Nothing Special   »   [go: up one dir, main page]

WO2015035727A1 - 一种多能源供电电机驱动系统 - Google Patents

一种多能源供电电机驱动系统 Download PDF

Info

Publication number
WO2015035727A1
WO2015035727A1 PCT/CN2013/089542 CN2013089542W WO2015035727A1 WO 2015035727 A1 WO2015035727 A1 WO 2015035727A1 CN 2013089542 W CN2013089542 W CN 2013089542W WO 2015035727 A1 WO2015035727 A1 WO 2015035727A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bus
converter
grid
power supply
Prior art date
Application number
PCT/CN2013/089542
Other languages
English (en)
French (fr)
Inventor
李建泉
蹇芳
吴小云
李云
翟文杰
管仁德
崔坚
程宇旭
陈艺峰
唐海燕
Original Assignee
南车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南车株洲电力机车研究所有限公司 filed Critical 南车株洲电力机车研究所有限公司
Priority to EP13893445.0A priority Critical patent/EP3046201A4/en
Priority to US14/917,432 priority patent/US20160226424A1/en
Publication of WO2015035727A1 publication Critical patent/WO2015035727A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/382
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/387
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to the field of power supply, in particular to a multi-energy supply motor drive system.
  • the present invention provides a multi-energy supply motor drive system, which can effectively solve the dependence of the distributed power source on the public power grid.
  • a multi-energy powered motor drive system that includes distributed power, frequency converter, utility grid and motor load:
  • the distributed power source is connected to a DC bus of the frequency converter for collecting and transmitting direct current to the frequency converter;
  • the frequency converter includes a first bidirectional converter, an inverter, and a DC bus, and the first bidirectional converter and the inverter are connected by the DC bus;
  • the first bidirectional converter is connected to the public power grid, and is configured to convert an alternating current received from a public power grid into a direct current power output to the DC bus, and send the direct current bus to the direct current bus. Electrical conversion to alternating current output to the public grid;
  • the inverter is connected to the motor load, and is configured to convert DC power sent by the DC bus into AC power output to the motor load;
  • the motor load is configured to operate according to the received alternating current sent by the inverter.
  • the energy storage unit is further included:
  • the energy storage unit includes a storage element and a connection switch, and the storage element is connected to the DC bus of the frequency converter through the connection switch for storing DC power on the DC bus.
  • the energy storage unit further includes a second bidirectional converter:
  • the second bidirectional converter is connected between the storage element and the connection switch, and is configured to convert DC power received from the DC bus into DC power that meets a specification of the storage component, from which the storage component is to be The received DC power is converted to DC power that meets the specifications of the DC bus.
  • the method further includes:
  • the public power grid is connected to the first bidirectional converter through a grid switch.
  • the distributed power source includes any one or combination of solar photovoltaic power generation, fuel cell power generation, and wind power generation.
  • the first converter is further included: the distributed power source is connected to the DC bus through a first converter, and the first converter is used to The direct current output of the solar photovoltaic power generation is converted into a direct current that conforms to the specification of the DC bus.
  • the distributed power source includes a fuel cell to generate electricity
  • a second converter is further included: the distributed power source is connected to the DC bus through a second converter, and the second converter is used to The direct current of the fuel cell power generation output is converted into direct current that conforms to the DC bus specification.
  • the third power converter is further included: the distributed power source is connected to the DC bus through a third current converter, and the third current converter is used for The alternating current output from the wind power generation is converted into direct current that meets the specifications of the DC bus.
  • the distributed power source is connected to the DC bus through a connection switch. It can be seen from the above technical solution that the distributed power source, the public power grid and the motor load are respectively connected with the frequency converter, so that the motor load can receive the distributed power source through the frequency converter even if the public power grid cannot be used. It works normally under power supply. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set forth in the description of the claims Other drawings may also be obtained from these drawings without the inventive labor.
  • FIG. 1 is a schematic structural diagram of a system of a multi-energy supply motor drive system according to the present invention
  • FIG. 2 is a schematic diagram of another system structure of a multi-energy supply motor drive system according to the present invention
  • FIG. 3 is a multi-energy supply motor drive according to the present invention
  • FIG. 4 is a schematic diagram of another system structure of a multi-energy supply motor drive system according to the present invention
  • FIG. 5 is a schematic diagram of another system structure of a multi-energy supply motor drive system according to the present invention
  • FIG. 7 is a schematic diagram of another system structure of a multi-energy supply motor drive system according to the present invention.
  • Embodiments of the present invention provide a multi-energy powered motor drive system.
  • the distributed power supply, the public power grid and the motor load are respectively connected to the frequency converter, so that the motor load can be normally operated under the power supply of the inverter even if the utility power grid cannot be used.
  • the energy storage unit is connected to the DC bus of the inverter.
  • the energy storage unit can also supply power to the motor load through the frequency converter, further improving the system's adaptability.
  • FIG. 1 is a schematic diagram of a system structure of a multi-energy powered motor drive system according to the present invention.
  • the system includes a distributed power source 10, a frequency converter 20, a utility grid 30, and a motor load 40: the distributed power source 10 is coupled to a DC bus 203 of the frequency converter 20 for collecting and directing to the frequency converter 20 Send DC power;
  • the frequency converter is a power electronic converter that converts the alternating current of the direct current or utility grid CVCF into VWF alternating current.
  • the control of the motor by the frequency converter is mainly realized by adjusting the voltage and frequency. It can avoid the burning of the motor and reduce the working energy consumption of the motor, thereby saving energy.
  • the distributed power source described herein mainly refers to an emerging energy source, such as solar energy, wind energy or tidal energy, and the like as a power supply base.
  • the distributed power source includes solar photovoltaic power generation.
  • the system shown in FIG. 1 further includes a first current transformer 101, as shown in FIG. 2:
  • the distributed power source is connected to the DC bus through a first converter, and the first converter is configured to convert DC power output by the solar photovoltaic power generation into DC power conforming to the DC bus specification.
  • the first converter here is generally a DC/DC converter, which mainly functions as a steady current, and at the same time, can achieve maximum power point tracking (MPPT) for a solar photovoltaic power supply photovoltaic array. Function, if the first converter is not set, the maximum power point tracking function can also be realized by the first bidirectional converter.
  • the distributed power source includes a fuel cell for power generation
  • the system shown in FIG. 1 further includes a second converter 102, as shown in FIG.
  • the distributed power source is connected to the DC bus through a second converter, and the second converter is configured to convert DC power output by the fuel cell into DC power in accordance with the DC bus specification.
  • the second converter here is also generally a DC/DC converter, which mainly functions as a steady current.
  • the distributed power source includes wind power generation
  • the system shown in FIG. 1 further includes a third current transformer 103, as shown in FIG. 4:
  • the distributed power source is connected to the DC bus through a third converter, and the third converter is configured to convert the AC power output by the wind energy into a DC power that meets the specifications of the DC bus.
  • the third converter is set as an AC/DC converter, and the alternating current output from the wind power generation can be converted into The DC power used for the inverter. If a connection switch is added between the distributed power supply and the DC bus, when the distributed power supply fails or needs to be repaired, the corresponding connection switch can be directly disconnected, so that the distributed power supply that is faulty or needs to be repaired can be effectively used. Maintenance can also be done without affecting the normal operation of the entire distributed power supply system. In this case, use other distributed power sources or directly use the public power grid to supply the motor load connected to the inverter. As shown in FIG.
  • the frequency converter 20 includes a first bidirectional converter 201, an inverter 202, and a DC bus 203, and the first bidirectional converter 201 and the inverter 202 are connected by the DC bus 203;
  • the first bidirectional converter of the frequency converter preferably uses a four-quadrant AC/DC bidirectional converter with rectification/inversion grid-connecting function to realize the grid-connected function of the distributed power source;
  • the surplus power can be fed back to the public power grid through the commercial power complementary system.
  • the public power grid can be directly passed through the commercial power complementary system.
  • the inverter supplies power to the motor load connected to the inverter; when the mains and distributed energy are still insufficient, the storage system can also supply power to the motor load connected to the inverter.
  • the first bidirectional converter 201 is connected to the public power grid 30, and is configured to convert AC power received from the public power grid 30 into DC power output to the DC bus, and the DC bus.
  • the 203 transmitted DC power is converted into an AC power output to the public power grid 30;
  • the method further includes:
  • the utility grid 30 is coupled to the first bi-directional converter 201 via a grid switch.
  • the grid-connected switch can be used to disconnect the grid switch if the frequency divider fails or requires maintenance, so that the inverter can be safely and effectively repaired. And even if there is no problem with the inverter, it is possible to supply power to the motor load connected to the inverter without being connected to the public grid.
  • the inverter 202 is connected to the motor load 40 for converting the DC power sent by the DC bus 203 into an AC power output to the motor load 40;
  • the inverter 202 preferably uses a DC/AC inverter to convert the DC power in the inverter into an AC power output to the motor load.
  • the public power grid 30 is configured to transmit alternating current
  • the motor load 40 is configured to operate according to the received alternating current transmitted by the inverter 202.
  • Motor load mainly refers to various electrical equipment.
  • Embodiment 2 It can be seen from the embodiment that the distributed power source, the public power grid and the motor load are respectively connected with the frequency converter, so that the motor load can be received by the frequency converter even if the utility power grid cannot be used. Under normal work.
  • Embodiment 2
  • FIG. 6 is a Another system structure diagram of a multi-energy-powered motor drive system includes an energy storage unit 60:
  • the energy storage unit 50 includes a storage element 501 and a connection switch 502.
  • the storage element 501 is connected to the DC bus 203 of the frequency converter 20 via the connection switch 502 for storing the DC power on the DC bus 203.
  • the storage element 501 herein may be a battery, a super capacitor, or a combination of the two. Combined energy storage system. Moreover, when the storage component 501 fails or needs to be repaired, the connection switch 502 can be directly disconnected to remove the energy storage unit from the system, which does not affect the normal operation of the distributed power supply system.
  • the system shown in FIG. 6 further includes the energy storage unit 50 further including a second bidirectional converter 503, as shown in FIG. 7:
  • the second bidirectional converter 503 is connected between the storage element 501 and the connection switch 502 for converting DC power received from the DC bus 203 into DC power that meets the specifications of the storage element 601.
  • the direct current received from the storage element 501 is converted into direct current that conforms to the specifications of the DC bus 203.
  • the second bidirectional converter here preferably employs a DC/DC bidirectional converter.
  • the distributed power source, the public power grid and the motor load are respectively connected with the frequency converter, so that the motor load can receive the distributed power source even if the public power grid cannot be used.
  • the inverter works normally under power supply.
  • the energy storage unit is connected to the DC bus of the inverter.
  • the energy storage unit can also supply power to the motor load through the frequency converter, further improving the system's adaptability.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种多能源供电电机驱动系统,包括分布式电源(10)、变频器(20)、公共电网(30)和电机负载(40)。分布式电源与变频器的直流母线(203)相连,用于采集并向变频器发送直流电,变频器包括第一双向变流器(201)、逆变器(202)和直流母线,第一双向变流器和逆变器通过直流母线相连,第一双向变流器与公共电网相连,逆变器与电机负载相连。通过将分布式电源、公共电网和电机负载分别与变频器进行连接,可使得电机负载在公共电网无法使用的情况下,也可以接收到分布式电源通过变频器供电。

Description

一种多能源供电电机驱动系统 本申请要求于 2013 年 09 月 10 日提交中国专利局、 申请号为 201310409264.8、 发明名称为 "一种分布式电源供电系统" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及供电领域, 特别是涉及一种多能源供电电机驱动系统。
背景技术
近年来面对能源危机和环境污染的双重压力, 各国对新能源比如说太阳 能发电、 风能发电和潮汐能发电等的开发和重视程度也在与日俱增, 这种太 阳能光伏发电、 风力发电、 燃料电池等分布式电源产生的电能一般是通过变 频器与公共电网相连, 然后在通过公共电网为连接在公共电网上的电机负载 进行供电, 但是现在的问题是, 如果当整个公共电网停电时, 即使上述分布 式电源依然能够正常发电, 但是发出的电能也无法通过公共电网再传输到电 机负载上, 使得在一些使用这种新兴的分布式电源的区域会出现在公共电网 停电时, 即使分布式电源能够正常工作也无法使用的窘境。 发明内容
为了解决上述技术问题, 本发明提供了一种多能源供电电机驱动系统, 能够有效的解决分布式电源对公共电网的依附关系。
本发明实施例公开了如下技术方案:
一种多能源供电电机驱动系统, 包括分布式电源、 变频器、 公共电网和 电机负载:
所述分布式电源与所述变频器的直流母线相连, 用于采集并向所述变频 器发送直流电;
所述变频器包括第一双向变流器、 逆变器和直流母线, 所述第一双向变 流器和所述逆变器通过所述直流母线相连;
其中, 所述第一双向变流器与所述公共电网相连, 用于将从公共电网接 收的交流电转换为直流电输出到所述直流母线, 将所述直流母线发送的直流 电转换为交流电输出到所述公共电网;
所述逆变器与所述电机负载相连, 用于将所述直流母线发送的直流电转 换为交流电输出到所述电机负载;
所述公共电网, 用于传输交流电;
所述电机负载, 用于才艮据接收的所述逆变器发送的交流电进行工作。 优选的, 还包括储能单元:
所述储能单元包括存储元件和连接开关, 所述存储元件通过所述连接开 关与所述变频器的直流母线相连, 用于存储所述直流母线上的直流电。
优选的, 所述储能单元还包括第二双向变流器:
所述第二双向变流器连接在所述存储元件与所述连接开关之间, 用于将 从所述直流母线接收的直流电转换为符合所述存储元件规格的直流电, 将从 所述存储元件接收的直流电转换为符合所述直流母线规格的直流电。
优选的, 还包括:
所述公共电网通过并网开关与所述第一双向变流器相连。
优选的,
所述分布式电源包括太阳能光伏发电、 燃料电池发电和风能发电中的任 意一种或多种的组合。
优选的, 当所述分布式电源包括太阳能光伏发电时, 还包括第一变流器: 所述分布式电源通过第一变流器与所述直流母线相连, 所述第一变流器 用于将所述太阳能光伏发电输出的直流电转换为符合所述直流母线规格的直 流电。
优选的, 当所述分布式电源包括燃料电池发电时, 还包括第二变流器: 所述分布式电源通过第二变流器与所述直流母线相连, 所述第二变流器 用于将所述燃料电池发电输出的直流电转换为符合所述直流母线规格的直流 电。
优选的, 当所述分布式电源包括风能发电时, 还包括第三变流器: 所述分布式电源通过第三变流器与所述直流母线相连, 所述第三变流器 用于将所述风能发电输出的交流电转换为符合所述直流母线规格的直流电。
优选的, 所述分布式电源通过连接开关与所述直流母线相连。 由上述技术方案可以看出, 通过将分布式电源、 公共电网和电机负载分 别与变频器进行连接, 以使得电机负载即使在公共电网无法使用的情况下, 也可以接收到分布式电源通过变频器供电下正常工作。 附图说明 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一种多能源供电电机驱动系统的系统结构示意图; 图 2为本发明一种多能源供电电机驱动系统的另一个系统结构示意图; 图 3为本发明一种多能源供电电机驱动系统的另一个系统结构示意图; 图 4为本发明一种多能源供电电机驱动系统的另一个系统结构示意图; 图 5为本发明一种多能源供电电机驱动系统的另一个系统结构示意图; 图 6为本发明一种多能源供电电机驱动系统的另一个系统结构示意图; 图 7为本发明一种多能源供电电机驱动系统的另一个系统结构示意图。 具体实施方式
本发明实施例提供了一种多能源供电电机驱动系统。 一方面, 通过将分 布式电源、 公共电网和电机负载分别与变频器进行连接, 以使得电机负载即 使在公共电网无法使用的情况下, 也可以接收到分布式电源通过变频器供电 下正常工作。
另一方面, 将储能单元连接到变频器的直流母线上, 当公共电网和分布 式电源都无法使用的情况下, 储能单元还可以通过变频器向电机负载供电, 进一步的提高了系统的适应能力。
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图 对本发明实施例进行详细描述。
实施例一
请参阅图 1, 其为本发明一种多能源供电电机驱动系统的系统结构示意 图, 该系统包括分布式电源 10、 变频器 20、 公共电网 30和电机负载 40 : 所述分布式电源 10与所述变频器 20的直流母线 203相连, 用于采集并 向所述变频器 20发送直流电;
变频器是一种将直流电或公用电网 CVCF的交流电转变成 VWF交流电 的电力电子变换装置。 在工业电机变频调速领域, 变频器对电机的控制主要 是通过调整电压和频率来实现的, 它可以避免电机被烧毁同时还可以降低电 机的工作能耗, 起到节能的作用。
这里所述的分布式电源主要还是具体指的是新兴能源, 比如说太阳能、 风能或潮汐能等作为供电基础的电源, 在本发明技术方案中, 优选的, 所述 分布式电源包括太阳能光伏发电、 燃料电池发电和风能发电中的任意一种或 多种的组合。 也就是说, 本发明也可以同时有多种不同类型的分布式电源同 时连接在同一个变频器中的情况。 以下将针对上述三种不同类型的分布式电 源如何与变频器相连分别进行详细的图文描述。
当所述分布式电源包括太阳能光伏发电时, 优选的, 前述图 1 所示的系 统中还包括第一变流器 101, 如图 2所示:
所述分布式电源通过第一变流器与所述直流母线相连, 所述第一变流器 用于将所述太阳能光伏发电输出的直流电转换为符合所述直流母线规格的直 流电。
这里的第一变流器一般是 DC/DC变流器, 主要起到稳流的作用, 同时, 还可以实现对于太阳能光伏供电的光伏电池阵列的最大功率点跟踪 (Maximum Power Point Tracking, MPPT) 功能, 如果没有设置第一变流器, 最大功率点跟踪功能还可以通过第一双向变流器来实现。 当所述分布式电源包括燃料电池发电时, 优选的, 前述图 1 所示的系统 中还包括第二变流器 102, 如图 3所示:
所述分布式电源通过第二变流器与所述直流母线相连, 所述第二变流器 用于将所述燃料电池发电输出的直流电转换为符合所述直流母线规格的直流 电。
这里的第二变流器一般也是 DC/DC变流器, 主要起到也是稳流的作用。 当所述分布式电源包括风能发电时, 优选的, 前述图 1 所示的系统中还 包括第三变流器 103, 如图 4所示:
所述分布式电源通过第三变流器与所述直流母线相连, 所述第三变流器 用于将所述风能发电输出的交流电转换为符合所述直流母线规格的直流电。
因为风能发电方式输出的电能一般是交流电的形式, 无法直接输入到变 频器的直流母线中, 故这里的第三变流器设置为 AC/DC 变流器, 将风能发 电输出的交流电转换为可以为变频器所用的直流电。 如果在分布式电源与直流母线之间增加连接开关的话, 当分布式电源出 现故障或者需要检修时, 可以直接断开对应的连接开关, 这样既可以有效的 对出现故障或者需要检修的分布式电源进行维护, 也可以不影响整个分布式 电源供电系统的正常工作, 这时使用其他分布式电源或者直接使用公共电网 对连接在变频器上的电机负载进行供电即可。 如图 5所示, 图 5 中将分布式 电源可能出现的三种形式均分别通过连接开关 104连接到变频器的直流母线 上, 即优选的, 所述分布式电源通过连接开关与所述直流母线相连。 所述变频器 20包括第一双向变流器 201、 逆变器 202和直流母线 203, 所 述第一双向变流器 201和所述逆变器 202通过所述直流母线 203相连;
这里需要说明的是, 变频器的第一双向变流器在这里优选的采用具有整 流 /逆变并网功能的四象限 AC/DC双向变流器, 以实现分布式电源的并网功 能; 当分布式电源能量富余或变频器连接到电机负载不工作的时候还可以通 过市电互补系统将多余的电能回馈到公共电网中; 当分布式电源不足时可以 通过市电互补系统将公共电网直接通过变频器给连接在变频器上的电机负载 供电; 当市电和分布式能源仍不足时还可以通过储能系统给连接在变频器上 的电机负载供电。 其中, 所述第一双向变流器 201与所述公共电网 30相连, 用于将从公共 电网 30 接收的交流电转换为直流电输出到所述直流母线, 将所述直流母线 203发送的直流电转换为交流电输出到所述公共电网 30;
优选的, 还包括:
所述公共电网 30通过并网开关与所述第一双向变流器 201相连。
这里设置并网开关可以在分频器出现故障或者需要维护的情况下断开并 网开关, 由此可以安全有效的对变频器进行后续维修操作。 而且即使变频器 没有出现问题, 也可以在没有与公共电网连接的情况下向连接在变频器上的 电机负载进行供电。 所述逆变器 202与所述电机负载 40相连, 用于将所述直流母线 203发送 的直流电转换为交流电输出到所述电机负载 40;
需要说明的是, 逆变器 202在这里优选的采用 DC/AC逆变器, 将变频器 中的直流电转换为交流电输出到电机负载中去。
所述公共电网 30 , 用于传输交流电;
所述电机负载 40 , 用于才艮据接收的所述逆变器 202发送的交流电进行工 作。
电机负载主要是指各种用电设备。
由本实施例可以看出, 通过将分布式电源、 公共电网和电机负载分别与 变频器进行连接, 以使得电机负载即使在公共电网无法使用的情况下, 也可 以接收到分布式电源通过变频器供电下正常工作。 实施例二
在实施例一的基础上, 本实施例将对如何将储能单元连接到变频器上, 以及对整个技术方案带来的作用效果进行进一步的描述, 请参阅图 6, 其为 本发明一种多能源供电电机驱动系统的另一个系统结构示意图, 包括储能单 元 60 :
所述储能单元 50 包括存储元件 501 和连接开关 502, 所述存储元件 501 通过所述连接开关 502与所述变频器 20的直流母线 203相连, 用于存储所述 直流母线 203上的直流电。
这里的存储元件 501 可采用蓄电池、 超級电容, 或者是二者相结合的复 合储能系统。 而且当存储元件 501 发生故障或需要检修时, 可以直接断开连 接开关 502将储能单元从系统中切除, 不会影响分布式电源供电系统的正常 工作。
优选的, 前述图 6所示的系统中还包括所述储能单元 50还包括第二双向 变流器 503, 如图 7所示:
所述第二双向变流器 503 连接在所述存储元件 501 与所述连接开关 502 之间,用于将从所述直流母线 203接收的直流电转换为符合所述存储元件 601 规格的直流电, 将从所述存储元件 501 接收的直流电转换为符合所述直流母 线 203规格的直流电。
第二双向变流器在这里优选的采用 DC/DC双向变流器。
由本实施例可以看出, 一方面, 通过将分布式电源、 公共电网和电机负 载分别与变频器进行连接, 以使得电机负载即使在公共电网无法使用的情况 下, 也可以接收到分布式电源通过变频器供电下正常工作。
另一方面, 将储能单元连接到变频器的直流母线上, 当公共电网和分布 式电源都无法使用的情况下, 储能单元还可以通过变频器向电机负载供电, 进一步的提高了系统的适应能力。
需要说明的是, 本领域普通技术人员可以理解实现上述实施例方法中的 全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的 程序可存储于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述 各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储 记忆体 ( Read-Only Memory , ROM ) 或随机存储记忆体 ( Random Access Memory, RAM) 等。
以上对本发明所提供的一种多能源供电电机驱动系统进行了详细介绍, 例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域 的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上均会有 改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种多能源供电电机驱动系统, 其特征在于, 包括分布式电源、 变频 器、 公共电网和电机负载:
所述分布式电源与所述变频器的直流母线相连, 用于采集并向所述变频 器发送直流电;
所述变频器包括第一双向变流器、 逆变器和直流母线, 所述第一双向变 流器和所述逆变器通过所述直流母线相连;
其中, 所述第一双向变流器与所述公共电网相连, 用于将从公共电网接 收的交流电转换为直流电输出到所述直流母线, 将所述直流母线发送的直流 电转换为交流电输出到所述公共电网;
所述逆变器与所述电机负载相连, 用于将所述直流母线发送的直流电转 换为交流电输出到所述电机负载;
所述公共电网, 用于传输交流电;
所述电机负载, 用于才艮据接收的所述逆变器发送的交流电进行工作。
2、 根据权利要求 1所述的系统, 其特征在于, 还包括储能单元: 所述储能单元包括存储元件和连接开关, 所述存储元件通过所述连接开 关与所述变频器的直流母线相连, 用于存储所述直流母线上的直流电。
3、 才艮据权利要求 2所述的系统, 其特征在于, 所述储能单元还包括第二 双向变流器:
所述第二双向变流器连接在所述存储元件与所述连接开关之间, 用于将 从所述直流母线接收的直流电转换为符合所述存储元件规格的直流电, 将从 所述存储元件接收的直流电转换为符合所述直流母线规格的直流电。
4、 根据权利要求 1所述的系统, 其特征在于, 还包括:
所述公共电网通过并网开关与所述第一双向变流器相连。
5、 根据权利要求 1所述的系统, 其特征在于,
所述分布式电源包括太阳能光伏发电、 燃料电池发电和风能发电中的任 意一种或多种的组合。
6、 才艮据权利要求 5所述的系统, 其特征在于, 当所述分布式电源包括太 阳能光伏发电时, 还包括第一变流器: 所述分布式电源通过第一变流器与所述直流母线相连, 所述第一变流器 用于将所述太阳能光伏发电输出的直流电转换为符合所述直流母线规格的直 流电。
7、 才艮据权利要求 5所述的系统, 其特征在于, 当所述分布式电源包括燃 料电池发电时, 还包括第二变流器:
所述分布式电源通过第二变流器与所述直流母线相连, 所述第二变流器 用于将所述燃料电池发电输出的直流电转换为符合所述直流母线规格的直流 电。
8、 才艮据权利要求 5所述的系统, 其特征在于, 当所述分布式电源包括风 能发电时, 还包括第三变流器:
所述分布式电源通过第三变流器与所述直流母线相连, 所述第三变流器 用于将所述风能发电输出的交流电转换为符合所述直流母线规格的直流电。
9、 根据权利要求 6至 8任意一项所述的系统, 其特征在于, 所述分布式 电源通过连接开关与所述直流母线相连。
PCT/CN2013/089542 2013-09-10 2013-12-16 一种多能源供电电机驱动系统 WO2015035727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13893445.0A EP3046201A4 (en) 2013-09-10 2013-12-16 Driving system for multi-energy power supply motor
US14/917,432 US20160226424A1 (en) 2013-09-10 2013-12-16 Driving system for multi-energy power supply motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310409264.8 2013-09-10
CN2013104092648A CN103414215A (zh) 2013-09-10 2013-09-10 一种分布式电源供电系统

Publications (1)

Publication Number Publication Date
WO2015035727A1 true WO2015035727A1 (zh) 2015-03-19

Family

ID=49607207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089542 WO2015035727A1 (zh) 2013-09-10 2013-12-16 一种多能源供电电机驱动系统

Country Status (4)

Country Link
US (1) US20160226424A1 (zh)
EP (1) EP3046201A4 (zh)
CN (2) CN103414215A (zh)
WO (1) WO2015035727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712264A (zh) * 2016-12-01 2017-05-24 国网山东省电力公司青岛供电公司 分布式电源系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414215A (zh) * 2013-09-10 2013-11-27 南车株洲电力机车研究所有限公司 一种分布式电源供电系统
CN104090156A (zh) * 2014-06-22 2014-10-08 国家电网公司 分布式电源系统在线监测方法
GB201513549D0 (en) * 2015-07-31 2015-09-16 Siemens Ag Inverter
CN107492946A (zh) * 2016-06-12 2017-12-19 周锡卫 一种双向可控的不间断供电系统
SE1651282A1 (sv) * 2016-09-29 2018-03-30 Brokk Ab System och förfarande vid en elektrisk motor som driver en hydraulpump i en rivnings- och demoleringsrobot
WO2019094750A1 (en) * 2017-11-09 2019-05-16 Wisys Technology Foundation, Inc. Micro-grid energy management system
CN109193698B (zh) * 2018-09-27 2021-05-04 河北工业大学 基于超级电容和直流母线电容实现风电场一次调频的方法
IT202000011923A1 (it) * 2020-05-21 2021-11-21 Danieli Automation Spa Apparato e metodo di alimentazione elettrica in un impianto industriale
CN113852318B (zh) * 2021-09-08 2023-11-21 西安陕鼓动力股份有限公司 新能源发电直驱系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005817A (zh) * 2010-09-25 2011-04-06 中国农业大学 基于微电网的不间断电源装置及其调度控制方法
CN202586493U (zh) * 2011-09-25 2012-12-05 国网电力科学研究院 一种微电网能量管理系统
CN202997587U (zh) * 2012-11-23 2013-06-12 东营光伏太阳能有限公司 智能微网分布式电源
CN103414215A (zh) * 2013-09-10 2013-11-27 南车株洲电力机车研究所有限公司 一种分布式电源供电系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0419255A (pt) * 2004-12-28 2007-12-18 Vestas Wind Sys As método de controlar uma turbina eólica, sistema de controle, e turbina eólica
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US8232676B2 (en) * 2008-05-02 2012-07-31 Bloom Energy Corporation Uninterruptible fuel cell system
US9093862B2 (en) * 2009-01-16 2015-07-28 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
US9543884B2 (en) * 2009-06-10 2017-01-10 Lg Electronics Inc. Motor control device of air conditioner using distributed power supply
JP2011015501A (ja) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd 配電システム
CA2708001A1 (en) * 2009-07-13 2011-01-13 Lineage Power Corporation System and method for combining the outputs of multiple, disparate types of power sources
KR101691809B1 (ko) * 2009-08-04 2017-01-09 엘지전자 주식회사 분산전원을 이용한 전동기 구동장치 및 분산전원 시스템
EP2587623B1 (en) * 2010-06-22 2016-06-29 Sharp Kabushiki Kaisha Dc power distribution system
CN102074952B (zh) * 2010-12-03 2013-02-27 中国科学院广州能源研究所 一种独立微电网系统
CN201956701U (zh) * 2011-03-12 2011-08-31 云南电力试验研究院(集团)有限公司 一种单户型交直流混合微网
CN102157978B (zh) * 2011-04-14 2013-01-23 天津大学 一种风光柴储孤立微网系统的控制方法
CN102882223B (zh) * 2011-07-11 2016-09-28 陈巍 水风光和生物质多能集成互补发电方法及装置
CN202737466U (zh) * 2012-04-27 2013-02-13 湖北省电力公司电力试验研究院 一种基于终端用户的分级微电网组网装置
CN102664415A (zh) * 2012-04-27 2012-09-12 湖北省电力公司电力试验研究院 基于终端用户的分级微电网组网系统
CN202586339U (zh) * 2012-05-18 2012-12-05 姚俊涛 一种直流微电网
CN202817753U (zh) * 2012-06-13 2013-03-20 中国东方电气集团有限公司 基于综合应用研究的微网系统结构
CN102705944B (zh) * 2012-06-28 2014-11-19 南车株洲电力机车研究所有限公司 一种太阳能变频空调系统
CN202957612U (zh) * 2012-07-25 2013-05-29 沈阳融华新能源电气有限公司 含风光储的智能微网及其控制系统
CN102931653B (zh) * 2012-11-02 2014-12-03 浙江工业大学 一种风光直流微电网的综合协调控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005817A (zh) * 2010-09-25 2011-04-06 中国农业大学 基于微电网的不间断电源装置及其调度控制方法
CN202586493U (zh) * 2011-09-25 2012-12-05 国网电力科学研究院 一种微电网能量管理系统
CN202997587U (zh) * 2012-11-23 2013-06-12 东营光伏太阳能有限公司 智能微网分布式电源
CN103414215A (zh) * 2013-09-10 2013-11-27 南车株洲电力机车研究所有限公司 一种分布式电源供电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046201A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712264A (zh) * 2016-12-01 2017-05-24 国网山东省电力公司青岛供电公司 分布式电源系统

Also Published As

Publication number Publication date
EP3046201A4 (en) 2017-07-19
CN105932716A (zh) 2016-09-07
CN103414215A (zh) 2013-11-27
US20160226424A1 (en) 2016-08-04
EP3046201A1 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2015035727A1 (zh) 一种多能源供电电机驱动系统
CN103178553B (zh) 一种家用混合供电系统
CN204243874U (zh) 一种数据中心用高压直流电源系统
US9306471B2 (en) Micro inverter of solar power system and method of operating the same
CN105515167A (zh) 一种不间断电源ups装置及其供电方法
TWI451661B (zh) 交流太陽能模組及電能調度方法
WO2017076192A1 (zh) 家庭纳网系统和社区级微电网系统
WO2017063547A1 (zh) 能源网关、家用电器、直流微电网系统及其能源管理方法
TW201803241A (zh) 分散模組式併網轉換裝置及其控制方法
CN203416041U (zh) 一种交直流双电源配电箱
JP2012222972A (ja) 無停電電源システム
WO2018126551A1 (zh) 光伏阵列的最大功率点跟踪控制系统及光伏空调系统
CN205646845U (zh) 数据中心供电系统
CN203151120U (zh) 一种家用混合供电系统
CN202888860U (zh) 离并两用光伏逆变器
CN203481909U (zh) 阳光发电装置
JP5931346B2 (ja) 無停電電源システム
CN104767468A (zh) 一种太阳能服务器控制系统和方法
CN202651815U (zh) 多重备援太阳能供电系统
CN103812208A (zh) 光伏电源与电网切换的实现装置
Ramprabu et al. Energy Management System based on Interleaved Landsman Converter using Hybrid Energy Sources
CN203629019U (zh) 一种混合电力热水器
CN103138297A (zh) 一种太阳能聚光发电的监测系统
CN114123292A (zh) 一种光伏并网逆变器及其控制方法、光伏制氢系统
CN102723731B (zh) 单向交流并网发电系统及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14917432

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013893445

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893445

Country of ref document: EP