Nothing Special   »   [go: up one dir, main page]

WO2015141483A1 - 内視鏡システム - Google Patents

内視鏡システム Download PDF

Info

Publication number
WO2015141483A1
WO2015141483A1 PCT/JP2015/056537 JP2015056537W WO2015141483A1 WO 2015141483 A1 WO2015141483 A1 WO 2015141483A1 JP 2015056537 W JP2015056537 W JP 2015056537W WO 2015141483 A1 WO2015141483 A1 WO 2015141483A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject image
image
unit
view
subject
Prior art date
Application number
PCT/JP2015/056537
Other languages
English (en)
French (fr)
Inventor
幹生 猪股
本田 一樹
倉 康人
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2015545570A priority Critical patent/JP5942047B2/ja
Publication of WO2015141483A1 publication Critical patent/WO2015141483A1/ja
Priority to US15/234,352 priority patent/US20160345808A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00181Optical arrangements characterised by the viewing angles for multiple fixed viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00177Optical arrangements characterised by the viewing angles for 90 degrees side-viewing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2415Stereoscopic endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation

Definitions

  • the present invention relates to an endoscope system, and more particularly to an endoscope system capable of simultaneously observing a direct viewing direction and a side viewing direction.
  • An endoscope system including an endoscope that captures an object inside a subject and an image processing device that generates an observation image of the object captured by the endoscope is widely used in the medical field, the industrial field, and the like. It is used.
  • Japanese Patent Application No. 2013-29582 is provided with a camera with an automatic horizontal function, and recognizes whether or not the camera is in a stable state from the inclination of the boundary between the image in the front direction space and the image in the upper direction space.
  • An in-pipe observation apparatus that can perform the above is disclosed.
  • a direct-viewing observation lens that acquires a direct-view visual field image is provided on the distal end surface of the distal end portion of the insertion portion, and a plurality of side views that acquire side-view visual field images in the circumferential direction of the distal end portion.
  • An endoscope system including an endoscope provided with an observation lens is disclosed.
  • imaging elements are provided at the imaging positions of the direct-viewing observation lens and the plurality of side-viewing observation lenses, respectively, and a direct-view visual field image and a plurality of side-view visual field images are captured by these imaging elements.
  • the direct-view visual field image is arranged in the center, and a plurality of side-view visual field images are arranged on both sides of the direct-view visual field image and displayed on the monitor.
  • an object of the present invention is to provide an endoscope system capable of easily grasping a range in which observation is performed when an endoscope is rotated.
  • An endoscope system includes an insertion unit that is inserted into a subject, and a first subject that is provided in the insertion unit and acquires a first subject image from a first region of the subject.
  • a tilt detection unit that detects rotation around the axis and generates tilt information with the direction as an axis, and the first subject image and the second subject image are arranged next to each other on the display screen
  • An image signal generation unit configured to generate an image signal representing a state in which a relative position of the second subject image with respect to the first subject image is rotated based on the tilt information.
  • FIG. 1 is a diagram illustrating a configuration of an endoscope system according to the first embodiment
  • FIG. 2 is a perspective view illustrating a configuration of a distal end portion of an insertion portion of the endoscope
  • FIG. It is sectional drawing which shows the cross section of the front-end
  • FIG.4 and FIG.5 is a figure which shows the structure of the principal part in 1st Embodiment.
  • an endoscope system 1 includes an endoscope 2 that images an observation object and outputs an imaging signal, a light source device 31 that supplies illumination light for illuminating the observation object, A video processor 32 having a function as an image signal generation unit that generates and outputs a video signal (image signal) corresponding to the imaging signal; and a monitor 35 that displays an observation image corresponding to the video signal (image signal). is doing.
  • the endoscope 2 includes an operation unit 3 that an operator holds and operates, an elongated insertion unit 4 that is formed on the distal end side of the operation unit 3 and is inserted into a body cavity and the like, and a side portion of the operation unit 3 And a universal cord 5 provided with one end so as to extend from.
  • the endoscope 2 is a wide-angle endoscope capable of observing a field of view of 180 degrees or more by displaying a plurality of field images.
  • the back of the eyelid or the boundary of the organ For example, it is possible to prevent oversight of a lesion that is difficult to see only by observation in the direct viewing direction.
  • operations such as temporary fixing by twisting, reciprocating movement, intestinal wall hooking, etc. occur in the insertion portion 2 as in the case of a normal large intestine endoscope. To do.
  • the insertion portion 4 includes a hard distal end portion 6 provided on the most distal end side, a bendable bending portion 7 provided on the rear end of the distal end portion 6, and a long and long side provided on the rear end of the bending portion 7. And a flexible tube portion 8 having flexibility. Further, the bending portion 7 performs a bending operation according to the operation of the bending operation lever 9 provided in the operation portion 3.
  • a direct-view observation window 11 a for observing the direct-view direction is disposed on the distal end surface of the distal end portion 6 of the endoscope 2, and on the side surface of the distal end portion 6 of the endoscope 2.
  • a plurality of (two in the example of FIG. 2) side-view observation windows 11b and 11c for observing the side-view direction are arranged. These side-view observation windows 11b and 11c are arranged at equal intervals in the circumferential direction of the distal end portion 6, for example, at intervals of 180 degrees.
  • the side-view observation windows 11b and 11c arranged at equal intervals in the circumferential direction of the distal end portion 6 are not limited to two. For example, one or three or more side-view observation windows are provided. The structure to arrange
  • position may be sufficient.
  • At least one direct viewing illumination window 12a that emits illumination light in a range of the direct viewing field of the direct viewing observation window 11a is disposed at a position adjacent to the direct viewing observation window 11a. Yes.
  • At least one viewing illumination window 12b and 12c is arranged.
  • the distal end surface of the distal end portion 6 of the endoscope 2 communicates with a treatment instrument channel (not shown) formed by a tube or the like disposed in the insertion section 4 and a treatment instrument inserted into the treatment instrument channel.
  • a tip opening 13 capable of projecting (the tip of) and a nozzle 14 for direct observation window for injecting gas or liquid for cleaning the direct observation window 11a are provided.
  • a side-view observation window nozzle unit (not shown) for injecting gas or liquid for cleaning the side-view observation windows 11b and 11c is provided. It is provided adjacent to each of 11c.
  • the operation unit 3 includes an air supply / liquid supply operation button 24 a capable of giving an operation instruction for injecting a gas or a liquid for cleaning the direct view observation window 11 a from the direct view observation window nozzle unit 14, and An air / liquid feeding operation button 24b capable of operating instructions for injecting a gas or a liquid for cleaning the side viewing windows 11b and 11c from a nozzle part for the side viewing window (not shown).
  • Air supply and liquid supply can be switched by pressing the liquid operation buttons 24a and 24b.
  • a plurality of air / liquid feeding operation buttons are provided so as to correspond to the respective nozzle portions. For example, by operating one air / liquid feeding operation button, the direct-view observation window nozzle portion 14, Gas or liquid may be ejected from both of the side-viewing window nozzle portions (not shown).
  • a plurality of scope switches 25 are provided at the top of the operation unit 3, and functions for each switch are assigned so as to output signals corresponding to various on / off states that can be used in the endoscope 2. It has a possible configuration. Specifically, the scope switch 25 has a function of outputting a signal corresponding to, for example, start and stop of forward water supply, execution and release of freeze, and notification of the use state of the treatment tool. Can be assigned as a function.
  • At least one of the functions of the air / liquid feeding operation buttons 24a and 24b may be assigned to one of the scope switches 25.
  • the operation unit 3 is provided with a suction operation button 26 that can instruct a suction unit or the like (not shown) for sucking and collecting mucus or the like in the body cavity from the distal end opening 13. Yes.
  • the mucus etc. in the body cavity sucked according to the operation of the suction unit are provided in the vicinity of the front end of the distal end opening 13, the treatment instrument channel (not shown) in the insertion section 4, and the operation section 3. After passing through the treatment instrument insertion port 27, it is collected in a suction bottle or the like of a suction unit (not shown).
  • the treatment instrument insertion port 27 communicates with a treatment instrument channel (not shown) in the insertion portion 4 and is formed as an opening into which a treatment instrument (not shown) can be inserted. That is, the surgeon can perform treatment using the treatment tool by inserting the treatment tool from the treatment tool insertion port 27 and projecting the distal end side of the treatment tool from the distal end opening 13.
  • a connector 29 that can be connected to the light source device 31 is provided at the other end of the universal cord 5.
  • the tip of the connector 29 is provided with a base (not shown) serving as a connection end of the fluid conduit and a light guide base (not shown) serving as a supply end of illumination light. Further, an electrical contact portion (not shown) capable of connecting one end of the connection cable 33 is provided on the side surface of the connector 29. Furthermore, a connector for electrically connecting the endoscope 2 and the video processor 32 is provided at the other end of the connection cable 33.
  • the universal cord 5 includes a plurality of signal lines for transmitting various electrical signals and a light guide for transmitting illumination light supplied from the light source device 31 in a bundled state.
  • the light guide incorporated from the insertion portion 4 to the universal cord 5 has an end on the light emission side branched in at least three directions in the vicinity of the insertion portion 4, and each light emission end surface serves as a light emission portion on the direct-view illumination window 12a side. It has the structure which is arrange
  • the light guide has a configuration in which the light incident side end is disposed on the light guide cap of the connector 29.
  • positioned at the direct view illumination window 12a and the side view illumination parts 12b and 12c may replace with a light guide, and may be a light emitting element like a light emitting diode (LED).
  • LED light emitting diode
  • the video processor 32 outputs a drive signal for driving a plurality of image sensors provided at the distal end portion 6 of the endoscope 2.
  • the video processor 32 functions as an image signal generation unit that generates a video signal (image signal) and outputs it to the monitor 35 by performing signal processing on the imaging signals output from the plurality of imaging elements.
  • the video processor 32 arranges the direct-view visual field image acquired by the direct-view observation window 11a in the center, and the two side-view visual field images acquired by the side-view observation windows 11b and 11c are arranged on the left and right of the direct-view visual field image.
  • a predetermined image processing is applied to the direct view visual field image and the two side view visual field images, and the result is output to the monitor 35.
  • the video processor 32 performs a treatment so that the direct-view visual field image acquired by the direct-view observation window 11a and the side-view visual field images acquired by the side-view observation windows 11b and 11c are arranged side by side in a row. Is generated.
  • Peripheral devices such as the light source device 31, the video processor 32, and the monitor 35 are arranged on a gantry 36 together with a keyboard 34 for inputting patient information.
  • the direct-view observation window 11 a constituting the first subject image acquisition unit includes a direct-view direction (first direction) including the front substantially parallel to the longitudinal direction of the insertion unit 4, that is, the first view of the subject.
  • a first subject image is acquired from the region.
  • the direct-view observation window 11a includes an objective optical system 16a1, and an imaging element 15a is disposed at the imaging position of the direct-view observation window 11a and the objective optical systems 16a1 and 16a2, and the subject image acquired by the direct-view observation window 11a. Is photoelectrically converted.
  • 3 is a cross-sectional view taken along line III-III in FIG.
  • the side-viewing observation window (at least one of the side-viewing observation windows 11b and 11c) constituting the second subject image acquisition unit has at least one direct viewing direction (first direction).
  • the second subject image is acquired from the side view direction (second direction) including the direction intersecting the longitudinal direction of the insertion portion having a different portion, that is, the second region of the subject.
  • the side-view observation window 11b includes an objective optical system 16b1, and an image sensor 15b is disposed at the imaging position of the side-view observation window 11b and the objective optical systems 16b1, 16b2, and 16b3.
  • the acquired subject image is photoelectrically converted.
  • the side-view observation window 11c includes an objective optical system 16c1, and an imaging element 15c is disposed at the imaging positions of the side-view observation window 11c and the objective optical systems 16c1, 16c2, and 16c3, and the side-view observation is performed.
  • the subject image acquired through the window 11c is photoelectrically converted.
  • the image sensor 15b may be arranged so as to directly face the objective optical system 16b1 without passing through the objective optical systems 16b2 and 16b3.
  • the imaging device 15c may be arranged so as to directly face the objective optical system 16c1 without passing through the objective optical systems 16c2 and 16c3.
  • the boundary area between the first object image and the second object image may or may not overlap.
  • the first object image acquisition unit and the second object image acquisition unit The subject image acquisition unit may acquire a subject image partially overlapping, and the video processor 32 may perform a process of removing a part of the overlapping region.
  • an inclination angle detection unit 17 is provided on the rear end side of the image sensor 15a of the front end portion 6.
  • An inclination angle detection unit 17 as an inclination detection unit detects an inclination angle in a rotational direction around the axis with respect to the gravity direction of the insertion unit 4 with the longitudinal direction of the insertion unit 4 as an axis, and sets inclination angle information (inclination information). Generate. As shown in FIG. 5, the tilt angle detection unit 17 is inserted when the user twists the insertion unit 4 (or is naturally twisted when the insertion unit 4 is inserted into a body cavity or the like), for example.
  • the inclination angle of the rotation direction around the axis with respect to the gravity direction of the insertion portion 4 is detected with the longitudinal direction of the portion 4 as an axis.
  • the inclination angle detection part 17 is comprised by the acceleration sensor and the angular velocity sensor (gyro sensor), for example, if it detects the inclination angle of the rotation direction around the axis with respect to the gravity direction of the insertion part 4, It is not limited to these.
  • the image sensors 15a to 15c are each electrically connected to an image processing unit 32a that also operates as an image signal generation unit, and a direct-view visual field image captured by the image sensor 15a and the image sensor The side-view visual field images captured by 15b and 15c are output to the image processing unit 32a.
  • the tilt angle detection unit 17 is electrically connected to the image processing unit 32a, and outputs detected tilt angle information (tilt information) to the image processing unit 32a.
  • the image processing unit 32a generates a direct-view visual field image from the subject image acquired by the direct-view observation window 11a, arranges it in the center, and generates a side-view visual field image from the two subject images acquired by the side-view observation windows 11b and 11c. Then, the image is arranged on the left and right of the direct-view visual field image, and is subjected to predetermined image processing on the direct-view visual field image and the two side-view visual field images and output to the image output unit 32b. Specifically, the image processing unit 32a generates the direct-view visual field image and the side-view visual field images arranged on the left and right based on the information on the tilt angle of the insertion unit 4 of the endoscope 2 detected by the tilt angle detection unit 17. Image processing that rotates following the tilt angle is performed.
  • the image output unit 32 b generates a signal to be displayed on the monitor 35 from the image signal generated by the image processing unit 32 a and outputs the signal to the monitor 35.
  • FIGS. 6A to 6C are diagrams illustrating an example of an observation image displayed on the monitor by the image processing by the image processing unit 32a.
  • the image processing unit 32a includes a direct-view visual field image 18a based on the first subject image acquired by the direct-view observation window 11a and a side-view visual field image 18b based on the second subject images acquired by the side-view observation windows 11b and 11c. And 18c. Then, as illustrated in FIG. 6A, the image processing unit 32a arranges the direct-view visual field image 18a as the center, and arranges the side-view visual field images 18b and 18c on the left and right of the direct-view visual field image 18a. Specifically, the image processing unit 32a arranges the side-view visual field image 18b on the left side of the direct-view visual field image 18a, and arranges the side-view visual field image 18c on the right side of the direct-view visual field image 18a.
  • the imaging provided at the distal end portion 6 of the insertion portion 4 as shown in FIG. 6B.
  • the viewpoints of the elements 15a to 15c are also rotated around the longitudinal axis of the insertion section 4, and the observation image is rotated, which makes it difficult for the user to observe.
  • the image processing unit 32a based on the tilt angle information (tilt information) from the tilt angle detecting unit 17, receives the direct view visual field image 18a and the side view visual field images 18b and 18c of the insertion unit 4 as shown in FIG. A direct-view visual field image 19a and side-view visual field images 19b and 19c rotated according to the tilt angle are generated.
  • the image processing unit 32a places the second subject image acquired by the side-view observation windows 11b and 11c next to the portion including both sides of the first subject image acquired by the direct-view observation window 11a.
  • the arrangement angle in the direction in which the visual field images are arranged by rotating the second subject image relative to the arrangement of the first subject image based on the inclination angle information (inclination information) as well as the arrangement relationship to be arranged. Is changed to generate an image signal representing a state in which the first subject image and the second subject image are tilted.
  • the image processing unit 32a may generate an image signal representing a state in which only the second subject image is tilted based on tilt angle information (tilt information).
  • the side-view visual field images 19b and 19c are arranged on the left and right sides of the direct-view visual field image 19a.
  • the side view visual field image may be arranged adjacent to either the left or right side of the direct view visual field image 19a.
  • a plurality of images are displayed on the monitor 35, but the present invention is not limited to this.
  • a configuration may be adopted in which three monitors are arranged adjacent to each other, the direct-view visual field image 19a is displayed on the central monitor, and the side-view visual field images 19b and 19c are displayed on the left and right monitors, respectively.
  • the endoscope system 1 acquires the direct-view visual field image 18a through the direct-view observation window 11a, acquires the side-view visual field images 18b and 18c through the side-view observation windows 11b and 11c, and focuses on the direct-view visual field image 18a.
  • the side view visual field images 18b and 18c are arranged on the left and right of the direct view visual field image 18a.
  • the endoscope system 1 then rotates the direct view visual field image 18a, the side view visual field images 18b and 18c based on the tilt angle information (tilt information) from the tilt angle detection unit 17, and the side view.
  • the field images 19b and 19c are generated.
  • the direct-view visual field image 19a and the side-view visual field images 19b and 19c rotated according to the rotation operation of the insertion unit 4 are displayed on the monitor 35. Etc. can be grasped.
  • the endoscope system of the present embodiment it is possible to easily grasp the range in which observation is performed when the endoscope is rotated.
  • the field of view is the same as in the endoscope system of the present embodiment.
  • the user can easily review the insertion portion, for example, by returning it to the rotation direction based on the arrangement of the side-view visual field images.
  • the image processing unit 32a not only performs image processing for rotating the direct-view visual field image 18a and the side-view visual field images 18b and 18c based on the tilt angle information (tilt information) from the tilt angle detection unit 17, but also performs the following. Such image processing may be performed.
  • 7 to 10 are diagrams for explaining other examples of the observation image generated by the image processing unit 32a.
  • the image processing unit 32a according to the tilt angle information (tilt information) from the tilt angle detection unit 17, rotates the direct view visual field image 18a, the side view visual field images 18b and 18c, the direct view visual field image 19a, the side view visual field image 19b, and 19c is generated.
  • the image processing unit 32a generates a direct-view visual field image 19a, side-view visual field images 19b and 19c, and a direct-view visual field image 20a and side-view visual field images 20b and 20c. It is displayed on the monitor 35. That is, the display mode is such that the side-view visual field images 19b and 19c revolve with respect to the direct-view visual field image 19a. Thereby, the effect similar to embodiment mentioned above can be acquired.
  • the image processing unit 32a also rotates the direct view visual field image 18a and the side view visual field images 18b and 18c according to the tilt angle information (tilt information) from the tilt angle detection unit 17, and the side view visual field image. 19b and 19c are generated.
  • the image processing unit 32a generates a direct-view visual field image 19a, a side-view visual field image 21a, and a side-view visual field image 20b and 20c obtained by applying a rectangular mask to the side-view visual field images 19b and 19c.
  • the rectangular mask serving as a frame for displaying the side-view visual field images 19b and 19c is rotated and displayed on the monitor 35.
  • the side view field images 19b and 19c (frames for displaying the side view field images 19b and 19c) themselves are in a display mode that revolves with respect to the direct field image 19a while rotating. Thereby, the effect similar to embodiment mentioned above can be acquired.
  • the image processing unit 32a also rotates the direct view visual field image 18a and the side view visual field images 18b and 18c according to the tilt angle information (tilt information) from the tilt angle detection unit 17, and the side view visual field image. 19b and 19c are generated. Thereafter, as shown in FIG. 9, the image processing unit 32 a generates a direct-view visual field image 22 a obtained by applying a round mask to only the direct-view visual field image 19 a and displays the direct-view visual field image 22 a on the monitor 35.
  • the image processing unit 32a generates the index 23 indicating the tilt amount of the insertion unit 4 after arranging the direct-view visual field image 18a and the side-view visual field images 18b and 18c side by side. Then, as shown in FIG. 10, the image processing unit 32 a rotates the index 23 following the inclination angle of the insertion unit 4 based on the inclination angle information (inclination information) from the inclination angle detection unit 17, and monitors 35. Thereby, the effect similar to embodiment mentioned above can be acquired.
  • the index 23 is used in combination with each embodiment of the first embodiment, so that the user can grasp the posture of the insertion portion 4 more reliably.
  • FIG. 11 is a perspective view showing the configuration of the distal end portion of the insertion portion of the endoscope according to the second embodiment
  • FIG. 12 shows the distal end portion of the insertion portion of the endoscope according to the second embodiment
  • FIG. 13 is a cross-sectional view of the insertion portion according to the second embodiment
  • FIGS. 14 and 15 are views showing the configuration of the main part in the second embodiment.
  • a columnar cylindrical portion 40 is formed on the distal end portion 6b of the insertion portion 4 so as to protrude from a position eccentric to the upper side from the center of the distal end surface of the distal end portion 6b. .
  • an objective optical system 62 that serves both as a direct view and a side view is provided at the tip of the cylindrical portion 40. Further, the front end portion of the cylindrical portion 40 is arranged in a side view direction of the objective optical system 61 and the direct view observation window 42 that constitutes the first subject image acquisition unit disposed at a position corresponding to the direct view direction of the objective optical system 60. And a side-view observation window 43 that constitutes a second subject image acquisition unit arranged at a corresponding location.
  • the direct-view observation window 42 acquires the first subject image from the direct-view direction (first direction) including the front substantially parallel to the longitudinal direction of the insertion portion 4, that is, the first region of the subject.
  • the side-view observation window 43 has a side-view direction (second direction) including a direction intersecting with the longitudinal direction of the insertion portion at least partially different from the direct-view direction (first direction), that is, the second direction of the subject.
  • first direction direct-view direction
  • a second subject image is acquired from the region.
  • a side-view illumination unit 44 that emits light for illuminating the side-view direction is formed near the proximal end of the cylindrical unit 40.
  • the side-view observation window 43 can acquire a side-view visual field image by capturing the return light (reflected light) from the observation target incident from the circumferential direction in the cylindrical cylindrical portion 40 in the side-view visual field.
  • the side view mirror lens 45 is provided.
  • an image of the observation object in the field of view of the direct-viewing observation window 42 is formed at the center as a circular direct-viewing field image at the imaging position of the objective optical system 62, and is within the field of view of the side-viewing observation window 43.
  • the imaging element 63 (imaging surface thereof) shown in FIG. 13 is arranged so that the image of the observation object is formed on the outer peripheral portion of the direct-view visual field image as an annular side-view visual field image.
  • Such an image is realized by using a two-reflection optical system that reflects the return light twice by the side-viewing mirror lens, but is formed by reflecting the return light once by the one-reflection optical system, This may be image-processed by the video processor 32 so that the orientations of the side-view visual field image and the direct-view visual field image are matched.
  • An inclination angle detection unit 17 that detects an inclination angle and generates inclination angle information (inclination information) is provided.
  • the front end surface of the front end portion 6 b is disposed at a position adjacent to the cylindrical portion 40, and is disposed in the insertion portion 4 and the direct view illumination window 46 that emits illumination light in the range of the direct view field of the direct view observation window 42.
  • a distal end opening 47 is provided which communicates with a treatment instrument channel (not shown) formed of a tube or the like and can project the treatment instrument (the distal end portion) inserted through the treatment instrument channel.
  • the means for supplying illumination light to the side view illumination unit 44 and the direct view illumination window 46 is a method of guiding illumination light from a light source with a light guide, light from a light emitting element such as a light emitting diode (LED) installed in the vicinity is used. It may be illumination.
  • a light emitting element such as a light emitting diode (LED) installed in the vicinity is used. It may be illumination.
  • the distal end portion 6b of the insertion portion 4 has a support portion 48 provided so as to protrude from the distal end surface of the distal end portion 6b, and the support portion 48 is located adjacent to the lower side of the cylindrical portion 40.
  • the support portion 48 is configured to be able to support (or hold) each projecting member disposed so as to project from the distal end surface of the distal end portion 6b.
  • the support portion 48 includes a direct-viewing observation window nozzle portion 49 that emits a gas or a liquid for cleaning the direct-viewing observation window 42 as each projecting member described above, and light for illuminating the direct-viewing direction.
  • the direct-view illumination window 51 that emits light and the side-view observation window nozzle portion 52 that emits gas or liquid for cleaning the side-view observation window 43 can be supported (or held), respectively.
  • the support unit 48 acquires a side view visual field image including any one of the projecting members by causing each of the projecting members, which are objects different from the original observation target, to appear in the side view field of view. It is formed with a shielding portion 48a which is an optical shielding member so as not to be disturbed. That is, by providing the shielding portion 48a on the support portion 48, a side-view visual field image in which none of the direct-view observation window nozzle portion 49, the direct-view illumination window 51, and the side-view observation window nozzle portion 52 is included. Obtainable.
  • the side-view observation window nozzle portion 52 is provided at two locations of the support portion 48 and is arranged so that the tip protrudes from the side surface of the support portion 48.
  • the image sensor 63 is electrically connected to the image processing unit 32a1, and outputs the direct view visual field image and the side view visual field image captured by the image sensor 63 to the image processing unit 32a1.
  • the tilt angle detection unit 17 is electrically connected to the image processing unit 32a1, and as shown in FIG. 15, for example, when the user twists the insertion unit 4, the longitudinal direction of the insertion unit 4 is used as an axis. Then, the tilt angle of the rotation direction around the axis with respect to the gravity direction of the insertion unit 4 is detected, and the detected tilt angle information (tilt information) is output to the image processing unit 32a1.
  • the video processor 32 outputs a drive signal for driving the image sensor 63 provided at the distal end portion 6b of the endoscope 2. Then, the image processing unit 32a1 of the video processor 32 generates a video signal by performing predetermined signal processing on the imaging signal output from the imaging element 63 as an image signal generation unit, more specifically, , An observation image comprising a circular direct-view field image and an annular side-view field image at the outer periphery of the image in the direct-view direction, that is, direct view with the side-view field image adjacent to the direct-view field image An image arranged so that the side-view visual field image is enclosed in the visual field image is generated.
  • the boundary area between the direct-view field image and the side-view field image may or may not overlap.
  • the direct-view observation window 42 and the side-view observation window 43 share one.
  • a subject image with overlapping portions may be acquired, and the image processing unit 32a1 may perform a process of partially removing the overlapping region.
  • the image processing unit 32a1 rotates the direct-view visual field image and the side-view visual field image following the tilt angle based on the tilt angle information (tilt information) of the insertion unit 4 detected by the tilt angle detection unit 17.
  • tilt information tilt information
  • the arrangement angle in the direction in which the visual field images are arranged is changed to change the first subject image and the second subject image.
  • An image signal that has been subjected to image processing representing a state in which the subject image is tilted is generated and output to the image output unit 32b.
  • the image processing unit 32a1 rotates both the direct-view visual field image and the side-view visual field image according to the inclination angle of the insertion unit 4, but the direct-view visual field image or the side-view visual field image is displayed. Only the field image may be rotated.
  • the image output unit 32b generates a signal to be displayed on the monitor 35 from the image signal generated by the image processing unit 32a1 and outputs the signal to the monitor 35.
  • the observation image including the direct-view visual field image having a circular shape and the side-view visual field image having an annular shape on the outer periphery of the image in the direct-view direction is rotated according to the inclination angle of the insertion unit 4 and is monitored. Is displayed.
  • the direct-view visual field image and side-view visual field image display method of the modified example it is set to have an optical structure in which the screen spreads radially from the center to the periphery (with an annular lens). If there is such an optical characteristic automatically, it is relatively easy to obtain perspective and stereoscopic effect.
  • FIGS. 16A to 16C are diagrams illustrating an example of an observation image displayed on the monitor by the image processing by the image processing unit 32a1.
  • the image processing unit 32a1 has a ring at the outer periphery of the direct-view visual field image 70a based on the first subject image having a circular shape acquired by the direct-view observation window 42 and the first subject image acquired by the side-view observation window 43.
  • a side-view visual field image 70b based on the second subject image having the shape is acquired.
  • the side-view visual field image 70b includes a shielding area 70c that is optically shielded by the shielding part 48a of the support part 48.
  • the image processing unit 32a1 generates an observation image in which a side-view visual field image 70b having an annular shape is formed on the outer periphery of the direct-view visual field image 70a having a circular shape.
  • the viewpoint of the image sensor 63 provided at the distal end portion 6a of the insertion portion 4 is also inserted into the insertion portion 4 as shown in FIG. Since the observation image is rotated around the axis in the longitudinal direction, it becomes difficult for the user to observe.
  • the image processing unit 32a1 converts the direct-view visual field image 70a and the side-view visual field image 70b based on the tilt angle information (tilt information) from the tilt angle detection unit 17 as shown in FIG.
  • the direct-view visual field image 71a and the side-view visual field image 71b (including the shielding region 71c) that are rotated following the above are generated.
  • the endoscope system 1 acquires the direct-view visual field image 70a by the direct-view observation window 42, acquires the side-view visual field image 70b by the side-view observation window 43, and circles the outer periphery of the circular direct-view visual field image 70a.
  • An annular side view image 70b is arranged.
  • the endoscope system 1 includes a direct-view visual field image 71a obtained by rotating the direct-view visual field image 70a and the side-view visual field image 70b based on the tilt angle information (tilt information) from the tilt angle detection unit 17, and The side view visual field image 71b is generated.
  • the endoscope system of the present embodiment as in the first embodiment, it is possible to easily grasp the range in which the observation is performed when the endoscope is rotated.
  • FIG. 17 is a diagram showing a configuration of a main part in the third embodiment.
  • the same components as those in FIG. 4 are denoted by the same reference numerals and description thereof is omitted.
  • the video processor 32 of the present embodiment is configured by adding an image processing unit 32c and a changeover switch 80 to the video processor 32 of the first embodiment (see FIG. 4). .
  • the direct-view visual field image 18a acquired by the direct-view observation window 11a, the side-view visual field images 18b and 18c acquired by the side-view observation windows 11b and 11c, and the inclination angle detection unit 17 are detected.
  • the tilt angle information (tilt information) of the insertion unit 4 is input.
  • the image processing unit 32a that also operates as an image signal generation unit arranges the direct-view visual field image 18a in the center, arranges the side-view visual field images 18b and 18c on the left and right of the direct-view visual field image 18a, Based on the tilt angle information (tilt information), the direct view field image 18a and the side view field images 19b and 19c obtained by rotating the direct view field image 18a and the side view field images 18b and 18c to follow the tilt angle of the insertion unit 4 are obtained. Generate. Then, the image processing unit 32a outputs the generated direct view visual field image 19a and side view visual field images 19b and 19c to the changeover switch 80.
  • the direct-view visual field image 18a acquired by the direct-view observation window 11a and the side-view visual field images 18b and 18c acquired by the side-view observation windows 11b and 11c are input to the image processing unit 32c.
  • the image processing unit 32c that also operates as an image signal generation unit arranges the direct-view visual field image 18a in the center, arranges the side-view visual field images 18b and 18c on the left and right of the direct-view visual field image 18a, and outputs them to the changeover switch 80.
  • the changeover signal from the switch operation unit 81 is input to the changeover switch 80.
  • the switch operation unit 81 is, for example, a switch provided in the operation unit 3 of the endoscope 2, a switch provided in the video processor 32, or a foot switch.
  • the changeover switch 80 outputs one of the output from the image processing unit 32a or the output from the image processing unit 32c to the image output unit 32b in response to the switching signal from the switch operation unit 81. That is, an observation image that has not been subjected to rotation processing (see FIG. 6B) or an observation image that has undergone rotation processing (see FIG. 6C) is output from the changeover switch 80 to the image output unit 32b in response to the changeover signal. 35.
  • either the rotation-processed observation image or the rotation-processed observation image is selected by the changeover switch 80 and displayed on the monitor 35. .
  • the user can select an optimal display mode according to the operation status of the endoscope 2 by switching ON / OFF of the rotation process.
  • FIG. 18 is a diagram showing a configuration of a main part in the fourth embodiment.
  • the same components as those in FIGS. 14 and 17 are denoted by the same reference numerals and description thereof is omitted.
  • the video processor 32 of the present embodiment is configured by adding an image processing unit 32c1 and a changeover switch 80 to the video processor 32 of the second embodiment (see FIG. 14). .
  • the image processing unit 32 a 1 includes a direct-view visual field image 70 a acquired by the direct-view observation window 42, a side-view visual field image 70 b acquired by the side-view observation window 43, and the insertion unit 4 detected by the tilt angle detection unit 17. Tilt angle information (tilt information) is input.
  • the image processing unit 32a1 that also operates as an image signal generation unit arranges an annular side-view visual field image 70b on the outer periphery of the circular direct-view visual field image 70a, and then tilt angle information (inclination from the tilt angle detection unit 17). Information), a direct view visual field image 71a and a side view visual field image 71b obtained by rotating the direct view visual field image 70a and the side view visual field image 70b are generated. Then, the image processing unit 32a1 outputs the generated direct view visual field image 71a and side view visual field image 71b to the changeover switch 80.
  • the direct-view visual field image 70 a acquired by the direct-view observation window 42 and the side-view visual field image 70 b acquired by the side-view observation window 43 are input to the image processing unit 32 c 1.
  • the image processing unit 32c1 that also operates as an image signal generation unit arranges the annular side-view visual field image 70b on the outer periphery of the circular-shaped direct-view visual field image 70a and outputs it to the changeover switch 80.
  • the changeover switch 80 outputs one of the output from the image processing unit 32a1 or the output from the image processing unit 32c1 to the image output unit 32b in response to the switching signal from the switch operation unit 81. That is, an observation image that has not been subjected to rotation processing (see FIG. 16B) or an observation image that has undergone rotation processing (see FIG. 16C) is output from the changeover switch 80 to the image output unit 32b in response to the changeover signal. 35.
  • the user switches on / off of the rotation process to respond to the operation status of the endoscope 2 and the like.
  • the optimum display mode can be selected.
  • FIG. 19 is a diagram showing a configuration of a main part in the fifth embodiment
  • FIG. 20 is a diagram for explaining the rotation operation of the monitor 35.
  • the same components as those in FIGS. 4 and 17 are denoted by the same reference numerals and description thereof is omitted.
  • the direct-view visual field image 18a acquired by the direct-view observation window 11a and the side-view visual field images 18b and 18c acquired by the side-view observation windows 11b and 11c are input to the image processing unit 32c.
  • the image processing unit 32c that also operates as an image signal generation unit arranges the direct-view visual field image 18a in the center, arranges the side-view visual field images 18b and 18c on the left and right of the direct-view visual field image 18a, and outputs them to the image output unit 32b.
  • the tilt angle information (tilt information) detected by the tilt angle detector 17 is input to the monitor 35 via the video processor 32.
  • the monitor 35 includes a rotation control unit and a rotation mechanism that are not shown in the drawing, and according to the tilt angle information (tilt information) from the tilt angle detection unit 17, as shown in FIG. Following the inclination angle of 4, the monitor 35 itself rotates.
  • the monitor 35 itself is rotated without rotating the direct view visual field image 18a and the side view visual field images 18b and 18c displayed on the monitor 35.
  • the endoscope system 1 of the present embodiment as in the first embodiment, it is possible to easily grasp the range in which observation is performed when an endoscope rotation operation or the like is performed. .
  • the mechanism that realizes the function of illuminating and observing the side includes the insertion portion together with the mechanism that realizes the function of illuminating and observing the front.
  • the mechanism for realizing the function of illuminating and observing the side may be a separate body that can be attached to and detached from the insertion portion 4.
  • FIG. 21 is a perspective view of the distal end portion 6 of the insertion portion 4 to which a side observation unit is attached.
  • the distal end portion 6 of the insertion portion 4 has a front vision unit 100.
  • the side viewing unit 110 has a structure that can be attached to and detached from the front viewing unit 100 by a clip portion 111.
  • the side visual field unit 110 has two observation windows 112 for acquiring an image in the left-right direction and two illumination windows 113 for illuminating the left-right direction.
  • the video processor 32 etc., turns on and off each illumination window 113 of the side view unit 110 in accordance with the frame rate of the front view, so that the observation image as shown in the first embodiment described above is obtained. Acquisition and display of a plurality of screens arranged side by side on the monitor 35.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

内視鏡システム(1)は、被写体の内部に挿入される挿入部(4)と、挿入部(4)に設けられ、被写体の第1の領域から第1の被写体像を取得する直視観察窓(11a)と、挿入部(4)に設けられ、第1の領域とは異なる被写体の第2の領域から第2の被写体像を取得する側視観察窓(11b)と、挿入部(4)の長手方向を軸とした、軸周りの回転を検出し、傾き情報を生成する傾き角度検出部(17)と、表示画面上で第1の被写体像と第2の被写体像とを隣り合わせて配置するとともに、傾き情報に基づき第1の被写体像に対する第2の被写体像の相対位置が回転した状態を表す画像信号を生成するビデオプロセッサ(32)と、を備える。

Description

内視鏡システム
 本発明は、内視鏡システムに関し、特に、直視方向及び側視方向を同時に観察することが可能な内視鏡システムに関するものである。
 被検体の内部の被写体を撮像する内視鏡、及び、内視鏡により撮像された被写体の観察画像を生成する画像処理装置等を具備する内視鏡システムが、医療分野及び工業分野等において広く用いられている。
 例えば、特願2013-29582号公報には、自動水平機能付きカメラを備え、前方方向空間の画像と上側方向空間の画像との境目の傾き状況から、安定状態にあるか否かを認識することができる管路内観察装置が開示されている。
 また、特許第3337682号公報には、挿入部の先端部の先端面に直視視野画像を取得する直視観察用レンズが設けられ、先端部の周方向に側視視野画像を取得する複数の側視観察用レンズが設けられた内視鏡を備える内視鏡システムが開示されている。
 この内視鏡は、直視観察用レンズ及び複数の側視観察用レンズの結像位置にそれぞれ撮像素子が設けられており、これらの撮像素子により直視視野画像及び複数の側視視野画像を撮像する。そして、直視視野画像が中央に配置され、複数の側視視野画像が直視視野画像の両隣に配置され、モニタ上に表示される。
 しかしながら、特許第3337682号公報の内視鏡システムでは、モニタにおいて、側視視野画像が常に直視視野画像の両隣に配置されるため、内視鏡の捻り操作を行った場合、実際の視野とモニタに表示されている観察画像との間に違和感を覚える可能性がある。そのため、ユーザは、側方視野画像が被検体内のどの方向を観察して得られたものかが分かりづらいという問題があった。
 また、従来の直視視野画像と側視視野画像がモニタ上に配置される内視鏡システムでは、被検体の内部に挿入される内視鏡の挿入部にねじりが発生しても、モニタ上で前方視野画像に対して側方視野画像が今までと同じ位置に配置されるため、ユーザが挿入部の回転度合いを素早く直感的に把握することが困難であった。
 そこで、本発明は、内視鏡の回転操作等を行った際の観察を行う範囲の把握を容易にすることができる内視鏡システムを提供することを目的とする。
 本発明の一態様の内視鏡システムは、被写体の内部に挿入される挿入部と、前記挿入部に設けられ、前記被写体の第1の領域から第1の被写体像を取得する第1の被写体像取得部と、前記挿入部に設けられ、前記第1の領域とは異なる前記被写体の第2の領域から第2の被写体像を取得する第2の被写体像取得部と、前記挿入部の長手方向を軸とした、前記軸周りの回転を検出し、傾き情報を生成する傾き検出部と、表示画面上で前記第1の被写体像と前記第2の被写体像とを隣り合わせて配置するとともに、前記傾き情報に基づき前記第1の被写体像に対する前記第2の被写体像の相対位置が回転した状態を表す画像信号を生成する画像信号生成部と、を備える。
第1の実施形態に係る内視鏡システムの構成を示す図である。 内視鏡の挿入部の先端部の構成を示す斜視図である。 内視鏡の挿入部の先端部の断面を示す断面図である。 第1の実施形態における要部の構成を示す図である。 第1の実施形態における要部の構成を示す図である。 画像処理部32aによる画像処理により、モニタに表示される観察画像の一例を示す図である。 画像処理部32aによる画像処理により、モニタに表示される観察画像の一例を示す図である。 画像処理部32aによる画像処理により、モニタに表示される観察画像の一例を示す図である。 画像処理部32aで生成される観察画像の他の例を説明するための図である。 画像処理部32aで生成される観察画像の他の例を説明するための図である。 画像処理部32aで生成される観察画像の他の例を説明するための図である。 画像処理部32aで生成される観察画像の他の例を説明するための図である。 第2の実施形態に係る内視鏡の挿入部の先端部の構成を示す斜視図である。 第2の実施形態に係る内視鏡の挿入部の先端部の構成を示す正面図である。 第2の実施形態に係る挿入部の断面図である。 第2に実施形態における要部の構成を示す図である。 第2に実施形態における要部の構成を示す図である。 画像処理部32a1による画像処理により、モニタに表示される観察画像の一例を示す図である。 画像処理部32a1による画像処理により、モニタに表示される観察画像の一例を示す図である。 画像処理部32a1による画像処理により、モニタに表示される観察画像の一例を示す図である。 第3に実施形態における要部の構成を示す図である。 第4に実施形態における要部の構成を示す図である。 第5に実施形態における要部の構成を示す図である。 モニタ35の回転動作について説明するための図である。 側方観察用のユニットが取り付けられた挿入部4の先端部6の斜視図である。
 以下、図面を参照して本発明の実施形態を説明する。
(第1の実施形態)
 まず、図1から図5を用いて第1の実施形態の内視鏡システムの構成について説明する。図1は、第1の実施形態に係る内視鏡システムの構成を示す図であり、図2は、内視鏡の挿入部の先端部の構成を示す斜視図であり、図3は、内視鏡の挿入部の先端部の断面を示す断面図であり、図4及び図5は、第1の実施形態における要部の構成を示す図である。
 図1に示すように、内視鏡システム1は、観察対象物を撮像して撮像信号を出力する内視鏡2と、観察対象物を照明するための照明光を供給する光源装置31と、撮像信号に応じた映像信号(画像信号)を生成及び出力する画像信号生成部としての機能を有するビデオプロセッサ32と、映像信号(画像信号)に応じた観察画像を表示するモニタ35と、を有している。
 内視鏡2は、術者が把持して操作を行う操作部3と、操作部3の先端側に形成され、体腔内等に挿入される細長の挿入部4と、操作部3の側部から延出するように一方の端部が設けられたユニバーサルコード5と、を有して構成されている。
 本実施形態の内視鏡2は、複数の視野画像を表示させることで180度以上の視野を観察可能な広角内視鏡であり、体腔内、特に大腸内において、襞の裏や臓器の境界等、直視方向の観察だけでは見難い場所の病変を見落とすことを防ぐことを実現する。大腸内に内視鏡2の挿入部4を挿入するにあたっては、通常の大腸内視鏡と同様、挿入部2に捻り、往復運動、腸壁のフックを行うことによる仮固定等の動作が発生する。
 挿入部4は、最も先端側に設けられた硬質の先端部6と、先端部6の後端に設けられた湾曲自在の湾曲部7と、湾曲部7の後端に設けられた長尺かつ可撓性を有する可撓管部8と、を有して構成されている。また、湾曲部7は、操作部3に設けられた湾曲操作レバー9の操作に応じた湾曲動作を行う。
 一方、図2に示すように、内視鏡2の先端部6の先端面には、直視方向を観察するための直視観察窓11aが配置され、内視鏡2の先端部6の側面には、側視方向を観察するための複数(図2の例では2つ)の側視観察窓11b及び11cが配置されている。これらの側視観察窓11b及び11cは、先端部6の周方向に均等な間隔、例えば、180度の間隔で配置されている。なお、先端部6の周方向に均等な間隔で配置される側視観察窓11b及び11cは、2つに限定されるものではなく、例えば1つ、あるいは、3つ以上の側視観察窓を配置する構成であってもよい。
 内視鏡2の先端部6の先端面には、直視観察窓11aに隣接する位置に、直視観察窓11aの直視視野の範囲に照明光を出射する直視照明窓12aが少なくとも1つ配置されている。また、内視鏡2の先端部6の側面には、側視観察窓11b及び11cのそれぞれに隣接する位置に、側視観察窓11b及び11cの側視視野の範囲に照明光を出射する側視照明窓12b及び12cが少なくとも1つ配置されている。
 また、内視鏡2の先端部6の先端面には、挿入部4内に配設されたチューブ等により形成された図示しない処置具チャンネルに連通するとともに、処置具チャンネルに挿通された処置具(の先端部)を突出させることが可能な先端開口部13と、直視観察窓11aを洗浄するための気体または液体を射出する直視観察窓用ノズル部14と、が設けられている。さらに、内視鏡2の先端部6の側面には、側視観察窓11b及び11cを洗浄するための気体または液体を射出する図示しない側視観察窓用ノズル部が、側視観察窓11b及び11cのそれぞれに隣接して設けられている。
 操作部3には、図1に示すように、直視観察窓11aを洗浄するための気体または液体を直視観察窓用ノズル部14から射出させる操作指示が可能な送気送液操作ボタン24aと、側視観察窓11b及び11cを洗浄するための気体または液体を図示しない側視観察窓用ノズル部から射出させる操作指示が可能な送気送液操作ボタン24bと、が設けられ、この送気送液操作ボタン24a及び24bの押下により送気と送液とが切り替え可能である。また、本実施形態では、それぞれのノズル部に対応するように複数の送気送液操作ボタンを設けているが、例えば1つの送気送液操作ボタンの操作により直視観察窓用ノズル部14、図示しない側視観察窓用ノズル部の両方から気体または液体が射出されるようにしてもよい。
 スコープスイッチ25は、操作部3の頂部に複数設けられており、内視鏡2において使用可能な種々の記載のオンまたはオフ等に対応した信号を出力させるように、各スイッチ毎の機能を割り付けることが可能な構成を有している。具体的には、スコープスイッチ25には、例えば、前方送水の開始及び停止、フリーズの実行及び解除、及び、処置具の使用状態の告知等に対応した信号を出力させる機能を、各スイッチ毎の機能として割り付けることができる。
 なお、本実施形態においては、送気送液操作ボタン24a及び24bのうちの少なくともいずれか一方の機能を、スコープスイッチ25のうちのいずれかに割り付けるようにしてもよい。
 また、操作部3には、体腔内の粘液等を先端開口部13より吸引して回収するための指示を図示しない吸引ユニット等に対して行うことが可能な吸引操作ボタン26が配設されている。
 そして、図示しない吸引ユニット等の動作に応じて吸引された体腔内の粘液等は、先端開口部13と、挿入部4内の図示しない処置具チャンネルと、操作部3の前端付近に設けられた処置具挿入口27とを経た後、図示しない吸引ユニットの吸引ボトル等に回収される。
 処置具挿入口27は、挿入部4内の図示しない処置具チャンネルに連通しているとともに、図示しない処置具を挿入可能な開口として形成されている。すなわち、術者は、処置具挿入口27から処置具を挿入し、処置具の先端側を先端開口部13から突出させることにより、処置具を用いた処置を行うことができる。
 一方、図1に示すように、ユニバーサルコード5の他方の端部には、光源装置31に接続可能なコネクタ29が設けられている。
 コネクタ29の先端部には、流体管路の接続端部となる口金(図示せず)と、照明光の供給端部となるライトガイド口金(図示せず)とが設けられている。また、コネクタ29の側面には、接続ケーブル33の一方の端部を接続可能な電気接点部(図示せず)が設けられている。さらに、接続ケーブル33の他方の端部には、内視鏡2とビデオプロセッサ32と電気的に接続するためのコネクタが設けられている。
 ユニバーサルコード5には、種々の電気信号を伝送するための複数の信号線、及び、光源装置31から供給される照明光を伝送するためのライトガイドが束ねられた状態として内蔵されている。
 挿入部4からユニバーサルコード5にかけて内蔵された前記ライトガイドは、光出射側の端部が挿入部4付近において少なくとも3方向に分岐され、各光出射端面が光出射部として直視照明窓12a、側視照明窓12b及び12cに配置されるような構成を有している。また、前記ライトガイドは、光入射側の端部がコネクタ29のライトガイド口金に配置されるような構成を有している。
 尚、直視照明窓12a、側視照明部12bや12cに配置される光出射部はライトガイドに代えて発光ダイオード(LED)のような発光素子であってもよい。
 ビデオプロセッサ32は、内視鏡2の先端部6に設けられた複数の撮像素子を駆動するための駆動信号を出力する。そして、ビデオプロセッサ32は、複数の撮像素子から出力される撮像信号に対して信号処理を施すことにより、映像信号(画像信号)を生成してモニタ35へ出力する画像信号生成部として機能する。詳細は後述するが、ビデオプロセッサ32は、直視観察窓11aで取得した直視視野画像を中央に配置し、側視観察窓11b及び11cで取得した2つの側視視野画像を直視視野画像の左右に配置するとともに、直視視野画像及び2つの側視視野画像に所定の画像処理を施し、モニタ35へ出力する。つまり、ビデオプロセッサ32は、直視観察窓11aで取得した直視視野画像と側視観察窓11b及び11cで取得した側視視野画像とが隣り合う状態で並んで配置するように処置を行い、映像信号を生成する。
 光源装置31、ビデオプロセッサ32及びモニタ35等の周辺装置は、患者情報の入力等を行うキーボード34とともに、架台36に配置されている。
 図3に示すように、第1の被写体像取得部を構成する直視観察窓11aは、挿入部4の長手方向に略平行な前方を含む直視方向(第1の方向)つまり被写体の第1の領域から第1の被写体像を取得する。直視観察窓11aは、対物光学系16a1を備え、直視観察窓11a及び対物光学系16a1、16a2の結像位置には、撮像素子15aが配置されており、直視観察窓11aで取得された被写体像を光電変換する。なお、図3に示す先端部6は、図2のIII-III線の断面図である。
 また、第2の被写体像取得部を構成する側視観察窓(側視観察窓11b及び11cのうち少なくとも1つ以上の側視観察窓)は、直視方向(第1の方向)とは少なくとも一部が異なる挿入部の長手方向とは交差する方向を含む側視方向(第2の方向)つまり被写体の第2の領域から第2の被写体像を取得する。
 側視観察窓11bは、対物光学系16b1を備え、側視観察窓11b及び対物光学系16b1、16b2、16b3の結像位置には、撮像素子15bが配置されており、側視観察窓11bで取得された被写体像を光電変換する。
 同様に、側視観察窓11cは、対物光学系16c1を備え、側視観察窓11c及び対物光学系16c1、16c2、16c3の結像位置には、撮像素子15cが配置されており、側視観察窓11cで取得された被写体像を光電変換する。
 なお、撮像素子15bは、対物光学系16b2、16b3を介さず、対物光学系16b1に直接向き合うように配置されていてもよい。同様に、撮像素子15cは、対物光学系16c2、16c3を介さず、対物光学系16c1に直接向き合うように配置されていてもよい。
 第1の被写体像と第2の被写体像の境界領域は重複していても重複していなくてもよく、上記境界領域が重複している状態の場合、第1の被写体像取得部と第2の被写体像取得部とで一部が重複した被写体像を取得し、ビデオプロセッサ32で重複する領域を一部除去する処理を行ってもよい。
 また、先端部6の撮像素子15aの後端側には、傾き角度検出部17が設けられている。傾き検出部としての傾き角度検出部17は、挿入部4の長手方向を軸とした、挿入部4の重力方向に対する軸周りの回転方向の傾き角度を検出し、傾き角度情報(傾き情報)を生成する。傾き角度検出部17は、図5に示すように、例えばユーザが挿入部4を捻った(あるいは、挿入部4を体腔内等に挿入している際に自然に捻られた)際に、挿入部4の長手方向を軸とした、挿入部4の重力方向に対する軸周りの回転方向の傾き角度を検出する。なお、傾き角度検出部17は、例えば、加速度センサや角速度センサ(ジャイロセンサ)により構成されているが、挿入部4の重力方向に対する軸周りの回転方向の傾き角度を検出するものであれば、これらに限定されるものではない。
 図4に示すように、撮像素子15a~15cは、それぞれ画像信号生成部としても動作する画像処理部32aに電気的に接続されており、撮像素子15aで撮像された直視視野画像と、撮像素子15b及び15cのそれぞれで撮像された側視視野画像とを画像処理部32aに出力する。また、傾き角度検出部17は、画像処理部32aに電気的に接続されており、検出した傾き角度情報(傾き情報)を画像処理部32aに出力する。
 画像処理部32aは、直視観察窓11aで取得した被写体像から直視視野画像を生成して中央に配置し、側視観察窓11b及び11cで取得した2つの被写体像からそれぞれ側視視野画像を生成して直視視野画像の左右に配置するとともに、直視視野画像及び2つの側視視野画像に所定の画像処理を施し、画像出力部32bに出力する。具体的には、画像処理部32aは、傾き角度検出部17により検出された内視鏡2の挿入部4の傾き角度の情報に基づいて、直視視野画像及び左右に配置した側視視野画像を傾き角度に追従して回転する画像処理を施す。
 画像出力部32bは、画像処理部32aにより生成された画像信号からモニタ35に表示するための信号を生成し、モニタ35に出力する。
 次に、画像処理部32aによる画像処理について、図6A~図6Cを用いて説明する。図6A~図6Cは、画像処理部32aによる画像処理により、モニタに表示される観察画像の一例を示す図である。
 画像処理部32aは、直視観察窓11aで取得された第1の被写体像に基づく直視視野画像18aと、側視観察窓11b及び11cで取得された第2の被写体像に基づく側視視野画像18b及び18cとを取得する。そして、画像処理部32aは、図6Aに示すように、直視視野画像18aを中心に配置し、側視視野画像18b及び18cを直視視野画像18aの左右に配置する。具体的には、画像処理部32aは、直視視野画像18aの左側に側視視野画像18bを配置し、直視視野画像18aの右側に側視視野画像18cを配置する。
 ここで、図5に示すように、内視鏡2の挿入部4が捻られると(捻り操作が行われると)、図6Bに示すように、挿入部4の先端部6に設けられた撮像素子15a~15cの視点も挿入部4の長手方向の軸の周りで回転し、観察画像が回転してしまうためユーザは観察し難くなってしまう。
 そのため、画像処理部32aは、傾き角度検出部17からの傾き角度情報(傾き情報)に基づいて、図6Cに示すように、直視視野画像18a、側視視野画像18b及び18cを挿入部4の傾き角度に追従させて回転させた直視視野画像19a、側視視野画像19b及び19cを生成する。
 このように、画像処理部32aは、直視観察窓11aで取得された第1の被写体像の両脇を含む部位に、側視観察窓11b及び11cで取得された第2の被写体像を隣り合わせて配置する配置関係にするとともに、傾き角度情報(傾き情報)に基づき、第1の被写体像の配置に対して第2の被写体像を相対的に回転することにより、視野画像が並ぶ方向の配置角度を変化させて第1の被写体像及び第2の被写体像が傾いた状態を表した画像信号を生成する。
 なお、詳細は後述するが、画像処理部32aは、傾き角度情報(傾き情報)に基づき、第2の被写体像のみが傾いた状態を表した画像信号を生成するようにしてもよい。
 また、複数の画像をモニタ35に表示する場合、直視視野画像19aの左右に側視視野画像19b及び19cが配置される構成であるが、これに限らず直視視野画像と側視視野画像とが隣り合っていればよく、直視視野画像19aの左右いずれか片隣に側視視野画像を配置する構成であってもよい。
 また、本実施形態では、モニタ35に複数の画像を表示しているが、これに限定されるものではない。例えば、3台のモニタを隣接して配置し、中央のモニタに直視視野画像19aを表示し、左右のモニタにそれぞれ側視視野画像19b及び19cを表示する構成であってもよい。
 このように、内視鏡システム1は、直視観察窓11aにより直視視野画像18aを取得し、側視観察窓11b及び11cにより側視視野画像18b及び18cを取得し、直視視野画像18aを中心に配置し、側視視野画像18b及び18cを直視視野画像18aの左右に配置する。そして、内視鏡システム1は、傾き角度検出部17からの傾き角度情報(傾き情報)に基づいて、直視視野画像18a、側視視野画像18b及び18cを回転させた直視視野画像19a、側視視野画像19b及び19cを生成するようにした。
 この結果、挿入部4の回転操作に応じて回転した直視視野画像19a、側視視野画像19b及び19cがモニタ35に表示されるため、術者等のユーザは、挿入部4の傾きや回転角度等を把握することができる。
 よって、本実施形態の内視鏡システムによれば、内視鏡の回転操作等を行った際の観察を行う範囲の把握を容易にすることができる。
 つまり、直視視野画像と側視視野画像として表示される画像の内容だけでは現在の挿入部の姿勢(傾き、回転角度)が分かり難い場合でも、本実施形態の内視鏡システムのように、視野画像が並ぶ方向の配置角度を変化させる構成にすることで、術者等のユーザは、視野画像の配置からも現在の挿入部の姿勢をより素早く直感的に把握することができる。
 例えば、内視鏡の挿入部を被検体内部の奥まで挿入した後、ゆっくり引き抜く間に側視視野をくまなく確認するスクリーニング検査時、例えば直前に側視視野内に注目部分が発見されたにも拘らず挿入部が回転して注目部分が見えなくなってしまう場合、ユーザは側視視野画像の配置に基づき例えば挿入部を回転方向に戻して再度見直すことが容易になる。
 この構成により、挿入部の挿入量が同じであっても、先程観察した側視視野とは現在回転方向に異なる部分を観察していることをより適切に認識できるようになり、現在観察している場所を迷って注目部分を回転方向に見落とす可能性を防ぐことができる。
(変形例)
 なお、画像処理部32aは、傾き角度検出部17からの傾き角度情報(傾き情報)に基づいて、直視視野画像18a、側視視野画像18b及び18cを回転させる画像処理を行うだけではなく、以下のような画像処理を行ってもよい。
 図7~図10は、画像処理部32aで生成される観察画像の他の例を説明するための図である。
 画像処理部32aは、傾き角度検出部17からの傾き角度情報(傾き情報)に応じて、直視視野画像18a、側視視野画像18b及び18cを回転した直視視野画像19a、側視視野画像19b及び19cを生成する。
 その後、画像処理部32aは、図7に示すように、直視視野画像19a、側視視野画像19b及び19cに矩形マスクを施した直視視野画像20a、側視視野画像20b、及び20cを生成し、モニタ35に表示させる。つまり、側視視野画像19b及び19cが直視視野画像19aに対して公転する表示モードとなる。これにより、上述した実施形態と同様の効果を得ることができる。
 また、画像処理部32aは、傾き角度検出部17からの傾き角度情報(傾き情報)に応じて、直視視野画像18a、側視視野画像18b及び18cを回転した直視視野画像19a、側視視野画像19b及び19cを生成する。
 その後、画像処理部32aは、図8に示すように、直視視野画像19a、側視視野画像19b及び19cに矩形マスクを施した直視視野画像21a、側視視野画像20b、及び20cを生成し、側視視野画像19b及び19cを表示させる枠となる矩形マスクが回転するようにして、モニタ35に表示させる。つまり、側視視野画像19b及び19c(側視視野画像19b及び19cを表示させる枠)自体が自転しつつ直視視野画像19aに対して公転する表示モードとなる。これにより、上述した実施形態と同様の効果を得ることができる。
 また、画像処理部32aは、傾き角度検出部17からの傾き角度情報(傾き情報)に応じて、直視視野画像18a、側視視野画像18b及び18cを回転した直視視野画像19a、側視視野画像19b及び19cを生成する。その後、画像処理部32aは、図9に示すように、直視視野画像19aのみに丸型マスクを施した直視視野画像22aを生成し、モニタ35に表示させる。このように、直視視野画像19aのみに丸型マスクを施した直視視野画像22aを生成することにより、上述した実施形態と同様の効果を得るとともに、直視視野画像22aを中心に側視視野画像19b及び19cが回転していることをユーザに認識しやすくしている。
 尚、図6C~図9に示す各表示モードは、適宜切り替えることができるようにしてもよい。
 また、画像処理部32aは、直視視野画像18a、側視視野画像18b及び18cを横並びに配置した後、挿入部4の傾き量を示す指標23を生成する。そして、画像処理部32aは、図10に示すように、傾き角度検出部17からの傾き角度情報(傾き情報)に基づいて、挿入部4の傾き角度に追従して指標23を回転し、モニタ35に表示させる。これにより、上述した実施形態と同様の効果を得ることができる。
 この指標23は、上記第1の実施形態の各実施形態と組合わせて用いることにより、ユーザが挿入部4の姿勢をより確実に把握できるようになる。
(第2の実施形態)
 次に、第2の実施形態について説明する。
 図11は、第2の実施形態に係る内視鏡の挿入部の先端部の構成を示す斜視図であり、図12は、第2の実施形態に係る内視鏡の挿入部の先端部の構成を示す正面図であり、図13は、第2の実施形態に係る挿入部の断面図であり、図14及び図15は、第2に実施形態における要部の構成を示す図である。
 図11に示すように、挿入部4の先端部6bには、先端部6bの先端面の中央から上方寄りに偏心した位置から突出して設けられた、円柱形状の円筒部40が形成されている。
 円筒部40の先端部には、図13に示すように、直視及び側視を兼ねる対物光学系62が設けられている。また、円筒部40の先端部は、対物光学系60の直視方向に相当する箇所に配置された第1の被写体像取得部を構成する直視観察窓42と、対物光学系61の側視方向に相当する箇所に配置された第2の被写体像取得部を構成する側視観察窓43と、を有して構成されている。
 直視観察窓42は、挿入部4の長手方向に略平行な前方を含む直視方向(第1の方向)つまり被写体の第1の領域から第1の被写体像を取得する。
 また、側視観察窓43は、直視方向(第1の方向)とは少なくとも一部が異なる挿入部の長手方向とは交差する方向を含む側視方向(第2の方向)つまり被写体の第2の領域から第2の被写体像を取得する。
 さらに、円筒部40の基端付近には、側視方向を照明するための光を出射する側視照明部44が形成されている。
 側視観察窓43は、円柱形状の円筒部40における周方向から入射される観察対象物からの戻り光(反射光)を側視視野内に捉えることにより側視視野画像を取得可能とするための、側視用ミラーレンズ45を備えている。
 なお、対物光学系62の結像位置には、直視観察窓42の視野内の観察対象物の画像が円形の直視視野画像として中心部に形成され、かつ、側視観察窓43の視野内の観察対象物の画像が円環形状の側視視野画像として直視視野画像の外周部に形成されるように、図13に示す撮像素子63(の撮像面)が配置されている。
 このような画像は側視用ミラーレンズで戻り光を2回反射させる2回反射光学系を用いることで実現させているが、戻り光を1回反射光学系により1回反射させて形成し、これをビデオプロセッサ32で画像処理し、側視視野画像と直視視野画像との向きを合わせてもよい。
 また、先端部6bの撮像素子63の後端側には、第1の実施の形態と同様に、挿入部4の長手方向を軸とした、挿入部4の重力方向に対する軸周りの回転方向の傾き角度を検出し、傾き角度情報(傾き情報)を生成する傾き角度検出部17が設けられている。
 先端部6bの先端面には、円筒部40に隣接する位置に配置され、直視観察窓42の直視視野の範囲に照明光を出射する直視照明窓46と、挿入部4内に配設されたチューブ等により形成された図示しない処置具チャンネルに連通するとともに、処置具チャンネルに挿通された処置具(の先端部)を突出させることが可能な先端開口部47と、が設けられている。
 側視照明部44及び直視照明窓46に照明光を供給する手段は、光源からライトガイドで照明光を導く方法であっても、付近に設置した発光ダイオード(LED)のような発光素子からの照明であってもよい。
 また、挿入部4の先端部6bは、先端部6bの先端面から突出するように設けられた支持部48を有し、この支持部48は円筒部40の下部側に隣接して位置する。
 支持部48は、先端部6bの先端面から突出させるように配置された各突出部材を支持(または保持)可能に構成されている。具体的には、支持部48は、前述の各突出部材としての、直視観察窓42を洗浄するための気体または液体を射出する直視観察窓用ノズル部49と、直視方向を照明するための光を出射する直視照明窓51と、側視観察窓43を洗浄するための気体または液体を射出する側視観察窓用ノズル部52と、をそれぞれ支持(または保持)可能に構成されている。
 一方、支持部48は、本来の観察対象物とは異なる物体である前述の各突出部材が側視視野内に現れることにより、各突出部材のいずれかを含むような側視視野画像を取得してしまわないようにするための、光学的な遮蔽部材である遮蔽部48aを有して形成されている。すなわち、遮蔽部48aを支持部48に設けることにより、直視観察窓用ノズル部49、直視照明窓51、及び、側視観察窓用ノズル部52がいずれも含まれないような側視視野画像を得ることができる。
 側視観察窓用ノズル部52は、図11及び図12に示すように、支持部48の2箇所に設けられているとともに、支持部48の側面に先端が突出するように配置されている。
 図14に示すように、撮像素子63は、画像処理部32a1に電気的に接続されており、撮像素子63で撮像された直視視野画像及び側視視野画像を画像処理部32a1に出力する。また、傾き角度検出部17は、画像処理部32a1に電気的に接続されており、図15に示すように、例えばユーザが挿入部4を捻った際に、挿入部4の長手方向を軸とした、挿入部4の重力方向に対する軸周りの回転方向の傾き角度を検出し、検出した傾き角度情報(傾き情報)を画像処理部32a1に出力する。
 ビデオプロセッサ32は、内視鏡2の先端部6bに設けられた撮像素子63を駆動するための駆動信号を出力する。そして、ビデオプロセッサ32の画像処理部32a1は、画像信号生成部として、前記撮像素子63から出力される撮像信号に対して所定の信号処理を施すことにより、映像信号を生成、より具体的には、円形形状をなす直視視野画像と、直視方向の画像の外周において円環形状をなす側視視野画像とを具備した観察画像、つまり直視視野画像に側視視野画像が隣り合った状態で、直視視野画像に側視視野画像が囲い込むように並べた画像を生成する。
 直視視野画像と側視視野画像の境界領域は重複していても重複していなくてもよく、上記境界領域が重複している状態の場合、直視観察窓42と側視観察窓43とで一部が重複した被写体像を取得し、画像処理部32a1で重複する領域を一部除去する処理を行ってもよい。
 そして、画像処理部32a1は、傾き角度検出部17により検出された挿入部4の傾き角度情報(傾き情報)に基づいて、直視視野画像及び側視視野画像を傾き角度に追従して回転する画像処理、つまり第1の被写体像が配置される部分に対して第2の被写体像を相対的に回転することにより、視野画像が並ぶ方向の配置角度を変化させて第1の被写体像及び第2の被写体像が傾いた状態を表した画像処理を施した画像信号を生成し、画像出力部32bに出力する。なお、本実施形態では、画像処理部32a1は、挿入部4の傾き角度に応じて、直視視野画像、及び、側視視野画像の両方を回転させているが、直視視野画像、または、側視視野画像のみを回転させるようにしてもよい。
 画像出力部32bは、画像処理部32a1により生成された画像信号からモニタ35に表示するための信号を生成し、モニタ35に出力する。これにより、円形形状をなす直視視野画像と、直視方向の画像の外周において円環形状をなす側視視野画像とを具備した観察画像が、挿入部4の傾き角度に応じて回転されてモニタ35に表示される。
 例えば、直視視野画像の隣に1つ以上の側視視野画像を並べただけでは、遠近感や立体感が得られず、管腔内を観察する画像として違和感なく認識することが困難である。
 これに対し、変形例の直視視野画像及び側視視野画像の表示方法であれば、中心から周辺に向けて放射状に画面が広がる光学的構造になるように設定されている(円環状のレンズであれば自動的にそのような光学特性になる)ので、比較的、遠近感や立体感が得られやすくなっている。
 次に、画像処理部32a1による画像処理について、図16A~図16Cを用いて説明する。図16A~図16Cは、画像処理部32a1による画像処理により、モニタに表示される観察画像の一例を示す図である。
 画像処理部32a1は、直視観察窓42で取得された円形形状をなす第1の被写体像に基づく直視視野画像70aと、側視観察窓43で取得された第1の被写体像の外周において円環形状をなす第2の被写体像に基づく側視視野画像70bとを取得する。なお、側視視野画像70bは、支持部48の遮蔽部48aにより光学的に遮蔽される遮蔽領域70cを含む。そして、画像処理部32a1は、図16Aに示すように、円形形状をなす直視視野画像70aの外周に円環形状をなす側視視野画像70bが形成された観察画像を生成する。
 ここで、図15に示すように、内視鏡2の挿入部4が捻られると、図16Bに示すように、挿入部4の先端部6aに設けられた撮像素子63の視点も挿入部4の長手方向の軸の周りで回転し、観察画像が回転してしまうためユーザは観察し難くなってしまう。
 そのため、画像処理部32a1は、傾き角度検出部17からの傾き角度情報(傾き情報)に基づいて、図16Cに示すように、直視視野画像70a及び側視視野画像70bを挿入部4の傾き角度に追従させて回転させた直視視野画像71a及び側視視野画像71b(遮蔽領域71cを含む)を生成する。
 このように、内視鏡システム1は、直視観察窓42により直視視野画像70aを取得し、側視観察窓43により側視視野画像70bを取得し、円形形状の直視視野画像70aの外周に円環形状の側視視野画像70bを配置する。そして、内視鏡システム1は、傾き角度検出部17からの傾き角度情報(傾き情報)に基づいて、直視視野画像70a、及び、側視視野画像70bを回転させた直視視野画像71a、及び、側視視野画像71bを生成するようにした。
 この結果、挿入部4の回転操作に応じて回転した直視視野画像71a、及び、側視視野画像71bがモニタ35に表示されるため、ユーザは、挿入部4の傾きや回転角度等を把握することができる。
 よって、本実施形態の内視鏡システムによれば、第1の実施形態と同様に、内視鏡の回転操作等を行った際の観察を行う範囲の把握を容易にすることができる。
(第3の実施形態)
 次に、第3の実施形態について説明する。
 図17は、第3に実施形態における要部の構成を示す図である。なお、図17において、図4と同様の構成については、同一の符号を付して説明を省略する。図17に示すように、本実施形態のビデオプロセッサ32は、第1の実施形態のビデオプロセッサ32(図4参照)に対して、画像処理部32c及び切替スイッチ80が追加されて構成されている。
 画像処理部32aには、直視観察窓11aにより取得された直視視野画像18a、側視観察窓11b、11cにより取得された側視視野画像18b、18c、及び、傾き角度検出部17に検出された挿入部4の傾き角度情報(傾き情報)が入力される。画像信号生成部としても動作する画像処理部32aは、直視視野画像18aを中央に配置し、側視視野画像18b及び18cを直視視野画像18aの左右に配置した後、傾き角度検出部17からの傾き角度情報(傾き情報)に基づいて、直視視野画像18a、側視視野画像18b及び18cを挿入部4の傾き角度に追従させて回転させた直視視野画像19a、側視視野画像19b及び19cを生成する。そして、画像処理部32aは、生成した直視視野画像19a、側視視野画像19b及び19cを切替スイッチ80に出力する。
 一方、画像処理部32cには、直視観察窓11aにより取得された直視視野画像18a、側視観察窓11b及び11cにより取得された側視視野画像18b及び18cが入力される。画像信号生成部としても動作する画像処理部32cは、直視視野画像18aを中央に配置し、側視視野画像18b及び18cを直視視野画像18aの左右に配置し、切替スイッチ80に出力する。
 切替スイッチ80には、スイッチ操作部81からの切替信号が入力される。スイッチ操作部81は、例えば、内視鏡2の操作部3に設けられたスイッチ、ビデオプロセッサ32に設けられたスイッチ、あるいは、フットスイッチである。
 切替スイッチ80は、スイッチ操作部81からの切替信号に応じて、画像処理部32aからの出力、または、画像処理部32cからの出力の一方を画像出力部32bに出力する。すなわち、回転処理がされていない観察画像(図6B参照)、または、回転処理がされた観察画像(図6C参照)が、切替信号に応じて切替スイッチ80から画像出力部32bに出力され、モニタ35に表示される。
 このように、本実施形態の内視鏡システム1は、回転処理された観察画像と回転処理されていない観察画像とのいずれか一方を切替スイッチ80で選択し、モニタ35に表示するようにした。この結果、ユーザは、回転処理のON/OFFを切り替えることで、内視鏡2の操作状況等に応じて最適な表示モードを選択することができる。
(第4の実施形態)
 次に、第4の実施形態について説明する。
 図18は、第4に実施形態における要部の構成を示す図である。なお、図18において、図14及び図17と同様の構成については、同一の符号を付して説明を省略する。図18に示すように、本実施形態のビデオプロセッサ32は、第2の実施形態のビデオプロセッサ32(図14参照)に対して、画像処理部32c1及び切替スイッチ80が追加されて構成されている。
 画像処理部32a1には、直視観察窓42により取得された直視視野画像70a、側視観察窓43により取得された側視視野画像70b、及び、傾き角度検出部17に検出された挿入部4の傾き角度情報(傾き情報)が入力される。画像信号生成部としても動作する画像処理部32a1は、円形形状の直視視野画像70aの外周に円環形状の側視視野画像70bを配置した後、傾き角度検出部17からの傾き角度情報(傾き情報)に基づいて、直視視野画像70a及び側視視野画像70bを回転させた直視視野画像71a及び側視視野画像71bを生成する。そして、画像処理部32a1は、生成した直視視野画像71a及び側視視野画像71bを切替スイッチ80に出力する。
 一方、画像処理部32c1には、直視観察窓42により取得された直視視野画像70a、及び、側視観察窓43により取得された側視視野画像70bが入力される。画像信号生成部としても動作する画像処理部32c1は、円形形状の直視視野画像70aの外周に円環形状の側視視野画像70bを配置し、切替スイッチ80に出力する。
 切替スイッチ80は、スイッチ操作部81からの切替信号に応じて、画像処理部32a1からの出力、または、画像処理部32c1からの出力の一方を画像出力部32bに出力する。すなわち、回転処理がされていない観察画像(図16B参照)、または、回転処理がされた観察画像(図16C参照)が、切替信号に応じて切替スイッチ80から画像出力部32bに出力され、モニタ35に表示される。
 このような本実施形態の内視鏡システム1によれば、第3の実施の形態と同様に、ユーザは、回転処理のON/OFFを切り替えることで、内視鏡2の操作状況等に応じて最適な表示モードを選択することができる。
(第5の実施形態)
 次に、第5の実施形態について説明する。
 図19は、第5に実施形態における要部の構成を示す図であり、図20は、モニタ35の回転動作について説明するための図である。なお、図19において、図4及び図17と同様の構成については、同一の符号を付して説明を省略する。
 図19に示すように、画像処理部32cには、直視観察窓11aにより取得された直視視野画像18a、側視観察窓11b及び11cにより取得された側視視野画像18b及び18cが入力される。画像信号生成部としても動作する画像処理部32cは、直視視野画像18aを中央に配置し、側視視野画像18b及び18cを直視視野画像18aの左右に配置して画像出力部32bに出力する。
 一方、傾き角度検出部17により検出された傾き角度情報(傾き情報)は、ビデオプロセッサ32を介してモニタ35に入力される。モニタ35は、図示を省略している回転制御部と回転機構とを有しており、傾き角度検出部17からの傾き角度情報(傾き情報)に応じて、図20に示すように、挿入部4の傾き角度に追従してモニタ35自体が回転する。
 このように、本実施形態の内視鏡システム1は、モニタ35に表示される直視視野画像18a、側視視野画像18b及び18cを回転させず、モニタ35自体を回転させるようにした。この結果、本実施形態の内視鏡システム1によれば、第1の実施形態と同様に、内視鏡の回転操作等を行った際の観察を行う範囲の把握を容易にすることができる。
 上述した各実施の形態のうち、第1の実施形態及びその各変形例において、側方を照明及び観察する機能を実現する機構は、前方を照明及び観察する機能を実現する機構と共に、挿入部4の先端部6に内蔵されているが、側方を照明及び観察する機能を実現する機構は、挿入部4に対して着脱可能な別体にしてもよい。
 図21は、側方観察用のユニットが取り付けられた挿入部4の先端部6の斜視図である。挿入部4の先端部6は、前方視野用ユニット100を有している。側方視野用ユニット110は、前方視野用ユニット100に対してクリップ部111により着脱自在な構成を有している。
 側方視野用ユニット110は、左右方向の画像を取得するための2つの観察窓112と、左右方向を照明するための2つの照明窓113を有している。
 ビデオプロセッサ32等は、側方視野用ユニット110の各照明窓113の点灯と消灯を、前方視野のフレームレートに合わせて行うようにして、上述した第1の実施形態に示したような観察画像の取得とモニタ35に複数の画面を並べて表示する表示を行うことができる。
 本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
 本出願は、2014年3月17日に日本国に出願された特願2014-54058号公報を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (14)

  1.  被写体の内部に挿入される挿入部と、
     前記挿入部に設けられ、前記被写体の第1の領域から第1の被写体像を取得する第1の被写体像取得部と、
     前記挿入部に設けられ、前記第1の領域とは異なる前記被写体の第2の領域から第2の被写体像を取得する第2の被写体像取得部と、
     前記挿入部の長手方向を軸とした、前記軸周りの回転を検出し、傾き情報を生成する傾き検出部と、
     表示画面上で前記第1の被写体像と前記第2の被写体像とを隣り合わせて配置するとともに、前記傾き情報に基づき前記第1の被写体像に対する前記第2の被写体像の相対位置が回転した状態を表す画像信号を生成する画像信号生成部と、
     を備えることを特徴とする内視鏡システム。
  2.  前記画像信号生成部は、前記傾き情報に基づき、前記第1の被写体像と前記第2の被写体像との配置関係を維持したまま、前記第1の被写体像内の所定の部分に設けられた点を中心として、少なくとも前記第2の被写体像を前記第1の被写体像に対して回転させた前記画像信号を生成することを特徴とする請求項1に記載の内視鏡システム。
  3.  前記第1の被写体像は、前記挿入部の長手方向に略平行な挿入部前方を含む前記第1の領域の被写体像であり、
     前記第2の被写体像は、前記挿入部の長手方向と交差する方向の挿入部側方を含む前記第2の領域の被写体像であり、
     前記第1の被写体像取得部は、前記第1の領域の被写体像を取得する前方被写体像取得部であり、
     前記第2の被写体像取得部は、前記第2の領域の被写体像を取得する側方被写体像取得部であることを特徴とする請求項1に記載の内視鏡システム。
  4.  前記画像信号生成部から出力された、前記第1の被写体像及び前記第2の被写体像を含む画像信号を表示する1つ以上の表示部をさらに備えることを特徴とする請求項1に記載の内視鏡システム。
  5.  前記画像信号生成部は、前記第1の被写体像と前記第2の被写体像とを、1つの画面上に表示させる前記画像信号を生成することを特徴とする請求項4に記載の内視鏡システム。
  6.  前記画像信号生成部は、前記第1の被写体像に基づく画像信号及び前記第2の被写体像に基づく画像信号の重複する領域を除去した各々の画像信号を前記表示部に出力することを特徴とする請求項1に記載の内視鏡システム。
  7.  前記画像信号生成部は、前記第1の被写体像と前記第2の被写体像とを同時に回転させた前記画像信号を生成することを特徴とする請求項2に記載の内視鏡システム。
  8.  前記画像信号生成部は、前記第2の被写体像だけを、配置を固定した前記第1の被写体像に対して回転させた前記画像信号を生成することを特徴とする請求項2に記載の内視鏡システム。
  9.  前記画像信号生成部は、前記第2の被写体像が前記第1の被写体像に対して公転する第1のモードと、該第2の被写体像の枠の回転位置と形状を保った状態で前記第2の被写体像自体が自転しつつ前記第1の被写体像に対して公転する第2のモードと、を切り替えることを特徴とする請求項2に記載の内視鏡システム。
  10.  前記第1の被写体像取得部は、前記挿入部の長手方向先端部に、該挿入部が挿入される方向に向けて配置され、
     前記第2の被写体像取得部は、前記挿入部の側面に、該挿入部の周方向に向けて配置され、
     前記第1の被写体像取得部からの前記第1の被写体像を光電変換する第1の撮像部と、前記第2の被写体像取得部からの前記第2の被写体像を光電変換する第2の撮像部とが別々に設けられるとともに、前記第1の撮像部と前記第2の撮像部とが前記画像処理部に電気的に接続されていることを特徴とする請求項1に記載の内視鏡システム。
  11.  前記第2の被写体像取得部は、前記挿入部の周方向に略均等な角度で複数配置されており、
     前記画像信号生成部は、前記第1の被写体像を中心に配置し、前記第2の被写体像を前記第1の被写体像の周方向に略均等な角度で複数配置することを特徴とする請求項10に記載の内視鏡システム。
  12.  前記第1の被写体像取得部は、前記挿入部の長手方向先端部に、該挿入部が挿入される方向に向けて配置され、
     前記第2の被写体像取得部は、前記挿入部の周方向を囲むように配置され、
     前記第1の被写体像取得部からの前記第1の被写体像と前記第2の被写体像取得部からの前記第2の被写体像とを同じ面で光電変換するように配置されるとともに、前記画像処理部に電気的に接続されている撮像部を備えることを特徴とする請求項1に記載の内視鏡システム。
  13.  前記画像信号生成部は、前記第1の被写体像が略円形状をなし、前記第2の被写体像が前記第1の被写体像の周囲を囲む略円環状になるように配置することを特徴とする請求項12に記載の内視鏡システム。
  14.  前記第2の被写体像取得部は、前記第1の被写体像取得部よりも前記挿入部の基端側に配置されることを特徴とする請求項13に記載の内視鏡システム。
PCT/JP2015/056537 2014-03-17 2015-03-05 内視鏡システム WO2015141483A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015545570A JP5942047B2 (ja) 2014-03-17 2015-03-05 内視鏡システム
US15/234,352 US20160345808A1 (en) 2014-03-17 2016-08-11 Endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014054058 2014-03-17
JP2014-054058 2014-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/234,352 Continuation US20160345808A1 (en) 2014-03-17 2016-08-11 Endoscope system

Publications (1)

Publication Number Publication Date
WO2015141483A1 true WO2015141483A1 (ja) 2015-09-24

Family

ID=54144457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056537 WO2015141483A1 (ja) 2014-03-17 2015-03-05 内視鏡システム

Country Status (3)

Country Link
US (1) US20160345808A1 (ja)
JP (1) JP5942047B2 (ja)
WO (1) WO2015141483A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012576A1 (ja) * 2018-07-11 2020-01-16 オリンパス株式会社 内視鏡システム、内視鏡のキャリブレーション方法および内視鏡の制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126196A1 (ja) * 2016-01-18 2017-07-27 オリンパス株式会社 内視鏡
KR20180020749A (ko) * 2016-08-19 2018-02-28 재단법인 아산사회복지재단 내시경 장치
US11596298B2 (en) 2018-08-27 2023-03-07 Meditrina, Inc. Endoscope and method of use
WO2020066670A1 (ja) * 2018-09-27 2020-04-02 Hoya株式会社 電子内視鏡システム及びデータ処理装置
US11793397B2 (en) * 2020-03-09 2023-10-24 Omniscient Imaging, Inc. Encapsulated opto-electronic system for co-directional imaging in multiple fields of view
US11506874B2 (en) * 2020-03-09 2022-11-22 Omniscient Imaging, Inc. Optical imaging systems and formation of co-oriented and co-directional images in different fields of view of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341232A (ja) * 1991-03-11 1992-11-27 Olympus Optical Co Ltd 電子内視鏡システム
JP2006218027A (ja) * 2005-02-09 2006-08-24 Olympus Corp 内視鏡装置
WO2013015104A1 (ja) * 2011-07-22 2013-01-31 オリンパスメディカルシステムズ株式会社 カプセル型内視鏡システム、画像表示方法、及び画像表示プログラム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299260A (ja) * 1995-04-28 1996-11-19 Fuji Photo Optical Co Ltd 超音波内視鏡
US6471637B1 (en) * 1999-09-24 2002-10-29 Karl Storz Imaging, Inc. Image orientation for endoscopic video displays
US7474327B2 (en) * 2002-02-12 2009-01-06 Given Imaging Ltd. System and method for displaying an image stream
JP3917885B2 (ja) * 2002-04-08 2007-05-23 オリンパス株式会社 カプセル内視鏡システム
US7134992B2 (en) * 2004-01-09 2006-11-14 Karl Storz Development Corp. Gravity referenced endoscopic image orientation
JP4365860B2 (ja) * 2004-04-12 2009-11-18 オリンパス株式会社 内視鏡装置
US7520854B2 (en) * 2004-07-14 2009-04-21 Olympus Corporation Endoscope system allowing movement of a display image
US7517314B2 (en) * 2004-10-14 2009-04-14 Karl Storz Development Corp. Endoscopic imaging with indication of gravity direction
EP2023794A2 (en) * 2006-05-19 2009-02-18 Avantis Medical Systems, Inc. System and method for producing and improving images
GB0613576D0 (en) * 2006-07-10 2006-08-16 Leuven K U Res & Dev Endoscopic vision system
US20110085021A1 (en) * 2009-10-12 2011-04-14 Capso Vision Inc. System and method for display of panoramic capsule images
US20080108870A1 (en) * 2006-11-06 2008-05-08 Wiita Bruce E Apparatus and method for stabilizing an image from an endoscopic camera
JP5314913B2 (ja) * 2008-04-03 2013-10-16 オリンパスメディカルシステムズ株式会社 カプセル医療システム
US8422788B2 (en) * 2008-08-26 2013-04-16 Microsoft Corporation Automatic image straightening
JP6128796B2 (ja) * 2012-10-25 2017-05-17 オリンパス株式会社 挿入システム、挿入支援装置、挿入支援装置の作動方法及びプログラム
EP2929831A4 (en) * 2013-03-19 2016-09-14 Olympus Corp ENDOSCOPE SYSTEM AND METHOD OF OPERATING THE ENDOSCOPE SYSTEM
JP6171452B2 (ja) * 2013-03-25 2017-08-02 セイコーエプソン株式会社 画像処理装置、プロジェクターおよび画像処理方法
JP5889495B2 (ja) * 2014-02-14 2016-03-22 オリンパス株式会社 内視鏡システム
WO2015151973A1 (ja) * 2014-03-31 2015-10-08 オリンパス株式会社 内視鏡システム
WO2015168066A1 (en) * 2014-05-01 2015-11-05 Endochoice, Inc. System and method of scanning a body cavity using a multiple viewing elements endoscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341232A (ja) * 1991-03-11 1992-11-27 Olympus Optical Co Ltd 電子内視鏡システム
JP2006218027A (ja) * 2005-02-09 2006-08-24 Olympus Corp 内視鏡装置
WO2013015104A1 (ja) * 2011-07-22 2013-01-31 オリンパスメディカルシステムズ株式会社 カプセル型内視鏡システム、画像表示方法、及び画像表示プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012576A1 (ja) * 2018-07-11 2020-01-16 オリンパス株式会社 内視鏡システム、内視鏡のキャリブレーション方法および内視鏡の制御装置
CN112351722A (zh) * 2018-07-11 2021-02-09 奥林巴斯株式会社 内窥镜系统、内窥镜的校准方法以及内窥镜的控制装置

Also Published As

Publication number Publication date
JPWO2015141483A1 (ja) 2017-04-06
US20160345808A1 (en) 2016-12-01
JP5942047B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5942047B2 (ja) 内視鏡システム
JP5942044B2 (ja) 内視鏡システム
US20200260938A1 (en) Dynamic field of view endoscope
JP5974188B2 (ja) 内視鏡システム
JP4856286B2 (ja) 内視鏡システム
JP4884567B2 (ja) 内視鏡システム
JP4500096B2 (ja) 内視鏡及び内視鏡システム
JP2014524819A (ja) マルチカメラ内視鏡
JP2015533300A (ja) マルチカメラ内視鏡
JP2014524303A (ja) 多重観察要素内視鏡
JP5889495B2 (ja) 内視鏡システム
US20160374542A1 (en) Endoscope system
WO2015146836A1 (ja) 内視鏡システム
JP2008073246A (ja) 内視鏡システム
JP6062112B2 (ja) 内視鏡システム
JP5914787B1 (ja) 内視鏡と、この内視鏡を備えた内視鏡システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015545570

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764630

Country of ref document: EP

Kind code of ref document: A1