Nothing Special   »   [go: up one dir, main page]

WO2015033867A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2015033867A1
WO2015033867A1 PCT/JP2014/072721 JP2014072721W WO2015033867A1 WO 2015033867 A1 WO2015033867 A1 WO 2015033867A1 JP 2014072721 W JP2014072721 W JP 2014072721W WO 2015033867 A1 WO2015033867 A1 WO 2015033867A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
sealing
temporary fixing
semiconductor chip
sealing sheet
Prior art date
Application number
PCT/JP2014/072721
Other languages
French (fr)
Japanese (ja)
Inventor
浩介 盛田
石坂 剛
豊田 英志
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015033867A1 publication Critical patent/WO2015033867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • the chip when the chip is embedded in the sealing resin, the chip may move from a position before being embedded due to the flow of the resin. Therefore, when the wiring (redistribution layer) is formed, the electrode position of the chip and the conductor portion of the redistribution layer do not correspond well, and connection failure may occur.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method of manufacturing a semiconductor device capable of suppressing the movement of a chip from a position before embedding due to resin flow. is there.
  • the present invention is a method of manufacturing a semiconductor device, A temporary fixing sheet, a semiconductor chip temporarily fixed on the temporary fixing sheet, and a temporary fixing region where the semiconductor chip is temporarily fixed protruded above the temporary fixing sheet surface.
  • Step A for preparing a laminate having a wall portion
  • Step B for preparing a sealing sheet having a shape that fits in a sealing region surrounded by the wall portion in a plan view
  • the temporary fixing sheet, the semiconductor chip temporarily fixed on the temporary fixing sheet, and the temporary fixing region where the semiconductor chip is temporarily fixed are surrounded.
  • a laminate having a wall portion protruding upward from the temporarily fixing sheet surface is prepared (step A).
  • region enclosed by the said wall part is prepared (process B).
  • the semiconductor chip is embedded in the sealing sheet in the sealing region to form a sealing body in which the semiconductor chip is embedded in the sealing sheet (step C).
  • the laminate has a wall portion protruding above the temporarily fixing sheet surface, when the semiconductor chip is embedded in the sealing sheet in step C, the resin constituting the sealing sheet by the wall portion is in the planar direction. It can suppress flowing. As a result, it is possible to prevent the chip from moving from the position before embedding due to the flow of the resin.
  • the wall portion may be provided on the temporary fixing sheet. Since a wall part should just be provided on the sheet
  • the temporary fixing sheet may be provided on a support, and the wall may be formed integrally with the support.
  • the process of bonding both can be omitted.
  • a groove or a recess may be provided in the wall portion for allowing excess resin during formation of the sealing body to escape.
  • the wall portion when the groove or recess for releasing excess resin at the time of forming the sealing body is provided in the wall portion, when the semiconductor chip is embedded in the sealing sheet, the wall portion may flow. Restrained resin can be released. As a result, it becomes possible to form a sealing body suitably.
  • the present invention it is possible to provide a semiconductor device manufacturing method capable of suppressing the movement of the chip from the position before embedding due to the flow of the resin.
  • (A) is a plane schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment
  • (b) is the front sectional drawing. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this
  • a method for manufacturing a semiconductor device includes: A temporary fixing sheet, a semiconductor chip temporarily fixed on the temporary fixing sheet, and a temporary fixing region where the semiconductor chip is temporarily fixed protruded above the temporary fixing sheet surface.
  • Step A for preparing a laminate having a wall portion;
  • Step B for preparing a sealing sheet having a shape that fits in a sealing region surrounded by the wall portion in a plan view;
  • FIG. 1A is a schematic plan view for explaining a method of manufacturing a semiconductor device according to the present embodiment
  • FIG. 1B is a front sectional view thereof
  • 2 to 8 are front sectional views for explaining the method for manufacturing the semiconductor device according to this embodiment.
  • seat 60 for temporary fixing are prepared (process A).
  • the ring member 63 has a cylindrical shape, and is provided on the temporary fixing sheet 60 so as to surround the temporary fixing region 53a to which the semiconductor chip 53 is temporarily fixed.
  • the ring member 63 corresponds to the wall portion of the present invention.
  • the number of semiconductor chips temporarily fixed to the temporary fixing sheet in the present invention is not particularly limited. . 2 to 8, only two semiconductor chips are shown for convenience of drawing, it is assumed that the number corresponding to FIG. 1 is arranged.
  • the temporary fixing sheet 60 is usually used in a form of being laminated on a support body 61 serving as a strength matrix. As shown in FIG. 1B, the temporary fixing sheet 60 may be attached to the entire surface of the support 61, and is attached only to a part of the support 61, and a part of the support 61 ( For example, the vicinity of the outer periphery) may be exposed.
  • the material of the ring member 63 is not particularly limited, but it is preferable that it can withstand deformation due to heat and pressure during molding of the sealing body 58 (see FIG. 3), and examples thereof include SUS and 42 alloy. be able to. Note that a release agent such as silicone may be applied to the inner wall surface of the ring member 63.
  • grooves 63a from the inner diameter side to the outer shape side are formed at four positions at equal intervals.
  • the groove 63a is a groove for allowing excess resin to escape when the sealing body 58 is formed. Since the groove 63a is formed, in step C, when the semiconductor chip 53 is embedded in the sealing sheet 40 (see FIG. 2), the resin whose flow is suppressed by the ring member 63 can be released. As a result, the sealing body 58 can be suitably formed.
  • the number and shape of the grooves 63a can be set as appropriate.
  • Temporal fixing sheet As the temporary fixing sheet 60, a thermally expandable pressure-sensitive adhesive layer described below can be employed. Moreover, as the sheet 60 for temporary fixing, the thermal peeling sheet which has an imide group and has a structural unit derived from the diamine which has an ether structure in part at least can also be employ
  • the thermal release sheet having an imide group and having a structural unit derived from a diamine having an ether structure at least in part is described in detail in JP 2013-153122 A and the like. Description is omitted.
  • the thermally expandable pressure-sensitive adhesive layer can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent.
  • a polymer component particularly the base polymer
  • an acrylic polymer sometimes referred to as “acrylic polymer A”
  • acrylic polymer A examples include those using (meth) acrylic acid ester as a main monomer component.
  • Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, sec-butyl ester, t-butyl ester, Pentyl ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of an alkyl group such as hexadecyl ester, oct
  • the acrylic polymer A corresponds to other monomer components that can be copolymerized with the (meth) acrylic acid ester, if necessary, for the purpose of modifying cohesive strength, heat resistance, crosslinkability, and the like. Units may be included.
  • monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and carboxyethyl acrylate; acid anhydrides such as maleic anhydride and itaconic anhydride Group-containing monomers; hydroxyl group-containing monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (N-substituted or unsubstituted) amide monomers such as N-butyl (meth) acrylamide, N-
  • (Substituted or unsubstituted) amino group-containing monomers (meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate; N-vinylpyrrolidone, N -Methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N -Monomers having a nitrogen atom-containing ring such as vinylcaprolactam; N-vinylcarboxylic amides; Monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, (meth) acryl
  • the acrylic polymer A can be obtained by polymerizing a single monomer or a mixture of two or more monomers.
  • the polymerization may be performed by any method such as solution polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization), emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (for example, ultraviolet (UV) polymerization). it can.
  • the weight average molecular weight of the acrylic polymer A is not particularly limited, but is preferably 350,000 to 1,000,000, more preferably about 450,000 to 800,000.
  • an external cross-linking agent can be appropriately used for the thermally expandable pressure-sensitive adhesive in order to adjust the adhesive force.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive.
  • the amount of the external crosslinking agent used is generally 20 parts by weight or less (preferably 0.1 to 10 parts by weight) with respect to 100 parts by weight of the base polymer.
  • the heat-expandable pressure-sensitive adhesive layer contains a foaming agent for imparting heat-expandability as described above. Therefore, with the sealing body 58 formed on the thermally expandable pressure-sensitive adhesive layer as the temporary fixing sheet 60 (see FIG. 4), the temporary fixing sheet 60 is at least partially heated at any time, The foaming agent contained in the heated temporary fixing sheet 60 is expanded and / or expanded, so that the temporary fixing sheet 60 is at least partially expanded, and at least a part of the temporary fixing sheet 60 is obtained.
  • the adhesive surface (interface with the sealing body 58) corresponding to the expanded portion is deformed into an irregular shape due to the expansion, and the adhesion area between the temporary fixing sheet 60 and the sealing body 58 is reduced. Thereby, the adhesive force between both reduces and the sealing body 58 can be peeled from the sheet
  • the foaming agent used in the thermally expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected from known foaming agents.
  • a foaming agent can be used individually or in combination of 2 or more types.
  • thermally expandable microspheres can be suitably used.
  • the heat-expandable microsphere is not particularly limited, and can be appropriately selected from known heat-expandable microspheres (such as various inorganic heat-expandable microspheres and organic heat-expandable microspheres).
  • a microencapsulated foaming agent can be suitably used from the viewpoint of easy mixing operation.
  • thermally expandable microspheres include microspheres in which substances such as isobutane, propane, and pentane that are easily gasified and expanded by heating are encapsulated in an elastic shell.
  • the shell is often formed of a hot-melt material or a material that is destroyed by thermal expansion.
  • Examples of the substance forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Thermally expandable microspheres can be produced by a conventional method such as a coacervation method or an interfacial polymerization method.
  • thermally expandable microspheres include, for example, a series of “Matsumoto Microsphere F30” and “Matsumoto Microsphere F301D” (trade names “Matsumoto Microsphere F30”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.).
  • Commercially available products such as “051DU”, “053DU”, “551DU”, “551-20DU”, and “551-80DU” can be used.
  • the particle size (average particle diameter) of the thermally expandable microspheres can be appropriately selected according to the thickness of the thermally expandable pressure-sensitive adhesive layer. .
  • the average particle diameter of the heat-expandable microspheres can be selected from a range of, for example, 100 ⁇ m or less (preferably 80 ⁇ m or less, more preferably 1 ⁇ m to 50 ⁇ m, particularly 1 ⁇ m to 30 ⁇ m). Note that the adjustment of the particle size of the thermally expandable microspheres may be performed in the process of generating the thermally expandable microspheres, or may be performed by means such as classification after the generation. It is preferable that the thermally expandable microspheres have the same particle size.
  • a foaming agent other than the thermally expandable microsphere can also be used.
  • various foaming agents such as various inorganic foaming agents and organic foaming agents can be appropriately selected and used.
  • the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.
  • organic foaming agents include, for example, water; chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azobisisobutyronitrile, azodicarbonamide, and barium azodi.
  • Azo compounds such as carboxylate; hydrazine compounds such as p-toluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p- Semicarbazide compounds such as toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosope Data methylene terrorism lamin, N, N'-dimethyl -N, N'N-nitroso compounds such as dinitrosoterephthalamide, and the like.
  • the volume expansion coefficient is 5 times or more, especially 7 times or more, particularly 10 times or more.
  • a foaming agent having an appropriate strength that does not burst is preferred.
  • the amount of foaming agent can be set as appropriate depending on the expansion ratio of the thermally expandable pressure-sensitive adhesive layer and the ability to lower the adhesive strength, but generally a thermally expandable pressure-sensitive adhesive layer is formed.
  • the amount is, for example, 1 part by weight to 150 parts by weight (preferably 10 parts by weight to 130 parts by weight, more preferably 25 parts by weight to 100 parts by weight) with respect to 100 parts by weight of the base polymer.
  • a foaming agent having a foaming start temperature (thermal expansion start temperature) (T 0 ) in the range of 80 ° C. to 210 ° C. can be suitably used, preferably 90 ° C. to 200 ° C. (more The foaming start temperature is preferably from 95 ° C to 200 ° C, particularly preferably from 100 ° C to 170 ° C.
  • the foaming agent may foam due to heat at the time of producing or using the sealing body, and the handleability and productivity are lowered.
  • the foaming starting temperature (T 0) of the blowing agent corresponding to the foaming starting temperature of the heat-expandable pressure-sensitive adhesive layer (T 0).
  • the foaming agent that is, a method of thermally expanding the thermally expandable pressure-sensitive adhesive layer
  • it can be appropriately selected from known heat foaming methods.
  • the heat-expandable pressure-sensitive adhesive layer has an elastic modulus of 23 ° C. in a form not containing a foaming agent from the viewpoint of a balance between moderate adhesive force before heat treatment and lowering of adhesive force after heat treatment. It is preferably 5 ⁇ 10 4 Pa to 1 ⁇ 10 6 Pa at ⁇ 150 ° C., more preferably 5 ⁇ 10 4 Pa to 8 ⁇ 10 5 Pa, and particularly 5 ⁇ 10 4 Pa to 5 ⁇ 10 5 Pa. It is preferable that When the elastic modulus (temperature: 23 ° C.
  • the thermal expandability may be inferior and the peelability may be deteriorated.
  • the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent is larger than 1 ⁇ 10 6 Pa, the initial adhesiveness may be inferior.
  • the thermally expansible adhesive layer of the form which does not contain a foaming agent is corresponded to the adhesive layer formed with the adhesive (The foaming agent is not contained). Therefore, the elastic modulus of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent can be measured using a pressure-sensitive adhesive (no foaming agent is included).
  • the heat-expandable pressure-sensitive adhesive layer includes a pressure-sensitive adhesive capable of forming a pressure-sensitive adhesive layer having an elastic modulus at 23 ° C. to 150 ° C. of 5 ⁇ 10 4 Pa to 1 ⁇ 10 6 Pa, and a thermal expansion containing a foaming agent. It can be formed with an adhesive.
  • the modulus of elasticity of the thermally expandable pressure-sensitive adhesive layer in the form not containing the foaming agent is the heat-expandable pressure-sensitive adhesive layer in the form in which the foaming agent is not added (that is, the pressure-sensitive adhesive layer by the pressure-sensitive adhesive not containing the foaming agent).
  • a rheometric dynamic viscoelasticity measuring device “ARES” sample thickness: about 1.5 mm, ⁇ 7.9 mm parallel plate jig, in shear mode , Frequency: 1 Hz, rate of temperature increase: 5 ° C./min, strain: 0.1% (23 ° C.), 0.3% (150 ° C.) measured at 23 ° C. and 150 ° C. shear storage elasticity obtained
  • the value of the rate G ′ is assumed.
  • the elastic modulus of the thermally expandable pressure-sensitive adhesive layer can be controlled by adjusting the type of the base polymer of the pressure-sensitive adhesive, the crosslinking agent, the additive, and the like.
  • the thickness of the heat-expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the reduction in adhesive strength, and is, for example, about 5 ⁇ m to 300 ⁇ m (preferably 20 ⁇ m to 150 ⁇ m). However, when heat-expandable microspheres are used as the foaming agent, the thickness of the heat-expandable pressure-sensitive adhesive layer is preferably thicker than the maximum particle size of the heat-expandable microspheres contained. When the thickness of the heat-expandable pressure-sensitive adhesive layer is too thin, the surface smoothness is impaired by the unevenness of the heat-expandable microspheres, and the adhesiveness before heating (unfoamed state) is lowered.
  • the degree of deformation of the heat-expandable pressure-sensitive adhesive layer by heat treatment is small, and the adhesive force is not easily lowered.
  • the thickness of the heat-expandable pressure-sensitive adhesive layer is too thick, cohesive failure is likely to occur in the heat-expandable pressure-sensitive adhesive layer after expansion or foaming by heat treatment, and adhesive residue may be generated in the sealing body 58. is there.
  • the thermally expandable pressure-sensitive adhesive layer may be either a single layer or multiple layers.
  • the heat-expandable pressure-sensitive adhesive layer has various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
  • additives for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
  • the support 61 is a thin plate member that serves as a strength matrix of the temporary fixing sheet 60.
  • the material of the support 61 may be appropriately selected in consideration of handling properties, heat resistance, and the like.
  • a metal material such as SUS
  • a plastic material such as polyimide, polyamideimide, polyether ether ketone, and polyether sulfone, glass
  • a silicon wafer or the like can be used.
  • a SUS plate is preferable from the viewpoints of heat resistance, strength, reusability, and the like.
  • the thickness of the support 61 can be appropriately selected in consideration of the intended strength and handleability, and is preferably 100 to 5000 ⁇ m, more preferably 300 to 2000 ⁇ m.
  • the temporarily fixing sheet 60 is obtained by forming the temporarily fixing sheet 60 on the support 61.
  • the heat-expandable pressure-sensitive adhesive layer includes, for example, a pressure-sensitive adhesive, a foaming agent (such as heat-expandable microspheres), a solvent, and the like as necessary. It can be formed by using a conventional method of forming a sheet-like layer by mixing with other additives.
  • the heat-expandable pressure-sensitive adhesive layer may be formed by a method of applying the mixture on a release paper or the like to form a heat-expandable pressure-sensitive adhesive layer and transferring (transferring) the mixture onto the support 61. it can.
  • the thermally expandable pressure-sensitive adhesive layer can be thermally expanded by heating.
  • an appropriate heating means such as a hot plate, a hot air dryer, a near infrared lamp, an air dryer or the like can be used.
  • the heating temperature during the heat treatment may be equal to or higher than the foaming start temperature (thermal expansion start temperature) of the foaming agent (thermally expansible microspheres, etc.) in the heat-expandable pressure-sensitive adhesive layer.
  • Typical heat treatment conditions are a temperature of 100 ° C. to 250 ° C., and a time of 1 second to 90 seconds (hot plate or the like) or 5 minutes to 15 minutes (hot air dryer or the like). Note that the heat treatment can be performed at an appropriate stage depending on the purpose of use. In some cases, an infrared lamp or heated water can be used as the heat source during the heat treatment.
  • an intermediate layer may be provided between the temporary fixing sheet 60 and the support 61 for the purpose of improving the adhesion and improving the peelability after heating (not shown).
  • a rubbery organic elastic intermediate layer is provided as the intermediate layer.
  • the rubbery organic elastic intermediate layer can be interposed on one side or both sides of the support 61.
  • the rubbery organic elastic intermediate layer is preferably formed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity with a D-type Sure D-type hardness of 50 or less, particularly 40 or less based on ASTM D-2240. Even if it is essentially a hard polymer such as polyvinyl chloride, rubber elasticity can be manifested in combination with compounding agents such as plasticizers and softeners. Such a composition can also be used as a constituent material of the rubbery organic elastic intermediate layer.
  • the rubber-like organic elastic intermediate layer is, for example, a method (coating method) in which a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate, A method in which a film made of a rubbery organic elastic layer forming material or a laminated film in which a layer made of the rubbery organic elastic layer forming material is previously formed on one or more thermally expandable pressure-sensitive adhesive layers is bonded to a substrate (dry Laminating method), and a forming method such as a method of co-extruding a resin composition containing a constituent material of a base material and a resin composition containing the rubber-like organic elastic layer forming material (co-extrusion method).
  • a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate
  • the rubbery organic elastic intermediate layer may be formed of a sticky substance mainly composed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity, and may be a foam film or the like mainly composed of such a component. It may be formed.
  • Foaming is a conventional method, for example, a method using mechanical stirring, a method using a reaction product gas, a method using a foaming agent, a method for removing soluble substances, a method using a spray, a method for forming a syntactic foam, It can be performed by a sintering method or the like.
  • the thickness of the intermediate layer such as the rubbery organic elastic intermediate layer is, for example, about 5 ⁇ m to 300 ⁇ m, preferably about 20 ⁇ m to 150 ⁇ m.
  • the intermediate layer is, for example, a rubber-like organic elastic intermediate layer, if the thickness of the rubber-like organic elastic intermediate layer is too thin, it is not possible to form a three-dimensional structural change after heating and foaming. Sexuality may worsen.
  • the intermediate layer such as the rubbery organic elastic intermediate layer may be a single layer or may be composed of two or more layers.
  • various additives for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, and the like, as long as the effect of the temporary fixing sheet is not impaired.
  • Antioxidants, surfactants, crosslinking agents, etc. may be included.
  • a plurality of semiconductor chips 53 are arranged on the temporary fixing sheet 60 so that the circuit forming surface 53a faces the temporary fixing sheet 60 and temporarily fixed (FIG. 1A and FIG. 1 (b)).
  • a known device such as a flip chip bonder or a die bonder can be used for temporarily fixing the semiconductor chip 53.
  • the layout and number of semiconductor chips 53 can be set as appropriate according to the shape and size of the temporary fixing sheet 60, the number of target packages produced, and the like. They can be arranged in a matrix.
  • the ring member 63 is pasted on the temporary fixing sheet 60.
  • the semiconductor chip 53 may be temporarily fixed on the temporary fixing sheet 60 first, and then the ring member 63 may be pasted.
  • the ring member 63 is pasted on the temporary fixing sheet 60 first.
  • the semiconductor chip 53 may be temporarily fixed.
  • an example of the laminate preparation process has been shown.
  • a sealing sheet 40 is prepared (step B).
  • the sealing sheet 40 may be prepared in a state of being laminated on a release liner 41 such as a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • the sealing sheet 40 has a shape that fits in a sealing region 63b (see FIG. 1A) surrounded by the ring member 63 in a plan view. Specifically, a shape that is the same as or slightly smaller than the inner diameter of the ring member 63 is preferable. Since the shape in plan view is a shape that fits in the sealing region 63 b surrounded by the ring member 63, the semiconductor chip 53 is embedded in a state where the sealing sheet 40 is contained in the ring member 63. . As a result, it is possible to suppress the resin constituting the sealing sheet 40 from flowing in the planar direction by the ring member 63.
  • the constituent material of the sealing sheet 40 includes an epoxy resin and a phenol resin as a curing agent. Thereby, favorable thermosetting is obtained.
  • the epoxy resin is not particularly limited.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy equivalent is 150 to 250 and the softening point or the melting point is 50 to 130 ° C., solid at room temperature. From the viewpoint, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable.
  • the phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin.
  • a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used.
  • These phenolic resins may be used alone or in combination of two or more.
  • phenol resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and phenol phenol is particularly preferable from the viewpoint of high curing reactivity.
  • a novolac resin can be suitably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
  • the blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
  • the total content of the epoxy resin and the phenol resin in the sealing sheet 40 is preferably 2.5% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to the semiconductor chip 53 can be obtained satisfactorily when it is 2.5% by weight or more.
  • the total content of the epoxy resin and the phenol resin in the sealing sheet 40 is preferably 20% by weight or less, and more preferably 10% by weight or less. Hygroscopicity can be reduced as it is 20 weight% or less.
  • the sealing sheet 40 preferably contains a thermoplastic resin. Thereby, the handleability at the time of non-hardening and the low stress property of hardened
  • thermoplastic resin examples include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Plastic polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluororesin, styrene-isobutylene-styrene block copolymer, etc. Is mentioned. These thermoplastic resins can be used alone or in combination of two or more. Of these, a styrene-isobutylene-styrene block copolymer is preferable from the viewpoint of low stress and low water absorption.
  • the content of the thermoplastic resin in the sealing sheet 40 is preferably 1.5% by weight or more, and more preferably 2.0% by weight or more. A softness
  • the content of the thermoplastic resin in the sealing sheet 40 is preferably 6% by weight or less, and more preferably 4% by weight or less. Adhesiveness with the semiconductor chip 53 is favorable as it is 4 weight% or less.
  • the sealing sheet 40 preferably contains an inorganic filler.
  • the inorganic filler is not particularly limited, and various conventionally known fillers can be used.
  • quartz glass, talc, silica such as fused silica and crystalline silica
  • alumina aluminum nitride
  • nitriding Examples thereof include silicon and boron nitride powders. These may be used alone or in combination of two or more. Among these, silica and alumina are preferable, and silica is more preferable because the linear expansion coefficient can be satisfactorily reduced.
  • silica powder is preferable, and fused silica powder is more preferable.
  • fused silica powder examples include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, spherical fused silica powder is preferable. Among these, those having an average particle diameter in the range of 10 to 30 ⁇ m are preferable, and those having a mean particle diameter in the range of 15 to 25 ⁇ m are more preferable.
  • the average particle diameter can be derived, for example, by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the content of the inorganic filler in the sealing sheet 40 is preferably 75 to 95% by weight, and more preferably 78 to 95% by weight with respect to the entire sealing sheet 40.
  • the thermal expansion coefficient can be suppressed to be low, so that mechanical breakdown due to thermal shock can be suppressed.
  • the content of the inorganic filler is 95% by weight or less with respect to the whole sealing sheet 40, flexibility, fluidity, and adhesiveness are further improved.
  • the sealing sheet 40 includes a curing accelerator.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate
  • 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • 2-phenyl-4,5-dihydroxymethylimidazole is preferred because the curing reaction does not proceed rapidly even when the temperature during kneading increases, and the sealing sheet 40 can be satisfactorily produced.
  • the content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
  • the sealing sheet 40 contains a flame retardant component. This can reduce the expansion of combustion when ignition occurs due to component short-circuiting or heat generation.
  • a flame retardant composition for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxides; phosphazene flame retardants, etc. should be used. Can do.
  • the content of the phosphorus element contained in the phosphazene flame retardant is preferably 12% by weight or more.
  • the content of the flame retardant component in the sealing sheet 40 is preferably 10% by weight or more, and more preferably 15% by weight or more in the total organic components (excluding inorganic fillers). A flame retardance is favorably acquired as it is 10 weight% or more.
  • the content of the thermoplastic resin in the sealing sheet 40 is preferably 30% by weight or less, and more preferably 25% by weight or less. When the content is 30% by weight or less, there is a tendency that there is little decrease in physical properties of the cured product (specifically, physical properties such as glass transition temperature and high temperature resin strength).
  • the sealing sheet 40 preferably contains a silane coupling agent.
  • the silane coupling agent is not particularly limited, and examples thereof include 3-glycidoxypropyltrimethoxysilane.
  • the content of the silane coupling agent in the sealing sheet 40 is preferably 0.1 to 3% by weight. When the content is 0.1% by weight or more, sufficient strength of the cured product can be obtained and the water absorption rate can be lowered. If it is 3% by weight or less, the outgas amount can be lowered.
  • the sealing sheet 40 is preferably colored. Thereby, excellent marking properties and appearance can be exhibited, and a semiconductor device having an added-value appearance can be obtained. Since the colored sealing sheet 40 has excellent marking properties, it can be marked to give various information such as character information and graphic information. In particular, by controlling the coloring color, it is possible to visually recognize information (character information, graphic information, etc.) given by marking with excellent visibility. Furthermore, the sealing sheet 40 can be color-coded for each product. When the sealing sheet 40 is colored (when it is colorless and not transparent), it is not particularly limited as a color exhibited by coloring, but is preferably a dark color such as black, blue, red, etc. It is suitable that it is black.
  • the dark basically, L * a * b * L * is defined by a color system, 60 or less (0 to 60) [preferably 50 or less (0 to 50), More preferably, it means a dark color of 40 or less (0 to 40)].
  • L * a * b * L * defined by the color system is 35 or less (0 to 35) [preferably 30 or less (0 to 30), more preferably 25 This means a blackish color which is (0 to 25) below.
  • a * and b * defined in the L * a * b * color system can be appropriately selected according to the value of L * .
  • a * and b * for example, both are preferably ⁇ 10 to 10, more preferably ⁇ 5 to 5, particularly in the range of ⁇ 3 to 3 (in particular, 0 or almost 0). Is preferred.
  • L * , a * , and b * defined in the L * a * b * color system are color difference meters (trade name “CR-200” manufactured by Minolta Co .; color difference meter). It is calculated
  • the L * a * b * color system is a color space recommended by the International Commission on Illumination (CIE) in 1976, and is a color space called the CIE 1976 (L * a * b * ) color system. It means that.
  • the L * a * b * color system is defined in JISZ 8729 in the Japanese Industrial Standard.
  • a coloring material (coloring agent) can be used according to the target color.
  • the sealing sheet of the present invention may have a single layer structure or may be composed of a plurality of layers, but at least a colorant is provided on the side opposite to the surface facing the temporary fixing sheet. It is preferable that it is added.
  • the entire encapsulating sheet may contain a colorant uniformly, and the surface opposite to the surface facing the temporarily fixing sheet is colored.
  • the coloring agent may be contained in a mode in which the agent is unevenly distributed.
  • seat for sealing of this invention is 1 layer structure. This is because if the colorant is added to the surface opposite to the surface facing the temporarily fixing sheet in the sealing sheet, the visibility of the laser-marked portion can be improved.
  • a color material various dark color materials such as a black color material, a blue color material, and a red color material can be suitably used, and a black color material is particularly suitable.
  • the color material any of a pigment, a dye and the like may be used. Color materials can be used alone or in combination of two or more.
  • the dye any form of dyes such as acid dyes, reactive dyes, direct dyes, disperse dyes, and cationic dyes can be used.
  • the form of the pigment is not particularly limited, and can be appropriately selected from known pigments.
  • the dye when a dye is used as the coloring material, the dye is dissolved or evenly dispersed in the sealing sheet 40, so that the sealing sheet 40 having a uniform or almost uniform coloring density can be easily obtained. Can be manufactured, and marking properties and appearance can be improved.
  • the black color material is not particularly limited, and can be appropriately selected from, for example, inorganic black pigments and black dyes.
  • a black color material a color material mixture in which a cyan color material (blue-green color material), a magenta color material (red purple color material) and a yellow color material (yellow color material) are mixed. It may be.
  • Black color materials can be used alone or in combination of two or more.
  • the black color material can be used in combination with a color material other than black.
  • the black color material for example, carbon black (furnace black, channel black, acetylene black, thermal black, lamp black, etc.), graphite (graphite), copper oxide, manganese dioxide, azo pigment (azomethine) Azo black, etc.), aniline black, perylene black, titanium black, cyanine black, activated carbon, ferrite (nonmagnetic ferrite, magnetic ferrite, etc.), magnetite, chromium oxide, iron oxide, molybdenum disulfide, chromium complex, complex oxide black Examples thereof include dyes and anthraquinone organic black dyes.
  • black color material C.I. I. Solvent Black 3, 7, 22, 27, 29, 34, 43, 70, C.I. I. Direct Black 17, 19, 19, 22, 32, 38, 51, 71, C.I. I. Acid Black 1, 2, 24, 26, 31, 48, 52, 107, 109, 110, 119, 154C.
  • Black dyes such as Disperse Black 1, 3, 10, and 24;
  • Black pigments such as CI Pigment Black 1 and 7 can also be used.
  • Examples of such a black color material include a product name “OilOBlack BY”, a product name “OilBlack BS”, a product name “OilBlackHBB”, a product name “Oil Black803”, a product name “Oil Black860”, and a product name “Oil Black860”.
  • Oil Black 5970 ”, trade name“ Oil Black 5906 ”, trade name“ Oil Black 5905 ”(manufactured by Orient Chemical Co., Ltd.) and the like are commercially available.
  • color materials other than black color materials include cyan color materials, magenta color materials, and yellow color materials.
  • cyan color materials include C.I. I. Solvent Blue 25, 36, 60, 70, 93, 95; I. Cyan dyes such as Acid Blue 6 and 45; I. Pigment Blue 1, 2, 3, 15, 15: 1, 15: 2, 15: 3, 15: 3, 15: 4, 15: 5, 15: 6, 16, 16, 17 17: 1, 18, 22, 25, 56, 60, 63, 65, 66; I. Bat Blue 4; 60, C.I. I. And cyan pigments such as CI Pigment Green 7.
  • magenta dye examples include C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27, 30, 30, 49, 52, 58, 63, 81, 82, 83, 84, the same 100, 109, 111, 121, 122; I. Disper thread 9; I. Solvent Violet 8, 13, 13, 21, and 27; C.I. I. Disperse violet 1; C.I. I. Basic Red 1, 2, 9, 9, 13, 14, 15, 17, 17, 18, 22, 23, 24, 27, 29, 32, 34, the same 35, 36, 37, 38, 39, 40; I. Basic Violet 1, 3, 7, 10, 14, 15, 21, 21, 25, 26, 27, 28 and the like.
  • magenta pigment examples include C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 21, 22, 23, 30, 31, 32, 37, 38, 39, 40, 41, 42, 48: 1, 48: 2, 48: 3, 48: 4, 49, 49: 1, 50, 51, 52, 52: 2, 53: 1, 54, 55, 56, 57: 1, 58, 60, 60: 1, 63, 63: 1, 63: 2, 64, 64: 1, 67, 68, 81, 83, etc.
  • yellow color materials include C.I. I. Solvent Yellow 19, 44, 77, 79, 81, 82, 93, 98, 103, 104, 112, 162 and the like yellow dyes; C.I. I. Pigment Orange 31 and 43; C.I. I.
  • Various color materials such as a cyan color material, a magenta color material, and a yellow color material can be used alone or in combination of two or more.
  • the mixing ratio (or blending ratio) of these color materials is not particularly limited, and each color material. It can be selected as appropriate according to the type and the target color.
  • the light transmittance (visible light transmittance) of visible light (wavelength: 380 nm to 800 nm) in the sealing sheet 40 is not particularly limited, but is preferably in the range of 20% to 0%, for example. Is from 10% to 0%, particularly preferably from 5% to 0%.
  • the visible light transmittance of the sealing sheet 40 is set to 20% or less, the print visibility can be improved. Further, it is possible to prevent an adverse effect on the semiconductor element due to the passage of light.
  • the visible light transmittance (%) of the sealing sheet 40 is such that a sealing sheet 40 having a thickness (average thickness): 10 ⁇ m is prepared, and the sealing sheet 40 (thickness: 10 ⁇ m) is given a trade name.
  • UV-2550 manufactured by Shimadzu Corporation
  • visible light having a wavelength of 380 nm to 800 nm is irradiated with a predetermined intensity.
  • the light intensity of visible light transmitted through the sealing sheet 40 by this irradiation can be measured and calculated by the following formula.
  • Visible light transmittance (%) ((light intensity of visible light after passing through sealing sheet 40) / (initial light intensity of visible light)) ⁇ 100
  • the said calculation method of light transmittance (%) is applicable also to calculation of the light transmittance (%) of the sealing sheet 40 whose thickness is not 10 micrometers.
  • the absorbance A 10 at 10 ⁇ m can be calculated as follows according to Lambert Beer's law.
  • a 10 ⁇ ⁇ L 10 ⁇ C (1) (Where L 10 is the optical path length, ⁇ is the extinction coefficient, and C is the sample concentration) Also, the absorbance A X of a thickness X ([mu] m) can be represented by the following formula (2).
  • a X ⁇ ⁇ L X ⁇ C (2)
  • the absorbance A 20 at a thickness of 20 ⁇ m can be expressed by the following formula (3).
  • the thickness (average thickness) of the sealing sheet when determining the light transmittance (%) of the sealing sheet is 10 ⁇ m.
  • the thickness of the sealing sheet is only sealed. It is the thickness at the time of obtaining the light transmittance (%) of the stop sheet, and does not mean that the sealing sheet in the present invention is 10 ⁇ m.
  • the light transmittance (%) of the sealing sheet 40 is controlled by the type and content of the resin component, the type and content of the colorant (pigment, dye, etc.), the type and content of the filler, and the like. be able to.
  • the thickness of the sealing sheet 40 is not particularly limited, but is, for example, 50 ⁇ m to 2000 ⁇ m from the viewpoint of use as a sealing sheet.
  • the area and thickness of the sealing sheet 40 in plan view are such that the height when the sealing body 58 is formed (see FIG. 3) is the same as the height of the ring member 63. It is preferable to set. However, since the excess resin can be released by the groove 63a formed in the ring member 63, a slightly larger amount may be used. Thereby, it becomes possible to form the sealing body 58 without generating the location where resin does not reach.
  • the manufacturing method of the sealing sheet 40 is not particularly limited, a method of preparing a kneaded product of the resin composition for forming the sealing sheet 40 and coating the obtained kneaded product, or the obtained kneading A method of plastically processing an object into a sheet is preferable. Thereby, since the sheet
  • a kneaded product is prepared by melt-kneading each component described below with a known kneader such as a mixing roll, a pressure kneader, or an extruder, and the obtained kneaded product is coated or plastically processed into a sheet. Shape.
  • the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 to 150 ° C., and preferably 40 to 140 ° C., more preferably 60 to 120 in consideration of the thermosetting property of the epoxy resin. ° C.
  • the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes.
  • the kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere). Thereby, while being able to deaerate, the penetration
  • the pressure under reduced pressure is preferably 0.1 kg / cm 2 or less, more preferably 0.05 kg / cm 2 or less.
  • the lower limit of the pressure under reduced pressure is not particularly limited, but is, for example, 1 ⁇ 10 ⁇ 4 kg / cm 2 or more.
  • the kneaded material after melt-kneading is preferably applied in a high temperature state without cooling.
  • the coating method is not particularly limited, and examples thereof include a bar coating method, a knife coating method, and a slot die method.
  • the temperature at the time of coating is preferably not less than the softening point of each component described above, and considering the thermosetting property and moldability of the epoxy resin, for example, 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C.
  • the kneaded material after melt-kneading is plastically processed in a high temperature state without cooling.
  • the plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T-die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendar molding method.
  • the plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
  • the sealing sheet 40 can be obtained by dissolving and dispersing a resin or the like for forming the sealing sheet 40 in an appropriate solvent to adjust the varnish and coating the varnish.
  • Step of arranging sealing sheet and laminate After the step of preparing the sealing sheet, as shown in FIG. 2, the stacked body 50 is disposed on the lower heating plate 62 with the surface on which the semiconductor chip 53 is temporarily fixed facing upward.
  • the sealing sheet 40 is disposed on the surface on which the semiconductor chip 53 is temporarily fixed.
  • the sealing sheet 40 is disposed so as to be accommodated in the sealing region 63b surrounded by the ring member 63 in plan view.
  • the laminated body 50 may be first disposed on the lower heating plate 62, and then the sealing sheet 40 may be disposed on the laminated body 50, and the sealing sheet 40 may be disposed on the laminated body 50.
  • a laminate in which the laminate 50 and the sealing sheet 40 are laminated may be disposed on the lower heating plate 62 after being laminated first.
  • Step C The sealing sheet 40 functions as a sealing resin for protecting the semiconductor chip 53 and its accompanying elements from the external environment. Thereby, the sealing body 58 in which the semiconductor chip 53 temporarily fixed on the temporary fixing sheet 60 is embedded in the sealing sheet 40 is obtained. Since the stacked body 50 includes the ring member 63, in this step C, when the semiconductor chip 53 is embedded in the sealing sheet 40, the ring member 63 causes the resin constituting the sealing sheet 40 to flow in the planar direction. Can be suppressed. As a result, it is possible to prevent the chip from moving from the position before embedding due to the flow of the resin.
  • the width in the height direction of the groove 63 a formed in the ring member 63 is larger than the thickness of the release liner 41. Is also preferably large. As a result, it is possible to allow excess resin at the time of forming the sealing body 58 to escape from the groove 63a.
  • the hot press conditions for embedding the semiconductor chip 53 in the sealing sheet 40 are not particularly limited, but the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C., and the pressure is, for example, 0.
  • the pressure is 1 to 10 MPa, preferably 0.5 to 8 MPa, and the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes.
  • the pressure reducing conditions the pressure is, for example, 0.1 to 5 kPa, preferably 0.1 to 100 Pa, and the reduced pressure holding time (the time from the start of pressure reduction to the start of pressing) is, for example, 5 to 600 seconds. Yes, preferably 10 to 300 seconds.
  • the sealing sheet 40 is thermally cured. Specifically, for example, the entire sealing body 58 in which the semiconductor chip 53 temporarily fixed on the temporary fixing sheet 60 is embedded in the sealing sheet 40 is heated.
  • the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher.
  • the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
  • you may pressurize as needed Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more.
  • the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
  • the temporary fixing sheet 60 is thermally expanded to separate the temporary fixing sheet 60 from the sealing body 58 and the ring member 63.
  • a procedure of performing peeling at the interface between the support 61 and the temporary fixing sheet 60 and then performing thermal separation at the interface between the temporary fixing sheet 60 and the sealing body 58 and the ring member 63 is also preferable. Can be adopted.
  • the temporary fixing sheet 60 is heated and thermally expanded to reduce its adhesive force, thereby peeling at the interface between the temporary fixing sheet 60 and the sealing body 58 and the ring member 63. It can be done easily.
  • the conditions in the above-mentioned column “Thermal expansion method for thermally expandable pressure-sensitive adhesive layer” can be preferably employed.
  • the heat-expandable pressure-sensitive adhesive layer has a structure that does not peel off by heating in the thermosetting step but peels off by heating in the heat-expandable pressure-sensitive adhesive layer peeling step.
  • Step of removing ring member the ring member 63 is detached from the sealing body 58.
  • the removal can be performed by applying a force to the sealing body 58 in the thickness direction of the sealing body 58 (the height direction of the ring 63).
  • the sealing sheet 40 of the sealing body 58 is ground to expose the back surface 53 c of the semiconductor chip 53.
  • the method for grinding the sealing sheet 40 is not particularly limited, and examples thereof include a grinding method using a grindstone that rotates at high speed.
  • a rewiring 69 connected to the exposed semiconductor chip 53 is formed on the sealing body 58 (see FIG. 7).
  • a metal seed layer is formed on the exposed semiconductor chip 53 by using a known method such as a vacuum film forming method, and the rewiring is performed by a known method such as a semi-additive method.
  • Wiring 69 can be formed.
  • an insulating layer such as polyimide or PBO may be formed on the rewiring 69 and the sealing body 58.
  • bumping processing for forming bumps 67 on the formed rewiring 69 may be performed (see FIG. 7).
  • the bumping process can be performed by a known method such as a solder ball or solder plating.
  • FIG. 9 is a front cross-sectional view for explaining a method for manufacturing a semiconductor device according to another embodiment.
  • the recessed part 73a may be provided in the internal peripheral side surface of the wall part (The ring member 73 in the example of FIG. 9).
  • the number, location, size, and the like of the recesses 73a can be set as appropriate according to the amount of resin to be released.
  • FIG. 10 is a front cross-sectional view for explaining a method for manufacturing a semiconductor device according to another embodiment.
  • the wall 83 is integrally formed with the support 81 so as to rise upward from the outer peripheral portion of the flat support 81.
  • the wall part in this invention may be integrally formed in the support body. Even when the wall portion is formed integrally with the support body 81, the resin constituting the sealing sheet 40 is prevented from flowing in the planar direction by the wall portion 83, as in the case of using the ring member. Is possible.
  • the present invention is not limited to this example, and the diameter of the upper heating plate in plan view may be smaller than the inner diameter of the wall portion. That is, the upper heating plate may enter the inside of the wall portion.
  • the sealing body can be suitably formed even when the thickness of the sealing sheet is thinner than the height of the wall portion.
  • the wall portion is circular in plan view
  • the wall portion may be rectangular.
  • the shape of the sealing sheet may be appropriately adjusted according to the shape of the wall portion.
  • step A the step B, and the step C need to be performed, and other steps are optional and may or may not be performed.
  • ⁇ Preparation of sealing sheet> The following components were blended with a mixer, melt kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T-die to prepare a sealing sheet A having a thickness of 500 ⁇ m.
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 332.7 parts
  • Phenol resin phenol resin having a biphenylaralkyl skeleton (Maywa) Made by Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.))
  • Curing accelerator Imidazole-based catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW) 11.7 parts
  • Inorganic filler Spherical fused silica powder (manufactured by Denki Kagaku Kogyo, FB-9454) 8800 parts
  • Silane coupling agent Epoxy group-containing silane coupling agent (manufactured
  • a thermal foam tape manufactured by Nitto Denko Corporation, product name: Riva Alpha (product number: No. 3195V), thickness: 100 ⁇ m was prepared.
  • ⁇ Preparation of support> As the support A, a circular material having a diameter of 330 mm and a thickness of 1.5 mm was prepared.
  • ⁇ Ring member> A cylindrical ring member A (material: SUS304) having an inner diameter: 300 mm, an outer diameter: 330 mm, and a height: 0.7 mm was prepared.
  • Example 1 The sealing sheet A was cut into a circle with a diameter of 295 mm. Further, after the temporary fixing sheet A was attached to the support A, it was cut out to the size of the support A. Next, a semiconductor chip (7 mm square, thickness 500 ⁇ m) was temporarily fixed on the temporary fixing sheet A at an interval (space between the end of the chip and the end of the chip) of 4.8 mm. At this time, the distance between the center of the support and the corners of 10 of the semiconductor chips arranged on the outermost periphery was measured using a measuring microscope STM6 (Olympus). Note that 440 semiconductor chips were arranged. Next, the ring member A was affixed. Next, the produced sealing sheet A was placed on a semiconductor chip.
  • a semiconductor chip 7 mm square, thickness 500 ⁇ m
  • Example 1 The same operation as in Example 1 was performed except that the ring member was not attached. When the distance between the center of the support of the molded product and the corner of each semiconductor chip was measured, it was confirmed that all the chips were moved by 30 ⁇ m or more.
  • Sealing sheet 50 Laminated body 53 Semiconductor chip 53a Temporary fixing region 58 Sealing body 59 Semiconductor device 60 Temporary fixing sheet 61, 81 Support member 63, 73 Ring member 63a Groove 63b Sealing region 73a Recessed part 83 Wall

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

A method for manufacturing a semiconductor device, which comprises: a step A for preparing a laminate that has a sheet for temporary fixation, a semiconductor chip that is temporarily fixed on the sheet for temporary fixation, and a wall part that protrudes upward from the surface of the sheet for temporary fixation so as to surround a temporary fixation region in which the semiconductor chip is temporarily fixed; a step B for preparing a sheet for sealing, which has a shape that fits inside a sealing region when viewed in plan, said sealing region being surrounded by the wall part; and a step C for embedding the semiconductor chip into the sheet for sealing within the sealing region and forming a package in which the semiconductor chip is embedded in the sheet for sealing.

Description

半導体装置の製造方法Manufacturing method of semiconductor device
 本発明は、半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device.
 近年、半導体装置の小型化や配線の微細化はますます進む傾向にあり、狭い半導体チップ領域(半導体チップを平面視で透視した場合に、半導体チップと重なり合う領域)の中により多くのI/Oパッドやビアを配さなければならず、同時にピン密度も上昇してきている。さらにBGA(Ball Grid Array)パッケージでは、半導体チップ領域内には多数の端子が形成されており、他の要素を形成するための領域が限られていることから、半導体パッケージ基板上で半導体チップ領域の外側まで端子から配線を引き出す方法がとられている。 In recent years, the miniaturization of semiconductor devices and the miniaturization of wiring have been steadily progressing, and more I / Os in a narrow semiconductor chip region (a region overlapping with a semiconductor chip when the semiconductor chip is seen through in plan view). Pads and vias must be provided, and at the same time the pin density is increasing. Furthermore, in the BGA (Ball Grid Array) package, a large number of terminals are formed in the semiconductor chip area, and the area for forming other elements is limited. The method of pulling out the wiring from the terminal to the outside of the.
 従来、支持体上に形成された感熱性接着剤上に個片化した複数のチップを配列した後、これらのチップを封止樹脂に埋め込んで共通キャリアを形成し、次に、加熱によりチップを埋め込んだ共通キャリアと感熱性接着剤とを剥離し、その後、チップ上に金属再配線を形成する方法が知られている(例えば、特許文献1参照)。チップの封止樹脂への埋め込みは、支持体側、及び、封止樹脂側から加圧されることにより行なわれる。 Conventionally, after arranging a plurality of chips separated on a heat-sensitive adhesive formed on a support, these chips are embedded in a sealing resin to form a common carrier, and then the chips are heated. A method is known in which the embedded common carrier and the heat-sensitive adhesive are peeled off, and then a metal rewiring is formed on the chip (see, for example, Patent Document 1). The chip is embedded in the sealing resin by being pressurized from the support side and the sealing resin side.
米国特許第7,202,107号US Pat. No. 7,202,107
 しかしながら、上述したような方法により半導体装置を製造する場合、チップの封止樹脂への埋め込みの際に、樹脂の流動によりチップが埋め込み前の位置から移動するおそれがある。そのため、配線(再配線層)を形成する際に、チップの電極位置と再配線層の導体部分とがうまく対応せず、接続不良が発生する場合がある。 However, when a semiconductor device is manufactured by the above-described method, when the chip is embedded in the sealing resin, the chip may move from a position before being embedded due to the flow of the resin. Therefore, when the wiring (redistribution layer) is formed, the electrode position of the chip and the conductor portion of the redistribution layer do not correspond well, and connection failure may occur.
 本発明は上述した課題に鑑みてなされたものであり、その目的は、樹脂の流動によりチップが埋め込み前の位置から移動することを抑制することが可能な半導体装置の製造方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method of manufacturing a semiconductor device capable of suppressing the movement of a chip from a position before embedding due to resin flow. is there.
 本願発明者等は、下記の構成を採用することにより、前記の課題を解決できることを見出して本発明を完成させるに至った。 The inventors of the present application have found that the above-mentioned problems can be solved by adopting the following configuration, and have completed the present invention.
 すなわち、本発明は、半導体装置の製造方法であって、
 仮固定用シートと、前記仮固定用シート上に仮固定された半導体チップと、前記半導体チップが仮固定されている仮固定領域を囲むように、前記仮固定用シート面よりも上側に突出した壁部とを有する積層体を準備する工程Aと、
 平面視での形状が、前記壁部で囲まれた封止領域内に収まる形状の封止用シートを準備する工程Bと、
 前記半導体チップを前記封止領域内で前記封止用シートに埋め込み、前記半導体チップが前記封止用シートに埋め込まれた封止体を形成する工程Cと、
を含むことを特徴とする。
That is, the present invention is a method of manufacturing a semiconductor device,
A temporary fixing sheet, a semiconductor chip temporarily fixed on the temporary fixing sheet, and a temporary fixing region where the semiconductor chip is temporarily fixed protruded above the temporary fixing sheet surface. Step A for preparing a laminate having a wall portion;
Step B for preparing a sealing sheet having a shape that fits in a sealing region surrounded by the wall portion in a plan view;
A step C of embedding the semiconductor chip in the sealing sheet in the sealing region, and forming a sealing body in which the semiconductor chip is embedded in the sealing sheet;
It is characterized by including.
 本発明に係る半導体装置の製造方法によれば、仮固定用シートと、前記仮固定用シート上に仮固定された半導体チップと、前記半導体チップが仮固定されている仮固定領域を囲むように、前記仮固定用シート面よりも上側に突出した壁部とを有する積層体を準備する(工程A)。また、平面視での形状が、前記壁部で囲まれた封止領域内に収まる形状の封止用シートを準備する(工程B)。その後、前記半導体チップを前記封止領域内で前記封止用シートに埋め込み、前記半導体チップが前記封止用シートに埋め込まれた封止体を形成する(工程C)。積層体が仮固定用シート面よりも上側に突出した壁部を有するため、工程Cにおいて、半導体チップを封止用シートに埋め込む際、壁部により封止用シートを構成する樹脂が平面方向に流されることを抑制することができる。その結果、樹脂の流動によりチップが埋め込み前の位置から移動することを抑制することができる。 According to the method for manufacturing a semiconductor device according to the present invention, the temporary fixing sheet, the semiconductor chip temporarily fixed on the temporary fixing sheet, and the temporary fixing region where the semiconductor chip is temporarily fixed are surrounded. Then, a laminate having a wall portion protruding upward from the temporarily fixing sheet surface is prepared (step A). Moreover, the sheet | seat for sealing of the shape where the shape in planar view is settled in the sealing area | region enclosed by the said wall part is prepared (process B). Thereafter, the semiconductor chip is embedded in the sealing sheet in the sealing region to form a sealing body in which the semiconductor chip is embedded in the sealing sheet (step C). Since the laminate has a wall portion protruding above the temporarily fixing sheet surface, when the semiconductor chip is embedded in the sealing sheet in step C, the resin constituting the sealing sheet by the wall portion is in the planar direction. It can suppress flowing. As a result, it is possible to prevent the chip from moving from the position before embedding due to the flow of the resin.
 前記構成において、前記壁部は、前記仮固定用シート上に設けられていてもよい。仮固定用シート上に壁部を設ければよいので、容易に前記積層体を準備することができる。 In the above configuration, the wall portion may be provided on the temporary fixing sheet. Since a wall part should just be provided on the sheet | seat for temporary fixing, the said laminated body can be prepared easily.
 前記構成において、前記仮固定用シートは、支持体上に設けられており、前記壁部は、前記支持体に一体的に形成されていてもよい。この場合、壁部が設けられていない支持体と壁部とを別々に用意する場合と比べて、両者を貼り合わせる工程が省略できる。 In the above configuration, the temporary fixing sheet may be provided on a support, and the wall may be formed integrally with the support. In this case, compared with the case where a support body and a wall part which are not provided with a wall part are prepared separately, the process of bonding both can be omitted.
 前記構成において、前記壁部に、前記封止体形成時の余剰樹脂を逃がすための溝又は凹部が設けられていてもよい。前記壁部に、前記封止体形成時の余剰樹脂を逃がすための溝又は凹部が設けられていると、工程Cにおいて、半導体チップを封止用シートに埋め込む際、壁部により流動することが抑制された樹脂を逃がすことができる。その結果、封止体を好適に形成することが可能となる。 In the above-described configuration, a groove or a recess may be provided in the wall portion for allowing excess resin during formation of the sealing body to escape. In the step C, when the groove or recess for releasing excess resin at the time of forming the sealing body is provided in the wall portion, when the semiconductor chip is embedded in the sealing sheet, the wall portion may flow. Restrained resin can be released. As a result, it becomes possible to form a sealing body suitably.
 本発明によれば、樹脂の流動によりチップが埋め込み前の位置から移動することを抑制することが可能な半導体装置の製造方法を提供することができる。 According to the present invention, it is possible to provide a semiconductor device manufacturing method capable of suppressing the movement of the chip from the position before embedding due to the flow of the resin.
(a)は、本実施形態に係る半導体装置の製造方法を説明するための平面模式図であり、(b)は、その正面断面図である。(A) is a plane schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment, (b) is the front sectional drawing. 本実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on this embodiment. 他の実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on other embodiment. 他の実施形態に係る半導体装置の製造方法を説明するための正面断面図である。It is front sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on other embodiment.
 以下、本発明の実施形態について、図面を参照しつつ説明する。ただし、本発明はこれらの実施形態のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited only to these embodiments.
 本発明に係る半導体装置の製造方法は、
 仮固定用シートと、前記仮固定用シート上に仮固定された半導体チップと、前記半導体チップが仮固定されている仮固定領域を囲むように、前記仮固定用シート面よりも上側に突出した壁部とを有する積層体を準備する工程Aと、
 平面視での形状が、前記壁部で囲まれた封止領域内に収まる形状の封止用シートを準備する工程Bと、
 前記半導体チップを前記封止領域内で前記封止用シートに埋め込み、前記半導体チップが前記封止用シートに埋め込まれた封止体を形成する工程Cとを少なくとも含む。
A method for manufacturing a semiconductor device according to the present invention includes:
A temporary fixing sheet, a semiconductor chip temporarily fixed on the temporary fixing sheet, and a temporary fixing region where the semiconductor chip is temporarily fixed protruded above the temporary fixing sheet surface. Step A for preparing a laminate having a wall portion;
Step B for preparing a sealing sheet having a shape that fits in a sealing region surrounded by the wall portion in a plan view;
And at least a step C of embedding the semiconductor chip in the sealing sheet in the sealing region and forming a sealing body in which the semiconductor chip is embedded in the sealing sheet.
 以下では、まず、本発明の壁部が、仮固定用シート上に設けられている場合についての実施形態について説明する。 Hereinafter, first, an embodiment in which the wall portion of the present invention is provided on a temporary fixing sheet will be described.
 図1(a)は、本実施形態に係る半導体装置の製造方法を説明するための平面模式図であり、図1(b)は、その正面断面図である。また、図2~図8は、本実施形態に係る半導体装置の製造方法を説明するための正面断面図である。 FIG. 1A is a schematic plan view for explaining a method of manufacturing a semiconductor device according to the present embodiment, and FIG. 1B is a front sectional view thereof. 2 to 8 are front sectional views for explaining the method for manufacturing the semiconductor device according to this embodiment.
 [積層体準備工程]
 図1(a)及び図1(b)に示すように、本実施形態に係る半導体装置の製造方法では、まず、仮固定用シート60と、仮固定用シート60上に仮固定された半導体チップ53と、仮固定用シート60上に設けられたリング部材63とを有する積層体50を準備する(工程A)。リング部材63は、円筒形状を有しており、半導体チップ53が仮固定されている仮固定領域53aを取り囲むように仮固定用シート60上に設けられている。リング部材63は、本発明の壁部に相当する。本実施形態では、仮固定用シート60上に複数の半導体チップ53が仮固定されている場合について説明するが、本発明において仮固定用シートに仮固定される半導体チップの数は、特に限定されない。なお、図2~図8では、図面の記載の都合上、半導体チップを2つのみ示しているが、図1に対応した数だけ配列されているものとする。
[Laminated body preparation process]
As shown in FIGS. 1A and 1B, in the method for manufacturing a semiconductor device according to this embodiment, first, a temporary fixing sheet 60 and a semiconductor chip temporarily fixed on the temporary fixing sheet 60. 53 and the laminated body 50 which has the ring member 63 provided on the sheet | seat 60 for temporary fixing are prepared (process A). The ring member 63 has a cylindrical shape, and is provided on the temporary fixing sheet 60 so as to surround the temporary fixing region 53a to which the semiconductor chip 53 is temporarily fixed. The ring member 63 corresponds to the wall portion of the present invention. In the present embodiment, a case where a plurality of semiconductor chips 53 are temporarily fixed on the temporary fixing sheet 60 will be described, but the number of semiconductor chips temporarily fixed to the temporary fixing sheet in the present invention is not particularly limited. . 2 to 8, only two semiconductor chips are shown for convenience of drawing, it is assumed that the number corresponding to FIG. 1 is arranged.
 仮固定用シート60は、図1(b)に示すように、通常、強度母体となる支持体61上に積層した形態で使用される。仮固定用シート60は、図1(b)に示すように、支持体61の全面に貼り付けられていてもよく、支持体61の一部にのみ貼り付けられ、支持体61の一部(例えば、外周付近)が露出していてもよい。 As shown in FIG. 1B, the temporary fixing sheet 60 is usually used in a form of being laminated on a support body 61 serving as a strength matrix. As shown in FIG. 1B, the temporary fixing sheet 60 may be attached to the entire surface of the support 61, and is attached only to a part of the support 61, and a part of the support 61 ( For example, the vicinity of the outer periphery) may be exposed.
 (リング部材)
 リング部材63の材質は、特に限定されないが、封止体58(図3参照)の成型時の熱、及び、圧力による変形等に耐え得るものであることが好ましく、SUS、42アロイ等を挙げることができる。なお、リング部材63の内壁面には、シリコーン系などの離型剤が塗布されていてもよい。
(Ring member)
The material of the ring member 63 is not particularly limited, but it is preferable that it can withstand deformation due to heat and pressure during molding of the sealing body 58 (see FIG. 3), and examples thereof include SUS and 42 alloy. be able to. Note that a release agent such as silicone may be applied to the inner wall surface of the ring member 63.
 リング部材63の上面には、等間隔で4箇所に内径側から外形側に向かう溝63aが形成されている。溝63aは、封止体58形成時の余剰樹脂を逃がすための溝である。溝63aが形成されているため、工程Cにおいて、半導体チップ53を封止用シート40(図2参照)に埋め込む際、リング部材63により流動することが抑制された樹脂を逃がすことができる。その結果、封止体58を好適に形成することが可能となる。なお、溝63aの個数及び形状は、適宜設定可能である。 On the upper surface of the ring member 63, grooves 63a from the inner diameter side to the outer shape side are formed at four positions at equal intervals. The groove 63a is a groove for allowing excess resin to escape when the sealing body 58 is formed. Since the groove 63a is formed, in step C, when the semiconductor chip 53 is embedded in the sealing sheet 40 (see FIG. 2), the resin whose flow is suppressed by the ring member 63 can be released. As a result, the sealing body 58 can be suitably formed. The number and shape of the grooves 63a can be set as appropriate.
 (仮固定用シート)
 仮固定用シート60としては、以下に説明する熱膨張性粘着剤層を採用することができる。また、仮固定用シート60としては、イミド基を有し、且つ、少なくとも一部にエーテル構造を有するジアミンに由来する構成単位を有する熱剥離シートを採用することもできる。イミド基を有し、且つ、少なくとも一部にエーテル構造を有するジアミンに由来する構成単位を有する熱剥離シートに関しては、特開2013-153122号公報等に詳細に記載されているので、ここでの説明は省略する。
(Temporary fixing sheet)
As the temporary fixing sheet 60, a thermally expandable pressure-sensitive adhesive layer described below can be employed. Moreover, as the sheet 60 for temporary fixing, the thermal peeling sheet which has an imide group and has a structural unit derived from the diamine which has an ether structure in part at least can also be employ | adopted. The thermal release sheet having an imide group and having a structural unit derived from a diamine having an ether structure at least in part is described in detail in JP 2013-153122 A and the like. Description is omitted.
 (熱膨張性粘着剤層)
 熱膨張性粘着剤層は、ポリマー成分と、発泡剤とを含む粘着剤組成物により形成することができる。ポリマー成分(特にベースポリマー)としては、アクリル系ポリマー(「アクリルポリマーA」と称する場合がある)を好適に用いることができる。アクリルポリマーAとしては、(メタ)アクリル酸エステルを主モノマー成分として用いたものが挙げられる。前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、sec-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)などが挙げられる。これらの(メタ)アクリル酸エステルは単独で又は2種以上を併用してもよい。
(Thermal expansion adhesive layer)
The thermally expandable pressure-sensitive adhesive layer can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent. As the polymer component (particularly the base polymer), an acrylic polymer (sometimes referred to as “acrylic polymer A”) can be suitably used. Examples of the acrylic polymer A include those using (meth) acrylic acid ester as a main monomer component. Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, sec-butyl ester, t-butyl ester, Pentyl ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of an alkyl group such as hexadecyl ester, octadecyl ester or eicosyl ester Le etc.) and (meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) and the like. These (meth) acrylic acid esters may be used alone or in combination of two or more.
 なお、前記アクリルポリマーAは、凝集力、耐熱性、架橋性などの改質を目的として、必要に応じて、前記(メタ)アクリル酸エステルと共重合可能な他の単量体成分に対応する単位を含んでいてもよい。このような単量体成分として、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、カルボキシエチルアクリレートなどのカルボキシル基含有モノマー;無水マレイン酸、無水イコタン酸などの酸無水物基含有モノマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチルなどのヒドロキシル基含有モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミドなどの(N-置換又は無置換)アミド系モノマー;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル系モノマー;スチレン、α-メチルスチレンなどのスチレン系モノマー;ビニルメチルエーテル、ビニルエチルエーテルなどのビニルエーテル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;エチレン、プロピレン、イソプレン、ブタジエン、イソブチレンなどのオレフィン又はジエン系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチルなどの(置換又は無置換)アミノ基含有モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;N-ビニルピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-ビニルモルホリン、N-ビニルカプロラクタムなどの窒素原子含有環を有するモノマー;N-ビニルカルボン酸アミド類;スチレンスルホン酸、アリルスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレートなどのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;N-シクロヘキシルマレイミド、N-イソプロピルマレイミド、N-ラウリルマレイミド、N-フェニルマレイミドなどのマレイミド系モノマー;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-シクロヘキシルイタコンイミド、N-ラウリルイタコンイミドなどのイタコンイミド系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクルロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミドなどのスクシンイミド系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリルなどの酸素原子含有複素環を有するモノマー;フッ素系(メタ)アクリレートなどのフッ素原子を含有するアクリル酸エステル系モノマー;シリコーン系(メタ)アクリレートなどのケイ素原子を含有するアクリル酸エステル系モノマー;ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート、ジビニルベンゼン、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレートなどの多官能モノマー等が挙げられる。 The acrylic polymer A corresponds to other monomer components that can be copolymerized with the (meth) acrylic acid ester, if necessary, for the purpose of modifying cohesive strength, heat resistance, crosslinkability, and the like. Units may be included. Examples of such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and carboxyethyl acrylate; acid anhydrides such as maleic anhydride and itaconic anhydride Group-containing monomers; hydroxyl group-containing monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (N-substituted or unsubstituted) amide monomers such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide; vinyl ester monomers such as vinyl acetate and vinyl propionate Styling Styrene monomers such as α-methylstyrene; vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing acrylic monomers such as glycidyl (meth) acrylate Olefins or diene monomers such as ethylene, propylene, isoprene, butadiene, isobutylene; aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, etc. (Substituted or unsubstituted) amino group-containing monomers; (meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate; N-vinylpyrrolidone, N -Methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N -Monomers having a nitrogen atom-containing ring such as vinylcaprolactam; N-vinylcarboxylic amides; Monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate A phosphate group-containing monomer such as 2-hydroxyethylacryloyl phosphate; a maleimide monomer such as N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide; N Itacimide monomers such as methylitaconimide, N-ethylitaconimide, N-butylitaconimide, N-octylitaconimide, N-2-ethylhexylitaconimide, N-cyclohexylitaconimide, N-laurylitaconimide; N- ( Succinimide monomers such as (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, N- (meth) acryloyl-8-oxyoctamethylene succinimide; polyethylene glycol (meth) acrylate, (meth) ) Glycol acrylic ester monomers such as polypropylene glycol acrylate; Monomers having an oxygen atom-containing heterocycle such as tetrahydrofurfuryl (meth) acrylate; Fluorine Acrylic acid ester monomer containing fluorine atom such as (meth) acrylate; Acrylic acid ester monomer containing silicon atom such as silicone (meth) acrylate; Hexanediol di (meth) acrylate, (Poly) ethylene glycol di (Meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, epoxy acrylate, polyester acrylate, urethane acrylate, divinylbenzene, butyl di (meth) acrylate, hexyl And polyfunctional monomers such as di (meth) acrylate.
 前記アクリルポリマーAは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合(例えば、ラジカル重合、アニオン重合、カチオン重合など)、乳化重合、塊状重合、懸濁重合、光重合(例えば、紫外線(UV)重合など)等の何れの方式で行うこともできる。 The acrylic polymer A can be obtained by polymerizing a single monomer or a mixture of two or more monomers. The polymerization may be performed by any method such as solution polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization), emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (for example, ultraviolet (UV) polymerization). it can.
 アクリルポリマーAの重量平均分子量は、特に制限されないが、好ましくは35万~100万、更に好ましくは45万~80万程度である。 The weight average molecular weight of the acrylic polymer A is not particularly limited, but is preferably 350,000 to 1,000,000, more preferably about 450,000 to 800,000.
 また、熱膨張性粘着剤には、粘着力を調整するため、外部架橋剤を適宜に用いることもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。外部架橋剤の使用量は、一般的には、前記ベースポリマー100重量部に対して、20重量部以下(好ましくは0.1重量部~10重量部)である。 Also, an external cross-linking agent can be appropriately used for the thermally expandable pressure-sensitive adhesive in order to adjust the adhesive force. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. The amount of the external crosslinking agent used is generally 20 parts by weight or less (preferably 0.1 to 10 parts by weight) with respect to 100 parts by weight of the base polymer.
 熱膨張性粘着剤層は、前述のように、熱膨張性を付与するための発泡剤を含有している。そのため、仮固定用シート60としての熱膨張性粘着剤層上に封止体58が形成された状態で(図4参照)、任意な時に仮固定用シート60を少なくとも部分的に加熱して、該加熱された仮固定用シート60の部分に含有されている発泡剤を発泡及び/又は膨張させることにより、仮固定用シート60が少なくとも部分的に膨張し、この仮固定用シート60の少なくとも部分的な膨張により、該膨張した部分に対応した粘着面(封止体58との界面)が凹凸状に変形して、該仮固定用シート60と封止体58との接着面積が減少し、これにより、両者間の接着力が減少し、封止体58を仮固定用シート60から剥離させることができる(図5参照)。 The heat-expandable pressure-sensitive adhesive layer contains a foaming agent for imparting heat-expandability as described above. Therefore, with the sealing body 58 formed on the thermally expandable pressure-sensitive adhesive layer as the temporary fixing sheet 60 (see FIG. 4), the temporary fixing sheet 60 is at least partially heated at any time, The foaming agent contained in the heated temporary fixing sheet 60 is expanded and / or expanded, so that the temporary fixing sheet 60 is at least partially expanded, and at least a part of the temporary fixing sheet 60 is obtained. The adhesive surface (interface with the sealing body 58) corresponding to the expanded portion is deformed into an irregular shape due to the expansion, and the adhesion area between the temporary fixing sheet 60 and the sealing body 58 is reduced. Thereby, the adhesive force between both reduces and the sealing body 58 can be peeled from the sheet | seat 60 for temporary fixing (refer FIG. 5).
 (発泡剤)
 熱膨張性粘着剤層において用いられている発泡剤としては、特に制限されず、公知の発泡剤から適宜選択することができる。発泡剤は単独で又は2種以上組み合わせて使用することができる。発泡剤としては、熱膨張性微小球を好適に用いることができる。
(Foaming agent)
The foaming agent used in the thermally expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected from known foaming agents. A foaming agent can be used individually or in combination of 2 or more types. As the foaming agent, thermally expandable microspheres can be suitably used.
 (熱膨張性微小球)
 熱膨張性微小球としては、特に制限されず、公知の熱膨張性微小球(種々の無機系熱膨張性微小球や、有機系熱膨張性微小球など)から適宜選択することができる。熱膨張性微小球としては、混合操作が容易である観点などより、マイクロカプセル化されている発泡剤を好適に用いることができる。このような熱膨張性微小球としては、例えば、イソブタン、プロパン、ペンタンなどの加熱により容易にガス化して膨張する物質を、弾性を有する殻内に内包させた微小球などが挙げられる。前記殻は、熱溶融性物質や熱膨張により破壊する物質で形成される場合が多い。前記殻を形成する物質として、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。
(Thermally expandable microsphere)
The heat-expandable microsphere is not particularly limited, and can be appropriately selected from known heat-expandable microspheres (such as various inorganic heat-expandable microspheres and organic heat-expandable microspheres). As the thermally expandable microspheres, a microencapsulated foaming agent can be suitably used from the viewpoint of easy mixing operation. Examples of such thermally expandable microspheres include microspheres in which substances such as isobutane, propane, and pentane that are easily gasified and expanded by heating are encapsulated in an elastic shell. The shell is often formed of a hot-melt material or a material that is destroyed by thermal expansion. Examples of the substance forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 熱膨張性微小球は、慣用の方法、例えば、コアセルベーション法や、界面重合法などにより製造できる。なお、熱膨張性微小球には、例えば、松本油脂製薬株式会社製の商品名「マツモトマイクロスフェアー」のシリーズ(例えば、商品名「マツモトマイクロスフェアーF30」、同「マツモトマイクロスフェアーF301D」、同「マツモトマイクロスフェアーF50D」、同「マツモトマイクロスフェアーF501D」、同「マツモトマイクロスフェアーF80SD」、同「マツモトマイクロスフェアーF80VSD」など)の他、エクスパンセル社製の商品名「051DU」、同「053DU」、同「551DU」、同「551-20DU」、同「551-80DU」などの市販品を使用することができる。 Thermally expandable microspheres can be produced by a conventional method such as a coacervation method or an interfacial polymerization method. Examples of thermally expandable microspheres include, for example, a series of “Matsumoto Microsphere F30” and “Matsumoto Microsphere F301D” (trade names “Matsumoto Microsphere F30”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.). "Matsumoto Microsphere F50D", "Matsumoto Microsphere F501D", "Matsumoto Microsphere F80SD", "Matsumoto Microsphere F80VSD", etc.) Commercially available products such as “051DU”, “053DU”, “551DU”, “551-20DU”, and “551-80DU” can be used.
 なお、発泡剤として熱膨張性微小球を用いた場合、該熱膨張性微小球の粒径(平均粒子径)としては、熱膨張性粘着剤層の厚みなどに応じて適宜選択することができる。熱膨張性微小球の平均粒子径としては、例えば、100μm以下(好ましくは80μm以下、さらに好ましくは1μm~50μm、特に1μm~30μm)の範囲から選択することができる。なお、熱膨張性微小球の粒径の調整は、熱膨張性微小球の生成過程で行われていてもよく、生成後、分級などの手段により行われてもよい。熱膨張性微小球としては、粒径が揃えられていることが好ましい。 When thermally expandable microspheres are used as the foaming agent, the particle size (average particle diameter) of the thermally expandable microspheres can be appropriately selected according to the thickness of the thermally expandable pressure-sensitive adhesive layer. . The average particle diameter of the heat-expandable microspheres can be selected from a range of, for example, 100 μm or less (preferably 80 μm or less, more preferably 1 μm to 50 μm, particularly 1 μm to 30 μm). Note that the adjustment of the particle size of the thermally expandable microspheres may be performed in the process of generating the thermally expandable microspheres, or may be performed by means such as classification after the generation. It is preferable that the thermally expandable microspheres have the same particle size.
 (その他の発泡剤)
 本実施形態では、発泡剤としては、熱膨張性微小球以外の発泡剤も用いることもできる。このような発泡剤としては、種々の無機系発泡剤や有機系発泡剤などの各種発泡剤を適宜選択して使用することができる。無機系発泡剤の代表的な例としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水酸化ホウ素ナトリウム、各種アジド類などが挙げられる。
(Other foaming agents)
In the present embodiment, as the foaming agent, a foaming agent other than the thermally expandable microsphere can also be used. As such a foaming agent, various foaming agents such as various inorganic foaming agents and organic foaming agents can be appropriately selected and used. Typical examples of the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.
 また、有機系発泡剤の代表的な例としては、例えば、水;トリクロロモノフルオロメタン、ジクロロモノフルオロメタンなどの塩フッ化アルカン系化合物;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレートなどのアゾ系化合物;パラトルエンスルホニルヒドラジド、ジフェニルスルホン-3,3´-ジスルホニルヒドラジド、4,4´-オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)などのヒドラジン系化合物;p-トルイレンスルホニルセミカルバジド、4,4´-オキシビス(ベンゼンスルホニルセミカルバジド)などのセミカルバジド系化合物;5-モルホリル-1,2,3,4-チアトリアゾールなどのトリアゾール系化合物;N,N´-ジニトロソペンタメチレンテロラミン、N,N´-ジメチル-N,N´-ジニトロソテレフタルアミドなどのN-ニトロソ系化合物などが挙げられる。 Representative examples of organic foaming agents include, for example, water; chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azobisisobutyronitrile, azodicarbonamide, and barium azodi. Azo compounds such as carboxylate; hydrazine compounds such as p-toluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p- Semicarbazide compounds such as toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosope Data methylene terrorism lamin, N, N'-dimethyl -N, N'N-nitroso compounds such as dinitrosoterephthalamide, and the like.
 本実施形態では、加熱処理により、熱膨張性粘着剤層の接着力を効率よく且つ安定して低下させるため、体積膨張率が5倍以上、なかでも7倍以上、特に10倍以上となるまで破裂しない適度な強度を有する発泡剤が好ましい。 In this embodiment, in order to reduce the adhesive force of the heat-expandable pressure-sensitive adhesive layer efficiently and stably by heat treatment, the volume expansion coefficient is 5 times or more, especially 7 times or more, particularly 10 times or more. A foaming agent having an appropriate strength that does not burst is preferred.
 発泡剤(熱膨張性微小球など)の配合量は、熱膨張性粘着剤層の膨張倍率や接着力の低下性などに応じて適宜設定しうるが、一般には熱膨張性粘着剤層を形成するベースポリマー100重量部に対して、例えば1重量部~150重量部(好ましくは10重量部~130重量部、さらに好ましくは25重量部~100重量部)である。 The amount of foaming agent (thermally expandable microspheres, etc.) can be set as appropriate depending on the expansion ratio of the thermally expandable pressure-sensitive adhesive layer and the ability to lower the adhesive strength, but generally a thermally expandable pressure-sensitive adhesive layer is formed. The amount is, for example, 1 part by weight to 150 parts by weight (preferably 10 parts by weight to 130 parts by weight, more preferably 25 parts by weight to 100 parts by weight) with respect to 100 parts by weight of the base polymer.
 本実施形態では、発泡剤としては、発泡開始温度(熱膨張開始温度)(T)が80℃~210℃の範囲のものを好適に用いることができ、好ましくは90℃~200℃(より好ましくは95℃~200℃、特に好ましくは100℃~170℃)の発泡開始温度を有するものである。発泡剤の発泡開始温度が80℃より低いと、封止体の製造時や使用時の熱により発泡剤が発泡してしまう場合があり、取り扱い性や生産性が低下する。一方、発泡剤の発泡開始温度が210℃を超える場合には、支持体や封止用シート40に過度の耐熱性が必要となり、取り扱い性、生産性やコスト面で好ましくない。なお、発泡剤の発泡開始温度(T)は、熱膨張性粘着剤層の発泡開始温度(T)に相当する。 In the present embodiment, a foaming agent having a foaming start temperature (thermal expansion start temperature) (T 0 ) in the range of 80 ° C. to 210 ° C. can be suitably used, preferably 90 ° C. to 200 ° C. (more The foaming start temperature is preferably from 95 ° C to 200 ° C, particularly preferably from 100 ° C to 170 ° C. When the foaming start temperature of the foaming agent is lower than 80 ° C., the foaming agent may foam due to heat at the time of producing or using the sealing body, and the handleability and productivity are lowered. On the other hand, when the foaming start temperature of the foaming agent exceeds 210 ° C., excessive heat resistance is required for the support and the sealing sheet 40, which is not preferable in terms of handleability, productivity, and cost. Incidentally, the foaming starting temperature (T 0) of the blowing agent, corresponding to the foaming starting temperature of the heat-expandable pressure-sensitive adhesive layer (T 0).
 なお、発泡剤を発泡させる方法(すなわち、熱膨張性粘着剤層を熱膨張させる方法)としては、公知の加熱発泡方法から適宜選択して採用することができる。 In addition, as a method of foaming the foaming agent (that is, a method of thermally expanding the thermally expandable pressure-sensitive adhesive layer), it can be appropriately selected from known heat foaming methods.
 本実施形態では、熱膨張性粘着剤層は、加熱処理前の適度な接着力と加熱処理後の接着力の低下性のバランスの点から、発泡剤を含有しない形態での弾性率が23℃~150℃において5×10Pa~1×10Paであることが好ましく、さらに好ましくは5×10Pa~8×10Paであり、特に5×10Pa~5×10Paであることが好適である。熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃~150℃)が5×10Pa未満であると熱膨張性が劣り、剥離性が低下する場合がある。また、熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃~150℃)が1×10Paより大きい場合、初期接着性が劣る場合がある。 In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has an elastic modulus of 23 ° C. in a form not containing a foaming agent from the viewpoint of a balance between moderate adhesive force before heat treatment and lowering of adhesive force after heat treatment. It is preferably 5 × 10 4 Pa to 1 × 10 6 Pa at −150 ° C., more preferably 5 × 10 4 Pa to 8 × 10 5 Pa, and particularly 5 × 10 4 Pa to 5 × 10 5 Pa. It is preferable that When the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent is less than 5 × 10 4 Pa, the thermal expandability may be inferior and the peelability may be deteriorated. . Further, when the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent is larger than 1 × 10 6 Pa, the initial adhesiveness may be inferior.
 なお、発泡剤を含有しない形態の熱膨張性粘着剤層は、粘着剤(発泡剤は含まれていない)により形成された粘着剤層に相当する。従って、熱膨張性粘着剤層の発泡剤を含有していない形態での弾性率は、粘着剤(発泡剤は含まれていない)を用いて測定することができる。なお、熱膨張性粘着剤層は、23℃~150℃における弾性率が5×10Pa~1×10Paである粘着剤層を形成可能な粘着剤と、発泡剤とを含む熱膨張性粘着剤により形成することができる。 In addition, the thermally expansible adhesive layer of the form which does not contain a foaming agent is corresponded to the adhesive layer formed with the adhesive (The foaming agent is not contained). Therefore, the elastic modulus of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent can be measured using a pressure-sensitive adhesive (no foaming agent is included). The heat-expandable pressure-sensitive adhesive layer includes a pressure-sensitive adhesive capable of forming a pressure-sensitive adhesive layer having an elastic modulus at 23 ° C. to 150 ° C. of 5 × 10 4 Pa to 1 × 10 6 Pa, and a thermal expansion containing a foaming agent. It can be formed with an adhesive.
 熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率は、発泡剤が添加されていない形態の熱膨張性粘着剤層(すなわち、発泡剤が含まれていない粘着剤による粘着剤層)(サンプル)を作製し、レオメトリック社製動的粘弾性測定装置「ARES」を用いて、サンプル厚さ:約1.5mmで、φ7.9mmパラレルプレートの治具を用い、剪断モードにて、周波数:1Hz、昇温速度:5℃/分、歪み:0.1%(23℃)、0.3%(150℃)にて測定し、23℃および150℃で得られた剪断貯蔵弾性率G´の値とする。 The modulus of elasticity of the thermally expandable pressure-sensitive adhesive layer in the form not containing the foaming agent is the heat-expandable pressure-sensitive adhesive layer in the form in which the foaming agent is not added (that is, the pressure-sensitive adhesive layer by the pressure-sensitive adhesive not containing the foaming agent). ) (Sample), using a rheometric dynamic viscoelasticity measuring device “ARES”, sample thickness: about 1.5 mm, φ7.9 mm parallel plate jig, in shear mode , Frequency: 1 Hz, rate of temperature increase: 5 ° C./min, strain: 0.1% (23 ° C.), 0.3% (150 ° C.) measured at 23 ° C. and 150 ° C. shear storage elasticity obtained The value of the rate G ′ is assumed.
 熱膨張性粘着剤層の弾性率は、粘着剤のベースポリマーの種類、架橋剤、添加剤などを調節することによりコントロールすることができる。 The elastic modulus of the thermally expandable pressure-sensitive adhesive layer can be controlled by adjusting the type of the base polymer of the pressure-sensitive adhesive, the crosslinking agent, the additive, and the like.
 熱膨張性粘着剤層の厚さは、特に制限されず、接着力の低減性などにより適宜に選択することができ、例えば、5μm~300μm(好ましくは20μm~150μm)程度である。ただし、発泡剤として熱膨張性微小球が用いられている場合、熱膨張性粘着剤層の厚さは、含まれている熱膨張性微小球の最大粒径よりも厚いことが好ましい。熱膨張性粘着剤層の厚さが薄すぎると、熱膨張性微小球の凹凸により表面平滑性が損なわれ、加熱前(未発泡状態)の接着性が低下する。また、加熱処理による熱膨張性粘着剤層の変形度が小さく、接着力が円滑に低下しにくくなる。一方、熱膨張性粘着剤層の厚さが厚すぎると、加熱処理による膨張乃至発泡後に、熱膨張性粘着剤層に凝集破壊が生じやすくなり、封止体58に糊残りが発生する場合がある。 The thickness of the heat-expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the reduction in adhesive strength, and is, for example, about 5 μm to 300 μm (preferably 20 μm to 150 μm). However, when heat-expandable microspheres are used as the foaming agent, the thickness of the heat-expandable pressure-sensitive adhesive layer is preferably thicker than the maximum particle size of the heat-expandable microspheres contained. When the thickness of the heat-expandable pressure-sensitive adhesive layer is too thin, the surface smoothness is impaired by the unevenness of the heat-expandable microspheres, and the adhesiveness before heating (unfoamed state) is lowered. In addition, the degree of deformation of the heat-expandable pressure-sensitive adhesive layer by heat treatment is small, and the adhesive force is not easily lowered. On the other hand, if the thickness of the heat-expandable pressure-sensitive adhesive layer is too thick, cohesive failure is likely to occur in the heat-expandable pressure-sensitive adhesive layer after expansion or foaming by heat treatment, and adhesive residue may be generated in the sealing body 58. is there.
 なお、熱膨張性粘着剤層は単層、複層の何れであってもよい。 The thermally expandable pressure-sensitive adhesive layer may be either a single layer or multiple layers.
 本実施形態では、熱膨張性粘着剤層には、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。 In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
 (支持体)
 支持体61は、仮固定用シート60の強度母体となる薄板状部材である。支持体61の材料としては取り扱い性や耐熱性等を考慮して適宜選択すればよく、例えばSUS等の金属材料、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン等のプラスチック材料、ガラスやシリコンウェハ等を用いることができる。これらの中でも、耐熱性や強度、再利用可能性等の観点から、SUSプレートが好ましい。
(Support)
The support 61 is a thin plate member that serves as a strength matrix of the temporary fixing sheet 60. The material of the support 61 may be appropriately selected in consideration of handling properties, heat resistance, and the like. For example, a metal material such as SUS, a plastic material such as polyimide, polyamideimide, polyether ether ketone, and polyether sulfone, glass Alternatively, a silicon wafer or the like can be used. Among these, a SUS plate is preferable from the viewpoints of heat resistance, strength, reusability, and the like.
 支持体61の厚さは目的とする強度や取り扱い性を考慮して適宜選択することができ、好ましくは100~5000μmであり、より好ましくは300~2000μmである。 The thickness of the support 61 can be appropriately selected in consideration of the intended strength and handleability, and is preferably 100 to 5000 μm, more preferably 300 to 2000 μm.
 (仮固定用シートの形成方法)
 仮固定用シート60は、支持体61上に仮固定用シート60を形成することにより得られる。仮固定用シート60として熱膨張性粘着剤層を採用する場合、熱膨張性粘着剤層は、例えば、粘着剤と、発泡剤(熱膨張性微小球など)と、必要に応じて溶媒やその他の添加剤などとを混合して、シート状の層に形成する慣用の方法を利用し形成することができる。具体的には、例えば、粘着剤、発泡剤(熱膨張性微小球など)、および必要に応じて溶媒やその他の添加剤を含む混合物を、支持体61上に塗布する方法、適当なセパレータ(剥離紙など)上に前記混合物を塗布して熱膨張性粘着剤層を形成し、これを支持体61上に転写(移着)する方法などにより、熱膨張性粘着剤層を形成することができる。
(Formation method of temporary fixing sheet)
The temporarily fixing sheet 60 is obtained by forming the temporarily fixing sheet 60 on the support 61. When a heat-expandable pressure-sensitive adhesive layer is employed as the temporary fixing sheet 60, the heat-expandable pressure-sensitive adhesive layer includes, for example, a pressure-sensitive adhesive, a foaming agent (such as heat-expandable microspheres), a solvent, and the like as necessary. It can be formed by using a conventional method of forming a sheet-like layer by mixing with other additives. Specifically, for example, a method of applying a mixture containing an adhesive, a foaming agent (such as thermally expandable microspheres), and, if necessary, a solvent and other additives onto the support 61, an appropriate separator ( The heat-expandable pressure-sensitive adhesive layer may be formed by a method of applying the mixture on a release paper or the like to form a heat-expandable pressure-sensitive adhesive layer and transferring (transferring) the mixture onto the support 61. it can.
 (熱膨張性粘着剤層の熱膨張方法)
 本実施形態では、熱膨張性粘着剤層は、加熱により熱膨張させることができる。加熱処理方法としては、例えば、ホットプレート、熱風乾燥機、近赤外線ランプ、エアードライヤーなどの適宜な加熱手段を利用して行うことができる。加熱処理時の加熱温度は、熱膨張性粘着剤層中の発泡剤(熱膨張性微小球など)の発泡開始温度(熱膨張開始温度)以上であればよいが、加熱処理の条件は、発泡剤(熱膨張性微小球など)の種類等による接着面積の減少性、支持体、半導体チップを含む封止体等の耐熱性、加熱方法(熱容量、加熱手段等)などにより適宜設定できる。一般的な加熱処理条件としては、温度100℃~250℃で、1秒間~90秒間(ホットプレートなど)または5分間~15分間(熱風乾燥機など)である。なお、加熱処理は使用目的に応じて適宜な段階で行うことができる。また、加熱処理時の熱源としては、赤外線ランプや加熱水を用いることができる場合もある。
(Thermal expansion method of the thermally expandable pressure-sensitive adhesive layer)
In the present embodiment, the thermally expandable pressure-sensitive adhesive layer can be thermally expanded by heating. As the heat treatment method, for example, an appropriate heating means such as a hot plate, a hot air dryer, a near infrared lamp, an air dryer or the like can be used. The heating temperature during the heat treatment may be equal to or higher than the foaming start temperature (thermal expansion start temperature) of the foaming agent (thermally expansible microspheres, etc.) in the heat-expandable pressure-sensitive adhesive layer. It can be set appropriately depending on the reduction of the adhesion area depending on the type of agent (thermally expandable microspheres, etc.), the heat resistance of the sealing body including a support, a semiconductor chip, etc., the heating method (heat capacity, heating means, etc.), and the like. Typical heat treatment conditions are a temperature of 100 ° C. to 250 ° C., and a time of 1 second to 90 seconds (hot plate or the like) or 5 minutes to 15 minutes (hot air dryer or the like). Note that the heat treatment can be performed at an appropriate stage depending on the purpose of use. In some cases, an infrared lamp or heated water can be used as the heat source during the heat treatment.
 (中間層)
 本実施形態では、仮固定用シート60と支持体61との間に、密着力の向上や加熱後の剥離性の向上等を目的とした中間層が設けられていても良い(図示せず)。中でも、中間層としてゴム状有機弾性中間層が設けられていることが好ましい。このように、ゴム状有機弾性中間層を設けることにより、半導体チップ53を仮固定用シート60に接着する際に(図1参照)、仮固定用シート60の表面を半導体チップ53の表面形状に良好に追従させて、接着面積を大きくすることができるとともに、仮固定用シート60から封止体58を加熱剥離させる際に、仮固定用シート60の加熱膨張を高度に(精度よく)コントロールし、仮固定用シート60を厚さ方向へ優先的に且つ均一に膨張させることができる。
(Middle layer)
In the present embodiment, an intermediate layer may be provided between the temporary fixing sheet 60 and the support 61 for the purpose of improving the adhesion and improving the peelability after heating (not shown). . Among them, it is preferable that a rubbery organic elastic intermediate layer is provided as the intermediate layer. Thus, by providing the rubber-like organic elastic intermediate layer, when the semiconductor chip 53 is bonded to the temporary fixing sheet 60 (see FIG. 1), the surface of the temporary fixing sheet 60 is changed to the surface shape of the semiconductor chip 53. The adhesion area can be increased by following well, and the thermal expansion of the temporary fixing sheet 60 is highly (accurately) controlled when the sealing body 58 is thermally peeled from the temporary fixing sheet 60. The temporary fixing sheet 60 can be preferentially expanded uniformly in the thickness direction.
 なお、ゴム状有機弾性中間層は、支持体61の片面又は両面に介在させることができる。 The rubbery organic elastic intermediate layer can be interposed on one side or both sides of the support 61.
 ゴム状有機弾性中間層は、例えば、ASTM D-2240に基づくD型シュアーD型硬度が、50以下、特に40以下の天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂により形成することが好ましい。なお、ポリ塩化ビニルなどのように本質的には硬質系ポリマーであっても、可塑剤や柔軟剤等の配合剤との組み合わせによりゴム弾性が発現しうる。このような組成物も、前記ゴム状有機弾性中間層の構成材料として使用できる。 The rubbery organic elastic intermediate layer is preferably formed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity with a D-type Sure D-type hardness of 50 or less, particularly 40 or less based on ASTM D-2240. Even if it is essentially a hard polymer such as polyvinyl chloride, rubber elasticity can be manifested in combination with compounding agents such as plasticizers and softeners. Such a composition can also be used as a constituent material of the rubbery organic elastic intermediate layer.
 ゴム状有機弾性中間層は、例えば、前記天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂などのゴム状有機弾性層形成材を含むコーティング液を基材上に塗布する方式(コーティング法)、前記ゴム状有機弾性層形成材からなるフィルム、又は予め1層以上の熱膨張性粘着剤層上に前記ゴム状有機弾性層形成材からなる層を形成した積層フィルムを基材と接着する方式(ドライラミネート法)、基材の構成材料を含む樹脂組成物と前記ゴム状有機弾性層形成材を含む樹脂組成物とを共押出しする方式(共押出し法)などの形成方法により形成することができる。 The rubber-like organic elastic intermediate layer is, for example, a method (coating method) in which a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate, A method in which a film made of a rubbery organic elastic layer forming material or a laminated film in which a layer made of the rubbery organic elastic layer forming material is previously formed on one or more thermally expandable pressure-sensitive adhesive layers is bonded to a substrate (dry Laminating method), and a forming method such as a method of co-extruding a resin composition containing a constituent material of a base material and a resin composition containing the rubber-like organic elastic layer forming material (co-extrusion method).
 なお、ゴム状有機弾性中間層は、天然ゴムや合成ゴム又はゴム弾性を有する合成樹脂を主成分とする粘着性物質で形成されていてもよく、また、かかる成分を主体とする発泡フィルム等で形成されていてもよい。発泡は、慣用の方法、例えば、機械的な攪拌による方法、反応生成ガスを利用する方法、発泡剤を使用する方法、可溶性物質を除去する方法、スプレーによる方法、シンタクチックフォームを形成する方法、焼結法などにより行うことができる。 The rubbery organic elastic intermediate layer may be formed of a sticky substance mainly composed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity, and may be a foam film or the like mainly composed of such a component. It may be formed. Foaming is a conventional method, for example, a method using mechanical stirring, a method using a reaction product gas, a method using a foaming agent, a method for removing soluble substances, a method using a spray, a method for forming a syntactic foam, It can be performed by a sintering method or the like.
 ゴム状有機弾性中間層等の中間層の厚さは、例えば、5μm~300μm、好ましくは20μm~150μm程度である。なお、中間層が、例えば、ゴム状有機弾性中間層である場合、ゴム状有機弾性中間層の厚さが薄すぎると、加熱発泡後の3次元的構造変化を形成することができず、剥離性が悪化する場合がある。 The thickness of the intermediate layer such as the rubbery organic elastic intermediate layer is, for example, about 5 μm to 300 μm, preferably about 20 μm to 150 μm. In addition, when the intermediate layer is, for example, a rubber-like organic elastic intermediate layer, if the thickness of the rubber-like organic elastic intermediate layer is too thin, it is not possible to form a three-dimensional structural change after heating and foaming. Sexuality may worsen.
 ゴム状有機弾性中間層等の中間層は単層であってもよく、2以上の層で構成されていてもよい。 The intermediate layer such as the rubbery organic elastic intermediate layer may be a single layer or may be composed of two or more layers.
 なお、中間層には、仮固定用シートの作用効果を損なわない範囲で、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。 In the intermediate layer, various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, and the like, as long as the effect of the temporary fixing sheet is not impaired. Antioxidants, surfactants, crosslinking agents, etc.) may be included.
 積層体準備工程では、上記仮固定用シート60上に複数の半導体チップ53をその回路形成面53aが仮固定用シート60に対向するように配置し、仮固定する(図1(a)及び図1(b)参照)。半導体チップ53の仮固定には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。 In the laminated body preparation step, a plurality of semiconductor chips 53 are arranged on the temporary fixing sheet 60 so that the circuit forming surface 53a faces the temporary fixing sheet 60 and temporarily fixed (FIG. 1A and FIG. 1 (b)). A known device such as a flip chip bonder or a die bonder can be used for temporarily fixing the semiconductor chip 53.
 半導体チップ53の配置のレイアウトや配置数は、仮固定用シート60の形状やサイズ、目的とするパッケージの生産数などに応じて適宜設定することができ、例えば、複数行で、かつ複数列のマトリックス状に整列させて配置することができる。 The layout and number of semiconductor chips 53 can be set as appropriate according to the shape and size of the temporary fixing sheet 60, the number of target packages produced, and the like. They can be arranged in a matrix.
 また、積層体準備工程では、上記仮固定用シート60上にリング部材63を貼り付ける。 Further, in the laminated body preparing step, the ring member 63 is pasted on the temporary fixing sheet 60.
 積層体準備工程においては、仮固定用シート60上に先に半導体チップ53を仮固定し、その後、リング部材63を貼り付けてもよく、仮固定用シート60上に先にリング部材63を貼り付け、その後、半導体チップ53を仮固定してもよい。以上、積層体準備工程の一例を示した。 In the laminate preparation step, the semiconductor chip 53 may be temporarily fixed on the temporary fixing sheet 60 first, and then the ring member 63 may be pasted. The ring member 63 is pasted on the temporary fixing sheet 60 first. Then, the semiconductor chip 53 may be temporarily fixed. Heretofore, an example of the laminate preparation process has been shown.
 [封止用シートを準備する工程]
 また、本実施形態に係る半導体装置の製造方法では、図2に示すように、封止用シート40を準備する(工程B)。封止用シート40は、ポリエチレンテレフタレート(PET)フィルムなどの剥離ライナー41上に積層された状態で準備してもよい。
[Step of preparing a sealing sheet]
Moreover, in the manufacturing method of the semiconductor device according to the present embodiment, as shown in FIG. 2, a sealing sheet 40 is prepared (step B). The sealing sheet 40 may be prepared in a state of being laminated on a release liner 41 such as a polyethylene terephthalate (PET) film.
 (封止用シート)
 封止用シート40は、平面視での形状が、リング部材63で囲まれた封止領域63b(図1(a)参照)内に収まる形状である。具体的には、リング部材63の内径と同一かわずかに小さい形状が好ましい。平面視での形状が、リング部材63で囲まれた封止領域63b内に収まる形状であるため、半導体チップ53の埋め込みは、封止用シート40がリング部材63内に収まった状態で行なわれる。その結果、リング部材63により封止用シート40を構成する樹脂が平面方向に流されることを抑制することが可能となる。
(Sealing sheet)
The sealing sheet 40 has a shape that fits in a sealing region 63b (see FIG. 1A) surrounded by the ring member 63 in a plan view. Specifically, a shape that is the same as or slightly smaller than the inner diameter of the ring member 63 is preferable. Since the shape in plan view is a shape that fits in the sealing region 63 b surrounded by the ring member 63, the semiconductor chip 53 is embedded in a state where the sealing sheet 40 is contained in the ring member 63. . As a result, it is possible to suppress the resin constituting the sealing sheet 40 from flowing in the planar direction by the ring member 63.
 封止用シート40の構成材料は、エポキシ樹脂、及び、硬化剤としてのフェノール樹脂を含むことが好ましい。これにより、良好な熱硬化性が得られる。 It is preferable that the constituent material of the sealing sheet 40 includes an epoxy resin and a phenol resin as a curing agent. Thereby, favorable thermosetting is obtained.
 前記エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。 The epoxy resin is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましく、なかでも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましい。 From the viewpoint of ensuring the toughness of the epoxy resin after curing and the reactivity of the epoxy resin, it is preferable that the epoxy equivalent is 150 to 250 and the softening point or the melting point is 50 to 130 ° C., solid at room temperature. From the viewpoint, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable.
 前記フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。 The phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin. For example, a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
 前記フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、なかでも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。 As the phenol resin, those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and phenol phenol is particularly preferable from the viewpoint of high curing reactivity. A novolac resin can be suitably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 The blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
 封止用シート40中のエポキシ樹脂及びフェノール樹脂の合計含有量は、2.5重量%以上が好ましく、3.0重量%以上がより好ましい。2.5重量%以上であると、半導体チップ53に対する接着力が良好に得られる。封止用シート40中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましく、10重量%以下がより好ましい。20重量%以下であると、吸湿性を低減できる。 The total content of the epoxy resin and the phenol resin in the sealing sheet 40 is preferably 2.5% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to the semiconductor chip 53 can be obtained satisfactorily when it is 2.5% by weight or more. The total content of the epoxy resin and the phenol resin in the sealing sheet 40 is preferably 20% by weight or less, and more preferably 10% by weight or less. Hygroscopicity can be reduced as it is 20 weight% or less.
 封止用シート40は、熱可塑性樹脂を含むことが好ましい。これにより、未硬化時のハンドリング性や、硬化物の低応力性が得られる。 The sealing sheet 40 preferably contains a thermoplastic resin. Thereby, the handleability at the time of non-hardening and the low stress property of hardened | cured material are acquired.
 前記熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂、スチレン-イソブチレン-スチレンブロック共重合体などが挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。なかでも、低応力性、低吸水性という観点から、スチレン-イソブチレン-スチレンブロック共重合体が好ましい。 Examples of the thermoplastic resin include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Plastic polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluororesin, styrene-isobutylene-styrene block copolymer, etc. Is mentioned. These thermoplastic resins can be used alone or in combination of two or more. Of these, a styrene-isobutylene-styrene block copolymer is preferable from the viewpoint of low stress and low water absorption.
 封止用シート40中の熱可塑性樹脂の含有量は、1.5重量%以上が好ましく、2.0重量%以上がより好ましい。1.5重量%以上であると、柔軟性、可撓性が得られる。封止用シート40中の熱可塑性樹脂の含有量は、6重量%以下が好ましく、4重量%以下がより好ましい。4重量%以下であると、半導体チップ53との接着性が良好である。 The content of the thermoplastic resin in the sealing sheet 40 is preferably 1.5% by weight or more, and more preferably 2.0% by weight or more. A softness | flexibility and flexibility are acquired as it is 1.5 weight% or more. The content of the thermoplastic resin in the sealing sheet 40 is preferably 6% by weight or less, and more preferably 4% by weight or less. Adhesiveness with the semiconductor chip 53 is favorable as it is 4 weight% or less.
 封止用シート40は、無機充填剤を含むことが好ましい。 The sealing sheet 40 preferably contains an inorganic filler.
 前記無機充填剤は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカなど)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。なかでも、線膨張係数を良好に低減できるという理由から、シリカ、アルミナが好ましく、シリカがより好ましい。 The inorganic filler is not particularly limited, and various conventionally known fillers can be used. For example, quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, nitriding Examples thereof include silicon and boron nitride powders. These may be used alone or in combination of two or more. Among these, silica and alumina are preferable, and silica is more preferable because the linear expansion coefficient can be satisfactorily reduced.
 シリカとしては、シリカ粉末が好ましく、溶融シリカ粉末がより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末が好ましい。なかでも、平均粒径が10~30μmの範囲のものが好ましく、15~25μmの範囲のものがより好ましい。
 なお、平均粒径は、例えば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
As silica, silica powder is preferable, and fused silica powder is more preferable. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, spherical fused silica powder is preferable. Among these, those having an average particle diameter in the range of 10 to 30 μm are preferable, and those having a mean particle diameter in the range of 15 to 25 μm are more preferable.
The average particle diameter can be derived, for example, by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 封止用シート40中の前記無機充填剤の含有量は、封止用シート40全体に対して、75~95重量%であることが好ましく、より好ましくは、78~95重量%である。前記無機充填剤の含有量が封止用シート40全体に対して75重量%以上であると、熱膨張率を低く抑えられることにより,熱衝撃よる機械的な破壊を抑制することができる。その結果、一方、前記無機充填剤の含有量が封止用シート40全体に対して95重量%以下であると、柔軟性、流動性、接着性がより良好となる。 The content of the inorganic filler in the sealing sheet 40 is preferably 75 to 95% by weight, and more preferably 78 to 95% by weight with respect to the entire sealing sheet 40. When the content of the inorganic filler is 75% by weight or more with respect to the entire sealing sheet 40, the thermal expansion coefficient can be suppressed to be low, so that mechanical breakdown due to thermal shock can be suppressed. As a result, on the other hand, when the content of the inorganic filler is 95% by weight or less with respect to the whole sealing sheet 40, flexibility, fluidity, and adhesiveness are further improved.
 封止用シート40は、硬化促進剤を含むことが好ましい。 It is preferable that the sealing sheet 40 includes a curing accelerator.
 硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレートなどの有機リン系化合物;2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール系化合物;などが挙げられる。なかでも、混練時の温度上昇によっても硬化反応が急激に進まず、封止用シート40を良好に作製できるという理由から、2-フェニル-4,5-ジヒドロキシメチルイミダゾールが好ましい。 The curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. Of these, 2-phenyl-4,5-dihydroxymethylimidazole is preferred because the curing reaction does not proceed rapidly even when the temperature during kneading increases, and the sealing sheet 40 can be satisfactorily produced.
 硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して0.1~5重量部が好ましい。 The content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
 封止用シート40は、難燃剤成分を含むことが好ましい。これにより、部品ショートや発熱などにより発火した際の、燃焼拡大を低減できる。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物などの各種金属水酸化物;ホスファゼン系難燃剤などを用いることができる。 It is preferable that the sealing sheet 40 contains a flame retardant component. This can reduce the expansion of combustion when ignition occurs due to component short-circuiting or heat generation. As the flame retardant composition, for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxides; phosphazene flame retardants, etc. should be used. Can do.
 少量でも難燃効果を発揮するという観点から、ホスファゼン系難燃剤に含まれるリン元素の含有率は、12重量%以上であることが好ましい。 From the viewpoint of exhibiting a flame retardant effect even in a small amount, the content of the phosphorus element contained in the phosphazene flame retardant is preferably 12% by weight or more.
 封止用シート40中の難燃剤成分の含有量は、全有機成分(無機フィラーを除く)中、10重量%以上が好ましく、15重量%以上がより好ましい。10重量%以上であると、難燃性が良好に得られる。封止用シート40中の熱可塑性樹脂の含有量は、30重量%以下が好ましく、25重量%以下がより好ましい。30重量%以下であると、硬化物の物性低下(具体的には、ガラス転移温度や高温樹脂強度などの物性の低下)が少ない傾向がある。 The content of the flame retardant component in the sealing sheet 40 is preferably 10% by weight or more, and more preferably 15% by weight or more in the total organic components (excluding inorganic fillers). A flame retardance is favorably acquired as it is 10 weight% or more. The content of the thermoplastic resin in the sealing sheet 40 is preferably 30% by weight or less, and more preferably 25% by weight or less. When the content is 30% by weight or less, there is a tendency that there is little decrease in physical properties of the cured product (specifically, physical properties such as glass transition temperature and high temperature resin strength).
 封止用シート40は、シランカップリング剤を含むことが好ましい。シランカップリング剤としては特に限定されず、3-グリシドキシプロピルトリメトキシシランなどが挙げられる。 The sealing sheet 40 preferably contains a silane coupling agent. The silane coupling agent is not particularly limited, and examples thereof include 3-glycidoxypropyltrimethoxysilane.
 封止用シート40中のシランカップリング剤の含有量は、0.1~3重量%が好ましい。0.1重量%以上であると、硬化物の強度が十分得られ吸水率を低くできる。3重量%以下であると、アウトガス量を低くできる。 The content of the silane coupling agent in the sealing sheet 40 is preferably 0.1 to 3% by weight. When the content is 0.1% by weight or more, sufficient strength of the cured product can be obtained and the water absorption rate can be lowered. If it is 3% by weight or less, the outgas amount can be lowered.
 封止用シート40は、着色されていることが好ましい。これにより、優れたマーキング性及び外観性を発揮させることができ、付加価値のある外観の半導体装置とすることが可能になる。着色された封止用シート40は、優れたマーキング性を有しているので、マーキングを施し、文字情報や図形情報などの各種情報を付与させることができる。特に、着色の色をコントロールすることにより、マーキングにより付与された情報(文字情報、図形情報など)を、優れた視認性で視認することが可能になる。更に、封止用シート40は、製品別に色分けすることも可能である。封止用シート40を有色にする場合(無色・透明ではない場合)、着色により呈している色としては特に制限されないが、例えば、黒色、青色、赤色などの濃色であることが好ましく、特に黒色であることが好適である。 The sealing sheet 40 is preferably colored. Thereby, excellent marking properties and appearance can be exhibited, and a semiconductor device having an added-value appearance can be obtained. Since the colored sealing sheet 40 has excellent marking properties, it can be marked to give various information such as character information and graphic information. In particular, by controlling the coloring color, it is possible to visually recognize information (character information, graphic information, etc.) given by marking with excellent visibility. Furthermore, the sealing sheet 40 can be color-coded for each product. When the sealing sheet 40 is colored (when it is colorless and not transparent), it is not particularly limited as a color exhibited by coloring, but is preferably a dark color such as black, blue, red, etc. It is suitable that it is black.
 本実施形態において、濃色とは、基本的には、L***表色系で規定されるL*が、60以下(0~60)[好ましくは50以下(0~50)、さらに好ましくは40以下(0~40)]となる濃い色のことを意味している。 In this embodiment, the dark, basically, L * a * b * L * is defined by a color system, 60 or less (0 to 60) [preferably 50 or less (0 to 50), More preferably, it means a dark color of 40 or less (0 to 40)].
 また、黒色とは、基本的には、L***表色系で規定されるL*が、35以下(0~35)[好ましくは30以下(0~30)、さらに好ましくは25以下(0~25)]となる黒色系色のことを意味している。なお、黒色において、L***表色系で規定されるa*やb*は、それぞれ、L*の値に応じて適宜選択することができる。a*やb*としては、例えば、両方とも、-10~10であることが好ましく、より好ましくは-5~5であり、特に-3~3の範囲(中でも0又はほぼ0)であることが好適である。 Also, black and basically, L * a * b * L * defined by the color system is 35 or less (0 to 35) [preferably 30 or less (0 to 30), more preferably 25 This means a blackish color which is (0 to 25) below. In black, a * and b * defined in the L * a * b * color system can be appropriately selected according to the value of L * . As a * and b * , for example, both are preferably −10 to 10, more preferably −5 to 5, particularly in the range of −3 to 3 (in particular, 0 or almost 0). Is preferred.
 なお、本実施形態において、L***表色系で規定されるL*、a*、b*は、色彩色差計(商品名「CR-200」ミノルタ社製;色彩色差計)を用いて測定することにより求められる。なお、L***表色系は、国際照明委員会(CIE)が1976年に推奨した色空間であり、CIE1976(L***)表色系と称される色空間のことを意味している。また、L***表色系は、日本工業規格では、JISZ 8729に規定されている。 In this embodiment, L * , a * , and b * defined in the L * a * b * color system are color difference meters (trade name “CR-200” manufactured by Minolta Co .; color difference meter). It is calculated | required by measuring using. The L * a * b * color system is a color space recommended by the International Commission on Illumination (CIE) in 1976, and is a color space called the CIE 1976 (L * a * b * ) color system. It means that. The L * a * b * color system is defined in JISZ 8729 in the Japanese Industrial Standard.
 封止用シート40を着色する際には、目的とする色に応じて、色材(着色剤)を用いることができる。本発明の封止用シートは、一層構成であってもよく、複数の層から構成されていてもよいが、少なくとも、仮固定用シートと対向する面とは反対の面側に、着色剤が添加されていることが好ましい。具体的に、封止用シートが1層構成の場合、封止用シート全体に均一に着色剤が含有されていてもよく、仮固定用シートと対向する面とは反対の面側に、着色剤が偏在する態様で着色剤が含有されていてもよい。また、複数の層から構成する場合、仮固定用シートと対向する面とは反対の面側の層に着色剤を添加するとともに、それ以外の層には着色剤を添加しないこととしてもよい。本実施形態では、本発明の封止用シートが1層構成である場合について説明する。封止用シートにおける仮固定用シートと対向する面とは反対の面側に着色剤が添加されていると、レーザーマーキングされた部分の視認性を向上させることができるからである。このような色材としては、黒系色材、青系色材、赤系色材などの各種濃色系色材を好適に用いることができ、特に黒系色材が好適である。色材としては、顔料、染料などいずれであってもよい。色材は単独で又は2種以上を組み合わせて用いることができる。なお、染料としては、酸性染料、反応染料、直接染料、分散染料、カチオン染料等のいずれの形態の染料であっても用いることが可能である。また、顔料も、その形態は特に制限されず、公知の顔料から適宜選択して用いることができる。 When the sealing sheet 40 is colored, a coloring material (coloring agent) can be used according to the target color. The sealing sheet of the present invention may have a single layer structure or may be composed of a plurality of layers, but at least a colorant is provided on the side opposite to the surface facing the temporary fixing sheet. It is preferable that it is added. Specifically, when the encapsulating sheet has a single layer configuration, the entire encapsulating sheet may contain a colorant uniformly, and the surface opposite to the surface facing the temporarily fixing sheet is colored. The coloring agent may be contained in a mode in which the agent is unevenly distributed. Moreover, when comprising from several layers, while adding a coloring agent to the layer on the surface opposite to the surface facing the temporarily fixing sheet, it is good also as not adding a coloring agent to the other layers. This embodiment demonstrates the case where the sheet | seat for sealing of this invention is 1 layer structure. This is because if the colorant is added to the surface opposite to the surface facing the temporarily fixing sheet in the sealing sheet, the visibility of the laser-marked portion can be improved. As such a color material, various dark color materials such as a black color material, a blue color material, and a red color material can be suitably used, and a black color material is particularly suitable. As the color material, any of a pigment, a dye and the like may be used. Color materials can be used alone or in combination of two or more. As the dye, any form of dyes such as acid dyes, reactive dyes, direct dyes, disperse dyes, and cationic dyes can be used. Also, the form of the pigment is not particularly limited, and can be appropriately selected from known pigments.
 特に、色材として染料を用いると、封止用シート40中には、染料が溶解により均一又はほぼ均一に分散した状態となるため、着色濃度が均一又はほぼ均一な封止用シート40を容易に製造することができ、マーキング性や外観性を向上させることができる。 In particular, when a dye is used as the coloring material, the dye is dissolved or evenly dispersed in the sealing sheet 40, so that the sealing sheet 40 having a uniform or almost uniform coloring density can be easily obtained. Can be manufactured, and marking properties and appearance can be improved.
 黒系色材としては、特に制限されないが、例えば、無機の黒系顔料、黒系染料から適宜選択することができる。また、黒系色材としては、シアン系色材(青緑系色材)、マゼンダ系色材(赤紫系色材)およびイエロー系色材(黄系色材)が混合された色材混合物であってもよい。黒系色材は単独で又は2種以上を組み合わせて用いることができる。もちろん、黒系色材は、黒以外の色の色材と併用することもできる。 The black color material is not particularly limited, and can be appropriately selected from, for example, inorganic black pigments and black dyes. In addition, as a black color material, a color material mixture in which a cyan color material (blue-green color material), a magenta color material (red purple color material) and a yellow color material (yellow color material) are mixed. It may be. Black color materials can be used alone or in combination of two or more. Of course, the black color material can be used in combination with a color material other than black.
 具体的には、黒系色材としては、例えば、カーボンブラック(ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ランプブラックなど)、グラファイト(黒鉛)、酸化銅、二酸化マンガン、アゾ系顔料(アゾメチンアゾブラックなど)、アニリンブラック、ペリレンブラック、チタンブラック、シアニンブラック、活性炭、フェライト(非磁性フェライト、磁性フェライトなど)、マグネタイト、酸化クロム、酸化鉄、二硫化モリブデン、クロム錯体、複合酸化物系黒色色素、アントラキノン系有機黒色色素などが挙げられる。 Specifically, as the black color material, for example, carbon black (furnace black, channel black, acetylene black, thermal black, lamp black, etc.), graphite (graphite), copper oxide, manganese dioxide, azo pigment (azomethine) Azo black, etc.), aniline black, perylene black, titanium black, cyanine black, activated carbon, ferrite (nonmagnetic ferrite, magnetic ferrite, etc.), magnetite, chromium oxide, iron oxide, molybdenum disulfide, chromium complex, complex oxide black Examples thereof include dyes and anthraquinone organic black dyes.
 本発明では、黒系色材としては、C.I.ソルベントブラック3、同7、同22、同27、同29、同34、同43、同70、C.I.ダイレクトブラック17、同19、同22、同32、同38、同51、同71、C.I.アシッドブラック1、同2、同24、同26、同31、同48、同52、同107、同109、同110、同119、同154C.I.ディスパーズブラック1、同3、同10、同24等のブラック系染料;C.I.ピグメントブラック1、同7等のブラック系顔料なども利用することができる。 In the present invention, as the black color material, C.I. I. Solvent Black 3, 7, 22, 27, 29, 34, 43, 70, C.I. I. Direct Black 17, 19, 19, 22, 32, 38, 51, 71, C.I. I. Acid Black 1, 2, 24, 26, 31, 48, 52, 107, 109, 110, 119, 154C. I. Black dyes such as Disperse Black 1, 3, 10, and 24; I. Black pigments such as CI Pigment Black 1 and 7 can also be used.
 このような黒系色材としては、例えば、商品名「Oil Black BY」、商品名「OilBlack BS」、商品名「OilBlackHBB」、商品名「Oil Black803」、商品名「Oil Black860」、商品名「Oil Black5970」、商品名「Oil Black5906」、商品名「Oil Black5905」(オリエント化学工業株式会社製)などが市販されている。 Examples of such a black color material include a product name “OilOBlack BY”, a product name “OilBlack BS”, a product name “OilBlackHBB”, a product name “Oil Black803”, a product name “Oil Black860”, and a product name “Oil Black860”. Oil Black 5970 ”, trade name“ Oil Black 5906 ”, trade name“ Oil Black 5905 ”(manufactured by Orient Chemical Co., Ltd.) and the like are commercially available.
 黒系色材以外の色材としては、例えば、シアン系色材、マゼンダ系色材、イエロー系色材などが挙げられる。シアン系色材としては、例えば、C.I.ソルベントブルー25、同36、同60、同70、同93、同95;C.I.アシッドブルー6、同45等のシアン系染料;C.I.ピグメントブルー1、同2、同3、同15、同15:1、同15:2、同15:3、同15:4、同15:5、同15:6、同16、同17、同17:1、同18、同22、同25、同56、同60、同63、同65、同66;C.I.バットブルー4;同60、C.I.ピグメントグリーン7等のシアン系顔料などが挙げられる。 Examples of color materials other than black color materials include cyan color materials, magenta color materials, and yellow color materials. Examples of cyan color materials include C.I. I. Solvent Blue 25, 36, 60, 70, 93, 95; I. Cyan dyes such as Acid Blue 6 and 45; I. Pigment Blue 1, 2, 3, 15, 15: 1, 15: 2, 15: 3, 15: 3, 15: 4, 15: 5, 15: 6, 16, 16, 17 17: 1, 18, 22, 25, 56, 60, 63, 65, 66; I. Bat Blue 4; 60, C.I. I. And cyan pigments such as CI Pigment Green 7.
 また、マゼンダ系色材において、マゼンダ系染料としては、例えば、C.I.ソルベントレッド1、同3、同8、同23、同24、同25、同27、同30、同49、同52、同58、同63、同81、同82、同83、同84、同100、同109、同111、同121、同122;C.I.ディスパースレッド9;C.I.ソルベントバイオレット8、同13、同14、同21、同27;C.I.ディスパースバイオレット1;C.I.ベーシックレッド1、同2、同9、同12、同13、同14、同15、同17、同18、同22、同23、同24、同27、同29、同32、同34、同35、同36、同37、同38、同39、同40;C.I.ベーシックバイオレット1、同3、同7、同10、同14、同15、同21、同25、同26、同27、28などが挙げられる。 In the magenta color material, examples of the magenta dye include C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27, 30, 30, 49, 52, 58, 63, 81, 82, 83, 84, the same 100, 109, 111, 121, 122; I. Disper thread 9; I. Solvent Violet 8, 13, 13, 21, and 27; C.I. I. Disperse violet 1; C.I. I. Basic Red 1, 2, 9, 9, 13, 14, 15, 17, 17, 18, 22, 23, 24, 27, 29, 32, 34, the same 35, 36, 37, 38, 39, 40; I. Basic Violet 1, 3, 7, 10, 14, 15, 21, 21, 25, 26, 27, 28 and the like.
 マゼンダ系色材において、マゼンダ系顔料としては、例えば、C.I.ピグメントレッド1、同2、同3、同4、同5、同6、同7、同8、同9、同10、同11、同12、同13、同14、同15、同16、同17、同18、同19、同21、同22、同23、同30、同31、同32、同37、同38、同39、同40、同41、同42、同48:1、同48:2、同48:3、同48:4、同49、同49:1、同50、同51、同52、同52:2、同53:1、同54、同55、同56、同57:1、同58、同60、同60:1、同63、同63:1、同63:2、同64、同64:1、同67、同68、同81、同83、同87、同88、同89、同90、同92、同101、同104、同105、同106、同108、同112、同114、同122、同123、同139、同144、同146、同147、同149、同150、同151、同163、同166、同168、同170、同171、同172、同175、同176、同177、同178、同179、同184、同185、同187、同190、同193、同202、同206、同207、同209、同219、同222、同224、同238、同245;C.I.ピグメントバイオレット3、同9、同19、同23、同31、同32、同33、同36、同38、同43、同50;C.I.バットレッド1、同2、同10、同13、同15、同23、同29、同35などが挙げられる。 In the magenta color material, examples of the magenta pigment include C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 21, 22, 23, 30, 31, 32, 37, 38, 39, 40, 41, 42, 48: 1, 48: 2, 48: 3, 48: 4, 49, 49: 1, 50, 51, 52, 52: 2, 53: 1, 54, 55, 56, 57: 1, 58, 60, 60: 1, 63, 63: 1, 63: 2, 64, 64: 1, 67, 68, 81, 83, etc. 87, 88, 89, 90, 92, 101, 104, 105, 106, 108, 112, 114, 122, 123, 139, 144, 146 147, 149, 150, 151, 163, 166, 168, 170, 171, 172, 175, 176, 177, 178, 179, 184, 185 187, 190, 193, 202, 206, 207, 209, 219, 222, 224, 238, 245; I. C.I. Pigment Violet 3, 9, 19, 23, 31, 32, 33, 36, 38, 43, 50; I. Bat red 1, 2, 10, 13, 15, 23, 29, 35 and the like.
 また、イエロー系色材としては、例えば、C.I.ソルベントイエロー19、同44、同77、同79、同81、同82、同93、同98、同103、同104、同112、同162等のイエロー系染料;C.I.ピグメントオレンジ31、同43;C.I.ピグメントイエロー1、同2、同3、同4、同5、同6、同7、同10、同11、同12、同13、同14、同15、同16、同17、同23、同24、同34、同35、同37、同42、同53、同55、同65、同73、同74、同75、同81、同83、同93、同94、同95、同97、同98、同100、同101、同104、同108、同109、同110、同113、同114、同116、同117、同120、同128、同129、同133、同138、同139、同147、同150、同151、同153、同154、同155、同156、同167、同172、同173、同180、同185、同195;C.I.バットイエロー1、同3、同20等のイエロー系顔料などが挙げられる。 Also, examples of yellow color materials include C.I. I. Solvent Yellow 19, 44, 77, 79, 81, 82, 93, 98, 103, 104, 112, 162 and the like yellow dyes; C.I. I. Pigment Orange 31 and 43; C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 7, 10, 10, 12, 13, 14, 15, 15, 16, 17, 23, 24, 34, 35, 37, 42, 53, 55, 65, 73, 74, 75, 81, 83, 93, 94, 95, 97, 98, 100, 101, 104, 108, 109, 110, 113, 114, 116, 117, 120, 128, 129, 133, 138, 139 147, 150, 151, 153, 154, 155, 156, 167, 172, 173, 180, 185, 195; I. Examples thereof include yellow pigments such as Vat Yellow 1, 3 and 20.
 シアン系色材、マゼンダ系色材、イエロー系色材などの各種色材は、それぞれ、単独で又は2種以上を組み合わせて用いることができる。なお、シアン系色材、マゼンダ系色材、イエロー系色材などの各種色材を2種以上用いる場合、これらの色材の混合割合(または配合割合)としては、特に制限されず、各色材の種類や目的とする色などに応じて適宜選択することができる。 Various color materials such as a cyan color material, a magenta color material, and a yellow color material can be used alone or in combination of two or more. When two or more kinds of various color materials such as a cyan color material, a magenta color material, and a yellow color material are used, the mixing ratio (or blending ratio) of these color materials is not particularly limited, and each color material. It can be selected as appropriate according to the type and the target color.
 封止用シート40における可視光(波長:380nm~800nm)による光線透過率(可視光透過率)としては、特に制限されないが、例えば、20%~0%の範囲であることが好ましく、さらに好ましくは10%~0%、特に好ましくは5%~0%である。封止用シート40の可視光透過率を、20%以下とすることにより、印字視認性を良好とすることができる。また光線通過による半導体素子へ悪影響を防止することができる。 The light transmittance (visible light transmittance) of visible light (wavelength: 380 nm to 800 nm) in the sealing sheet 40 is not particularly limited, but is preferably in the range of 20% to 0%, for example. Is from 10% to 0%, particularly preferably from 5% to 0%. By setting the visible light transmittance of the sealing sheet 40 to 20% or less, the print visibility can be improved. Further, it is possible to prevent an adverse effect on the semiconductor element due to the passage of light.
 封止用シート40の可視光線透過率(%)は、厚さ(平均厚さ):10μmの封止用シート40を作製し、該封止用シート40(厚さ:10μm)に、商品名「UV-2550」(島津製作所製)を用いて、波長:380nm~800nmの可視光線を所定の強度で照射する。この照射により封止用シート40を透過した可視光線の光強度を測定し、次式により算出することができる。
 可視光線透過率(%)=((封止用シート40の透過後の可視光線の光強度)/(可視光線の初期の光強度))×100
The visible light transmittance (%) of the sealing sheet 40 is such that a sealing sheet 40 having a thickness (average thickness): 10 μm is prepared, and the sealing sheet 40 (thickness: 10 μm) is given a trade name. Using “UV-2550” (manufactured by Shimadzu Corporation), visible light having a wavelength of 380 nm to 800 nm is irradiated with a predetermined intensity. The light intensity of visible light transmitted through the sealing sheet 40 by this irradiation can be measured and calculated by the following formula.
Visible light transmittance (%) = ((light intensity of visible light after passing through sealing sheet 40) / (initial light intensity of visible light)) × 100
 なお、光線透過率(%)の前記算出方法は、厚さが10μmでない封止用シート40の光線透過率(%)の算出にも適用することができる。具体的には、ランベルトベールの法則により、10μmでの吸光度A10を下記の通り算出することができる。 In addition, the said calculation method of light transmittance (%) is applicable also to calculation of the light transmittance (%) of the sealing sheet 40 whose thickness is not 10 micrometers. Specifically, the absorbance A 10 at 10 μm can be calculated as follows according to Lambert Beer's law.
 A10=α×L10×C (1)
 (式中、L10は光路長、αは吸光係数、Cは試料濃度を表す)
 また、厚さX(μm)での吸光度Aは下記式(2)により表すことができる。
 A=α×L×C (2)
 更に、厚さ20μmでの吸光度A20は下記式(3)により表すことができる。
 A10=-log1010 (3)
 (式中、T10は厚さ10μmでの光線透過率を表す)
 前記式(1)~(3)より、吸光度Aは、
 A=A10×(L/L10
=-[log10(T10)]×(L/L10
と表すことができる。これにより、厚さX(μm)での光線透過率T(%)は、下記により算出することができる。
 T=10-AX
 但し、A=-[log10(T10)]×(L/L10
A 10 = α × L 10 × C (1)
(Where L 10 is the optical path length, α is the extinction coefficient, and C is the sample concentration)
Also, the absorbance A X of a thickness X ([mu] m) can be represented by the following formula (2).
A X = α × L X × C (2)
Furthermore, the absorbance A 20 at a thickness of 20 μm can be expressed by the following formula (3).
A 10 = −log 10 T 10 (3)
(Wherein, T 10 represents a light transmittance at a thickness of 10 [mu] m)
From the equation (1) to (3), the absorbance A X is
A X = A 10 × (L X / L 10 )
= − [Log 10 (T 10 )] × (L X / L 10 )
It can be expressed as. Thereby, the light transmittance T X (%) at the thickness X (μm) can be calculated as follows.
T X = 10 -AX
However, A X = − [log 10 (T 10 )] × (L X / L 10 )
 本実施形態では、封止用シートの光線透過率(%)を求める際の封止用シートの厚さ(平均厚さ)は10μmであるが、この封止用シートの厚さは、あくまでも封止用シートの光線透過率(%)を求める際の厚さであり、本発明における封止用シートが10μmであることを意味するものではない。 In this embodiment, the thickness (average thickness) of the sealing sheet when determining the light transmittance (%) of the sealing sheet is 10 μm. However, the thickness of the sealing sheet is only sealed. It is the thickness at the time of obtaining the light transmittance (%) of the stop sheet, and does not mean that the sealing sheet in the present invention is 10 μm.
 封止用シート40の光線透過率(%)は、樹脂成分の種類やその含有量、着色剤(顔料や染料など)の種類やその含有量、充填材の種類やその含有量などによりコントロールすることができる。 The light transmittance (%) of the sealing sheet 40 is controlled by the type and content of the resin component, the type and content of the colorant (pigment, dye, etc.), the type and content of the filler, and the like. be able to.
 なお、封止用シート40には、上記の各成分以外に必要に応じて、他の添加剤を適宜配合できる。 In addition to the above components, other additives can be appropriately added to the sealing sheet 40 as necessary.
 封止用シート40の厚さは、特に限定されないが、封止用シートとして使用する観点から、例えば、50μm~2000μmである。 The thickness of the sealing sheet 40 is not particularly limited, but is, for example, 50 μm to 2000 μm from the viewpoint of use as a sealing sheet.
 また、封止用シート40の平面視での面積、及び、厚さは、封止体58形成完了時(図3参照)の高さがリング部材63の高さと同一となる程度となるように設定することが好ましい。ただし、リング部材63に形成された溝63aにより余剰樹脂を逃がすことができることから、やや多めとしてもよい。これにより、樹脂が行き届かない箇所を発生させることなく、封止体58を形成することが可能となる。 Also, the area and thickness of the sealing sheet 40 in plan view are such that the height when the sealing body 58 is formed (see FIG. 3) is the same as the height of the ring member 63. It is preferable to set. However, since the excess resin can be released by the groove 63a formed in the ring member 63, a slightly larger amount may be used. Thereby, it becomes possible to form the sealing body 58 without generating the location where resin does not reach.
 封止用シート40の製造方法は特に限定されないが、封止用シート40を形成するための樹脂組成物の混練物を調製し、得られた混練物を塗工する方法や、得られた混練物をシート状に塑性加工する方法が好ましい。これにより、溶剤を使用せずに封止用シート40を作製できるので、半導体チップ53が揮発した溶剤により影響を受けることを抑制することができる。 Although the manufacturing method of the sealing sheet 40 is not particularly limited, a method of preparing a kneaded product of the resin composition for forming the sealing sheet 40 and coating the obtained kneaded product, or the obtained kneading A method of plastically processing an object into a sheet is preferable. Thereby, since the sheet | seat 40 for sealing can be produced without using a solvent, it can suppress that the semiconductor chip 53 is influenced by the solvent which volatilized.
 具体的には、後述の各成分をミキシングロール、加圧式ニーダー、押出機などの公知の混練機で溶融混練することにより混練物を調製し、得られた混練物を塗工又は塑性加工によりシート状にする。混練条件として、温度は、上述の各成分の軟化点以上であることが好ましく、例えば30~150℃、エポキシ樹脂の熱硬化性を考慮すると、好ましくは40~140℃、さらに好ましくは60~120℃である。時間は、例えば1~30分間、好ましくは5~15分間である。 Specifically, a kneaded product is prepared by melt-kneading each component described below with a known kneader such as a mixing roll, a pressure kneader, or an extruder, and the obtained kneaded product is coated or plastically processed into a sheet. Shape. As the kneading conditions, the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 to 150 ° C., and preferably 40 to 140 ° C., more preferably 60 to 120 in consideration of the thermosetting property of the epoxy resin. ° C. The time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes.
 混練は、減圧条件下(減圧雰囲気下)で行うことが好ましい。これにより、脱気できるとともに、混練物への気体の侵入を防止できる。減圧条件下の圧力は、好ましくは0.1kg/cm以下、より好ましくは0.05kg/cm以下である。減圧下の圧力の下限は特に限定されないが、例えば、1×10-4kg/cm以上である。 The kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere). Thereby, while being able to deaerate, the penetration | invasion of the gas to a kneaded material can be prevented. The pressure under reduced pressure is preferably 0.1 kg / cm 2 or less, more preferably 0.05 kg / cm 2 or less. The lower limit of the pressure under reduced pressure is not particularly limited, but is, for example, 1 × 10 −4 kg / cm 2 or more.
 混練物を塗工して封止用シート40を形成する場合、溶融混練後の混練物は、冷却することなく高温状態のままで塗工することが好ましい。塗工方法としては特に制限されず、バーコート法、ナイフコート法,スロットダイ法等を挙げることができる。塗工時の温度としては、上述の各成分の軟化点以上が好ましく、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは50~140℃、さらに好ましくは70~120℃である。 When the kneaded material is applied to form the sealing sheet 40, the kneaded material after melt-kneading is preferably applied in a high temperature state without cooling. The coating method is not particularly limited, and examples thereof include a bar coating method, a knife coating method, and a slot die method. The temperature at the time of coating is preferably not less than the softening point of each component described above, and considering the thermosetting property and moldability of the epoxy resin, for example, 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C.
 混練物を塑性加工して封止用シート40を形成する場合、溶融混練後の混練物は、冷却することなく高温状態のままで塑性加工することが好ましい。塑性加工方法としては特に制限されず、平板プレス法、Tダイ押出法、スクリューダイ押出法、ロール圧延法、ロール混練法、インフレーション押出法、共押出法、カレンダー成形法などなどが挙げられる。塑性加工温度としては上述の各成分の軟化点以上が好ましく、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは50~140℃、さらに好ましくは70~120℃である。 When the kneaded material is plastically processed to form the sealing sheet 40, it is preferable that the kneaded material after melt-kneading is plastically processed in a high temperature state without cooling. The plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T-die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendar molding method. The plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
 なお、封止用シート40は、適当な溶剤に封止用シート40を形成するための樹脂等を溶解、分散させてワニスを調整し、このワニスを塗工して得ることもできる。 The sealing sheet 40 can be obtained by dissolving and dispersing a resin or the like for forming the sealing sheet 40 in an appropriate solvent to adjust the varnish and coating the varnish.
 [封止用シートと積層体とを配置する工程]
 封止用シートを準備する工程の後、図2に示すように、下側加熱板62上に積層体50を半導体チップ53が仮固定された面を上にして配置するとともに、積層体50の半導体チップ53が仮固定された面上に封止用シート40を配置する。この際、封止用シート40は、平面視で、リング部材63で囲まれた封止領域63b内に収まるように配置する。この工程においては、下側加熱板62上にまず積層体50を配置し、その後、積層体50上に封止用シート40を配置してもよく、積層体50上に封止用シート40を先に積層し、その後、積層体50と封止用シート40とが積層された積層物を下側加熱板62上に配置してもよい。
[Step of arranging sealing sheet and laminate]
After the step of preparing the sealing sheet, as shown in FIG. 2, the stacked body 50 is disposed on the lower heating plate 62 with the surface on which the semiconductor chip 53 is temporarily fixed facing upward. The sealing sheet 40 is disposed on the surface on which the semiconductor chip 53 is temporarily fixed. At this time, the sealing sheet 40 is disposed so as to be accommodated in the sealing region 63b surrounded by the ring member 63 in plan view. In this step, the laminated body 50 may be first disposed on the lower heating plate 62, and then the sealing sheet 40 may be disposed on the laminated body 50, and the sealing sheet 40 may be disposed on the laminated body 50. A laminate in which the laminate 50 and the sealing sheet 40 are laminated may be disposed on the lower heating plate 62 after being laminated first.
 [封止体を形成する工程]
 次に、図3に示すように、下側加熱板62と上側加熱板64とにより熱プレスして、半導体チップ53を封止用シート40に埋め込み、半導体チップ53が封止用シート40に埋め込まれた封止体58を形成する(工程C)。封止用シート40は、半導体チップ53及びそれに付随する要素を外部環境から保護するための封止樹脂として機能することとなる。これにより、仮固定用シート60上に仮固定されている半導体チップ53が封止用シート40に埋め込まれた封止体58が得られる。積層体50がリング部材63を有するため、この工程Cにおいて、半導体チップ53を封止用シート40に埋め込む際、リング部材63により封止用シート40を構成する樹脂が平面方向に流されることを抑制することができる。その結果、樹脂の流動によりチップが埋め込み前の位置から移動することを抑制することができる。
[Step of forming sealing body]
Next, as shown in FIG. 3, the lower heating plate 62 and the upper heating plate 64 are hot pressed to embed the semiconductor chip 53 in the sealing sheet 40, and the semiconductor chip 53 is embedded in the sealing sheet 40. The sealed body 58 is formed (step C). The sealing sheet 40 functions as a sealing resin for protecting the semiconductor chip 53 and its accompanying elements from the external environment. Thereby, the sealing body 58 in which the semiconductor chip 53 temporarily fixed on the temporary fixing sheet 60 is embedded in the sealing sheet 40 is obtained. Since the stacked body 50 includes the ring member 63, in this step C, when the semiconductor chip 53 is embedded in the sealing sheet 40, the ring member 63 causes the resin constituting the sealing sheet 40 to flow in the planar direction. Can be suppressed. As a result, it is possible to prevent the chip from moving from the position before embedding due to the flow of the resin.
 なお、図3に示すように、剥離ライナー41を設けたまま、剥離しない状態で熱プレスを行なう場合、リング部材63に形成された溝63aの高さ方向の幅は、剥離ライナー41の厚さよりも大きいことが好ましい。これにより、封止体58形成時の余剰樹脂を溝63aから外部に逃がすことが可能となる。 As shown in FIG. 3, in the case where the heat pressing is performed in a state where the release liner 41 is not provided and the release liner 41 is provided, the width in the height direction of the groove 63 a formed in the ring member 63 is larger than the thickness of the release liner 41. Is also preferably large. As a result, it is possible to allow excess resin at the time of forming the sealing body 58 to escape from the groove 63a.
 半導体チップ53を封止用シート40に埋め込む際の熱プレス条件としては、特に限定されないが、温度が、例えば、40~100℃、好ましくは50~90℃であり、圧力が、例えば、0.1~10MPa、好ましくは0.5~8MPaであり、時間が、例えば0.3~10分間、好ましくは0.5~5分間である。これにより、半導体チップ53が封止用シート40に埋め込まれた半導体装置を得ることができる。また、封止用シート40の半導体チップ53及び仮固定用シート60への密着性および追従性の向上を考慮すると、減圧条件下においてプレスすることが好ましい。
 前記減圧条件としては、圧力が、例えば、0.1~5kPa、好ましくは、0.1~100Paであり、減圧保持時間(減圧開始からプレス開始までの時間)が、例えば、5~600秒であり、好ましくは、10~300秒である。
The hot press conditions for embedding the semiconductor chip 53 in the sealing sheet 40 are not particularly limited, but the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C., and the pressure is, for example, 0. The pressure is 1 to 10 MPa, preferably 0.5 to 8 MPa, and the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes. Thereby, a semiconductor device in which the semiconductor chip 53 is embedded in the sealing sheet 40 can be obtained. In view of improving the adhesion and followability of the sealing sheet 40 to the semiconductor chip 53 and the temporary fixing sheet 60, it is preferable to press the sheet under a reduced pressure condition.
As the pressure reducing conditions, the pressure is, for example, 0.1 to 5 kPa, preferably 0.1 to 100 Pa, and the reduced pressure holding time (the time from the start of pressure reduction to the start of pressing) is, for example, 5 to 600 seconds. Yes, preferably 10 to 300 seconds.
 [剥離ライナー剥離工程]
 次に、剥離ライナー41を剥離する(図4参照)。
[Release liner peeling process]
Next, the release liner 41 is peeled (see FIG. 4).
 [熱硬化工程]
 次に、封止用シート40を熱硬化させる。具体的には、例えば、仮固定用シート60上に仮固定されている半導体チップ53が封止用シート40に埋め込まれた封止体58全体を加熱する。
[Thermosetting process]
Next, the sealing sheet 40 is thermally cured. Specifically, for example, the entire sealing body 58 in which the semiconductor chip 53 temporarily fixed on the temporary fixing sheet 60 is embedded in the sealing sheet 40 is heated.
 熱硬化処理の条件として、加熱温度が好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限が、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間が、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限が、好ましくは180分以下、より好ましくは120分以下である。また、必要に応じて加圧してもよく、好ましくは0.1MPa以上、より好ましくは0.5MPa以上である。一方、上限は好ましくは10MPa以下、より好ましくは5MPa以下である。 As the conditions for the thermosetting treatment, the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher. On the other hand, the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The heating time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less. Moreover, you may pressurize as needed, Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more. On the other hand, the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
 [熱膨張性粘着剤層剥離工程]
 次に、図5に示すように、仮固定用シート60を熱膨張させることにより、仮固定用シート60と封止体58及びリング部材63との間で剥離を行う。あるいは、支持体61と仮固定用シート60との界面で剥離を行い、その後、仮固定用シート60と封止体58及びリング部材63との界面で熱膨張による剥離を行うという手順も好適に採用することができる。いずれも場合であっても、仮固定用シート60を加熱して熱膨張させその粘着力を低下させることで、仮固定用シート60と封止体58及びリング部材63との界面での剥離を容易に行うことができる。熱膨張の条件としては、上述の「熱膨張性粘着剤層の熱膨張方法」の欄の条件を好適に採用することができる。特に、熱膨張性粘着剤層は、前記熱硬化工程における加熱では剥離せず、この熱膨張性粘着剤層剥離工程における加熱において剥離する構成であることが好ましい。
[Heat-expandable pressure-sensitive adhesive layer peeling step]
Next, as shown in FIG. 5, the temporary fixing sheet 60 is thermally expanded to separate the temporary fixing sheet 60 from the sealing body 58 and the ring member 63. Alternatively, a procedure of performing peeling at the interface between the support 61 and the temporary fixing sheet 60 and then performing thermal separation at the interface between the temporary fixing sheet 60 and the sealing body 58 and the ring member 63 is also preferable. Can be adopted. In either case, the temporary fixing sheet 60 is heated and thermally expanded to reduce its adhesive force, thereby peeling at the interface between the temporary fixing sheet 60 and the sealing body 58 and the ring member 63. It can be done easily. As the conditions for thermal expansion, the conditions in the above-mentioned column “Thermal expansion method for thermally expandable pressure-sensitive adhesive layer” can be preferably employed. In particular, it is preferable that the heat-expandable pressure-sensitive adhesive layer has a structure that does not peel off by heating in the thermosetting step but peels off by heating in the heat-expandable pressure-sensitive adhesive layer peeling step.
 [リング部材を取り外す工程]
 次に、リング部材63から封止体58から取り外す。取り外しは、封止体58に、封止体58の厚さ方向に(リング63の高さ方向)に力を加えることにより、行なうことができる。
[Step of removing ring member]
Next, the ring member 63 is detached from the sealing body 58. The removal can be performed by applying a force to the sealing body 58 in the thickness direction of the sealing body 58 (the height direction of the ring 63).
 [封止用シートを研削する工程]
 次に、必要に応じて、図6に示すように、封止体58の封止用シート40を研削して半導体チップ53の裏面53cを表出させる。封止用シート40を研削する方法としては、特に限定されず、例えば、高速回転する砥石を用いるグラインディング法を挙げることができる。
[Process of grinding sealing sheet]
Next, as necessary, as shown in FIG. 6, the sealing sheet 40 of the sealing body 58 is ground to expose the back surface 53 c of the semiconductor chip 53. The method for grinding the sealing sheet 40 is not particularly limited, and examples thereof include a grinding method using a grindstone that rotates at high speed.
 (再配線形成工程)
 本実施形態ではさらに、封止体58の半導体チップ53の回路形成面53aに再配線69を形成する再配線形成工程を含むことが好ましい。再配線形成工程では、上記仮固定用シート60の剥離後、上記露出した半導体チップ53と接続する再配線69を封止体58上に形成する(図7参照)。
(Rewiring process)
In the present embodiment, it is preferable to further include a rewiring forming step of forming a rewiring 69 on the circuit forming surface 53 a of the semiconductor chip 53 of the sealing body 58. In the rewiring forming step, after the temporary fixing sheet 60 is peeled off, a rewiring 69 connected to the exposed semiconductor chip 53 is formed on the sealing body 58 (see FIG. 7).
 再配線の形成方法としては、例えば、露出している半導体チップ53上へ真空成膜法などの公知の方法を利用して金属シード層を形成し、セミアディティブ法などの公知の方法により、再配線69を形成することができる。 As a method of forming the rewiring, for example, a metal seed layer is formed on the exposed semiconductor chip 53 by using a known method such as a vacuum film forming method, and the rewiring is performed by a known method such as a semi-additive method. Wiring 69 can be formed.
 かかる後に、再配線69及び封止体58上へポリイミドやPBOなどの絶縁層を形成してもよい。 Thereafter, an insulating layer such as polyimide or PBO may be formed on the rewiring 69 and the sealing body 58.
 (バンプ形成工程)
 次いで、形成した再配線69上にバンプ67を形成するバンピング加工を行ってもよい(図7参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。
(Bump formation process)
Next, bumping processing for forming bumps 67 on the formed rewiring 69 may be performed (see FIG. 7). The bumping process can be performed by a known method such as a solder ball or solder plating.
 (ダイシング工程)
 最後に、半導体チップ53、封止用シート40及び再配線69などの要素からなる積層体のダイシングを行う(図8参照)。これにより、チップ領域の外側に配線を引き出した半導体装置59を得ることができる。
(Dicing process)
Finally, dicing is performed on the laminated body including elements such as the semiconductor chip 53, the sealing sheet 40, and the rewiring 69 (see FIG. 8). Thereby, the semiconductor device 59 in which the wiring is drawn outside the chip region can be obtained.
 上述した実施形態では、壁部としてのリング部材63の上面に溝63aが形成されている場合について説明した。しかしながら、本発明においてはこの例に限定されない。図9は、他の実施形態に係る半導体装置の製造方法を説明するための正面断面図である。図9に示すように、本発明においては、壁部(図9の例ではリング部材73)の内周側面に凹部73aが設けられていてもよい。凹部73aの数や形成箇所、大きさ等は、逃す樹脂の量等に応じて、適宜設定可能である。壁部の内周側面に凹部が設けられている場合も、溝が設けられている場合と同様、工程Cにおいて、半導体チップを封止用シートに埋め込む際、壁部により流動することが抑制された樹脂を逃がすことができる。その結果、封止体を好適に形成することが可能となる。 In the above-described embodiment, the case where the groove 63a is formed on the upper surface of the ring member 63 as the wall portion has been described. However, the present invention is not limited to this example. FIG. 9 is a front cross-sectional view for explaining a method for manufacturing a semiconductor device according to another embodiment. As shown in FIG. 9, in this invention, the recessed part 73a may be provided in the internal peripheral side surface of the wall part (The ring member 73 in the example of FIG. 9). The number, location, size, and the like of the recesses 73a can be set as appropriate according to the amount of resin to be released. Even in the case where the concave portion is provided on the inner peripheral side surface of the wall portion, in the same manner as in the case where the groove is provided, when the semiconductor chip is embedded in the sealing sheet in step C, it is suppressed from flowing by the wall portion. Resin can be released. As a result, it becomes possible to form a sealing body suitably.
 上述した実施形態では、本発明の壁部が、リング部材63やリング部材73である場合について説明した。しかしながら、本発明における壁部は、この例に限定されない。図10は、他の実施形態に係る半導体装置の製造方法を説明するための正面断面図である。図10に示すように、壁部83は、平板状の支持体81の外周部分から上側に立ち上がるように、支持体81に一体的に形成されている。このように、本発明における壁部は、支持体に一体的に形成されていてもよい。壁部が支持体81に一体的に形成されている場合も、リング部材を用いた場合と同様、壁部83により封止用シート40を構成する樹脂が平面方向に流されることを抑制することが可能となる。 In the above-described embodiment, the case where the wall portion of the present invention is the ring member 63 or the ring member 73 has been described. However, the wall portion in the present invention is not limited to this example. FIG. 10 is a front cross-sectional view for explaining a method for manufacturing a semiconductor device according to another embodiment. As shown in FIG. 10, the wall 83 is integrally formed with the support 81 so as to rise upward from the outer peripheral portion of the flat support 81. Thus, the wall part in this invention may be integrally formed in the support body. Even when the wall portion is formed integrally with the support body 81, the resin constituting the sealing sheet 40 is prevented from flowing in the planar direction by the wall portion 83, as in the case of using the ring member. Is possible.
 上述した実施形態では、上側加熱板64の平面視での径がリング部材63、リング部材73、及び、壁部83の内径よりも大きい場合について説明した。しかしながら、本発明ではこの例に限定されず、上側加熱板の平面視での径は、壁部の内径よりも小さくてもよい。すなわち、上側加熱板が壁部の内部に入り込んでもよい。この場合、壁部の高さよりも封止用シートの厚さが薄い場合にも、好適に封止体を形成することができる。 In the embodiment described above, the case where the diameter of the upper heating plate 64 in plan view is larger than the inner diameters of the ring member 63, the ring member 73, and the wall portion 83 has been described. However, the present invention is not limited to this example, and the diameter of the upper heating plate in plan view may be smaller than the inner diameter of the wall portion. That is, the upper heating plate may enter the inside of the wall portion. In this case, the sealing body can be suitably formed even when the thickness of the sealing sheet is thinner than the height of the wall portion.
 上述した実施形態では、壁部が平面視で円形である場合について説明した。しかしながら、本発明において壁部は、矩形であってもよい。この場合、封止用シートの形状も壁部の形状に合わせて、適宜調整すればよい。 In the above-described embodiment, the case where the wall portion is circular in plan view has been described. However, in the present invention, the wall portion may be rectangular. In this case, the shape of the sealing sheet may be appropriately adjusted according to the shape of the wall portion.
 本発明は、前記工程A、前記工程B、及び、前記工程Cさえ行なわれればよく、それ以外の工程は任意であり、行なってもよく行なわなくてもよい。 In the present invention, only the step A, the step B, and the step C need to be performed, and other steps are optional and may or may not be performed.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。また、各例中、部は特記がない限りいずれも重量基準である。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. In each example, all parts are based on weight unless otherwise specified.
 <封止用シートの準備>
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの封止用シートAを作製した。
<Preparation of sealing sheet>
The following components were blended with a mixer, melt kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T-die to prepare a sealing sheet A having a thickness of 500 μm.
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))        332.7部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
            351.9部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                               11.7部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)                                8800部
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                               5部
 カーボンブラック(三菱化学(株)製、#20)
         30部
エラストマー:スチレン-イソブチレン-スチレントリブロック共重合体((株)カネカ製、SIBSTAR 072T)                    298.4部
Epoxy resin: Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 332.7 parts Phenol resin: phenol resin having a biphenylaralkyl skeleton (Maywa) Made by Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.))
351.9 parts Curing accelerator: Imidazole-based catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW) 11.7 parts Inorganic filler: Spherical fused silica powder (manufactured by Denki Kagaku Kogyo, FB-9454) 8800 parts Silane coupling agent: Epoxy group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) 5 parts Carbon black (manufactured by Mitsubishi Chemical Corporation, # 20)
30 parts elastomer: styrene-isobutylene-styrene triblock copolymer (manufactured by Kaneka Corporation, SIBSTAR 072T) 298.4 parts
 <仮固定シートの準備>
 仮固定シートAとして、熱発泡テープ(日東電工社製、製品名:リバアルファ(品番:No.3195V)、厚さ:100μm)を準備した。
<Preparation of temporary fixing sheet>
As the temporary fixing sheet A, a thermal foam tape (manufactured by Nitto Denko Corporation, product name: Riva Alpha (product number: No. 3195V), thickness: 100 μm) was prepared.
 <支持体の準備>
 支持体Aとして、材質がガラスであり、直径:330mm、厚み:1.5mmの円形のものを準備した。
<Preparation of support>
As the support A, a circular material having a diameter of 330 mm and a thickness of 1.5 mm was prepared.
 <リング部材>
 内径:300mm、外径:330mm、高さ:0.7mmの筒状のリング部材A(材質:SUS304)を準備した。
<Ring member>
A cylindrical ring member A (material: SUS304) having an inner diameter: 300 mm, an outer diameter: 330 mm, and a height: 0.7 mm was prepared.
 [チップシフト評価]
 (実施例1)
 封止用シートAを直径295mmの円形に切り出した。また、仮固定シートAを支持体Aに貼りつけた後、支持体Aの大きさにくり抜いた。
 次に、半導体チップ(7mm角、厚み500μm)を、間隔(チップの端とチップの端との間隔)4.8mmで仮固定シートA上に仮固定した。この際、支持体の中央と、最外周に配置された半導体チップの内10個のチップの角との距離を測定顕微鏡 STM6(オリンパス 社製)を用いて測定した。なお、半導体チップは、440個配列した。
 次に、リング部材Aを貼り付けた。
 次に、作製した封止用シートAを、半導体チップ上に配置した。この際、平面視で封止用シートAの中心が仮固定シートAの中心と一致するように配置した。
 次に、真空プレス装置(商品名「VACUUM ACE」、ミカドテクノス社製)を用いて、真空圧力10Pa、プレス圧力0.5MPa、プレス温度90℃、プレス時間60秒で熱プレスした。
[Chip shift evaluation]
Example 1
The sealing sheet A was cut into a circle with a diameter of 295 mm. Further, after the temporary fixing sheet A was attached to the support A, it was cut out to the size of the support A.
Next, a semiconductor chip (7 mm square, thickness 500 μm) was temporarily fixed on the temporary fixing sheet A at an interval (space between the end of the chip and the end of the chip) of 4.8 mm. At this time, the distance between the center of the support and the corners of 10 of the semiconductor chips arranged on the outermost periphery was measured using a measuring microscope STM6 (Olympus). Note that 440 semiconductor chips were arranged.
Next, the ring member A was affixed.
Next, the produced sealing sheet A was placed on a semiconductor chip. Under the present circumstances, it arrange | positioned so that the center of the sheet | seat A for sealing may correspond with the center of the temporarily fixed sheet | seat A by planar view.
Next, using a vacuum press apparatus (trade name “VACUUM ACE”, manufactured by Mikado Technos), hot pressing was performed at a vacuum pressure of 10 Pa, a press pressure of 0.5 MPa, a press temperature of 90 ° C., and a press time of 60 seconds.
 その後、成形物の支持体の中央と、各半導体チップの角の距離を測定したところ、30μm以上移動しているチップは無かった。 After that, when the distance between the center of the support of the molded product and the corner of each semiconductor chip was measured, no chip was moved by 30 μm or more.
 (比較例1)
 リング部材を貼りつけなかったこと以外は、実施例1と同様の操作を行った。成形物の支持体の中央と、各半導体チップの角の距離を測定したところ、すべてのチップが30μm以上移動していることが確認された。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the ring member was not attached. When the distance between the center of the support of the molded product and the corner of each semiconductor chip was measured, it was confirmed that all the chips were moved by 30 μm or more.
40 封止用シート
50 積層体
53 半導体チップ
53a 仮固定領域
58 封止体
59 半導体装置
60 仮固定用シート
61、81 支持体
63、73 リング部材
63a 溝
63b 封止領域
73a 凹部
83 壁
40 Sealing sheet 50 Laminated body 53 Semiconductor chip 53a Temporary fixing region 58 Sealing body 59 Semiconductor device 60 Temporary fixing sheet 61, 81 Support member 63, 73 Ring member 63a Groove 63b Sealing region 73a Recessed part 83 Wall

Claims (4)

  1.  仮固定用シートと、前記仮固定用シート上に仮固定された半導体チップと、前記半導体チップが仮固定されている仮固定領域を囲むように、前記仮固定用シート面よりも上側に突出した壁部とを有する積層体を準備する工程Aと、
     平面視での形状が、前記壁部で囲まれた封止領域内に収まる形状の封止用シートを準備する工程Bと、
     前記半導体チップを前記封止領域内で前記封止用シートに埋め込み、前記半導体チップが前記封止用シートに埋め込まれた封止体を形成する工程Cと、
    を含むことを特徴とする半導体装置の製造方法。
    A temporary fixing sheet, a semiconductor chip temporarily fixed on the temporary fixing sheet, and a temporary fixing region where the semiconductor chip is temporarily fixed protruded above the temporary fixing sheet surface. Step A for preparing a laminate having a wall portion;
    Step B for preparing a sealing sheet having a shape that fits in a sealing region surrounded by the wall portion in a plan view;
    A step C of embedding the semiconductor chip in the sealing sheet in the sealing region, and forming a sealing body in which the semiconductor chip is embedded in the sealing sheet;
    A method for manufacturing a semiconductor device, comprising:
  2.  前記壁部は、前記仮固定用シート上に設けられていることを特徴とする請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the wall portion is provided on the temporary fixing sheet.
  3.  前記仮固定用シートは、支持体上に設けられており、
     前記壁部は、前記支持体に一体的に形成されていることを特徴とする請求項1に記載の半導体装置の製造方法。
    The temporary fixing sheet is provided on a support,
    The method for manufacturing a semiconductor device according to claim 1, wherein the wall portion is formed integrally with the support.
  4.  前記壁部に、前記封止体形成時の余剰樹脂を逃がすための溝又は凹部が設けられていることを特徴とする請求項1~3のいずれか1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 3, wherein a groove or a recess for allowing excess resin to escape when the sealing body is formed is provided in the wall portion.
PCT/JP2014/072721 2013-09-09 2014-08-29 Method for manufacturing semiconductor device WO2015033867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013185911A JP2015053408A (en) 2013-09-09 2013-09-09 Semiconductor device manufacturing method
JP2013-185911 2013-09-09

Publications (1)

Publication Number Publication Date
WO2015033867A1 true WO2015033867A1 (en) 2015-03-12

Family

ID=52628341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072721 WO2015033867A1 (en) 2013-09-09 2014-08-29 Method for manufacturing semiconductor device

Country Status (3)

Country Link
JP (1) JP2015053408A (en)
TW (1) TW201515123A (en)
WO (1) WO2015033867A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199819A1 (en) * 2015-06-11 2016-12-15 三井化学東セロ株式会社 Electronic-device-protecting film, electronic-device-protecting member, method for manufacturing electronic device, and method for manufacturing package
CN107851602A (en) * 2015-06-29 2018-03-27 三井化学东赛璐株式会社 Semiconductor device manufacture film
WO2018194133A1 (en) * 2017-04-21 2018-10-25 三井化学株式会社 Semiconductor substrate manufacturing method, semiconductor device, and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165940A (en) * 2009-01-16 2010-07-29 Shinko Electric Ind Co Ltd Resin sealing method of semiconductor device
JP2013016754A (en) * 2011-07-06 2013-01-24 Hitachi Chem Co Ltd Semiconductor element mounting member, semiconductor element mounted substrate and semiconductor device
JP2013131552A (en) * 2011-12-20 2013-07-04 Tdk Corp Manufacturing method of electronic circuit module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165940A (en) * 2009-01-16 2010-07-29 Shinko Electric Ind Co Ltd Resin sealing method of semiconductor device
JP2013016754A (en) * 2011-07-06 2013-01-24 Hitachi Chem Co Ltd Semiconductor element mounting member, semiconductor element mounted substrate and semiconductor device
JP2013131552A (en) * 2011-12-20 2013-07-04 Tdk Corp Manufacturing method of electronic circuit module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483131B2 (en) 2015-06-11 2019-11-19 Mitsui Chemicals Tohcello, Inc. Electronic-device-protecting film, electronic-device-protecting member, method for manufacturing electronic device, and method for manufacturing package
JPWO2016199819A1 (en) * 2015-06-11 2018-01-11 三井化学東セロ株式会社 Electronic component protective film, electronic component protective member, electronic component manufacturing method, and package manufacturing method
CN107735855A (en) * 2015-06-11 2018-02-23 三井化学东赛璐株式会社 Electronic unit diaphragm, electronic unit protection component, the manufacture method of electronic unit and the manufacture method of packaging body
WO2016199819A1 (en) * 2015-06-11 2016-12-15 三井化学東セロ株式会社 Electronic-device-protecting film, electronic-device-protecting member, method for manufacturing electronic device, and method for manufacturing package
US20180158697A1 (en) * 2015-06-11 2018-06-07 Mitsui Chemicals Tohcello, Inc. Electronic-device-protecting film, electronic-device-protecting member, method for manufacturing electronic device, and method for manufacturing package
CN107735855B (en) * 2015-06-11 2020-09-08 三井化学东赛璐株式会社 Electronic component protective film, electronic component protective member, method for manufacturing electronic component, and method for manufacturing package
CN107851602A (en) * 2015-06-29 2018-03-27 三井化学东赛璐株式会社 Semiconductor device manufacture film
US10858547B2 (en) 2015-06-29 2020-12-08 Mitsui Chemicals Tohcello, Inc. Film for manufacturing semiconductor parts
CN107851602B (en) * 2015-06-29 2021-08-06 三井化学东赛璐株式会社 Film for manufacturing semiconductor component
US11535776B2 (en) 2015-06-29 2022-12-27 Mitsui Chemicals Tohcello, Inc. Film for manufacturing semiconductor parts
JPWO2018194133A1 (en) * 2017-04-21 2020-02-27 三井化学株式会社 Method of manufacturing semiconductor substrate, semiconductor device and method of manufacturing the same
WO2018194133A1 (en) * 2017-04-21 2018-10-25 三井化学株式会社 Semiconductor substrate manufacturing method, semiconductor device, and method for manufacturing same
US10988647B2 (en) 2017-04-21 2021-04-27 Mitsui Chemicals, Inc. Semiconductor substrate manufacturing method, semiconductor device, and method for manufacturing same

Also Published As

Publication number Publication date
JP2015053408A (en) 2015-03-19
TW201515123A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP6066856B2 (en) Semiconductor device manufacturing method and sealing sheet
WO2015025661A1 (en) Sheet for sealing and method for manufacturing semiconductor device
JP5961055B2 (en) Sealing resin sheet, electronic component package manufacturing method, and electronic component package
WO2015098852A1 (en) Electronic component device production method and electronic component sealing sheet
TWI616476B (en) Thermosetting resin sheet and method of manufacturing electronic component package
WO2015019817A1 (en) Method for producing semiconductor package
WO2015037458A1 (en) Method for manufacturing semiconductor device
WO2015019816A1 (en) Method for producing semiconductor package
WO2015015980A1 (en) Production method for semiconductor device
WO2015076088A1 (en) Sealing sheet with separators on both surfaces, and method for manufacturing semiconductor device
WO2015033867A1 (en) Method for manufacturing semiconductor device
WO2014196296A1 (en) Method for manufacturing semiconductor device
WO2016117268A1 (en) Sealing sheet
WO2016031579A1 (en) Method for manufacturing semiconductor device, and sealing sheet
WO2015053081A1 (en) Method for manufacturing semiconductor device
JP2015178635A (en) Thermosetting resin sheet and method of manufacturing electronic component package
US10074582B2 (en) Sealing sheet
JP2015126060A (en) Semiconductor device manufacturing method
WO2014083974A1 (en) Semiconductor-device manufacturing method
WO2016080164A1 (en) Sealing sheet and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841572

Country of ref document: EP

Kind code of ref document: A1