するため、硬度に優れた透明被膜が得られる。特に、第二の有機樹脂が(メタ)アクリレート基、ウレタンアクリレート基、アルキレンオキサイド変性アクリレート基から選ばれる少なくとも1種の官能基を有することが好ましい。このような官能基を有していると、樹脂基材との結合をさらに強固にし、基材と高い密着性が得られる。また、さらに高硬度な透明被膜が得られる。 Matrix-forming component In the coating liquid for forming a transparent film according to the present invention, as a matrix-forming component, a first organic resin (A) having 2 or less functional groups and a second organic resin having 3 or more functional groups. Of the organic resin (B). The first organic resin and the second organic resin are preferably UV curable resin monomers or oligomers. When a monomer or oligomer of an ultraviolet curable resin having three or more functional groups is used as the second organic resin, the number of functional groups is three or more, so polyethylene terephthalate (PET) or triacetyl cellulose (TAC) It is easy to combine with a resin base material such as, and has excellent adhesion to the base material. Moreover, since it couple | bonds together as a matrix formation component, the transparent film excellent in hardness is obtained. In particular, the second organic resin preferably has at least one functional group selected from a (meth) acrylate group, a urethane acrylate group, and an alkylene oxide-modified acrylate group. When having such a functional group, the bond with the resin substrate is further strengthened, and high adhesion to the substrate can be obtained. In addition, a transparent coating with higher hardness can be obtained.
第一の有機樹脂には1~2個の官能基を有する紫外線硬化型樹脂のモノマーまたはオリゴマーを用いることが好ましい。官能基数が1~2個であると、有機樹脂の粘度が低く、金属酸化物粒子の有機分散媒分散液を溶媒置換する際に、有機樹脂を高濃度化しても粘度の上昇が小さいため、好適に用いることができる。すなわち、第一の有機樹脂により、金属酸化物粒子を安定に分散させることができ、高濃度で安定な金属酸化物粒子の有機樹脂分散液が得られる。
It is preferable to use an ultraviolet curable resin monomer or oligomer having 1 to 2 functional groups for the first organic resin. When the number of functional groups is 1-2, the viscosity of the organic resin is low, and when the organic dispersion medium dispersion of metal oxide particles is replaced with a solvent, the increase in viscosity is small even when the concentration of the organic resin is increased. It can be used suitably. That is, the metal oxide particles can be stably dispersed by the first organic resin, and an organic resin dispersion of metal oxide particles that is stable at a high concentration can be obtained.
紫外線硬化型樹脂のモノマーまたはオリゴマーの分子量(ポリスチレン換算分子量)は5,000以下が適している。特に、4,500以下が好ましい。分子量が大きすぎると、樹脂の粘度が高く、第一の有機樹脂として使用した場合、金属酸化物粒子の有機分散媒分散液を分散媒置換した際に分散液の粘度が高くなり、高濃度化できない場合がある。そのため、厚膜の形成、膜形成時の収縮の抑制、クラックの抑制、カーリングの抑制および硬度に優れた透明被膜の形成が困難となる。第一の有機樹脂として用いる場合、特に1,000以下が好ましい。また、第二の有機樹脂として使用した場合、樹脂の硬度が低下するため、透明被膜の硬度も発現し難くなる。
The molecular weight (polystyrene equivalent molecular weight) of the monomer or oligomer of the ultraviolet curable resin is suitably 5,000 or less. In particular, 4,500 or less is preferable. If the molecular weight is too large, the viscosity of the resin is high, and when used as the first organic resin, when the organic dispersion medium dispersion of metal oxide particles is replaced with the dispersion medium, the viscosity of the dispersion increases and the concentration increases. There are cases where it is not possible. Therefore, it becomes difficult to form a thick film, to suppress shrinkage during film formation, to suppress cracks, to suppress curling, and to form a transparent film having excellent hardness. When used as the first organic resin, 1,000 or less is particularly preferable. Further, when used as the second organic resin, the hardness of the resin is lowered, and thus the hardness of the transparent film is hardly exhibited.
また、金属酸化物粒子の表面処理量が0.1~5重量部、特に0.1~3重量部の範囲にある場合には、第一の有機樹脂が水酸基(OH基)、エーテル基、アミノ基、カルボキシル基、スルホ基から選ばれる少なくとも1つを含むことが好ましい。金属酸化物粒子の表面処理量が上述の範囲にある場合、粒子表面に親水性基(OH基)が残存している。そのため、第一の有機樹脂がこれらの基を有すると、金属酸化物粒子との親和性が高く、前述の塗布液調製工程(b)において、金属酸化物粒子の有機分散媒分散液を溶媒置換する際に、金属酸化物粒子が凝集することなく均一に分散させることができる。
また、金属酸化物粒子の表面処理量が5~50重量部の範囲にある場合には、第一の有機樹脂が水酸基、エーテル基、アミノ基、カルボキシル基、およびスルホ基いずれの官能基をも有してないことが好ましいが、これらの官能基を有していてもよい。
When the surface treatment amount of the metal oxide particles is in the range of 0.1 to 5 parts by weight, particularly 0.1 to 3 parts by weight, the first organic resin is a hydroxyl group (OH group), an ether group, It preferably contains at least one selected from an amino group, a carboxyl group, and a sulfo group. When the surface treatment amount of the metal oxide particles is in the above range, a hydrophilic group (OH group) remains on the particle surface. Therefore, when the first organic resin has these groups, the affinity with the metal oxide particles is high, and the organic dispersion medium dispersion of the metal oxide particles is solvent-substituted in the coating liquid preparation step (b) described above. In this case, the metal oxide particles can be uniformly dispersed without agglomeration.
When the surface treatment amount of the metal oxide particles is in the range of 5 to 50 parts by weight, the first organic resin has any functional group such as a hydroxyl group, an ether group, an amino group, a carboxyl group, and a sulfo group. Although it is preferable not to have it, you may have these functional groups.
また、金属酸化物粒子の表面処理量が5~50重量部の範囲にある場合には、第一の有機樹脂が水酸基、エーテル基、アミノ基、カルボキシル基、およびスルホ基いずれの官能基をも有してないことが好ましいが、これらの官能基を有していてもよい。
When the surface treatment amount of the metal oxide particles is in the range of 0.1 to 5 parts by weight, particularly 0.1 to 3 parts by weight, the first organic resin is a hydroxyl group (OH group), an ether group, It preferably contains at least one selected from an amino group, a carboxyl group, and a sulfo group. When the surface treatment amount of the metal oxide particles is in the above range, a hydrophilic group (OH group) remains on the particle surface. Therefore, when the first organic resin has these groups, the affinity with the metal oxide particles is high, and the organic dispersion medium dispersion of the metal oxide particles is solvent-substituted in the coating liquid preparation step (b) described above. In this case, the metal oxide particles can be uniformly dispersed without agglomeration.
When the surface treatment amount of the metal oxide particles is in the range of 5 to 50 parts by weight, the first organic resin has any functional group such as a hydroxyl group, an ether group, an amino group, a carboxyl group, and a sulfo group. Although it is preferable not to have it, you may have these functional groups.
以下に、第一の有機樹脂に好適に用いることができる紫外線硬化型樹脂を例示する。
1官能の(メタ)クリレート基を有するもの;ブトキシエチルアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシエチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシブチルアクリレート、エチレングルコールジグリシジルエーテルアクリレート、ポリエチレングルコールジグリシジルエーテルアクリレート、ジプロピレングリコールジグリシジルエーテルアクリレート、ポリプロピレングリコールジグリシジルエーテルアクリレート、1,6-ヘキサンジオールジグリシジルエーテルアクリレート、2-エチルヘキシルグリシジルエーテルアクリレート、ペンタエリスリトールポリグリシジルエーテルアクリレート、ネオペンチルグリコールジグリシジルエーテルアクリレート、エトキシ化ビスフェノールAメタクリレート、プロポキシ化ビスフェノールAジグリシジルエーテルアクリレート、O-フタル酸ジグリシジルエーテルアクリレート、シクロヘキサンジメタノールジグリシジルエーテルアクリレート、p-t-ブチルフェニルグリシジルエーテルアクリレート、O-フェニルフェノールグリシジルエーテルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、2エチルヘキシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、n-ステアルルメタクリレート、n-ブトキシエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、グリシジルメタクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート。
1官能の(メタ)アクリル酸モノマーまたはオリゴマー;メタクリル酸、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシテトラヒドロフタル酸、2-アクリロイルオキシヘキサヒドロフタル酸、2-アクリロイルオキシプロピルフタル酸、2-アクリロイルオキシプロピルテトラフタル酸、2-アクリロイルオキシプロピルヘキサフタル酸、メタクリロイルオキシエチルコハク酸、メタクリロイルオキシテトラヒドロフタル酸、メタクリロイルオキシエチルテトラヒドロフタル酸、メタクリロイルオキシエチルヘキサヒドロフタル酸、メタクリロイルオキシプロピルフタル酸、メタクリロイルオキシプロピルテトラフタル酸、メタアクリロイルオキシプロピルヘキサフタル酸。 Below, the ultraviolet curable resin which can be used suitably for a 1st organic resin is illustrated.
Having a monofunctional (meth) acrylate group; butoxyethyl acrylate, methoxypolyethylene glycol acrylate, phenoxyethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2 -Hydroxybutyl acrylate, ethylene glycol diglycidyl ether acrylate, polyethylene glycol diglycidyl ether acrylate, dipropylene glycol diglycidyl ether acrylate, polypropylene glycol diglycidyl ether acrylate, 1,6-hexanediol diglycidyl ether acrylate, 2-ethylhexyl Glycidyl ether acrylate, pentaerythritol Polyglycidyl ether acrylate, neopentyl glycol diglycidyl ether acrylate, ethoxylated bisphenol A methacrylate, propoxylated bisphenol A diglycidyl ether acrylate, O-phthalic acid diglycidyl ether acrylate, cyclohexanedimethanol diglycidyl ether acrylate, pt-butyl Phenyl glycidyl ether acrylate, O-phenylphenol glycidyl ether acrylate, 2-hydroxy-3-phenoxypropyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2 ethylhexyl methacrylate, isodecyl methacrylate, lauryl methacrylate, n- Stealure methacrylate , N-butoxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, glycidyl methacrylate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, 2-hydroxy -3-acryloyloxypropyl methacrylate.
Monofunctional (meth) acrylic acid monomer or oligomer; methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-acryloyloxytetrahydrophthalic acid, 2-acryloyloxyhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2- Acryloyloxypropyltetraphthalic acid, 2-acryloyloxypropylhexaphthalic acid, methacryloyloxyethyl succinic acid, methacryloyloxytetrahydrophthalic acid, methacryloyloxyethyltetrahydrophthalic acid, methacryloyloxyethylhexahydrophthalic acid, methacryloyloxypropylphthalic acid, methacryloyl Oxypropyltetraphthalic acid, methacryloyloxypropylhexaphthalic acid.
1官能の(メタ)クリレート基を有するもの;ブトキシエチルアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシエチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシブチルアクリレート、エチレングルコールジグリシジルエーテルアクリレート、ポリエチレングルコールジグリシジルエーテルアクリレート、ジプロピレングリコールジグリシジルエーテルアクリレート、ポリプロピレングリコールジグリシジルエーテルアクリレート、1,6-ヘキサンジオールジグリシジルエーテルアクリレート、2-エチルヘキシルグリシジルエーテルアクリレート、ペンタエリスリトールポリグリシジルエーテルアクリレート、ネオペンチルグリコールジグリシジルエーテルアクリレート、エトキシ化ビスフェノールAメタクリレート、プロポキシ化ビスフェノールAジグリシジルエーテルアクリレート、O-フタル酸ジグリシジルエーテルアクリレート、シクロヘキサンジメタノールジグリシジルエーテルアクリレート、p-t-ブチルフェニルグリシジルエーテルアクリレート、O-フェニルフェノールグリシジルエーテルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、2エチルヘキシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、n-ステアルルメタクリレート、n-ブトキシエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、グリシジルメタクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート。
1官能の(メタ)アクリル酸モノマーまたはオリゴマー;メタクリル酸、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシテトラヒドロフタル酸、2-アクリロイルオキシヘキサヒドロフタル酸、2-アクリロイルオキシプロピルフタル酸、2-アクリロイルオキシプロピルテトラフタル酸、2-アクリロイルオキシプロピルヘキサフタル酸、メタクリロイルオキシエチルコハク酸、メタクリロイルオキシテトラヒドロフタル酸、メタクリロイルオキシエチルテトラヒドロフタル酸、メタクリロイルオキシエチルヘキサヒドロフタル酸、メタクリロイルオキシプロピルフタル酸、メタクリロイルオキシプロピルテトラフタル酸、メタアクリロイルオキシプロピルヘキサフタル酸。 Below, the ultraviolet curable resin which can be used suitably for a 1st organic resin is illustrated.
Having a monofunctional (meth) acrylate group; butoxyethyl acrylate, methoxypolyethylene glycol acrylate, phenoxyethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2 -Hydroxybutyl acrylate, ethylene glycol diglycidyl ether acrylate, polyethylene glycol diglycidyl ether acrylate, dipropylene glycol diglycidyl ether acrylate, polypropylene glycol diglycidyl ether acrylate, 1,6-hexanediol diglycidyl ether acrylate, 2-ethylhexyl Glycidyl ether acrylate, pentaerythritol Polyglycidyl ether acrylate, neopentyl glycol diglycidyl ether acrylate, ethoxylated bisphenol A methacrylate, propoxylated bisphenol A diglycidyl ether acrylate, O-phthalic acid diglycidyl ether acrylate, cyclohexanedimethanol diglycidyl ether acrylate, pt-butyl Phenyl glycidyl ether acrylate, O-phenylphenol glycidyl ether acrylate, 2-hydroxy-3-phenoxypropyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2 ethylhexyl methacrylate, isodecyl methacrylate, lauryl methacrylate, n- Stealure methacrylate , N-butoxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, glycidyl methacrylate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, 2-hydroxy -3-acryloyloxypropyl methacrylate.
Monofunctional (meth) acrylic acid monomer or oligomer; methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-acryloyloxytetrahydrophthalic acid, 2-acryloyloxyhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2- Acryloyloxypropyltetraphthalic acid, 2-acryloyloxypropylhexaphthalic acid, methacryloyloxyethyl succinic acid, methacryloyloxytetrahydrophthalic acid, methacryloyloxyethyltetrahydrophthalic acid, methacryloyloxyethylhexahydrophthalic acid, methacryloyloxypropylphthalic acid, methacryloyl Oxypropyltetraphthalic acid, methacryloyloxypropylhexaphthalic acid.
1官能アルキレンオキサイド変性(メタ)アクリレート基を有するもの;メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコール#400モノアクリレート、メトキシポリエチレングリコール#600モノアクリレート、メトキシポリエチレングリコール#1000モノアクリレート、メトキシトリプロピレングリコールアクリレート、フェノキシエチレングリコールアクリレート、フェノキシジエチレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、エトキシ化α-フェニルフェノールプロピルアクリレート、メトキシジエチレングリコールメタクリレート、メトキシトリエチレングリコールメタクリレート、メトキシテトラエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、メトキシトリプロピレングリコールメタクリレート、エトキシ化2-エチルヘキシルメタクリレート、ブトキシジエチレングリコールメタクリレート、ブトキシジエチレングリコールメタクリレート、ポリエチレングリコール変性ステアリルメタクリレート、フェノキシエチレングリコールメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシエチルメタクリレート。
Having a monofunctional alkylene oxide modified (meth) acrylate group; methoxytriethylene glycol acrylate, methoxypolyethylene glycol # 400 monoacrylate, methoxypolyethylene glycol # 600 monoacrylate, methoxypolyethylene glycol # 1000 monoacrylate, methoxytripropylene glycol acrylate, Phenoxyethylene glycol acrylate, phenoxydiethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethoxylated α-phenylphenol propyl acrylate, methoxydiethylene glycol methacrylate, methoxytriethylene glycol methacrylate, methoxytetraethylene glycol methacrylate, methoxy Triethylene glycol methacrylate, methoxy tripropylene glycol dimethacrylate, ethoxylated 2-ethylhexyl methacrylate, butoxy diethylene glycol methacrylate, butoxy diethylene glycol dimethacrylate, polyethylene glycol-modified stearyl methacrylate, phenoxy ethylene glycol methacrylate, phenoxy diethylene glycol methacrylate, phenoxyethyl methacrylate.
なお、アルキレンオキサイド変性(メタ)アクリレート基を有するものは、特開2005-92198号公報に示されるように、以下の式(2)で表される。
[CH2=C(R1)COO(R2O)n]mR3 ・・・ 式(2)
式中、R1は水素原子またはメチル基であり、R2はアルキレン基であり、R3は炭化水素残基である。mは1以上、nは1以上である。mが官能基数に相当する。 Those having an alkylene oxide-modified (meth) acrylate group are represented by the following formula (2) as disclosed in JP-A-2005-92198.
[CH 2 = C (R 1 ) COO (R 2 O) n] m R 3 ··· Equation (2)
In the formula, R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group, and R 3 is a hydrocarbon residue. m is 1 or more, and n is 1 or more. m corresponds to the number of functional groups.
[CH2=C(R1)COO(R2O)n]mR3 ・・・ 式(2)
式中、R1は水素原子またはメチル基であり、R2はアルキレン基であり、R3は炭化水素残基である。mは1以上、nは1以上である。mが官能基数に相当する。 Those having an alkylene oxide-modified (meth) acrylate group are represented by the following formula (2) as disclosed in JP-A-2005-92198.
[CH 2 = C (R 1 ) COO (R 2 O) n] m R 3 ··· Equation (2)
In the formula, R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group, and R 3 is a hydrocarbon residue. m is 1 or more, and n is 1 or more. m corresponds to the number of functional groups.
2官能の非グリコール系の(メタ)アクリレートまたはそのオリゴマー;ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクレート、1.9-ノナンジオールジアクレート、イソノナンジオールジアクレート、1,10-デカンジオールジメタクリレート、グリセリンジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンジアクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート、1,4-ブタンジオールジメタクレート、1,6-ヘキサンジオールジメタクレート、1,9-ノナンジオールジメタクレート、1,10-デカンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、グリセリンジメタクリレートアクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート。
2官能アルコキシ化ビスフェノールA(メタ)アクリレート基を有するもの;エトキシ化ビスフェノールAジアクリレート、プロポキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート。 Bifunctional non-glycolic (meth) acrylate or oligomer thereof; neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1.9-nonanediol diacrylate, isononanediol diacrylate, 1,10-decanediol Dimethacrylate, glycerin dimethacrylate, dimethylol-tricyclodecane diacrylate, 9,9-bis [4- (2-hydroxyethoxy) phenyl] full orange acrylate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl Acid phosphate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, neopentyl Call dimethacrylate, glycerol dimethacrylate acrylate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxy ethyl acid phosphate.
Those having a bifunctional alkoxylated bisphenol A (meth) acrylate group; ethoxylated bisphenol A diacrylate, propoxylated bisphenol A diacrylate, propoxylated ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate.
2官能アルコキシ化ビスフェノールA(メタ)アクリレート基を有するもの;エトキシ化ビスフェノールAジアクリレート、プロポキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート。 Bifunctional non-glycolic (meth) acrylate or oligomer thereof; neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1.9-nonanediol diacrylate, isononanediol diacrylate, 1,10-decanediol Dimethacrylate, glycerin dimethacrylate, dimethylol-tricyclodecane diacrylate, 9,9-bis [4- (2-hydroxyethoxy) phenyl] full orange acrylate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl Acid phosphate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, neopentyl Call dimethacrylate, glycerol dimethacrylate acrylate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxy ethyl acid phosphate.
Those having a bifunctional alkoxylated bisphenol A (meth) acrylate group; ethoxylated bisphenol A diacrylate, propoxylated bisphenol A diacrylate, propoxylated ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate.
2官能ウレタンアクリレート基を有する製品名(新中村化学(株)製);NKオリゴU-200PA、UA-W2、UA-W2A,UA-122P、UA-160TP、UA-2235PE、UA-4200,UA-4400、UA-7000、U-2HA、U-2PPA。
2官能エチレンオキサイド変性(メタ)アクリレート基を有するもの;トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリエチレングリコール#200ジアクリレート、ポリプロピレングリコール#400ジアクリレート、ポリプロピレングリコール#700ジアクリレート、ポリテトラメチレングリコール#650ジアクリレート、ポリエチレンポリプロピレングリコールジアクリレート、ジオキサングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコール#200ジメタクリレート、ポリエチレングリコール#400ジメタクリレート、ポリエチレングリコール#600ジメタクリレート、ポリエチレングリコール#1000ジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリエチレンポリプロピレングリコールジアクリレート、エチレングリコールジメタクリレート等のグリコール系アクリレート。 Product names having bifunctional urethane acrylate groups (manufactured by Shin-Nakamura Chemical Co., Ltd.); NK Oligo U-200PA, UA-W2, UA-W2A, UA-122P, UA-160TP, UA-2235PE, UA-4200, UA -4400, UA-7000, U-2HA, U-2PPA.
Those having a bifunctional ethylene oxide-modified (meth) acrylate group; tripropylene glycol diacrylate, polypropylene glycol diacrylate, polyethylene glycol # 200 diacrylate, polypropylene glycol # 400 diacrylate, polypropylene glycol # 700 diacrylate, polytetramethylene glycol # 650 diacrylate, polyethylene polypropylene glycol diacrylate, dioxane glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol # 200 dimethacrylate, polyethylene glycol # 400 dimethacrylate Over DOO, polyethylene glycol # 600 dimethacrylate, polyethylene glycol # 1000 dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene polypropylene glycol diacrylate, glycol acrylates such as ethylene glycol dimethacrylate.
2官能エチレンオキサイド変性(メタ)アクリレート基を有するもの;トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリエチレングリコール#200ジアクリレート、ポリプロピレングリコール#400ジアクリレート、ポリプロピレングリコール#700ジアクリレート、ポリテトラメチレングリコール#650ジアクリレート、ポリエチレンポリプロピレングリコールジアクリレート、ジオキサングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコール#200ジメタクリレート、ポリエチレングリコール#400ジメタクリレート、ポリエチレングリコール#600ジメタクリレート、ポリエチレングリコール#1000ジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリエチレンポリプロピレングリコールジアクリレート、エチレングリコールジメタクリレート等のグリコール系アクリレート。 Product names having bifunctional urethane acrylate groups (manufactured by Shin-Nakamura Chemical Co., Ltd.); NK Oligo U-200PA, UA-W2, UA-W2A, UA-122P, UA-160TP, UA-2235PE, UA-4200, UA -4400, UA-7000, U-2HA, U-2PPA.
Those having a bifunctional ethylene oxide-modified (meth) acrylate group; tripropylene glycol diacrylate, polypropylene glycol diacrylate, polyethylene glycol # 200 diacrylate, polypropylene glycol # 400 diacrylate, polypropylene glycol # 700 diacrylate, polytetramethylene glycol # 650 diacrylate, polyethylene polypropylene glycol diacrylate, dioxane glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol # 200 dimethacrylate, polyethylene glycol # 400 dimethacrylate Over DOO, polyethylene glycol # 600 dimethacrylate, polyethylene glycol # 1000 dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene polypropylene glycol diacrylate, glycol acrylates such as ethylene glycol dimethacrylate.
上述の紫外線硬化型樹脂のモノマーまたはオリゴマーのうち、特定の官能基を有する有機樹脂を以下に示す。
OH基を有するもの;2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート、グリセリンメジタクリレート、2-ヒドロキシ-3-メタクリルプロピルアクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、2-ヒドロキシ-3-フェノキシプロピルアクリレート。 The organic resin which has a specific functional group among the monomer or oligomer of the above-mentioned ultraviolet curable resin is shown below.
Having OH group; 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 2-methacryloyloxyethyl acid phosphate 2-acryloyloxyethyl acid phosphate, glycerine methyacrylate, 2-hydroxy-3-methacrylpropyl acrylate, 2-hydroxy-1,3-dimethacryloxypropane, 2-hydroxy-3-phenoxypropyl acrylate.
OH基を有するもの;2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート、グリセリンメジタクリレート、2-ヒドロキシ-3-メタクリルプロピルアクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、2-ヒドロキシ-3-フェノキシプロピルアクリレート。 The organic resin which has a specific functional group among the monomer or oligomer of the above-mentioned ultraviolet curable resin is shown below.
Having OH group; 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 2-methacryloyloxyethyl acid phosphate 2-acryloyloxyethyl acid phosphate, glycerine methyacrylate, 2-hydroxy-3-methacrylpropyl acrylate, 2-hydroxy-1,3-dimethacryloxypropane, 2-hydroxy-3-phenoxypropyl acrylate.
エーテル基を有するもの;メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコール#400モノアクリレート、メトキシポリエチレングリコール#600モノアクリレート、メトキシポリエチレングリコール#1000モノアクリレート、モトキシトリプロピレングリコールアクリレート、フェノキシエチレングリコールアクリレート、フェノキシジエチレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、エトキシ化α-フェニルフェノールプロピルアクリレート、メトキシジエチレングリコールメタクリレート、メトキシトリエチレングリコールメタクリレート、メトキシテトラエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、メトキシトリプロピレングリコールメタクリレート、エトキシ化2-エチルヘキシルメタクリレート、ブトキシジエチレングリコールメタクリレート、ブトキシジエチレングリコールメタクリレート、ポリエチレングリコール変性ステアリルメトクリレート、フェノキシエチレングリコールメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシエチルメタクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリエチレングリコール#200ジアクリレート、ポリプロピレングリコール#400ジアクリレート、ポリプロピレングリコール#700ジアクリレート、ポリテトラメチレングリコール#650ジアクリレート、ポリエチレンポリプロピレングリコールジアクリレート、ジオキサングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコール#200ジメタクリレート、ポリエチレングリコール#400ジメタクリレート、ポリエチレングリコール#600ジメタクリレート、ポリエチレングリコール#1000ジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリエチレンポリプロピレングリコールジアクリレート、エチレングリコールジメタクリレート。
Those having an ether group; methoxytriethylene glycol acrylate, methoxypolyethylene glycol # 400 monoacrylate, methoxypolyethylene glycol # 600 monoacrylate, methoxypolyethylene glycol # 1000 monoacrylate, motooxytripropylene glycol acrylate, phenoxyethylene glycol acrylate, phenoxydiethylene glycol acrylate 2-hydroxy-3-phenoxypropyl acrylate, ethoxylated α-phenylphenol propyl acrylate, methoxydiethylene glycol methacrylate, methoxytriethylene glycol methacrylate, methoxytetraethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, metho Citripropylene glycol methacrylate, ethoxylated 2-ethylhexyl methacrylate, butoxydiethylene glycol methacrylate, butoxydiethylene glycol methacrylate, polyethylene glycol modified stearyl methacrylate, phenoxyethylene glycol methacrylate, phenoxydiethylene glycol methacrylate, phenoxyethyl methacrylate, tripropylene glycol diacrylate, polypropylene glycol di Acrylate, polyethylene glycol # 200 diacrylate, polypropylene glycol # 400 diacrylate, polypropylene glycol # 700 diacrylate, polytetramethylene glycol # 650 diacrylate, polyethylene polypropylene glycol diacrylate Rate, dioxane glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol # 200 dimethacrylate, polyethylene glycol # 400 dimethacrylate, polyethylene glycol # 600 dimethacrylate, polyethylene glycol # 1000 dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene polypropylene glycol diacrylate, ethylene glycol dimethacrylate.
アミノ基を有するもの;ジメチルアミノエチルメタクリレート、ジメチルアミノメチルメタクリレート、ジエチルアミノメチルメタクリレート、ジエチルアミノエチルメタクリレート。
アミド基を有するもの;ジメチルアクリルアミド、アクリロイルモルホリン、ジメチルアミノプロピルアクリルアミド、イソプロピルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド。
カルボキシル基を有するもの;メタクリル酸、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシテトラヒドロフタル酸、2-アクリロイルオキシヘキサヒドロフタル酸、2-アクリロイルオキシプロピルフタル酸、2-アクリロイルオキシプロピルテトラフタル酸、2-アクリロイルオキシプロピルヘキサフタル酸、メタクリロイルオキシエチルコハク酸、メタクリロイルオキシテトラヒドロフタル酸、メタクリロイルオキシエチルテトラヒドロフタル酸、メタクリロイルオキシエチルヘキサヒドロフタル酸、メタクリロイルオキシプロピルフタル酸、メタクリロイルオキシプロピルテトラフタル酸、メタアクリロイルオキシプロピルヘキサフタル酸。 Those having an amino group; dimethylaminoethyl methacrylate, dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, diethylaminoethyl methacrylate.
Those having an amide group; dimethylacrylamide, acryloylmorpholine, dimethylaminopropylacrylamide, isopropylacrylamide, diethylacrylamide, and hydroxyethylacrylamide.
Having a carboxyl group; methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-acryloyloxytetrahydrophthalic acid, 2-acryloyloxyhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2-acryloyloxypropyltetraphthalic acid 2-acryloyloxypropylhexaphthalic acid, methacryloyloxyethylsuccinic acid, methacryloyloxytetrahydrophthalic acid, methacryloyloxyethyltetrahydrophthalic acid, methacryloyloxyethylhexahydrophthalic acid, methacryloyloxypropylphthalic acid, methacryloyloxypropyltetraphthalic acid, Methacryloyloxypropyl hexaphthalic acid.
アミド基を有するもの;ジメチルアクリルアミド、アクリロイルモルホリン、ジメチルアミノプロピルアクリルアミド、イソプロピルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド。
カルボキシル基を有するもの;メタクリル酸、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシテトラヒドロフタル酸、2-アクリロイルオキシヘキサヒドロフタル酸、2-アクリロイルオキシプロピルフタル酸、2-アクリロイルオキシプロピルテトラフタル酸、2-アクリロイルオキシプロピルヘキサフタル酸、メタクリロイルオキシエチルコハク酸、メタクリロイルオキシテトラヒドロフタル酸、メタクリロイルオキシエチルテトラヒドロフタル酸、メタクリロイルオキシエチルヘキサヒドロフタル酸、メタクリロイルオキシプロピルフタル酸、メタクリロイルオキシプロピルテトラフタル酸、メタアクリロイルオキシプロピルヘキサフタル酸。 Those having an amino group; dimethylaminoethyl methacrylate, dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, diethylaminoethyl methacrylate.
Those having an amide group; dimethylacrylamide, acryloylmorpholine, dimethylaminopropylacrylamide, isopropylacrylamide, diethylacrylamide, and hydroxyethylacrylamide.
Having a carboxyl group; methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-acryloyloxytetrahydrophthalic acid, 2-acryloyloxyhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2-acryloyloxypropyltetraphthalic acid 2-acryloyloxypropylhexaphthalic acid, methacryloyloxyethylsuccinic acid, methacryloyloxytetrahydrophthalic acid, methacryloyloxyethyltetrahydrophthalic acid, methacryloyloxyethylhexahydrophthalic acid, methacryloyloxypropylphthalic acid, methacryloyloxypropyltetraphthalic acid, Methacryloyloxypropyl hexaphthalic acid.
官能基を有してないもの;1,4-ブタンジオールジメタクレート、1,6-ヘキサンジオールジメタクレート、1,9-ノナンジオールジメタクレート、1,10-デカンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、グリセリンジメタクリレート、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクレート、1,9-ノナンジオールジアクレート、イソノナンジオールジアクレート、1,10-デカンジオールジメタクリレート、グリセリンジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンジアクリレート、ジメチロール-トリシクロデカンジアクリレート、メチルメタクリレート、エチルメタクリレート、nブチルメタクリレート、イソブチルメタクリレート、2-エチルヘキシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、n-ステアルルメタクリレート。
No functional group; 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, neopentyl Glycol dimethacrylate, glycerin dimethacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, isononanediol diacrylate, 1,10-decanediol dimethacrylate, glycerol dimethacrylate, Dimethylol-tricyclodecane diacrylate, 9,9-bis [4- (2-hydroxyethoxy) phenyl] full orange acrylate, dimethylol-tricyclodecane diacrylate, methyl methacrylate, ethyl methacrylate n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, lauryl methacrylate, n- stearyl Arles methacrylate.
次に、第二の有機樹脂に好適に用いることができる3個以上の官能基を有する紫外線硬化型樹脂のモノマーないしオリゴマーを例示する。
3官能アクリレート樹脂;ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート。
3官能ウレタンアクリレート樹脂;ペンタエリスリトールヘキサメチレンジイソシアネートウレタンプレポリマー。
エポキシ基含有3官能アクリレート樹脂;クレゾールノボラック型エポキシアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物。
3官能(メタ)アクリレート樹脂;トリメチロールプロパントリメタクリレート、エトキシ化トリメチロールプロパントリメタクリレート、プロポキシ化トリメチロールプロパントリメタクリレート、エトキシ化グリセリントリメタクリレート、エトキシ化ペンタエリスリトールトリメタクリレート、プロポキシ化ペンタエリスリトールトリメタクリレート。 Next, an example of a monomer or oligomer of an ultraviolet curable resin having three or more functional groups that can be suitably used for the second organic resin.
Trifunctional acrylate resin; pentaerythritol triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate.
Trifunctional urethane acrylate resin; pentaerythritol hexamethylene diisocyanate urethane prepolymer.
Epoxy group-containing trifunctional acrylate resin; cresol novolac type epoxy acrylate, bisphenol A diglycidyl ether acrylic acid adduct.
Trifunctional (meth) acrylate resin; trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane trimethacrylate, propoxylated trimethylolpropane trimethacrylate, ethoxylated glycerin trimethacrylate, ethoxylated pentaerythritol trimethacrylate, propoxylated pentaerythritol trimethacrylate.
3官能アクリレート樹脂;ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート。
3官能ウレタンアクリレート樹脂;ペンタエリスリトールヘキサメチレンジイソシアネートウレタンプレポリマー。
エポキシ基含有3官能アクリレート樹脂;クレゾールノボラック型エポキシアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物。
3官能(メタ)アクリレート樹脂;トリメチロールプロパントリメタクリレート、エトキシ化トリメチロールプロパントリメタクリレート、プロポキシ化トリメチロールプロパントリメタクリレート、エトキシ化グリセリントリメタクリレート、エトキシ化ペンタエリスリトールトリメタクリレート、プロポキシ化ペンタエリスリトールトリメタクリレート。 Next, an example of a monomer or oligomer of an ultraviolet curable resin having three or more functional groups that can be suitably used for the second organic resin.
Trifunctional acrylate resin; pentaerythritol triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate.
Trifunctional urethane acrylate resin; pentaerythritol hexamethylene diisocyanate urethane prepolymer.
Epoxy group-containing trifunctional acrylate resin; cresol novolac type epoxy acrylate, bisphenol A diglycidyl ether acrylic acid adduct.
Trifunctional (meth) acrylate resin; trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane trimethacrylate, propoxylated trimethylolpropane trimethacrylate, ethoxylated glycerin trimethacrylate, ethoxylated pentaerythritol trimethacrylate, propoxylated pentaerythritol trimethacrylate.
3官能のウレタンアクリレート基を有する製品名(新中村化学(株)製);NKオリゴUA-31F、UA-7100、UA-32P。
3官能の(カプロラクトン変性)イソシアヌレートアクリレート基を有するもの;トリス-(2-アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート。
3官能のエポキシ変性アクリレート基を有するもの;エトキシ化グリセリントリアクリレート、プロポキシ化グリセリントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、エキシ化ジペンタエリスルトールポリアクリレート、プロポキシ化ジペンタエリスルトールポリアクリレート。
4官能(メタ)アクリレート樹脂;ペンタエリストールテトラアクリレート。
エポキシ基含有4官能(メタ)アクリレート樹脂;エトキシ化ペンタエリストールテトラアクリレート、プロポキシ化ペンタエリストールテトラアクリレート。
6官能(メタ)アクリレート樹脂;ジペンタエリスルトールヘキサアクリレート。
エポキシ基含有6官能(メタ)アクリレート樹脂;エキシ化ジペンタエリスルトールポリアクリレート、プロポキシ化ジペンタエリスルトールポリアクリレート。 Product names having trifunctional urethane acrylate groups (manufactured by Shin-Nakamura Chemical Co., Ltd.); NK Oligo UA-31F, UA-7100, UA-32P.
Those having a trifunctional (caprolactone-modified) isocyanurate acrylate group; tris- (2-acryloxyethyl) isocyanurate, caprolactone-modified tris- (2-acryloxyethyl) isocyanurate.
Having trifunctional epoxy-modified acrylate groups; ethoxylated glycerin triacrylate, propoxylated glycerin triacrylate, propoxylated trimethylolpropane triacrylate, excitated dipentaerythritol polyacrylate, propoxylated dipentaerythritol polyacrylate .
Tetrafunctional (meth) acrylate resin; pentaerythritol tetraacrylate.
Epoxy group-containing tetrafunctional (meth) acrylate resin; ethoxylated pentaerythritol tetraacrylate, propoxylated pentaerythritol tetraacrylate.
Hexafunctional (meth) acrylate resin; dipentaerythritol hexaacrylate.
Epoxy group-containing hexafunctional (meth) acrylate resin; excited dipentaerythritol polyacrylate, propoxylated dipentaerythritol polyacrylate.
3官能の(カプロラクトン変性)イソシアヌレートアクリレート基を有するもの;トリス-(2-アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート。
3官能のエポキシ変性アクリレート基を有するもの;エトキシ化グリセリントリアクリレート、プロポキシ化グリセリントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、エキシ化ジペンタエリスルトールポリアクリレート、プロポキシ化ジペンタエリスルトールポリアクリレート。
4官能(メタ)アクリレート樹脂;ペンタエリストールテトラアクリレート。
エポキシ基含有4官能(メタ)アクリレート樹脂;エトキシ化ペンタエリストールテトラアクリレート、プロポキシ化ペンタエリストールテトラアクリレート。
6官能(メタ)アクリレート樹脂;ジペンタエリスルトールヘキサアクリレート。
エポキシ基含有6官能(メタ)アクリレート樹脂;エキシ化ジペンタエリスルトールポリアクリレート、プロポキシ化ジペンタエリスルトールポリアクリレート。 Product names having trifunctional urethane acrylate groups (manufactured by Shin-Nakamura Chemical Co., Ltd.); NK Oligo UA-31F, UA-7100, UA-32P.
Those having a trifunctional (caprolactone-modified) isocyanurate acrylate group; tris- (2-acryloxyethyl) isocyanurate, caprolactone-modified tris- (2-acryloxyethyl) isocyanurate.
Having trifunctional epoxy-modified acrylate groups; ethoxylated glycerin triacrylate, propoxylated glycerin triacrylate, propoxylated trimethylolpropane triacrylate, excitated dipentaerythritol polyacrylate, propoxylated dipentaerythritol polyacrylate .
Tetrafunctional (meth) acrylate resin; pentaerythritol tetraacrylate.
Epoxy group-containing tetrafunctional (meth) acrylate resin; ethoxylated pentaerythritol tetraacrylate, propoxylated pentaerythritol tetraacrylate.
Hexafunctional (meth) acrylate resin; dipentaerythritol hexaacrylate.
Epoxy group-containing hexafunctional (meth) acrylate resin; excited dipentaerythritol polyacrylate, propoxylated dipentaerythritol polyacrylate.
これ以外にも、4官能ウレタン(メタ)アクレートオリゴマー樹脂、6官能ウレタン(メタ)アクレートオリゴマー樹脂、8官能ウレタン(メタ)アクレートオリゴマー樹脂、9官能ウレタン(メタ)アクレートオリゴマー樹脂、10官能ウレタン(メタ)アクレートオリゴマー樹脂、12官能ウレタン(メタ)アクレートオリゴマー樹脂、15官能ウレタン(メタ)アクレートオリゴマー樹脂等が挙げられる。このようなウレタン(メタ)アクリレート樹脂として、NKオリゴUA-33H,UA-6LR,UA-8LR,UA-12LR、U-10PA,U-10HA、UA-1100H(新中村化学(株)製)等が市販されている。
In addition, tetrafunctional urethane (meth) acrylate oligomer resin, hexafunctional urethane (meth) acrylate oligomer resin, 8-functional urethane (meth) acrylate oligomer resin, 9-functional urethane (meth) acrylate oligomer resin, 10 Functional urethane (meth) acrylate oligomer resin, 12 functional urethane (meth) acrylate oligomer resin, 15 functional urethane (meth) acrylate oligomer resin and the like can be mentioned. As such urethane (meth) acrylate resin, NK oligo UA-33H, UA-6LR, UA-8LR, UA-12LR, U-10PA, U-10HA, UA-1100H (manufactured by Shin-Nakamura Chemical Co., Ltd.), etc. Is commercially available.
他にも、クレゾールノボラック型エポキシアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物等のエポキシ基を含有する4官能以上のアクリレート樹脂等が挙げられる。このような樹脂として、NKオリゴEA-6320、EA-6340、EA-7120、EA-7140、EA-7420(新中村化学(株)製)等が市販されている。特に、官能基数が6~12のアクリレート樹脂は、カーリング抑制効果が高く、硬度にも優れているので、第二の有機樹脂として最適である。
Other examples include tetrafunctional or higher functional acrylate resins containing epoxy groups such as cresol novolac type epoxy acrylate, bisphenol A diglycidyl ether acrylic acid adduct, and the like. As such a resin, NK oligo EA-6320, EA-6340, EA-7120, EA-7140, EA-7420 (manufactured by Shin-Nakamura Chemical Co., Ltd.) and the like are commercially available. In particular, an acrylate resin having 6 to 12 functional groups is most suitable as the second organic resin because it has a high curling suppression effect and excellent hardness.
有機分散媒
塗布液には、必要に応じて、有機分散媒を加えてもよい。塗布液中の有機分散媒の濃度を40重量%未満にすることが適している。特に、35重量%未満が好ましい。なお、塗布液中の有機分散媒は、透明被膜形成用の塗布液の調製方法における金属酸化物粒子の有機分散媒を第一の有機樹脂と置換する際に残存する有機分散媒などの他に、塗布液のハンドリング性を鑑み、粘度調整のために添加されたものを含んでいてもよい。また、第一の有機樹脂や第二の有機樹脂に含まれている希釈用の分散媒も同様である。 If necessary, an organic dispersion medium may be added to the organic dispersion medium coating solution. It is suitable that the concentration of the organic dispersion medium in the coating liquid is less than 40% by weight. In particular, it is preferably less than 35% by weight. The organic dispersion medium in the coating liquid is not limited to the organic dispersion medium remaining when replacing the organic dispersion medium of the metal oxide particles with the first organic resin in the method for preparing the coating liquid for forming the transparent film. In view of the handling property of the coating liquid, it may contain a material added for viscosity adjustment. The same applies to the dispersion medium for dilution contained in the first organic resin and the second organic resin.
塗布液には、必要に応じて、有機分散媒を加えてもよい。塗布液中の有機分散媒の濃度を40重量%未満にすることが適している。特に、35重量%未満が好ましい。なお、塗布液中の有機分散媒は、透明被膜形成用の塗布液の調製方法における金属酸化物粒子の有機分散媒を第一の有機樹脂と置換する際に残存する有機分散媒などの他に、塗布液のハンドリング性を鑑み、粘度調整のために添加されたものを含んでいてもよい。また、第一の有機樹脂や第二の有機樹脂に含まれている希釈用の分散媒も同様である。 If necessary, an organic dispersion medium may be added to the organic dispersion medium coating solution. It is suitable that the concentration of the organic dispersion medium in the coating liquid is less than 40% by weight. In particular, it is preferably less than 35% by weight. The organic dispersion medium in the coating liquid is not limited to the organic dispersion medium remaining when replacing the organic dispersion medium of the metal oxide particles with the first organic resin in the method for preparing the coating liquid for forming the transparent film. In view of the handling property of the coating liquid, it may contain a material added for viscosity adjustment. The same applies to the dispersion medium for dilution contained in the first organic resin and the second organic resin.
この有機分散媒には従来公知の材料を使用できる。例えば、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類;エチレングリコール、ヘキシレングリコール等のグリコール類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル類;酢酸プルピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3-メトキシブチル、酢酸2-エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセタート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン、イソホロン、アセチルアセトン、アセト酢酸エステル等のケトン類;トルエン、キシレン等が挙げられる。なかでも、アルコール類、エーテル類、エステル類、ケトン類が適しており、金属酸化物粒子の分散性、有機樹脂の溶解性が良好となる。
A conventionally known material can be used for this organic dispersion medium. For example, alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol; glycols such as ethylene glycol and hexylene glycol; diethyl ether, ethylene glycol Ethers such as monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; propyl acetate, isobutyl acetate , Butyl acetate, isopentyl acetate, pentyl acetate, 3-acetic acid Esters such as toxibutyl, 2-ethylbutyl acetate, cyclohexyl acetate, ethylene glycol monoacetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone, isophorone, Ketones such as acetylacetone and acetoacetate; toluene, xylene and the like. Among these, alcohols, ethers, esters, and ketones are suitable, and the dispersibility of the metal oxide particles and the solubility of the organic resin are improved.
また、有機分散媒の沸点は56.12℃~200℃、さらには56.12~180℃の範囲にあることが好ましい。
有機分散媒の沸点が低いものは、塗膜の乾燥が早い為、緻密化が不充分になりやすく、また、膜厚が不均一になりやすい。そのため、得られる透明被膜の硬度が不充分となる。
有機分散媒の沸点が高いものは、有機分散媒が残存する場合があり、膜の収縮が不十分となり、得られる透明被膜の硬度が不充分となる。 The boiling point of the organic dispersion medium is preferably in the range of 56.12 ° C. to 200 ° C., more preferably 56.12 to 180 ° C.
When the organic dispersion medium has a low boiling point, the coating film dries quickly, so that the densification tends to be insufficient and the film thickness tends to be non-uniform. Therefore, the hardness of the obtained transparent film becomes insufficient.
If the organic dispersion medium has a high boiling point, the organic dispersion medium may remain, resulting in insufficient film shrinkage and insufficient hardness of the resulting transparent film.
有機分散媒の沸点が低いものは、塗膜の乾燥が早い為、緻密化が不充分になりやすく、また、膜厚が不均一になりやすい。そのため、得られる透明被膜の硬度が不充分となる。
有機分散媒の沸点が高いものは、有機分散媒が残存する場合があり、膜の収縮が不十分となり、得られる透明被膜の硬度が不充分となる。 The boiling point of the organic dispersion medium is preferably in the range of 56.12 ° C. to 200 ° C., more preferably 56.12 to 180 ° C.
When the organic dispersion medium has a low boiling point, the coating film dries quickly, so that the densification tends to be insufficient and the film thickness tends to be non-uniform. Therefore, the hardness of the obtained transparent film becomes insufficient.
If the organic dispersion medium has a high boiling point, the organic dispersion medium may remain, resulting in insufficient film shrinkage and insufficient hardness of the resulting transparent film.
重合開始剤
塗布液には、必要に応じて光重合開始剤を加えてもよい。重合開始剤の使用量は有機樹脂の固形分濃度の2~20重量%、さらには4~16重量%の範囲にあることが好ましい。重合開始剤としては、公知のものを使用できる。例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2-ヒドロキシ-メチル-2-メチル-フェニル-プロパン-1-ケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。 You may add a photoinitiator to a polymerization initiator coating liquid as needed. The amount of the polymerization initiator used is preferably in the range of 2 to 20% by weight, more preferably 4 to 16% by weight, based on the solid content concentration of the organic resin. Known polymerization initiators can be used. For example, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-methyl-2-methyl- Phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- [4- (methylthio) phenyl]- And 2-morpholinopropan-1-one.
塗布液には、必要に応じて光重合開始剤を加えてもよい。重合開始剤の使用量は有機樹脂の固形分濃度の2~20重量%、さらには4~16重量%の範囲にあることが好ましい。重合開始剤としては、公知のものを使用できる。例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2-ヒドロキシ-メチル-2-メチル-フェニル-プロパン-1-ケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。 You may add a photoinitiator to a polymerization initiator coating liquid as needed. The amount of the polymerization initiator used is preferably in the range of 2 to 20% by weight, more preferably 4 to 16% by weight, based on the solid content concentration of the organic resin. Known polymerization initiators can be used. For example, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-methyl-2-methyl- Phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- [4- (methylthio) phenyl]- And 2-morpholinopropan-1-one.
[有機樹脂分散ゾル]
本発明の有機樹脂分散ゾルは、平均粒子径が5~300nmの金属酸化物粒子を2個以下の官能基を有する第一の有機樹脂、あるいは有機分散媒と第一の有機樹脂に分散させてなるゾルである。この有機樹脂分散ゾルを用いて透明被膜用の塗布液を調製する。金属酸化物粒子はシランカップリング剤等の有機珪素化合物で表面処理することが望ましい。 [Organic resin dispersion sol]
The organic resin dispersion sol of the present invention is obtained by dispersing metal oxide particles having an average particle diameter of 5 to 300 nm in a first organic resin having two or less functional groups, or an organic dispersion medium and a first organic resin. Is a sol. A coating solution for a transparent film is prepared using this organic resin dispersion sol. The metal oxide particles are desirably surface-treated with an organosilicon compound such as a silane coupling agent.
本発明の有機樹脂分散ゾルは、平均粒子径が5~300nmの金属酸化物粒子を2個以下の官能基を有する第一の有機樹脂、あるいは有機分散媒と第一の有機樹脂に分散させてなるゾルである。この有機樹脂分散ゾルを用いて透明被膜用の塗布液を調製する。金属酸化物粒子はシランカップリング剤等の有機珪素化合物で表面処理することが望ましい。 [Organic resin dispersion sol]
The organic resin dispersion sol of the present invention is obtained by dispersing metal oxide particles having an average particle diameter of 5 to 300 nm in a first organic resin having two or less functional groups, or an organic dispersion medium and a first organic resin. Is a sol. A coating solution for a transparent film is prepared using this organic resin dispersion sol. The metal oxide particles are desirably surface-treated with an organosilicon compound such as a silane coupling agent.
第一の有機樹脂として、2個以下の官能基を有する紫外線硬化型樹脂が好ましい。1~2個の官能基を有する有機樹脂は粘度が低いので、金属酸化物粒子の有機分散媒ゾルの粘度の上昇が小さくできる。第一の有機樹脂は金属酸化物粒子の分散用樹脂として機能している。
また、第一の有機樹脂は、紫外線硬化型樹脂のモノマーまたはオリゴマーであることが好ましい。紫外線硬化型樹脂のモノマーであると、高濃度で安定な金属酸化物粒子の有機樹脂分散ゾルを形成できる。 As the first organic resin, an ultraviolet curable resin having 2 or less functional groups is preferable. Since the organic resin having 1 to 2 functional groups has a low viscosity, the increase in the viscosity of the organic dispersion medium sol of metal oxide particles can be reduced. The first organic resin functions as a resin for dispersing metal oxide particles.
The first organic resin is preferably a monomer or oligomer of an ultraviolet curable resin. When the monomer is an ultraviolet curable resin, an organic resin-dispersed sol of metal oxide particles that is stable at a high concentration can be formed.
また、第一の有機樹脂は、紫外線硬化型樹脂のモノマーまたはオリゴマーであることが好ましい。紫外線硬化型樹脂のモノマーであると、高濃度で安定な金属酸化物粒子の有機樹脂分散ゾルを形成できる。 As the first organic resin, an ultraviolet curable resin having 2 or less functional groups is preferable. Since the organic resin having 1 to 2 functional groups has a low viscosity, the increase in the viscosity of the organic dispersion medium sol of metal oxide particles can be reduced. The first organic resin functions as a resin for dispersing metal oxide particles.
The first organic resin is preferably a monomer or oligomer of an ultraviolet curable resin. When the monomer is an ultraviolet curable resin, an organic resin-dispersed sol of metal oxide particles that is stable at a high concentration can be formed.
第一の有機樹脂の分子量(ポリスチレン換算分子量)は5,000以下が適している。特に、4,500以下であることが好ましい。分子量が5,000を超えると、ゾルの粘度が高くなり、粒子の濃度を高くできない。さらに好ましくは1,000以下である。
有機分散媒には、アルコール類、エーテル類、エステル類、ケトン類など、一般的な有機溶媒が使用できる。 The molecular weight (polystyrene equivalent molecular weight) of the first organic resin is suitably 5,000 or less. In particular, it is preferably 4,500 or less. When the molecular weight exceeds 5,000, the viscosity of the sol increases and the concentration of particles cannot be increased. More preferably, it is 1,000 or less.
As the organic dispersion medium, general organic solvents such as alcohols, ethers, esters, and ketones can be used.
有機分散媒には、アルコール類、エーテル類、エステル類、ケトン類など、一般的な有機溶媒が使用できる。 The molecular weight (polystyrene equivalent molecular weight) of the first organic resin is suitably 5,000 or less. In particular, it is preferably 4,500 or less. When the molecular weight exceeds 5,000, the viscosity of the sol increases and the concentration of particles cannot be increased. More preferably, it is 1,000 or less.
As the organic dispersion medium, general organic solvents such as alcohols, ethers, esters, and ketones can be used.
金属酸化物粒子の有機樹脂分散ゾルは、金属酸化物粒子の固形分としての濃度(CPS)が45~90重量%、さらには45~80重量%の範囲にあることが好ましい。また、ゾル中の第一の有機樹脂の固形分としての濃度(CRS)は10~50重量%が適している。特に、15~40重量%が好ましい。
このとき、このゾルの全固形分濃度(CTS)は60重量%以上である。60重量%超が好ましく、65重量%以上がさらに好ましい。全固形分濃度(CTS)が100重量%に満たない場合、残分が有機分散媒である。 The organic resin-dispersed sol of metal oxide particles preferably has a concentration (C PS ) as a solid content of the metal oxide particles in the range of 45 to 90% by weight, more preferably 45 to 80% by weight. The concentration (C RS ) as the solid content of the first organic resin in the sol is suitably 10 to 50% by weight. In particular, 15 to 40% by weight is preferable.
At this time, the total solid content concentration (C TS ) of the sol is 60% by weight or more. More than 60% by weight is preferable, and 65% by weight or more is more preferable. When the total solid content (C TS ) is less than 100% by weight, the remainder is the organic dispersion medium.
このとき、このゾルの全固形分濃度(CTS)は60重量%以上である。60重量%超が好ましく、65重量%以上がさらに好ましい。全固形分濃度(CTS)が100重量%に満たない場合、残分が有機分散媒である。 The organic resin-dispersed sol of metal oxide particles preferably has a concentration (C PS ) as a solid content of the metal oxide particles in the range of 45 to 90% by weight, more preferably 45 to 80% by weight. The concentration (C RS ) as the solid content of the first organic resin in the sol is suitably 10 to 50% by weight. In particular, 15 to 40% by weight is preferable.
At this time, the total solid content concentration (C TS ) of the sol is 60% by weight or more. More than 60% by weight is preferable, and 65% by weight or more is more preferable. When the total solid content (C TS ) is less than 100% by weight, the remainder is the organic dispersion medium.
このような組成の有機樹脂分散ゾルが安定であることは従来知られていなかった。この有機樹脂分散ゾルは、前述の塗布液の調製方法の工程(a)~(b)に準じて作製することができる。このような有機樹脂分散ゾルは、長期間に安定して金属酸化物粒子を分散できるので、ゾルのまま保存することができ、使用直前に塗布液化することができる。
It has not been conventionally known that an organic resin dispersed sol having such a composition is stable. This organic resin-dispersed sol can be produced according to steps (a) to (b) of the method for preparing a coating liquid described above. Since such an organic resin dispersion sol can stably disperse metal oxide particles for a long period of time, it can be stored as a sol and can be liquefied immediately before use.
[透明被膜付基材]
上述の塗布液を基材に塗布し、透明被膜を基材に形成する。透明被膜は、金属酸化物粒子とマトリックス成分で形成される。
基材
基材には、ポリエチレンテレフタラート(PET)、トリアセチルセルロース(TAC)、アクリル、ポリカーボネート、シクロオレフィンポリマー(COP)から選ばれる少なくとも1種の透明性樹脂基材が好ましい。これらの樹脂基材は、上述の塗布液によって形成される透明被膜との密着性が優れ、硬度、耐擦傷性等に優れた透明被膜付基材を得ることができる。 [Base material with transparent film]
The above-mentioned coating solution is applied to the substrate to form a transparent film on the substrate. The transparent coating is formed of metal oxide particles and a matrix component.
The substrate substrate is preferably at least one transparent resin substrate selected from polyethylene terephthalate (PET), triacetyl cellulose (TAC), acrylic, polycarbonate, and cycloolefin polymer (COP). These resin base materials are excellent in adhesion to the transparent film formed by the coating solution described above, and can provide a base material with a transparent film excellent in hardness, scratch resistance and the like.
上述の塗布液を基材に塗布し、透明被膜を基材に形成する。透明被膜は、金属酸化物粒子とマトリックス成分で形成される。
基材
基材には、ポリエチレンテレフタラート(PET)、トリアセチルセルロース(TAC)、アクリル、ポリカーボネート、シクロオレフィンポリマー(COP)から選ばれる少なくとも1種の透明性樹脂基材が好ましい。これらの樹脂基材は、上述の塗布液によって形成される透明被膜との密着性が優れ、硬度、耐擦傷性等に優れた透明被膜付基材を得ることができる。 [Base material with transparent film]
The above-mentioned coating solution is applied to the substrate to form a transparent film on the substrate. The transparent coating is formed of metal oxide particles and a matrix component.
The substrate substrate is preferably at least one transparent resin substrate selected from polyethylene terephthalate (PET), triacetyl cellulose (TAC), acrylic, polycarbonate, and cycloolefin polymer (COP). These resin base materials are excellent in adhesion to the transparent film formed by the coating solution described above, and can provide a base material with a transparent film excellent in hardness, scratch resistance and the like.
金属酸化物粒子
前述の有機珪素化合物で表面処理された金属酸化物粒子を用いることが好ましい。透明被膜中の金属酸化物粒子の固形分としての含有量(WP)は50~90重量%、さらには65~85重量%の範囲が好ましい。含有量(WP)がこの範囲にあれば、凹凸のない、収縮の少ない、厚膜であっても緻密でクラック発生のない、硬度の高い透明被膜が得られる。
含有量(WP)が少ない場合、樹脂が多くなるため、緻密化が充分でなく、透明被膜の硬度が低くなることがある。含有量(WP)が多すぎても、表面凹凸が大きくなって外部散乱によりヘーズが悪化し、透明性が低下することがあり、さらに膜の緻密化が低下し、耐擦傷性、基材との密着性が不充分となる。 Metal oxide particles It is preferable to use metal oxide particles that have been surface-treated with the aforementioned organosilicon compound. The content (W P ) of the metal oxide particles in the transparent coating as a solid content is preferably in the range of 50 to 90% by weight, more preferably 65 to 85% by weight. When the content (W P ) is within this range, a transparent film having high hardness and no irregularities, little shrinkage, dense and crack-free even with a thick film can be obtained.
When the content (W P ) is small, the resin is increased, so that densification is not sufficient and the hardness of the transparent film may be lowered. Even if the content (W P ) is too large, surface irregularities become large, haze may deteriorate due to external scattering, transparency may decrease, and film densification may decrease, scratch resistance, substrate Adhesiveness with the ink becomes insufficient.
前述の有機珪素化合物で表面処理された金属酸化物粒子を用いることが好ましい。透明被膜中の金属酸化物粒子の固形分としての含有量(WP)は50~90重量%、さらには65~85重量%の範囲が好ましい。含有量(WP)がこの範囲にあれば、凹凸のない、収縮の少ない、厚膜であっても緻密でクラック発生のない、硬度の高い透明被膜が得られる。
含有量(WP)が少ない場合、樹脂が多くなるため、緻密化が充分でなく、透明被膜の硬度が低くなることがある。含有量(WP)が多すぎても、表面凹凸が大きくなって外部散乱によりヘーズが悪化し、透明性が低下することがあり、さらに膜の緻密化が低下し、耐擦傷性、基材との密着性が不充分となる。 Metal oxide particles It is preferable to use metal oxide particles that have been surface-treated with the aforementioned organosilicon compound. The content (W P ) of the metal oxide particles in the transparent coating as a solid content is preferably in the range of 50 to 90% by weight, more preferably 65 to 85% by weight. When the content (W P ) is within this range, a transparent film having high hardness and no irregularities, little shrinkage, dense and crack-free even with a thick film can be obtained.
When the content (W P ) is small, the resin is increased, so that densification is not sufficient and the hardness of the transparent film may be lowered. Even if the content (W P ) is too large, surface irregularities become large, haze may deteriorate due to external scattering, transparency may decrease, and film densification may decrease, scratch resistance, substrate Adhesiveness with the ink becomes insufficient.
マトリックス成分
マトリックス成分は、第一の有機樹脂と第二の有機樹脂とからなる。透明被膜中ではこれらの樹脂のモノマーやオリゴマーが重合した状態で、硬化している。第一の有機樹脂と第二の有機樹脂としては、いずれも紫外線硬化型樹脂が好ましい。
これら有機樹脂が紫外線硬化型樹脂であると、PETやTAC等の樹脂基材との密着性に優れ、硬度に優れた透明被膜を得ることができる。また、生産性の高い巻き取り方式(ロールtoロール)で透明被膜付基材を生産することができる。 Matrix component The matrix component comprises a first organic resin and a second organic resin. In the transparent film, these resins are cured in a polymerized state. Both the first organic resin and the second organic resin are preferably ultraviolet curable resins.
When these organic resins are ultraviolet curable resins, it is possible to obtain a transparent film having excellent adhesion to a resin substrate such as PET or TAC and excellent hardness. Moreover, a substrate with a transparent coating can be produced by a highly productive winding method (roll-to-roll).
マトリックス成分は、第一の有機樹脂と第二の有機樹脂とからなる。透明被膜中ではこれらの樹脂のモノマーやオリゴマーが重合した状態で、硬化している。第一の有機樹脂と第二の有機樹脂としては、いずれも紫外線硬化型樹脂が好ましい。
これら有機樹脂が紫外線硬化型樹脂であると、PETやTAC等の樹脂基材との密着性に優れ、硬度に優れた透明被膜を得ることができる。また、生産性の高い巻き取り方式(ロールtoロール)で透明被膜付基材を生産することができる。 Matrix component The matrix component comprises a first organic resin and a second organic resin. In the transparent film, these resins are cured in a polymerized state. Both the first organic resin and the second organic resin are preferably ultraviolet curable resins.
When these organic resins are ultraviolet curable resins, it is possible to obtain a transparent film having excellent adhesion to a resin substrate such as PET or TAC and excellent hardness. Moreover, a substrate with a transparent coating can be produced by a highly productive winding method (roll-to-roll).
マトリックス成分中の第一の有機樹脂の固形分としての含有量は0.1~80重量%である。特に、5~60重量%の範囲にあることが好ましい。マトリックス成分中の第一の有機樹脂の含有量が少ないと、透明被膜表面の平滑性が低下したり、緻密化が不充分となったりする。そのため、ヘーズ、硬度、耐擦傷性、密着性等が不充分となる。マトリックス成分中の第一の有機樹脂の含有量が多いと、第二の有機樹脂は少なくなるため、透明被膜の緻密性は低く、硬度が不十分となる。
The content of the first organic resin in the matrix component as a solid content is 0.1 to 80% by weight. In particular, it is preferably in the range of 5 to 60% by weight. When there is little content of the 1st organic resin in a matrix component, the smoothness of the surface of a transparent film will fall, or densification will become inadequate. For this reason, haze, hardness, scratch resistance, adhesion and the like are insufficient. When the content of the first organic resin in the matrix component is large, the second organic resin is decreased, so that the denseness of the transparent film is low and the hardness is insufficient.
透明被膜中のマトリックス成分の固形分としての含有量(WR)は10~50重量%、さらには15~40重量%の範囲にあることが好ましい。透明被膜中のマトリックス成分の固形分としての含有量(WR)が10重量%未満の場合は、表面に凹凸が発生して外部散乱により膜のヘーズが悪化し、透明性が低下する。また、粒子が多くなるため、透明被膜の緻密化が不充分となり、基材との密着性、耐擦傷性、硬度が不充分となる。一方、含有量(WR)が50重量%を超えると、膜の収縮が大きくなる。そのため、厚膜(概ね10μm以上)にするとカーリングやクラックが発生する。また、緻密性が低いため高い硬度が得られない。
The content (W R ) of the matrix component as a solid content in the transparent film is preferably in the range of 10 to 50% by weight, more preferably 15 to 40% by weight. When the content (W R ) of the matrix component in the transparent film as a solid content is less than 10% by weight, irregularities are generated on the surface, haze of the film is deteriorated due to external scattering, and transparency is lowered. In addition, since the number of particles increases, the transparent film becomes insufficiently densified, resulting in insufficient adhesion to the substrate, scratch resistance, and hardness. On the other hand, when the content (W R ) exceeds 50% by weight, the shrinkage of the film increases. Therefore, curling and cracking occur when the film is thick (approximately 10 μm or more). Moreover, since the denseness is low, high hardness cannot be obtained.
透明被膜中のマトリックス成分の含有量(WR)と金属酸化物粒子の含有量(WP)との比(WR/WP)は0.11~1.0、さらには0.18~0.8の範囲にあることが好ましい。この比(WR/WP)が小さいと、透明被膜の表面凹凸が大きくなる場合があり、外部散乱により膜のヘーズが悪化し、透明性が低下する。さらに膜の緻密化が充分でなく、耐擦傷性、基材との密着性に優れた透明被膜が得られないことがある。また、この比(WR/WP)が大きいと膜の収縮が大きくなり、厚膜にするとクラックが発生する場合がある。また、透明被膜の緻密化が不充分となり、このため硬度が不充分となる場合がある。
The ratio (W R / W P ) between the content (W R ) of the matrix component in the transparent film and the content (W P ) of the metal oxide particles is 0.11 to 1.0, more preferably 0.18 to It is preferable to be in the range of 0.8. When this ratio (W R / W P ) is small, the surface unevenness of the transparent film may become large, haze of the film deteriorates due to external scattering, and transparency is lowered. Furthermore, the film is not sufficiently densified, and a transparent film having excellent scratch resistance and adhesion to the substrate may not be obtained. Further, when this ratio (W R / W P ) is large, the film shrinks, and when the film is thick, cracks may occur. Moreover, the densification of the transparent film becomes insufficient, and thus the hardness may be insufficient.
このようなマトリックス成分で形成される透明被膜の平均膜厚(T)は1~100μmが適している。特に、12~80μmの範囲が好ましい。この範囲の膜厚であれば、高い硬度で、カーリングの抑制された透明被膜を樹脂基材上に形成できる。
The average film thickness (T) of the transparent film formed with such a matrix component is suitably 1 to 100 μm. The range of 12 to 80 μm is particularly preferable. If it is the film thickness of this range, the transparent film by which curling was suppressed with high hardness can be formed on a resin base material.
ここで、透明被膜の平均膜厚(T)は、膜の断面の透過型電子顕微鏡写真(TEM)を撮影し、表面凹凸における膜の上部表面の凸部の頂点から直下底部間の距離(T凸)と、凸部の隣の凹部の最深部から直下底部間の距離(T凹)を測定し、その平均値として求める。なお、測定する凹凸数は一定間隔を置いた10組以上であることが好ましい。これにより、鉛筆硬度5H以上、さらには6H以上の透明被膜を樹脂基材上に形成できる。また、透明被膜付基材は、下記条件で測定したカーリング特性が5mm以下である。
カーリング特性の測定方法は、塗布面が14cm×25cm、厚みが40μmのTACフィルム基材上に12μm厚の透明被膜が形成できるように塗布液を塗布し、20時間静置する。その後、このフィルムを10cm×10cmサイズにカットし、塗布面を下にして平板上に置き、カーリング(湾曲)させて浮上した基材の頂点の平板からの高さを測定する。
従来の樹脂基材上に形成された透明被膜では、このようなカーリング特性や硬度を達成することは困難である。このような透明被膜は、樹脂基材上に透明被膜形成用の塗布液を塗布して塗膜を形成し、乾燥させ、硬化することで形成される。 Here, the average film thickness (T) of the transparent film is obtained by taking a transmission electron micrograph (TEM) of the cross section of the film, and the distance between the top of the convex portion on the top surface of the film and the bottom immediately below the surface (T And the distance (T-concave) between the deepest part of the concave part adjacent to the convex part and the bottom part directly underneath (T-concave), and the average value is obtained. In addition, it is preferable that the number of unevenness | corrugations to measure is 10 sets or more at regular intervals. Thereby, a transparent film having a pencil hardness of 5H or more, and further 6H or more can be formed on the resin substrate. Moreover, the substrate with a transparent coating has a curling characteristic measured under the following conditions of 5 mm or less.
The curling characteristic is measured by applying a coating solution on a TAC film substrate having a coating surface of 14 cm × 25 cm and a thickness of 40 μm so that a 12 μm-thick transparent film can be formed, and allowing to stand for 20 hours. Thereafter, the film is cut into a size of 10 cm × 10 cm, placed on a flat plate with the coating surface down, and the height of the apex of the base material that has been curled (curved) and floated is measured.
With a transparent film formed on a conventional resin substrate, it is difficult to achieve such curling characteristics and hardness. Such a transparent coating is formed by applying a coating solution for forming a transparent coating on a resin substrate to form a coating, drying, and curing.
カーリング特性の測定方法は、塗布面が14cm×25cm、厚みが40μmのTACフィルム基材上に12μm厚の透明被膜が形成できるように塗布液を塗布し、20時間静置する。その後、このフィルムを10cm×10cmサイズにカットし、塗布面を下にして平板上に置き、カーリング(湾曲)させて浮上した基材の頂点の平板からの高さを測定する。
従来の樹脂基材上に形成された透明被膜では、このようなカーリング特性や硬度を達成することは困難である。このような透明被膜は、樹脂基材上に透明被膜形成用の塗布液を塗布して塗膜を形成し、乾燥させ、硬化することで形成される。 Here, the average film thickness (T) of the transparent film is obtained by taking a transmission electron micrograph (TEM) of the cross section of the film, and the distance between the top of the convex portion on the top surface of the film and the bottom immediately below the surface (T And the distance (T-concave) between the deepest part of the concave part adjacent to the convex part and the bottom part directly underneath (T-concave), and the average value is obtained. In addition, it is preferable that the number of unevenness | corrugations to measure is 10 sets or more at regular intervals. Thereby, a transparent film having a pencil hardness of 5H or more, and further 6H or more can be formed on the resin substrate. Moreover, the substrate with a transparent coating has a curling characteristic measured under the following conditions of 5 mm or less.
The curling characteristic is measured by applying a coating solution on a TAC film substrate having a coating surface of 14 cm × 25 cm and a thickness of 40 μm so that a 12 μm-thick transparent film can be formed, and allowing to stand for 20 hours. Thereafter, the film is cut into a size of 10 cm × 10 cm, placed on a flat plate with the coating surface down, and the height of the apex of the base material that has been curled (curved) and floated is measured.
With a transparent film formed on a conventional resin substrate, it is difficult to achieve such curling characteristics and hardness. Such a transparent coating is formed by applying a coating solution for forming a transparent coating on a resin substrate to form a coating, drying, and curing.
透明被膜の表面(後述する反射防止膜との界面)に波状の凹凸が形成されることが好ましい。上述した組成比でシリカ粒子(P)とマトリックス成分を組み合わせているので、所定の表面粗さの透明被膜が形成される。表面粗さがあると、反射防止膜を形成したときに、接合面積が大きくなるため、密着性が高く、硬度、耐擦傷性に優れた被膜付基材が得られる。また、反射防止膜の平滑性を阻害しないので、外部散乱による膜のヘーズの悪影響も少なく、透明性が低下することもない。
波状の凹凸は、表面粗さ(Ra)として1~10nm、さらには1~5nmの範囲が適している。表面粗さ(Ra)は、原子間力顕微鏡(Bruker(株)製:Dimension 3100)で測定することができる。
波状の凹凸は、塗布液に配合されている表面処理されたシリカ粒子が膜の表層に存在するために生じると考えられる。したがって、透明被膜中のシリカ粒子の含有量に依存する傾向が認められる。 It is preferable that wavy irregularities are formed on the surface of the transparent coating (an interface with an antireflection film described later). Since the silica particles (P) and the matrix component are combined at the composition ratio described above, a transparent film having a predetermined surface roughness is formed. If the surface roughness is present, the bonded area is increased when the antireflection film is formed, so that a coated substrate with high adhesion and excellent hardness and scratch resistance can be obtained. Further, since the smoothness of the antireflection film is not hindered, there is little adverse effect of haze of the film due to external scattering, and transparency is not lowered.
For the wavy irregularities, the surface roughness (Ra) is suitably in the range of 1 to 10 nm, more preferably 1 to 5 nm. The surface roughness (Ra) can be measured with an atomic force microscope (manufactured by Bruker, Inc .: Dimension 3100).
The wavy unevenness is considered to be caused by the presence of surface-treated silica particles blended in the coating solution on the surface layer of the film. Therefore, the tendency depending on the content of silica particles in the transparent coating is recognized.
波状の凹凸は、表面粗さ(Ra)として1~10nm、さらには1~5nmの範囲が適している。表面粗さ(Ra)は、原子間力顕微鏡(Bruker(株)製:Dimension 3100)で測定することができる。
波状の凹凸は、塗布液に配合されている表面処理されたシリカ粒子が膜の表層に存在するために生じると考えられる。したがって、透明被膜中のシリカ粒子の含有量に依存する傾向が認められる。 It is preferable that wavy irregularities are formed on the surface of the transparent coating (an interface with an antireflection film described later). Since the silica particles (P) and the matrix component are combined at the composition ratio described above, a transparent film having a predetermined surface roughness is formed. If the surface roughness is present, the bonded area is increased when the antireflection film is formed, so that a coated substrate with high adhesion and excellent hardness and scratch resistance can be obtained. Further, since the smoothness of the antireflection film is not hindered, there is little adverse effect of haze of the film due to external scattering, and transparency is not lowered.
For the wavy irregularities, the surface roughness (Ra) is suitably in the range of 1 to 10 nm, more preferably 1 to 5 nm. The surface roughness (Ra) can be measured with an atomic force microscope (manufactured by Bruker, Inc .: Dimension 3100).
The wavy unevenness is considered to be caused by the presence of surface-treated silica particles blended in the coating solution on the surface layer of the film. Therefore, the tendency depending on the content of silica particles in the transparent coating is recognized.
本発明による透明被膜は、相対的にシリカ粒子(P)が多く、マトリックス成分が少ないので、硬化時に膜が平坦化せずに、波状に硬化するものと考えられる。これは、マトリックス成分の種類に応じて変動する。マトリックス成分が少ないと、表面の凹凸が大きくなり過ぎて外部散乱により膜のヘーズが悪化し、透明性が低下することがある。また、粒子が多くなるため、かえって膜の緻密化が不充分となり、基材との密着性、耐擦傷性、硬度が得られなくなることがある。マトリックス成分が多すぎても、表面の波状の凹凸が大きくなり過ぎて、透明性が低下することがあり、基材との密着性、耐擦傷性が得られないことがある。また、膜の収縮が大きくなるため、厚膜(概ね10μm以上)にするとカーリングを伴ったり、クラックが発生したりする。また、緻密性が低いため硬度が不充分となる。
The transparent coating according to the present invention has a relatively large amount of silica particles (P) and a small amount of matrix components. Therefore, it is considered that the film is cured in a wavy shape without being flattened during curing. This varies depending on the type of matrix component. When there are few matrix components, the surface unevenness | corrugation becomes large too much, the haze of a film | membrane may deteriorate by external scattering, and transparency may fall. Moreover, since the number of particles increases, the film is not sufficiently densified, and adhesion to the substrate, scratch resistance, and hardness may not be obtained. Even if there are too many matrix components, the wavy unevenness of the surface becomes too large and the transparency may be lowered, and the adhesion to the substrate and the scratch resistance may not be obtained. Further, since the shrinkage of the film increases, curling or cracking occurs when the film is thick (approximately 10 μm or more). Moreover, since the denseness is low, the hardness is insufficient.
また、塗布方法としては、ディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で印刷できる。印刷後、紫外線照射等によって硬化される。
Also, as a coating method, printing can be performed by a known method such as a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a gravure printing method, or a micro gravure printing method. After printing, it is cured by ultraviolet irradiation or the like.
本発明による塗布液を塗布した後、乾燥工程により乾燥させる。乾燥工程における塗膜の体積の収縮率(a)が25%以下になるようにする。特に、20%以下とすることが好ましい。乾燥後、塗膜を硬化させる。硬化時の塗膜の収縮率(b)を10%以下にする。特に、5%以下が好ましい。乾燥時の塗膜の収縮率(a)あるいは硬化時の塗膜の収縮率(b)が高いと、厚膜の場合にクラックが発生し、また、緻密性が低いため硬度が不充分になる。さらに、乾燥時と硬化時の合計の収縮率(c)は35%以下、特に30%以下であることが好ましい。
収縮率(a)、収縮率(b)、収縮率(c)は、下記の数式(A)~(C)で表わされる。
収縮率(a) [%]=(1-(塗布液の密度/乾燥膜の密度))×100・・・数式(A)
収縮率(b) [%]=(1-(乾燥膜の密度/硬化膜の密度))×100・・・数式(B)
収縮率(c) [%]=(1-(塗布液の密度/硬化膜の密度))×100・・・数式(C)
After apply | coating the coating liquid by this invention, it is made to dry by a drying process. The shrinkage ratio (a) of the volume of the coating film in the drying process is set to 25% or less. In particular, it is preferably 20% or less. After drying, the coating film is cured. The shrinkage ratio (b) of the coating film during curing is made 10% or less. In particular, 5% or less is preferable. If the shrinkage ratio (a) of the coating film at the time of drying or the shrinkage ratio (b) of the coating film at the time of curing is high, cracks occur in the case of a thick film, and the hardness is insufficient due to low density. . Furthermore, the total shrinkage (c) at the time of drying and curing is preferably 35% or less, particularly preferably 30% or less.
The shrinkage rate (a), shrinkage rate (b), and shrinkage rate (c) are expressed by the following mathematical formulas (A) to (C).
Shrinkage ratio (a) [%] = (1− (density of coating solution / density of dry film)) × 100 Expression (A)
Shrinkage rate (b) [%] = (1− (density of dried film / density of cured film)) × 100 Expression (B)
Shrinkage ratio (c) [%] = (1− (density of coating solution / density of cured film)) × 100 Expression (C)
収縮率(a)、収縮率(b)、収縮率(c)は、下記の数式(A)~(C)で表わされる。
収縮率(a) [%]=(1-(塗布液の密度/乾燥膜の密度))×100・・・数式(A)
収縮率(b) [%]=(1-(乾燥膜の密度/硬化膜の密度))×100・・・数式(B)
収縮率(c) [%]=(1-(塗布液の密度/硬化膜の密度))×100・・・数式(C)
After apply | coating the coating liquid by this invention, it is made to dry by a drying process. The shrinkage ratio (a) of the volume of the coating film in the drying process is set to 25% or less. In particular, it is preferably 20% or less. After drying, the coating film is cured. The shrinkage ratio (b) of the coating film during curing is made 10% or less. In particular, 5% or less is preferable. If the shrinkage ratio (a) of the coating film at the time of drying or the shrinkage ratio (b) of the coating film at the time of curing is high, cracks occur in the case of a thick film, and the hardness is insufficient due to low density. . Furthermore, the total shrinkage (c) at the time of drying and curing is preferably 35% or less, particularly preferably 30% or less.
The shrinkage rate (a), shrinkage rate (b), and shrinkage rate (c) are expressed by the following mathematical formulas (A) to (C).
Shrinkage ratio (a) [%] = (1− (density of coating solution / density of dry film)) × 100 Expression (A)
Shrinkage rate (b) [%] = (1− (density of dried film / density of cured film)) × 100 Expression (B)
Shrinkage ratio (c) [%] = (1− (density of coating solution / density of cured film)) × 100 Expression (C)
[反射防止層]
上述した透明被膜の上に、必要に応じて反射防止層が形成される。反射防止層はシリカ系中空粒子とマトリックス成分(ML)を含んでいる。ここで、平均粒子径の小さいシリカ系中空粒子と透明被膜と同様のマトリックス成分を組み合わせることとした。これにより、薄い反射防止層でも透明被膜の硬度が維持できる。 [Antireflection layer]
An antireflection layer is formed on the above-described transparent film as necessary. Antireflection layer contains silica-based hollow particles and the matrix component (M L). Here, the silica-based hollow particles having a small average particle diameter were combined with the same matrix component as the transparent coating. Thereby, the hardness of a transparent film can be maintained even with a thin antireflection layer.
上述した透明被膜の上に、必要に応じて反射防止層が形成される。反射防止層はシリカ系中空粒子とマトリックス成分(ML)を含んでいる。ここで、平均粒子径の小さいシリカ系中空粒子と透明被膜と同様のマトリックス成分を組み合わせることとした。これにより、薄い反射防止層でも透明被膜の硬度が維持できる。 [Antireflection layer]
An antireflection layer is formed on the above-described transparent film as necessary. Antireflection layer contains silica-based hollow particles and the matrix component (M L). Here, the silica-based hollow particles having a small average particle diameter were combined with the same matrix component as the transparent coating. Thereby, the hardness of a transparent film can be maintained even with a thin antireflection layer.
以下、反射防止層を構成するシリカ系中空粒子とマトリックス成分(ML)について詳細に説明する。
シリカ系中空粒子(A)
シリカ系中空粒子は、内部に空洞を有するシリカ系粒子(特開2001-233611号公報、特開2003-192994号公報に開示)であり、屈折率が低い、コロイド領域の粒子であり、分散性等に優れているので反射防止層に好適である。 Hereinafter, the silica-based hollow particles and the matrix component constituting the antireflection layer (M L) is described in detail.
Silica-based hollow particles (A)
Silica-based hollow particles are silica-based particles having cavities inside (disclosed in JP-A-2001-233611 and JP-A-2003-192994), and are particles in a colloidal region having a low refractive index and dispersibility. It is suitable for the antireflection layer.
シリカ系中空粒子(A)
シリカ系中空粒子は、内部に空洞を有するシリカ系粒子(特開2001-233611号公報、特開2003-192994号公報に開示)であり、屈折率が低い、コロイド領域の粒子であり、分散性等に優れているので反射防止層に好適である。 Hereinafter, the silica-based hollow particles and the matrix component constituting the antireflection layer (M L) is described in detail.
Silica-based hollow particles (A)
Silica-based hollow particles are silica-based particles having cavities inside (disclosed in JP-A-2001-233611 and JP-A-2003-192994), and are particles in a colloidal region having a low refractive index and dispersibility. It is suitable for the antireflection layer.
シリカ系中空粒子の平均粒子径(DPA)は、10~45nmが適している。特に、15~40nmが好ましい。平均粒子径が10nm未満の場合、空洞の割合が小さくなるため、粒子の屈折率が低くならない(1.4以下)。そのため、充分な反射防止性能が得られない。また、膜厚(TL)を得るために、シリカ系中空粒子は多層に配列または不規則に配列(凝集)されることになる。そのため、反射率だけでなく膜強度も向上しない。平均粒子径が45nmを超えると、透明被膜との密着性が低下するとともに、反射防止層が形成された膜付基材の硬度も低下する。これは、理由は明らかではないが、透明被膜の持つ凹凸より平均粒子径が大きくなると、透明被膜と密着して接合できないためと考えられる。
The average particle diameter (D PA ) of the silica-based hollow particles is suitably 10 to 45 nm. In particular, 15 to 40 nm is preferable. When the average particle diameter is less than 10 nm, the void ratio is small, so the refractive index of the particles does not decrease (1.4 or less). Therefore, sufficient antireflection performance cannot be obtained. Further, in order to obtain the film thickness (T L ), the silica-based hollow particles are arranged in a multilayer or irregularly (aggregate). Therefore, not only the reflectance but also the film strength is not improved. When the average particle diameter exceeds 45 nm, the adhesion to the transparent coating is lowered and the hardness of the film-coated substrate on which the antireflection layer is formed is also lowered. Although the reason is not clear, it is considered that when the average particle size is larger than the unevenness of the transparent coating, the transparent coating cannot be adhered and bonded.
シリカ系中空粒子の屈折率は1.10~1.40が適している。特に、1.10~1.35が好ましい。1.10未満の屈折率は実現が困難であり、1.40を超えると十分な反射防止性能が得られず、明所コントラストが不充分となる。
反射防止層の厚さ(TL)とシリカ系中空粒子の平均粒子径(DPA)との比(DPA/TL)は0.05~0.56が適している。さらに、0.1~0.45の範囲が好ましい。この比が0.05未満の場合は、前述のように粒子の屈折率が低くならず、反射防止層としての機能が不充分となる。この比が0.56を超えると、粒子の強度は低く、反射防止層の表面の平滑性が得られない。そのため、所望の強度、硬度が得られ難い。 The refractive index of silica-based hollow particles is suitably 1.10 to 1.40. In particular, 1.10 to 1.35 is preferable. A refractive index of less than 1.10.
The ratio (D PA / T L ) between the thickness (T L ) of the antireflection layer and the average particle diameter (D PA ) of the silica-based hollow particles is suitably 0.05 to 0.56. Furthermore, the range of 0.1 to 0.45 is preferable. When this ratio is less than 0.05, the refractive index of the particles is not lowered as described above, and the function as an antireflection layer becomes insufficient. When this ratio exceeds 0.56, the strength of the particles is low and the smoothness of the surface of the antireflection layer cannot be obtained. Therefore, it is difficult to obtain desired strength and hardness.
反射防止層の厚さ(TL)とシリカ系中空粒子の平均粒子径(DPA)との比(DPA/TL)は0.05~0.56が適している。さらに、0.1~0.45の範囲が好ましい。この比が0.05未満の場合は、前述のように粒子の屈折率が低くならず、反射防止層としての機能が不充分となる。この比が0.56を超えると、粒子の強度は低く、反射防止層の表面の平滑性が得られない。そのため、所望の強度、硬度が得られ難い。 The refractive index of silica-based hollow particles is suitably 1.10 to 1.40. In particular, 1.10 to 1.35 is preferable. A refractive index of less than 1.10.
The ratio (D PA / T L ) between the thickness (T L ) of the antireflection layer and the average particle diameter (D PA ) of the silica-based hollow particles is suitably 0.05 to 0.56. Furthermore, the range of 0.1 to 0.45 is preferable. When this ratio is less than 0.05, the refractive index of the particles is not lowered as described above, and the function as an antireflection layer becomes insufficient. When this ratio exceeds 0.56, the strength of the particles is low and the smoothness of the surface of the antireflection layer cannot be obtained. Therefore, it is difficult to obtain desired strength and hardness.
第二のシリカ系粒子(B)
反射防止層には、シリカ系中空粒子(A)だけでなく、平均粒子径(DPB)が4~17nmの第二のシリカ系粒子(B)を含むことが好ましい。特に好ましい平均粒子径(DPB)は4~12nmである。第二のシリカ系粒子として、シリカゾル、シリカ系中空粒子、あるいはこれらが鎖状に連結した鎖状シリカ系粒子等が例示できる。第二のシリカ系粒子の屈折率は1.15~1.46、好ましくは1.15~1.40である。
平均粒子径が4nm未満の粒子は、実現が困難であり、仮に得られたとしても均一な分散液、塗布液になりにくい。このため、反射防止層表面の平滑性が悪い。また、層中の粒子が緻密に充填しないために充分な強度、硬度が得られない。平均粒子径が17nmを越えると、シリカ系中空粒子(A)の粒子間隙に入らなくなり、反射率が不充分になるとともに強度も得られない。 Second silica-based particles (B)
The antireflection layer preferably contains not only silica-based hollow particles (A) but also second silica-based particles (B) having an average particle diameter (D PB ) of 4 to 17 nm. A particularly preferable average particle diameter (D PB ) is 4 to 12 nm. Examples of the second silica-based particles include silica sol, silica-based hollow particles, and chain silica-based particles in which these are connected in a chain. The refractive index of the second silica-based particles is 1.15 to 1.46, preferably 1.15 to 1.40.
Particles having an average particle diameter of less than 4 nm are difficult to realize, and even if obtained, it is difficult to form a uniform dispersion or coating solution. For this reason, the smoothness of the antireflection layer surface is poor. Moreover, since the particles in the layer are not densely packed, sufficient strength and hardness cannot be obtained. When the average particle diameter exceeds 17 nm, the silica hollow particles (A) do not enter the interstices, resulting in insufficient reflectivity and insufficient strength.
反射防止層には、シリカ系中空粒子(A)だけでなく、平均粒子径(DPB)が4~17nmの第二のシリカ系粒子(B)を含むことが好ましい。特に好ましい平均粒子径(DPB)は4~12nmである。第二のシリカ系粒子として、シリカゾル、シリカ系中空粒子、あるいはこれらが鎖状に連結した鎖状シリカ系粒子等が例示できる。第二のシリカ系粒子の屈折率は1.15~1.46、好ましくは1.15~1.40である。
平均粒子径が4nm未満の粒子は、実現が困難であり、仮に得られたとしても均一な分散液、塗布液になりにくい。このため、反射防止層表面の平滑性が悪い。また、層中の粒子が緻密に充填しないために充分な強度、硬度が得られない。平均粒子径が17nmを越えると、シリカ系中空粒子(A)の粒子間隙に入らなくなり、反射率が不充分になるとともに強度も得られない。 Second silica-based particles (B)
The antireflection layer preferably contains not only silica-based hollow particles (A) but also second silica-based particles (B) having an average particle diameter (D PB ) of 4 to 17 nm. A particularly preferable average particle diameter (D PB ) is 4 to 12 nm. Examples of the second silica-based particles include silica sol, silica-based hollow particles, and chain silica-based particles in which these are connected in a chain. The refractive index of the second silica-based particles is 1.15 to 1.46, preferably 1.15 to 1.40.
Particles having an average particle diameter of less than 4 nm are difficult to realize, and even if obtained, it is difficult to form a uniform dispersion or coating solution. For this reason, the smoothness of the antireflection layer surface is poor. Moreover, since the particles in the layer are not densely packed, sufficient strength and hardness cannot be obtained. When the average particle diameter exceeds 17 nm, the silica hollow particles (A) do not enter the interstices, resulting in insufficient reflectivity and insufficient strength.
第二のシリカ系粒子(B)とシリカ系中空粒子(A)の平均粒子径との比(DPB/DPA)は0.1~0.4がよい。特に、0.1~0.35が好ましい。この比が0.1未満の場合は、シリカ系中空粒子が凝集したり、配列が不規則になったりする。すると、反射率と強度が不充分になる。この比が0.4を超えると、シリカ系中空粒子の粒子間隙に入らないために、シリカ系中空粒子が不規則に配列したり凝集したりする。
各粒子の平均粒子径は、透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について粒子径を測定し、その平均値とした。 The ratio (D PB / D PA ) between the average particle diameter of the second silica-based particles (B) and the silica-based hollow particles (A) is preferably 0.1 to 0.4. In particular, 0.1 to 0.35 is preferable. When this ratio is less than 0.1, the silica-based hollow particles are aggregated or the arrangement is irregular. As a result, the reflectivity and intensity become insufficient. When this ratio exceeds 0.4, the silica-based hollow particles are irregularly arranged or aggregated because they do not enter the particle gaps of the silica-based hollow particles.
The average particle diameter of each particle was obtained by taking a transmission electron micrograph (TEM), measuring the particle diameter of 100 particles, and setting the average value.
各粒子の平均粒子径は、透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について粒子径を測定し、その平均値とした。 The ratio (D PB / D PA ) between the average particle diameter of the second silica-based particles (B) and the silica-based hollow particles (A) is preferably 0.1 to 0.4. In particular, 0.1 to 0.35 is preferable. When this ratio is less than 0.1, the silica-based hollow particles are aggregated or the arrangement is irregular. As a result, the reflectivity and intensity become insufficient. When this ratio exceeds 0.4, the silica-based hollow particles are irregularly arranged or aggregated because they do not enter the particle gaps of the silica-based hollow particles.
The average particle diameter of each particle was obtained by taking a transmission electron micrograph (TEM), measuring the particle diameter of 100 particles, and setting the average value.
ここで用いるシリカ系中空粒子(A)や第二のシリカ系粒子(B)は、上述の透明被膜形成用の塗布液に含まれる金属酸化物粒子と同様に、式(1)で表される有機珪素化合物で表面処理されていることが好ましい。第二のシリカ系粒子を有機珪素化合物で表面処理すると、耐水性、撥水性、防汚性等に優れた反射防止層が得られる。
特に、式(1)のn=0の有機珪素化合物で表面処理し、ついでn=1,2,3のいずれかの有機珪素化合物で表面処理することが好ましい。n=0の有機珪素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン等が挙げられる。 The silica-based hollow particles (A) and the second silica-based particles (B) used here are represented by the formula (1), similarly to the metal oxide particles contained in the coating liquid for forming the transparent film. The surface is preferably treated with an organosilicon compound. When the second silica-based particles are surface-treated with an organosilicon compound, an antireflection layer excellent in water resistance, water repellency, antifouling property and the like is obtained.
In particular, it is preferable to perform surface treatment with an organic silicon compound of formula (1) where n = 0, and then surface treatment with an organosilicon compound of n = 1, 2, 3. Examples of the organic silicon compound with n = 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
特に、式(1)のn=0の有機珪素化合物で表面処理し、ついでn=1,2,3のいずれかの有機珪素化合物で表面処理することが好ましい。n=0の有機珪素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン等が挙げられる。 The silica-based hollow particles (A) and the second silica-based particles (B) used here are represented by the formula (1), similarly to the metal oxide particles contained in the coating liquid for forming the transparent film. The surface is preferably treated with an organosilicon compound. When the second silica-based particles are surface-treated with an organosilicon compound, an antireflection layer excellent in water resistance, water repellency, antifouling property and the like is obtained.
In particular, it is preferable to perform surface treatment with an organic silicon compound of formula (1) where n = 0, and then surface treatment with an organosilicon compound of n = 1, 2, 3. Examples of the organic silicon compound with n = 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
以下、有機珪素化合物による表面処理方法の一例を説明する。従来公知の方法を採用することができる。
シリカ系粒子のアルコール分散液に有機珪素化合物を所定量加え、これに水を加える。必要に応じて、加水分解用触媒として酸またはアルカリを加え、加水分解する。この時、有機珪素化合物のRn-SiX(4-n)/2としての重量とシリカ系粒子の重量との比(Rn-SiX(4-n)/2重量/シリカ系粒子の重量)が0.01~0.5さらには0.02~0.25であることが好ましい。この重量比が0.01未満の場合は、後述する反射防止膜形成用の塗布液中のマトリックス形成成分あるいは分散媒との親和性が低く、安定性が不充分で、塗布液中で均一に分散できない。そのため、シリカ系粒子が凝集することがあり、反射防止層の強度、耐擦傷性が低下し、ヘーズ値、反射率が高くなることがある。重量比が0.5を超えても分散性がさらに向上することもなく、屈折率が上昇し、高価な有機珪素化合物が増加するだけで経済性が低下する。 Hereinafter, an example of a surface treatment method using an organosilicon compound will be described. Conventionally known methods can be employed.
A predetermined amount of an organosilicon compound is added to an alcohol dispersion of silica-based particles, and water is added thereto. If necessary, hydrolysis is carried out by adding an acid or alkali as a hydrolysis catalyst. At this time, the ratio of the weight of the organosilicon compound as R n —SiX (4-n) / 2 to the weight of the silica-based particles (R n —SiX (4-n) / 2 weight / silica-based particle weight) Is preferably 0.01 to 0.5, more preferably 0.02 to 0.25. When this weight ratio is less than 0.01, the affinity with the matrix-forming component or the dispersion medium in the coating liquid for forming an antireflection film, which will be described later, is low, the stability is insufficient, and the coating liquid is uniform. Cannot be distributed. As a result, silica-based particles may agglomerate, the strength and scratch resistance of the antireflection layer may decrease, and the haze value and reflectance may increase. Even if the weight ratio exceeds 0.5, the dispersibility is not further improved, the refractive index is increased, and the cost is reduced only by increasing the expensive organosilicon compound.
シリカ系粒子のアルコール分散液に有機珪素化合物を所定量加え、これに水を加える。必要に応じて、加水分解用触媒として酸またはアルカリを加え、加水分解する。この時、有機珪素化合物のRn-SiX(4-n)/2としての重量とシリカ系粒子の重量との比(Rn-SiX(4-n)/2重量/シリカ系粒子の重量)が0.01~0.5さらには0.02~0.25であることが好ましい。この重量比が0.01未満の場合は、後述する反射防止膜形成用の塗布液中のマトリックス形成成分あるいは分散媒との親和性が低く、安定性が不充分で、塗布液中で均一に分散できない。そのため、シリカ系粒子が凝集することがあり、反射防止層の強度、耐擦傷性が低下し、ヘーズ値、反射率が高くなることがある。重量比が0.5を超えても分散性がさらに向上することもなく、屈折率が上昇し、高価な有機珪素化合物が増加するだけで経済性が低下する。 Hereinafter, an example of a surface treatment method using an organosilicon compound will be described. Conventionally known methods can be employed.
A predetermined amount of an organosilicon compound is added to an alcohol dispersion of silica-based particles, and water is added thereto. If necessary, hydrolysis is carried out by adding an acid or alkali as a hydrolysis catalyst. At this time, the ratio of the weight of the organosilicon compound as R n —SiX (4-n) / 2 to the weight of the silica-based particles (R n —SiX (4-n) / 2 weight / silica-based particle weight) Is preferably 0.01 to 0.5, more preferably 0.02 to 0.25. When this weight ratio is less than 0.01, the affinity with the matrix-forming component or the dispersion medium in the coating liquid for forming an antireflection film, which will be described later, is low, the stability is insufficient, and the coating liquid is uniform. Cannot be distributed. As a result, silica-based particles may agglomerate, the strength and scratch resistance of the antireflection layer may decrease, and the haze value and reflectance may increase. Even if the weight ratio exceeds 0.5, the dispersibility is not further improved, the refractive index is increased, and the cost is reduced only by increasing the expensive organosilicon compound.
この後、必要に応じて有機溶媒に置換し、表面処理されたシリカ系粒子の有機溶媒分散液を調製する。有機溶媒として、後述する反射防止層形成用の塗布液と同様の有機溶媒を用いることが好ましい。このように作製した塗布液から反射防止層を形成する。
Thereafter, an organic solvent dispersion of silica-based particles that are replaced with an organic solvent as necessary and subjected to surface treatment is prepared. As the organic solvent, it is preferable to use the same organic solvent as the coating liquid for forming the antireflection layer described later. An antireflection layer is formed from the coating solution thus prepared.
反射防止層にはシリカ系中空粒子(A)が5~80重量%含まれることが望ましい。含有量10~75重量%がより好ましい。含有量が5重量%未満の場合は、透明被膜との密着性、強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となる。さらに、反射防止層の屈折率を低くできないために反射防止性能を向上させることができない。含有量が80重量%を越えると、粒子が多すぎて膜強度、耐擦傷性、スクラッチ強度等が不充分となる。さらに、反射防止膜のヘーズ値も高くなる。
The antireflection layer preferably contains 5 to 80% by weight of silica-based hollow particles (A). A content of 10 to 75% by weight is more preferred. When the content is less than 5% by weight, adhesion to the transparent film, strength, surface flatness, scratch resistance, scratch strength, and the like are insufficient. Furthermore, since the refractive index of the antireflection layer cannot be lowered, the antireflection performance cannot be improved. When the content exceeds 80% by weight, there are too many particles, resulting in insufficient film strength, scratch resistance, scratch strength, and the like. Furthermore, the haze value of the antireflection film also increases.
反射防止層に第二のシリカ系粒子(B)が配合されている場合も、シリカ系中空粒子と第二のシリカ系粒子の合計の含有量が5~80重量%、さらには10~75重量%の範囲となるように用いることが好ましい。また、第二のシリカ系粒子の割合が全シリカ系粒子の30重量%以下であることが、さらに、20重量%以下であることが好ましい。第二のシリカ系粒子の割合が30重量%を越えると、シリカ系中空粒子(A)の粒子間隙に入りきらない第二のシリカ系粒子(B)が増加し、シリカ系中空粒子(A)が不規則に配列したり凝集したりする。
上述の適切な範囲で第二のシリカ系粒子(B)が含まれていると、反射防止層の表面部にあるシリカ系中空粒子(A)の粒子間隙に第二のシリカ系粒子(B)が存在して、表面を平坦化する。そのため、耐擦傷性、スクラッチ強度に優れた反射防止層が得られる。 Even when the second silica-based particles (B) are blended in the antireflection layer, the total content of the silica-based hollow particles and the second silica-based particles is 5 to 80% by weight, more preferably 10 to 75% by weight. It is preferable to use so that it may become the range of%. Further, the ratio of the second silica-based particles is preferably 30% by weight or less, more preferably 20% by weight or less, based on the total silica-based particles. When the ratio of the second silica-based particles exceeds 30% by weight, the second silica-based particles (B) that do not fit into the gaps of the silica-based hollow particles (A) increase, and the silica-based hollow particles (A) Are randomly arranged or agglomerated.
When the second silica-based particle (B) is contained in the above-mentioned appropriate range, the second silica-based particle (B) is placed in the gap between the silica-based hollow particles (A) on the surface portion of the antireflection layer. Exists to planarize the surface. Therefore, an antireflection layer excellent in scratch resistance and scratch strength can be obtained.
上述の適切な範囲で第二のシリカ系粒子(B)が含まれていると、反射防止層の表面部にあるシリカ系中空粒子(A)の粒子間隙に第二のシリカ系粒子(B)が存在して、表面を平坦化する。そのため、耐擦傷性、スクラッチ強度に優れた反射防止層が得られる。 Even when the second silica-based particles (B) are blended in the antireflection layer, the total content of the silica-based hollow particles and the second silica-based particles is 5 to 80% by weight, more preferably 10 to 75% by weight. It is preferable to use so that it may become the range of%. Further, the ratio of the second silica-based particles is preferably 30% by weight or less, more preferably 20% by weight or less, based on the total silica-based particles. When the ratio of the second silica-based particles exceeds 30% by weight, the second silica-based particles (B) that do not fit into the gaps of the silica-based hollow particles (A) increase, and the silica-based hollow particles (A) Are randomly arranged or agglomerated.
When the second silica-based particle (B) is contained in the above-mentioned appropriate range, the second silica-based particle (B) is placed in the gap between the silica-based hollow particles (A) on the surface portion of the antireflection layer. Exists to planarize the surface. Therefore, an antireflection layer excellent in scratch resistance and scratch strength can be obtained.
マトリックス成分(M L )
反射防止層のマトリックス成分(ML)として、塗料用の有機樹脂である熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂等が挙げられる。ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ブチラール樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂など、従来から用いられている樹脂が例示できる。さらに、これら樹脂の2種以上の共重合体や変性体を用いてもよい。 Matrix component (M L)
Examples of the matrix component (M L ) of the antireflection layer include thermosetting resins, thermoplastic resins, and electron beam curable resins, which are organic resins for paints. Polyester resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, thermoplastic acrylic resin, vinyl chloride resin, fluorine resin, vinyl acetate resin, silicone rubber and other thermoplastic resins, urethane resin, melamine resin, butyral resin, phenol resin, epoxy Conventionally used resins such as resins, unsaturated polyester resins, thermosetting acrylic resins, thermosetting resins such as ultraviolet curable acrylic resins, and ultraviolet curable acrylic resins can be exemplified. Further, two or more types of copolymers or modified products of these resins may be used.
反射防止層のマトリックス成分(ML)として、塗料用の有機樹脂である熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂等が挙げられる。ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ブチラール樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂など、従来から用いられている樹脂が例示できる。さらに、これら樹脂の2種以上の共重合体や変性体を用いてもよい。 Matrix component (M L)
Examples of the matrix component (M L ) of the antireflection layer include thermosetting resins, thermoplastic resins, and electron beam curable resins, which are organic resins for paints. Polyester resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, thermoplastic acrylic resin, vinyl chloride resin, fluorine resin, vinyl acetate resin, silicone rubber and other thermoplastic resins, urethane resin, melamine resin, butyral resin, phenol resin, epoxy Conventionally used resins such as resins, unsaturated polyester resins, thermosetting acrylic resins, thermosetting resins such as ultraviolet curable acrylic resins, and ultraviolet curable acrylic resins can be exemplified. Further, two or more types of copolymers or modified products of these resins may be used.
特に、マトリックス成分(ML)が、前述の透明被膜で用いた第一の有機樹脂と第二の有機樹脂の少なくとも一方を含んでいることが好ましい。このような有機樹脂を少なくとも1部でも含んでいると、透明被膜上に反射防止層を形成したときに、同一マトリックス成分を含む2つの膜が結合することになるため、硬度、耐擦傷性等に優れた膜付基材が得られる。
In particular, the matrix component (M L ) preferably contains at least one of the first organic resin and the second organic resin used in the above-described transparent film. If at least one part of such an organic resin is contained, when the antireflection layer is formed on the transparent film, two films containing the same matrix component are bonded to each other, so that hardness, scratch resistance, etc. An excellent film-coated substrate can be obtained.
反射防止層中のマトリックス成分(ML)の含有量は固形分として20~95重量%、さらには25~90重量%が好ましい。マトリックス成分(ML)の含有量が20重量%未満の場合は反射防止膜の強度、基材との密着性、耐擦傷性等が不充分となる。マトリックス成分(ML)の含有量が95重量%を超えると、シリカ系粒子の量が少ないために、均一な膜厚とならず、表面が平坦性に欠け、耐擦傷性、スクラッチ強度等が不充分となるとともに、低い屈折率が得られない。そのため、反射防止性能が不充分となる。
The content of the matrix component (M L ) in the antireflection layer is preferably 20 to 95% by weight, more preferably 25 to 90% by weight as a solid content. When the content of the matrix component (M L ) is less than 20% by weight, the strength of the antireflection film, adhesion to the substrate, scratch resistance, etc. are insufficient. When the content of the matrix component (M L) is more than 95 wt%, due to the low amount of silica-based particles, not a uniform thickness, the surface lacking in flatness, scratch resistance, scratch strength etc. Insufficient and low refractive index cannot be obtained. For this reason, the antireflection performance is insufficient.
反射防止層の厚さ(TL)は80~200nmが適している。さらに、90~150nmが好ましい。層が薄いと、強度、耐擦傷性が不充分となる。層が厚すぎても、クラックが生じやすくなるため、強度が不充分となる。また、層が厚すぎて反射防止性能が低下することがある。厚さが適切な範囲にあれば、反射率(ボトム反射率、視感反射率)が低く、且つ、硬度等に優れた反射防止層が得られる。なお、透過型電子顕微鏡(TEM)を用いて透明被膜と反射防止層の断面写真を撮影し、全厚から透明被膜の平均膜厚(TH)を差し引いて反射防止層の厚さ(TL)を求めた。
これにより、前述の樹脂基材を用いても鉛筆硬度5H以上の反射防止層を形成できる。これは、下層の透明被膜に由来し、透明被膜と同程度の鉛筆硬度を持つ反射防止層が実現できる。 The thickness (T L ) of the antireflection layer is suitably from 80 to 200 nm. Furthermore, 90 to 150 nm is preferable. If the layer is thin, strength and scratch resistance are insufficient. Even if the layer is too thick, cracks are likely to occur, resulting in insufficient strength. Also, the layer may be too thick and the antireflection performance may be reduced. When the thickness is in an appropriate range, an antireflection layer having a low reflectance (bottom reflectance, luminous reflectance) and excellent hardness or the like can be obtained. A cross-sectional photograph of the transparent coating and the antireflection layer was taken using a transmission electron microscope (TEM), and the average thickness (T H ) of the transparent coating was subtracted from the total thickness of the antireflection layer ( TL). )
Thereby, even if it uses the above-mentioned resin base material, the antireflection layer of pencil hardness 5H or more can be formed. This is derived from the lower transparent coating, and an antireflection layer having pencil hardness comparable to that of the transparent coating can be realized.
これにより、前述の樹脂基材を用いても鉛筆硬度5H以上の反射防止層を形成できる。これは、下層の透明被膜に由来し、透明被膜と同程度の鉛筆硬度を持つ反射防止層が実現できる。 The thickness (T L ) of the antireflection layer is suitably from 80 to 200 nm. Furthermore, 90 to 150 nm is preferable. If the layer is thin, strength and scratch resistance are insufficient. Even if the layer is too thick, cracks are likely to occur, resulting in insufficient strength. Also, the layer may be too thick and the antireflection performance may be reduced. When the thickness is in an appropriate range, an antireflection layer having a low reflectance (bottom reflectance, luminous reflectance) and excellent hardness or the like can be obtained. A cross-sectional photograph of the transparent coating and the antireflection layer was taken using a transmission electron microscope (TEM), and the average thickness (T H ) of the transparent coating was subtracted from the total thickness of the antireflection layer ( TL). )
Thereby, even if it uses the above-mentioned resin base material, the antireflection layer of pencil hardness 5H or more can be formed. This is derived from the lower transparent coating, and an antireflection layer having pencil hardness comparable to that of the transparent coating can be realized.
反射防止層形成用の塗布液
上述した反射防止層を形成するための塗布液なので、膜に含まれるシリカ系中空粒子(A)とマトリックス成分(ML)の基となる物質を溶媒とともに含んでいる。すなわち、塗布液は、シリカ系中空粒子とマトリックス形成成分と溶媒を含んでいる。シリカ系中空粒子の平均粒子径(DPA)は10~45nmの範囲にある。マトリックス形成成分は、反射防止層で説明したマトリックス成分(ML)の基となるものであり、上述と同様の有機樹脂である。 Since the coating solution such for forming the coating solution above antireflection layer for the anti-reflective layer forming, a material comprising a silica-based hollow particles (A) contained in the film and based on the matrix component (M L) include together with a solvent Yes. That is, the coating liquid contains silica-based hollow particles, a matrix forming component, and a solvent. The average particle diameter (D PA ) of the silica-based hollow particles is in the range of 10 to 45 nm. Matrix-forming component, which is a base of the matrix components described in the anti-reflective layer (M L), the same organic resin as described above.
上述した反射防止層を形成するための塗布液なので、膜に含まれるシリカ系中空粒子(A)とマトリックス成分(ML)の基となる物質を溶媒とともに含んでいる。すなわち、塗布液は、シリカ系中空粒子とマトリックス形成成分と溶媒を含んでいる。シリカ系中空粒子の平均粒子径(DPA)は10~45nmの範囲にある。マトリックス形成成分は、反射防止層で説明したマトリックス成分(ML)の基となるものであり、上述と同様の有機樹脂である。 Since the coating solution such for forming the coating solution above antireflection layer for the anti-reflective layer forming, a material comprising a silica-based hollow particles (A) contained in the film and based on the matrix component (M L) include together with a solvent Yes. That is, the coating liquid contains silica-based hollow particles, a matrix forming component, and a solvent. The average particle diameter (D PA ) of the silica-based hollow particles is in the range of 10 to 45 nm. Matrix-forming component, which is a base of the matrix components described in the anti-reflective layer (M L), the same organic resin as described above.
さらに、このマトリックス形成成分が透明被膜形成用の塗布液に用いた第一の有機樹脂と第二の有機樹脂の少なくとも一方を含むことが好ましい。第一の有機樹脂と第二の有機樹脂の少なくとも一方を含んでいると、透明被膜を形成した後、反射防止膜形成用の塗布液を塗布、乾燥し、紫外線照射したときに、同一マトリックス成分を含む透明被膜と反射防止層との結合が増すため、硬度、耐擦傷性等に優れた反射防止層を有する膜付基材を得ることができる。
Furthermore, it is preferable that the matrix forming component contains at least one of the first organic resin and the second organic resin used in the coating liquid for forming the transparent film. When containing at least one of the first organic resin and the second organic resin, after forming a transparent film, the coating liquid for forming the antireflection film is applied, dried, and irradiated with ultraviolet rays. Since the bond between the transparent coating containing the antireflection layer and the antireflection layer increases, a film-coated substrate having an antireflection layer excellent in hardness, scratch resistance and the like can be obtained.
さらに、反射防止層形成用の塗布液に含まれる第一の有機樹脂(AL)が1~2個の官能基を持つ紫外線硬化型樹脂のモノマーまたはオリゴマーであると、反射防止層形成用の塗布液の安定性が高く、表面が平滑な反射防止層が得られる。この塗布液が第二の有機樹脂(BL)を含む場合は、この第二の有機樹脂と、透明被膜に含まれる第一の有機樹脂と第二の有機樹脂が容易に結合し、透明被膜と一体化した反射防止層が得られる。
Furthermore, when the first organic resin ( AL ) contained in the coating solution for forming the antireflection layer is a monomer or oligomer of an ultraviolet curable resin having 1 to 2 functional groups, An antireflection layer having a high coating solution stability and a smooth surface can be obtained. When this coating liquid contains the second organic resin (B L ), the second organic resin, the first organic resin and the second organic resin contained in the transparent film are easily combined, and the transparent film And an antireflection layer integrated therewith.
また、反射防止層形成用の塗布液に含まれる第二の有機樹脂(BL)が3個以上の官能基を有する紫外線硬化型樹脂モノマーまたはオリゴマーであると、下層の透明被膜に含まれる第二の有機樹脂(B)と結合しやすく、透明被膜との密着性に優れ、透明被膜と反射防止層が一体化する。また、マトリックス形成成分として互いに結合するために硬度に優れた反射防止層が得られる。
Further, when the second organic resin (B L ) contained in the coating solution for forming the antireflection layer is an ultraviolet curable resin monomer or oligomer having three or more functional groups, the second transparent resin contained in the lower transparent film It is easy to bond with the second organic resin (B), has excellent adhesion to the transparent film, and the transparent film and the antireflection layer are integrated. Moreover, since it couple | bonds together as a matrix formation component, the antireflection layer excellent in hardness is obtained.
また、反射防止層形成用の塗布液には、必要に応じて重合開始剤を添加することができる。重合開始剤はマトリックス形成成分を重合、硬化させることができればよく、樹脂によって適宜選択し、従来公知の重合開始剤を用いることができる。例えば、アシルホスフィンオキシド類、アセトフェノン類、プロピオフェノン類、ベンジル類、ベンゾイン類、ベンゾフェノン類、チオキサントン類等の重合開始剤の他、カチオン系光重合開始剤等が挙げられる。さらに具体的には、透明被膜形成用の塗布液で例示した物質を使用できる。
Further, a polymerization initiator can be added to the coating solution for forming the antireflection layer, if necessary. The polymerization initiator is not particularly limited as long as it can polymerize and cure the matrix-forming component, and can be appropriately selected depending on the resin, and conventionally known polymerization initiators can be used. For example, in addition to polymerization initiators such as acylphosphine oxides, acetophenones, propiophenones, benzyls, benzoins, benzophenones, and thioxanthones, cationic photopolymerization initiators and the like can be mentioned. More specifically, the substances exemplified in the coating liquid for forming the transparent film can be used.
反射防止膜形成用の塗布液中の重合開始剤の固形分濃度は、マトリックス形成成分の種類によっても異なるが、マトリックス形成成分に対して0.1~20重量%、さらには0.5~10重量%の範囲にあることが好ましい。
重合開始剤の含有量が固形分としてマトリックス形成成分の0.1重量%未満の場合は、反射防止層の硬化が不充分となる。マトリックス形成成分の20重量%を超えると、塗布液の安定性が不充分となる。 The solid content concentration of the polymerization initiator in the coating solution for forming the antireflection film varies depending on the kind of the matrix forming component, but is 0.1 to 20% by weight, more preferably 0.5 to 10% with respect to the matrix forming component. It is preferably in the range of wt%.
When the content of the polymerization initiator is less than 0.1% by weight of the matrix forming component as a solid content, the antireflection layer is not sufficiently cured. If it exceeds 20% by weight of the matrix forming component, the stability of the coating solution becomes insufficient.
重合開始剤の含有量が固形分としてマトリックス形成成分の0.1重量%未満の場合は、反射防止層の硬化が不充分となる。マトリックス形成成分の20重量%を超えると、塗布液の安定性が不充分となる。 The solid content concentration of the polymerization initiator in the coating solution for forming the antireflection film varies depending on the kind of the matrix forming component, but is 0.1 to 20% by weight, more preferably 0.5 to 10% with respect to the matrix forming component. It is preferably in the range of wt%.
When the content of the polymerization initiator is less than 0.1% by weight of the matrix forming component as a solid content, the antireflection layer is not sufficiently cured. If it exceeds 20% by weight of the matrix forming component, the stability of the coating solution becomes insufficient.
この塗布液に用いる溶媒としてはマトリックス形成成分、重合開始剤を溶解あるいは分散できるとともにシリカ系中空粒子(A)、第二のシリカ系粒子(B)を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。具体的には、透明被膜形成用の有機溶媒で例示した溶媒の他に、水が例示できる。
The solvent used in this coating solution is not particularly limited as long as it can dissolve or disperse the matrix forming component and the polymerization initiator and can uniformly disperse the silica-based hollow particles (A) and the second silica-based particles (B). A conventionally known solvent can be used. Specifically, water can be exemplified in addition to the solvent exemplified as the organic solvent for forming the transparent film.
この塗布液の全固形分濃度は1~10重量%、さらには1.5~8重量%の範囲にあることが好ましい。全固形分濃度が1重量%未満の場合は、膜厚の調整が難しく、また塗布ムラ、乾燥ムラを生じる虞がある。全固形分濃度が10重量%を越えると、防止膜の膜厚が厚くなりすぎて、十分な光学特性、反射防止能が得られなかったり、膜厚制御が難しいため、表面平滑性が低下し、強度、硬度が低下したりする虞がある。
The total solid concentration of the coating solution is preferably in the range of 1 to 10% by weight, more preferably 1.5 to 8% by weight. When the total solid content concentration is less than 1% by weight, it is difficult to adjust the film thickness, and there is a risk of uneven coating and uneven drying. If the total solid content exceeds 10% by weight, the film thickness of the anti-reflection film becomes too thick, and sufficient optical properties and anti-reflection performance cannot be obtained. There is a risk that strength and hardness may decrease.
この塗布液中のシリカ系中空粒子(A)の濃度は固形分として0.25~9重量%、さらには0.35~8重量%が好ましい。固形分濃度が0.25重量%未満の場合は、下層の透明被膜との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となるだけでなく、反射防止層の屈折率を低下させることができないため、反射防止性能が不充分となる。固形分濃度が9重量%を越えると、粒子が多すぎて、反射防止層の強度、耐擦傷性、スクラッチ強度等が不充分となるだけでなく、ヘーズ値が高くなる。
The concentration of the silica-based hollow particles (A) in this coating solution is preferably 0.25 to 9% by weight, more preferably 0.35 to 8% by weight as the solid content. When the solid content concentration is less than 0.25% by weight, not only the adhesion with the underlying transparent film, film strength, surface flatness, scratch resistance, scratch strength, etc. are insufficient, but also the antireflection layer. Since the refractive index cannot be lowered, the antireflection performance becomes insufficient. When the solid content concentration exceeds 9% by weight, the amount of particles is too large, and not only the strength, scratch resistance, scratch strength, etc. of the antireflection layer become insufficient, but also the haze value increases.
第二のシリカ系粒子(B)を用いる場合も塗布液の全固形分濃度は0.25~9重量%にあることが好ましい。さらに、全シリカ系粒子中の第二のシリカ系粒子の割合が30重量%、さらには20重量%以下であることが好ましい。
このような範囲で第二のシリカ系粒子を含んでいると、得られる反射防止層の表面部におけるシリカ系中空粒子の粒子間隙に第二のシリカ系粒子が存在して表面を平坦化する。これにより、耐擦傷性、スクラッチ強度に優れた反射防止層が得られる。また、第二のシリカ系粒子の屈折率はマトリックス形成成分より低いので、反射防止層の屈折率を低くすることができ、より反射防止性能に優れた膜を得ることができる。 Even when the second silica-based particles (B) are used, the total solid concentration of the coating solution is preferably 0.25 to 9% by weight. Furthermore, the ratio of the second silica-based particles in all the silica-based particles is preferably 30% by weight, more preferably 20% by weight or less.
When the second silica-based particles are contained in such a range, the second silica-based particles exist in the particle gaps of the silica-based hollow particles in the surface portion of the obtained antireflection layer, and the surface is flattened. Thereby, an antireflection layer excellent in scratch resistance and scratch strength can be obtained. Moreover, since the refractive index of the second silica-based particles is lower than that of the matrix-forming component, the refractive index of the antireflection layer can be lowered, and a film having more excellent antireflection performance can be obtained.
このような範囲で第二のシリカ系粒子を含んでいると、得られる反射防止層の表面部におけるシリカ系中空粒子の粒子間隙に第二のシリカ系粒子が存在して表面を平坦化する。これにより、耐擦傷性、スクラッチ強度に優れた反射防止層が得られる。また、第二のシリカ系粒子の屈折率はマトリックス形成成分より低いので、反射防止層の屈折率を低くすることができ、より反射防止性能に優れた膜を得ることができる。 Even when the second silica-based particles (B) are used, the total solid concentration of the coating solution is preferably 0.25 to 9% by weight. Furthermore, the ratio of the second silica-based particles in all the silica-based particles is preferably 30% by weight, more preferably 20% by weight or less.
When the second silica-based particles are contained in such a range, the second silica-based particles exist in the particle gaps of the silica-based hollow particles in the surface portion of the obtained antireflection layer, and the surface is flattened. Thereby, an antireflection layer excellent in scratch resistance and scratch strength can be obtained. Moreover, since the refractive index of the second silica-based particles is lower than that of the matrix-forming component, the refractive index of the antireflection layer can be lowered, and a film having more excellent antireflection performance can be obtained.
この塗布液中のマトリックス形成成分の固形分としての濃度は0.75~9.5重量%、さらには0.75~8重量%であることが好ましい。固形分濃度が0.75重量%未満の場合は、マトリックスに対し粒子が多すぎるため、反射防止層の強度、耐擦傷性、スクラッチ強度等が不充分となるだけでなく、反射防止層、膜のヘーズ値が高くなる。固形分濃度が9.5重量%を超えると、マトリックスに対し粒子が少な過ぎるため、透明被膜との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となるだけでなく、反射防止膜の屈折率を低くすることができないために反射防止性能が不充分となる。
The concentration of the matrix forming component in the coating solution as a solid content is preferably 0.75 to 9.5% by weight, more preferably 0.75 to 8% by weight. When the solid content concentration is less than 0.75% by weight, there are too many particles relative to the matrix, so that not only the strength, scratch resistance, scratch strength, etc. of the antireflection layer become insufficient, but also the antireflection layer, film Increases the haze value. If the solid content concentration exceeds 9.5% by weight, there are too few particles relative to the matrix, so that adhesion to the transparent film, film strength, surface flatness, scratch resistance, scratch strength, etc. are insufficient. In addition, since the refractive index of the antireflection film cannot be lowered, the antireflection performance becomes insufficient.
[反射防止層を有する膜付基材の製造方法]
ついで、反射防止層を有する膜付基材の製造方法について説明する。樹脂基材表面に形成された透明被膜上に、反射防止層を形成する。すなわち、前述の透明被膜上に、反射防止層形成用の塗布液を塗布し、乾燥させ、次いで硬化させて反射防止層を形成する。このとき、透明被膜が形成された樹脂基板は良好なカーリング特性を備えている。 [Production method of substrate with film having antireflection layer]
Next, a method for producing a film-coated substrate having an antireflection layer will be described. An antireflection layer is formed on the transparent coating formed on the surface of the resin substrate. That is, a coating solution for forming an antireflection layer is applied onto the above-described transparent film, dried and then cured to form an antireflection layer. At this time, the resin substrate on which the transparent film is formed has good curling characteristics.
ついで、反射防止層を有する膜付基材の製造方法について説明する。樹脂基材表面に形成された透明被膜上に、反射防止層を形成する。すなわち、前述の透明被膜上に、反射防止層形成用の塗布液を塗布し、乾燥させ、次いで硬化させて反射防止層を形成する。このとき、透明被膜が形成された樹脂基板は良好なカーリング特性を備えている。 [Production method of substrate with film having antireflection layer]
Next, a method for producing a film-coated substrate having an antireflection layer will be described. An antireflection layer is formed on the transparent coating formed on the surface of the resin substrate. That is, a coating solution for forming an antireflection layer is applied onto the above-described transparent film, dried and then cured to form an antireflection layer. At this time, the resin substrate on which the transparent film is formed has good curling characteristics.
塗布液の塗布方法としては、透明被膜用の塗布液の印刷法と同様の方法が挙げられる。乾燥工程では塗布液の溶媒を概ね除去できればどのような方法でもよい。通常、60~120℃の温度で数分間加熱することによって乾燥できる。乾燥した後、紫外線照射、加熱処理、またはこれらを併用して硬化させる。
あるいは、透明被膜と反射防止層を同時に硬化させてもよい。すなわち、透明被膜形成用の塗布液を塗布し、乾燥させ、次いで、反射防止層形成用の塗布液をこの上に塗布し、乾燥させ、その後、紫外線照射して両塗布液を同時に硬化させる。
Examples of the method for applying the coating liquid include the same method as the method for printing the coating liquid for the transparent film. Any method may be used in the drying step as long as the solvent of the coating solution can be substantially removed. Usually, it can be dried by heating at a temperature of 60 to 120 ° C. for several minutes. After drying, it is cured by ultraviolet irradiation, heat treatment, or a combination thereof.
Alternatively, the transparent coating and the antireflection layer may be cured simultaneously. That is, a coating solution for forming a transparent film is applied and dried, and then a coating solution for forming an antireflection layer is applied thereon and dried, and then both coating solutions are cured simultaneously by irradiation with ultraviolet rays.
あるいは、透明被膜と反射防止層を同時に硬化させてもよい。すなわち、透明被膜形成用の塗布液を塗布し、乾燥させ、次いで、反射防止層形成用の塗布液をこの上に塗布し、乾燥させ、その後、紫外線照射して両塗布液を同時に硬化させる。
Examples of the method for applying the coating liquid include the same method as the method for printing the coating liquid for the transparent film. Any method may be used in the drying step as long as the solvent of the coating solution can be substantially removed. Usually, it can be dried by heating at a temperature of 60 to 120 ° C. for several minutes. After drying, it is cured by ultraviolet irradiation, heat treatment, or a combination thereof.
Alternatively, the transparent coating and the antireflection layer may be cured simultaneously. That is, a coating solution for forming a transparent film is applied and dried, and then a coating solution for forming an antireflection layer is applied thereon and dried, and then both coating solutions are cured simultaneously by irradiation with ultraviolet rays.
以下に、金属酸化物粒子としてシリカ粒子を用いた実施例を具体的に説明する。本実施例で得られる透明被膜は、ハードコート膜の機能を備えている。なお、本発明はこれらの実施例により限定されるものではない。
Hereinafter, examples using silica particles as the metal oxide particles will be specifically described. The transparent film obtained in this example has a function of a hard coat film. In addition, this invention is not limited by these Examples.
[実施例1]
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI-30;平均粒子径12nm、SiO2濃度40.5重量%、分散媒:イソプロパノ-ル、粒子屈折率1.46)100gにγ-メタアクリロオキシプロピルトリメトキシシラン7.48g(信越シリコ-ン株製:KBM-503、SiO2成分81.2%)を混合し、超純水を3.1g添加し50℃で6時間攪拌する。これによりシランカップリング剤で表面処理された12nmのシリカゾル分散液(固形分濃度40.5重量%)が得られる。
その後、ロータリーエバポレーターで分散媒をPGME(プロピレングリコールモノメチルエーテル)に置換して、固形分濃度40.5重量%のシリカ粒子(1)分散液を作製する。 [Example 1]
Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5 wt%, dispersion medium: isopropanol, particle refractive index 1.46) to 100 g of γ-meta 7.48 g of acryloxypropyltrimethoxysilane (Shin-Etsu Silicon Co., Ltd .: KBM-503, SiO 2 component 81.2%) is mixed, 3.1 g of ultrapure water is added, and the mixture is stirred at 50 ° C. for 6 hours. . As a result, a 12 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained.
Thereafter, the dispersion medium is replaced with PGME (propylene glycol monomethyl ether) by a rotary evaporator to prepare a dispersion of silica particles (1) having a solid content concentration of 40.5% by weight.
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI-30;平均粒子径12nm、SiO2濃度40.5重量%、分散媒:イソプロパノ-ル、粒子屈折率1.46)100gにγ-メタアクリロオキシプロピルトリメトキシシラン7.48g(信越シリコ-ン株製:KBM-503、SiO2成分81.2%)を混合し、超純水を3.1g添加し50℃で6時間攪拌する。これによりシランカップリング剤で表面処理された12nmのシリカゾル分散液(固形分濃度40.5重量%)が得られる。
その後、ロータリーエバポレーターで分散媒をPGME(プロピレングリコールモノメチルエーテル)に置換して、固形分濃度40.5重量%のシリカ粒子(1)分散液を作製する。 [Example 1]
Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5 wt%, dispersion medium: isopropanol, particle refractive index 1.46) to 100 g of γ-meta 7.48 g of acryloxypropyltrimethoxysilane (Shin-Etsu Silicon Co., Ltd .: KBM-503, SiO 2 component 81.2%) is mixed, 3.1 g of ultrapure water is added, and the mixture is stirred at 50 ° C. for 6 hours. . As a result, a 12 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained.
Thereafter, the dispersion medium is replaced with PGME (propylene glycol monomethyl ether) by a rotary evaporator to prepare a dispersion of silica particles (1) having a solid content concentration of 40.5% by weight.
シリカ粒子(1)分散液2500gに第一の有機樹脂として紫外線硬化型樹脂のモノマーであるジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP-A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)202.5gを添加する。またこの樹脂は2基の親水性基を有している。そして、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(1)を調製する(なお、実施例では、第一の有機樹脂を分散用有機樹脂(A)と、第二の有機樹脂を硬化用有機樹脂(B)とする)。
Dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, functional) as a first organic resin in 2500 g of silica particle (1) dispersion (Base number: 2, molecular weight: 219, solid content concentration: 100%) 202.5 g is added. This resin also has two hydrophilic groups. Then, a part of the solvent is removed by a rotary evaporator to prepare an organic resin dispersion (1) of silica particles having a solid content concentration of 76.0% by weight (in the examples, the first organic resin is used for dispersion). The organic resin (A) and the second organic resin are referred to as a curing organic resin (B)).
塗布液(1)の調製
次いで、この有機樹脂分散液(1)75.31gに、硬化用有機樹脂としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA-33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME2.37gとアセトン12.50gを混合して、固形分濃度66.1重量%の透明被膜形成用の塗布液(1)が得られる。得られた塗布液(1)の組成を表2に示す。 Preparation of coating liquid (1) Next, 75.31 g of this organic resin dispersion liquid (1) was added with urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional group: urethane acrylate, Number of functional groups: 9, molecular weight: 4,000, solid concentration 100%) 8.32 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g and photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 2.37 g of PGME, and 12.50 g of acetone are mixed to obtain a coating solution (1) for forming a transparent film having a solid content concentration of 66.1% by weight. Table 2 shows the composition of the coating solution (1) obtained.
次いで、この有機樹脂分散液(1)75.31gに、硬化用有機樹脂としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA-33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME2.37gとアセトン12.50gを混合して、固形分濃度66.1重量%の透明被膜形成用の塗布液(1)が得られる。得られた塗布液(1)の組成を表2に示す。 Preparation of coating liquid (1) Next, 75.31 g of this organic resin dispersion liquid (1) was added with urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional group: urethane acrylate, Number of functional groups: 9, molecular weight: 4,000, solid concentration 100%) 8.32 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g and photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 2.37 g of PGME, and 12.50 g of acetone are mixed to obtain a coating solution (1) for forming a transparent film having a solid content concentration of 66.1% by weight. Table 2 shows the composition of the coating solution (1) obtained.
膜付基材(1)の作製
塗布液(1)を、TACフィルム(富士フィルム(株)製:FT-PB40UL-M、厚さ:40μm、屈折率:1.51)にバーコーター法#16で塗布し、80℃で120秒間乾燥する。塗布膜の膜厚は12μmである。
次に、N2雰囲気下、300mJ/cm2の紫外線を照射して塗布膜を硬化させ、透明被膜を基材に形成する。透明被膜の膜厚は12μmである。このような透明被膜はハードコートとして機能する。得られた膜付基材(1)について、以下の評価を行い、結果を表2、表3に記す。 Preparation of substrate with film (1) Coating solution (1) was applied to TAC film (manufactured by Fuji Film Co., Ltd .: FT-PB40UL-M, thickness: 40 μm, refractive index: 1.51) by bar coater method # 16 And dried at 80 ° C. for 120 seconds. The thickness of the coating film is 12 μm.
Next, under a N 2 atmosphere, 300 mJ / cm 2 ultraviolet rays are irradiated to cure the coating film, and a transparent film is formed on the substrate. The film thickness of the transparent coating is 12 μm. Such a transparent coating functions as a hard coat. The obtained film-coated substrate (1) was evaluated as follows, and the results are shown in Tables 2 and 3.
塗布液(1)を、TACフィルム(富士フィルム(株)製:FT-PB40UL-M、厚さ:40μm、屈折率:1.51)にバーコーター法#16で塗布し、80℃で120秒間乾燥する。塗布膜の膜厚は12μmである。
次に、N2雰囲気下、300mJ/cm2の紫外線を照射して塗布膜を硬化させ、透明被膜を基材に形成する。透明被膜の膜厚は12μmである。このような透明被膜はハードコートとして機能する。得られた膜付基材(1)について、以下の評価を行い、結果を表2、表3に記す。 Preparation of substrate with film (1) Coating solution (1) was applied to TAC film (manufactured by Fuji Film Co., Ltd .: FT-PB40UL-M, thickness: 40 μm, refractive index: 1.51) by bar coater method # 16 And dried at 80 ° C. for 120 seconds. The thickness of the coating film is 12 μm.
Next, under a N 2 atmosphere, 300 mJ / cm 2 ultraviolet rays are irradiated to cure the coating film, and a transparent film is formed on the substrate. The film thickness of the transparent coating is 12 μm. Such a transparent coating functions as a hard coat. The obtained film-coated substrate (1) was evaluated as follows, and the results are shown in Tables 2 and 3.
収縮率
塗料から乾燥までの体積収縮率(収縮率(a))、UV硬化による体積収縮率(収縮率(b))、全体収縮率(収縮率(c))を算出する。はじめに、塗布液の密度(比重)を測定する。塗布液を用いて乾燥後の膜厚が10μm程度となるように塗布した後、80℃で2分間乾燥させて乾燥膜を作成する。この乾燥膜の一部を採取し、密度(比重)を測定する。前述の数式(A)により、収縮率(a)を算出する。次に、乾燥膜にUV照射し、硬化させる。硬化後の透明被膜の一部を採取し、硬化膜の密度(比重)を測定する。前述の数式(B)により、収縮率(b)を算出する。さらに、前述の数式(C)により、収縮率(c)を算出する。
全光線透過率およびヘーズ
膜付基材についてヘーズメーター(スガ試験機(株)製)により測定する。また、透明被膜の屈折率は、エリプソメーター(ULVAC社製、EMS-1)により測定する。なお、未塗布のTACフィルムは全光線透過率が93.2%、ヘーズが0.2%、波長550nmの光線の反射率が6.0%である。
クラック
クラックの有無を観察する。
カーリング性
カーリングテスト方法:14cm×25cmサイズのTACフィルムに塗布した透明被膜フィルムを20時間保管する。フィルムを10cm×10cmサイズにカットする。塗布面を下にしてフィルムを置き、床面からの基材の高さAを測定する。
鉛筆硬度
JIS-K-5600に準じて鉛筆硬度試験器により測定する。
耐擦傷性
#0000スチールウールを用い、荷重2kg/cm2で10回摺動し、膜の表面を目視観察し、以下の基準で評価する。
評価基準:
筋条の傷が認められない :◎
筋条に傷が僅かに認められる:○
筋条に傷が多数認められる :△
面が全体的に削られている :×
The shrinkage of the volume from the paint to the drying (shrinkage (a)), the volume shrinkage due to UV curing (shrinkage (b)), and the overall shrinkage (shrinkage (c)) are calculated. First, the density (specific gravity) of the coating solution is measured. After applying the coating solution so that the film thickness after drying becomes about 10 μm, it is dried at 80 ° C. for 2 minutes to form a dry film. A part of the dried film is collected and the density (specific gravity) is measured. The shrinkage rate (a) is calculated by the above-described equation (A). Next, the dried film is irradiated with UV and cured. A part of the cured transparent film is collected, and the density (specific gravity) of the cured film is measured. The shrinkage rate (b) is calculated by the above-described equation (B). Further, the shrinkage rate (c) is calculated by the above-described equation (C).
The total light transmittance and the substrate with a haze film are measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.). Further, the refractive index of the transparent film is measured by an ellipsometer (manufactured by ULVAC, EMS-1). The uncoated TAC film has a total light transmittance of 93.2%, a haze of 0.2%, and a reflectance of light having a wavelength of 550 nm of 6.0%.
To observe the presence or absence of crack crack.
Curling Curling Test Method: A transparent coating film applied to a TAC film having a size of 14 cm × 25 cm is stored for 20 hours. Cut the film to 10 cm × 10 cm size. The film is placed with the coated surface down, and the height A of the base material from the floor surface is measured.
Pencil hardness Measured with a pencil hardness tester according to JIS-K-5600.
Using scratch-resistant # 0000 steel wool, sliding 10 times with a load of 2 kg / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria.
Evaluation criteria:
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×
塗料から乾燥までの体積収縮率(収縮率(a))、UV硬化による体積収縮率(収縮率(b))、全体収縮率(収縮率(c))を算出する。はじめに、塗布液の密度(比重)を測定する。塗布液を用いて乾燥後の膜厚が10μm程度となるように塗布した後、80℃で2分間乾燥させて乾燥膜を作成する。この乾燥膜の一部を採取し、密度(比重)を測定する。前述の数式(A)により、収縮率(a)を算出する。次に、乾燥膜にUV照射し、硬化させる。硬化後の透明被膜の一部を採取し、硬化膜の密度(比重)を測定する。前述の数式(B)により、収縮率(b)を算出する。さらに、前述の数式(C)により、収縮率(c)を算出する。
全光線透過率およびヘーズ
膜付基材についてヘーズメーター(スガ試験機(株)製)により測定する。また、透明被膜の屈折率は、エリプソメーター(ULVAC社製、EMS-1)により測定する。なお、未塗布のTACフィルムは全光線透過率が93.2%、ヘーズが0.2%、波長550nmの光線の反射率が6.0%である。
クラック
クラックの有無を観察する。
カーリング性
カーリングテスト方法:14cm×25cmサイズのTACフィルムに塗布した透明被膜フィルムを20時間保管する。フィルムを10cm×10cmサイズにカットする。塗布面を下にしてフィルムを置き、床面からの基材の高さAを測定する。
鉛筆硬度
JIS-K-5600に準じて鉛筆硬度試験器により測定する。
耐擦傷性
#0000スチールウールを用い、荷重2kg/cm2で10回摺動し、膜の表面を目視観察し、以下の基準で評価する。
評価基準:
筋条の傷が認められない :◎
筋条に傷が僅かに認められる:○
筋条に傷が多数認められる :△
面が全体的に削られている :×
The shrinkage of the volume from the paint to the drying (shrinkage (a)), the volume shrinkage due to UV curing (shrinkage (b)), and the overall shrinkage (shrinkage (c)) are calculated. First, the density (specific gravity) of the coating solution is measured. After applying the coating solution so that the film thickness after drying becomes about 10 μm, it is dried at 80 ° C. for 2 minutes to form a dry film. A part of the dried film is collected and the density (specific gravity) is measured. The shrinkage rate (a) is calculated by the above-described equation (A). Next, the dried film is irradiated with UV and cured. A part of the cured transparent film is collected, and the density (specific gravity) of the cured film is measured. The shrinkage rate (b) is calculated by the above-described equation (B). Further, the shrinkage rate (c) is calculated by the above-described equation (C).
The total light transmittance and the substrate with a haze film are measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.). Further, the refractive index of the transparent film is measured by an ellipsometer (manufactured by ULVAC, EMS-1). The uncoated TAC film has a total light transmittance of 93.2%, a haze of 0.2%, and a reflectance of light having a wavelength of 550 nm of 6.0%.
To observe the presence or absence of crack crack.
Curling Curling Test Method: A transparent coating film applied to a TAC film having a size of 14 cm × 25 cm is stored for 20 hours. Cut the film to 10 cm × 10 cm size. The film is placed with the coated surface down, and the height A of the base material from the floor surface is measured.
Pencil hardness Measured with a pencil hardness tester according to JIS-K-5600.
Using scratch-resistant # 0000 steel wool, sliding 10 times with a load of 2 kg / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria.
Evaluation criteria:
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×
[実施例2]
塗布液(2)の調製
実施例1で調製したシリカ粒子の有機樹脂分散液(1)80.38gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴUA-33H)8.88gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.53gとPGME0.21gとアセトン9.0gを充分に混合して固形分濃度70.6重量%の塗布液(2)を調製する。得られた塗布液(2)の組成を表2に示す。
膜付基材(2)の作製
塗布液(2)を用いる以外は実施例1と同様にして膜付基材(2)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 [Example 2]
7. Preparation of coating solution (2) To 80.38 g of the silica particle organic resin dispersion (1) prepared in Example 1, urethane acrylate (the same NK oligo UA-33H as in Example 1) was used as the curing organic resin. 88 g, 1.00 g of acrylic silicone leveling agent (Disparon NSH-8430HF same as in Example 1), 0.53 g of photopolymerization initiator (Irgacure 184 same as in Example 1), 0.21 g of PGME, and 9.0 g of acetone Are sufficiently mixed to prepare a coating solution (2) having a solid concentration of 70.6% by weight. Table 2 shows the composition of the coating solution (2) obtained.
Preparation of substrate with film (2) A substrate with film (2) is prepared in the same manner as in Example 1 except that the coating solution (2) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
塗布液(2)の調製
実施例1で調製したシリカ粒子の有機樹脂分散液(1)80.38gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴUA-33H)8.88gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.53gとPGME0.21gとアセトン9.0gを充分に混合して固形分濃度70.6重量%の塗布液(2)を調製する。得られた塗布液(2)の組成を表2に示す。
膜付基材(2)の作製
塗布液(2)を用いる以外は実施例1と同様にして膜付基材(2)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 [Example 2]
7. Preparation of coating solution (2) To 80.38 g of the silica particle organic resin dispersion (1) prepared in Example 1, urethane acrylate (the same NK oligo UA-33H as in Example 1) was used as the curing organic resin. 88 g, 1.00 g of acrylic silicone leveling agent (Disparon NSH-8430HF same as in Example 1), 0.53 g of photopolymerization initiator (Irgacure 184 same as in Example 1), 0.21 g of PGME, and 9.0 g of acetone Are sufficiently mixed to prepare a coating solution (2) having a solid concentration of 70.6% by weight. Table 2 shows the composition of the coating solution (2) obtained.
Preparation of substrate with film (2) A substrate with film (2) is prepared in the same manner as in Example 1 except that the coating solution (2) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例3]
実施例1と同様にして、固形分濃度40.5重量%のシリカ粒子(1)分散液を作製する。シリカ粒子(1)分散液2500gに分散用有機樹脂としてジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度85.0重量%のシリカ粒子の有機樹脂分散液(3)を調製する。 [Example 3]
In the same manner as in Example 1, a silica particle (1) dispersion having a solid content concentration of 40.5% by weight is prepared. Add 202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion to 2500 g of the silica particle (1) dispersion, and remove part of the solvent with a rotary evaporator. Then, an organic resin dispersion (3) of silica particles having a solid content concentration of 85.0% by weight is prepared.
実施例1と同様にして、固形分濃度40.5重量%のシリカ粒子(1)分散液を作製する。シリカ粒子(1)分散液2500gに分散用有機樹脂としてジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度85.0重量%のシリカ粒子の有機樹脂分散液(3)を調製する。 [Example 3]
In the same manner as in Example 1, a silica particle (1) dispersion having a solid content concentration of 40.5% by weight is prepared. Add 202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion to 2500 g of the silica particle (1) dispersion, and remove part of the solvent with a rotary evaporator. Then, an organic resin dispersion (3) of silica particles having a solid content concentration of 85.0% by weight is prepared.
塗布液(3)の調製
この有機樹脂分散液(3)79.99gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)9.90gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.59gとPGME0.51gとアセトン8.00gを充分に混合して固形分濃度78.7重量%の塗布液(3)を調製する。
膜付基材(3)の作製
塗布液(3)を用いた以外は実施例1と同様にして膜付基材(3)を製造する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating solution (3) To 99.99 g of this organic resin dispersion (3), 9.90 g of urethane acrylate (the same NK oligo UA-33H) as the curing organic resin, and an acrylic silicone leveling agent 1.00 g (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF), 0.59 g of a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184), 0.51 g of PGME, and 8.00 g of acetone are mixed thoroughly. A coating solution (3) having a solid concentration of 78.7% by weight is prepared.
Preparation of substrate with film (3) A substrate with film (3) is produced in the same manner as in Example 1 except that the coating solution (3) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
この有機樹脂分散液(3)79.99gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)9.90gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.59gとPGME0.51gとアセトン8.00gを充分に混合して固形分濃度78.7重量%の塗布液(3)を調製する。
膜付基材(3)の作製
塗布液(3)を用いた以外は実施例1と同様にして膜付基材(3)を製造する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating solution (3) To 99.99 g of this organic resin dispersion (3), 9.90 g of urethane acrylate (the same NK oligo UA-33H) as the curing organic resin, and an acrylic silicone leveling agent 1.00 g (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF), 0.59 g of a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184), 0.51 g of PGME, and 8.00 g of acetone are mixed thoroughly. A coating solution (3) having a solid concentration of 78.7% by weight is prepared.
Preparation of substrate with film (3) A substrate with film (3) is produced in the same manner as in Example 1 except that the coating solution (3) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例4]
実施例1で調製したシリカ粒子(1)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)267.7gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度72.1重量%のシリカ粒子の有機樹脂分散液(4)を調製する。 [Example 4]
267.7 g of dimethylol-tricyclodecanediacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of the silica particle (1) dispersion prepared in Example 1, and a rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (4) of silica particles having a solid content concentration of 72.1% by weight.
実施例1で調製したシリカ粒子(1)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)267.7gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度72.1重量%のシリカ粒子の有機樹脂分散液(4)を調製する。 [Example 4]
267.7 g of dimethylol-tricyclodecanediacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of the silica particle (1) dispersion prepared in Example 1, and a rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (4) of silica particles having a solid content concentration of 72.1% by weight.
塗布液(4)の調製
この有機樹脂分散液(4)66.61gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)10.98gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.70gとPGME8.21gとアセトン12.50gを充分に混合して固形分濃度66.1重量%の塗布液(4)を調製する。
膜付基材(4)の調製
塗布液(4)を用いた以外は実施例1と同様にして膜付基材(4)を製造する。透明被膜の膜厚は12μmである。この膜付基材を、実施例1と同様に評価する。 Preparation of coating solution (4) To 66.61 g of this organic resin dispersion (4), 10.98 g of urethane acrylate (NK oligo UA-33H as in Example 1) as an organic resin for curing, and an acrylic silicone leveling agent (Disparone NSH-8430HF same as in Example 1) 1.00 g, photopolymerization initiator (Irgacure 184 same as Example 1) 0.70 g, 8.21 g of PGME and 12.50 g of acetone were mixed thoroughly to obtain a solid content. A coating solution (4) having a concentration of 66.1% by weight is prepared.
Preparation of substrate with film (4) A substrate with film (4) is produced in the same manner as in Example 1 except that the coating solution (4) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
この有機樹脂分散液(4)66.61gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)10.98gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.70gとPGME8.21gとアセトン12.50gを充分に混合して固形分濃度66.1重量%の塗布液(4)を調製する。
膜付基材(4)の調製
塗布液(4)を用いた以外は実施例1と同様にして膜付基材(4)を製造する。透明被膜の膜厚は12μmである。この膜付基材を、実施例1と同様に評価する。 Preparation of coating solution (4) To 66.61 g of this organic resin dispersion (4), 10.98 g of urethane acrylate (NK oligo UA-33H as in Example 1) as an organic resin for curing, and an acrylic silicone leveling agent (Disparone NSH-8430HF same as in Example 1) 1.00 g, photopolymerization initiator (Irgacure 184 same as Example 1) 0.70 g, 8.21 g of PGME and 12.50 g of acetone were mixed thoroughly to obtain a solid content. A coating solution (4) having a concentration of 66.1% by weight is prepared.
Preparation of substrate with film (4) A substrate with film (4) is produced in the same manner as in Example 1 except that the coating solution (4) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例5]
実施例1で調製したシリカ粒子(1)分散液2500gに、分散用有機樹脂としてジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)153.0gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度72.3重量%のシリカ粒子の有機樹脂分散液(5)を作製する。 [Example 5]
153.0 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) was added as an organic resin for dispersion to 2500 g of the silica particle (1) dispersion prepared in Example 1, and the rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (5) of silica particles having a solid concentration of 72.3% by weight.
実施例1で調製したシリカ粒子(1)分散液2500gに、分散用有機樹脂としてジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)153.0gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度72.3重量%のシリカ粒子の有機樹脂分散液(5)を作製する。 [Example 5]
153.0 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) was added as an organic resin for dispersion to 2500 g of the silica particle (1) dispersion prepared in Example 1, and the rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (5) of silica particles having a solid concentration of 72.3% by weight.
塗布液(5)の調製
この有機樹脂分散液(5)81.94gと、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ、UA-33H)6.27gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.46gとPGME0.33gとアセトン10.00gを充分に混合して固形分濃度66.1重量%の塗布液(5)を作製する。
膜付基材(5)の作製
塗布液(5)を用いた以外は実施例1と同様にして膜付基材(5)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating solution (5) 81.94 g of this organic resin dispersion (5), 6.27 g of urethane acrylate (NK oligo, UA-33H same as in Example 1) as an organic resin for curing, and acrylic silicone leveling 1.00g of the same agent (Disparon NSH-8430HF as in Example 1), 0.46g of photopolymerization initiator (Irgacure 184 as in Example 1), 0.33g of PGME and 10.00g of acetone were mixed thoroughly. A coating solution (5) having a partial concentration of 66.1% by weight is prepared.
Preparation of substrate with film (5) A substrate with film (5) is prepared in the same manner as in Example 1 except that the coating solution (5) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
この有機樹脂分散液(5)81.94gと、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ、UA-33H)6.27gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.46gとPGME0.33gとアセトン10.00gを充分に混合して固形分濃度66.1重量%の塗布液(5)を作製する。
膜付基材(5)の作製
塗布液(5)を用いた以外は実施例1と同様にして膜付基材(5)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating solution (5) 81.94 g of this organic resin dispersion (5), 6.27 g of urethane acrylate (NK oligo, UA-33H same as in Example 1) as an organic resin for curing, and acrylic silicone leveling 1.00g of the same agent (Disparon NSH-8430HF as in Example 1), 0.46g of photopolymerization initiator (Irgacure 184 as in Example 1), 0.33g of PGME and 10.00g of acetone were mixed thoroughly. A coating solution (5) having a partial concentration of 66.1% by weight is prepared.
Preparation of substrate with film (5) A substrate with film (5) is prepared in the same manner as in Example 1 except that the coating solution (5) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例6]
実施例1で調製したシリカ粒子(1)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)85.8gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度69.0重量%のシリカ粒子の有機樹脂分散液(6)を作製する。 [Example 6]
To 2,500 g of the silica particle (1) dispersion prepared in Example 1, 85.8 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added, and the rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (6) of silica particles having a solid content concentration of 69.0% by weight.
実施例1で調製したシリカ粒子(1)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)85.8gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度69.0重量%のシリカ粒子の有機樹脂分散液(6)を作製する。 [Example 6]
To 2,500 g of the silica particle (1) dispersion prepared in Example 1, 85.8 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added, and the rotary evaporator was added. A part of the solvent is removed to prepare an organic resin dispersion (6) of silica particles having a solid content concentration of 69.0% by weight.
塗布液(6)の調製
次いで、この有機樹脂分散液(6)75.31gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ、UA-33H)12.15gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.04gとアセトン9.00gを充分に混合して、固形分濃度66.1重量%の塗布液(6)が得られる。
膜付基材(6)の作製
塗布液(6)を用いた以外は実施例1と同様にして膜付基材(6)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating liquid (6) Next, 75.31 g of this organic resin dispersion (6) was mixed with 12.15 g of urethane acrylate (the same NK oligo, UA-33H) as the curing organic resin, and acrylic silicone. 1.00 g of a leveling agent (disparone NSH-8430HF, the same as in Example 1), 0.50 g of photopolymerization initiator (Irgacure 184, the same as in Example 1), 2.04 g of PGME, and 9.00 g of acetone are mixed thoroughly. Thus, a coating solution (6) having a solid content concentration of 66.1% by weight is obtained.
Preparation of substrate with film (6) A substrate with film (6) is prepared in the same manner as in Example 1 except that the coating solution (6) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
次いで、この有機樹脂分散液(6)75.31gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ、UA-33H)12.15gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.04gとアセトン9.00gを充分に混合して、固形分濃度66.1重量%の塗布液(6)が得られる。
膜付基材(6)の作製
塗布液(6)を用いた以外は実施例1と同様にして膜付基材(6)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating liquid (6) Next, 75.31 g of this organic resin dispersion (6) was mixed with 12.15 g of urethane acrylate (the same NK oligo, UA-33H) as the curing organic resin, and acrylic silicone. 1.00 g of a leveling agent (disparone NSH-8430HF, the same as in Example 1), 0.50 g of photopolymerization initiator (Irgacure 184, the same as in Example 1), 2.04 g of PGME, and 9.00 g of acetone are mixed thoroughly. Thus, a coating solution (6) having a solid content concentration of 66.1% by weight is obtained.
Preparation of substrate with film (6) A substrate with film (6) is prepared in the same manner as in Example 1 except that the coating solution (6) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例7]
実施例1で調製したシリカ粒子(1)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例と同一のライトアクリレートDCP-A)272.1gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度80.1重量%のシリカ粒子の有機樹脂分散液(7)が得られる。 [Example 7]
272.1 g of dimethylol-tricyclodecanediacrylate (the same light acrylate DCP-A as in Example), which is an organic resin for dispersion, was added to 2500 g of the dispersion of silica particles (1) prepared in Example 1, and a rotary evaporator was used. A part of the solvent is removed to obtain an organic resin dispersion (7) of silica particles having a solid content concentration of 80.1% by weight.
実施例1で調製したシリカ粒子(1)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例と同一のライトアクリレートDCP-A)272.1gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度80.1重量%のシリカ粒子の有機樹脂分散液(7)が得られる。 [Example 7]
272.1 g of dimethylol-tricyclodecanediacrylate (the same light acrylate DCP-A as in Example), which is an organic resin for dispersion, was added to 2500 g of the dispersion of silica particles (1) prepared in Example 1, and a rotary evaporator was used. A part of the solvent is removed to obtain an organic resin dispersion (7) of silica particles having a solid content concentration of 80.1% by weight.
塗布液(7)の調製
次いで、この有機樹脂分散液(7)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)5.21gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME5.48gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(7)が得られる。
膜付基材(7)の作製
塗布液(7)を用いた以外は実施例1と同様にして膜付基材(7)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (7) Next, 75.31 g of this organic resin dispersion (7) was mixed with 5.21 g of urethane acrylate (the same NK oligo UA-33H as in Example 1) and acrylic silicone. A system leveling agent (Disparon NSH-8430HF identical to Example 1) 1.00 g, a photopolymerization initiator (Irgacure 184 identical to Example 1) 0.50 g, PGME 5.48 g and acetone 12.50 g were mixed thoroughly. Thus, a coating solution (7) having a solid content concentration of 66.1% by weight is obtained.
Preparation of substrate with film (7) A substrate with film (7) is prepared in the same manner as in Example 1 except that the coating solution (7) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
次いで、この有機樹脂分散液(7)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)5.21gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME5.48gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(7)が得られる。
膜付基材(7)の作製
塗布液(7)を用いた以外は実施例1と同様にして膜付基材(7)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (7) Next, 75.31 g of this organic resin dispersion (7) was mixed with 5.21 g of urethane acrylate (the same NK oligo UA-33H as in Example 1) and acrylic silicone. A system leveling agent (Disparon NSH-8430HF identical to Example 1) 1.00 g, a photopolymerization initiator (Irgacure 184 identical to Example 1) 0.50 g, PGME 5.48 g and acetone 12.50 g were mixed thoroughly. Thus, a coating solution (7) having a solid content concentration of 66.1% by weight is obtained.
Preparation of substrate with film (7) A substrate with film (7) is prepared in the same manner as in Example 1 except that the coating solution (7) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例8]
実施例1で調製したシリカ粒子(1)分散液2500gに分散用有機樹脂である1,6-ヘキサジオールジメタクリレート(巴工業(株)製;SR-238F、官能基;アクリレート、官能基数:2、分子量:226)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(8)が得られる。 [Example 8]
1,6-hexadiol dimethacrylate as an organic resin for dispersion (manufactured by Sakai Kogyo Co., Ltd .; SR-238F, functional group; acrylate, number of functional groups: 2) , Molecular weight: 226) 202.5 g is added, and a part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (8) of silica particles having a solid content concentration of 76.0% by weight.
実施例1で調製したシリカ粒子(1)分散液2500gに分散用有機樹脂である1,6-ヘキサジオールジメタクリレート(巴工業(株)製;SR-238F、官能基;アクリレート、官能基数:2、分子量:226)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(8)が得られる。 [Example 8]
1,6-hexadiol dimethacrylate as an organic resin for dispersion (manufactured by Sakai Kogyo Co., Ltd .; SR-238F, functional group; acrylate, number of functional groups: 2) , Molecular weight: 226) 202.5 g is added, and a part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (8) of silica particles having a solid content concentration of 76.0% by weight.
塗布液(8)の調製
次いで、この有機樹脂分散液(8)75.31gに、硬化用有機樹脂であるウレタンアクリレート(新中村化学(株)製:NKオリゴ U-6LPA、官能基:ウレタンアクリレート、官能基数:6、分子量:2,100,固形分濃度70%)11.89gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME0.30gとアセトン11.00gを充分に混合して、固形分濃度66.1重量%の塗布液(8)を調製する。
膜付基材(8)の作製
塗布液(8)を用いた以外は実施例1と同様にして膜付基材(8)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (8) Next, 75.31 g of this organic resin dispersion (8) was added to urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo U-6LPA, functional group: urethane acrylate). , Functional group number: 6, molecular weight: 2,100, solid content concentration 70%) 11.89 g, acrylic silicone leveling agent (dispalon NSH-8430HF identical to Example 1) 1.00 g and photopolymerization initiator (implementation) The same Irgacure 184 as in Example 1) 0.50 g, 0.30 g of PGME and 11.00 g of acetone are mixed well to prepare a coating solution (8) having a solid content concentration of 66.1% by weight.
Preparation of substrate with film (8) A substrate with film (8) is prepared in the same manner as in Example 1 except that the coating solution (8) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
次いで、この有機樹脂分散液(8)75.31gに、硬化用有機樹脂であるウレタンアクリレート(新中村化学(株)製:NKオリゴ U-6LPA、官能基:ウレタンアクリレート、官能基数:6、分子量:2,100,固形分濃度70%)11.89gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME0.30gとアセトン11.00gを充分に混合して、固形分濃度66.1重量%の塗布液(8)を調製する。
膜付基材(8)の作製
塗布液(8)を用いた以外は実施例1と同様にして膜付基材(8)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (8) Next, 75.31 g of this organic resin dispersion (8) was added to urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo U-6LPA, functional group: urethane acrylate). , Functional group number: 6, molecular weight: 2,100, solid content concentration 70%) 11.89 g, acrylic silicone leveling agent (dispalon NSH-8430HF identical to Example 1) 1.00 g and photopolymerization initiator (implementation) The same Irgacure 184 as in Example 1) 0.50 g, 0.30 g of PGME and 11.00 g of acetone are mixed well to prepare a coating solution (8) having a solid content concentration of 66.1% by weight.
Preparation of substrate with film (8) A substrate with film (8) is prepared in the same manner as in Example 1 except that the coating solution (8) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例9]
シリカゾル分散液(実施例1と同一のカタロイドSI-30)100gにγ-メタアクリロオキシプロピルトリメトキシシラン(実施例1と同一のKBM-503)3.74gを混合し、超純水を3.1g添加し50℃で6時間攪拌する。これによりシランカップリング剤で表面処理された12nmのシリカゾル分散液(固形分濃度40.5重量%)が得られる。
その後、実施例1と同様に溶剤置換して、固形分濃度40.5重量%のシリカ粒子(9)分散液を作製する。 [Example 9]
3.74 g of γ-methacrylooxypropyltrimethoxysilane (KBM-503, the same as in Example 1) is mixed with 100 g of silica sol dispersion (the same cataloid SI-30 as in Example 1), and ultrapure water is added to 3 g. Add 1 g and stir at 50 ° C. for 6 hours. As a result, a 12 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained.
Thereafter, the solvent is replaced in the same manner as in Example 1 to prepare a silica particle (9) dispersion having a solid content concentration of 40.5% by weight.
シリカゾル分散液(実施例1と同一のカタロイドSI-30)100gにγ-メタアクリロオキシプロピルトリメトキシシラン(実施例1と同一のKBM-503)3.74gを混合し、超純水を3.1g添加し50℃で6時間攪拌する。これによりシランカップリング剤で表面処理された12nmのシリカゾル分散液(固形分濃度40.5重量%)が得られる。
その後、実施例1と同様に溶剤置換して、固形分濃度40.5重量%のシリカ粒子(9)分散液を作製する。 [Example 9]
3.74 g of γ-methacrylooxypropyltrimethoxysilane (KBM-503, the same as in Example 1) is mixed with 100 g of silica sol dispersion (the same cataloid SI-30 as in Example 1), and ultrapure water is added to 3 g. Add 1 g and stir at 50 ° C. for 6 hours. As a result, a 12 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained.
Thereafter, the solvent is replaced in the same manner as in Example 1 to prepare a silica particle (9) dispersion having a solid content concentration of 40.5% by weight.
シリカ粒子(9)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(9)が得られる。
202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of the silica particle (9) dispersion, and a part of the solvent was removed with a rotary evaporator. By removing, an organic resin dispersion (9) of silica particles having a solid content concentration of 76.0% by weight is obtained.
塗布液(9)の調製
次いで、この有機樹脂分散液(9)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ、UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度63.9重量%の塗布液(9)を作製する。
膜付基材(9)の作製
塗布液(9)を用いた以外は実施例1と同様にして膜付基材(9)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating solution (9) Next, 75.31 g of this organic resin dispersion (9) was mixed with 8.32 g of urethane acrylate (NK oligo, UA-33H, which is the same as in Example 1) and acrylic resin. 1.00 g of silicone leveling agent (Disparon NSH-8430HF same as in Example 1), 0.50 g of photopolymerization initiator (Irgacure 184 same as in Example 1), 2.37 g of PGME and 12.50 g of acetone are sufficiently mixed. Then, a coating liquid (9) having a solid content concentration of 63.9% by weight is prepared.
Preparation of substrate with film (9) A substrate with film (9) is prepared in the same manner as in Example 1 except that the coating solution (9) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
次いで、この有機樹脂分散液(9)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ、UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度63.9重量%の塗布液(9)を作製する。
膜付基材(9)の作製
塗布液(9)を用いた以外は実施例1と同様にして膜付基材(9)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating solution (9) Next, 75.31 g of this organic resin dispersion (9) was mixed with 8.32 g of urethane acrylate (NK oligo, UA-33H, which is the same as in Example 1) and acrylic resin. 1.00 g of silicone leveling agent (Disparon NSH-8430HF same as in Example 1), 0.50 g of photopolymerization initiator (Irgacure 184 same as in Example 1), 2.37 g of PGME and 12.50 g of acetone are sufficiently mixed. Then, a coating liquid (9) having a solid content concentration of 63.9% by weight is prepared.
Preparation of substrate with film (9) A substrate with film (9) is prepared in the same manner as in Example 1 except that the coating solution (9) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例10]
シリカゾル分散液(実施例1と同一のカタロイドSI-30)100gにγ-メタアクリロオキシプロピルトリメトキシシラン(実施例1と同一のKBM-503)14.96gを混合し、超純水を3.1g添加し50℃で6時間攪拌する。これにより、シランカップリング剤で表面処理された12nmのシリカゾル分散液(固形分濃度40.5重量%)が得られる。
その後、実施例1と同様に溶剤置換し、固形分濃度40.5重量%のシリカ粒子(10)分散液が得られる。 [Example 10]
14.96 g of γ-methacrylooxypropyltrimethoxysilane (KBM-503, the same as in Example 1) was mixed with 100 g of silica sol dispersion (the same catalloid SI-30 as in Example 1), and 3% of ultrapure water was added. Add 1 g and stir at 50 ° C. for 6 hours. As a result, a 12 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained.
Thereafter, the solvent is replaced in the same manner as in Example 1 to obtain a silica particle (10) dispersion having a solid concentration of 40.5% by weight.
シリカゾル分散液(実施例1と同一のカタロイドSI-30)100gにγ-メタアクリロオキシプロピルトリメトキシシラン(実施例1と同一のKBM-503)14.96gを混合し、超純水を3.1g添加し50℃で6時間攪拌する。これにより、シランカップリング剤で表面処理された12nmのシリカゾル分散液(固形分濃度40.5重量%)が得られる。
その後、実施例1と同様に溶剤置換し、固形分濃度40.5重量%のシリカ粒子(10)分散液が得られる。 [Example 10]
14.96 g of γ-methacrylooxypropyltrimethoxysilane (KBM-503, the same as in Example 1) was mixed with 100 g of silica sol dispersion (the same catalloid SI-30 as in Example 1), and 3% of ultrapure water was added. Add 1 g and stir at 50 ° C. for 6 hours. As a result, a 12 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained.
Thereafter, the solvent is replaced in the same manner as in Example 1 to obtain a silica particle (10) dispersion having a solid concentration of 40.5% by weight.
シリカ粒子(10)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(10)を作製する。
202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of the silica particle (10) dispersion, and a part of the solvent was removed with a rotary evaporator. By removing, an organic resin dispersion (10) of silica particles having a solid content concentration of 76.0% by weight is prepared.
塗布液(10)の調製
次いで、この有機樹脂分散液(10)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度70.6重量%の塗布液(10)が得られる。
膜付基材(10)の作製
塗布液(10)を用いた以外は実施例1と同様にして膜付基材(10)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (10) Next, 75.31 g of this organic resin dispersion (10) was mixed with 8.32 g of urethane acrylate (NK oligo UA-33H, which is the same as in Example 1) and acrylic silicone. 1.00 g of a leveling agent (Disparon NSH-8430HF identical to Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 2.37 g of PGME and 12.50 g of acetone were mixed thoroughly. Thus, a coating solution (10) having a solid content concentration of 70.6% by weight is obtained.
Preparation of substrate with film (10) A substrate with film (10) is prepared in the same manner as in Example 1 except that the coating solution (10) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
次いで、この有機樹脂分散液(10)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度70.6重量%の塗布液(10)が得られる。
膜付基材(10)の作製
塗布液(10)を用いた以外は実施例1と同様にして膜付基材(10)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (10) Next, 75.31 g of this organic resin dispersion (10) was mixed with 8.32 g of urethane acrylate (NK oligo UA-33H, which is the same as in Example 1) and acrylic silicone. 1.00 g of a leveling agent (Disparon NSH-8430HF identical to Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 2.37 g of PGME and 12.50 g of acetone were mixed thoroughly. Thus, a coating solution (10) having a solid content concentration of 70.6% by weight is obtained.
Preparation of substrate with film (10) A substrate with film (10) is prepared in the same manner as in Example 1 except that the coating solution (10) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例11]
シリカゾル分散液(実施例1と同一のカタロイド SI-30)100gにγ-アクリロキシプロピルトリメトキシシラン(信越シリコ-ン株製:KBM-5103、SiO2成分86.1%)7.06gを混合し、超純水を3.1g添加し、50℃で6時間攪拌する。これによりシランカップリング剤で表面処理された12nmのシリカゾル分散液が得られる(固形分濃度40.5重量%)。
その後、実施例1と同様に溶剤置換して、固形分濃度40.5重量%のシリカ粒子(11)分散液を得る。 [Example 11]
7.06 g of γ-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd .: KBM-5103, SiO 2 component 86.1%) was mixed with 100 g of silica sol dispersion (cataloid SI-30 identical to Example 1). Then, 3.1 g of ultrapure water is added and stirred at 50 ° C. for 6 hours. Thereby, a 12 nm silica sol dispersion surface-treated with a silane coupling agent is obtained (solid content concentration 40.5% by weight).
Thereafter, the solvent was replaced in the same manner as in Example 1 to obtain a silica particle (11) dispersion having a solid concentration of 40.5% by weight.
シリカゾル分散液(実施例1と同一のカタロイド SI-30)100gにγ-アクリロキシプロピルトリメトキシシラン(信越シリコ-ン株製:KBM-5103、SiO2成分86.1%)7.06gを混合し、超純水を3.1g添加し、50℃で6時間攪拌する。これによりシランカップリング剤で表面処理された12nmのシリカゾル分散液が得られる(固形分濃度40.5重量%)。
その後、実施例1と同様に溶剤置換して、固形分濃度40.5重量%のシリカ粒子(11)分散液を得る。 [Example 11]
7.06 g of γ-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd .: KBM-5103, SiO 2 component 86.1%) was mixed with 100 g of silica sol dispersion (cataloid SI-30 identical to Example 1). Then, 3.1 g of ultrapure water is added and stirred at 50 ° C. for 6 hours. Thereby, a 12 nm silica sol dispersion surface-treated with a silane coupling agent is obtained (solid content concentration 40.5% by weight).
Thereafter, the solvent was replaced in the same manner as in Example 1 to obtain a silica particle (11) dispersion having a solid concentration of 40.5% by weight.
シリカ粒子(11)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(11)を得る。
202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of the silica particle (11) dispersion, and a part of the solvent was removed with a rotary evaporator. Removal of an organic resin dispersion (11) of silica particles having a solid content concentration of 76.0% by weight is obtained.
塗布液(11)の調製
次いで、この有機樹脂分散液(11)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(11)を作製する。
膜付基材(11)の作製
塗布液(11)を用いた以外は実施例1と同様にして膜付基材(11)を製造する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (11) Next, 75.31 g of this organic resin dispersion (11) was mixed with 8.32 g of urethane acrylate (NK oligo UA-33H, which is the same as in Example 1) and acrylic silicone. 1.00 g of a leveling agent (Disparon NSH-8430HF identical to Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 2.37 g of PGME and 12.50 g of acetone were mixed thoroughly. A coating solution (11) having a solid content concentration of 66.1% by weight is prepared.
Preparation of substrate with film (11) A substrate with film (11) is produced in the same manner as in Example 1 except that the coating solution (11) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
次いで、この有機樹脂分散液(11)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(11)を作製する。
膜付基材(11)の作製
塗布液(11)を用いた以外は実施例1と同様にして膜付基材(11)を製造する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (11) Next, 75.31 g of this organic resin dispersion (11) was mixed with 8.32 g of urethane acrylate (NK oligo UA-33H, which is the same as in Example 1) and acrylic silicone. 1.00 g of a leveling agent (Disparon NSH-8430HF identical to Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 2.37 g of PGME and 12.50 g of acetone were mixed thoroughly. A coating solution (11) having a solid content concentration of 66.1% by weight is prepared.
Preparation of substrate with film (11) A substrate with film (11) is produced in the same manner as in Example 1 except that the coating solution (11) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例12]
SiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)33.4Kgを純水126.6Kgで希釈して、SiO2濃度が5重量%の珪酸ナトリウム水溶液(pH11)を160Kg作製する。この珪酸ナトリウム水溶液のpHが4.5になるように濃度25%の硫酸水溶液を加えて中和し、常温で5時間保持する。これにより熟成されて、シリカヒドロゲルが得られる。 [Example 12]
A sodium silicate aqueous solution having a SiO 2 concentration of 24 wt% (SiO 2 / Na 2 O molar ratio: 3.1) 33.4 Kg was diluted with 126.6 Kg of pure water to obtain a sodium silicate aqueous solution having a SiO 2 concentration of 5 wt%. 160 kg of (pH 11) is prepared. The aqueous solution of sodium silicate is neutralized by adding an aqueous sulfuric acid solution having a concentration of 25% so that the pH of the aqueous solution is 4.5, and is kept at room temperature for 5 hours. Thereby, aging is performed to obtain a silica hydrogel.
SiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)33.4Kgを純水126.6Kgで希釈して、SiO2濃度が5重量%の珪酸ナトリウム水溶液(pH11)を160Kg作製する。この珪酸ナトリウム水溶液のpHが4.5になるように濃度25%の硫酸水溶液を加えて中和し、常温で5時間保持する。これにより熟成されて、シリカヒドロゲルが得られる。 [Example 12]
A sodium silicate aqueous solution having a SiO 2 concentration of 24 wt% (SiO 2 / Na 2 O molar ratio: 3.1) 33.4 Kg was diluted with 126.6 Kg of pure water to obtain a sodium silicate aqueous solution having a SiO 2 concentration of 5 wt%. 160 kg of (pH 11) is prepared. The aqueous solution of sodium silicate is neutralized by adding an aqueous sulfuric acid solution having a concentration of 25% so that the pH of the aqueous solution is 4.5, and is kept at room temperature for 5 hours. Thereby, aging is performed to obtain a silica hydrogel.
このシリカヒドロゲルを、濾布を張った濾過機を用いて、SiO2固形分の約120倍相当量の純水で充分に洗浄する。このシリカヒドロゲルを純水に分散し、SiO2濃度3重量%の分散液を調製し、強力攪拌機を使用して、流動性のスラリー状態になるまで攪拌する。このスラリー状のシリカヒドロゲル分散液のpHが10.5になるように濃度15重量%のアンモニア水を添加し、95℃で1時間かけて攪拌を続け、シリカヒドロゲルの解膠操作を行い、シリカゾルを得た。
This silica hydrogel is sufficiently washed with pure water equivalent to about 120 times the SiO 2 solid content using a filter equipped with a filter cloth. This silica hydrogel is dispersed in pure water to prepare a dispersion having a SiO 2 concentration of 3% by weight, and stirred using a powerful stirrer until a fluid slurry is obtained. Ammonia water having a concentration of 15% by weight was added so that the pH of the slurry-like silica hydrogel dispersion was 10.5, and stirring was continued at 95 ° C. for 1 hour to perform the deflocculation operation of the silica hydrogel. Got.
得られたシリカゾルを150℃で1時間加熱して、安定化させた後、限外濾過膜(旭化成工業(株)製:SIP-1013)を用いて、SiO2濃度が13重量%になるまで濃縮した。さらに、ロータリーエバポレーターで濃縮し、44μmメッシュのナイロンフィルターで濾過して、SiO2濃度30重量%のシリカゾル(12)を作製した。
The obtained silica sol was stabilized by heating at 150 ° C. for 1 hour, and then using an ultrafiltration membrane (Asahi Kasei Kogyo Co., Ltd .: SIP-1013) until the SiO 2 concentration became 13% by weight. Concentrated. Further, it was concentrated by a rotary evaporator and filtered through a 44 μm mesh nylon filter to prepare a silica sol (12) having a SiO 2 concentration of 30% by weight.
このときの、シリカゾル(12)のシリカ粒子の平均粒子最長径(DL)は48nm、平均短径(DS)は16nmであり、球状係数は0.33である。
シリカゾル(12)600gと、純水5,955gと、SiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)63.3gを混合し、87℃まで昇温し、0.5時間熟成した。ついで、SiO2濃度が3重量%の珪酸液1,120gを14時間かけて添加した。室温まで冷却した後、得られたシリカゾルを限外濾過膜(旭化成工業(株)製:SIP-1013)を用いて、SiO2濃度が12重量%になるまで濃縮する。さらに、ロータリーエバポレーターで濃縮し、44μmメッシュのナイロンフィルターで濾過し、固形分濃度30重量%の非球状シリカの分散液(12)が得られる。 At this time, the average particle longest diameter (D L ) of the silica particles of the silica sol (12) is 48 nm, the average short diameter (D S ) is 16 nm, and the spherical coefficient is 0.33.
600 g of silica sol (12), 5,955 g of pure water, and 63.3 g of a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio of 3.1) having a SiO 2 concentration of 24% by weight were mixed and heated to 87 ° C. Warmed and aged for 0.5 hours. Subsequently, 1,120 g of a silicic acid solution having a SiO 2 concentration of 3% by weight was added over 14 hours. After cooling to room temperature, the obtained silica sol is concentrated using an ultrafiltration membrane (Asahi Kasei Kogyo Co., Ltd .: SIP-1013) until the SiO 2 concentration becomes 12% by weight. Further, it is concentrated by a rotary evaporator and filtered through a 44 μm mesh nylon filter to obtain a dispersion (12) of non-spherical silica having a solid concentration of 30% by weight.
シリカゾル(12)600gと、純水5,955gと、SiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)63.3gを混合し、87℃まで昇温し、0.5時間熟成した。ついで、SiO2濃度が3重量%の珪酸液1,120gを14時間かけて添加した。室温まで冷却した後、得られたシリカゾルを限外濾過膜(旭化成工業(株)製:SIP-1013)を用いて、SiO2濃度が12重量%になるまで濃縮する。さらに、ロータリーエバポレーターで濃縮し、44μmメッシュのナイロンフィルターで濾過し、固形分濃度30重量%の非球状シリカの分散液(12)が得られる。 At this time, the average particle longest diameter (D L ) of the silica particles of the silica sol (12) is 48 nm, the average short diameter (D S ) is 16 nm, and the spherical coefficient is 0.33.
600 g of silica sol (12), 5,955 g of pure water, and 63.3 g of a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio of 3.1) having a SiO 2 concentration of 24% by weight were mixed and heated to 87 ° C. Warmed and aged for 0.5 hours. Subsequently, 1,120 g of a silicic acid solution having a SiO 2 concentration of 3% by weight was added over 14 hours. After cooling to room temperature, the obtained silica sol is concentrated using an ultrafiltration membrane (Asahi Kasei Kogyo Co., Ltd .: SIP-1013) until the SiO 2 concentration becomes 12% by weight. Further, it is concentrated by a rotary evaporator and filtered through a 44 μm mesh nylon filter to obtain a dispersion (12) of non-spherical silica having a solid concentration of 30% by weight.
この分散液(12)400gに純水を添加し固形分濃度20重量%とし、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)240gを用いて、80℃で3時間洗浄を行い、さらに限外濾過膜を用いてこの分散液をメタノールに溶媒置換し、固形分濃度20重量%のメタノール分散液を作製する。
Pure water is added to 400 g of this dispersion (12) to a solid content concentration of 20% by weight, and washing is performed at 80 ° C. for 3 hours using 240 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B). Further, this dispersion is solvent-substituted with methanol using an ultrafiltration membrane to prepare a methanol dispersion having a solid concentration of 20% by weight.
このメタノール分散液100gにメタクリル系シランカップリング剤(信越化学(株)製:KBM-503、γ-メタクロリロキシプロピルトリメトキシシラン)7.48gを加え、50℃で6時間加熱撹拌し、有機ケイ素化合物で表面処理された非球状シリカの分散液(固形分濃度40.5重量%)が得られる。
その後、実施例1と同様に溶媒置換して、固形分濃度40.5重量%の非球状シリカ粒子(12)分散液を得た。非球状シリカ粒子(12)の平均粒子最長径(DL)は50nm、平均短径(DS)は21nmであり、球状係数(DS)/(DL)は0.42であった。 7.48 g of a methacrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, γ-methacryloyloxypropyltrimethoxysilane) was added to 100 g of this methanol dispersion, and the mixture was heated and stirred at 50 ° C. for 6 hours. A dispersion of non-spherical silica surface-treated with a silicon compound (solid content concentration 40.5% by weight) is obtained.
Thereafter, the solvent was replaced in the same manner as in Example 1 to obtain a dispersion of non-spherical silica particles (12) having a solid concentration of 40.5% by weight. The average particle longest diameter (D L ) of the non-spherical silica particles (12) was 50 nm, the average short diameter (D S ) was 21 nm, and the spherical coefficient (D S ) / (D L ) was 0.42.
その後、実施例1と同様に溶媒置換して、固形分濃度40.5重量%の非球状シリカ粒子(12)分散液を得た。非球状シリカ粒子(12)の平均粒子最長径(DL)は50nm、平均短径(DS)は21nmであり、球状係数(DS)/(DL)は0.42であった。 7.48 g of a methacrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, γ-methacryloyloxypropyltrimethoxysilane) was added to 100 g of this methanol dispersion, and the mixture was heated and stirred at 50 ° C. for 6 hours. A dispersion of non-spherical silica surface-treated with a silicon compound (solid content concentration 40.5% by weight) is obtained.
Thereafter, the solvent was replaced in the same manner as in Example 1 to obtain a dispersion of non-spherical silica particles (12) having a solid concentration of 40.5% by weight. The average particle longest diameter (D L ) of the non-spherical silica particles (12) was 50 nm, the average short diameter (D S ) was 21 nm, and the spherical coefficient (D S ) / (D L ) was 0.42.
塗布液(12)の調製
このシリカ粒子(12)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(12)が得られる。 Preparation of coating liquid (12) To 2500 g of this silica particle (12) dispersion, 202.5 g of dimethylol-tricyclodecanediacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added, A part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (12) of silica particles having a solid concentration of 76.0% by weight.
このシリカ粒子(12)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(12)が得られる。 Preparation of coating liquid (12) To 2500 g of this silica particle (12) dispersion, 202.5 g of dimethylol-tricyclodecanediacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added, A part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (12) of silica particles having a solid concentration of 76.0% by weight.
この有機樹脂分散液(12)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGE2.37gとアセトン12.50gを充分に混合して固形分濃度66.1重量%の塗布液(12)を作製した。
膜付基材(12)の作製
塗布液(12)を用いた以外は実施例1と同様にして膜付基材(12)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 To 75.31 g of this organic resin dispersion (12), 8.32 g of urethane acrylate (the same NK oligo UA-33H) as in Example 1 and an acrylic silicone leveling agent (same as in Example 1) were added. Of Disparon NSH-8430HF), 1.00 g of photopolymerization initiator (Irgacure 184 same as in Example 1), 2.37 g of PGE and 12.50 g of acetone were mixed thoroughly to obtain a solid content concentration of 66.1% by weight. A coating solution (12) was prepared.
Preparation of substrate with film (12) A substrate with film (12) is prepared in the same manner as in Example 1 except that the coating solution (12) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
膜付基材(12)の作製
塗布液(12)を用いた以外は実施例1と同様にして膜付基材(12)を作製する。透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 To 75.31 g of this organic resin dispersion (12), 8.32 g of urethane acrylate (the same NK oligo UA-33H) as in Example 1 and an acrylic silicone leveling agent (same as in Example 1) were added. Of Disparon NSH-8430HF), 1.00 g of photopolymerization initiator (Irgacure 184 same as in Example 1), 2.37 g of PGE and 12.50 g of acetone were mixed thoroughly to obtain a solid content concentration of 66.1% by weight. A coating solution (12) was prepared.
Preparation of substrate with film (12) A substrate with film (12) is prepared in the same manner as in Example 1 except that the coating solution (12) is used. The film thickness of the transparent coating is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例13]
膜付基材(13)の作製
実施例1で調製した塗布液(1)を、バーコーター法#20を用いて基材に塗布して、膜付基材(13)を作製する。塗布法以外は実施例1と同様に行う。得られた透明被膜の膜厚は15μmである。この膜付基材を実施例1と同様に評価する。 [Example 13]
Preparation of substrate with film (13) The coating solution (1) prepared in Example 1 is applied to the substrate using the bar coater method # 20 to prepare the substrate with film (13). The same procedure as in Example 1 is performed except for the coating method. The film thickness of the obtained transparent film is 15 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
膜付基材(13)の作製
実施例1で調製した塗布液(1)を、バーコーター法#20を用いて基材に塗布して、膜付基材(13)を作製する。塗布法以外は実施例1と同様に行う。得られた透明被膜の膜厚は15μmである。この膜付基材を実施例1と同様に評価する。 [Example 13]
Preparation of substrate with film (13) The coating solution (1) prepared in Example 1 is applied to the substrate using the bar coater method # 20 to prepare the substrate with film (13). The same procedure as in Example 1 is performed except for the coating method. The film thickness of the obtained transparent film is 15 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[実施例14]
膜付基材(14)の作製
実施例1で調製した塗布液(1)を、バーコーター法#40を用いて基材に塗布して、膜付基材(14)を作製する。塗布法以外は実施例1と同様に行う。得られた透明被膜の膜厚は30μmである。この膜付基材を実施例1と同様に評価する。 [Example 14]
Preparation of substrate with film (14) The coating solution (1) prepared in Example 1 is applied to the substrate using the bar coater method # 40 to prepare the substrate with film (14). The same procedure as in Example 1 is performed except for the coating method. The film thickness of the obtained transparent film is 30 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
膜付基材(14)の作製
実施例1で調製した塗布液(1)を、バーコーター法#40を用いて基材に塗布して、膜付基材(14)を作製する。塗布法以外は実施例1と同様に行う。得られた透明被膜の膜厚は30μmである。この膜付基材を実施例1と同様に評価する。 [Example 14]
Preparation of substrate with film (14) The coating solution (1) prepared in Example 1 is applied to the substrate using the bar coater method # 40 to prepare the substrate with film (14). The same procedure as in Example 1 is performed except for the coating method. The film thickness of the obtained transparent film is 30 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[比較例1]
実施例1と同様に調製したシリカ粒子(1)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(R1)を作製した。 [Comparative Example 1]
202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of the silica particle (1) dispersion prepared in the same manner as in Example 1. A part of the solvent was removed by a rotary evaporator to prepare an organic resin dispersion (R1) of silica particles having a solid concentration of 76.0% by weight.
実施例1と同様に調製したシリカ粒子(1)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(R1)を作製した。 [Comparative Example 1]
202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of the silica particle (1) dispersion prepared in the same manner as in Example 1. A part of the solvent was removed by a rotary evaporator to prepare an organic resin dispersion (R1) of silica particles having a solid concentration of 76.0% by weight.
塗布液(R1)の調製
次いで、この有機樹脂分散液(R1)75.31gに、さらに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(R1)を作製する。
膜付基材(R1)の作製
塗布液(R1)を用いた以外は実施例1と同様にして膜付基材(R1)を作製する。得られた透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (R1) Next, 75.31 g of this organic resin dispersion (R1) was further added to dimethylol-tricyclodecane diacrylate (light acrylate DCP-A, the same as in Example 1), which is an organic resin for dispersion. .32 g, 1.00 g of an acrylic silicone leveling agent (Disparon NSH-8430HF identical to Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 2.37 g of PGME and acetone 12. 50 g is mixed well to prepare a coating solution (R1) having a solid content concentration of 66.1% by weight.
Preparation of substrate with film (R1) A substrate with film (R1) is prepared in the same manner as in Example 1 except that the coating solution (R1) is used. The film thickness of the obtained transparent film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
次いで、この有機樹脂分散液(R1)75.31gに、さらに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(R1)を作製する。
膜付基材(R1)の作製
塗布液(R1)を用いた以外は実施例1と同様にして膜付基材(R1)を作製する。得られた透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of Coating Solution (R1) Next, 75.31 g of this organic resin dispersion (R1) was further added to dimethylol-tricyclodecane diacrylate (light acrylate DCP-A, the same as in Example 1), which is an organic resin for dispersion. .32 g, 1.00 g of an acrylic silicone leveling agent (Disparon NSH-8430HF identical to Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 2.37 g of PGME and acetone 12. 50 g is mixed well to prepare a coating solution (R1) having a solid content concentration of 66.1% by weight.
Preparation of substrate with film (R1) A substrate with film (R1) is prepared in the same manner as in Example 1 except that the coating solution (R1) is used. The film thickness of the obtained transparent film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[比較例2]
実施例1と同様に調製したシリカ粒子(1)分散液2500gに硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度53.3重量%のシリカ粒子の有機樹脂分散液(R2)を作製する。 [Comparative Example 2]
202.5 g of urethane acrylate (NK oligo UA-33H, which is the same as in Example 1) was added to 2500 g of the silica particle (1) dispersion prepared in the same manner as in Example 1, and the solvent was removed using a rotary evaporator. A part thereof is removed to prepare an organic resin dispersion (R2) of silica particles having a solid content concentration of 53.3% by weight.
実施例1と同様に調製したシリカ粒子(1)分散液2500gに硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度53.3重量%のシリカ粒子の有機樹脂分散液(R2)を作製する。 [Comparative Example 2]
202.5 g of urethane acrylate (NK oligo UA-33H, which is the same as in Example 1) was added to 2500 g of the silica particle (1) dispersion prepared in the same manner as in Example 1, and the solvent was removed using a rotary evaporator. A part thereof is removed to prepare an organic resin dispersion (R2) of silica particles having a solid content concentration of 53.3% by weight.
塗布液(R2)の調製
次いで、この有機樹脂分散液(R2)82.96gに、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME0.13gとアセトン9.00gを充分に混合して、固形分濃度51.0重量%の塗布液(R2)が得られる。
膜付基材(R2)の作製
塗布液(R2)を用いた以外は実施例1と同様にして膜付基材(R2)を作製する。得られた透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating solution (R2) Next, 82.96 g of this organic resin dispersion (R2) was added to 1.00 g of an acrylic silicone leveling agent (dispalon NSH-8430HF identical to Example 1) and a photopolymerization initiator (Example). 1) Irgacure 184) 0.50 g, PGME 0.13 g and acetone 9.00 g are sufficiently mixed to obtain a coating solution (R2) having a solid content concentration of 51.0% by weight.
Preparation of substrate with film (R2) A substrate with film (R2) is prepared in the same manner as in Example 1 except that the coating solution (R2) is used. The film thickness of the obtained transparent film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
次いで、この有機樹脂分散液(R2)82.96gに、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME0.13gとアセトン9.00gを充分に混合して、固形分濃度51.0重量%の塗布液(R2)が得られる。
膜付基材(R2)の作製
塗布液(R2)を用いた以外は実施例1と同様にして膜付基材(R2)を作製する。得られた透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 Preparation of coating solution (R2) Next, 82.96 g of this organic resin dispersion (R2) was added to 1.00 g of an acrylic silicone leveling agent (dispalon NSH-8430HF identical to Example 1) and a photopolymerization initiator (Example). 1) Irgacure 184) 0.50 g, PGME 0.13 g and acetone 9.00 g are sufficiently mixed to obtain a coating solution (R2) having a solid content concentration of 51.0% by weight.
Preparation of substrate with film (R2) A substrate with film (R2) is prepared in the same manner as in Example 1 except that the coating solution (R2) is used. The film thickness of the obtained transparent film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[比較例3]
透明被膜形成用塗布液(R3)の調製
実施例1と同様に調製したシリカ粒子(1)分散液69.14gと、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)5.26gと、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)4.83gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.29gとPGME6.99gとアセトン12.50gを充分に混合して、固形分濃度41.4重量%の塗布液(R3)を作製する。
膜付基材(R3)の作製
塗布液(R3)を用いた以外は実施例1と同様にして膜付基材(R3)を製造する。得られた透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 [Comparative Example 3]
Preparation of coating liquid for forming transparent film (R3) 69.14 g of silica particle (1) dispersion prepared in the same manner as in Example 1, and dimethylol-tricyclodecane diacrylate (same as in Example 1) as an organic resin for dispersion Light acrylate DCP-A) 5.26 g, curing organic resin urethane acrylate (NK oligo UA-33H same as in Example 1) 4.83 g, acrylic silicone leveling agent (same as in Example 1) Disparone NSH-8430HF) 1.00 g, photopolymerization initiator (Irgacure 184 same as in Example 1) 0.29 g, PGME 6.99 g and acetone 12.50 g were mixed thoroughly to obtain a solid content concentration of 41.4% by weight. A coating solution (R3) is prepared.
Preparation of substrate with film (R3) A substrate with film (R3) is produced in the same manner as in Example 1 except that the coating solution (R3) is used. The film thickness of the obtained transparent film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
透明被膜形成用塗布液(R3)の調製
実施例1と同様に調製したシリカ粒子(1)分散液69.14gと、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)5.26gと、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)4.83gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.29gとPGME6.99gとアセトン12.50gを充分に混合して、固形分濃度41.4重量%の塗布液(R3)を作製する。
膜付基材(R3)の作製
塗布液(R3)を用いた以外は実施例1と同様にして膜付基材(R3)を製造する。得られた透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。 [Comparative Example 3]
Preparation of coating liquid for forming transparent film (R3) 69.14 g of silica particle (1) dispersion prepared in the same manner as in Example 1, and dimethylol-tricyclodecane diacrylate (same as in Example 1) as an organic resin for dispersion Light acrylate DCP-A) 5.26 g, curing organic resin urethane acrylate (NK oligo UA-33H same as in Example 1) 4.83 g, acrylic silicone leveling agent (same as in Example 1) Disparone NSH-8430HF) 1.00 g, photopolymerization initiator (Irgacure 184 same as in Example 1) 0.29 g, PGME 6.99 g and acetone 12.50 g were mixed thoroughly to obtain a solid content concentration of 41.4% by weight. A coating solution (R3) is prepared.
Preparation of substrate with film (R3) A substrate with film (R3) is produced in the same manner as in Example 1 except that the coating solution (R3) is used. The film thickness of the obtained transparent film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
[比較例4]
シリカゾル分散液(実施例1と同一のカタロイドSI-30)2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度53.3重量%のシリカ粒子の有機樹脂分散液(RA4)を得る。 [Comparative Example 4]
202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of silica sol dispersion (cataloid SI-30 as in Example 1), A part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (RA4) of silica particles having a solid concentration of 53.3% by weight.
シリカゾル分散液(実施例1と同一のカタロイドSI-30)2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度53.3重量%のシリカ粒子の有機樹脂分散液(RA4)を得る。 [Comparative Example 4]
202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion was added to 2500 g of silica sol dispersion (cataloid SI-30 as in Example 1), A part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (RA4) of silica particles having a solid concentration of 53.3% by weight.
塗布液(R4)の調製
この有機樹脂分散液(RA4)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ、UA-33H)7.19gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME0.83gとアセトン8.00gを充分に混合して、固形分濃度53.3重量%の塗布液(R4)を作製する。
膜付基材(R4)の作製
塗布液(R4)を用いた以外は実施例1と同様にして膜付基材(R4)を製造する。得られた透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。
Preparation of Coating Solution (R4) To this organic resin dispersion (RA4) 75.31 g, 7.19 g of urethane acrylate (NK oligo, UA-33H, which is the same as in Example 1) and acrylic silicone type 1.00 g of a leveling agent (Disparon NSH-8430HF identical to that in Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 0.83 g of PGME, and 8.00 g of acetone were mixed thoroughly. A coating solution (R4) having a solid content concentration of 53.3% by weight is prepared.
Preparation of substrate with film (R4) A substrate with film (R4) is produced in the same manner as in Example 1 except that the coating solution (R4) is used. The film thickness of the obtained transparent film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
この有機樹脂分散液(RA4)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ、UA-33H)7.19gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME0.83gとアセトン8.00gを充分に混合して、固形分濃度53.3重量%の塗布液(R4)を作製する。
膜付基材(R4)の作製
塗布液(R4)を用いた以外は実施例1と同様にして膜付基材(R4)を製造する。得られた透明被膜の膜厚は12μmである。この膜付基材を実施例1と同様に評価する。
Preparation of Coating Solution (R4) To this organic resin dispersion (RA4) 75.31 g, 7.19 g of urethane acrylate (NK oligo, UA-33H, which is the same as in Example 1) and acrylic silicone type 1.00 g of a leveling agent (Disparon NSH-8430HF identical to that in Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 0.83 g of PGME, and 8.00 g of acetone were mixed thoroughly. A coating solution (R4) having a solid content concentration of 53.3% by weight is prepared.
Preparation of substrate with film (R4) A substrate with film (R4) is produced in the same manner as in Example 1 except that the coating solution (R4) is used. The film thickness of the obtained transparent film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 1.
以下に、上述の透明被膜上に反射防止層を形成した実施例を具体的に説明する。以下の実施例では透明被膜をハードコート膜として説明する。
Hereinafter, an example in which an antireflection layer is formed on the above-described transparent film will be specifically described. In the following examples, the transparent film is described as a hard coat film.
[実施例15]
シリカゾル水分散液(日揮触媒化成(株)製;カタロイドSI-50;平均粒子径25nm、SiO2濃度48.0重量%、分散媒:水、粒子屈折率1.46)1000gに陽イオン交換樹脂(三菱化学(株)製:SK-1BH)を960g添加して30分撹拌後、イオン交換樹脂を分離する。ついで、陰イオン交換樹脂(三菱化学(株)製:SA-20A)を480g添加して30分撹拌後、イオン交換樹脂を分離する。ついで、陽イオン交換樹脂(三菱化学(株)製:SK-1BH)を480g添加して5分撹拌後、80℃で3時間エージングして室温まで冷ました後、イオン交換樹脂を分離する。これにより、濃度48重量%のシリカゾル水分散液が得られる。
このシリカゾル水分散液2000gを限外濾過膜法により、メタノールに溶媒置換して、SiO2として濃度40重量%のシリカゾルメタノール分散液を作製する。 [Example 15]
Silica sol aqueous dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-50; average particle size 25 nm, SiO 2 concentration 48.0 wt%, dispersion medium: water, particle refractive index 1.46) to 1000 g of cation exchange resin 960 g (manufactured by Mitsubishi Chemical Corporation: SK-1BH) is added and stirred for 30 minutes, and then the ion exchange resin is separated. Next, 480 g of an anion exchange resin (Mitsubishi Chemical Corporation: SA-20A) is added and stirred for 30 minutes, and then the ion exchange resin is separated. Next, 480 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK-1BH) is added, stirred for 5 minutes, aged at 80 ° C. for 3 hours and cooled to room temperature, and then the ion exchange resin is separated. Thereby, a silica sol aqueous dispersion having a concentration of 48% by weight is obtained.
2000 g of this silica sol aqueous dispersion is subjected to solvent substitution with methanol by an ultrafiltration membrane method to produce a silica sol methanol dispersion having a concentration of 40% by weight as SiO 2 .
シリカゾル水分散液(日揮触媒化成(株)製;カタロイドSI-50;平均粒子径25nm、SiO2濃度48.0重量%、分散媒:水、粒子屈折率1.46)1000gに陽イオン交換樹脂(三菱化学(株)製:SK-1BH)を960g添加して30分撹拌後、イオン交換樹脂を分離する。ついで、陰イオン交換樹脂(三菱化学(株)製:SA-20A)を480g添加して30分撹拌後、イオン交換樹脂を分離する。ついで、陽イオン交換樹脂(三菱化学(株)製:SK-1BH)を480g添加して5分撹拌後、80℃で3時間エージングして室温まで冷ました後、イオン交換樹脂を分離する。これにより、濃度48重量%のシリカゾル水分散液が得られる。
このシリカゾル水分散液2000gを限外濾過膜法により、メタノールに溶媒置換して、SiO2として濃度40重量%のシリカゾルメタノール分散液を作製する。 [Example 15]
Silica sol aqueous dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-50; average particle size 25 nm, SiO 2 concentration 48.0 wt%, dispersion medium: water, particle refractive index 1.46) to 1000 g of cation exchange resin 960 g (manufactured by Mitsubishi Chemical Corporation: SK-1BH) is added and stirred for 30 minutes, and then the ion exchange resin is separated. Next, 480 g of an anion exchange resin (Mitsubishi Chemical Corporation: SA-20A) is added and stirred for 30 minutes, and then the ion exchange resin is separated. Next, 480 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK-1BH) is added, stirred for 5 minutes, aged at 80 ° C. for 3 hours and cooled to room temperature, and then the ion exchange resin is separated. Thereby, a silica sol aqueous dispersion having a concentration of 48% by weight is obtained.
2000 g of this silica sol aqueous dispersion is subjected to solvent substitution with methanol by an ultrafiltration membrane method to produce a silica sol methanol dispersion having a concentration of 40% by weight as SiO 2 .
この分散液100gにγ-メタアクリロオキシプロピルトリメトキシシラン7.48g(信越シリコ-ン株製:KBM-503、SiO2成分81.2%)を混合し超純水を3.1g添加し50℃で6時間攪拌する。これにより、シランカップリング剤で表面処理された25nmのシリカゾル分散液(固形分濃度40.5重量%)が得られる。
この分散液を、実施例1と同様にPGMEに溶剤置換し、シリカ粒子(15)分散液を得る。このシリカ粒子(15)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%のシリカ粒子(15)の有機樹脂分散液(15)を作製する。 To 100 g of this dispersion, 7.48 g of γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicon Co., Ltd .: KBM-503, SiO 2 component 81.2%) was added and 3.1 g of ultrapure water was added. Stir at 50 ° C. for 6 hours. As a result, a 25 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained.
This dispersion was solvent-substituted with PGME in the same manner as in Example 1 to obtain a silica particle (15) dispersion. To 2500 g of this silica particle (15) dispersion, 202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1), which is an organic resin for dispersion, was added, and a part of the solvent was removed with a rotary evaporator. Is removed to prepare an organic resin dispersion (15) of silica particles (15) having a solid concentration of 76.0% by weight.
この分散液を、実施例1と同様にPGMEに溶剤置換し、シリカ粒子(15)分散液を得る。このシリカ粒子(15)分散液2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%のシリカ粒子(15)の有機樹脂分散液(15)を作製する。 To 100 g of this dispersion, 7.48 g of γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicon Co., Ltd .: KBM-503, SiO 2 component 81.2%) was added and 3.1 g of ultrapure water was added. Stir at 50 ° C. for 6 hours. As a result, a 25 nm silica sol dispersion (solid content concentration: 40.5 wt%) surface-treated with a silane coupling agent is obtained.
This dispersion was solvent-substituted with PGME in the same manner as in Example 1 to obtain a silica particle (15) dispersion. To 2500 g of this silica particle (15) dispersion, 202.5 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1), which is an organic resin for dispersion, was added, and a part of the solvent was removed with a rotary evaporator. Is removed to prepare an organic resin dispersion (15) of silica particles (15) having a solid concentration of 76.0% by weight.
ハードコート膜形成用の塗布液(15)の調製
次いで、この有機樹脂分散液(15)75.31gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(15)が得られる。塗布液(15)の組成を表4,5に示す。 Preparation of coating liquid (15) for forming a hard coat film Next, 75.31 g of this organic resin dispersion (15) was added urethane acrylate (NK oligo UA-33H as in Example 1) as a curing organic resin. 32 g, 1.00 g of an acrylic silicone leveling agent (Disparon NSH-8430HF identical to Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 2.37 g of PGME and 12.50 g of acetone. Are sufficiently mixed to obtain a coating solution (15) having a solid concentration of 66.1% by weight. The compositions of the coating solution (15) are shown in Tables 4 and 5.
次いで、この有機樹脂分散液(15)75.31gに、硬化用有機樹脂としてウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.32gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(15)が得られる。塗布液(15)の組成を表4,5に示す。 Preparation of coating liquid (15) for forming a hard coat film Next, 75.31 g of this organic resin dispersion (15) was added urethane acrylate (NK oligo UA-33H as in Example 1) as a curing organic resin. 32 g, 1.00 g of an acrylic silicone leveling agent (Disparon NSH-8430HF identical to Example 1), 0.50 g of a photopolymerization initiator (Irgacure 184 identical to Example 1), 2.37 g of PGME and 12.50 g of acetone. Are sufficiently mixed to obtain a coating solution (15) having a solid concentration of 66.1% by weight. The compositions of the coating solution (15) are shown in Tables 4 and 5.
シリカ系中空粒子(A15)分散液の調製
シリカゾル(日揮触媒化成(株)製:SI-550、平均粒子径5nm、SiO2濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液1575gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液1575gを添加して、SiO2・Al2O3一次粒子分散液を得る。このときのモル比MOX/SiO2(A)=0.25、平均粒子径は13nmである。また、反応液のpHは12.0である。
次に、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液8370gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液2790gを添加して、複合酸化物粒子(二次粒子)の分散液が得られる。 Preparation of Silica-Based Hollow Particle (A15) Dispersion A mixture of 5.0 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20 wt%) and 999.5 g of pure water 80 While maintaining this temperature, 1575 g of a 3.0 wt% sodium silicate aqueous solution as SiO 2 and 1575 g of a 1.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added. , SiO 2 · Al 2 O 3 primary particle dispersion is obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.25, and the average particle size is 13 nm. The pH of the reaction solution is 12.0.
Next, 8370 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 2790 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to form composite oxide particles (secondary particles). A dispersion is obtained.
シリカゾル(日揮触媒化成(株)製:SI-550、平均粒子径5nm、SiO2濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液1575gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液1575gを添加して、SiO2・Al2O3一次粒子分散液を得る。このときのモル比MOX/SiO2(A)=0.25、平均粒子径は13nmである。また、反応液のpHは12.0である。
次に、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液8370gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液2790gを添加して、複合酸化物粒子(二次粒子)の分散液が得られる。 Preparation of Silica-Based Hollow Particle (A15) Dispersion A mixture of 5.0 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20 wt%) and 999.5 g of pure water 80 While maintaining this temperature, 1575 g of a 3.0 wt% sodium silicate aqueous solution as SiO 2 and 1575 g of a 1.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added. , SiO 2 · Al 2 O 3 primary particle dispersion is obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.25, and the average particle size is 13 nm. The pH of the reaction solution is 12.0.
Next, 8370 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 2790 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to form composite oxide particles (secondary particles). A dispersion is obtained.
このときのモル比MOX/SiO2(B)=0.13、平均粒子径は30nmである。また、反応液のpHは12.0である。
ついで、複合酸化物粒子の分散液を固形分濃度13重量%になるまで限外濾過膜で洗浄し、この分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して、固形分濃度20重量%のシリカ系中空粒子の水分散液を作製する。 At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size is 30 nm. The pH of the reaction solution is 12.0.
Next, the dispersion of the composite oxide particles was washed with an ultrafiltration membrane until the solid content concentration became 13% by weight. ) Was dropped to pH 1.0, and dealumination was performed. Next, the aluminum salt dissolved in the ultrafiltration membrane is separated and washed while adding 10 L of pH 3 hydrochloric acid aqueous solution and 5 L of pure water to prepare an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
ついで、複合酸化物粒子の分散液を固形分濃度13重量%になるまで限外濾過膜で洗浄し、この分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して、固形分濃度20重量%のシリカ系中空粒子の水分散液を作製する。 At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size is 30 nm. The pH of the reaction solution is 12.0.
Next, the dispersion of the composite oxide particles was washed with an ultrafiltration membrane until the solid content concentration became 13% by weight. ) Was dropped to pH 1.0, and dealumination was performed. Next, the aluminum salt dissolved in the ultrafiltration membrane is separated and washed while adding 10 L of pH 3 hydrochloric acid aqueous solution and 5 L of pure water to prepare an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
この水分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空粒子の水分散液が得られる。
Aqueous ammonia was added to this aqueous dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture was cooled to room temperature, and a cation exchange resin (manufactured by Mitsubishi Chemical Corporation). : Ion exchange for 3 hours using 400 g of Diaion SK1B), ion exchange for 3 hours using 200 g of anion exchange resin (Made by Mitsubishi Chemical Co., Ltd .: Diaion SA20A), and cation exchange resin (Mitsubishi) Using 200 g of Chemical Co., Ltd. (Diaion SK1B), ion exchange is performed at 80 ° C. for 3 hours to perform washing, and an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight is obtained.
さらに、限外濾過膜を用いて溶媒をメタノールに置換し、固形分濃度20重量%のシリカ系中空粒子のメタノール分散液を作製する。得られたシリカ系中空粒子の平均粒子径、屈折率を測定し、結果を表に示す。
ついで、固形分濃度20重量%のシリカ系中空粒子のメタノール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3.7gを添加し、50℃で加熱し、シリカ系中空粒子を表面処理する。さらに、ロータリーエバポレーターで溶媒をMIBKに置換し、固形分濃度20.5重量%の表面処理したシリカ系中空粒子(A15)のMIBK分散液を作製する。このシリカ系中空粒子(A15)の屈折率を測定し、結果を表に示す。 Further, the solvent is replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of silica-based hollow particles having a solid concentration of 20% by weight. The average particle diameter and refractive index of the obtained silica-based hollow particles were measured, and the results are shown in the table.
Next, 3.7 g of a methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of a methanol dispersion of silica-based hollow particles having a solid content concentration of 20% by weight, and heated at 50 ° C. to obtain silica. Surface treatment of the system hollow particles. Further, the solvent is replaced with MIBK by a rotary evaporator, and a MIBK dispersion of silica-based hollow particles (A15) subjected to surface treatment with a solid content concentration of 20.5% by weight is prepared. The refractive index of the silica-based hollow particles (A15) was measured, and the results are shown in the table.
ついで、固形分濃度20重量%のシリカ系中空粒子のメタノール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3.7gを添加し、50℃で加熱し、シリカ系中空粒子を表面処理する。さらに、ロータリーエバポレーターで溶媒をMIBKに置換し、固形分濃度20.5重量%の表面処理したシリカ系中空粒子(A15)のMIBK分散液を作製する。このシリカ系中空粒子(A15)の屈折率を測定し、結果を表に示す。 Further, the solvent is replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of silica-based hollow particles having a solid concentration of 20% by weight. The average particle diameter and refractive index of the obtained silica-based hollow particles were measured, and the results are shown in the table.
Next, 3.7 g of a methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of a methanol dispersion of silica-based hollow particles having a solid content concentration of 20% by weight, and heated at 50 ° C. to obtain silica. Surface treatment of the system hollow particles. Further, the solvent is replaced with MIBK by a rotary evaporator, and a MIBK dispersion of silica-based hollow particles (A15) subjected to surface treatment with a solid content concentration of 20.5% by weight is prepared. The refractive index of the silica-based hollow particles (A15) was measured, and the results are shown in the table.
反射防止層形成用の塗布液(15L)の調製
このシリカ系中空粒子(A15)分散液8.05gにジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製:DPE-6A、固形分濃度100重量%)1.07gと1,6-ヘキサンジオールジアクリレート(巴工業(株)製:SR-238F,固形分濃度100重量%)0.12gと撥水化材用反応性シリコンオイル(信越化学(株);X-22-174DX、固形分濃度100重量%)0.05gとシリコン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT-4314:固形分濃度30重量%)0.37gと光重合開始剤(ビ-エ-エスエフジャパン(株)製:ルシリンTPO,固形分濃度100重量%)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の塗布液(15L)を作製する。 Preparation of coating solution (15 L) for forming antireflection layer To 8.05 g of this silica-based hollow particle (A15) dispersion, dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: DPE-6A, solid content concentration: 100% by weight) ) 1.07 g, 1,6-hexanediol diacrylate (manufactured by Sakai Kogyo Co., Ltd .: SR-238F, solid concentration 100% by weight) and water-repellent reactive silicon oil (Shin-Etsu Chemical Co., Ltd.) ); X-22-174DX, solid content concentration 100 wt%) 0.05 g and silicon-modified polyurethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; purple light UT-4314: solid content concentration 30 wt%) 0.37 g and light 0.09 g of a polymerization initiator (manufactured by BISF Japan Co., Ltd .: Lucillin TPO, solid content concentration 100% by weight), 64.65 g of isopropyl alcohol, methyl isobutene Ketone 9.60 g, a mixture of isopropyl glycol 16.00 g, to prepare solid concentration of 3.0% by weight of the coating solution (15L).
このシリカ系中空粒子(A15)分散液8.05gにジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製:DPE-6A、固形分濃度100重量%)1.07gと1,6-ヘキサンジオールジアクリレート(巴工業(株)製:SR-238F,固形分濃度100重量%)0.12gと撥水化材用反応性シリコンオイル(信越化学(株);X-22-174DX、固形分濃度100重量%)0.05gとシリコン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT-4314:固形分濃度30重量%)0.37gと光重合開始剤(ビ-エ-エスエフジャパン(株)製:ルシリンTPO,固形分濃度100重量%)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の塗布液(15L)を作製する。 Preparation of coating solution (15 L) for forming antireflection layer To 8.05 g of this silica-based hollow particle (A15) dispersion, dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: DPE-6A, solid content concentration: 100% by weight) ) 1.07 g, 1,6-hexanediol diacrylate (manufactured by Sakai Kogyo Co., Ltd .: SR-238F, solid concentration 100% by weight) and water-repellent reactive silicon oil (Shin-Etsu Chemical Co., Ltd.) ); X-22-174DX, solid content concentration 100 wt%) 0.05 g and silicon-modified polyurethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; purple light UT-4314: solid content concentration 30 wt%) 0.37 g and light 0.09 g of a polymerization initiator (manufactured by BISF Japan Co., Ltd .: Lucillin TPO, solid content concentration 100% by weight), 64.65 g of isopropyl alcohol, methyl isobutene Ketone 9.60 g, a mixture of isopropyl glycol 16.00 g, to prepare solid concentration of 3.0% by weight of the coating solution (15L).
ハードコート膜付基材(15)の作製
ハードコート膜形成用の塗布液(15)を用いて実施例1と同様に膜付基材(15)を製造する。ハードコート膜の膜厚は12μmである。
得られた膜付基材(15)について、全光線透過率およびヘーズ、クラック、収縮率、カーリング性、鉛筆硬度、耐擦傷性を実施例1と同様に評価する。さらに、表面粗さ(Ra)を原子間力顕微鏡(Bruker(株)製:Dimension‐3100)を用いて10μm×10μmで測定する。結果を表11に示す。 Production of Substrate with Hard Coat Film (15) A substrate with film (15) is produced in the same manner as in Example 1 using the coating liquid (15) for forming a hard coat film. The thickness of the hard coat film is 12 μm.
For the obtained film-coated substrate (15), the total light transmittance and haze, cracks, shrinkage, curling properties, pencil hardness, and scratch resistance are evaluated in the same manner as in Example 1. Furthermore, the surface roughness (Ra) is measured at 10 μm × 10 μm using an atomic force microscope (manufactured by Bruker, Inc .: Dimension-3100). The results are shown in Table 11.
ハードコート膜形成用の塗布液(15)を用いて実施例1と同様に膜付基材(15)を製造する。ハードコート膜の膜厚は12μmである。
得られた膜付基材(15)について、全光線透過率およびヘーズ、クラック、収縮率、カーリング性、鉛筆硬度、耐擦傷性を実施例1と同様に評価する。さらに、表面粗さ(Ra)を原子間力顕微鏡(Bruker(株)製:Dimension‐3100)を用いて10μm×10μmで測定する。結果を表11に示す。 Production of Substrate with Hard Coat Film (15) A substrate with film (15) is produced in the same manner as in Example 1 using the coating liquid (15) for forming a hard coat film. The thickness of the hard coat film is 12 μm.
For the obtained film-coated substrate (15), the total light transmittance and haze, cracks, shrinkage, curling properties, pencil hardness, and scratch resistance are evaluated in the same manner as in Example 1. Furthermore, the surface roughness (Ra) is measured at 10 μm × 10 μm using an atomic force microscope (manufactured by Bruker, Inc .: Dimension-3100). The results are shown in Table 11.
反射防止層の形成
膜付基材(15)のハードコート膜上に反射防止層形成用の塗布液(15L)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で400mJ/cm2の紫外線を照射して硬化させて、反射防止層を形成する。このときの反射防止層の厚さは100nmである。
この反射防止層を有する膜付基材の全光線透過率、ヘーズ、反射率、クラック、鉛筆硬度、耐擦傷性をハードコート膜付基材(15)と同様に評価する。なお、屈折率は、エリプソメーター(ULVAC社製、EMS-1)により測定する。その結果を表12に示す。 After applying the coating solution (15 L) for forming the antireflection layer on the hard coat film of the base material with antireflection layer forming film (15) by the bar coater method (bar # 4) and drying at 80 ° C. for 120 seconds. Then, an antireflection layer is formed by irradiating and curing an ultraviolet ray of 400 mJ / cm 2 in an N 2 atmosphere. At this time, the thickness of the antireflection layer is 100 nm.
The total light transmittance, haze, reflectance, crack, pencil hardness, and scratch resistance of the film-coated substrate having this antireflection layer are evaluated in the same manner as the substrate with hard coat film (15). The refractive index is measured with an ellipsometer (ULVAC, EMS-1). The results are shown in Table 12.
膜付基材(15)のハードコート膜上に反射防止層形成用の塗布液(15L)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で400mJ/cm2の紫外線を照射して硬化させて、反射防止層を形成する。このときの反射防止層の厚さは100nmである。
この反射防止層を有する膜付基材の全光線透過率、ヘーズ、反射率、クラック、鉛筆硬度、耐擦傷性をハードコート膜付基材(15)と同様に評価する。なお、屈折率は、エリプソメーター(ULVAC社製、EMS-1)により測定する。その結果を表12に示す。 After applying the coating solution (15 L) for forming the antireflection layer on the hard coat film of the base material with antireflection layer forming film (15) by the bar coater method (bar # 4) and drying at 80 ° C. for 120 seconds. Then, an antireflection layer is formed by irradiating and curing an ultraviolet ray of 400 mJ / cm 2 in an N 2 atmosphere. At this time, the thickness of the antireflection layer is 100 nm.
The total light transmittance, haze, reflectance, crack, pencil hardness, and scratch resistance of the film-coated substrate having this antireflection layer are evaluated in the same manner as the substrate with hard coat film (15). The refractive index is measured with an ellipsometer (ULVAC, EMS-1). The results are shown in Table 12.
[実施例16]
シリカ系中空粒子(A16)分散液の調製
シリカゾル(日揮触媒化成(株)製:SI-550、平均粒子径5nm、SiO2濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液650gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液650gを添加して、SiO2・Al2O3一次粒子分散液が得られる。このときのモル比MOX/SiO2(A)=0.24、平均粒子径は13nmである。また、このときの反応液のpHは12.0である。 [Example 16]
Preparation of silica-based hollow particle (A16) dispersion Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20% by weight) 5.0 g and a mixture of 999.5 g of pure water 80 While maintaining this temperature, 650 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 650 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added. , SiO 2 .Al 2 O 3 primary particle dispersion is obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.24, and the average particle size is 13 nm. Further, the pH of the reaction solution at this time is 12.0.
シリカ系中空粒子(A16)分散液の調製
シリカゾル(日揮触媒化成(株)製:SI-550、平均粒子径5nm、SiO2濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液650gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液650gを添加して、SiO2・Al2O3一次粒子分散液が得られる。このときのモル比MOX/SiO2(A)=0.24、平均粒子径は13nmである。また、このときの反応液のpHは12.0である。 [Example 16]
Preparation of silica-based hollow particle (A16) dispersion Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20% by weight) 5.0 g and a mixture of 999.5 g of pure water 80 While maintaining this temperature, 650 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 650 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added. , SiO 2 .Al 2 O 3 primary particle dispersion is obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.24, and the average particle size is 13 nm. Further, the pH of the reaction solution at this time is 12.0.
次に、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液2940gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液980gを添加して、複合酸化物粒子(二次粒子)の分散液を作製する。このときのモル比MOX/SiO2(B)=0.13、平均粒子径は20nmである。また、このときの反応液のpHは12.0である。
次いで、実施例15と同じプロセスにより、脱アルミニウム処理、限外濾過膜による洗浄、イオン交換による洗浄を行って、固形分濃度20重量%のシリカ系中空粒子の水分散液が得られる。
さらに、実施例15と同じプロセスを経て、固形分濃度20.5重量%の表面処理したシリカ系中空粒子(A16)のMIBK分散液を作製する。このシリカ系中空粒子(A16)の屈折率を測定し、結果を表に示す。 Next, 2940 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 980 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to form composite oxide particles (secondary particles). A dispersion is prepared. At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size is 20 nm. Further, the pH of the reaction solution at this time is 12.0.
Subsequently, by the same process as in Example 15, dealumination treatment, washing with an ultrafiltration membrane, and washing by ion exchange are performed to obtain an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
Further, through the same process as in Example 15, a MIBK dispersion of silica-based hollow particles (A16) having a solid content concentration of 20.5% by weight and surface-treated is prepared. The refractive index of the silica-based hollow particles (A16) was measured, and the results are shown in the table.
次いで、実施例15と同じプロセスにより、脱アルミニウム処理、限外濾過膜による洗浄、イオン交換による洗浄を行って、固形分濃度20重量%のシリカ系中空粒子の水分散液が得られる。
さらに、実施例15と同じプロセスを経て、固形分濃度20.5重量%の表面処理したシリカ系中空粒子(A16)のMIBK分散液を作製する。このシリカ系中空粒子(A16)の屈折率を測定し、結果を表に示す。 Next, 2940 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 980 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to form composite oxide particles (secondary particles). A dispersion is prepared. At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size is 20 nm. Further, the pH of the reaction solution at this time is 12.0.
Subsequently, by the same process as in Example 15, dealumination treatment, washing with an ultrafiltration membrane, and washing by ion exchange are performed to obtain an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
Further, through the same process as in Example 15, a MIBK dispersion of silica-based hollow particles (A16) having a solid content concentration of 20.5% by weight and surface-treated is prepared. The refractive index of the silica-based hollow particles (A16) was measured, and the results are shown in the table.
反射防止層形成用の塗布液(16L)の調製
このシリカ系中空粒子(A16)の分散液を用いた以外は実施例15と同様にして、固形分濃度3.0重量%の塗布液(16L)を調製した。
反射防止層の形成
実施例15と同様にして、ハードコート膜付の基材(16)を作製する。上述の塗布液(16L)を用いた以外は実施例15と同様にして、ハードコート膜上に反射防止層を形成する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材(16)を実施例15と同様に評価する。 Preparation of coating solution (16 L) for forming an antireflection layer A coating solution (16 L) having a solid concentration of 3.0% by weight was prepared in the same manner as in Example 15 except that this dispersion of silica-based hollow particles (A16) was used. ) Was prepared.
Formation of Antireflection Layer A substrate (16) with a hard coat film is produced in the same manner as in Example 15. An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above coating solution (16L) was used. At this time, the thickness of the antireflection layer is 100 nm. The base material (16) with the antireflection layer is evaluated in the same manner as in Example 15.
このシリカ系中空粒子(A16)の分散液を用いた以外は実施例15と同様にして、固形分濃度3.0重量%の塗布液(16L)を調製した。
反射防止層の形成
実施例15と同様にして、ハードコート膜付の基材(16)を作製する。上述の塗布液(16L)を用いた以外は実施例15と同様にして、ハードコート膜上に反射防止層を形成する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材(16)を実施例15と同様に評価する。 Preparation of coating solution (16 L) for forming an antireflection layer A coating solution (16 L) having a solid concentration of 3.0% by weight was prepared in the same manner as in Example 15 except that this dispersion of silica-based hollow particles (A16) was used. ) Was prepared.
Formation of Antireflection Layer A substrate (16) with a hard coat film is produced in the same manner as in Example 15. An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above coating solution (16L) was used. At this time, the thickness of the antireflection layer is 100 nm. The base material (16) with the antireflection layer is evaluated in the same manner as in Example 15.
[実施例17]
シリカ系中空粒子(A17)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB-120、平均粒子径25nm、SiO2・Al2O3濃度20重量%、固形分中Al2O2含有量27重量%)100gと純水3900gの混合物を98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液405gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液405gを添加して、SiO2・Al2O3一次粒子分散液を得る。このときのモル比MOX/SiO2(A)=0.2、平均粒子径は28nmである。また、このときの反応液のpHは12.0である。 [Example 17]
Preparation of silica-based hollow particle (A17) dispersion Silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20% by weight, Al 2 O in solid content (2 content 27 wt%) A mixture of 100 g and pure water 3900 g was heated to 98 ° C., and while maintaining this temperature, 405 g of a sodium silicate aqueous solution having a concentration of 1.5 wt% as SiO 2 and Al 2 O 3 405 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight is added to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. In this case, the molar ratio MO X / SiO 2 (A) = 0.2, and the average particle size is 28 nm. Further, the pH of the reaction solution at this time is 12.0.
シリカ系中空粒子(A17)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB-120、平均粒子径25nm、SiO2・Al2O3濃度20重量%、固形分中Al2O2含有量27重量%)100gと純水3900gの混合物を98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液405gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液405gを添加して、SiO2・Al2O3一次粒子分散液を得る。このときのモル比MOX/SiO2(A)=0.2、平均粒子径は28nmである。また、このときの反応液のpHは12.0である。 [Example 17]
Preparation of silica-based hollow particle (A17) dispersion Silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20% by weight, Al 2 O in solid content (2 content 27 wt%) A mixture of 100 g and pure water 3900 g was heated to 98 ° C., and while maintaining this temperature, 405 g of a sodium silicate aqueous solution having a concentration of 1.5 wt% as SiO 2 and Al 2 O 3 405 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight is added to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. In this case, the molar ratio MO X / SiO 2 (A) = 0.2, and the average particle size is 28 nm. Further, the pH of the reaction solution at this time is 12.0.
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1607gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液535gを添加して複合酸化物粒子(二次粒子)の分散液を得る。このときのモル比MOX/SiO2(B)=0.07、平均粒子径は40nmである。また、このときの反応液のpHは12.0である。
次いで、実施例15と同じプロセスにより、脱アルミニウム処理、限外濾過膜による洗浄、イオン交換による洗浄を行い、固形分濃度20重量%のシリカ系中空粒子の水分散液を作製する。
さらに、実施例15と同じプロセスを経て、固形分濃度20.5重量%の表面処理したシリカ系中空粒子(A17)のMIBK分散液を調製する。このシリカ系中空粒子(A17)の屈折率を測定し、結果を表に示す。 Next, 1607 g of 1.5 wt% sodium silicate aqueous solution as SiO 2 and 535 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added to disperse the composite oxide particles (secondary particles). Obtain a liquid. At this time, the molar ratio MO X / SiO 2 (B) = 0.07, and the average particle size is 40 nm. Further, the pH of the reaction solution at this time is 12.0.
Next, by the same process as in Example 15, dealumination treatment, washing with an ultrafiltration membrane, and washing by ion exchange are performed to produce an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
Further, through the same process as in Example 15, a MIBK dispersion of silica-based hollow particles (A17) having a solid content concentration of 20.5% by weight and surface-treated is prepared. The refractive index of the silica-based hollow particles (A17) was measured, and the results are shown in the table.
次いで、実施例15と同じプロセスにより、脱アルミニウム処理、限外濾過膜による洗浄、イオン交換による洗浄を行い、固形分濃度20重量%のシリカ系中空粒子の水分散液を作製する。
さらに、実施例15と同じプロセスを経て、固形分濃度20.5重量%の表面処理したシリカ系中空粒子(A17)のMIBK分散液を調製する。このシリカ系中空粒子(A17)の屈折率を測定し、結果を表に示す。 Next, 1607 g of 1.5 wt% sodium silicate aqueous solution as SiO 2 and 535 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added to disperse the composite oxide particles (secondary particles). Obtain a liquid. At this time, the molar ratio MO X / SiO 2 (B) = 0.07, and the average particle size is 40 nm. Further, the pH of the reaction solution at this time is 12.0.
Next, by the same process as in Example 15, dealumination treatment, washing with an ultrafiltration membrane, and washing by ion exchange are performed to produce an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
Further, through the same process as in Example 15, a MIBK dispersion of silica-based hollow particles (A17) having a solid content concentration of 20.5% by weight and surface-treated is prepared. The refractive index of the silica-based hollow particles (A17) was measured, and the results are shown in the table.
反射防止層形成用の塗布液(17L)の調製
このシリカ系中空粒子(A17)の分散液を用いた以外は実施例15と同様にして、固形分濃度3.0重量%の塗布液(17L)を調製した。
反射防止層の形成
ハードコート膜付の基材(17)を実施例15と同様に作製する。上述の塗布液(17L)を用いた以外は実施例15と同様にして、ハードコート膜上に反射防止層を形成する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材(17)を実施例15と同様に評価する。 Preparation of coating solution (17 L) for forming antireflection layer A coating solution (17 L) having a solid content concentration of 3.0% by weight was prepared in the same manner as in Example 15 except that this dispersion of silica-based hollow particles (A17) was used. ) Was prepared.
Formation of Antireflection Layer A substrate (17) with a hard coat film is produced in the same manner as in Example 15. An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above coating solution (17L) was used. At this time, the thickness of the antireflection layer is 100 nm. The substrate (17) with the antireflection layer is evaluated in the same manner as in Example 15.
このシリカ系中空粒子(A17)の分散液を用いた以外は実施例15と同様にして、固形分濃度3.0重量%の塗布液(17L)を調製した。
反射防止層の形成
ハードコート膜付の基材(17)を実施例15と同様に作製する。上述の塗布液(17L)を用いた以外は実施例15と同様にして、ハードコート膜上に反射防止層を形成する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材(17)を実施例15と同様に評価する。 Preparation of coating solution (17 L) for forming antireflection layer A coating solution (17 L) having a solid content concentration of 3.0% by weight was prepared in the same manner as in Example 15 except that this dispersion of silica-based hollow particles (A17) was used. ) Was prepared.
Formation of Antireflection Layer A substrate (17) with a hard coat film is produced in the same manner as in Example 15. An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above coating solution (17L) was used. At this time, the thickness of the antireflection layer is 100 nm. The substrate (17) with the antireflection layer is evaluated in the same manner as in Example 15.
[実施例18]
シリカ系粒子(B18)分散液の調製
シリカゾル(日揮触媒化成(株)製:SI-550、平均粒子径5nm、SiO2濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液321gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液321gを添加して、SiO2・Al2O3一次粒子分散液を得た。このときのモル比MOX/SiO2(A)=0.23、平均粒子径は7nmであった。また、このときの反応液のpHは12.0であった。 [Example 18]
Preparation of dispersion of silica-based particles (B18) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20% by weight) 5.0 g and a mixture of 999.5 g of pure water at 80 ° C. While maintaining this temperature, 321 g of a 3.0 wt% sodium silicate aqueous solution as SiO 2 and 321 g of a 1.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added, A SiO 2 .Al 2 O 3 primary particle dispersion was obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.23, and the average particle size was 7 nm. Further, the pH of the reaction solution at this time was 12.0.
シリカ系粒子(B18)分散液の調製
シリカゾル(日揮触媒化成(株)製:SI-550、平均粒子径5nm、SiO2濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液321gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液321gを添加して、SiO2・Al2O3一次粒子分散液を得た。このときのモル比MOX/SiO2(A)=0.23、平均粒子径は7nmであった。また、このときの反応液のpHは12.0であった。 [Example 18]
Preparation of dispersion of silica-based particles (B18) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20% by weight) 5.0 g and a mixture of 999.5 g of pure water at 80 ° C. While maintaining this temperature, 321 g of a 3.0 wt% sodium silicate aqueous solution as SiO 2 and 321 g of a 1.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added, A SiO 2 .Al 2 O 3 primary particle dispersion was obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.23, and the average particle size was 7 nm. Further, the pH of the reaction solution at this time was 12.0.
ついで、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液1231gとAl2O3としての濃度1.5重量%のアルミン酸ナトリウム水溶液410gを添加して複合酸化物粒子(二次粒子)の分散液を得た。このときのモル比MOX/SiO2(B)=0.13、平均粒子径は14nmであった。また、このときの反応液のpHは12.0であった。
次いで、実施例15と同じプロセスにより、脱アルミニウム処理、限外濾過膜による洗浄、イオン交換による洗浄を行い、固形分濃度20重量%のシリカ系中空粒子の水分散液を作製する。 Next, 1231 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 410 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to disperse the composite oxide particles (secondary particles). A liquid was obtained. At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size was 14 nm. Further, the pH of the reaction solution at this time was 12.0.
Next, by the same process as in Example 15, dealumination treatment, washing with an ultrafiltration membrane, and washing by ion exchange are performed to produce an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
次いで、実施例15と同じプロセスにより、脱アルミニウム処理、限外濾過膜による洗浄、イオン交換による洗浄を行い、固形分濃度20重量%のシリカ系中空粒子の水分散液を作製する。 Next, 1231 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 410 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to disperse the composite oxide particles (secondary particles). A liquid was obtained. At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size was 14 nm. Further, the pH of the reaction solution at this time was 12.0.
Next, by the same process as in Example 15, dealumination treatment, washing with an ultrafiltration membrane, and washing by ion exchange are performed to produce an aqueous dispersion of silica-based hollow particles having a solid content concentration of 20% by weight.
次いで実施例15と同様に、溶媒をメタノールに置換した固形分濃度20重量%のシリカ系中空粒子のメタノール分散液を作製する。ここで得られるシリカ系中空粒子の平均粒子径、屈折率を測定し、結果を表に示す。
さらに、実施例15と同じプロセスにより、固形分濃度20.5重量%の表面処理したシリカ系中空粒子(B18)のMIBK分散液を調製する。このシリカ系中空粒子(B18)の屈折率を測定し、結果を表に示す。 Next, in the same manner as in Example 15, a methanol dispersion of silica-based hollow particles having a solid content concentration of 20% by weight in which the solvent is replaced with methanol is prepared. The average particle diameter and refractive index of the silica-based hollow particles obtained here are measured, and the results are shown in the table.
Further, according to the same process as in Example 15, a MIBK dispersion of silica-based hollow particles (B18) having a solid content concentration of 20.5% by weight and surface-treated is prepared. The refractive index of the silica-based hollow particles (B18) was measured, and the results are shown in the table.
さらに、実施例15と同じプロセスにより、固形分濃度20.5重量%の表面処理したシリカ系中空粒子(B18)のMIBK分散液を調製する。このシリカ系中空粒子(B18)の屈折率を測定し、結果を表に示す。 Next, in the same manner as in Example 15, a methanol dispersion of silica-based hollow particles having a solid content concentration of 20% by weight in which the solvent is replaced with methanol is prepared. The average particle diameter and refractive index of the silica-based hollow particles obtained here are measured, and the results are shown in the table.
Further, according to the same process as in Example 15, a MIBK dispersion of silica-based hollow particles (B18) having a solid content concentration of 20.5% by weight and surface-treated is prepared. The refractive index of the silica-based hollow particles (B18) was measured, and the results are shown in the table.
反射防止層形成用の塗布液(18L)の調製
実施例17と同様にして調製した固形分濃度20.5重量%の表面処理したシリカ系中空粒子分散液(A17)7.90gに、固形分濃度20.5重量%のシリカ系中空粒子のメタノール分散液0.15g、ジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製:DPE-6A、固形分濃度100重量%)1.07gと1,6-ヘキサンジオールジアクリレート(巴工業(株)製:SR-238F,固形分濃度100重量%)0.12gと撥水化用の反応性シリコンオイル(信越化学(株);X-22-174DX、固形分濃度100重量%)0.05gとシリコン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT-4314:固形分濃度30重量%)0.37gと光重合開始剤(BASFジャパン(株))製:ルシリンTPO,固形分濃度100重量%)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の塗布液(18L)を作製する。
反射防止層の形成
この塗布液(18L)を用いて反射防止層を形成する以外は実施例15と同様に、反射防止層を有する基材(18)を作製する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材(18)を実施例15と同様に評価する。 Preparation of coating solution (18 L) for formation of antireflection layer To 7.90 g of surface-treated silica-based hollow particle dispersion (A17) having a solid content concentration of 20.5% by weight prepared in the same manner as in Example 17, 0.15 g of a silica dispersion of silica-based hollow particles having a concentration of 20.5 wt%, dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: DPE-6A, solid content concentration 100 wt%) 1.07 g and 1,6 -0.12 g of hexanediol diacrylate (manufactured by Sakai Kogyo Co., Ltd .: SR-238F, solid content concentration 100% by weight) and reactive silicone oil for water repellency (Shin-Etsu Chemical Co., Ltd .; X-22-174DX, Photopolymerization started with 0.05 g of solid content concentration (100% by weight) and 0.37 g of silicon-modified polyurethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; Purple light UT-4314: solid content concentration of 30% by weight). (BASF Japan Co., Ltd.): 0.09 g, isopropyl alcohol 64.65 g, methyl isobutyl ketone 9.60 g, and isopropyl glycol 16.00 g were mixed to obtain a solid concentration of 3 Prepare a coating solution (18 L) of 0% by weight.
Formation of Antireflection Layer A substrate (18) having an antireflection layer is produced in the same manner as in Example 15 except that an antireflection layer is formed using this coating solution (18L). At this time, the thickness of the antireflection layer is 100 nm. The substrate (18) with the antireflection layer is evaluated in the same manner as in Example 15.
実施例17と同様にして調製した固形分濃度20.5重量%の表面処理したシリカ系中空粒子分散液(A17)7.90gに、固形分濃度20.5重量%のシリカ系中空粒子のメタノール分散液0.15g、ジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製:DPE-6A、固形分濃度100重量%)1.07gと1,6-ヘキサンジオールジアクリレート(巴工業(株)製:SR-238F,固形分濃度100重量%)0.12gと撥水化用の反応性シリコンオイル(信越化学(株);X-22-174DX、固形分濃度100重量%)0.05gとシリコン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT-4314:固形分濃度30重量%)0.37gと光重合開始剤(BASFジャパン(株))製:ルシリンTPO,固形分濃度100重量%)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の塗布液(18L)を作製する。
反射防止層の形成
この塗布液(18L)を用いて反射防止層を形成する以外は実施例15と同様に、反射防止層を有する基材(18)を作製する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材(18)を実施例15と同様に評価する。 Preparation of coating solution (18 L) for formation of antireflection layer To 7.90 g of surface-treated silica-based hollow particle dispersion (A17) having a solid content concentration of 20.5% by weight prepared in the same manner as in Example 17, 0.15 g of a silica dispersion of silica-based hollow particles having a concentration of 20.5 wt%, dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: DPE-6A, solid content concentration 100 wt%) 1.07 g and 1,6 -0.12 g of hexanediol diacrylate (manufactured by Sakai Kogyo Co., Ltd .: SR-238F, solid content concentration 100% by weight) and reactive silicone oil for water repellency (Shin-Etsu Chemical Co., Ltd .; X-22-174DX, Photopolymerization started with 0.05 g of solid content concentration (100% by weight) and 0.37 g of silicon-modified polyurethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; Purple light UT-4314: solid content concentration of 30% by weight). (BASF Japan Co., Ltd.): 0.09 g, isopropyl alcohol 64.65 g, methyl isobutyl ketone 9.60 g, and isopropyl glycol 16.00 g were mixed to obtain a solid concentration of 3 Prepare a coating solution (18 L) of 0% by weight.
Formation of Antireflection Layer A substrate (18) having an antireflection layer is produced in the same manner as in Example 15 except that an antireflection layer is formed using this coating solution (18L). At this time, the thickness of the antireflection layer is 100 nm. The substrate (18) with the antireflection layer is evaluated in the same manner as in Example 15.
[実施例19]
シリカ系粒子(B19)分散液の調製
シリカゾル(日揮触媒化成(株)製:カタロイドSI-30、SiO2濃度40.5重量%、平均粒子径23nm、屈折率1.46)1000gに陽イオン交換樹脂(三菱化学(株)製:SK-1BH)を960g添加して30分撹拌し、その後イオン交換樹脂を分離する。さらに、実施例15と同様に陰イオン交換、陽イオン交換により洗浄し、濃度48重量%のシリカ系粒子の水分散液を得る。
次いで、実施例15と同じプロセス(メタノール溶媒置換、表面処理、MIBK溶媒置換)を経て、固形分濃度20.5重量%の表面処理したシリカ系粒子(B19)のMIBK分散液を作製する。このシリカ系粒子(B19)の屈折率を測定し、結果を表に示す。 [Example 19]
Preparation of dispersion of silica-based particles (B19) Cation exchange to 1000 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-30, SiO 2 concentration 40.5 wt%, average particle diameter 23 nm, refractive index 1.46) 960 g of resin (manufactured by Mitsubishi Chemical Corporation: SK-1BH) is added and stirred for 30 minutes, and then the ion exchange resin is separated. Further, washing is performed by anion exchange and cation exchange in the same manner as in Example 15 to obtain an aqueous dispersion of silica-based particles having a concentration of 48% by weight.
Next, the same process (methanol solvent substitution, surface treatment, MIBK solvent substitution) as in Example 15 is carried out to prepare a MIBK dispersion liquid of surface-treated silica-based particles (B19) having a solid content concentration of 20.5% by weight. The refractive index of the silica-based particles (B19) was measured, and the results are shown in the table.
シリカ系粒子(B19)分散液の調製
シリカゾル(日揮触媒化成(株)製:カタロイドSI-30、SiO2濃度40.5重量%、平均粒子径23nm、屈折率1.46)1000gに陽イオン交換樹脂(三菱化学(株)製:SK-1BH)を960g添加して30分撹拌し、その後イオン交換樹脂を分離する。さらに、実施例15と同様に陰イオン交換、陽イオン交換により洗浄し、濃度48重量%のシリカ系粒子の水分散液を得る。
次いで、実施例15と同じプロセス(メタノール溶媒置換、表面処理、MIBK溶媒置換)を経て、固形分濃度20.5重量%の表面処理したシリカ系粒子(B19)のMIBK分散液を作製する。このシリカ系粒子(B19)の屈折率を測定し、結果を表に示す。 [Example 19]
Preparation of dispersion of silica-based particles (B19) Cation exchange to 1000 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-30, SiO 2 concentration 40.5 wt%, average particle diameter 23 nm, refractive index 1.46) 960 g of resin (manufactured by Mitsubishi Chemical Corporation: SK-1BH) is added and stirred for 30 minutes, and then the ion exchange resin is separated. Further, washing is performed by anion exchange and cation exchange in the same manner as in Example 15 to obtain an aqueous dispersion of silica-based particles having a concentration of 48% by weight.
Next, the same process (methanol solvent substitution, surface treatment, MIBK solvent substitution) as in Example 15 is carried out to prepare a MIBK dispersion liquid of surface-treated silica-based particles (B19) having a solid content concentration of 20.5% by weight. The refractive index of the silica-based particles (B19) was measured, and the results are shown in the table.
反射防止層形成用の塗布液(19L)の調製
実施例18の固形分濃度20.5重量%のシリカ系粒子のメタノール分散液に代えて、固形分濃度20.5重量%のシリカ系粒子(B19)のMIBK分散液を用いた以外は実施例18と同様にして、固形分濃度3.0重量%の塗布液(19L)を調製する。
反射防止層の形成
この塗布液(19L)を用いて反射防止層を形成する以外は実施例15と同様にして、反射防止層を有する基材(19)を作製する。このときの反射防止層の厚さは100nmである。この基材(19)を実施例15と同様に評価する。 Preparation of coating solution (19 L) for formation of antireflection layer Instead of the methanol dispersion of silica-based particles having a solid content concentration of 20.5 wt% in Example 18, silica-based particles having a solid content concentration of 20.5 wt% ( A coating solution (19 L) having a solid content concentration of 3.0% by weight is prepared in the same manner as in Example 18 except that the MIBK dispersion of B19) is used.
Formation of Antireflection Layer A substrate (19) having an antireflection layer is produced in the same manner as in Example 15 except that the coating solution (19L) is used to form an antireflection layer. At this time, the thickness of the antireflection layer is 100 nm. This base material (19) is evaluated in the same manner as in Example 15.
実施例18の固形分濃度20.5重量%のシリカ系粒子のメタノール分散液に代えて、固形分濃度20.5重量%のシリカ系粒子(B19)のMIBK分散液を用いた以外は実施例18と同様にして、固形分濃度3.0重量%の塗布液(19L)を調製する。
反射防止層の形成
この塗布液(19L)を用いて反射防止層を形成する以外は実施例15と同様にして、反射防止層を有する基材(19)を作製する。このときの反射防止層の厚さは100nmである。この基材(19)を実施例15と同様に評価する。 Preparation of coating solution (19 L) for formation of antireflection layer Instead of the methanol dispersion of silica-based particles having a solid content concentration of 20.5 wt% in Example 18, silica-based particles having a solid content concentration of 20.5 wt% ( A coating solution (19 L) having a solid content concentration of 3.0% by weight is prepared in the same manner as in Example 18 except that the MIBK dispersion of B19) is used.
Formation of Antireflection Layer A substrate (19) having an antireflection layer is produced in the same manner as in Example 15 except that the coating solution (19L) is used to form an antireflection layer. At this time, the thickness of the antireflection layer is 100 nm. This base material (19) is evaluated in the same manner as in Example 15.
[実施例20]
反射防止層形成用の塗布液(20L)の調製
実施例15で調製した固形分濃度20.5重量%の表面処理したシリカ系中空粒子(A15)分散液8.05gに、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)0.12g、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)1.07g、撥水化材用反応性シリコンオイル(信越化学(株);X-22-174DX、固形分濃度100重量%)0.05g、とシリコン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT-4314:固形分濃度30重量%)0.37gと光重合開始剤(BASFジャパン(株)製:ルシリンTPO)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の塗布液(20L)を調製した。 [Example 20]
Preparation of coating solution (20 L) for formation of antireflection layer To 8.05 g of a surface-treated silica-based hollow particle (A15) dispersion having a solid content concentration of 20.5% by weight prepared in Example 15, an organic resin for dispersion was used. 0.12 g of a certain dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1), 1.07 g of a urethane acrylate that is a curing organic resin (the same NK oligo UA-33H as in Example 1), Reactive silicone oil for water repellent material (Shin-Etsu Chemical Co., Ltd .; X-22-174DX, solid content concentration: 100% by weight) 0.05 g, and silicon-modified polyurethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; Shikko UT) -4314: solid content concentration 30% by weight) 0.37 g, photopolymerization initiator (BASF Japan KK: Lucillin TPO) 0.09 g and isopropyl alcohol 6 .65G, methyl isobutyl ketone 9.60 g, a mixture of isopropyl glycol 16.00 g, solid content concentration of 3.0% by weight of the coating solution (20L) was prepared.
反射防止層形成用の塗布液(20L)の調製
実施例15で調製した固形分濃度20.5重量%の表面処理したシリカ系中空粒子(A15)分散液8.05gに、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)0.12g、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)1.07g、撥水化材用反応性シリコンオイル(信越化学(株);X-22-174DX、固形分濃度100重量%)0.05g、とシリコン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT-4314:固形分濃度30重量%)0.37gと光重合開始剤(BASFジャパン(株)製:ルシリンTPO)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の塗布液(20L)を調製した。 [Example 20]
Preparation of coating solution (20 L) for formation of antireflection layer To 8.05 g of a surface-treated silica-based hollow particle (A15) dispersion having a solid content concentration of 20.5% by weight prepared in Example 15, an organic resin for dispersion was used. 0.12 g of a certain dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1), 1.07 g of a urethane acrylate that is a curing organic resin (the same NK oligo UA-33H as in Example 1), Reactive silicone oil for water repellent material (Shin-Etsu Chemical Co., Ltd .; X-22-174DX, solid content concentration: 100% by weight) 0.05 g, and silicon-modified polyurethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; Shikko UT) -4314: solid content concentration 30% by weight) 0.37 g, photopolymerization initiator (BASF Japan KK: Lucillin TPO) 0.09 g and isopropyl alcohol 6 .65G, methyl isobutyl ketone 9.60 g, a mixture of isopropyl glycol 16.00 g, solid content concentration of 3.0% by weight of the coating solution (20L) was prepared.
反射防止層の形成
実施例15と同様にして、ハードコート膜付の基材(15)を作製する。この塗布液(20L)を用いた以外は実施例15と同様にして、ハードコート膜上に反射防止層材(20)を形成する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材(20)を実施例15と同様に評価する。 Formation of Antireflection Layer A substrate (15) with a hard coat film is produced in the same manner as in Example 15. An antireflection layer material (20) is formed on the hard coat film in the same manner as in Example 15 except that this coating solution (20L) is used. At this time, the thickness of the antireflection layer is 100 nm. The base material (20) with the antireflection layer is evaluated in the same manner as in Example 15.
実施例15と同様にして、ハードコート膜付の基材(15)を作製する。この塗布液(20L)を用いた以外は実施例15と同様にして、ハードコート膜上に反射防止層材(20)を形成する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材(20)を実施例15と同様に評価する。 Formation of Antireflection Layer A substrate (15) with a hard coat film is produced in the same manner as in Example 15. An antireflection layer material (20) is formed on the hard coat film in the same manner as in Example 15 except that this coating solution (20L) is used. At this time, the thickness of the antireflection layer is 100 nm. The base material (20) with the antireflection layer is evaluated in the same manner as in Example 15.
[実施例21]
ハードコート膜付基材(21)の作製
実施例15で調製したハードコート膜形成用の塗布液(15)を、実施例1と同様にTACフィルムに塗布し、膜厚12μmのハードコート膜を形成した。ハードコート膜の物理性状等は実施例15と同じと表記した。 [Example 21]
Preparation of substrate (21) with hard coat film The coating liquid (15) for forming the hard coat film prepared in Example 15 was applied to the TAC film in the same manner as in Example 1, and a hard coat film having a thickness of 12 μm was formed. Formed. The physical properties and the like of the hard coat film are indicated as the same as in Example 15.
ハードコート膜付基材(21)の作製
実施例15で調製したハードコート膜形成用の塗布液(15)を、実施例1と同様にTACフィルムに塗布し、膜厚12μmのハードコート膜を形成した。ハードコート膜の物理性状等は実施例15と同じと表記した。 [Example 21]
Preparation of substrate (21) with hard coat film The coating liquid (15) for forming the hard coat film prepared in Example 15 was applied to the TAC film in the same manner as in Example 1, and a hard coat film having a thickness of 12 μm was formed. Formed. The physical properties and the like of the hard coat film are indicated as the same as in Example 15.
反射防止層の形成
ついで、実施例15と同様にして調製した固形分濃度3.0重量%の反射防止層形成用の塗布液(15)を用いた以外は同様にして反射防止層を形成した。このときの反射防止層の厚さは100nmであった。この反射防止層付きの基材の全光線透過率、ヘーズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。 Formation of Antireflection Layer Next, an antireflection layer was formed in the same manner except that the coating solution (15) for forming an antireflection layer having a solid content concentration of 3.0% by weight prepared in the same manner as in Example 15 was used. . At this time, the thickness of the antireflection layer was 100 nm. The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with the antireflection layer are shown in the table.
ついで、実施例15と同様にして調製した固形分濃度3.0重量%の反射防止層形成用の塗布液(15)を用いた以外は同様にして反射防止層を形成した。このときの反射防止層の厚さは100nmであった。この反射防止層付きの基材の全光線透過率、ヘーズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。 Formation of Antireflection Layer Next, an antireflection layer was formed in the same manner except that the coating solution (15) for forming an antireflection layer having a solid content concentration of 3.0% by weight prepared in the same manner as in Example 15 was used. . At this time, the thickness of the antireflection layer was 100 nm. The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with the antireflection layer are shown in the table.
[実施例22]
ハードコート膜形成用の塗布液(22)の調製
実施例15で調製した固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(15)80.38gを用意し、これに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.88gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.53gとPGME0.21gとアセトン9.0gを充分に混合して、固形分濃度70.6重量%の塗布液(22)を調製した。塗布液(22)の組成を表に示す。 [Example 22]
Preparation of coating liquid (22) for forming hard coat film 80.38 g of an organic resin dispersion (15) of silica particles having a solid content concentration of 76.0% by weight prepared in Example 15 was prepared and used for curing. 8.88 g of organic resin urethane acrylate (NK oligo UA-33H same as in Example 1), 1.00 g of acrylic silicone leveling agent (Disparon NSH-8430HF same as in Example 1) and photopolymerization initiator ( The same Irgacure 184 as in Example 1) 0.53 g, 0.21 g of PGME, and 9.0 g of acetone were sufficiently mixed to prepare a coating solution (22) having a solid content concentration of 70.6% by weight. The composition of the coating liquid (22) is shown in the table.
ハードコート膜形成用の塗布液(22)の調製
実施例15で調製した固形分濃度76.0重量%のシリカ粒子の有機樹脂分散液(15)80.38gを用意し、これに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴ UA-33H)8.88gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと光重合開始剤(実施例1と同一のイルガキュア184)0.53gとPGME0.21gとアセトン9.0gを充分に混合して、固形分濃度70.6重量%の塗布液(22)を調製した。塗布液(22)の組成を表に示す。 [Example 22]
Preparation of coating liquid (22) for forming hard coat film 80.38 g of an organic resin dispersion (15) of silica particles having a solid content concentration of 76.0% by weight prepared in Example 15 was prepared and used for curing. 8.88 g of organic resin urethane acrylate (NK oligo UA-33H same as in Example 1), 1.00 g of acrylic silicone leveling agent (Disparon NSH-8430HF same as in Example 1) and photopolymerization initiator ( The same Irgacure 184 as in Example 1) 0.53 g, 0.21 g of PGME, and 9.0 g of acetone were sufficiently mixed to prepare a coating solution (22) having a solid content concentration of 70.6% by weight. The composition of the coating liquid (22) is shown in the table.
ハードコート膜付基材(22)の作製
この塗布液(22)を用いた以外は実施例15と同様にしてハードコート膜付基材(22)を製造する。ハードコート膜の膜厚は12μmである。得られた膜付基材(22)を実施例15と同様に評価する。 Production of substrate (22) with a hard coat film A substrate (22) with a hard coat film is produced in the same manner as in Example 15 except that this coating solution (22) is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (22) is evaluated in the same manner as in Example 15.
この塗布液(22)を用いた以外は実施例15と同様にしてハードコート膜付基材(22)を製造する。ハードコート膜の膜厚は12μmである。得られた膜付基材(22)を実施例15と同様に評価する。 Production of substrate (22) with a hard coat film A substrate (22) with a hard coat film is produced in the same manner as in Example 15 except that this coating solution (22) is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (22) is evaluated in the same manner as in Example 15.
反射防止層の形成
本実施例のハードコート膜付基材(22)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmであった。この反射防止層を持つ基材を実施例15と同様に評価する。 Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the substrate (22) with a hard coat film of this example was used. The thickness of the antireflection layer was 100 nm. The substrate having this antireflection layer is evaluated in the same manner as in Example 15.
本実施例のハードコート膜付基材(22)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmであった。この反射防止層を持つ基材を実施例15と同様に評価する。 Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the substrate (22) with a hard coat film of this example was used. The thickness of the antireflection layer was 100 nm. The substrate having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例23]
実施例3で調製された塗布液により作製された透明被膜付基材(3)を、本実施例のハードコート膜付基材(23)として適用する。ハードコート膜の膜厚は12μmであった。このハードコート膜付基材(23)を実施例15と同様に評価する。 [Example 23]
The substrate (3) with a transparent coating prepared by the coating solution prepared in Example 3 is applied as the substrate (23) with a hard coat film of this example. The film thickness of the hard coat film was 12 μm. This base material with a hard coat film (23) is evaluated in the same manner as in Example 15.
実施例3で調製された塗布液により作製された透明被膜付基材(3)を、本実施例のハードコート膜付基材(23)として適用する。ハードコート膜の膜厚は12μmであった。このハードコート膜付基材(23)を実施例15と同様に評価する。 [Example 23]
The substrate (3) with a transparent coating prepared by the coating solution prepared in Example 3 is applied as the substrate (23) with a hard coat film of this example. The film thickness of the hard coat film was 12 μm. This base material with a hard coat film (23) is evaluated in the same manner as in Example 15.
反射防止層の形成
このハードコート膜付基材(23)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmであった。この反射防止層を持つ基材(23)を実施例15と同様に評価する。 Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (23) was used. The thickness of the antireflection layer was 100 nm. The substrate (23) having this antireflection layer is evaluated in the same manner as in Example 15.
このハードコート膜付基材(23)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmであった。この反射防止層を持つ基材(23)を実施例15と同様に評価する。 Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (23) was used. The thickness of the antireflection layer was 100 nm. The substrate (23) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例24]
実施例4で調製された塗布液を用いて作製した透明被膜付基材(4)を、本実施例のハードコート膜付基材(24)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(24)を実施例15と同様に評価する。
反射防止膜の形成
このハードコート膜付基材(24)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(24)を実施例15と同様に評価する。 [Example 24]
The substrate with transparent film (4) produced using the coating solution prepared in Example 4 is applied as the substrate with hard coat film (24) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (24) is evaluated in the same manner as in Example 15.
Formation of Antireflection Film An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with a hard coat film (24) was used. The thickness of the antireflection layer is 100 nm. The substrate (24) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例4で調製された塗布液を用いて作製した透明被膜付基材(4)を、本実施例のハードコート膜付基材(24)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(24)を実施例15と同様に評価する。
反射防止膜の形成
このハードコート膜付基材(24)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(24)を実施例15と同様に評価する。 [Example 24]
The substrate with transparent film (4) produced using the coating solution prepared in Example 4 is applied as the substrate with hard coat film (24) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (24) is evaluated in the same manner as in Example 15.
Formation of Antireflection Film An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with a hard coat film (24) was used. The thickness of the antireflection layer is 100 nm. The substrate (24) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例25]
実施例5で調製された塗布液を用いて作製した透明被膜付基材(5)を、本実施例のハードコート膜付基材(25)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(25)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(25)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(25)を実施例15と同様に評価する。 [Example 25]
The base material with a transparent film (5) produced using the coating liquid prepared in Example 5 is applied as the base material with a hard coat film (25) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (25) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (25) was used. The thickness of the antireflection layer is 100 nm. The substrate (25) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例5で調製された塗布液を用いて作製した透明被膜付基材(5)を、本実施例のハードコート膜付基材(25)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(25)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(25)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(25)を実施例15と同様に評価する。 [Example 25]
The base material with a transparent film (5) produced using the coating liquid prepared in Example 5 is applied as the base material with a hard coat film (25) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (25) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (25) was used. The thickness of the antireflection layer is 100 nm. The substrate (25) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例26]
実施例6で調製された塗布液を用いて作製した透明被膜付基材(6)を、本実施例のハードコート膜付基材(26)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(26)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(26)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(26)を実施例15と同様に評価する。 [Example 26]
The substrate (6) with a transparent coating produced using the coating solution prepared in Example 6 is applied as the substrate (26) with a hard coat film of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (26) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (26) with a hard coat film was used. The thickness of the antireflection layer is 100 nm. The substrate (26) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例6で調製された塗布液を用いて作製した透明被膜付基材(6)を、本実施例のハードコート膜付基材(26)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(26)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(26)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(26)を実施例15と同様に評価する。 [Example 26]
The substrate (6) with a transparent coating produced using the coating solution prepared in Example 6 is applied as the substrate (26) with a hard coat film of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (26) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (26) with a hard coat film was used. The thickness of the antireflection layer is 100 nm. The substrate (26) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例27]
実施例7で調製された塗布液を用いて作製した透明被膜付基材(7)を、本実施例のハードコート膜付基材(27)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(27)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(27)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(27)を実施例15と同様に評価する。 [Example 27]
The substrate with transparent film (7) produced using the coating solution prepared in Example 7 is applied as the substrate with hard coat film (27) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (27) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (27) with a hard coat film was used. The thickness of the antireflection layer is 100 nm. The substrate (27) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例7で調製された塗布液を用いて作製した透明被膜付基材(7)を、本実施例のハードコート膜付基材(27)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(27)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(27)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(27)を実施例15と同様に評価する。 [Example 27]
The substrate with transparent film (7) produced using the coating solution prepared in Example 7 is applied as the substrate with hard coat film (27) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (27) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (27) with a hard coat film was used. The thickness of the antireflection layer is 100 nm. The substrate (27) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例28]
実施例8で調製された塗布液を用いて作製した透明被膜付基材(8)を、本実施例のハードコート膜付基材(28)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(28)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(28)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(28)を実施例15と同様に評価する。 [Example 28]
The substrate with transparent coating (8) produced using the coating solution prepared in Example 8 is applied as the substrate with hard coat film (28) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (28) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (28) with a hard coat film was used. The thickness of the antireflection layer is 100 nm. The substrate (28) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例8で調製された塗布液を用いて作製した透明被膜付基材(8)を、本実施例のハードコート膜付基材(28)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(28)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(28)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(28)を実施例15と同様に評価する。 [Example 28]
The substrate with transparent coating (8) produced using the coating solution prepared in Example 8 is applied as the substrate with hard coat film (28) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (28) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (28) with a hard coat film was used. The thickness of the antireflection layer is 100 nm. The substrate (28) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例29]
実施例9で調製された塗布液を用いて作製した透明被膜付基材(9)を、本実施例のハードコート膜付基材(29)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(29)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(29)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(29)を実施例15と同様に評価する。 [Example 29]
The base material with a transparent film (9) produced using the coating solution prepared in Example 9 is applied as the base material with a hard coat film (29) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (29) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (29) was used. The thickness of the antireflection layer is 100 nm. The substrate (29) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例9で調製された塗布液を用いて作製した透明被膜付基材(9)を、本実施例のハードコート膜付基材(29)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(29)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(29)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(29)を実施例15と同様に評価する。 [Example 29]
The base material with a transparent film (9) produced using the coating solution prepared in Example 9 is applied as the base material with a hard coat film (29) of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (29) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (29) was used. The thickness of the antireflection layer is 100 nm. The substrate (29) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例30]
実施例10で調製された塗布液を用いて作製した透明被膜付基材(10)を、本実施例のハードコート膜付基材(30)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(30)を実施例15と同様に評価する。
反射防止層の形成の作製
このハードコート膜付基材(30)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(30)を実施例15と同様に評価する。 [Example 30]
The base material (10) with a transparent coating produced using the coating solution prepared in Example 10 is applied as the base material (30) with a hard coat film of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (30) is evaluated in the same manner as in Example 15.
Preparation of formation of antireflection layer An antireflection layer was formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (30) was used. The thickness of the antireflection layer is 100 nm. The substrate (30) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例10で調製された塗布液を用いて作製した透明被膜付基材(10)を、本実施例のハードコート膜付基材(30)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(30)を実施例15と同様に評価する。
反射防止層の形成の作製
このハードコート膜付基材(30)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(30)を実施例15と同様に評価する。 [Example 30]
The base material (10) with a transparent coating produced using the coating solution prepared in Example 10 is applied as the base material (30) with a hard coat film of this example. The thickness of the hard coat film is 12 μm. This base material with a hard coat film (30) is evaluated in the same manner as in Example 15.
Preparation of formation of antireflection layer An antireflection layer was formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (30) was used. The thickness of the antireflection layer is 100 nm. The substrate (30) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例31]
実施例11で調製された塗布液を用いて作製した透明被膜付基材(11)を、本実施例のハードコート膜付基材(31)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(31)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(31)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(31)を実施例15と同様に評価する。 [Example 31]
The base material with a transparent film (11) produced using the coating solution prepared in Example 11 is applied as the base material with a hard coat film (31) of this example. The thickness of the hard coat film is 12 μm. This base material with hard coat film (31) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (31) was used. The thickness of the antireflection layer is 100 nm. The base material (31) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例11で調製された塗布液を用いて作製した透明被膜付基材(11)を、本実施例のハードコート膜付基材(31)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(31)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(31)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ基材(31)を実施例15と同様に評価する。 [Example 31]
The base material with a transparent film (11) produced using the coating solution prepared in Example 11 is applied as the base material with a hard coat film (31) of this example. The thickness of the hard coat film is 12 μm. This base material with hard coat film (31) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (31) was used. The thickness of the antireflection layer is 100 nm. The base material (31) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例32]
実施例12で調製された塗布液(12)を用いて作製した透明被膜付基材(32)を、本実施例のハードコート膜付基材(32)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(32)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(32)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmであった。この反射防止層を持つ基材(32)を実施例15と同様に評価する。 [Example 32]
The substrate (32) with a transparent coating produced using the coating liquid (12) prepared in Example 12 is applied as the substrate (32) with a hard coat film of this example. The thickness of the hard coat film is 12 μm. This base material with hard coat film (32) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (32) with a hard coat film was used. The thickness of the antireflection layer was 100 nm. The substrate (32) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例12で調製された塗布液(12)を用いて作製した透明被膜付基材(32)を、本実施例のハードコート膜付基材(32)として適用する。ハードコート膜の膜厚は12μmである。このハードコート膜付基材(32)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(32)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmであった。この反射防止層を持つ基材(32)を実施例15と同様に評価する。 [Example 32]
The substrate (32) with a transparent coating produced using the coating liquid (12) prepared in Example 12 is applied as the substrate (32) with a hard coat film of this example. The thickness of the hard coat film is 12 μm. This base material with hard coat film (32) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (32) with a hard coat film was used. The thickness of the antireflection layer was 100 nm. The substrate (32) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例33]
実施例13で作製された透明被膜付基材(13)を、本実施例のハードコート膜付基材(33)として適用する。ハードコート膜の膜厚は15μmである。このハードコート膜付基材(33)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(33)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmであった。この反射防止層を持つ基材(33)を実施例15と同様に評価する。 [Example 33]
The substrate with transparent film (13) produced in Example 13 is applied as the substrate with hard coat film (33) of this example. The thickness of the hard coat film is 15 μm. This base material with hard coat film (33) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (33) was used. The thickness of the antireflection layer was 100 nm. The base material (33) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例13で作製された透明被膜付基材(13)を、本実施例のハードコート膜付基材(33)として適用する。ハードコート膜の膜厚は15μmである。このハードコート膜付基材(33)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(33)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmであった。この反射防止層を持つ基材(33)を実施例15と同様に評価する。 [Example 33]
The substrate with transparent film (13) produced in Example 13 is applied as the substrate with hard coat film (33) of this example. The thickness of the hard coat film is 15 μm. This base material with hard coat film (33) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material with hard coat film (33) was used. The thickness of the antireflection layer was 100 nm. The base material (33) having this antireflection layer is evaluated in the same manner as in Example 15.
[実施例34]
実施例14で作製された透明被膜付基材(14)を、本実施例のハードコート膜付基材(34)として適用する。ハードコート膜の膜厚は30μmである。このハードコート膜付基材(34)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(34)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚みは100nmであった。この反射防止層を持つ基材(34)を実施例15と同様に評価する。 [Example 34]
The substrate with a transparent film (14) produced in Example 14 is applied as the substrate with a hard coat film (34) of this example. The thickness of the hard coat film is 30 μm. This base material with hard coat film (34) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (34) with a hard coat film was used. The thickness of the antireflection layer was 100 nm. The substrate (34) having this antireflection layer is evaluated in the same manner as in Example 15.
実施例14で作製された透明被膜付基材(14)を、本実施例のハードコート膜付基材(34)として適用する。ハードコート膜の膜厚は30μmである。このハードコート膜付基材(34)を実施例15と同様に評価する。
反射防止層の形成
このハードコート膜付基材(34)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚みは100nmであった。この反射防止層を持つ基材(34)を実施例15と同様に評価する。 [Example 34]
The substrate with a transparent film (14) produced in Example 14 is applied as the substrate with a hard coat film (34) of this example. The thickness of the hard coat film is 30 μm. This base material with hard coat film (34) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this base material (34) with a hard coat film was used. The thickness of the antireflection layer was 100 nm. The substrate (34) having this antireflection layer is evaluated in the same manner as in Example 15.
[比較例5]
シリカ系中空粒子(RA5)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB-120、平均粒子径25nm、SiO2・Al2O3濃度20重量%、固形分中Al2O3含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1750gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを添加し、SiO2・Al2O3一次粒子分散液(平均粒子径35nm)が得られる。このとき、MOX/SiO2モル比(A)は0.2であり、反応液のpHは12.0である。
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液6,300gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,100gを添加して、複合酸化物粒子(二次粒子)の分散液を得る。このときのMOX/SiO2モル比(B)は0.07、反応液のpHは12.0、平均粒子径は50nmである。 [Comparative Example 5]
Preparation of silica-based hollow particle (RA5) dispersion silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt%) 100 g of pure water 3900 g was added and heated to 98 ° C. While maintaining this temperature, 1750 g of a sodium silicate aqueous solution with a concentration of 1.5 wt% as SiO 2 and Al 2 O 3 By adding 1750 g of an aqueous solution of sodium aluminate having a concentration of 0.5% by weight, a SiO 2 · Al 2 O 3 primary particle dispersion (average particle size 35 nm) is obtained. At this time, the MO X / SiO 2 molar ratio (A) is 0.2, and the pH of the reaction solution is 12.0.
Next, 6,300 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 2,100 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added to form composite oxide particles (two Secondary particle) dispersion. At this time, the MO X / SiO 2 molar ratio (B) is 0.07, the pH of the reaction solution is 12.0, and the average particle size is 50 nm.
シリカ系中空粒子(RA5)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB-120、平均粒子径25nm、SiO2・Al2O3濃度20重量%、固形分中Al2O3含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1750gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを添加し、SiO2・Al2O3一次粒子分散液(平均粒子径35nm)が得られる。このとき、MOX/SiO2モル比(A)は0.2であり、反応液のpHは12.0である。
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液6,300gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,100gを添加して、複合酸化物粒子(二次粒子)の分散液を得る。このときのMOX/SiO2モル比(B)は0.07、反応液のpHは12.0、平均粒子径は50nmである。 [Comparative Example 5]
Preparation of silica-based hollow particle (RA5) dispersion silica-alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt%) 100 g of pure water 3900 g was added and heated to 98 ° C. While maintaining this temperature, 1750 g of a sodium silicate aqueous solution with a concentration of 1.5 wt% as SiO 2 and Al 2 O 3 By adding 1750 g of an aqueous solution of sodium aluminate having a concentration of 0.5% by weight, a SiO 2 · Al 2 O 3 primary particle dispersion (average particle size 35 nm) is obtained. At this time, the MO X / SiO 2 molar ratio (A) is 0.2, and the pH of the reaction solution is 12.0.
Next, 6,300 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 2,100 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added to form composite oxide particles (two Secondary particle) dispersion. At this time, the MO X / SiO 2 molar ratio (B) is 0.07, the pH of the reaction solution is 12.0, and the average particle size is 50 nm.
次いで、実施例15と同様のプロセスを経て固形分濃度20重量%のシリカ系中空粒子のメタノール分散液を作製する。得られたシリカ系中空粒子の平均粒子径、屈折率を測定し、結果を表に示す。
このメタノール分散液100gにアクリルシランカップリング剤(信越化学(株)製:KBM-5103)3gを添加し、50℃で加熱して表面処理を行う。さらに、ロータリーエバポレーターで溶媒をMIBKに置換し、固形分濃度20.5重量%のシリカ系中空粒子(RA5)の分散液を調製する。この表面処理されたシリカ系中空粒子(RA5)の屈折率を測定し、結果を表に示す。 Next, a methanol dispersion of silica-based hollow particles having a solid concentration of 20% by weight is produced through the same process as in Example 15. The average particle diameter and refractive index of the obtained silica-based hollow particles were measured, and the results are shown in the table.
3 g of an acrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) is added to 100 g of this methanol dispersion and heated at 50 ° C. for surface treatment. Further, the solvent is replaced with MIBK by a rotary evaporator to prepare a dispersion of silica-based hollow particles (RA5) having a solid content concentration of 20.5% by weight. The refractive index of the surface-treated silica-based hollow particles (RA5) was measured, and the results are shown in the table.
このメタノール分散液100gにアクリルシランカップリング剤(信越化学(株)製:KBM-5103)3gを添加し、50℃で加熱して表面処理を行う。さらに、ロータリーエバポレーターで溶媒をMIBKに置換し、固形分濃度20.5重量%のシリカ系中空粒子(RA5)の分散液を調製する。この表面処理されたシリカ系中空粒子(RA5)の屈折率を測定し、結果を表に示す。 Next, a methanol dispersion of silica-based hollow particles having a solid concentration of 20% by weight is produced through the same process as in Example 15. The average particle diameter and refractive index of the obtained silica-based hollow particles were measured, and the results are shown in the table.
3 g of an acrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) is added to 100 g of this methanol dispersion and heated at 50 ° C. for surface treatment. Further, the solvent is replaced with MIBK by a rotary evaporator to prepare a dispersion of silica-based hollow particles (RA5) having a solid content concentration of 20.5% by weight. The refractive index of the surface-treated silica-based hollow particles (RA5) was measured, and the results are shown in the table.
反射防止膜形成用の塗布液(R5L)の調製
固形分濃度20.5重量%の表面処理したシリカ系中空粒子(RA5)分散液を用いた以外は実施例15と同様にして、固形分濃度3.0重量%の塗布液(R5L)を調製する。
反射防止層の形成
この塗布液(R5L)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に作製する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材を持つ基材(R5)を実施例15と同様に評価した。 Preparation of coating solution (R5L) for formation of antireflection film Solid content concentration was the same as in Example 15 except that a surface-treated silica-based hollow particle (RA5) dispersion having a solid content concentration of 20.5% by weight was used. A 3.0 wt% coating solution (R5L) is prepared.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this coating solution (R5L) is used. At this time, the thickness of the antireflection layer is 100 nm. The base material (R5) having the base material with the antireflection layer was evaluated in the same manner as in Example 15.
固形分濃度20.5重量%の表面処理したシリカ系中空粒子(RA5)分散液を用いた以外は実施例15と同様にして、固形分濃度3.0重量%の塗布液(R5L)を調製する。
反射防止層の形成
この塗布液(R5L)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に作製する。このときの反射防止層の厚さは100nmである。この反射防止層付の基材を持つ基材(R5)を実施例15と同様に評価した。 Preparation of coating solution (R5L) for formation of antireflection film Solid content concentration was the same as in Example 15 except that a surface-treated silica-based hollow particle (RA5) dispersion having a solid content concentration of 20.5% by weight was used. A 3.0 wt% coating solution (R5L) is prepared.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that this coating solution (R5L) is used. At this time, the thickness of the antireflection layer is 100 nm. The base material (R5) having the base material with the antireflection layer was evaluated in the same manner as in Example 15.
[比較例6]
ハードコート膜付基材(R6)の作製
実施例15で調製したハードコート膜形成用の塗布液(15)を、PGMEで固形分濃度30重量%に希釈する。これを、バーコーター法#3によりTACフィルム(富士フィルム(株)製:FT-PB40UL-M、厚さ:40μm、屈折率:1.51)に塗布し、80℃で120秒間乾燥した。次に、N2雰囲気下で、300mJ/cm2の紫外線を照射して硬化させ、ハードコート膜付基材(R6)を作製する。ハードコート膜の膜厚は1μmである。得られたハードコート膜付基材(R6)について、実施例15と同様に評価する。
反射防止膜の形成
次いで、ハードコート膜付基材(R6)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に形成する。このときの反射防止層の厚さは100nmである。この反射防止層付きの基材について、実施例15と同様に評価する。 [Comparative Example 6]
Preparation of base material with hard coat film (R6) The coating liquid (15) for forming the hard coat film prepared in Example 15 is diluted with PGME to a solid content concentration of 30% by weight. This was applied to a TAC film (manufactured by Fuji Film Co., Ltd .: FT-PB40UL-M, thickness: 40 μm, refractive index: 1.51) by the bar coater method # 3 and dried at 80 ° C. for 120 seconds. Next, it is cured by irradiating with 300 mJ / cm 2 of ultraviolet light in an N 2 atmosphere to produce a base material with a hard coat film (R6). The thickness of the hard coat film is 1 μm. The obtained base material with a hard coat film (R6) is evaluated in the same manner as in Example 15.
Formation of antireflection film Next, an antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material with hard coat film (R6) was used. At this time, the thickness of the antireflection layer is 100 nm. The base material with the antireflection layer is evaluated in the same manner as in Example 15.
ハードコート膜付基材(R6)の作製
実施例15で調製したハードコート膜形成用の塗布液(15)を、PGMEで固形分濃度30重量%に希釈する。これを、バーコーター法#3によりTACフィルム(富士フィルム(株)製:FT-PB40UL-M、厚さ:40μm、屈折率:1.51)に塗布し、80℃で120秒間乾燥した。次に、N2雰囲気下で、300mJ/cm2の紫外線を照射して硬化させ、ハードコート膜付基材(R6)を作製する。ハードコート膜の膜厚は1μmである。得られたハードコート膜付基材(R6)について、実施例15と同様に評価する。
反射防止膜の形成
次いで、ハードコート膜付基材(R6)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に形成する。このときの反射防止層の厚さは100nmである。この反射防止層付きの基材について、実施例15と同様に評価する。 [Comparative Example 6]
Preparation of base material with hard coat film (R6) The coating liquid (15) for forming the hard coat film prepared in Example 15 is diluted with PGME to a solid content concentration of 30% by weight. This was applied to a TAC film (manufactured by Fuji Film Co., Ltd .: FT-PB40UL-M, thickness: 40 μm, refractive index: 1.51) by the bar coater method # 3 and dried at 80 ° C. for 120 seconds. Next, it is cured by irradiating with 300 mJ / cm 2 of ultraviolet light in an N 2 atmosphere to produce a base material with a hard coat film (R6). The thickness of the hard coat film is 1 μm. The obtained base material with a hard coat film (R6) is evaluated in the same manner as in Example 15.
Formation of antireflection film Next, an antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material with hard coat film (R6) was used. At this time, the thickness of the antireflection layer is 100 nm. The base material with the antireflection layer is evaluated in the same manner as in Example 15.
[比較例7]
ハードコート膜形成用の塗布液(R7)の調製
実施例15で調製した固形分濃度40.5重量%の表面処理されたシリカゾル分散液2500gに、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度76.0重量%の表面処理されたシリカ粒子の有機樹脂分散液(RA7)を調製する。 [Comparative Example 7]
Preparation of coating liquid (R7) for forming a hard coat film To 2500 g of the surface-treated silica sol dispersion prepared in Example 15 and having a solid concentration of 40.5% by weight, dimethylol-tricyclodecanedi, an organic resin for dispersion, was used. 202.5 g of acrylate (the same light acrylate DCP-A as in Example 1) was added, a part of the solvent was removed by a rotary evaporator, and organic particles of surface-treated silica particles having a solid content concentration of 76.0% by weight were obtained. A resin dispersion (RA7) is prepared.
ハードコート膜形成用の塗布液(R7)の調製
実施例15で調製した固形分濃度40.5重量%の表面処理されたシリカゾル分散液2500gに、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して、固形分濃度76.0重量%の表面処理されたシリカ粒子の有機樹脂分散液(RA7)を調製する。 [Comparative Example 7]
Preparation of coating liquid (R7) for forming a hard coat film To 2500 g of the surface-treated silica sol dispersion prepared in Example 15 and having a solid concentration of 40.5% by weight, dimethylol-tricyclodecanedi, an organic resin for dispersion, was used. 202.5 g of acrylate (the same light acrylate DCP-A as in Example 1) was added, a part of the solvent was removed by a rotary evaporator, and organic particles of surface-treated silica particles having a solid content concentration of 76.0% by weight were obtained. A resin dispersion (RA7) is prepared.
この有機樹脂分散液(RA7)75.31gに、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して、固形分濃度66.1重量%の塗布液(R7)を調製する。ここでは、硬化用有機樹脂の代りに再び分散用有機樹脂を加えている。得られた塗布液(R7)の組成を表に示す。
To 75.31 g of this organic resin dispersion (RA7), 8.32 g of dimethylol-tricyclodecane diacrylate (the same light acrylate DCP-A as in Example 1) as an organic resin for dispersion, and an acrylic silicone leveling agent ( Sugimoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g, photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, PGME 2.37 g and acetone 12.50 g were mixed thoroughly. A coating solution (R7) having a solid content concentration of 66.1% by weight is prepared. Here, the organic resin for dispersion is added again instead of the organic resin for curing. The composition of the resulting coating solution (R7) is shown in the table.
ハードコート膜付基材(R7)の作製
ハードコート膜形成用の塗布液(R7)を用いる以外は、実施例15と同様に膜付基材(R7)を製造する。ハードコート膜の膜厚は12μmである。得られた膜付基材(R7)を実施例15と同様に評価する。
反射防止層の形成
上述のハードコート膜付基材(R7)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ膜付基材を、実施例15と同様に評価する。 Production of Substrate with Hard Coat Film (R7) A substrate with film (R7) is produced in the same manner as in Example 15 except that the coating liquid (R7) for forming a hard coat film is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (R7) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above-mentioned base material with hard coat film (R7) was used. The thickness of the antireflection layer is 100 nm. The film-coated substrate having this antireflection layer is evaluated in the same manner as in Example 15.
ハードコート膜形成用の塗布液(R7)を用いる以外は、実施例15と同様に膜付基材(R7)を製造する。ハードコート膜の膜厚は12μmである。得られた膜付基材(R7)を実施例15と同様に評価する。
反射防止層の形成
上述のハードコート膜付基材(R7)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ膜付基材を、実施例15と同様に評価する。 Production of Substrate with Hard Coat Film (R7) A substrate with film (R7) is produced in the same manner as in Example 15 except that the coating liquid (R7) for forming a hard coat film is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (R7) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above-mentioned base material with hard coat film (R7) was used. The thickness of the antireflection layer is 100 nm. The film-coated substrate having this antireflection layer is evaluated in the same manner as in Example 15.
[比較例8]
ハードコート膜形成用の塗布液(R8)の調製
実施例15で調製した固形分濃度40.5重量%の表面処理されたシリカゾル分散液2500gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴUA-33H)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度53.3重量%の表面処理されたシリカ粒子の有機樹脂分散液(RB8)を調製する。
この有機樹脂分散液(RB8)82.96gに、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME0.13gとアセトン9.00gを充分に混合して固形分濃度51.0重量%の塗布液(R8)を調製する。得られたハードコート膜形成用の塗布液(R8)の組成を表に示す。 [Comparative Example 8]
Preparation of coating liquid (R8) for forming a hard coat film To 2500 g of a surface-treated silica sol dispersion having a solid content of 40.5% by weight prepared in Example 15, urethane acrylate (Example 1) was used. 202.5 g of the same NK oligo UA-33H), a part of the solvent was removed by a rotary evaporator, and the surface-treated silica particle organic resin dispersion (RB8) having a solid content concentration of 53.3% by weight To prepare.
To 82.96 g of this organic resin dispersion (RB8), 1.00 g of an acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) and a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, PGME 0.13 g, and acetone 9.00 g are sufficiently mixed to prepare a coating solution (R8) having a solid content concentration of 51.0% by weight. The composition of the coating liquid (R8) obtained for forming the hard coat film is shown in the table.
ハードコート膜形成用の塗布液(R8)の調製
実施例15で調製した固形分濃度40.5重量%の表面処理されたシリカゾル分散液2500gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴUA-33H)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度53.3重量%の表面処理されたシリカ粒子の有機樹脂分散液(RB8)を調製する。
この有機樹脂分散液(RB8)82.96gに、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME0.13gとアセトン9.00gを充分に混合して固形分濃度51.0重量%の塗布液(R8)を調製する。得られたハードコート膜形成用の塗布液(R8)の組成を表に示す。 [Comparative Example 8]
Preparation of coating liquid (R8) for forming a hard coat film To 2500 g of a surface-treated silica sol dispersion having a solid content of 40.5% by weight prepared in Example 15, urethane acrylate (Example 1) was used. 202.5 g of the same NK oligo UA-33H), a part of the solvent was removed by a rotary evaporator, and the surface-treated silica particle organic resin dispersion (RB8) having a solid content concentration of 53.3% by weight To prepare.
To 82.96 g of this organic resin dispersion (RB8), 1.00 g of an acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) and a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, PGME 0.13 g, and acetone 9.00 g are sufficiently mixed to prepare a coating solution (R8) having a solid content concentration of 51.0% by weight. The composition of the coating liquid (R8) obtained for forming the hard coat film is shown in the table.
ハードコート膜付基材(R8)の作製
ハードコート膜形成用の塗布液(R8)を用いる以外は、実施例15と同様に膜付基材(R8)を製造する。ハードコート膜の膜厚は12μmである。得られた膜付基材(R8)を実施例15と同様に評価する。
反射防止層の形成
上述のハードコート膜付基材(R8)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ膜付基材(R8)を、実施例15と同様に評価した。 Production of Substrate with Hard Coat Film (R8) A substrate with film (R8) is produced in the same manner as in Example 15 except that the coating liquid (R8) for forming a hard coat film is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (R8) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material with hard coat film (R8) described above was used. The thickness of the antireflection layer is 100 nm. The film-coated substrate (R8) having this antireflection layer was evaluated in the same manner as in Example 15.
ハードコート膜形成用の塗布液(R8)を用いる以外は、実施例15と同様に膜付基材(R8)を製造する。ハードコート膜の膜厚は12μmである。得られた膜付基材(R8)を実施例15と同様に評価する。
反射防止層の形成
上述のハードコート膜付基材(R8)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ膜付基材(R8)を、実施例15と同様に評価した。 Production of Substrate with Hard Coat Film (R8) A substrate with film (R8) is produced in the same manner as in Example 15 except that the coating liquid (R8) for forming a hard coat film is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (R8) is evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material with hard coat film (R8) described above was used. The thickness of the antireflection layer is 100 nm. The film-coated substrate (R8) having this antireflection layer was evaluated in the same manner as in Example 15.
[比較例9]
ハードコート膜形成用の塗布液(R9)の調製
実施例15で調製した固形分濃度40.5重量%の表面処理されたシリカゾル分散液69.14gに、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)5.26gと、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴUA-33H)4.83gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.29gとPGME6.99gとアセトン12.50gを同時に供給して、充分に混合させ、固形分濃度41.4重量%の塗布液(R9)を調製する。得られたハードコート膜形成用の塗布液(R9)の組成を表に示す。 [Comparative Example 9]
Preparation of coating solution (R9) for forming a hard coat film To 69.14 g of the surface-treated silica sol dispersion prepared in Example 15 and having a solid content concentration of 40.5 wt%, dimethylol-tricyclo, which is an organic resin for dispersion, was added. 5.26 g decanediacrylate (same light acrylate DCP-A as in Example 1), 4.83 g of urethane acrylate (NK oligo UA-33H as in Example 1), an acrylic silicone type 1.00 g of a leveling agent (Tsubakimoto Kasei Co., Ltd .; Disparon NSH-8430HF), 0.29 g of a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184), 6.99 g of PGME, and 12.50 g of acetone are simultaneously supplied. Mix well to prepare a coating solution (R9) having a solid content concentration of 41.4% by weight. The composition of the obtained coating solution (R9) for forming the hard coat film is shown in the table.
ハードコート膜形成用の塗布液(R9)の調製
実施例15で調製した固形分濃度40.5重量%の表面処理されたシリカゾル分散液69.14gに、分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)5.26gと、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴUA-33H)4.83gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH-8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.29gとPGME6.99gとアセトン12.50gを同時に供給して、充分に混合させ、固形分濃度41.4重量%の塗布液(R9)を調製する。得られたハードコート膜形成用の塗布液(R9)の組成を表に示す。 [Comparative Example 9]
Preparation of coating solution (R9) for forming a hard coat film To 69.14 g of the surface-treated silica sol dispersion prepared in Example 15 and having a solid content concentration of 40.5 wt%, dimethylol-tricyclo, which is an organic resin for dispersion, was added. 5.26 g decanediacrylate (same light acrylate DCP-A as in Example 1), 4.83 g of urethane acrylate (NK oligo UA-33H as in Example 1), an acrylic silicone type 1.00 g of a leveling agent (Tsubakimoto Kasei Co., Ltd .; Disparon NSH-8430HF), 0.29 g of a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184), 6.99 g of PGME, and 12.50 g of acetone are simultaneously supplied. Mix well to prepare a coating solution (R9) having a solid content concentration of 41.4% by weight. The composition of the obtained coating solution (R9) for forming the hard coat film is shown in the table.
ハードコート膜付基材(R9)の作製
この塗布液(R9)を用いる以外は、実施例15と同様にして膜付基材(R9)を作製する。ハードコート膜の膜厚は12μmである。得られた膜付基材(R9)を実施例15と同様に評価した。
反射防止層の形成
上述のハードコート膜付基材(R9)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ膜付基材(R9)を、実施例15と同様に評価する。 Production of substrate with hard coat film (R9) A substrate with film (R9) is produced in the same manner as in Example 15 except that this coating solution (R9) is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (R9) was evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above-mentioned base material with hard coat film (R9) was used. The thickness of the antireflection layer is 100 nm. The substrate with film (R9) having this antireflection layer is evaluated in the same manner as in Example 15.
この塗布液(R9)を用いる以外は、実施例15と同様にして膜付基材(R9)を作製する。ハードコート膜の膜厚は12μmである。得られた膜付基材(R9)を実施例15と同様に評価した。
反射防止層の形成
上述のハードコート膜付基材(R9)を用いた以外は実施例15と同様にして、反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ膜付基材(R9)を、実施例15と同様に評価する。 Production of substrate with hard coat film (R9) A substrate with film (R9) is produced in the same manner as in Example 15 except that this coating solution (R9) is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (R9) was evaluated in the same manner as in Example 15.
Formation of Antireflection Layer An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the above-mentioned base material with hard coat film (R9) was used. The thickness of the antireflection layer is 100 nm. The substrate with film (R9) having this antireflection layer is evaluated in the same manner as in Example 15.
[比較例10]
ハードコート膜形成用の塗布液(R10)の調製
シリカゾル分散液(実施例1と同一のカタロイドSI-30)2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度53.3重量%のシリカ粒子の有機樹脂分散液(R10)を得る。
この有機樹脂分散液(R10)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴUA-33H)7.19gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと、光重合開始剤(実施例1と同一のイルガキュア184)0.50gと、PGME0.83gとアセトン8.00gを充分に混合して、固形分濃度53.3重量%の塗布液(R10)を作製する。得られた塗布液(R10)の組成を表に示す。 [Comparative Example 10]
Preparation of coating solution (R10) for hard coat film formation Silica sol dispersion (cataloid SI-30 same as in Example 1) was dispersed in 2500 g of dimethylol-tricyclodecane diacrylate (same as in Example 1) as an organic resin for dispersion. 202.5 g of light acrylate DCP-A) is added, and a part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (R10) of silica particles having a solid concentration of 53.3% by weight.
To this organic resin dispersion (R10) 75.31 g, 7.19 g of urethane acrylate (NK oligo UA-33H, which is the same as in Example 1) as an organic resin for curing, and acrylic silicone leveling agent (same as in Example 1). 1.00 g of Disparon NSH-8430HF), 0.50 g of a photopolymerization initiator (Irgacure 184 as in Example 1), 0.83 g of PGME and 8.00 g of acetone were mixed thoroughly to obtain a solid content of 53. A 3% by weight coating solution (R10) is prepared. The composition of the coating solution (R10) obtained is shown in the table.
ハードコート膜形成用の塗布液(R10)の調製
シリカゾル分散液(実施例1と同一のカタロイドSI-30)2500gに分散用有機樹脂であるジメチロール-トリシクロデカンジアクリレート(実施例1と同一のライトアクリレートDCP-A)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度53.3重量%のシリカ粒子の有機樹脂分散液(R10)を得る。
この有機樹脂分散液(R10)75.31gに、硬化用有機樹脂であるウレタンアクリレート(実施例1と同一のNKオリゴUA-33H)7.19gと、アクリルシリコーン系レベリング剤(実施例1と同一のディスパロンNSH-8430HF)1.00gと、光重合開始剤(実施例1と同一のイルガキュア184)0.50gと、PGME0.83gとアセトン8.00gを充分に混合して、固形分濃度53.3重量%の塗布液(R10)を作製する。得られた塗布液(R10)の組成を表に示す。 [Comparative Example 10]
Preparation of coating solution (R10) for hard coat film formation Silica sol dispersion (cataloid SI-30 same as in Example 1) was dispersed in 2500 g of dimethylol-tricyclodecane diacrylate (same as in Example 1) as an organic resin for dispersion. 202.5 g of light acrylate DCP-A) is added, and a part of the solvent is removed by a rotary evaporator to obtain an organic resin dispersion (R10) of silica particles having a solid concentration of 53.3% by weight.
To this organic resin dispersion (R10) 75.31 g, 7.19 g of urethane acrylate (NK oligo UA-33H, which is the same as in Example 1) as an organic resin for curing, and acrylic silicone leveling agent (same as in Example 1). 1.00 g of Disparon NSH-8430HF), 0.50 g of a photopolymerization initiator (Irgacure 184 as in Example 1), 0.83 g of PGME and 8.00 g of acetone were mixed thoroughly to obtain a solid content of 53. A 3% by weight coating solution (R10) is prepared. The composition of the coating solution (R10) obtained is shown in the table.
ハードコート膜付基材(R10)の作製
この塗布液(R10)を用いる以外は実施例15と同様にして、ハードコート膜付基材(R10)を製造する。ハードコート膜の膜厚は12μmである。得られた膜付基材(R10)を、実施例15と同様に評価する。
反射防止層の形成
膜付基材(R10)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ膜付基材を実施例15と同様に評価する。 Production of base material with hard coat film (R10) A base material with hard coat film (R10) is produced in the same manner as in Example 15 except that this coating solution (R10) is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (R10) is evaluated in the same manner as in Example 15.
An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material (R10) with an antireflection layer is used. The thickness of the antireflection layer is 100 nm. The film-coated substrate having this antireflection layer is evaluated in the same manner as in Example 15.
この塗布液(R10)を用いる以外は実施例15と同様にして、ハードコート膜付基材(R10)を製造する。ハードコート膜の膜厚は12μmである。得られた膜付基材(R10)を、実施例15と同様に評価する。
反射防止層の形成
膜付基材(R10)を用いた以外は、実施例15と同様にして反射防止層をハードコート膜上に形成する。反射防止層の厚さは100nmである。この反射防止層を持つ膜付基材を実施例15と同様に評価する。 Production of base material with hard coat film (R10) A base material with hard coat film (R10) is produced in the same manner as in Example 15 except that this coating solution (R10) is used. The thickness of the hard coat film is 12 μm. The obtained film-coated substrate (R10) is evaluated in the same manner as in Example 15.
An antireflection layer is formed on the hard coat film in the same manner as in Example 15 except that the base material (R10) with an antireflection layer is used. The thickness of the antireflection layer is 100 nm. The film-coated substrate having this antireflection layer is evaluated in the same manner as in Example 15.
[比較例11]
反射防止層の形成
実施例15で調製した固形分濃度3.0重量%の反射防止膜形成用の塗布液(15L)を、実施例15で使用したTACフィルムにバーコーター法#4で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させ、反射防止層付の基材(R11)を作製した。したがって、ハードコート膜は設けられておらず、反射防止層が基材に直接形成されている。反射防止層の厚さは100nmである。この反射防止層付の基材(R11)を実施例15と同様に評価する。 [Comparative Example 11]
Formation of Antireflective Layer The coating solution for forming an antireflective film having a solid content concentration of 3.0% by weight (15 L) prepared in Example 15 was applied to the TAC film used in Example 15 by the bar coater method # 4. After drying at 80 ° C. for 120 seconds, the substrate was cured by irradiation with ultraviolet rays of 600 mJ / cm 2 in an N 2 atmosphere to prepare a base material (R11) with an antireflection layer. Therefore, no hard coat film is provided, and the antireflection layer is formed directly on the substrate. The thickness of the antireflection layer is 100 nm. The base material (R11) with the antireflection layer is evaluated in the same manner as in Example 15.
反射防止層の形成
実施例15で調製した固形分濃度3.0重量%の反射防止膜形成用の塗布液(15L)を、実施例15で使用したTACフィルムにバーコーター法#4で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させ、反射防止層付の基材(R11)を作製した。したがって、ハードコート膜は設けられておらず、反射防止層が基材に直接形成されている。反射防止層の厚さは100nmである。この反射防止層付の基材(R11)を実施例15と同様に評価する。 [Comparative Example 11]
Formation of Antireflective Layer The coating solution for forming an antireflective film having a solid content concentration of 3.0% by weight (15 L) prepared in Example 15 was applied to the TAC film used in Example 15 by the bar coater method # 4. After drying at 80 ° C. for 120 seconds, the substrate was cured by irradiation with ultraviolet rays of 600 mJ / cm 2 in an N 2 atmosphere to prepare a base material (R11) with an antireflection layer. Therefore, no hard coat film is provided, and the antireflection layer is formed directly on the substrate. The thickness of the antireflection layer is 100 nm. The base material (R11) with the antireflection layer is evaluated in the same manner as in Example 15.
[実施例35]
ハードコート膜付基材(35)の作製
本実施例は実施例15で反射防止層を設けていない構成であり、実施例1~14とは、基材の厚さや金属酸化物粒子の粒径等が相違している。実施例15で調製したハードコート膜形成用の塗布液(15)を、実施例15で使用したTACフィルムにバーコーター法#16で塗布し、80℃で120秒間乾燥した後、N2雰囲気下、300mJ/cm2の紫外線を照射して硬化させてハードコート膜付基材(35)を作製する。ハードコート膜の膜厚は12μmである。この膜付基材を実施例15と同様に評価する。
[Example 35]
Preparation of base material with hard coat film (35) This example has a configuration in which an antireflection layer is not provided in Example 15, and Examples 1 to 14 differ from the thickness of the base material and the particle size of metal oxide particles. Etc. are different. The coating liquid (15) for forming the hard coat film prepared in Example 15 was applied to the TAC film used in Example 15 by the bar coater method # 16, dried at 80 ° C. for 120 seconds, and then in an N 2 atmosphere. Then, the substrate (35) with a hard coat film is prepared by irradiating and curing ultraviolet rays of 300 mJ / cm 2 . The thickness of the hard coat film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 15.
ハードコート膜付基材(35)の作製
本実施例は実施例15で反射防止層を設けていない構成であり、実施例1~14とは、基材の厚さや金属酸化物粒子の粒径等が相違している。実施例15で調製したハードコート膜形成用の塗布液(15)を、実施例15で使用したTACフィルムにバーコーター法#16で塗布し、80℃で120秒間乾燥した後、N2雰囲気下、300mJ/cm2の紫外線を照射して硬化させてハードコート膜付基材(35)を作製する。ハードコート膜の膜厚は12μmである。この膜付基材を実施例15と同様に評価する。
[Example 35]
Preparation of base material with hard coat film (35) This example has a configuration in which an antireflection layer is not provided in Example 15, and Examples 1 to 14 differ from the thickness of the base material and the particle size of metal oxide particles. Etc. are different. The coating liquid (15) for forming the hard coat film prepared in Example 15 was applied to the TAC film used in Example 15 by the bar coater method # 16, dried at 80 ° C. for 120 seconds, and then in an N 2 atmosphere. Then, the substrate (35) with a hard coat film is prepared by irradiating and curing ultraviolet rays of 300 mJ / cm 2 . The thickness of the hard coat film is 12 μm. This film-coated substrate is evaluated in the same manner as in Example 15.
Claims (20)
- 平均粒子径が5~300nmの範囲にある金属酸化物粒子とマトリックス形成成分とを含む透明被膜形成用の塗布液であって、前記金属酸化物粒子の固形分としての濃度(CP)が45~90重量%であり、前記マトリックス形成成分の固形分としての濃度(CR)が10~50重量%であり、全固形分濃度(CT)が60重量%以上であり、濃度(CR)と濃度(CP)との比(CR/CP)が0.11~1.0であり、前記マトリックス形成成分が2個以下の官能基を有する第一の有機樹脂と3個以上の官能基を有する第二の有機樹脂からなることを特徴とする塗布液。 A coating liquid for forming a transparent film comprising metal oxide particles having an average particle diameter in the range of 5 to 300 nm and a matrix-forming component, wherein the concentration (C P ) of the metal oxide particles as a solid content is 45 To 90% by weight, the concentration (C R ) of the matrix-forming component as a solid content is 10 to 50% by weight, the total solid content concentration (C T ) is 60% by weight or more, and the concentration (C R ) And concentration (C P ) ratio (C R / C P ) is 0.11 to 1.0, and the matrix-forming component and the first organic resin having 2 or less functional groups and 3 or more A coating liquid comprising a second organic resin having a functional group of
- 前記第一の有機樹脂と前記第二の有機樹脂が紫外線硬化型樹脂モノマーまたはオリゴマーであることを特徴とする請求項1に記載の塗布液。 The coating liquid according to claim 1, wherein the first organic resin and the second organic resin are ultraviolet curable resin monomers or oligomers.
- 前記第一の有機樹脂と前記第二の有機樹脂の有する官能基が(メタ)アクリレート基、ウレタンアクリレート基、エポキシ変性アクリレート基から選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の塗布液。 The functional group of the first organic resin and the second organic resin is at least one selected from a (meth) acrylate group, a urethane acrylate group, and an epoxy-modified acrylate group. The coating solution as described in 1.
- 前記金属酸化物粒子が下記式(1)で表される有機珪素化合物で表面処理されたことを特徴とする請求項1~3のいずれか一項に記載の塗布液。
Rn-SiX4-n (1)
(但し、式中、Rは炭素数1~10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。Xは炭素数1~4のアルコキシ基、水酸基、ハロゲン、水素であり、nは1~3の整数である。) 4. The coating solution according to claim 1, wherein the metal oxide particles are surface-treated with an organosilicon compound represented by the following formula (1).
R n -SiX 4-n (1)
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms and may be the same or different. X is an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen and hydrogen, and n is an integer of 1 to 3.) - 前記有機珪素化合物のRが(メタ)アクリレート基を置換基として有する置換炭化水素基である請求項4に記載の塗布液。 The coating liquid according to claim 4, wherein R of the organosilicon compound is a substituted hydrocarbon group having a (meth) acrylate group as a substituent.
- 前記金属酸化物粒子は、金属酸化物粒子100重量部に対し、Rn-SiO(4-n)/2として0.1~50重量部の有機珪素化合物で表面処理されたことを特徴とする請求項4または5に記載の塗布液。 The metal oxide particles are surface-treated with 0.1 to 50 parts by weight of an organosilicon compound as R n —SiO 2 (4-n) / 2 with respect to 100 parts by weight of the metal oxide particles. The coating liquid according to claim 4 or 5.
- 前記金属酸化物粒子の表面処理量が0.1~5重量部の範囲にある場合に、前記第一の有機樹脂が水酸基、エーテル基、アミノ基、カルボキシル基、スルホ基の少なくとも一つを含むことを特徴とする請求項6に記載の塗布液。 When the surface treatment amount of the metal oxide particles is in the range of 0.1 to 5 parts by weight, the first organic resin contains at least one of a hydroxyl group, an ether group, an amino group, a carboxyl group, and a sulfo group. The coating solution according to claim 6.
- 前記金属酸化物粒子を分散する有機分散媒をさらに含み、前記有機分散媒の濃度が40重量%以下である請求項1~7のいずれか一項に記載の塗布液。
The coating solution according to any one of claims 1 to 7, further comprising an organic dispersion medium in which the metal oxide particles are dispersed, wherein the concentration of the organic dispersion medium is 40% by weight or less.
- 平均粒子径が5~300nmの範囲にある金属酸化物粒子と有機分散媒を含む分散液を調製する工程と、
前記有機分散媒の少なくとも一部を2個以下の官能基を有する第一の有機樹脂で置換する工程と、
3個以上の官能基を有する第二の有機樹脂を混合する工程と、を含むことを特徴とする塗布液の製造方法。 Preparing a dispersion containing metal oxide particles having an average particle diameter in the range of 5 to 300 nm and an organic dispersion medium;
Replacing at least a portion of the organic dispersion medium with a first organic resin having two or less functional groups;
And a step of mixing a second organic resin having three or more functional groups. - 前記第一の有機樹脂が紫外線硬化型樹脂モノマーまたはオリゴマーであることを特徴とする請求項9に記載の塗布液の製造方法。 10. The method for producing a coating liquid according to claim 9, wherein the first organic resin is an ultraviolet curable resin monomer or oligomer.
- 前記第二の有機樹脂が紫外線硬化型樹脂モノマーまたはオリゴマーであり、前記第一の有機樹脂と前記第二の有機樹脂の有する官能基が(メタ)アクリレート基、ウレタンアクリレート基、エポキシ変性アクリレート基から選ばれる少なくとも1種である請求項9または10に記載の塗布液の製造方法。
The second organic resin is an ultraviolet curable resin monomer or oligomer, and the functional group of the first organic resin and the second organic resin is a (meth) acrylate group, a urethane acrylate group, or an epoxy-modified acrylate group. The method for producing a coating liquid according to claim 9 or 10, which is at least one selected.
- 請求項1~8に記載の塗布液、または請求項9~11に記載された製造方法により得られた塗布液を用いて透明被膜が基材上に形成された透明被膜付基材であって、
前記透明被膜は、平均粒子径が5~300nmの金属酸化物粒子とマトリックス成分とを含み、
前記金属酸化物粒子の固形分としての含有量(WP)が50~90重量%であり、前記マトリックス成分の固形分としての含有量(WR)が10~50重量%であり、含有量比(WR/WP)が0.11~1.0であり、平均膜厚(T)が1~100μmであることを特徴とする透明被膜付基材。 A substrate with a transparent coating, wherein a transparent coating is formed on the substrate using the coating solution according to any one of claims 1 to 8 or the coating solution obtained by the production method according to claims 9 to 11. ,
The transparent coating comprises metal oxide particles having an average particle size of 5 to 300 nm and a matrix component,
The content (W P ) of the metal oxide particles as a solid content is 50 to 90% by weight, the content (W R ) of the matrix component as a solid content is 10 to 50% by weight, and the content A substrate with a transparent coating, wherein the ratio (W R / W P ) is 0.11 to 1.0 and the average film thickness (T) is 1 to 100 μm. - 前記基材がアクリル、ポリカーボネート、シクロオレフィンポリマー、ポリエチレンテレフタラート、トリアセチルセルロースから選ばれる少なくとも1種の樹脂基材であることを特徴とする請求項12に記載の透明被膜付基材。 The substrate with a transparent coating according to claim 12, wherein the substrate is at least one resin substrate selected from acrylic, polycarbonate, cycloolefin polymer, polyethylene terephthalate, and triacetyl cellulose.
- 前記透明被膜の鉛筆硬度が5H以上であることを特徴とする請求項12または13に記載の透明被膜付基材。 The substrate with a transparent coating according to claim 12 or 13, wherein the transparent coating has a pencil hardness of 5H or more.
- 下記条件で測定したカーリング特性が5mm以下である請求項12~14のいずれか一項に記載の透明被膜付基材;
塗布面が14cm×25cm、厚みが40μmであるトリアセチルセルロース基材上に、厚さ12μmの透明被膜が形成するように透明被膜形成用塗布液を塗布し、20時間静置し、その後、フィルムを10cm×10cmサイズにカットし、塗布面を下にしてフィルムを平板上に置き、カーリング(湾曲)して浮上した基材の頂点の平板からの高さ。
The substrate with a transparent coating according to any one of claims 12 to 14, wherein the curling property measured under the following conditions is 5 mm or less;
A coating solution for forming a transparent film is applied on a triacetyl cellulose base material having a coating surface of 14 cm × 25 cm and a thickness of 40 μm so that a transparent film with a thickness of 12 μm is formed. The height from the flat plate at the top of the base material was cut into a size of 10 cm × 10 cm, the film was placed on a flat plate with the coating surface down, and curled (curved).
- 請求項1~8のいずれか一項に記載された塗布液または請求項9~11に記載された製造方法により得られた塗布液を、基材上に塗布して塗膜を作製する工程と、
前記塗膜を乾燥させる工程と、
乾燥後に前記塗膜を硬化させて透明被膜を得る工程を備え、
前記乾燥による前記塗膜の収縮率が25%以下であり、前記硬化による前記塗膜の収縮率が10%以下であり、合計の収縮率が35%以下である透明被膜付基材の製造方法。 Applying a coating solution according to any one of claims 1 to 8 or a coating solution obtained by the production method according to claims 9 to 11 on a substrate to produce a coating film; ,
Drying the coating film;
Comprising a step of curing the coating after drying to obtain a transparent coating;
The method for producing a substrate with a transparent coating, wherein the shrinkage rate of the coating film by drying is 25% or less, the shrinkage rate of the coating film by curing is 10% or less, and the total shrinkage rate is 35% or less. . - 平均粒子径が5~300nmの金属酸化物粒子が、2個以下の官能基を有する第一の有機樹脂に分散された有機樹脂分散ゾルであって、
前記金属酸化物粒子の固形分としての濃度(CPS)が45~90重量%であり、前記第一の有機樹脂の固形分としての濃度(CRS)が10~50重量%であり、全固形分濃度(CTS)が60重量%以上であることを特徴とする金属酸化物粒子の有機樹脂分散ゾル。 An organic resin dispersion sol in which metal oxide particles having an average particle diameter of 5 to 300 nm are dispersed in a first organic resin having 2 or less functional groups,
The concentration (C PS ) as the solid content of the metal oxide particles is 45 to 90% by weight, the concentration (C RS ) as the solid content of the first organic resin is 10 to 50% by weight, An organic resin-dispersed sol of metal oxide particles, wherein the solid content concentration (C TS ) is 60% by weight or more. - 前記透明被膜の上に反射防止層が形成された透明被膜付基材であって、
前記反射防止層はシリカ系中空粒子とマトリックス成分(ML)を含み、
前記シリカ系中空粒子の含有量(WPLA)が5~80重量%であり、
前記マトリックス成分(ML)の含有量(WML)が20~95重量%であり、
前記反射防止層の厚さ(TL)が80~200nmであり、
前記シリカ系中空粒子の平均粒子径(DPA)が10~45nmであり、
前記シリカ系中空粒子の平均粒子径(DPA)と前記反射防止層の厚さ(TL)との比(DPA/TL)が0.05~0.56であることを特徴とする請求項12~15のいずれか一項に記載の透明被膜付基材。 A substrate with a transparent coating in which an antireflection layer is formed on the transparent coating,
The antireflection layer includes silica-based hollow particles and the matrix component (M L),
The content of the silica-based hollow particles (W PLA ) is 5 to 80% by weight,
The content (W ML ) of the matrix component (M L ) is 20 to 95% by weight,
The antireflection layer has a thickness (T L ) of 80 to 200 nm;
The silica-based hollow particles have an average particle diameter (D PA ) of 10 to 45 nm,
A ratio (D PA / T L ) between an average particle diameter (D PA ) of the silica-based hollow particles and a thickness (T L ) of the antireflection layer is 0.05 to 0.56, The substrate with a transparent coating according to any one of claims 12 to 15. - 前記反射防止層が、平均粒子径(DPB)が4~17nmの第二のシリカ系粒子を含み、平均粒子径の比(DPB/DPA)が0.1~0.4であることを特徴とする請求項18に記載の透明被膜付基材。 The antireflection layer includes second silica-based particles having an average particle diameter (D PB ) of 4 to 17 nm, and an average particle diameter ratio (D PB / D PA ) of 0.1 to 0.4 The base material with a transparent film of Claim 18 characterized by these.
- 前記透明被膜と前記反射防止層との界面が波状であることを特徴とする請求項18または19に記載の透明被膜付基材。 The substrate with a transparent coating according to claim 18 or 19, wherein an interface between the transparent coating and the antireflection layer is wavy.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167026821A KR102379944B1 (en) | 2014-03-31 | 2015-03-30 | Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate |
CN201580017788.XA CN106164190B (en) | 2014-03-31 | 2015-03-30 | Coating liquid for forming transparent film and method for producing same, organic resin dispersion sol, substrate with transparent film and method for producing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-073074 | 2014-03-31 | ||
JP2014073074A JP6470498B2 (en) | 2014-03-31 | 2014-03-31 | Coating liquid for forming transparent film and method for producing substrate with transparent film |
JP2014120437A JP6450531B2 (en) | 2014-06-11 | 2014-06-11 | Manufacturing method of substrate with antireflection film |
JP2014-120437 | 2014-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015152171A1 true WO2015152171A1 (en) | 2015-10-08 |
Family
ID=54240493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/059981 WO2015152171A1 (en) | 2014-03-31 | 2015-03-30 | Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR102379944B1 (en) |
CN (1) | CN106164190B (en) |
TW (1) | TWI670335B (en) |
WO (1) | WO2015152171A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018003880A1 (en) * | 2016-07-01 | 2018-01-04 | 三菱ケミカル株式会社 | Active energy ray-curable resin composition, resin molded article and method for producing resin molded article |
JP6294999B1 (en) * | 2017-06-05 | 2018-03-14 | 日本化工塗料株式会社 | Active energy ray-curable composition for forming a cured film on a cyclic olefin-based resin substrate, and method for producing a hard coat film |
JP2018123043A (en) * | 2017-02-03 | 2018-08-09 | 日揮触媒化成株式会社 | Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film |
WO2019172013A1 (en) * | 2018-03-05 | 2019-09-12 | 住友化学株式会社 | Polymerizable liquid crystal composition |
JP2020074021A (en) * | 2020-01-10 | 2020-05-14 | 住友化学株式会社 | Polymerizable liquid crystal composition |
JP7220856B1 (en) | 2022-06-20 | 2023-02-13 | 東洋インキScホールディングス株式会社 | Coating composition and laminate |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108610702A (en) * | 2016-12-28 | 2018-10-02 | 张家港康得新光电材料有限公司 | Hardened material composition, the substrate and preparation method thereof using optical filter |
CN108610703A (en) * | 2016-12-28 | 2018-10-02 | 张家港康得新光电材料有限公司 | Hardened material composition, the substrate and preparation method thereof for optical filter |
CN106984513A (en) * | 2017-04-26 | 2017-07-28 | 常家华 | A kind of Surface Enhanced polymer base material |
TWI842673B (en) * | 2017-06-05 | 2024-05-21 | 日商日本化工塗料股份有限公司 | Active energy ray-curable composition for forming a hardened film on a cyclic olefin resin substrate, and hard coating film and laminate based on the cyclic olefin resin |
JP7223746B2 (en) * | 2018-03-30 | 2023-02-16 | 日揮触媒化成株式会社 | Coating liquid for film formation and method for producing film-coated substrate |
KR102307916B1 (en) * | 2019-12-05 | 2021-09-30 | 주식회사 포스코 | Coating composition for hot dip galvanized steel sheet having excellent corrosion resistant and surface color, hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05302041A (en) * | 1991-09-27 | 1993-11-16 | Mitsubishi Rayon Co Ltd | Coating composition and surface-coated article |
JP2000289172A (en) * | 1999-04-05 | 2000-10-17 | Ge Toshiba Silicones Co Ltd | Polycarbonate laminate |
JP2004143201A (en) * | 2002-10-22 | 2004-05-20 | Toyo Ink Mfg Co Ltd | Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body |
JP2004258267A (en) * | 2003-02-25 | 2004-09-16 | Matsushita Electric Works Ltd | Antireflection film, method for manufacturing antireflection film, and antireflection member |
JP2005238591A (en) * | 2004-02-25 | 2005-09-08 | Nippon Zeon Co Ltd | Optical laminated film |
JP2008051851A (en) * | 2006-08-22 | 2008-03-06 | Seiko Epson Corp | Optical article and method of manufacturing optical article |
JP2008139526A (en) * | 2006-12-01 | 2008-06-19 | Riken Technos Corp | Antireflection film |
JP2010095569A (en) * | 2008-10-14 | 2010-04-30 | Mitsubishi Chemicals Corp | Active energy ray-curable resin composition, cured material and article |
JP2010128309A (en) * | 2008-11-28 | 2010-06-10 | Jgc Catalysts & Chemicals Ltd | Base material with antireflection film, and application liquid for forming the antireflection film |
JP2010189620A (en) * | 2009-01-20 | 2010-09-02 | Shin-Etsu Chemical Co Ltd | Photocurable resin composition and article having cured coating |
JP2011137097A (en) * | 2009-12-28 | 2011-07-14 | Jgc Catalysts & Chemicals Ltd | Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0756011B2 (en) | 1986-07-29 | 1995-06-14 | 株式会社資生堂 | Modified powder |
EP0574352A1 (en) | 1992-06-09 | 1993-12-15 | Ciba-Geigy Ag | Process for graft polymerization on surfaces of preformed substrates to modify surface properties |
JPH06336558A (en) | 1993-05-28 | 1994-12-06 | Kose Corp | Cosmetic |
JP2000143230A (en) | 1998-11-10 | 2000-05-23 | Toshihide Haraguchi | Surface-modified silica spherical particles and method for producing the same |
JP2008163205A (en) * | 2006-12-28 | 2008-07-17 | Catalysts & Chem Ind Co Ltd | Paint for forming transparent film and substrate with transparent film |
FR2927327B1 (en) | 2008-02-08 | 2010-11-19 | Saint Gobain | FURNACE LOW NOX WITH HIGH HEAT TRANSFER |
JP2010087343A (en) | 2008-10-01 | 2010-04-15 | Toray Eng Co Ltd | Substrate processing device and substrate placing method |
KR101042727B1 (en) | 2008-12-29 | 2011-06-22 | 최상근 | Echid lamp assembly |
KR100906275B1 (en) | 2009-02-19 | 2009-07-06 | 가부시키가이샤 히타치세이사쿠쇼 | Responder |
KR101213534B1 (en) | 2010-12-23 | 2012-12-18 | 강릉원주대학교산학협력단 | Remote control system and method for underwater robot |
JP2012140533A (en) * | 2010-12-28 | 2012-07-26 | Jgc Catalysts & Chemicals Ltd | Coating liquid for forming transparent film and base material with transparent film |
US8970323B2 (en) | 2011-07-19 | 2015-03-03 | Infineon Technologies Ag | Circuit arrangement with an antenna switch and a bandstop filter and corresponding method |
KR101502966B1 (en) | 2012-05-29 | 2015-03-16 | 주식회사 엘지화학 | Endothermic separator for electrochemical elements and electrochemical elements comprising the same |
KR101412196B1 (en) | 2012-06-04 | 2014-06-25 | 조창균 | A multiple angles scraper typed sludge collection |
-
2015
- 2015-03-30 CN CN201580017788.XA patent/CN106164190B/en active Active
- 2015-03-30 WO PCT/JP2015/059981 patent/WO2015152171A1/en active Application Filing
- 2015-03-30 KR KR1020167026821A patent/KR102379944B1/en active IP Right Grant
- 2015-03-31 TW TW104110415A patent/TWI670335B/en active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05302041A (en) * | 1991-09-27 | 1993-11-16 | Mitsubishi Rayon Co Ltd | Coating composition and surface-coated article |
JP2000289172A (en) * | 1999-04-05 | 2000-10-17 | Ge Toshiba Silicones Co Ltd | Polycarbonate laminate |
JP2004143201A (en) * | 2002-10-22 | 2004-05-20 | Toyo Ink Mfg Co Ltd | Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body |
JP2004258267A (en) * | 2003-02-25 | 2004-09-16 | Matsushita Electric Works Ltd | Antireflection film, method for manufacturing antireflection film, and antireflection member |
JP2005238591A (en) * | 2004-02-25 | 2005-09-08 | Nippon Zeon Co Ltd | Optical laminated film |
JP2008051851A (en) * | 2006-08-22 | 2008-03-06 | Seiko Epson Corp | Optical article and method of manufacturing optical article |
JP2008139526A (en) * | 2006-12-01 | 2008-06-19 | Riken Technos Corp | Antireflection film |
JP2010095569A (en) * | 2008-10-14 | 2010-04-30 | Mitsubishi Chemicals Corp | Active energy ray-curable resin composition, cured material and article |
JP2010128309A (en) * | 2008-11-28 | 2010-06-10 | Jgc Catalysts & Chemicals Ltd | Base material with antireflection film, and application liquid for forming the antireflection film |
JP2010189620A (en) * | 2009-01-20 | 2010-09-02 | Shin-Etsu Chemical Co Ltd | Photocurable resin composition and article having cured coating |
JP2011137097A (en) * | 2009-12-28 | 2011-07-14 | Jgc Catalysts & Chemicals Ltd | Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109312038B (en) * | 2016-07-01 | 2021-07-23 | 三菱化学株式会社 | Active energy ray-curable resin composition, resin molded article, and method for producing resin molded article |
JP7135321B2 (en) | 2016-07-01 | 2022-09-13 | 三菱ケミカル株式会社 | Active energy ray-curable resin composition, resin molded article, and method for producing resin molded article |
WO2018003880A1 (en) * | 2016-07-01 | 2018-01-04 | 三菱ケミカル株式会社 | Active energy ray-curable resin composition, resin molded article and method for producing resin molded article |
CN109312038A (en) * | 2016-07-01 | 2019-02-05 | 三菱化学株式会社 | The manufacturing method of active energy ray-curable resin combination, synthetic resin and synthetic resin |
JPWO2018003880A1 (en) * | 2016-07-01 | 2019-04-18 | 三菱ケミカル株式会社 | Active energy ray curable resin composition, resin molded article and method for producing resin molded article |
US11248065B2 (en) | 2016-07-01 | 2022-02-15 | Mitsubishi Chemical Corporation | Active energy ray-curable resin composition, resin molded article, and method for producing resin molded article |
JP2018123043A (en) * | 2017-02-03 | 2018-08-09 | 日揮触媒化成株式会社 | Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film |
JP2018203887A (en) * | 2017-06-05 | 2018-12-27 | 日本化工塗料株式会社 | Active energy ray curable composition for forming cured coated film on cyclic olefin-based resin substrate, and manufacturing method of hard coat film |
JP6294999B1 (en) * | 2017-06-05 | 2018-03-14 | 日本化工塗料株式会社 | Active energy ray-curable composition for forming a cured film on a cyclic olefin-based resin substrate, and method for producing a hard coat film |
JP2019151763A (en) * | 2018-03-05 | 2019-09-12 | 住友化学株式会社 | Polymerizable liquid crystal composition |
WO2019172013A1 (en) * | 2018-03-05 | 2019-09-12 | 住友化学株式会社 | Polymerizable liquid crystal composition |
JP2020074021A (en) * | 2020-01-10 | 2020-05-14 | 住友化学株式会社 | Polymerizable liquid crystal composition |
JP7220856B1 (en) | 2022-06-20 | 2023-02-13 | 東洋インキScホールディングス株式会社 | Coating composition and laminate |
JP2024000296A (en) * | 2022-06-20 | 2024-01-05 | 東洋インキScホールディングス株式会社 | Coating composition and laminate |
Also Published As
Publication number | Publication date |
---|---|
CN106164190A (en) | 2016-11-23 |
TWI670335B (en) | 2019-09-01 |
TW201546197A (en) | 2015-12-16 |
KR20160138972A (en) | 2016-12-06 |
KR102379944B1 (en) | 2022-03-29 |
CN106164190B (en) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015152171A1 (en) | Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate | |
JP5558414B2 (en) | Method for manufacturing antireflection laminate | |
JP5064649B2 (en) | Anti-reflection laminate | |
JP5378771B2 (en) | Base material with antireflection film and coating liquid for forming antireflection film | |
JP2019035991A (en) | Anti-reflective film and manufacturing method thereof | |
TWI501808B (en) | Use of dispersion agent for inorgainc micro particle, inorganic micro particle dispersion liquid, and inorganic micro particle dispersion using dispersion agent for inorganic micro particle, paint and cured article | |
JP5700903B2 (en) | Base material with hard coat film and coating liquid for forming hard coat film | |
KR101774067B1 (en) | Process for production of silica-alumina sol, silica-alumina sol, coating agent for formation of transparent coating film which comprises the sol, and substrate having transparent coating film attached thereto | |
CN101225263A (en) | Coating material for forming transparent film and base material with transparent film | |
JP2008291174A (en) | Coating material for forming transparent coating film and substrate with transparent film | |
JP5815304B2 (en) | Optical thin film forming paint and optical thin film | |
JP5530158B2 (en) | Substrate with transparent film and coating liquid for forming transparent film | |
JP6470498B2 (en) | Coating liquid for forming transparent film and method for producing substrate with transparent film | |
KR20140085312A (en) | Substrate with hard coating film and coating solution for hard coating film | |
JP5466612B2 (en) | Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating | |
JP5159265B2 (en) | Substrate with transparent film and coating liquid for forming transparent film | |
JP5554904B2 (en) | Paint for forming transparent film and substrate with transparent film | |
JP2008291175A (en) | Coating material for forming transparent coating film and substrate with transparent film | |
JP5885500B2 (en) | Paint for forming transparent film and substrate with transparent film | |
JP6450531B2 (en) | Manufacturing method of substrate with antireflection film | |
JP2011110787A (en) | Base material with transparent film, and coating liquid for forming transparent film | |
CN111741999B (en) | Method for producing substrate with hard coat layer containing functional fine particles | |
JP2007022071A (en) | Antistatic laminate | |
US20220186047A1 (en) | Laminate for frost prevention, heat exchanger including the laminate, and coating agent for frost prevention | |
JP5976348B2 (en) | Active energy ray-curable resin composition, method for producing the same, coating agent, and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15773009 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167026821 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 15773009 Country of ref document: EP Kind code of ref document: A1 |