Nothing Special   »   [go: up one dir, main page]

WO2015145971A1 - 電力変換装置及び電力変換方法 - Google Patents

電力変換装置及び電力変換方法 Download PDF

Info

Publication number
WO2015145971A1
WO2015145971A1 PCT/JP2015/000973 JP2015000973W WO2015145971A1 WO 2015145971 A1 WO2015145971 A1 WO 2015145971A1 JP 2015000973 W JP2015000973 W JP 2015000973W WO 2015145971 A1 WO2015145971 A1 WO 2015145971A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bus voltage
inverter
converter
bus
Prior art date
Application number
PCT/JP2015/000973
Other languages
English (en)
French (fr)
Inventor
後藤 周作
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015145971A1 publication Critical patent/WO2015145971A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power conversion device and a power conversion method using an inverter.
  • the distributed power supply device converts DC power generated by the distributed power supply into AC power by a power converter such as a power conditioner and outputs the AC power to a commercial power system.
  • the power conditioner includes a converter and an inverter connected to the converter by a DC bus.
  • the inverter converts the DC voltage generated by the converter into an AC voltage having the same frequency as the system voltage.
  • Patent Document 1 when a solar cell is used in a distributed power source, it is difficult to use in combination with maximum power tracking (MPPT) that controls the maximum output power of the solar cell due to the influence of bus voltage fluctuations. The power generation efficiency of the entire system does not increase.
  • MPPT maximum power tracking
  • the bus voltage is set to a value obtained by adding a margin of 20 to 40 V to the maximum amplitude value of the system voltage as an inverter output. Since the maximum amplitude when the system voltage is AC200V is 283V, the bus voltage is set to around 320V. If the bus voltage is too high, the loss in the inverter increases, so the bus voltage is set as low as possible. When the bus voltage is lowered, the distortion rate of the output current increases. For this reason, it is necessary to lower the bus voltage in a range where the distortion rate satisfies a specified value.
  • the inverter loss is minimized at a low bus voltage.
  • the bus voltage that minimizes the loss differs.
  • the bus voltage at which the loss is minimized varies depending on the type of converter. For example, when the first converter having the characteristics shown in FIG. 9B and the second converter having the characteristics shown in FIG. 9C are connected to the inverter having the characteristics shown in FIG. As shown in FIG. 9D, the bus voltage for minimizing the loss in the entire system is calculated.
  • the objective of this invention is providing the power converter device which converts input power into output power efficiently.
  • a power converter according to an aspect of the present invention is connected to a DC bus that connects a converter and an inverter, and a sensor that detects input / output power of each of the converter and the inverter, and controls the bus voltage of the DC bus.
  • the control unit calculates a power loss in the converter and the inverter based on the input / output power acquired from the sensor, and executes a loss reduction process for controlling the bus voltage of the DC bus based on the power loss. .
  • the flowchart of the bus voltage control in 1st Embodiment. Explanatory drawing of the fluctuation
  • the flowchart of the bus voltage control in 2nd Embodiment. It is a bus voltage characteristic of the power converter device in 2nd Embodiment, Comprising: (a) is a total loss, (b) is explanatory drawing of the distortion rate of the output current of an inverter.
  • the flowchart of the bus voltage control in 3rd Embodiment. Explanatory drawing of two bus voltage control modes in 3rd Embodiment.
  • the power control system U ⁇ b> 1 of the first embodiment is configured to effectively use energy creation and energy storage.
  • the power control system U1 includes a converter unit 20 including at least one converter and an inverter 30. Converter unit 20 and inverter 30 are connected via a DC wiring (DC bus L1).
  • the DC bus L1 is preferably provided with monitors M1 and M2, which will be described later.
  • the converter unit 20 is connected to the distributed power source 10, and the inverter 30 is connected to a system power source 50 that is a commercial power source.
  • This power control system U1 functions as a power converter that adjusts the DC voltage (bus voltage) of the DC bus L1 in order to reduce the overall power loss (for example, the total power loss of the converter unit 20 and the inverter 30).
  • the distributed power supply 10 can include one or a plurality of power supply devices such as the solar cell panels 11, 12, 13, the fuel cell 14, the storage battery 15, and the electric vehicle 16.
  • Solar cell panels 11, 12, and 13 are power generation devices that convert solar energy into DC power, and function as energy creation devices.
  • Each solar panel 11, 12, 13 includes a plurality of solar cells.
  • the fuel cell 14 is a power generation device that obtains DC power by chemically reacting hydrogen and oxygen using a hydrogen-containing fuel gas such as natural gas and an oxygen-containing oxidant gas such as air. Function.
  • the storage battery 15 is a battery that charges electric power or supplies charged electric power, and is an energy storage device that can be used repeatedly.
  • the electric vehicle 16 includes an in-vehicle charging device and is driven by an electric motor, and functions as an energy storage device that supplies electric power stored in the in-vehicle charging device to a house.
  • the electric vehicle 16 includes a plug-in hybrid car that is provided with a gasoline engine and that can be supplied and charged directly from a household power source using a plug (plug-in device).
  • the converter unit 20 can include converters 21 to 26 connected to the solar cell panels 11, 12, 13, the fuel cell 14, the storage battery 15, and the electric vehicle 16 of the distributed power source 10.
  • Each of the converters 21 to 26 generates a pulse voltage from the input DC voltage by turning on / off the switching element (switching control), and generates a necessary DC voltage (for example, DC 350 V) based on the duty ratio of the pulse current. Perform chopper control.
  • Converters 21 to 23 are connected to the solar cell panels 11 to 13, respectively, and perform maximum power point tracking control (MPPT control) according to the generated power affected by the solar radiation condition.
  • MPPT control maximum power point tracking control
  • Each converter 21 to 23 converts the output (DC voltage) of the corresponding solar cell panel 11 to 13 into a bus voltage value and outputs it to the DC bus L1.
  • a monitor M1 which will be described later, is provided on the power line connecting the converters 21 to 23 and the corresponding solar cell panels 11 to 13.
  • the converter 24 is connected to the fuel cell 14, converts the output (direct current) of the fuel cell 14 into a bus voltage value, and outputs it to the DC bus L1.
  • a power supply line connecting the converter 24 and the fuel cell 14 is provided with a monitor M1 described later.
  • the converter 25 is connected to the storage battery 15, converts the output (direct current) of the storage battery 15 into a bus voltage value and outputs it to the DC bus L 1, or supplies power supplied from the DC bus L 1 to the storage battery 15. .
  • a power line connecting the converter 25 and the storage battery 15 is provided with a monitor M1 described later.
  • the converter 26 When the converter 26 is connected to the electric vehicle 16, the converter 26 converts the output (direct current) of the electric vehicle 16 into a bus voltage value and outputs it to the DC bus L 1, or supplies the electric power supplied from the DC bus L 1 to the electric vehicle 16. Or supply.
  • a power supply line connecting the converter 26 and the electric vehicle 16 is provided with a monitor M1 described later.
  • Converters 21 to 26 are connected to a single inverter 30 via DC bus L1.
  • the inverter 30 includes a switching control unit that may be the control unit 31.
  • the switching control unit of the inverter 30 adjusts the output voltage using the duty ratio of the pulse by performing switching control of the switching element of the inverter 30.
  • it converts into the alternating current power (for example, AC202V, 50Hz) of the voltage and frequency which can be connected with the system power supply 50 with the duty ratio of pulse current.
  • the inverter 30 supplies AC power to the system power supply 50 via a distribution board (not shown).
  • the amount of AC power is measured by a power meter provided between the distribution board and the commercial system.
  • a home load for supplying AC power is connected to the distribution board.
  • the inverter 30 includes a control unit 31.
  • the control unit 31 performs switching control in the inverter 30 and controls the bus voltage of the DC bus L1.
  • the control unit 31 includes a monitor management unit 311 and a voltage adjustment unit 312.
  • the monitor management unit 311 acquires information on the input values (voltage, current) and output values (voltage, current) of the converters 21 to 26 and the inverter 30 from the monitors M1 and M2.
  • the voltage adjustment unit 312 optimizes the bus voltage based on the total loss.
  • the converters 21 to 26 and the inverter 30 are provided with monitors M1 and M2, respectively.
  • Each monitor M1, M2 measures the voltage and current of the connected power supply line.
  • the monitors M1 and M2 are connected to the control unit 31 of the inverter 30 through the communication line L2.
  • the monitor M1 is provided between the converter and the distributed power source 10
  • the monitor M2 is provided on the DC bus between the converter and the inverter 30.
  • the monitor M1 is provided on the DC bus L1 side (converters 21 to 26 side), and the monitor M2 is provided on the system power supply 50 side.
  • the control unit 31 of the inverter 30 executes a forced change process of the bus voltage (step S01).
  • the voltage adjustment unit 312 of the control unit 31 slightly changes the bus voltage from the high voltage side to the low voltage side.
  • the bus voltage is oscillated by a minute voltage ⁇ VB from the median to the high voltage side and the low voltage side.
  • a voltage that is forcibly changed to the high voltage side by a minute voltage ⁇ VB from the median value may be referred to as a high voltage fluctuation voltage.
  • a voltage that is forcibly changed from the median to the low voltage side by a minute voltage ⁇ VB may be referred to as a low voltage fluctuation voltage.
  • the median may be referred to as the candidate bus voltage.
  • the control unit 31 of the inverter 30 executes a monitoring process (step S02).
  • the monitor management unit 311 of the control unit 31 obtains a voltage value and a current value corresponding to each of the median value of the bus voltage, the high voltage side fluctuation voltage, and the low voltage side fluctuation voltage from each of the plurality of monitors M1 and M2. Acquire and store in memory.
  • the control unit 31 of the inverter 30 executes a comparison process of the total loss before and after the forced fluctuation of the bus voltage (step S03).
  • the voltage adjustment unit 312 of the control unit 31 is based on the voltage value and the current value stored in the memory, and the power loss at the median value of the bus voltage, the power loss at the high voltage side fluctuation voltage, and the low voltage side fluctuation voltage. Calculate power loss.
  • the voltage adjustment unit 312 performs the following processing for each of the median value of the bus voltage, the high voltage side fluctuation voltage, and the low voltage side fluctuation voltage.
  • the voltage adjustment unit 312 calculates input power and output power of each of the converters 21 to 26 and the inverter 30.
  • voltage adjustment unit 312 calculates the power loss in each of converters 21-26 and inverter 30 from the difference between the input power and output power of each of converters 21-26 and inverter 30. Furthermore, voltage adjustment unit 312 calculates the power loss in DC bus L1 using the difference between the total output power of converters 21 to 26 and the input power in inverter 30. Then, the voltage adjustment unit 312 adds up the power loss in each of the converters 21 to 26, the inverter 30, and the DC bus L1, and calculates the total loss.
  • control unit 31 of the inverter 30 executes a determination process as to whether or not the loss is reduced (step S04). For example, the voltage adjustment unit 312 of the control unit 31 compares the total loss at the median, the total loss at the high voltage side fluctuation voltage, and the total loss at the low voltage side fluctuation voltage. If either the overall loss at the high voltage side fluctuation voltage or the overall loss at the low voltage side fluctuation voltage is reduced with respect to the overall loss at the median value, it is determined that the loss is reduced.
  • step S04 When it is determined that the overall median loss is the smallest and the loss is not reduced (in the case of “NO” in step S04), the control unit 31 of the inverter 30 returns to the forced fluctuation processing of the bus voltage (step S01).
  • step S05 when it is determined that either the total loss at the high voltage side fluctuation voltage or the total loss at the low voltage side fluctuation voltage is a loss reduction (in the case of “YES” in step S04), the control unit 31 of the inverter 30 The median value of forced change is changed (step S05). For example, the voltage adjustment unit 312 of the control unit 31 updates the bus voltage (high voltage side or low voltage side) with the smallest overall loss as the median value of the bus voltage.
  • control unit 31 of inverter 30 repeats the forced change processing (step S01) of the bus voltage. According to the first embodiment, the following effects can be obtained.
  • the control unit 31 of the inverter 30 performs a forced change process of the bus voltage (step S01), a monitoring process (step S02), and a comparison process of the total loss before and after the forced change of the bus voltage (step S03). ).
  • a forced change process of the bus voltage step S01
  • a monitoring process step S02
  • a comparison process of the total loss before and after the forced change of the bus voltage
  • step S03 step S03
  • the control unit 31 of the inverter 30 changes the median value of forced fluctuation (step S05).
  • the overall loss of the power control system U1 is reduced by changing the bus voltage to the minimum loss. Therefore, the power control system U1 can sell more electric power, and can extend the life of devices and the like by reducing loss.
  • control unit 31 of the inverter 30 repeats the forced fluctuation processing (step S01) of the bus voltage.
  • the bus voltage value at which the loss is minimized varies depending on the operating status of the distributed power supply 10. Therefore, the overall loss of the power control system U1 can be reduced in accordance with the operating status of the distributed power source 10.
  • the control unit 31 determines the bus voltage based on the decrease in overall loss.
  • the control unit 31 of the inverter 30 calculates the distortion rate of the output current of the inverter 30 in order to optimize the bus voltage.
  • the control unit 31 holds data relating to the upper limit value of the distortion rate of the output current.
  • step S11 the control unit 31 of the inverter 30 performs a forced fluctuation process of the bus voltage (step S11), a monitoring process (step S12), and a comparison process of the total loss before and after the forced fluctuation (step S13).
  • step S14 The determination process (step S14) is executed. When it is determined that the total loss of the median is the smallest and the loss is not reduced (in the case of “NO” in step S14), the control unit 31 of the inverter 30 returns to the forced fluctuation processing of the bus voltage (step S11).
  • the control unit 31 of the inverter 30 Is executed to determine whether or not is within the specified range (step S15). For example, the voltage adjustment unit 312 of the control unit 31 calculates the distortion rate of the output current, and compares the calculated distortion rate with the upper limit value. When the calculated distortion rate is less than or equal to the upper limit value, it is determined that the calculated distortion rate is within the specified range.
  • Step S15 When it is determined that the distortion rate is not within the specified range (in the case of “NO” in step S15), the control unit 31 of the inverter 30 returns to the forced variation processing of the bus voltage (step S11). On the other hand, when it is determined that the distortion rate is within the specified range (in the case of “YES” in Step S15), the control unit 31 of the inverter 30 changes the median value of the forced variation (Step S16), similarly to Step S05.
  • the control unit 31 of the inverter 30 determines whether the distortion rate is within a specified range (step S15). When it is determined that the distortion rate is within the specified range (in the case of “YES” in step S15), the control unit 31 of the inverter 30 changes the median value of forced fluctuation (step S16). Therefore, the overall loss of the power control system U1 can be reduced while avoiding the deterioration of the distortion rate, that is, while maintaining the power quality.
  • control part 31 is comprised so that the bus voltage control mode of a bus voltage may be changed according to the condition (for example, the electric power input condition to a converter) of the electric power control system U1.
  • the voltage adjustment unit 312 includes a storage device that holds data (mode switching reference value) for determining a bus voltage control mode (bus voltage control mode) according to the operating status of the distributed power supply 10. it can.
  • mode switching reference value data for determining a bus voltage control mode (bus voltage control mode) according to the operating status of the distributed power supply 10.
  • a predetermined photovoltaic power generation amount is set as the mode switching reference value.
  • the control unit 31 determines the bus voltage control mode based on the comparison between the power generation amount of the solar battery panels 11 to 13 and the mode switching reference value.
  • the bus voltage control mode can include first and second bus voltage control modes. In the first bus voltage control mode, the control unit 31 executes the bus voltage control process for reducing the overall loss described in the first and second embodiments. In the second bus voltage control mode, the control unit 31 executes a bus voltage control process giving priority to reducing the loss of the inverter 30, as will be described later.
  • the control unit 31 is connected to each of the converters 21 to 26 via the communication line L2.
  • the control unit 31 transmits a control signal to each of the converters 21 to 26.
  • each of the converters 21 to 26 adjusts the output based on the control signal.
  • the control unit 31 of the inverter 30 acquires the operating status information of the distributed power supply (step S21).
  • the monitor management unit 311 of the control unit 31 acquires the operating status of the corresponding distributed power supply 10 from the monitor M1 connected to the converters 21 to 26.
  • the operation status of the solar cell panels 11 to 13 is indicated by the input power (the amount of power generated by the solar cell panels 11 to 13) acquired from the monitor M1 connected to the converters 21 to 23.
  • the control unit 31 changes the bus voltage control method according to the operation status of the solar cell panels 11 to 13.
  • control unit 31 of the inverter 30 determines whether to give priority to the reduction of the inverter loss (step S22). For example, the voltage adjustment unit 312 of the control unit 31 determines whether to give priority to reducing the power loss of the inverter 30 based on the operating status of the distributed power source 10. The control unit 31 compares the power generation amount of the solar battery panels 11 to 13 with the mode switching reference value, and determines that the inverter loss is not prioritized when the power generation amount is larger than the mode switching reference value.
  • step S22 When it is determined that the inverter loss is not prioritized (in the case of “NO” in step S22), the control unit 31 of the inverter 30 enters the first bus voltage control mode and, as in the first and second embodiments, the total loss A bus voltage control process for reducing the above is executed (step S23).
  • the control unit 31 of the inverter 30 enters the second bus voltage control mode and acquires the system voltage waveform (step S24).
  • the voltage adjustment unit 312 of the control unit 31 acquires the system voltage waveform and / or the voltage, cycle, and phase of the system voltage waveform from the monitor M2 of the inverter 30, and calculates the rectified waveform.
  • the control unit 31 of the inverter 30 determines a bus voltage waveform corresponding to the system voltage waveform (step S25). For example, the voltage adjustment unit 312 of the control unit 31 specifies a bus voltage waveform corresponding to the cycle and phase of the system voltage waveform. Further, the voltage adjustment unit 312 determines the voltage value of the bus voltage based on the rectified waveform of the system voltage waveform in the bus voltage waveform.
  • control unit 31 of the inverter 30 controls the converter so that the determined bus voltage waveform is obtained (step S26).
  • the voltage adjustment unit 312 of the control unit 31 transmits a control signal to each of the converters 21 to 26 so that the same output as the determined bus voltage waveform is obtained.
  • FIG. 8 shows some specific examples of the bus voltage waveform corresponding to the waveform of the system voltage (the waveform of the output of the inverter 30).
  • the output waveform of the inverter 30 may be a full-wave rectified waveform.
  • the bus voltage waveform has an output voltage slightly higher than the output of the inverter 30 and a waveform that matches the waveform of the inverter 30.
  • the control unit 31 causes the converters 25 and 26 connected to the energy storage device (the storage battery 15 and the electric vehicle 16) to discharge the energy storage device when the bus voltage increases.
  • the target bus voltage waveform is generated by instructing charging of the energy storage device when the bus voltage drops.
  • the lower limit value of the bus voltage is set.
  • the control unit 31 keeps the voltage value constant when the bus voltage drops to a predetermined lower limit value while performing the same control as in FIG.
  • the control power supply voltage of various devices such as the inverter 30 can be used, whereby the bus voltage can be used as the control power supply of various devices.
  • control unit 31 raises and lowers the bus voltage stepwise according to the system voltage waveform. It is preferable that the control unit 31 sets the bus voltage higher than the system voltage by matching the cycle and phase of the bus voltage waveform with the period and phase of the system voltage waveform. Such stepped voltage control can reduce the loss in the inverter 30 while reducing the load required to control the bus voltage.
  • the control unit 31 instructs to output a square wave bus voltage corresponding to the system voltage waveform.
  • the bus voltage value is preferably set so that the cycle and phase of the bus voltage waveform coincide with the cycle and phase of the system voltage waveform and the bus voltage does not become lower than the system voltage.
  • Such square-wave voltage control can reduce the loss in the inverter 30 while reducing the load required to control the bus voltage.
  • the control part 31 of the inverter 30 acquires the operating condition information of a distributed power supply (step S21), and determines whether it is inverter loss priority (step S22).
  • the bus voltage can be controlled in consideration of power loss in accordance with the operating status of the distributed power supply 10. For example, when using photovoltaic power generation as the distributed power source 10, it is desirable to set the bus voltage to a constant value in order to extract the maximum output power of the solar cell. On the other hand, when the output of the solar cell is small, the power loss of the inverter 30 can be reduced by controlling the bus voltage according to the system voltage waveform.
  • the control unit 31 of the inverter 30 enters the second bus voltage control mode and acquires the system voltage waveform. (Step S24), the bus voltage waveform is determined (Step S25), and the converter is controlled (Step S26).
  • the inverter 30 is caused to function as a switch that switches the polarity of the bus voltage. In this case, since the switching loss can be reduced, the loss of the inverter 30 can be reduced.
  • control unit 31 has a voltage slightly higher than the output of the inverter 30 and instructs the output of a waveform that matches the output waveform of the inverter 30.
  • the control unit 31 discharges the storage battery 15 when the bus voltage is increased, and charges the storage battery 15 when the bus voltage is decreased, thereby reducing a loss generated when the bus voltage is shaped into a sine wave. it can.
  • the control unit 31 of the inverter 30 can instruct the output of the bus voltage waveform based on a predetermined lower limit value.
  • the bus voltage is a control power supply for the entire inverter 30. Therefore, the bus voltage can be used as the control power supply without preparing a separate control power supply.
  • the control unit 31 of the inverter 30 can also instruct the output of a waveform that changes the bus voltage in stages. Thereby, the power loss of the inverter 30 can be reduced by changing the bus voltage discretely.
  • wireless communication or power line communication may be used instead of or in addition to the communication line L2.
  • the control unit 31 of the inverter 30 executes a forced fluctuation process of the bus voltage (step S01).
  • the forced variation includes oscillating at a minute voltage ⁇ VB with respect to the median value. If the power loss can be evaluated in the forced fluctuation processing of the bus voltage, the fluctuation range is not limited to the minute voltage ⁇ VB.
  • forced fluctuation may be performed with various fluctuation ranges. In some examples, a wide voltage range is used to search a wide range of bus voltages for reducing the overall loss, and a narrow voltage range is used to optimize the bus voltage.
  • the control unit 31 of the inverter 30 changes the median value of forced fluctuation (step S05).
  • the control unit 31 of the inverter 30 may perform control so that the bus voltage is equal to or higher than the lower limit value.
  • the control power supply voltage of various devices such as the inverter 30 is used as the lower limit value.
  • the bus voltage can be used as a control power source for various devices.
  • the distributed power source 10 is not limited to including all of the solar cell panels 11, 12, 13, the fuel cell 14, the storage battery 15, and the electric vehicle 16.
  • the distributed power supply 10 may include other distributed power supplies, or may be configured by a combination of some of these.
  • the control unit 31 may be provided in a distributed power system (multi-power conditioner) in which a plurality of converters are connected to a single inverter.
  • control unit 31 of the inverter 30 performs a bus voltage control process.
  • the control unit 31 may not be provided in the inverter 30.
  • Control unit 31 may be a bus voltage control device that is provided separately from inverter 30 and performs a bus voltage control process.
  • the control unit 31 of the inverter 30 acquires the operating status information of the distributed power supply (step S21), and changes the bus voltage control mode according to the operating status.
  • the determination method of the bus voltage control mode is not limited to the operating status of the distributed power supply 10.
  • the bus voltage control mode may be changed according to the time determined according to the season.
  • the control unit 31 of the inverter 30 changes the bus voltage control mode according to a time zone during which power can be generated by sunlight and a time zone during which power generation is difficult.
  • the control unit 31 may change the bus voltage control mode based on environmental conditions acquired from a natural environment sensor that acquires environmental conditions such as solar radiation and temperature.
  • the bus voltage control process giving priority to the loss reduction of the inverter 30 is executed.
  • converters 21 to 23 connected to solar cell panels 11, 12, and 13, which are energy creation devices may perform control (MPPT control: maximum power point tracking control) that maximizes the power to be extracted. . Thereby, it is possible to reduce the overall loss while effectively utilizing the energy creation device.
  • the control unit 31 includes one or a plurality of computer processors that realize a bus voltage control method by executing program codes or software stored in a computer-readable storage medium or storage device, which may be a RAM, a ROM, an EEPROM, or the like. Can be included.
  • the power converter is connected to a DC bus that connects a converter and an inverter, and a sensor that detects input / output power of each of the converter and the inverter, and controls a bus voltage of the DC bus.
  • a control unit is provided. The controller calculates a power loss in the converter and the inverter based on the input / output power acquired from the sensor, and executes a loss reduction process for controlling the bus voltage based on the power loss.
  • control unit forcibly varies the bus voltage and calculates power loss before and after the variation.
  • control unit calculates a distortion rate of the output current of the inverter, and controls the bus voltage so that the distortion rate is included in a specified range.
  • control unit controls the bus voltage so as to be included in a range equal to or higher than a predetermined lower limit value.
  • the control unit specifies an input state of electric power to the converter, and performs a first bus voltage control mode and a second bus voltage control mode according to the input state. In the first bus voltage control mode, the loss reduction process is executed, and in the second bus voltage control mode, the bus voltage is controlled with priority on the reduction of power loss in the inverter. Execute.
  • the inverter is connected to a system power supply, and the control unit has a waveform bus voltage corresponding to the system power waveform of the system power supply in the second bus voltage control mode. It is preferable to control.
  • a chargeable / dischargeable power storage device is connected to the converter, and the control unit instructs the converter to discharge from the power storage device when the bus voltage increases. When the bus voltage drops, the converter is instructed to charge the power storage device.
  • a power converter comprising: a DC bus that connects the converter and the inverter; and a control unit that is connected to a sensor that detects input / output power of each of the converter and the inverter and controls the bus voltage of the DC bus. Is used to provide a method of converting power. The method calculates power loss in the converter and inverter based on input / output power acquired from the sensor, and controls loss reduction processing for controlling the bus voltage based on the power loss.
  • the department comprises performing.
  • At least one distributed power source at least one converter connected to the at least one distributed power source, an inverter connected to the at least one converter via a DC bus, and the at least one converter And a sensor that detects input / output power of each of the inverters, and a controller that is connected to the sensors and controls the bus voltage of the DC bus.
  • the control unit calculates a power loss in the at least one converter and the inverter based on the input / output power acquired from the sensor, and calculates a total of the power loss in the at least one converter and the power loss in the inverter. In order to reduce, the bus voltage of the DC bus is controlled based on the calculated power loss.
  • the distributed power source includes a solar panel.
  • This invention is not limited to what was illustrated.
  • the illustrated features should not be construed as essential to the invention, but rather the subject matter of the invention may be present in fewer features than all the features of the particular embodiment disclosed.
  • the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope equivalent to the terms of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

電力制御システム(U1)は、少なくとも一つのコンバータ(21~26)とインバータ(30)とを接続するDCバス(L1)と、DCバス(L1)のバス電圧を制御する制御部(31)とを備える。制御部(31)は、少なくとも一つのコンバータ(21~26)とインバータ(30)の各々の入出力電力を検出するセンサ(M1,M2)に接続される。制御部(31)は、センサ(M1,M2)によって検出される入出力電力に基づいて、システム全体の電力損失を算出し、算出した電力損失に基づいて、DCバス(L1)のバス電圧を制御する。

Description

電力変換装置及び電力変換方法
 本発明は、インバータを用いる電力変換装置及び電力変換方法に関するものである。
 近年、太陽光発電や燃料電池などの分散型電源を利用した分散型電源装置が普及しつつある。分散型電源装置は、分散型電源によって発電された直流電力を、例えばパワーコンディショナ等の電力変換装置によって交流電力に変換して商用電力系統へ出力する。
 パワーコンディショナは、コンバータと、DCバスによってコンバータと接続されるインバータとを備える。インバータは、コンバータが生成した直流電圧を系統電圧と同一周波数の交流電圧に変換する。
 インバータの損失を軽減するために、インバータとコンバータとの間のバスの電圧の振幅を変動させる技術が検討されている(例えば、特許文献1参照)。
特開2004-104963号公報
 特許文献1の技術では、分散型電源において太陽電池を利用する場合、バス電圧の変動の影響により、太陽電池の最大出力電力を制御する最大電力追従(MPPT)との併用が難しく、太陽光発電システム全体としての発電効率が上がらない。
 一般的には、バス電圧は、インバータ出力である系統電圧の最大振幅値に、20~40Vの余裕を加えた値に設定される。系統電圧がAC200Vの場合の最大振幅は283Vであるため、バス電圧は320V付近に設定される。バス電圧が高すぎると、インバータでの損失が増加するため、バス電圧は可能な限り低く設定される。なお、バス電圧を下げた場合、出力電流の歪み率が増加する。このため、歪み率が規定の値を満たす範囲でバス電圧を下げる必要がある。
 しかしながら、バス電圧を低くした場合であっても、装置全体の損失が必ずしも小さくなるとは限らない。
 図9(a)に示すように、インバータの損失は低いバス電圧で最小となる。一方、コンバータでは、損失が最小となるバス電圧が異なる。また、損失が最小となるバス電圧は、コンバータの種類によっても異なる。例えば、図9(a)に示す特性のインバータに、図9(b)に示す特性の第1のコンバータと、図9(c)に示す特性の第2のコンバータとを接続した場合、全体損失は、図9(d)のようになり、システム全体で損失を最小化するためのバス電圧が算出される。
 また、分散型電源の出力電圧も変化するため、バス電圧を固定化している場合には、電力損失が低いバス電圧からずれることになる。このため、電力損失を低減させて、入力電力を効率的に出力電力に変換することは難しかった。
 本発明の目的は、入力電力を効率的に出力電力に変換する電力変換装置を提供することにある。
 本発明の一側面に従う電力変換装置は、コンバータとインバータとを接続するDCバスと、前記コンバータ及びインバータの各々の入出力電力を検出するセンサに接続され、前記DCバスのバス電圧を制御する制御部を備える。前記制御部は、前記センサから取得した入出力電力に基づいて、前記コンバータ及びインバータにおける電力損失を算出し、前記電力損失に基づいて、前記DCバスのバス電圧を制御する損失低減処理を実行する。
 本発明の一側面によれば、入力電力を効率的に出力電力に変換することができる。他の態様及び利点は本発明の技術的思想の例を示す図面と共に以下の記載から明らかとなる。
第1の実施形態における電力変換装置のブロック図。 第1の実施形態におけるバス電圧制御のフローチャート。 第1の実施形態におけるバス電圧の変動処理の説明図。 第2の実施形態におけるバス電圧制御のフローチャート。 第2の実施形態における電力変換装置のバス電圧特性であって、(a)は全体損失、(b)はインバータの出力電流の歪み率の説明図。 第3の実施形態におけるバス電圧制御のフローチャート。 第3の実施形態における2つのバス電圧制御モードの説明図。 第3の実施形態におけるバス電圧の時間変化の説明図であって、(a)はインバータ出力と一致させた波形、(b)は下限値を設けた波形、(c)は階段状の波形、(d)は方形波状の波形の説明図。 従来技術における電力損失とバス電圧の関係の説明図であって、(a)はインバータにおける損失、(b)は第1のコンバータにおける損失、(c)は第2のコンバータにおける損失、(d)は全体損失の説明図。
 <第1の実施形態>
 図1~図3を参照して、第1の実施形態を説明する。図1に示すように、第1の実施形態の電力制御システムU1は、創エネルギーと蓄エネルギーとを有効活用するように構成されている。この電力制御システムU1は、少なくとも1つのコンバータを含むコンバータ部20とインバータ30とを含む。コンバータ部20とインバータ30は、直流配線(DCバスL1)を介して接続される。DCバスL1には、後述するモニタM1,M2が設けられることが好ましい。コンバータ部20は、分散型電源10に接続され、インバータ30は、商用電源である系統電源50に接続される。この電力制御システムU1は、全体の電力損失(例えばコンバータ部20とインバータ30との合計電力損失)を低減するためにDCバスL1の直流電圧(バス電圧)を調節する電力変換装置として機能する。
 分散型電源10は、太陽電池パネル11,12,13、燃料電池14、蓄電池15、及び電気自動車16等の一または複数の電源装置を含むことができる。太陽電池パネル11,12,13は、太陽光エネルギーを直流電力に変換する発電装置であり、創エネルギー装置として機能する。各太陽電池パネル11,12,13は、複数の太陽電池セルを備える。
 燃料電池14は、天然ガス等の水素含有燃料ガスと、空気等の酸素含有酸化剤ガスとを用いて、水素と酸素とを化学反応させて直流電力を得る発電装置であり、創エネルギー装置として機能する。
 蓄電池15は、電力を充電したり、充電した電力を供給したりする電池であり、繰り返し使用可能な蓄エネルギー装置である。
 電気自動車16は、車載充電装置を備え、電動モーターで駆動する自動車であり、車載充電装置に蓄えた電力を住宅へ供給する蓄エネルギー装置として機能する。この電気自動車16には、ガソリンエンジンを備えるとともに、家庭用電源からプラグ(差込器具)を利用して直接電力を供給し充電できるプラグインハイブリッドカーを含む。
 コンバータ部20は、分散型電源10の太陽電池パネル11,12,13、燃料電池14、蓄電池15、及び電気自動車16にそれぞれ接続されるコンバータ21~26を含むことができる。各コンバータ21~26は、スイッチング素子のオン・オフ(スイッチング制御)により、入力された直流電圧からパルス電圧を生成し、パルス電流のデューティ比により必要な直流電圧(例えば、DC350V)を生成するいわゆるチョッパ制御を行なう。
 コンバータ21~23はそれぞれ太陽電池パネル11~13に接続されており、太陽光の日射状況の影響を受ける発電電力に応じた最大電力点追従制御(MPPT制御)を行なう。各コンバータ21~23は、対応する太陽電池パネル11~13の出力(直流電圧)をバス電圧値に変換してDCバスL1に出力する。各コンバータ21~23と対応する太陽電池パネル11~13とを接続する電源線には、後述するモニタM1が設けられている。
 コンバータ24は燃料電池14に接続されており、燃料電池14の出力(直流)をバス電圧値に変換してDCバスL1に出力する。コンバータ24と燃料電池14とを接続する電源線には、後述するモニタM1が設けられている。
 コンバータ25は蓄電池15に接続されており、蓄電池15の出力(直流)をバス電圧値に変換してDCバスL1に出力したり、DCバスL1から供給される電力を蓄電池15に供給したりする。コンバータ25と蓄電池15とを接続する電源線には、後述するモニタM1が設けられている。
 コンバータ26は、電気自動車16に接続されたとき、電気自動車16の出力(直流)をバス電圧値に変換してDCバスL1に出力したり、DCバスL1から供給される電力を電気自動車16に供給したりする。コンバータ26と電気自動車16とを接続する電源線には、後述するモニタM1が設けられている。
 蓄エネルギー装置(15、16)に接続されたコンバータ25,26は、バス電圧値が上昇したときには蓄エネルギー装置を充電し、バス電圧値が下降したときには蓄エネルギー装置を放電させることにより、バス電圧を一定に維持するように構成またはプログラムされている。
 コンバータ21~26は、DCバスL1を介して、単一のインバータ30に接続される。このインバータ30は、制御部31であってもよいスイッチング制御部を備えている。
 インバータ30のスイッチング制御部は、インバータ30のスイッチング素子のスイッチング制御を行なうことにより、パルスのデューティ比を用いて出力電圧を調整する。ここでは、パルス電流のデューティ比により、系統電源50に連系可能な電圧、周波数の交流電力(例えば、AC202V、50Hz)に変換する。
 インバータ30は、分電盤(図示せず)を介して、交流電力を系統電源50に供給する。この交流電力の電力量は、分電盤、商用系統間に設けられた電力メータによって計測される。分電盤には、交流電力を供給する宅内負荷が接続される。
 インバータ30は、制御部31を備えている。この制御部31は、インバータ30においてスイッチング制御を行なうとともに、DCバスL1のバス電圧を制御する。バス電圧を制御するために、制御部31は、モニタ管理部311、電圧調整部312を備えている。
 モニタ管理部311は、コンバータ21~26及びインバータ30の各々の入力値(電圧、電流)及び出力値(電圧、電流)に関する情報をモニタM1,M2から取得する。
 電圧調整部312は、全体損失に基づいて、バス電圧の最適化を行なう。
 各コンバータ21~26,インバータ30には、それぞれモニタM1,M2が設けられている。各モニタM1,M2は、接続された電源線の電圧及び電流を測定する。そして、モニタM1,M2は、通信ラインL2により、インバータ30の制御部31に接続される。
 各コンバータ21~26においては、モニタM1は当該コンバータと分散型電源10との間に設けられており、モニタM2は当該コンバータとインバータ30との間のDCバスに設けられている。
 インバータ30においては、モニタM1はDCバスL1側(コンバータ21~26側)に設けられており、モニタM2は系統電源50側に設けられている。
 次に、図2を参照して、全体損失の低減を図るバス電圧制御処理を説明する。
 まず、インバータ30の制御部31は、バス電圧の強制変動処理を実行する(ステップS01)。例えば、制御部31の電圧調整部312は、バス電圧を高圧側、低圧側に微小変化させる。図3に示す例では、バス電圧は中央値から高圧側と低圧側にそれぞれ微小電圧ΔVBだけ振動させる。中央値から微小電圧ΔVBだけ高圧側に強制的に変動された電圧を高圧側変動電圧と呼ぶことがある。同様に、中央値から微小電圧ΔVBだけ低圧側に強制的に変動された電圧を低圧側変動電圧と呼ぶことがある。中央値は、候補バス電圧と呼ぶことがある。
 次に、インバータ30の制御部31は、モニタリング処理を実行する(ステップS02)。例えば、制御部31のモニタ管理部311は、複数のモニタM1,M2の各々から、バス電圧の中央値、高電圧側変動電圧、低電圧側変動電圧のそれぞれに対応する電圧値及び電流値を取得し、メモリに記憶する。
 次に、インバータ30の制御部31は、バス電圧の強制変動前後の全体損失の比較処理を実行する(ステップS03)。ここでは、制御部31の電圧調整部312は、メモリに記憶した電圧値、電流値に基づいて、バス電圧の中央値における電力損失、高電圧側変動電圧における電力損失、低電圧側変動電圧における電力損失を算出する。例えば、電圧調整部312は、バス電圧の中央値、高電圧側変動電圧、低電圧側変動電圧のそれぞれについて、以下の処理を実行する。まず、電圧調整部312は、コンバータ21~26及びインバータ30の各々の入力電力及び出力電力を算出する。そして、電圧調整部312は、コンバータ21~26及びインバータ30の各々の入力電力と出力電力との差分から、コンバータ21~26及びインバータ30の各々における電力損失を算出する。更に、電圧調整部312は、コンバータ21~26の出力電力の合計値と、インバータ30における入力電力との差分を用いて、DCバスL1における電力損失を算出する。そして、電圧調整部312は、各コンバータ21~26、インバータ30、DCバスL1における電力損失を合計して、全体損失を算出する。
 次に、インバータ30の制御部31は、損失減少かどうかについての判定処理を実行する(ステップS04)。例えば、制御部31の電圧調整部312は、中央値での全体損失、高電圧側変動電圧での全体損失、低電圧側変動電圧での全体損失を比較する。そして、中央値での全体損失に対して、高電圧側変動電圧での全体損失と低電圧側変動電圧での全体損失のいずれかが減少している場合には、損失減少と判定する。
 中央値の全体損失が最も少なく、損失減少でないと判定した場合(ステップS04において「NO」の場合)、インバータ30の制御部31は、バス電圧の強制変動処理(ステップS01)に戻る。
 一方、高電圧側変動電圧での全体損失、低電圧側変動電圧での全体損失のいずれかが損失減少と判定した場合(ステップS04において「YES」の場合)、インバータ30の制御部31は、強制変動の中央値を変更する(ステップS05)。例えば、制御部31の電圧調整部312は、全体損失が最も少ないバス電圧(高電圧側又は低電圧側)を、バス電圧の中央値として更新する。
 そして、更新された中央値を用いて、インバータ30の制御部31は、バス電圧の強制変動処理(ステップS01)を繰り返す。
 第1実施形態によれば、以下のような効果を得ることができる。
 (1)第1実施形態では、インバータ30の制御部31は、バス電圧の強制変動処理(ステップS01)、モニタリング処理(ステップS02)、バス電圧の強制変動前後の全体損失の比較処理(ステップS03)を実行する。中央値の全体損失に対して、高電圧側変動電圧での全体損失、低電圧側変動電圧での全体損失のいずれかが、損失減少と判定した場合(ステップS04において「YES」の場合)、インバータ30の制御部31は、強制変動の中央値を変更する(ステップS05)。これにより、損失が最小となるバス電圧に変更することで、電力制御システムU1の全体損失を低減する。従って、電力制御システムU1は、より多くの電力を売電でき、損失の低減により機器等の長寿命化を図ることができる。
 (2)第1実施形態では、インバータ30の制御部31は、バス電圧の強制変動処理(ステップS01)を繰り返す。損失が最小となるバス電圧値は、分散型電源10の稼働状況により変動する。従って、分散型電源10の稼働状況に応じて、電力制御システムU1の全体損失の低減を図ることができる。
 <第2の実施形態>
 次に、図4、図5を参照して、第2の実施形態を説明する。第1の実施形態においては、制御部31は全体損失の減少に基づいてバス電圧を決定する。第2実施形態では、バス電圧の最適化を図るために、インバータ30の制御部31は、インバータ30の出力電流の歪み率を算出する。制御部31は、出力電流の歪み率の上限値に関するデータを保持する。
 図4のフローチャートを参照して、第2実施形態のバス電圧制御を説明する。
 インバータ30の制御部31は、図2のステップS01~S04と同様に、バス電圧の強制変動処理(ステップS11)、モニタリング処理(ステップS12)、強制変動前後の全体損失の比較処理(ステップS13)、判定処理(ステップS14)を実行する。中央値の全体損失が最も少なく、損失減少でないと判定した場合(ステップS14において「NO」の場合)、インバータ30の制御部31は、バス電圧の強制変動処理(ステップS11)に戻る。
 高電圧側変動電圧での全体損失、低電圧側変動電圧での全体損失のいずれかが損失減少と判定した場合(ステップS14において「YES」の場合)、インバータ30の制御部31は、歪み率が規定範囲内かどうかについての判定処理を実行する(ステップS15)。例えば、制御部31の電圧調整部312は、出力電流の歪み率を算出し、算出した歪み率と上限値とを比較する。算出した歪み率が上限値以下の場合には、規定範囲内と判定する。
 歪み率は規定範囲内でないと判定した場合(ステップS15において「NO」の場合)、インバータ30の制御部31は、バス電圧の強制変動処理(ステップS11)に戻る。
 一方、歪み率が規定範囲内と判定した場合(ステップS15において「YES」の場合)、インバータ30の制御部31は、ステップS05と同様に、強制変動の中央値を変更する(ステップS16)。
 例えば、図5(a)に示すように、バス電圧を下げた方が全体損失を減少させることができる状況を想定する。図5(b)に示すように、バス電圧を減少させると歪み率が上限値を超える場合には、制御部31はバス電圧の変更を行なわない。
 第2実施形態によれば、以下のような効果を得ることができる。
 (3)低いバス電圧では典型的なインバータの出力電流の歪み率が悪化することがある。そこで、第2実施形態では、インバータ30の制御部31は、歪み率が規定範囲内かどうかを判定する(ステップS15)。歪み率が規定範囲内と判定した場合(ステップS15において「YES」の場合)、インバータ30の制御部31は、強制変動の中央値を変更する(ステップS16)。従って、歪み率の悪化を回避しながらすなわち電力品質を維持しながら、電力制御システムU1の全体損失の低減を図ることができる。
 <第3の実施形態>
 次に、図6~図8を参照して、第3の実施形態を説明する。第3の実施形態では、制御部31は、電力制御システムU1の状況(例えばコンバータへの電力入力状況)に応じてバス電圧のバス電圧制御モードを変更するように構成されている。
 例えば、電圧調整部312は、分散型電源10の稼働状況に応じてバス電圧の制御モード(バス電圧制御モード)を決定するためのデータ(モード切替基準値)を保持する記憶装置を含むことができる。図7の例では、所定の太陽光発電量がモード切替基準値として設定されている。制御部31は、太陽電池パネル11~13の発電量とモード切替基準値との比較に基づいて、バス電圧制御モードを決定する。バス電圧制御モードは第1及び第2バス電圧制御モードを含むことができる。第1のバス電圧制御モードにおいては、制御部31は、第1、第2の実施形態において説明した全体損失の低減を図るバス電圧制御処理を実行する。第2のバス電圧制御モードにおいては、制御部31は、後述するように、インバータ30の損失低減を優先したバス電圧制御処理を実行する。
 制御部31は、各コンバータ21~26と通信ラインL2を介して接続される。制御部31は、各コンバータ21~26に制御信号を送信する。この場合、各コンバータ21~26は制御信号に基づいて、出力を調整する。
 次に、図6を参照して、バス電圧制御処理を説明する。
 インバータ30の制御部31は、分散型電源の稼働状況情報を取得する(ステップS21)。例えば、制御部31のモニタ管理部311は、コンバータ21~26に接続されたモニタM1から、対応する分散型電源10の稼働状況を取得する。例えば、太陽電池パネル11~13の稼働状況は、コンバータ21~23に接続されるモニタM1から取得される入力電力(太陽電池パネル11~13の発電量)によって示される。制御部31は、太陽電池パネル11~13の稼働状況に応じて、バス電圧の制御方法を変更する。
 次に、インバータ30の制御部31は、インバータ損失の低減を優先するかどうかを判定する(ステップS22)。例えば、制御部31の電圧調整部312は、分散型電源10の稼働状況に基づいて、インバータ30の電力損失の低減を優先するかどうかを判定する。制御部31は、太陽電池パネル11~13の発電量と、モード切替基準値とを比較し、発電量がモード切替基準値よりも大きい場合には、インバータ損失優先でないと判定する。
 インバータ損失優先でないと判定した場合(ステップS22において「NO」の場合)、インバータ30の制御部31は、第1のバス電圧制御モードに入り、第1,第2実施形態と同様に、全体損失の低減を図るバス電圧制御処理を実行する(ステップS23)。
 インバータ損失優先と判定した場合(ステップS22において「YES」の場合)、インバータ30の制御部31は、第2のバス電圧制御モードに入り、系統電圧波形を取得する(ステップS24)。例えば、制御部31の電圧調整部312は、インバータ30のモニタM2から系統電圧波形を、及び/または、系統電圧波形の電圧と周期と位相を取得し、整流波形を算出する。
 次に、インバータ30の制御部31は、系統電圧波形に対応させたバス電圧波形を決定する(ステップS25)。例えば、制御部31の電圧調整部312は、系統電圧波形の周期と位相とに対応させたバス電圧波形を特定する。更に、電圧調整部312は、このバス電圧波形において、系統電圧波形の整流波形に基づいて、バス電圧の電圧値を決定する。
 次に、インバータ30の制御部31は、決定したバス電圧波形になるようにコンバータを制御する(ステップS26)。例えば、制御部31の電圧調整部312は、各コンバータ21~26に対して、決定したバス電圧波形と同じ出力が得られるように、制御信号を送信する。
 図8は、系統電圧の波形(インバータ30の出力の波形)に対応させたバス電圧波形のいくつかの具体例を示す。インバータ30の出力波形は、全波整流された波形であり得る。
 図8(a)に示す例では、バス電圧波形は、インバータ30の出力よりも少し高い出力電圧と、インバータ30の波形と一致した波形を有する。このバス電圧波形の出力を指示する場合、制御部31は、蓄エネルギー装置(蓄電池15や電気自動車16)に接続されたコンバータ25,26に対して、バス電圧の上昇時には蓄エネルギー装置の放電を指示し、バス電圧の下降時には蓄エネルギー装置の充電を指示することにより、目的のバス電圧波形を生成する。
 図8(b)に示す例では、バス電圧の下限値が設定されている。制御部31は、図8(a)と同じ制御を行いながら、バス電圧が予め決められた下限値に低下した場合、電圧値を一定に保つ。下限値は、インバータ30等の各種機器の制御電源電圧を用いることができ、これにより、バス電圧を各種機器の制御電源として用いることができる。
 図8(c)に示す例では、制御部31は、系統電圧波形に応じてバス電圧を段階的に上昇及び低下する。制御部31は、このバス電圧波形の周期及び位相が系統電圧波形の周期及び位相と一致し、バス電圧を系統電圧よりも高く設定することが好ましい。このような階段状の電圧制御により、バス電圧の制御に要する負荷を軽減しながら、インバータ30における損失を軽減することができる。
 図8(d)に示す例では、制御部31は、系統電圧波形に応じた方形波のバス電圧が出力されるように指示する。このバス電圧波形の周期及び位相が系統電圧波形の周期及び位相と一致し、バス電圧が系統電圧よりも低くならないように、バス電圧値を設定することが好ましい。このような方形波状の電圧制御により、バス電圧の制御に要する負荷を軽減しながら、インバータ30における損失を軽減することができる。
 第3実施形態によれば、以下のような効果を得ることができる。
 (4)第3実施形態では、インバータ30の制御部31は、分散型電源の稼働状況情報を取得し(ステップS21)、インバータ損失優先かどうかを判定する(ステップS22)。これにより、分散型電源10の稼働状況に応じて、電力損失を考慮したバス電圧の制御を行なうことができる。例えば、分散型電源10として太陽光発電を利用する場合、太陽電池の最大出力電力を取り出すためには、バス電圧を一定値にすることが望ましい。一方、太陽電池の出力が小さい場合には、バス電圧を系統電圧波形に応じた制御を行なうことにより、インバータ30の電力損失の低減を図ることができる。
 (5)第3実施形態では、インバータ損失優先と判定した場合(ステップS22において「YES」の場合)、インバータ30の制御部31は、第2のバス電圧制御モードに入り、系統電圧波形を取得し(ステップS24)、バス電圧波形を決定し(ステップS25)、コンバータを制御(ステップS26)する。例えば、インバータ30を、バス電圧の極性を切り替えるスイッチとして機能させることになる。この場合、スイッチング損失を低減できるので、インバータ30の損失を小さくすることができる。
 (6)第3実施形態では、制御部31は、インバータ30の出力よりも少し高い電圧を有するとともに、インバータ30の出力波形と一致した波形の出力を指示する。制御部31は、バス電圧を上昇させる場合には蓄電池15を放電させ、バス電圧を下降させる場合には蓄電池15を充電することで、バス電圧を正弦波に整形する際に発生する損失を低減できる。
 インバータ30の制御部31は、予め定められた下限値に基づいてバス電圧波形の出力を指示することも可能である。バス電圧はインバータ30全体の制御電源となっている場合が多い。従って、別に制御電源を用意することなく、バス電圧を制御電源として利用できる。
 インバータ30の制御部31は、バス電圧を段階的に変更する波形の出力を指示することも可能である。これにより、バス電圧を、離散的に変更することにより、インバータ30の電力損失を軽減することができる。
 実施形態は以下のように変更してもよい。
 各実施形態において、通信ラインL2の代わりにまたは加えて、無線通信や電力線通信を用いることも可能である。
 第1の実施形態においては、インバータ30の制御部31は、バス電圧の強制変動処理を実行する(ステップS01)。強制変動は、中央値に対して微小電圧ΔVBで振動させることを含む。このバス電圧の強制変動処理において、電力損失を評価できるものであれば、変動幅は微小電圧ΔVBに限定されるものではない。例えば、様々な変動幅で強制変動を行なうようにしてもよい。いくつかの例では、広い変動幅を用いて、全体損失の軽減を図るバス電圧を広範囲で探索し、狭い変動幅を用いて、バス電圧の最適化を行なう。
 第1の実施形態においては、インバータ30の制御部31は、強制変動の中央値を変更する(ステップS05)。ここで、インバータ30の制御部31は、バス電圧が下限値以上になるように制御するようにしてもよい。この場合、下限値としては、インバータ30等の各種機器の制御電源電圧を用いる。これにより、バス電圧を各種機器の制御電源として用いることができる。
 分散型電源10は、太陽電池パネル11,12,13、燃料電池14、蓄電池15、電気自動車16の全てを含むことに限定されない。分散型電源10は、他の分散型電源を含んでもよく、これらの一部の組み合わせにより構成してもよい。
 コンバータ部20のコンバータ21~26のうちのいくつかを省略してもよい。
 制御部31は、例えば、複数のコンバータが単一のインバータに接続される分散型電源システム(マルチパワーコンディショナ)内に設けられてもよい。
 各実施形態においては、インバータ30の制御部31がバス電圧制御処理を行なう。制御部31は、インバータ30に設けられなくてもよい。制御部31は、インバータ30とは別に設けられる、バス電圧制御処理を行なうバス電圧制御装置であってもよい。
 第3の実施形態においては、インバータ30の制御部31は、分散型電源の稼働状況情報を取得し(ステップS21)、稼働状況に応じて、バス電圧制御モードを変更する。ここで、バス電圧制御モードの決定方法は、分散型電源10の稼働状況に限定されるものではない。例えば、季節に応じて定められた時刻に応じて、バス電圧制御モードを変更するようにしてもよい。この場合、インバータ30の制御部31は、太陽光による発電可能な時間帯と、発電困難な時間帯により、バス電圧制御モードを変更する。
 第3の実施形態において、制御部31は、日射量、温度などの環境条件を取得する自然環境センサから取得した環境条件に基づいて、バス電圧制御モードを変更してもよい。
 第3の実施形態においては、第2のバス電圧制御モードで、インバータ30の損失低減を優先したバス電圧制御処理を実行する。ここで、創エネルギー装置である太陽電池パネル11,12,13に接続されたコンバータ21~23は、取り出す電力を最大にする制御(MPPT制御:最大電力点追従制御)を行なうようにしてもよい。これにより、創エネルギー装置を有効活用しながら、全体損失の低減を図ることができる。
 制御部31は、RAM、ROM、EEPROM等であり得るコンピュータ読み取り可能記憶媒体または記憶装置に格納されたプログラムコードまたはソフトウェアを実行することによって、バス電圧制御方法を実現する一または複数のコンピュータプロセッサを含むことができる。
 本開示には以下の実施例が含まれる。
 [1]一例では、電力変換装置は、コンバータとインバータとを接続するDCバスと、前記コンバータ及び前記インバータの各々の入出力電力を検出するセンサに接続され、前記DCバスのバス電圧を制御する制御部を備える。前記制御部は、前記センサから取得した入出力電力に基づいて、前記コンバータ及びインバータにおける電力損失を算出し、前記電力損失に基づいて、前記バス電圧を制御する損失低減処理を実行する。
 [2]いくつかの例では、前記制御部は、前記バス電圧を強制的に変動させて、その変動前後の電力損失を算出する。
 [3]いくつかの例では、前記制御部は、前記インバータの出力電流の歪み率を算出し、前記歪み率が規定範囲内に含まれるように、前記バス電圧を制御する。
 [4]いくつかの例では、前記制御部は、予め定められた下限値以上の範囲に含まれるように、前記バス電圧を制御する。
 [5]いくつかの例では、前記制御部は、前記コンバータへの電力の入力状況を特定し、前記入力状況に応じて、第1のバス電圧制御モードと第2のバス電圧制御モードとを選択し、前記第1のバス電圧制御モードにおいては、前記損失低減処理を実行し、前記第2のバス電圧制御モードにおいては、前記インバータにおける電力損失の低減を優先してバス電圧を制御する処理を実行する。
 [6]いくつかの例では、前記インバータは、系統電源に接続されており、前記制御部は、前記第2のバス電圧制御モードにおいて、前記系統電源の系統電力波形に応じた波形のバス電圧に制御することが好ましい。
 [7]いくつかの例では、前記コンバータには充放電可能な蓄電装置が接続されており、前記制御部は、前記バス電圧の上昇時には、前記コンバータに対して前記蓄電装置からの放電を指示し、前記バス電圧の下降時には、前記コンバータに対して前記蓄電装置への充電を指示する。
 [8]コンバータとインバータとを接続するDCバスと、前記コンバータ及びインバータの各々の入出力電力を検出するセンサに接続され、前記DCバスのバス電圧を制御する制御部とを備えた電力変換装置を用いて、電力を変換する方法が提供される。その方法は、前記センサから取得した入出力電力に基づいて、前記コンバータ及びインバータにおける電力損失を前記制御部が算出し、前記電力損失に基づいて、前記バス電圧を制御する損失低減処理を前記制御部が実行することを備える。
 [9]少なくとも一つの分散型電源と、前記少なくとも一つの分散型電源に接続される少なくとも一つのコンバータと、DCバスを介して前記少なくとも一つのコンバータと接続されるインバータと、前記少なくとも一つのコンバータ及び前記インバータの各々の入出力電力を検出するセンサと、前記センサに接続され、前記DCバスのバス電圧を制御する制御部とを備えるシステムが提供される。前記制御部は、前記センサから取得した前記入出力電力に基づいて、前記少なくとも一つのコンバータ及び前記インバータにおける電力損失を算出し、前記少なくとも一つのコンバータの電力損失と前記インバータにおける電力損失の合計を低下させるべく、算出した電力損失に基づいて前記DCバスのバス電圧を制御するように構成される。
 [10]いくつかの例では、分散型電源は太陽電池パネルを含む。
 実施形態、変更例、実施例を適宜組み合わせてもよい。
 本発明は、例示したものに限定されるものではない。例えば、例示した特徴が本発明にとって必須であると解釈されるべきでなく、むしろ、本発明の主題は、開示した特定の実施形態の全ての特徴より少ない特徴に存在することがある。本発明は、請求の範囲によって示され、請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。

Claims (10)

  1.  コンバータとインバータとを接続するDCバスと、
     前記コンバータ及び前記インバータの各々の入出力電力を検出するセンサに接続され、前記DCバスのバス電圧を制御する制御部とを備えた電力変換装置であって、
     前記制御部は、
     前記センサから取得した前記入出力電力に基づいて、前記コンバータ及び前記インバータにおける電力損失を算出し、
     前記電力損失に基づいて、前記DCバスのバス電圧を制御する損失低減処理を実行することを特徴とする電力変換装置。
  2.  前記制御部は、前記バス電圧を強制的に変動させて、その変動前後の電力損失を算出することを特徴とする請求項1に記載の電力変換装置。
  3.  前記制御部は、前記インバータの出力電流の歪み率を算出し、前記歪み率が規定範囲内に含まれるように、前記バス電圧を制御することを特徴とする請求項1又は2に記載の電力変換装置。
  4.  前記制御部は、予め定められた下限値以上の範囲に含まれるように、前記バス電圧を制御することを特徴とする請求項1~3の何れか一項に記載の電力変換装置。
  5.  前記制御部は、前記コンバータへの電力の入力状況を特定し、
     前記入力状況に応じて、第1のバス電圧制御モードと第2のバス電圧制御モードとを選択し、
     前記第1のバス電圧制御モードにおいては、前記損失低減処理を実行し、
     前記第2のバス電圧制御モードにおいては、前記インバータにおける電力損失の低減を優先してバス電圧を制御する処理を実行することを特徴とする請求項1~4の何れか一項に記載の電力変換装置。
  6.  前記インバータは、系統電源に接続されており、
     前記制御部は、前記第2のバス電圧制御モードにおいて、前記系統電源の系統電力波形に応じた波形のバス電圧に制御することを特徴とする請求項5に記載の電力変換装置。
  7.  前記コンバータには、充放電可能な蓄電装置が接続されており、
     前記制御部は、前記バス電圧の上昇時には、前記コンバータに対して前記蓄電装置からの放電を指示し、前記バス電圧の下降時には、前記コンバータに対して前記蓄電装置への充電を指示することを特徴とする請求項6に記載の電力変換装置。
  8.  コンバータとインバータとを接続するDCバスと、前記コンバータ及びインバータの各々の入出力電力を検出するセンサに接続され、前記DCバスのバス電圧を制御する制御部を備えた電力変換装置を用いて、電力を変換する方法であって、
     前記センサから取得した入出力電力に基づいて、前記コンバータ及びインバータにおける電力損失を前記制御部が算出し、
     前記電力損失に基づいて、前記バス電圧を制御する損失低減処理を前記制御部が実行することを特徴とする電力変換方法。
  9.  少なくとも一つの分散型電源と、
     前記少なくとも一つの分散型電源に接続される少なくとも一つのコンバータと、
     DCバスを介して前記少なくとも一つのコンバータと接続されるインバータと、
     前記少なくとも一つのコンバータ及び前記インバータの各々の入出力電力を検出するセンサと、
     前記センサに接続され、前記DCバスのバス電圧を制御する制御部とを備えるシステムであって、
     前記制御部は、
     前記センサから取得した前記入出力電力に基づいて、前記少なくとも一つのコンバータ及び前記インバータにおける電力損失を算出し、
     前記少なくとも一つのコンバータの電力損失と前記インバータにおける電力損失の合計を低下させるべく、算出した電力損失に基づいて前記DCバスのバス電圧を制御するように構成される、前記システム。
  10.  前記少なくとも一つの分散型電源は太陽電池パネルを含む、請求項9に記載のシステム。
PCT/JP2015/000973 2014-03-28 2015-02-26 電力変換装置及び電力変換方法 WO2015145971A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-068825 2014-03-28
JP2014068825A JP2015192549A (ja) 2014-03-28 2014-03-28 電力変換装置及び電力変換方法

Publications (1)

Publication Number Publication Date
WO2015145971A1 true WO2015145971A1 (ja) 2015-10-01

Family

ID=54194527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000973 WO2015145971A1 (ja) 2014-03-28 2015-02-26 電力変換装置及び電力変換方法

Country Status (2)

Country Link
JP (1) JP2015192549A (ja)
WO (1) WO2015145971A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697791B (zh) * 2019-03-20 2020-07-01 龍華科技大學 一種具遮蔭情況下之太陽能電池最大功率追蹤方法
JP2022116512A (ja) * 2021-01-29 2022-08-10 株式会社豊田中央研究所 電力供給システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558254B2 (ja) 2016-01-18 2019-08-14 住友電気工業株式会社 電力変換システム及びその制御方法
JPWO2018008287A1 (ja) * 2016-07-08 2019-04-18 ソニー株式会社 電力制御装置及び電力制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033071A (ja) * 2001-07-18 2003-01-31 Nissan Motor Co Ltd モータ制御装置
JP2006101581A (ja) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd 系統連系インバータ
JP2007037256A (ja) * 2005-07-26 2007-02-08 Toyota Industries Corp 系統連系インバータ装置の制御方法、および系統連系インバータ装置
JP2011097727A (ja) * 2009-10-29 2011-05-12 Noritz Corp パワーコンディショナ
US20120026769A1 (en) * 2010-07-29 2012-02-02 General Electric Company Photovoltaic inverter system and method of starting same at high open-circuit voltage
JP2014036550A (ja) * 2012-08-10 2014-02-24 Sharp Corp パワーコンディショナおよび電力供給システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033071A (ja) * 2001-07-18 2003-01-31 Nissan Motor Co Ltd モータ制御装置
JP2006101581A (ja) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd 系統連系インバータ
JP2007037256A (ja) * 2005-07-26 2007-02-08 Toyota Industries Corp 系統連系インバータ装置の制御方法、および系統連系インバータ装置
JP2011097727A (ja) * 2009-10-29 2011-05-12 Noritz Corp パワーコンディショナ
US20120026769A1 (en) * 2010-07-29 2012-02-02 General Electric Company Photovoltaic inverter system and method of starting same at high open-circuit voltage
JP2014036550A (ja) * 2012-08-10 2014-02-24 Sharp Corp パワーコンディショナおよび電力供給システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697791B (zh) * 2019-03-20 2020-07-01 龍華科技大學 一種具遮蔭情況下之太陽能電池最大功率追蹤方法
JP2022116512A (ja) * 2021-01-29 2022-08-10 株式会社豊田中央研究所 電力供給システム
JP7264181B2 (ja) 2021-01-29 2023-04-25 株式会社豊田中央研究所 電力供給システム
US11894717B2 (en) 2021-01-29 2024-02-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Voltage setting system for power distribution

Also Published As

Publication number Publication date
JP2015192549A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6923231B2 (ja) 直流バス制御システム
JP4791689B2 (ja) 電源装置
CN104713176B (zh) 光伏空调系统及其控制方法
EP3206276B1 (en) Energy storage system and management method thereof
US9337682B2 (en) Charging control device, solar power generation system and charging control method
KR102308628B1 (ko) 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법
JP6170258B2 (ja) 電力制御装置、電力供給システム及び電力供給システムの制御方法
US10491010B2 (en) Control apparatus for controlling the charging and discharging of storage batteries through a power converter
JP2013138530A (ja) 太陽電池発電システム
KR101863141B1 (ko) 리튬이온배터리와 슈퍼캐패시터를 이용한 전력제어형 에너지관리시스템
JP2014512170A (ja) 優先度別電気供給機能を備える制御されたコンバータアーキテクチャ
KR102456811B1 (ko) 에너지 저장 장치의 히터 구동 방법
JP2015192566A (ja) 電力システム及び直流送電方法
JP2011103740A (ja) 配電システム
WO2015145971A1 (ja) 電力変換装置及び電力変換方法
JP2014106935A (ja) 発電システム
WO2016170811A1 (ja) エネルギーマネジメントシステム
JP2011238088A (ja) 電力調整装置および電力調整方法、太陽光発電システム、並びに管理装置
US8436574B2 (en) Solar power supply system and driving method of same
US11217998B2 (en) Power conditioner
KR20150085227A (ko) 에너지 저장 시스템 및 그의 제어 방법
JP2013099207A (ja) 制御装置および制御方法
JP6768571B2 (ja) 電力制御装置、方法及び発電システム
JP6106568B2 (ja) 電力変換装置
CN117096936A (zh) 供电电路的控制方法、供电设备及储能设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15768037

Country of ref document: EP

Kind code of ref document: A1