Nothing Special   »   [go: up one dir, main page]

WO2015151220A1 - ポリアミド潜在捲縮糸及びその製造方法 - Google Patents

ポリアミド潜在捲縮糸及びその製造方法 Download PDF

Info

Publication number
WO2015151220A1
WO2015151220A1 PCT/JP2014/059598 JP2014059598W WO2015151220A1 WO 2015151220 A1 WO2015151220 A1 WO 2015151220A1 JP 2014059598 W JP2014059598 W JP 2014059598W WO 2015151220 A1 WO2015151220 A1 WO 2015151220A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyamide
crimped yarn
latent crimped
yarn
Prior art date
Application number
PCT/JP2014/059598
Other languages
English (en)
French (fr)
Inventor
山下 裕之
Original Assignee
Kbセーレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kbセーレン株式会社 filed Critical Kbセーレン株式会社
Priority to CN201480077132.2A priority Critical patent/CN106103822A/zh
Priority to JP2016511239A priority patent/JPWO2015151220A1/ja
Priority to PCT/JP2014/059598 priority patent/WO2015151220A1/ja
Publication of WO2015151220A1 publication Critical patent/WO2015151220A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides

Definitions

  • the present invention relates to a polyamide crimped yarn having high crimpability in which two kinds of polyamides are arranged in a bonded mold.
  • crimped yarns used for clothing and the like natural fibers such as cotton and wool whose shape and crimp are reversibly changed by changes in humidity are well known.
  • a yarn made of a single polymer such as a polyester such as polyethylene terephthalate, which is often used for clothing, or a polyamide 6, polyamide 12 or the like, has almost no stretchability.
  • the torque is applied to the torsion to give the crimp.
  • crimping is applied by processing such as false twisting, surface wrinkles are likely to occur when a woven or knitted fabric is formed.
  • Patent Document 1 discloses a fiber in which polyamide or polyester is combined into a side-by-side type or a core-sheath type using a polyamide 12 elastomer as an elastic polymer.
  • various methods for imparting stretchability to a fiber using a composite fiber of two different types of general-purpose polymers as a crimped yarn have been studied. For example, a method in which different resins such as polyester and polyamide are combined to form a crimped yarn as a composite fiber, or a method in which a crimped yarn is used as a composite fiber in which the same resins having different viscosity are combined.
  • Patent Document 2 describes a polyamide latent crimped yarn having a high crimp property in which a specific amount of polymetaxylene adipamide is blended with a high viscosity polymer and the viscosity of the high viscosity polymer and the low viscosity polymer is controlled. Yes.
  • the polyurethane elastic yarn requires a covering processing cost, which is expensive and disadvantageous in cost.
  • the thing using the copolymer polyamide using the polyamide 12 elastomer like patent document 1 also becomes disadvantageous in cost.
  • a composite fiber made by combining different polymers such as general-purpose polyester and polyamide produces crimp in the usual post-process, so the cost for obtaining the crimp is low, but spinning and drawing In other words, the resin is easily peeled off during post-processing.
  • resins of the same kind with different viscosity differences are combined, sufficient crimps cannot be obtained, the elasticity of the fibers themselves is not sufficient, and it is difficult to obtain a highly elastic fabric.
  • an object of the present invention is to solve the above-described problems and to obtain a polyamide latent crimped yarn having sufficiently excellent stretchability without using a covering process or a special copolymer.
  • the present invention is a bonded-type latent crimped yarn composed of a resin composition (component 1) composed of polymetaxylene adipamide and polyamide 6 and a polyamide resin (component 2).
  • a polyamide latent crimped yarn satisfying the requirements of 1) to (3) is a first gist.
  • Elongation rate is 45% or more
  • Difference in resin viscosity between component 1 and component 2 [(component 1) ⁇ (component 2)] ⁇ 0.50 to 1.00
  • Polymetaxylene adipamide of component 1: polyamide 6 mass ratio 25: 75 to 70:30
  • a resin composition composed of polymetaxylene adipamide and polyamide 6 and a polyamide resin (component 2) are bonded together.
  • a more preferable production method comprises a resin composition (component 1) composed of polymetaxylene adipamide and polyamide 6 (component 1) and polyamide (component 2), and the difference in viscosity between component 1 and component 2 ((component 1)
  • component 1 and component 2 (component 1)
  • the heat set temperature in the drawing step is A method for producing a polyamide latent crimped yarn having a temperature of 125 ° C. or lower can be mentioned.
  • a polyamide latent crimped yarn having high crimpability and excellent stretchability and high shrinkage can be obtained without performing covering processing or false twisting.
  • high stretchability can be obtained without using a copolymer such as a special polyamide elastomer, which is advantageous in terms of cost.
  • FIG. 1 shows an example of a fiber cross section of the latent crimped yarn of the present invention.
  • the present invention relates to a bonded type latent crimped yarn composed of two polyamide components composed of a resin composition (component 1) comprising polymetaxylene adipamide and polyamide 6 and a polyamide resin (component 2). It is.
  • the mass ratio of the resin composition of Component 1 is 25:75 to 70:30, particularly preferably 30:70 to 55:45 for polymetaxylene adipamide and polyamide 6, respectively.
  • the hot water shrinkage is sufficient, and the fiber has high shrinkage and crimpability.
  • the polymetaxylene adipamide has a mass ratio of less than 25% by mass and more than 70% by mass, it does not shrink well with hot water, and fibers with high crimpability cannot be obtained.
  • the ratio of polymetaxylene adipamide is 45 to 55% by mass, the hot water shrinkage rate is particularly large, so that a woven fabric or knitted fabric with high density, high shrinkage, and high stretchability can be obtained. it can.
  • the polyamide 6 used in Component 1 preferably has a relative viscosity of more than 2.2 from the viewpoint of melt spinning stability. More preferably, the viscosity is 2.4 or more, and particularly preferably the relative viscosity exceeds 2.7. Further, although there is no restriction on the upper limit of the relative viscosity, a relative viscosity of up to 3.5 is sufficient from the viewpoint of spinning operation stability.
  • the polymetaxylene adipamide used in Component 1 preferably has a relative viscosity exceeding 2.1 from the viewpoint of melt spinning stability. More preferably, it is 2.3 or more, and particularly preferably the relative viscosity is more than 2.5. Moreover, although there is no restriction
  • the moisture content of the polyamide and polymetaxylene adipamide used in Component 1 of the present invention is preferably 300 ppm or less from the viewpoint of spinning operability. It is preferable to strengthen the drying as the single yarn fiber is thinner. In this case, it is more preferable not to exceed 100 ppm. More preferably, it is 50 to 100 ppm.
  • the relative viscosity of the resin composition of Component 1 is preferably 2.2 to 3.4 from the viewpoints of spinning operation and crimping performance, and is 2.6 to 3.2. It is more preferable.
  • the polyamide resin used for component 2 of the present invention may be polyamide 6, polyamide 12, polyamide 66, or the like, and is not particularly limited, but homopolyamide is preferred. From the viewpoint of cost and versatility, polyamide 6 and polyamide 66 are preferable. In addition, you may add a matting agent etc. to a polymer as a 3rd component.
  • the relative viscosity of polyamide 6 is preferably more than 2.2 from the viewpoint of melt spinning stability. More preferably, it is 2.4 or more, and particularly preferably, the relative viscosity exceeds 2.7. Further, although there is no restriction on the upper limit of the relative viscosity, a relative viscosity of up to 3.5 is sufficient from the viewpoint of spinning operation stability.
  • the relative viscosity of the component 2 resin is preferably 2.1 to 3.5 and more preferably 2.3 to 3.0 from the viewpoint of maintaining a high elongation rate and heat shrinkage stress. preferable.
  • the moisture content of the polyamide resin of component 2 is preferably 300 ppm or less from the viewpoint of spinning operability.
  • the finer the single yarn fineness the better the drying, and in this case, it is better not to exceed 100 ppm.
  • the present invention is a bonded type latent crimped yarn composed of two polyamide components composed of component 1 and component 2.
  • a method for laminating latent crimped yarns of the present invention for example, a method in which component 1 and component 2 are separately melted, bonded and spun at the base portion, and bonded as a composite fiber is preferably exemplified.
  • the fiber cross-sectional shape (cross-sectional shape perpendicular to the fiber longitudinal direction) of the latent crimped yarn of the present invention is not limited to a round cross-section, and may be an irregular cross-section such as a triangle, square, or peanut type.
  • Examples of the arrangement of laminating component 1 and component 2 include a method of arranging component 1 and component 2 in a side-by-side type, a method of arranging each in a side-by-side repetitive type, a method of arranging in an eccentric core-sheath type, and the like. In view of spinning operability and high crimping performance, a side-by-side arrangement method is preferred.
  • FIG. 1 (a) is a side-by-side type composite fiber having a round cross section
  • FIG. 1 (b) is a side-by-side type composite fiber having a triangular cross section
  • FIG. 1 (c) is a side-by-side type composite fiber having a square cross section
  • FIG. It is an example of the side by side type
  • the latent crimped yarn of the present invention those having a round cross section and a peanut type cross section are preferable from the viewpoint that sufficient stretchability can be easily obtained, and a peanut type cross section is particularly preferable.
  • the ratio of the long side A to the short side B (long side / short side) is 1.1 to 3.0, more preferably 1.1 to 3.0, in order to give the fiber itself excellent stretchability. 2.2.
  • the elongation rate of the polyamide latent crimped yarn of the present invention is 45% or more. If the elongation rate is 45% or more, the stretchability is excellent and sufficient crimps can be generated. As a result, it is possible to obtain a fabric having stretchability while being a high-density fabric. And in post-processing such as dyeing, the latent crimped yarn shrinks, and a high-shrinkage high-density fabric can be obtained. In addition, More preferably, it is 50% or more, More preferably, it is 60% or more.
  • the breaking strength of the polyamide latent crimped yarn of the present invention is preferably 3.2 cN / dtex or more from the viewpoint of maintaining good weaving operability without yarn breakage. More preferably, it is 3.5 cN / dtex or more.
  • the hot water shrinkage rate of the polyamide latent crimped yarn of the present invention is preferably 45% or more from the viewpoint of high crimp performance. More preferably, it is 55% or more.
  • the upper limit is preferably 85% or less from the viewpoint of easily preventing the texture of the dough after heat treatment.
  • the MAX value (thermal shrinkage stress) of the shrinkage stress of the polyamide latently crimped yarn of the present invention is 0.2 to 1.0 cN / dtex from the viewpoint of easily obtaining a high-density fabric by shrinking and maintaining a good texture. It is preferable that More preferably, it is 0.25 to 0.5 cN / dtex. That is, if the thermal shrinkage stress is too small, there is a risk that the fabric shrinks at the time of shrinkage and a high-density fabric cannot be obtained. There is a risk that.
  • the polyamide latent crimped yarn of the present invention preferably has a number of crimps described later of 90 to 500. When it is within this range, when it is made into a fabric, a good crimp is easily expressed, and it becomes easy to obtain a high-density fabric with a good texture.
  • the polyamide latently crimped yarn of the present invention can be obtained by a two-step method (conventional method) of spinning and drawing, a direct spinning method, or the like.
  • a stretching method one-stage stretching, multi-stage stretching, or the like can be selected as appropriate.
  • polymetaxylene adipamide of component 1 and polyamide 6 are prepared. Both are mixed by kneading
  • the resin of component 2 is prepared. Components 1 and 2 are melt-kneaded, guided to a die pack, discharged from a nozzle so as to have a predetermined cross section, and melt-spun.
  • the spinning temperature is preferably about 260 to 290 ° C. Then, after cooling and winding up, it is stretched to obtain a stretched yarn.
  • the speed of the godet roll (spinning speed) at which the yarn discharged from the nozzle is first wound is preferably 1200 to 4500 m / min.
  • the stretch rate of the polyamide crimped yarn can be 45% or more, and when it is made into a fabric, a stretchable product can be obtained and the density can be increased.
  • the spinning speed is increased, the spinning draft is increased, whereby the orientation of molecular chains in the fiber advances, and the fiber is wound in a state in which the strain in the fiber is increased.
  • the spinning speed is preferably 1200 m / min or more, more preferably 1800 m / min or more, and further preferably 2200 m / min or more and 2700 m / min or more.
  • the upper limit is preferably about 4500 m / min, more preferably 4000 m / min.
  • the heat setting temperature in the stretching process of the conventional method or the direct stretching method is preferably 150 ° C. or less (when the relative viscosity difference is ⁇ 0.50 to ⁇ 0.00, the heat setting temperature is 125 ° C. or less). More preferably, the heat setting temperature is 145 ° C. or lower, and more preferably, the heat setting temperature is 125 ° C. or lower.
  • the heat setting temperature exceeds 150 ° C., the difference in hot water shrinkage between each component 1 and component 2 single yarn is reduced, and the hot water shrinkage of the entire composite fiber is also lowered. Thereby, since an elongation rate becomes low and it becomes difficult to express a crimp, the high density property and the high elasticity as a fabric are impaired.
  • the component 1 composed of the polyamide resin composition and the component 2 composed of the polyamide resin are set within a specific relative viscosity difference range to increase the spinning speed during spinning, Elasticity that can produce extremely high crimps with a high elongation rate by using latently crimped yarns such as composite fibers with both components bonded together, such as by controlling the heat setting temperature at a low level during the yarn making process. Excellent high shrinkage polyamide latent crimped yarn can be obtained.
  • component 1 is composed of polymetaxylene adipamide and polyamide 6, each having a mass ratio of 25:75 to 70:30, and component 2 as a polyamide resin. to paste together.
  • component 1 when each component of component 1 is made into a fiber as a single polymer, there is no significant difference in hot water shrinkage between component 1 and component 2, and no crimp is developed.
  • the hot water shrinkage rate of the component 1 single yarn can be increased. For this reason, it is easy to increase the difference between the component 2 and the hot water shrinkage, and it is easy to obtain a product having a high crimp.
  • the fiber is directly oriented under the nozzle by increasing the spinning speed, etc., and wound in a state in which the strain in the fiber is increased.
  • High crimps can be imparted by further stretching the fiber having a length and storing the strain in the fiber.
  • the oriented molecular chain is not fixed (molecular chain distortion is not relaxed), so that the difference in thermal shrinkage between Component 1 and Component 2 is maintained large. Therefore, high crimpability can be maintained.
  • the present invention can obtain a high-shrinkage polyamide latent crimped yarn having a high elongation rate and excellent stretchability.
  • the polyamide latent crimped yarn obtained in this way has a good weaving property because it can maintain an appropriate strength.
  • the high shrinkage stress and high crimpability of the latent crimped yarn of the present invention when subjected to shrinkage processing by weaving, it is possible to obtain a fiber having a higher density and good texture.
  • it has high crimpability it is possible to obtain a fabric with high density and high stretchability, and it can be expected to have a good texture not found in polyester high-density fabrics.
  • the relative viscosity is measured using an automatic viscosity measuring apparatus (SS-600-L1 type) manufactured by Shibayama Kagaku Seisakusho.
  • the polymer is dissolved at a concentration of 1 g / dl using 95.8% concentrated sulfuric acid as a solvent, and measurement is performed at 25 ° C. in a thermostatic bath.
  • the heat shrinkage stress is measured using a KE-II type shrinkage stress measuring device manufactured by Kanebo Engineering. Measures the thermal contraction force when heated from room temperature at a heating rate of 120 ° C / min by applying an initial load of fineness x 2/30 (cN) to a sample with a thread end tied as a 5 cm long loop. To do. The highest point of the measured thermal contraction force is defined as the peak (cN) of thermal contraction force, and the temperature at that time is defined as the thermal contraction force peak temperature (° C.). A value obtained by dividing the maximum value of the heat shrinkage force by twice the fiber fineness is defined as heat shrinkage stress (cN / dtex).
  • Elongation rate (%) (L3-L2) / L2 ⁇ 100
  • Hot water shrinkage (%) (L0 ⁇ L1) / L0 ⁇ 100
  • surface of the following examples and comparative examples shows the thing at the time of obtaining a single fiber by the manufacturing method of each component and the same conditions as each example.
  • E. Number of crimps The sample yarn was put into a boiling water bath, immersed in the bath for 30 minutes, air-dried for 30 minutes as it was, and then the number of crimps per 1 cm was measured with an optical microscope.
  • Example 1 Relative viscosity of component 1 polyamide (polymetaxylene adipamide + polyamide 6) 2.7 (moisture content 35 ppm) and 3.0 (moisture content 55 ppm), respectively, and component 2 (polyamide 6) relative viscosity 2 .4 (water content 50 ppm) chips were vacuum dried. Furthermore, each polymer was uniformly mixed with a blender so that the mass ratio was 30:70.
  • Examples 2, 3, 4, Comparative Examples 1 and 2 The latent potential is the same as in Example 1 except that the mass ratio of component 1 polymetaxylene adipamide and polyamide 6 is changed to 40:60, 50:50, 65:35, 20:80 and 75:25, respectively. A crimped yarn was obtained. The results are shown in Table 1.
  • Comparative Example 1 the mixing ratio of the polymetaxylene adipamide of component 1 is low, and the hot water shrinkage of the component 1 single fiber is low. Comparative Example 2 also has a high mixing ratio of component 1 polymetaxylene adipamide and a low hot water shrinkage. For this reason, since the difference in hot water shrinkage between the components 1 and 2 in Comparative Examples 1 and 2 was small, a sufficient elongation rate could not be obtained.
  • the mixing ratio of the polymetaxylene adipamide of component 1 and the polyamide 6 is 30:60 to 65:35, the hot water shrinkage as a single fiber is high, and the ratio of 50:50 is The hot water shrinkage rate became the maximum.
  • the hot water shrinkage rate as a single fiber of component 1 high, the difference in hot water shrinkage rate between component 1 and component 2 can be increased, and obtained from Examples 1 to 3.
  • the latent crimped yarn had a high elongation rate and high stretchability.
  • Examples 1 to 4 good crimps were obtained.
  • Example 3 was excellent.
  • the fibers obtained in Comparative Examples 1 and 2 did not become a sufficiently high-density fabric and also had a low stretchability because the crimp rate was low.
  • the crimp was not fully expressed.
  • the heat shrinkage stress is further high, and by having sufficient stress, it is possible to obtain a fabric having a good elasticity and a suitable elasticity and a high density fabric. It was.
  • the latent crimped yarn obtained from Example 3 is a high-density fabric and has good elasticity and stiffness because it sufficiently contracts and stretches. A stretchable fabric can be obtained.
  • the latent crimped yarns obtained from Examples 3 and 5 to 12 had a hot water shrinkage rate of 45% or more and a stretch rate of 45% or more, and were crimped yarns having good crimp expression and high elongation rate. .
  • the latent crimped yarn obtained under the condition that Component 2 has a higher relative viscosity ((Component 1)-(Component 2)) is less than -0.5 is There was a tendency for the difference in hot water shrinkage between component 2 and component 2 to be small, and the elongation was low.
  • the comparative product is a sufficiently high density fabric.
  • the example product exhibited a good crimp and was able to obtain a bulky, high-density stretchy fabric.
  • Examples 3, 5, 6, 8, 10, and 11 were bulky and excellent in elasticity.
  • Example 3 Each physical property was measured and evaluated for the latent crimped yarn obtained by melt spinning and drawing according to the method described in Example 3 except that the heat treatment temperature (plate heater temperature) at the time of drawing was changed. The results are shown in Table 3.
  • Example 5 Each physical property was measured and evaluated for the latent crimped yarn obtained by melt spinning and drawing according to the method described in Example 5 except that the heat treatment temperature (plate heater temperature) at the time of drawing was changed. The results are shown in Table 3.
  • Example 8 and 19 Each physical property was measured and evaluated for the latent crimped yarn obtained by melt spinning and drawing according to the method described in Example 8 except that the heat treatment temperature (plate heater temperature) at the time of drawing was changed. The results are shown in Table 3.
  • the comparative product was not bulky and stretchable, but had a high elongation rate.
  • Examples 3, 5, 8, and 13 to 19 were bulky, high density, and stretchable fabrics.
  • the example product having a high elongation rate was a fabric excellent in bulkiness, high density, and stretchability.
  • Example 10 Each physical property was measured and evaluated for the latent crimped yarn obtained by melt spinning and stretching according to the method described in Example 10 except that the spinning speed during spinning and the draw ratio during stretching were changed. The results are shown in Table 4.
  • the fabric obtained from Comparative Example 9 has a low density and is bulky. Although a stretchable fabric could not be obtained, the example product had a high density, a good crimp, and a bulky and stretchable fabric. In addition, a thing with a favorable elongation rate was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

 カバリング加工や特殊な共重合体を用いずとも、十分に伸縮性の優れたポリアミド潜在捲縮糸を得る。 ポリメタキシレンアジパミドとポリアミド6からなる樹脂組成物(成分1)とポリアミド樹脂(成分2)で構成される貼り合わせ型の潜在捲縮糸であって、以下の(1)~(3)の要件を満足するポリアミド潜在捲縮糸である。 (1)伸長率が45%以上 (2)成分1と成分2の樹脂粘度差[(成分1)-(成分2)]=-0.50~1.00 (3)成分1のポリメタキシレンアジパミド:ポリアミド6質量比率=25:75~70:30

Description

ポリアミド潜在捲縮糸及びその製造方法
 本発明は、2種類のポリアミドを貼り合わせ型に配置した高い捲縮性を有するポリアミド捲縮糸に関する。
 衣料用途などに用いる捲縮糸としては、湿度変化によって可逆的にその形態や捲縮が変化する木綿・羊毛などの天然繊維がよく知られている。
 合成繊維に対しても、従前から、捲縮を得る試みが種々されてきた。
 例えば、衣料用途によく用いられるポリエチレンテレフタレートなどのポリエステルや、ポリアミド6、ポリアミド12等のポリアミドの単一のポリマーからなる糸は、繊維自体に伸縮性がほとんどないため、仮撚加工等により繊維自身にトルクを持たせて捲縮を付与している。仮撚等の加工により捲縮を付与すると、織編物とした際、表面のシボが発生し易い。このシボ発生を防止しようと、織物に熱水処理を施すと仮撚加工等の加工による捲縮糸のトルクが減少し、伸縮性・伸長回復性などが十分でなくなり、伸縮性の高い布帛を得るのに適当でない。
 また、捲縮糸として、ポリウレタン等の弾性のあるポリマーを用いて、伸縮性を得て収縮性の高い布帛を得るという方法もあるが、ポリウレタン単独の場合、染色性・耐光性が悪いといったことや糸同士が膠着しやすい等の問題が生じるため、通常、ポリアミドなどをカバリングして用いるのが現状である。
 また特許文献1には、弾性のあるポリマーとして、ポリアミド12エラストマーを用いて、ポリアミドやポリエステルをサイドバイサイド型や芯鞘型に複合した繊維が開示されている。
 一方、2種類の異なる汎用的なポリマーを複合した繊維を捲縮糸として、繊維に伸縮性を付与する方法も種々、検討されている。例えば、ポリエステルとポリアミドなどの異なる樹脂同士を組合せて複合繊維として捲縮糸とすることや粘度差のある同じ樹脂同士を組合せた複合繊維として捲縮糸とする方法が挙げられる。
 そして、特許文献2は、高粘度ポリマーにポリメタキシレンアジパミドを特定量ブレンドし、高粘度ポリマーと低粘度ポリマーの粘度をコントロールした高い捲縮性を持つポリアミド潜在捲縮糸が記載されている。
特開昭57-193521号公報 特許第4097788号公報
 しかしながら、ポリウレタン弾性糸は、カバリング加工費が必要となりコスト高になり、コスト的に不利となる。また特許文献1のようなポリアミド12エラストマーを用いた共重合ポリアミドを用いたものも、コスト的に不利となる。
 また汎用的なポリエステルやポリアミドなどの異なるポリマーを組み合わせて複合繊維としたものは、通常の後工程で捲縮が発現するため、捲縮を得るためのコストは低くて済むが、紡糸・延撚や後加工での樹脂同士の剥離が生じやすい。
 また同種の樹脂で粘度差が異なる樹脂同士を組み合わせた場合は、十分な捲縮が得られず、繊維自体の伸縮性も十分でなく、高い伸縮性のある布帛を得るのは難しい。
 さらに、特許文献2記載の潜在捲縮糸では、ある程度良好な捲縮率を有するものの、いまだ十分伸縮性を得られるものではない。
 したがって、本発明は、上記の課題を解決し、カバリング加工や特殊な共重合体を用いずとも、十分に伸縮性の優れたポリアミド潜在捲縮糸を得ることを目的とする。
 すなわち、本発明は、ポリメタキシレンアジパミドとポリアミド6からなる樹脂組成物(成分1)とポリアミド樹脂(成分2)で構成される貼り合わせ型の潜在捲縮糸であって、以下の(1)~(3)の要件を満足するポリアミド潜在捲縮糸を第一の要旨とする。
(1)伸長率が45%以上
(2)成分1と成分2の樹脂粘度差[(成分1)-(成分2)]=-0.50~1.00
(3)成分1のポリメタキシレンアジパミド:ポリアミド6質量比率=25:75~70:30
 そして、上記捲縮糸を製造する好適な方法としては、ポリメタキシレンアジパミドとポリアミド6からなる樹脂組成物(成分1)とポリアミド樹脂(成分2)との2種のポリアミド成分を貼り合わせて、溶融複合紡糸にて得られる潜在捲縮糸を製造する方法であって、紡糸速度が1200~4500m/minであり、延伸工程での熱セット温度が150℃以下であるポリアミド潜在捲縮糸の製造方法を挙げることができる。
 さらに好適な製法の態様としては、ポリメタキシレンアジパミドとポリアミド6からなる樹脂組成物(成分1)とポリアミド(成分2)とからなり、成分1と成分2の粘度差[(成分1)-(成分2)]が-0.50~0.00である2種のポリアミド成分を貼り合わせて溶融複合紡糸して得られる潜在捲縮糸を製造するに際し、延伸工程での熱セット温度が125℃以下であるポリアミド潜在捲縮糸の製造方法を挙げることができる。
 本発明によれば、カバリング加工や仮撚加工せずとも捲縮性が高く、伸縮性の優れた収縮性の高いポリアミド潜在捲縮糸を得ることができる。
 また、特殊なポリアミドエラストマーなどの共重合体を用いずとも高い伸縮性を得ることができるため、コスト的にも有利となる。
図1は、本発明の潜在捲縮糸の繊維横断面の一例を示す。
 以下、本発明を詳細に説明する。
 本発明は、ポリメタキシレンアジパミドとポリアミド6からなる樹脂組成物(成分1)とポリアミド樹脂(成分2)で構成される2種のポリアミド成分で構成された貼り合わせ型の潜在捲縮糸である。
 本発明において、成分1の樹脂組成物の質量比率は、ポリメタキシレンアジパミドとポリアミド6をそれぞれ25:75~70:30であり、特に好ましくは30:70~55:45である。この範囲であれば、熱水収縮率も十分であり、高い収縮性、捲縮性を備えた繊維となる。ポリメタキシレンアジパミドが質量比率25質量%未満、70質量%を超える比率では、うまく熱水により収縮せず、高い捲縮性をもつ繊維を得ることはできない。なお、ポリメタキシレンアジパミドの比率が、45~55質量%であれば、熱水収縮率が特に大きいため、より高密度、高収縮で、伸縮性の高い織物・編物等を得ることができる。
 成分1で使用されるポリアミド6は、溶融紡糸安定性の観点から、相対粘度が2.2を超えることが好ましい。より好ましくは2.4以上、特に好ましくは相対粘度2.7を超えるものである。また、相対粘度の上限に制約はないが、紡糸操業安定性の観点から相対粘度3.5までで十分である。
 成分1で使用されるポリメタキシレンアジパミドは、溶融紡糸安定性の観点から、相対粘度が2.1を超えることが好ましい。より好ましくは2.3以上、特に好ましくは相対粘度2.5以上を超えることである。また、相対粘度の上限に制約はないが、紡糸操業安定性の観点から相対粘度3.3までで十分である。
 本発明の成分1に使用されるポリアミド、ポリメタキシレンアジパミドの水分率は、紡糸操業性の観点から、300ppm以下が好ましい。単糸繊維が細いほど乾燥を強化することが好ましく、この場合、100ppmを超えないようにすることがさらに好ましい。
より好ましくは、50~100ppmである。
 本発明において、成分1の樹脂組成物の相対粘度は、紡糸操業性と捲縮性能発現性の観点から、2.2~3.4であることが好ましく、2.6~3.2であることがより好ましい。
 本発明の成分2に使用されるポリアミド樹脂は、ポリアミド6、ポリアミド12、ポリアミド66などを用いることができ、特に限定するものではないが、ホモのポリアミドが好ましい。コストや汎用性の観点からは、ポリアミド6やポリアミド66が好ましい。なお第三成分として、ポリマーに艶消し剤など添加しても良い。
 成分2で使用されるポリアミド樹脂がポリアミド6の場合、溶融紡糸安定性の観点より、ポリアミド6の相対粘度は2.2を超えることが好ましい。より好ましくは2.4以上、特に好ましくは相対粘度2.7を超えることである。また、相対粘度の上限に制約はないが、紡糸操業安定性の観点から相対粘度3.5までで十分である。
 なお、伸長率、熱収縮応力を高く保持する点からは、成分2の樹脂の相対粘度は、2.1~3.5であることが好ましく、2.3~3.0であることがより好ましい。
 成分2のポリアミド樹脂の水分率は、紡糸操業性の観点から、300ppm以下が好ましい。単糸繊度が細いほど乾燥を強化することが好ましく、この場合、100ppmを超えないようにするのがよい。
 本発明は、成分1と成分2で構成される2種のポリアミド成分で構成された貼り合わせ型の潜在捲縮糸である。
 本発明の潜在捲縮糸の貼り合わせ方法としては、例えば、成分1と成分2を別々に溶融し、口金部で貼り合わせて紡糸して、複合繊維として貼り合わせる方法が好適に挙げられる。
 本発明の潜在捲縮糸の繊維横断面形状(繊維長手方向に垂直な断面形状)は、丸断面に限定するものではなく三角、四角、落花生型などの異型断面でも良い。
 成分1と成分2を貼り合わせる配置は、成分1と成分2をサイドバイサイド型に配置する方法、それぞれをサイドバイサイド繰り返し型に配置する方法、偏芯の芯鞘型に配置する方法などが挙げられるが、紡糸操業性や高捲縮性能発現の点から、サイドバイサイド型に配置する方法が好ましい。
 本発明の潜在捲縮糸の好適な断面形状の例を図1に示す。
 図1(a)は、丸断面のサイドバイサイド型複合繊維、図1(b)は、三角断面のサイドバイサイド型複合繊維、図1(c)は四角断面のサイドバイサイド型複合繊維、図1(d)は成分1と成分2との複合部分にくぼみがある落花生型断面のサイドバイサイド型複合繊維の例である。
 本発明の潜在捲縮糸においては、十分な伸縮性を得易い点から、丸断面と落花生型断面のものが好ましく、特に好ましいのは落花生型断面である。
 尚、繊維自体に優れた伸縮性をもたせる点からは、長辺Aと短辺Bの比(長辺/短辺)が、1.1~3.0であり、より好ましくは1.1~2.2である。
 成分1及び成分2のポリマーの相対粘度差は、(成分1)-(成分2)=-0.50~1.00の範囲が好ましい。この範囲であると、紡糸操業性を保ったまま捲縮性に優れたポリアミド潜在捲縮糸を得ることができる。
 すなわち、-0.50未満である場合、繊維全体の熱水収縮率が低くなり、十分な伸縮率を得られない。また粘度差1.00を超える場合、紡糸操業性を損なうことがある。さらに好ましくは、(成分1)-(成分2)=-0.25~0.50の範囲である。
 本発明のポリアミド潜在捲縮糸の伸長率は、45%以上である。伸長率が45%以上であれば、伸縮性に優れており、十分な捲縮を発生させることができる。これにより高密度な布帛でありながら、伸縮性を合わせ持った布帛が得られる。そして、染色などの後加工において、潜在捲縮糸が収縮し、高収縮の高密度布帛を得ることができる。
 なお、より好ましくは、50%以上であり、さらに好ましくは60%以上である。
 本発明のポリアミド潜在捲縮糸の破断強度は、糸切れ無く、製編織操業性を良好に保つ点から、3.2cN/dtex以上が好ましい。より好ましくは3.5cN/dtex以上である。
 また本発明のポリアミド潜在捲縮糸の熱水収縮率は、高捲縮性能発現の観点から、45%以上であることが好ましい。より好ましくは、55%以上である。熱処理後生地のシボを防止し易い点からは、上限は85%以下とすることが好ましい。
 本発明のポリアミド潜在捲縮糸の収縮応力のMAX値(熱収縮応力)は、収縮して高密度な布帛を得やすい点と風合いを良好に保つ点から、0.2~1.0cN/dtexであることが好ましい。さらに好ましくは0.25~0.5cN/dtexである。
 すなわち、熱収縮応力が小さすぎると、収縮加工時に布帛の収縮が小さく高密度の布帛を得ることができないおそれがあり、大きすぎると、布帛が高収縮し過ぎることによりゴアついた風合いになってしまうおそれがある。
 本発明のポリアミド潜在捲縮糸は、後述するクリンプ数が、90~500であることが好ましい。この範囲であると、布帛としたときに、良好なクリンプが発現し易く、風合いの良好な高密度布帛を得られ易くなる。
 次に、本発明のポリアミド潜在捲縮糸を得る方法について、説明する。
 本発明のポリアミド潜在捲縮糸は、紡糸と延伸の二工程法(コンベンショナル法)や紡糸直接延伸法などにより得ることができる。延伸方法としては、一段延伸、多段延伸など、適宜選択できる。
 以下、さらに具体的な方法を例示する。
 まず、成分1のポリメタキシレンアジパミドとポリアミド6を準備する。両者を混練等により混合して、樹脂組成物(成分1)を得る。次に、成分2の樹脂を準備する。
 成分1と成分2を溶融混練して、口金パックに導き、所定の横断面となるようにノズルから吐出し、溶融紡糸する。ここで、紡糸温度は、260~290℃程度が好ましい。
次いで、冷却して、巻き取った後、延伸して、延伸糸を得る。コンベンショナル法や紡糸直接延伸法などの場合、ノズルから吐出された糸条が最初に捲かれるゴデットロールの速度(紡糸速度)が、1200~4500m/minであることが好ましい。このような速度とすることにより、ポリアミド捲縮糸の伸長率を45%以上とでき、布帛としたとき、伸縮性のあるものを得ることができ、高密度化も可能である。
 なお、紡糸速度を速くすると、紡糸ドラフトが高くなることにより、繊維内の分子鎖の配向が進み、且つ繊維内の歪みを高くした状態で巻き取られる。この歪みをもった繊維をさらに延伸することによって、さらに分子鎖配向を加え繊維内歪みを蓄えさせることにより、伸長率が高く、高度な捲縮を与えることができ、伸縮性のある高収縮性ポリアミド潜在捲縮糸を得ることができると推測される。この点から、紡糸速度は、1200m/min以上が好ましく、1800m/min以上がより好ましく、2200m/min以上、2700m/min以上がさらに好ましい。また、製糸操業性を考えると、上限は、紡糸速度4500m/min程度が好ましく、より好ましくは4000m/minである。
 コンベンショナル法や直接延伸法の延伸工程での熱セット温度は、150℃以下(相対粘度差が-0.50~±0.00では、熱セット温度が125℃以下)が好ましい。より好ましくは、熱セット温度が145℃以下、さらに好ましくは、熱セット温度が125℃以下である。熱セット温度が150℃を超える温度にした場合、各成分1と成分2単独糸の熱水収縮率の差が小さくなり、複合繊維全体の熱水収縮率も低下する。これにより、伸長率が低くなり、捲縮が発現しにくくなるため、布帛としたときの高密度性、高い伸縮性が損なわれる。
 なお、上述したように、本発明では、ポリアミド樹脂組成物からなる成分1とポリアミド樹脂からなる成分2とを、特定の相対粘度差の範囲内とし、紡糸の際の紡糸速度を高くしたり、製糸過程での熱セット温度を低めにコントロールする等により両成分を貼り合わせた複合繊維等の潜在捲縮糸とすることによって、伸長率が高い、極めて高い捲縮を発現させることのできる伸縮性の優れた高収縮のポリアミド潜在捲縮糸を得ることができる。
 すなわち、まず、成分1を、ポリメタキシレンアジパミドとポリアミド6から構成し、それぞれの質量比率を25:75~70:30とし、成分2をポリアミド樹脂として、高い捲縮性を有する組合せで貼り合わせる。ここで、成分1のそれぞれの成分を単独ポリマーとして繊維とした場合は、成分1と成分2の大きな熱水収縮率の差は生じず、捲縮も発現しないが、上記のように成分1を構成することで、成分1単独糸の熱水収縮率を高いものとできる。このため、成分2と熱水収縮率の差を大きくし易く、高い捲縮を有するものが得られ易い。
 そして、本発明の好適な製造方法にみられるように、紡糸速度を高くする等して、ノズル直下での繊維内を分子配向させ、繊維内の歪みを高くした状態で巻き取り、その後、歪みをもった繊維をさらに延伸してさらに繊維内歪みを蓄えさせることにより、高い捲縮を付与することができる。さらに延伸時の繊維への熱セット温度を低く抑えることにより、配向した分子鎖が固定されない(分子鎖歪みが緩和されない)ことによって、成分1と成分2の熱収縮率の差が大きいまま維持されるので、高い捲縮性が維持できる。これらの工夫により、本発明は、高い伸長率をもち、優れた伸縮性を備えた高収縮ポリアミド潜在捲縮糸を得ることができる。
 このようにして得られた上記ポリアミド潜在捲縮糸は、適度な強度を保持することができるため、製織性が良好である。また、本発明の潜在捲縮糸の高い収縮応力、高い捲縮性から、製織して収縮加工を施した際には、より高密度で風合いに良い織物にする繊維を得ることを可能とし、かつ高い捲縮性を持っているため高密度で、高伸縮性を有した布帛が得られ、さらにポリエステル高密度織物にはない良好な風合いを有することが期待できる。
 以下に実施例を挙げて本発明を詳細に説明する。なお、本発明は以下に述べる実施例に限定されるものではない。
 各物性の測定は、以下の通り、実施した。
A.相対粘度の測定
 相対粘度の測定は、柴山科学機械製作所製の自動粘度測定装置(SS-600-L1型)を用いて測定する。溶媒に95.8%濃硫酸を用いて、ポリマーを1g/dlの濃度で溶解させて、恒温槽25℃にて測定する。
B.破断強度、破断伸度の測定
 JIS-L-1013に準じ、島津製作所製のAGS-1KNGオートグラフ引張試験機を用い、試料糸長20cm、定速引張速度20cm/minの条件で測定する。荷重-伸び曲線での荷重の最高値を繊度で除した値を破断強度(cN/dtex)とし、そのときの伸び率を破断伸度(%)とする。
C.熱収縮応力の測定
 熱収縮応力は、カネボウエンジニアリング製のKE-II型収縮応力測定装置を用いて測定する。長さ5cmのループ状として糸端を結んだ試料に、繊度×2/30(cN)の初期荷重をかけて、室温から120℃/minの昇温速度で加熱した際の熱収縮力を測定する。測定した熱収縮力の最高点を熱収縮力のピーク(cN)とし、そのときの温度を熱収縮力ピーク温度(℃)とする。そして上記熱収縮力の最高値を、繊維繊度の2倍で除した値を熱収縮応力(cN/dtex)とする。
D. 伸長率・熱水収縮率の算出
 折り返し一往復を0.1g/dにて50cmの長さのカセを作成し、その時の長さL0=50とする。その後1.2mg/dの荷重を掛け30分静置する。この状態で沸騰水中に15分間浸漬した後、24時間風乾させ測長(L1)する。次に5mg/d荷重を掛け30秒後測長(L2)し、さらに300mg/d荷重を掛け30秒後測長(L3)し、次の式で算出した。
  伸長率(%)=(L3-L2)/L2×100
  熱水収縮率(%)=(L0-L1)/L0×100
 なお、以下の実施例・比較例の表中の成分1及び成分2の熱水収縮率は、各成分を各実施例と同条件の製法で単独繊維を得た場合のものを示す。
E.クリンプ数
 試料糸を沸水バスに投入し、バスに30min浸漬させた後、そのままの状態で30min風乾した後に光学顕微鏡にて1cmあたりのクリンプ数を計測した。
〔実施例1〕
 成分1のポリアミド(ポリメタキシレンアジパミド+ポリアミド6)の相対粘度それぞれ2.7(水分率35ppm)、3.0(水分率55ppm)のチップと、成分2(ポリアミド6)の相対粘度2.4(水分率50ppm)のチップを真空乾燥させた。さらにそれぞれのポリマーを質量比率30:70になるようにブレンダーにて均一に混合した。これをコンベンショナル法にて紡糸ノズルを用いて、紡糸温度282℃、捲取速度(紡糸速度)2770m/minで成分1:成分2が質量比率1:1になるよう溶融紡糸して繊維横断面がサイドバイサイドの落花生型の複合繊維である未延伸糸を得た。
 未延伸糸を一日エイジングさせ、延伸速度800m/min、スピンドル回転数7500rpm、ロールヒーター70℃、プレートヒーター100℃、延伸倍率1.8倍で延伸し、44dtex/12fの潜在捲縮糸を得た(繊維断面の長辺/短辺:1.8)。
 成分1と成分2の質量比率および得られたポリアミド潜在捲縮糸の物性を測定した結果を表1に示す。
〔実施例2、3、4、比較例1、2〕
 成分1のポリメタキシレンアジパミドとポリアミド6の質量比率をそれぞれ40:60、50:50、65:35、20:80及び75:25に変更する以外は、実施例1と同様に潜在捲縮糸を得た。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1は成分1のポリメタキシレンアジパミドの混合比率が低く、成分1単独繊維の熱水収縮率は低い。また比較例2も成分1のポリメタキシレンアジパミドの混合比率が高く熱水収縮率が低い。このため、比較例1及び2の成分1と2の熱水収縮率差が小さくなるので十分な伸長率を得られなかった。これに対し、成分1のポリメタキシレンアジパミドとポリアミド6の混合比率が、30:60~65:35のものは、単独繊維としての熱水収縮率は高く、また50:50のものは、熱水収縮率が最大となった。このように成分1の単独繊維としての熱水収縮率を高いものとすることにより、成分1と成分2との熱水収縮率差を大きくすることができ、実施例1~3から得られた潜在捲縮糸は、伸長率が高く、伸縮性の高いものとなった。
 次に、実施例1~4、比較例1、2のものを用いて、製織した後、精錬し、次いで染色して布帛を得たところ、実施例1~4のものについては、良好なクリンプが発現し、高密度布帛となり、伸縮性も優れたものが得られた。特に実施例3のものが優れていた。一方、比較例1や2で得られた繊維は、十分な高密度布帛にならず、かつ捲縮率も低いため伸縮性の小さい布帛となった。なお、比較例1、2のものについては、クリンプも十分に発現しなかった。
 また実施例1~4のものは、さらに熱収縮応力も高く、十分な応力を有することにより、高密度布帛で、適度なハリとコシを有する良好な伸縮性を持った布帛を得ることができた。
 また実施例3および比較例1から得られた潜在捲縮糸を2本双糸し筒編を作製後、解反して、1000mm×160mm布帛を得た。これらの布帛を100℃の熱水処理にて30分浸漬し、24時間後の面収縮率を測定した。このとき実施例3の糸から得られた布帛は620mm×130mmまで収縮し、面収縮率は50.4%となった。伸長回復は95%、伸長率は65%であった。これに対し、比較例1の糸から得られた布帛は、900mm×154mmとなり、面収縮率は86.7%となり、ほとんど収縮しなかった。伸長回復は85%、伸長率は25%であった。よって、比較例1から得られたものと比べて、実施例3から得た潜在捲縮糸は、十分に収縮及び伸縮性することより、高密度布帛で、適度なハリとコシを有する良好な伸縮性を持った布帛を得ることができる。
〔実施例3、5~12、比較例3~5〕
 成分1と成分2のポリアミド6の相対粘度を変更した以外は実施例2記載の方法に従って溶融紡糸、延伸を行って得た延伸糸について、各物性を測定した。さらに成分1の相対粘度を各3条件設定し、それぞれ成分1と成分2の相対粘度について、成分1>成分2、成分1と成分2の値が近いもの((成分1)-(成分2)=-0.02~0.02)、成分1<成分2について示した。
 その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例3、5~12より得られた潜在捲縮糸は、熱水収縮率45%以上、伸縮率45%以上であり、捲縮発現性の良好な伸長率の高い捲縮糸であった。
 比較例3、4、5のように成分2の方が相対粘度の大きい((成分1)-(成分2))が-0.5未満の条件で得られた潜在捲縮糸は、成分1と成分2の熱水収縮率の差が小さくなる傾向があり、伸長率は低かった。
 実施例7、9、12は比較例3、4、5と同様、相対粘度が、成分1<成分2であり、かつ、比較的相対粘度の差が小さい場合((成分1)-(成分2)=-0.5以上、0.0未満)であるが、この場合は、成分1の熱水収縮率が高いことによって、伸長率が十分に高い潜在捲縮糸が得られた。
 実施例3、5、6、8、10、11のように成分1>成分2の場合と、成分1と成分2がほぼ同一の条件((成分1)-(成分2)=-0.2~0.2)の場合では、熱水収縮率が50%以上、伸長率55%以上の潜在捲縮糸となり、捲縮率が高く、伸縮性に極めて優れた潜在捲縮糸が得られた。
 また、成分1および成分2の相対粘度が高いほど、伸長率および熱収縮応力が大きくなった。これにより、また、成分1および成分2の相対粘度が高いほど、伸長率および熱収縮応力が大きくなった。これにより、製織、精錬、染色して布帛を得たところ嵩高で高密度の伸縮性に富んだものを得ることができた。
 また実施例3、5~12、比較例3~5で得られた潜在捲縮糸を用いて、製織した後、精錬、染色して布帛を得たところ、比較例品は十分な高密度布帛を得られず、伸縮性も低いものとなったが、実施例品は、良好なクリンプが発現し、嵩高で高密度の伸縮性に富んだ布帛を得ることができた。特に実施例3、5、6、8、10、11は嵩高で伸縮性が優れていた。
〔実施例3、13~16〕
 延伸時の熱処理温度(プレートヒータ温度)を変更した以外は実施例3記載の方法に従って溶融紡糸、延伸を行って得た潜在捲縮糸について各物性を測定し、評価した。その結果を表3に示す。
〔比較例4、6、7〕
 延伸時の熱処理温度(プレートヒータ温度)を変更した以外は比較例4記載の方法に従って溶融紡糸、延伸を行って得た潜在捲縮糸について各物性を測定し、評価した。その結果を表3に示す。
〔実施例5、17、18〕
 延伸時の熱処理温度(プレートヒータ温度)を変更した以外は実施例5記載の方法に従って溶融紡糸、延伸を行って得た潜在捲縮糸について各物性を測定し、評価した。その結果を表3に示す。
〔実施例8、19、比較例8〕
 延伸時の熱処理温度(プレートヒータ温度)を変更した以外は実施例8記載の方法に従って溶融紡糸、延伸を行って得た潜在捲縮糸について各物性を測定し、評価した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例3、13~16や実施例5、17、18のように成分2の相対粘度より成分1の相対粘度が高い条件では熱処理温度(プレートヒーター温度)が高いほど、繊維全体の熱水収縮率が下がる傾向が見られた。しかし、熱処理温度150℃の高温の熱セットでも伸長率45%以上であり、十分な捲縮性能を有し、伸縮性のある潜在捲縮糸であった。また、熱セット温度が高いほど、熱収縮応力や繊維強度も大きいものとなった。これにより、熱セット温度を高くしつつ、伸縮性の優れたものが得られるため、繊維強度などの物性が良好な伸縮性のある潜在捲縮糸を得ることができる。
 また、比較例4、6、7のように成分2の相対粘度より成分1の相対粘度が低い条件(相対粘度差が-0.5未満)では、実施例3、13、14、15、16と同様に熱処理温度(プレートヒーター温度)が高いほど繊維全体の熱水収縮率が低下し、すべての熱セット温度条件において伸長率が45%未満となり捲縮性の低い潜在捲縮糸となった。
 比較例8及び実施例8、19のように成分2の相対粘度より成分1の相対粘度が低い条件(相対粘度差が-0.1程度)でも、熱セット温度が高いほど、熱水収縮率は低下した。しかし、比較例8では、繊維全体の熱水収縮率は50.9%と高い値を示すが、伸長率が45%未満となった。しかし、実施例8,19のように熱セット温度が125℃以下である場合、潜在捲縮糸の熱水収縮率、伸長率とも高かった。
 上記の実施例品及び比較例品を、製織した後、精錬、染色して布帛を得たところ、比較例品は、嵩高性、伸縮性のある布帛は得られなかったが、伸長率の高い実施例3、5、8、13~19は嵩高で、高密度、伸縮性のある布帛となった。特に伸長率の高い実施例品は嵩高性、高密度性、伸縮性に優れた布帛であった。
〔実施例10、20~24、比較例9〕
 紡糸時の紡糸速度および延伸時の延伸倍率を変更した以外は実施例10記載の方法に従って溶融紡糸、延伸を行って得た潜在捲縮糸について各物性を測定し、評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 比較例9の捲取速度800m/minでは、成分1及び成分2単独繊維の熱水収縮率差が極端に低かった。これに伴い複合繊維全体の熱水収縮率が低下し、伸長率が低くなった。捲取速度1200m/min以上である実施例10、20~24から得られた潜在捲縮糸は、十分な熱水収縮率、伸長率、熱収縮応力であった。さらに紡糸速度(本条件では捲取速度=引取速度)が速いほど、若干強度は低下するが、熱水収縮率、伸長率を増大させることができた。
 なお、実施例10、20~24、比較例9で得られたポリアミド潜在捲縮糸を用いて、製織、精錬、染色したところ、比較例9から得られた布帛は密度が低く、嵩高性・伸縮性のある布帛は得られなかったが、実施例品は、高密度で、良好なクリンプを有し、嵩高性、伸縮性に優れた布帛を得ることができた。なお、伸長率が高いほど良好なものが得られた。
A 短辺
B 長辺

Claims (3)

  1. ポリメタキシレンアジパミドとポリアミド6からなる樹脂組成物(成分1)とポリアミド樹脂(成分2)で構成される貼り合わせ型の潜在捲縮糸であって、以下の(1)~(3)の要件を満足するポリアミド潜在捲縮糸。
    (1)伸長率が45%以上
    (2)成分1と成分2の樹脂粘度差[(成分1)-(成分2)]=-0.50~1.00
    (3)成分1のポリメタキシレンアジパミド:ポリアミド6質量比率=25:75~70:30
  2. ポリメタキシレンアジパミドとポリアミド6から成る樹脂組成物(成分1)とポリアミド樹脂(成分2)との2種のポリアミド成分を貼り合わせて、溶融複合紡糸にて得られる潜在捲縮糸を製造する方法であって、紡糸速度が1200~4500m/minであり、延伸工程での熱セット温度が150℃以下である請求項1記載のポリアミド潜在捲縮糸の製造方法。
  3. ポリメタキシレンアジパミドとポリアミド6からなる樹脂組成物(成分1)とポリアミド(成分2)とからなり、成分1と成分2の粘度差[(成分1)-(成分2)]が-0.50~0.00である2種のポリアミド成分を貼り合わせて溶融複合紡糸して得られる潜在捲縮糸を製造するに際し、製糸過程での熱セット温度が125℃以下である請求項2記載のポリアミド潜在捲縮糸の製造方法。
PCT/JP2014/059598 2014-03-31 2014-03-31 ポリアミド潜在捲縮糸及びその製造方法 WO2015151220A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480077132.2A CN106103822A (zh) 2014-03-31 2014-03-31 聚酰胺潜在卷曲丝及其制造方法
JP2016511239A JPWO2015151220A1 (ja) 2014-03-31 2014-03-31 ポリアミド潜在捲縮糸及びその製造方法
PCT/JP2014/059598 WO2015151220A1 (ja) 2014-03-31 2014-03-31 ポリアミド潜在捲縮糸及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059598 WO2015151220A1 (ja) 2014-03-31 2014-03-31 ポリアミド潜在捲縮糸及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015151220A1 true WO2015151220A1 (ja) 2015-10-08

Family

ID=54239588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059598 WO2015151220A1 (ja) 2014-03-31 2014-03-31 ポリアミド潜在捲縮糸及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2015151220A1 (ja)
CN (1) CN106103822A (ja)
WO (1) WO2015151220A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024157895A1 (ja) * 2023-01-27 2024-08-02 東レ株式会社 ポリアミド複合断面繊維、ポリアミドマルチフィラメント及びポリアミド複合断面仮撚加工糸

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109208119A (zh) * 2017-06-30 2019-01-15 东丽纤维研究所(中国)有限公司 一种聚酰胺复合纤维
CN110241479A (zh) * 2019-06-12 2019-09-17 佛山新晟泰新材料技术有限公司 一种永久卷曲欧根纱及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819890B1 (ja) * 1969-07-29 1973-06-16
JP2000027031A (ja) * 1998-07-09 2000-01-25 Unitika Ltd ポリアミド潜在捲縮糸
JP2009057679A (ja) * 2008-10-16 2009-03-19 Unitika Ltd ポリアミド潜在捲縮糸
JP2014080717A (ja) * 2012-09-29 2014-05-08 Kb Seiren Ltd ポリアミド潜在捲縮糸及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129678A1 (ja) * 2007-04-18 2008-10-30 Kb Seiren, Ltd. 高収縮繊維

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819890B1 (ja) * 1969-07-29 1973-06-16
JP2000027031A (ja) * 1998-07-09 2000-01-25 Unitika Ltd ポリアミド潜在捲縮糸
JP2009057679A (ja) * 2008-10-16 2009-03-19 Unitika Ltd ポリアミド潜在捲縮糸
JP2014080717A (ja) * 2012-09-29 2014-05-08 Kb Seiren Ltd ポリアミド潜在捲縮糸及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024157895A1 (ja) * 2023-01-27 2024-08-02 東レ株式会社 ポリアミド複合断面繊維、ポリアミドマルチフィラメント及びポリアミド複合断面仮撚加工糸

Also Published As

Publication number Publication date
JPWO2015151220A1 (ja) 2017-04-13
CN106103822A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6116459B2 (ja) ポリアミド潜在捲縮糸及びその製造方法
TWI358470B (en) Composite fibers
JP3859672B2 (ja) 複合繊維及びその製造方法
TWI413715B (zh) 含有複合纖維之紗線
JP3953040B2 (ja) 複合繊維及びその製造方法
WO2015151220A1 (ja) ポリアミド潜在捲縮糸及びその製造方法
JP4769279B2 (ja) ポリアミド潜在捲縮糸
JP3865731B2 (ja) 高収縮性アクリル系繊維及び該繊維を含むパイル組成物並びに該パイル組成物を用いた立毛布帛
JP4648814B2 (ja) 高収縮繊維マルチフィラメント、それを用いた高密度織物および高密度織物の製造方法
JP4226137B2 (ja) ポリアミド潜在捲縮糸の製造方法
JP6691857B2 (ja) ポリアミド潜在捲縮糸及びその製造方法
JP6298748B2 (ja) ポリアミド潜在捲縮糸及びその製造方法
JP4616661B2 (ja) 高収縮ミシン糸及びそれを用いた膨らみ模様布帛の製造方法
JP2011026762A (ja) 高収縮繊維
JP4866109B2 (ja) 仮撚加工糸
JP4093939B2 (ja) 低収縮性ポリエステル繊維
JP6861071B2 (ja) 伸縮性編地の製造方法
JP7224135B2 (ja) 伸縮性布帛
JPH08337916A (ja) 潜在捲縮糸の紡糸直接延伸方法
JP4866110B2 (ja) 混繊糸
JP3234327B2 (ja) 高収縮性複合繊維とその製造法
JP2007239139A (ja) 複合仮撚加工糸
JP2813378B2 (ja) 高収縮性ポリエステル繊維
JP2549773B2 (ja) 複合繊維とその製造法
JP2006336124A (ja) ストレッチ性仮撚加工糸およびポリエステル布帛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511239

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887841

Country of ref document: EP

Kind code of ref document: A1