Nothing Special   »   [go: up one dir, main page]

WO2015029715A1 - Method for producing conducting film, and conducting film - Google Patents

Method for producing conducting film, and conducting film Download PDF

Info

Publication number
WO2015029715A1
WO2015029715A1 PCT/JP2014/070610 JP2014070610W WO2015029715A1 WO 2015029715 A1 WO2015029715 A1 WO 2015029715A1 JP 2014070610 W JP2014070610 W JP 2014070610W WO 2015029715 A1 WO2015029715 A1 WO 2015029715A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
copper
less
copper oxide
mass
Prior art date
Application number
PCT/JP2014/070610
Other languages
French (fr)
Japanese (ja)
Inventor
悠史 本郷
佑一 早田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015029715A1 publication Critical patent/WO2015029715A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods

Definitions

  • the present invention relates to a method for manufacturing a conductive film.
  • it is related with the manufacturing method of the electrically conductive film using the composition for electrically conductive film formation containing a copper oxide particle, a copper particle, and a polyhydric alcohol.
  • a dispersion of metal oxide particles is applied to the resin base material by a printing method, and heat treatment is performed to sinter the metal film or wiring on a circuit board.
  • a technique for forming an electrical conduction site is known. Since this method is simpler, energy-saving, and resource-saving than the conventional high-heat / vacuum process (sputtering) or plating process, it is highly anticipated in the development of next-generation electronics.
  • Patent Document 1 discloses a metal oxide dispersion containing a metal oxide having a particle diameter of less than 200 nm and a dispersion medium, wherein the dispersion medium contains a polyhydric alcohol and / or a polyether compound.
  • a method for producing a metal thin film is disclosed, which includes applying a heat treatment after applying an oxide dispersion to a substrate.
  • copper oxide is described as a metal oxide
  • diethylene glycol is described as a polyhydric alcohol.
  • this invention aims at providing the manufacturing method of the electrically conductive film which can form the electrically conductive film which does not generate
  • an object of this invention is to provide the electrically conductive film manufactured using this manufacturing method of an electrically conductive film.
  • the present inventors have found that the mass ratio of the copper particles to the copper oxide particles in the conductive film forming composition, the firing temperature in the conductive film production process, and the conductive film It has been found that the above problem can be solved by controlling the amount of organic residue. That is, it has been found that the above object can be achieved by the following configuration.
  • the manufacturing method of an electrically conductive film provided with the electrically conductive film formation process formed (2) The manufacturing method of the electrically conductive film as described in (1) whose baking temperature is 220 degrees C or less. (3) The manufacturing method of the electrically conductive film as described in (1) or (2) whose baking temperature is 200 degrees C or less. (4) The method for producing a conductive film according to any one of (1) to (3), wherein the amount of organic residue is 5% by mass or more and 10% by mass or less. (5) The ratio of the total mass of copper particles to the total mass of copper oxide particles (total mass of copper particles / total mass of copper oxide particles) is 2.0 or more and 6.0 or less, (1) to ( The method for producing a conductive film according to any one of 4).
  • the value of the ratio of the total mass of polyhydric alcohol to the total mass of copper oxide particles is 1.0 or more and 4.0 or less, (1) The method for producing a conductive film according to any one of (5) to (5). (7) The method for producing a conductive film according to any one of (1) to (6), wherein the resin base material is a polyethylene terephthalate (PET) base material or a polyethylene naphthalate (PEN) base material. (8) The method for producing a conductive film according to any one of (1) to (7), wherein the polyhydric alcohol is ascorbic acid or dihydroxyacetone.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the manufacturing method of the electrically conductive film which can form the electrically conductive film excellent in adhesiveness and electroconductivity can be provided, without generating the curvature of a resin base material.
  • the electrically conductive film manufactured using the manufacturing method of this electrically conductive film can also be provided.
  • the amount of the organic residue in the conductive film is 1 mass at a firing temperature of T D -50 ° C. or less with respect to the coating film formed on the resin substrate having the thermal decomposition temperature T D. It is in the point which performs a baking process so that it may become 20 to 20 mass%. By performing the baking treatment under these conditions, a conductive film excellent in adhesion and conductivity can be formed on the resin base material without causing warpage of the resin base material.
  • the composition for forming a conductive film contains copper oxide particles and copper particles, the value of the ratio of the total mass of copper particles to the total mass of copper oxide particles (total mass of copper particles).
  • the total mass of the copper oxide particles is 1.0 to 8.0.
  • the composition for forming a conductive film contains copper oxide particles.
  • the copper oxide of the copper oxide particles is reduced to metallic copper by a baking treatment, and constitutes metallic copper in the conductive film together with copper particles described later.
  • the average particle diameter of the copper oxide particles is not particularly limited, but is preferably in the range of 10 nm to 100 nm, and more preferably in the range of 20 nm to 50 nm.
  • the average particle diameter of the copper oxide particles is 10 nm or more, the activity on the particle surface does not become too high, the dispersion becomes easy in the composition, and the handleability and storage stability are excellent.
  • the composition can be used as an ink-jet ink composition, and it is easy to form a pattern such as wiring by a printing method, and the composition is made conductive.
  • the conductivity of the obtained conductive film becomes better.
  • the conductivity of the obtained conductive film is further improved.
  • the “copper oxide” in the present invention is a compound that substantially does not contain copper that has not been oxidized. Specifically, in a crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and is derived from a metal. Refers to a compound for which no peak is detected.
  • the phrase “substantially free of copper” means that the copper content is 1% by mass or less in the total mass of the copper oxide particles.
  • copper oxide copper oxide (I) or copper oxide (II) is preferable, and copper (II) oxide is more preferable because it is available at a low cost and has excellent stability in the air. .
  • the well-known copper oxide particle used for the composition for electrically conductive film formation can be used.
  • the copper oxide particles NanoTek (R) CuO, NanoTek (R) Slurry CuO, manufactured by CI Kasei Co., Ltd., NO-0004-HP, NO-0031-HP, manufactured by Sigma Aldrich, manufactured by Sigma Aldrich Copper (II) oxide nanopowder and the like can be used.
  • the average particle diameter of the copper oxide particle in this invention points out an average primary particle diameter.
  • the average particle diameter is determined by measuring the particle diameter (diameter) of at least 50 or more copper oxide particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM) and arithmetically averaging them. In the observation diagram, when the shape of the copper oxide particles is not a perfect circle, the major axis is measured as the diameter.
  • the conductive film-forming composition contains copper particles.
  • the copper particles constitute metal copper in the conductive film together with the metal copper produced by reducing the copper oxide of the copper oxide particles described above by the firing treatment during film formation.
  • the average particle diameter of the copper particles is not particularly limited, but is preferably in the range of 0.1 ⁇ m to 20 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 10 ⁇ m.
  • the electroconductivity of the electrically conductive film obtained as the average particle diameter of a copper particle is 0.1 micrometer or more is more excellent. Moreover, it becomes easy to form fine wiring as the average particle diameter of a copper particle is 20 micrometers or less. It is more preferable that the average particle diameter of the copper particles is in the range of 0.1 ⁇ m or more and 10 ⁇ m or less because the adhesion and conductivity of the conductive film are further improved.
  • the well-known metal copper particle used for the composition for electrically conductive film formation can be used.
  • the average particle diameter of the copper particle in this invention points out an average primary particle diameter.
  • the average particle size is obtained by measuring the particle size (diameter) of at least 50 copper particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM) and arithmetically averaging them.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • a major axis is measured as a diameter.
  • the composition for forming a conductive film contains a polyhydric alcohol. Since the polyhydric alcohol has a reducing property, the copper oxide in the conductive film is reduced and converted to metallic copper during the baking treatment.
  • the polyhydric alcohol is not particularly limited as long as it is a compound having two or more hydroxy groups in one molecule.
  • ethylene glycol diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, 2-butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, 1,1,1- Trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3-propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1,2,4-butanetriol, ascorbic acid Erythorbic acid, sugar alcohols, monosaccharides, disaccharides, trisaccharides and the like.
  • Sugar alcohols include glycerin-containing tritols, erythritol, tetritols such as threitol, pentitols such as arabinitol, xylitol, ribitol (aditol), iditol, galactitol (dulcitol), glucitol (sorbitol), mannitol, etc. Hexitols, boremitol, heptitols such as perseitol, and the like.
  • Monosaccharides include glyceraldehyde, threose, erythrose, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, talose and other aldoses, dihydroxyacetone, erythrulose, xylulose, ribulose And ketoses such as psicose, fructose, sorbose, tagatose, sedoheptulose, and coliose.
  • disaccharides include non-reducing sugars such as sucrose, trehalose, isotrehalose ( ⁇ , ⁇ -trehalose), neotrehalose ( ⁇ , ⁇ -trehalose), galactosucrose, lactulose, lactose, maltose, cellobiose, cordobiose, nigerose, iso
  • examples thereof include reducing sugars such as maltose, sophorose, laminaribiose, gentibiose, turanose, maltulose, palatinose, gentibiurose, mannobiose, melibiose, melibiose, neolactoses, sylabiose, rutinose, rutinulose, vicyanose, xylobiose, and primeverose.
  • trisaccharide examples include nigerotriose, maltotriose, melezitose, maltotriurose, raffinose, and kestose.
  • the polyhydric alcohol includes an enantiomer when the enantiomer is present.
  • ascorbic acid includes L-ascorbic acid and D-ascorbic acid
  • glucose includes D-glucose, L-glucose and the like.
  • the polyhydric alcohol includes a totomer if present.
  • glucose includes ⁇ -glucopyranose, ⁇ -glucopyranose, ⁇ -glucofuranose, ⁇ -glucofuranose, and the like.
  • the composition for forming a conductive film comprises, as necessary, a solvent (dispersion medium) and various additives (leveling agent, coupling agent, viscosity modifier, antioxidant, in addition to copper oxide particles, copper particles and polyhydric alcohol. , Other adhesive components, etc.) may be included within a range not impairing the effects of the present invention.
  • a solvent dispersion medium
  • additives leveling agent, coupling agent, viscosity modifier, antioxidant, in addition to copper oxide particles, copper particles and polyhydric alcohol.
  • Other adhesive components, etc. may be included within a range not impairing the effects of the present invention.
  • the solvent examples include one selected from water, alcohols, ethers, esters, hydrocarbons, and aromatic hydrocarbons, or a compatible mixture of two or more.
  • the solvent is excellent in compatibility with polyhydric alcohols, water, water-soluble alcohols (limited to monohydric alcohols), alkyl ethers derived from water-soluble alcohols (one having 1 or less hydroxy group in one molecule) However, alkyl esters derived from water-soluble alcohols (limited to those having 1 or less hydroxy group in one molecule) or mixtures thereof are preferably used.
  • water what has the purity of the level of ion-exchange water at least is preferable.
  • water-soluble alcohols limited to monohydric alcohols
  • water-soluble alcohols include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, and 1-octanol.
  • alkyl ethers derived from water-soluble alcohols include diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, and methylcyclohexyl ether.
  • diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane and the like at least one selected from diethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran is preferable because the boiling point is not too high and it is difficult to remain after forming the conductive film.
  • alkyl esters derived from water-soluble alcohols include methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, Examples include methyl propionate, ethyl propionate, butyl propionate, and ⁇ -butyrolactone.
  • at least one selected from methyl formate, ethyl formate, and methyl acetate is preferable because it does not have a high boiling point and hardly remains after formation of the conductive film.
  • the main solvent is a solvent having the highest content in the solvent.
  • composition for forming a conductive film of the present invention contains copper oxide particles, copper particles, a polyhydric alcohol, and optionally a solvent and other components, but does not contain an organic compound that is cured by heat or light.
  • the organic compound that is cured by heat or light refers to an organic compound that is cured by heating or an organic compound that is cured by light irradiation.
  • Light irradiation includes electromagnetic wave irradiation.
  • a thermosetting resin is mentioned, for example.
  • the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin (urea resin), unsaturated polyester resin, alkyd resin, polyurethane, and thermosetting polyimide.
  • photocurable resin is mentioned, for example.
  • Examples of the photocurable resin include resins in which polymerization of monomers and oligomers proceeds by activation of a photopolymerization initiator. Further, “does not contain” means that the ratio of the organic compound cured by heat or light to the total of copper oxide particles, copper particles and polyhydric alcohol is 1% by mass or less, and is 0% by mass. It is preferable.
  • the content of the copper particles in the conductive film forming composition is such that the ratio of the total mass of the copper particles to the total mass of the copper oxide particles (total mass of the copper particles / total mass of the copper oxide particles) is 1.0 or more.
  • the amount is 8.0 or less, preferably 2.0 or more and 6.0 or less.
  • the conductive path is increased, so that the conductivity of the obtained conductive film is excellent, and the conductive film forming composition In order to improve fluidity
  • the warp of the resin base material cannot be suppressed during the firing treatment, and when it exceeds 8.0, the produced conductivity The adhesion and conductivity of the film do not reach the required levels.
  • the content of the polyhydric alcohol in the composition for forming a conductive film is not particularly limited, but the ratio of the total mass of the polyhydric alcohol to the total mass of the copper oxide particles (total mass of polyhydric alcohol / copper oxide particles) The total mass) is preferably 0.5 to 4.5 and more preferably 1.0 to 4.0. When the value of the ratio of the total mass of the polyhydric alcohol to the total mass of the copper oxide particles is within this range, the copper oxide can be sufficiently reduced, and the conductivity of the obtained conductive film is more excellent.
  • the content is not particularly limited, but the increase in the viscosity of the composition for forming a conductive film is suppressed, and the composition for forming a conductive film is superior in terms of handleability. 10 mass% or more and 60 mass% or less are preferable with respect to a total mass, and 20 mass% or more and 50 mass% or less are more preferable.
  • the viscosity of the conductive film forming composition is preferably adjusted to a viscosity suitable for printing applications such as inkjet and screen printing.
  • a viscosity suitable for printing applications such as inkjet and screen printing.
  • inkjet discharge 1 to 50 cP is preferable, and 1 to 40 cP is more preferable.
  • screen printing it is preferably from 1,000 to 100,000 cP, more preferably from 10,000 to 80,000 cP.
  • the method for preparing the conductive film forming composition is not particularly limited, and a known method can be adopted.
  • a known method can be adopted.
  • an ultrasonic method for example, treatment with an ultrasonic homogenizer
  • a mixer method 3
  • a composition can be obtained by dispersing the components by a known means such as the present roll method or ball mill method.
  • the manufacturing method of the electrically conductive film of this invention has a coating-film formation process and an electrically conductive film formation process at least. Below, each process is explained in full detail.
  • a coating-film formation process is a process of providing the composition for electrically conductive film formation mentioned above on a resin base material, and forming a coating film.
  • the coating film before baking processing is obtained by this process. You may dry a coating film before the electrically conductive film formation process mentioned later.
  • Resin base materials include low density polyethylene resin base materials, high density polyethylene resin base materials, ABS resin base materials, acrylic resin base materials, styrene resin base materials, vinyl chloride resin base materials, polyester resin base materials (polyethylene terephthalate ( PET) base material, polyethylene naphthalate (PEN) base material), polyacetal resin base material, polysulfone resin base material, polyetherimide resin base material (polyimide resin base material), polyether ketone resin base material, cellulose derivative base material, Paper-phenolic resin substrate (paper phenolic resin substrate), paper-epoxy resin substrate (paper epoxy resin substrate), paper-polyester resin substrate (paper polyester resin substrate), glass cloth-epoxy resin substrate ( Glass epoxy resin substrate), glass cloth-polyimide resin substrate (glass polyimide resin substrate), or glass Scan cloth - fluororesin base material made of (Garasufu' containing resin base material) and the like.
  • a polyethylene resin base materials include low density polyethylene resin base materials, high density polyethylene resin
  • the thermal decomposition temperature T D of the resin base material is a 10% decomposition temperature (° C.), specifically, using a differential thermogravimetric simultaneous measurement device (TG / DTA), thermogravimetric in a nitrogen atmosphere Is the temperature at the time of 10% weight reduction when measured (10% weight reduction temperature) (° C.).
  • T D is different.
  • the method for applying the conductive film-forming composition onto the resin substrate is not particularly limited, and a known method can be employed. For example, coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
  • the shape of application is not particularly limited, and may be a planar shape covering the entire surface of the resin base material or a pattern shape (for example, a wiring shape or a dot shape).
  • the coating amount of the composition for forming a conductive film on a resin substrate may be appropriately adjusted according to the desired thickness of the conductive film. Usually, the thickness (thickness) of the coating film is 0.01 to 1000 ⁇ m is preferable, 0.1 to 100 ⁇ m is more preferable, 0.1 to 50 ⁇ m is more preferable, and 1 to 30 ⁇ m is even more preferable.
  • This step is a step in which the formed coating film is dried to remove the solvent. If desired, this step can be performed after the above-described coating film forming step and before the conductive film forming step described later. By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the conductive film forming step. It is preferable in terms of adhesion.
  • As a method for the drying treatment for example, it can be carried out by heating using a hot air dryer or the like, and it is preferable to carry out the drying treatment at a temperature lower than the firing temperature described later. Specifically, the drying temperature is preferably 40 ° C.
  • the drying treatment can be performed in an inert gas atmosphere or in the air, but is preferably performed in an inert gas atmosphere.
  • the amount of organic residue in the conductive film is 1% by mass or more and 20% by mass or less at a firing temperature of T D ⁇ 50 ° C. or less on the coating film formed on the resin substrate by the coating film forming step.
  • the conductive film is formed by firing for a period of time.
  • T D is the thermal decomposition temperature of the resin substrate.
  • the heating means for firing is not particularly limited, and known heating means such as an oven and a hot plate can be used.
  • the conductive film can be formed by performing the baking treatment at a relatively low temperature, and therefore, the process cost is low.
  • the polyhydric alcohol works as a reducing agent, and the copper oxide is reduced and converted to metallic copper. More specifically, by subjecting the copper oxide particles in the coating film to reduction by the firing treatment, the metal copper particles promote the adhesion and fusion between the copper particles to form grains, and further the grains.
  • the copper films are formed by bonding and fusing together.
  • Calcination treatment temperature is not particularly limited as long as T D -50 ° C. or less, as long as it does not exceed T D -50 ° C., preferably 220 ° C. or less, more preferably 200 ° C. or less.
  • the lower limit of the firing temperature is a temperature capable of converting by reducing copper oxide in the conductive film forming composition to metallic copper, and is not particularly limited as long as T D -50 ° C. or less, T D - As long as it does not exceed 50 ° C, 150 ° C or higher is preferable, and 180 ° C or higher is more preferable.
  • the time for the baking treatment is not particularly limited as long as the amount of the organic matter residue in the conductive film is 1% by mass or more and 20% by mass or less, but the time for 5% by mass or more and 10% by mass or less is preferable.
  • the “organic residue amount” is the amount of organic matter (unit: mass%) remaining in the conductive film after the baking treatment, and the differential thermal and thermogravimetric simultaneous measurement device (TG / DTA) for the conductive film after the baking treatment. Thus, it can be calculated from the weight reduction amount of the organic matter measured by heating to 500 ° C. in a nitrogen atmosphere.
  • the baking treatment can be performed in an inert gas atmosphere or in the air, but is preferably performed in an inert gas atmosphere.
  • a conductive film (metal copper film) containing metal copper is obtained.
  • the film thickness (thickness) of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Among these, from the viewpoint of printed circuit board use, 0.01 to 1000 ⁇ m is preferable, 0.1 to 100 ⁇ m is more preferable, 0.1 to 50 ⁇ m is further preferable, and 1 to 30 ⁇ m is even more preferable.
  • the film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
  • the conductive film volume resistivity can be calculated by multiplying the obtained surface resistivity by the film thickness after measuring the surface resistivity of the conductive film by the four-probe method.
  • the conductive film may be provided on the entire surface of the resin base material or in a pattern.
  • the patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
  • the above conductive film-forming composition is applied to a resin base material in a pattern, and the above heat treatment is performed, or the conductive film provided on the entire surface of the resin base material is patterned. And a method of etching into a shape.
  • the etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
  • an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
  • the material of the insulating film is not particularly limited.
  • epoxy resin glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
  • an epoxy resin, a polyimide resin, or a liquid crystal resin and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • solder resist which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired.
  • solder resist commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
  • the resin base material (resin base material with a conductive film) having the conductive film obtained above can be used for various applications.
  • a flexible printed circuit board, a rigid flexible printed circuit board, a rigid printed circuit board, TFT, RFID, etc. are mentioned.
  • Example 1 ⁇ Preparation of composition for forming conductive film> Copper oxide particles 1 (average particle size of 40 nm; manufactured by CI Kasei Co., Ltd., NanoTek (R) CuO) (100 parts by mass) and copper particles 1 (average particle size of 3 ⁇ m; manufactured by Mitsui Metal Mining Co., Ltd., flaky copper powder 1200YP) ( 250 parts by mass), ascorbic acid (300 parts by mass), and water (ultra pure water) (500 parts by mass) were added, and the mixture was rotated for 5 minutes with a rotating / revolving mixer (manufactured by THINKY, Awatori Kentaro ARE-310). The composition for electrically conductive film formation was obtained by processing.
  • Copper oxide particles 1 average particle size of 40 nm; manufactured by CI Kasei Co., Ltd., NanoTek (R) CuO
  • copper particles 1 average particle size of 3 ⁇ m; manufactured by Mitsui Metal Mining Co., Ltd., flaky copper powder 1200Y
  • the amount of organic matter residue is calculated from the weight reduction amount of the organic matter measured by heating the conductive film after baking treatment to 500 ° C. in a nitrogen atmosphere with a differential thermogravimetric simultaneous measurement device (TG / DTA). did.
  • a cellophane tape (width: 24 mm, manufactured by Nichiban Co., Ltd.) was adhered to the obtained conductive film and then peeled off. The appearance of the conductive film after peeling was visually observed to evaluate the adhesion.
  • the evaluation criteria are as follows. In practice, A evaluation or B evaluation is desirable. The result of evaluation is shown in the corresponding column of Table 1.
  • B Adhesion of the conductive film is slightly observed on the tape, but peeling at the interface between the conductive film and the resin substrate is not observed.
  • C Adhesion of the conductive film is clearly seen on the tape, and peeling at the interface between the conductive film and the resin substrate is observed in an area of less than 5%.
  • D Adhesion of the conductive film is clearly seen on the tape, and peeling at the interface between the conductive film and the resin substrate is seen in an area of 5% or more and less than 50%.
  • E Adhesion of the conductive film is clearly seen on the tape, and peeling at the interface between the conductive film and the resin substrate is seen in an area of 50% or more.
  • volume resistivity was measured using the four-probe method resistivity meter, and electroconductivity was evaluated.
  • the evaluation criteria are as follows. In practice, A evaluation or B evaluation is desirable. The result of evaluation is shown in the corresponding column of Table 1.
  • D Volume resistivity is 1000 ⁇ ⁇ cm or more.
  • Example 2 and 3 Except for the point that the firing temperature was changed to the temperature shown in Table 1, a conductive film was prepared in the same manner as in Example 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 5 A conductive film was prepared in the same manner as in Example 1 except that the heating time was changed so that the amount of organic residue was the amount shown in Table 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were determined. evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 7 Example 1 except that copper oxide particles 2 (average particle diameter 80 nm; manufactured by Iritech, NO-0031-HP) (100 parts by mass) was used instead of copper oxide particles 1 (100 parts by mass). Similarly, a conductive film was prepared, and the warpage of the resin base material, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 8 and 9 Except for the point that the content of the copper particles 1 was changed to the amount shown in Table 1, a conductive film was prepared in the same manner as in Example 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 10 Conductiveness was conducted in the same manner as in Example 1 except that copper particles 2 (average particle diameter 17 ⁇ m; manufactured by Mitsui Mining & Smelting Co., Ltd., fine atomized copper powder MA-CJF) was used instead of copper particles 1 (250 parts by mass). A film was prepared, and the warp of the resin base material, the adhesion of the conductive film, and the conductivity were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 11 A conductive film was produced in the same manner as in Example 1 except that dihydroxyacetone (300 parts by mass) was used in place of ascorbic acid (300 parts by mass), and the warp of the resin base material, the adhesion of the conductive film and Conductivity was evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 12 and 13 Except for the point that the content of ascorbic acid was changed to the amount shown in Table 1, a conductive film was prepared in the same manner as in Example 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 14 and 15 A conductive film was produced in the same manner as in Example 1 except that the baking treatment was performed in an N 2 (nitrogen) atmosphere or in the air as shown in Table 1, and the warpage of the resin base material, the adhesion of the conductive film, and Conductivity was evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 2 A conductive film was prepared in the same manner as in Example 1 except that the heating time was changed so that the amount of organic residue was the amount shown in Table 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were determined. evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 4 Except the point which does not contain a copper oxide particle, the electrically conductive film was obtained like Example 1, and the curvature of the resin base material, the adhesiveness of the electrically conductive film, and electroconductivity were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 5 Except the point which does not contain a copper particle, the electrically conductive film was obtained like Example 1, and the curvature of the resin base material, the adhesiveness of the electrically conductive film, and electroconductivity were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Example 6 A conductive film was obtained in the same manner as in Example 1 except that diethylene glycol (300 g) was used instead of copper particles and ascorbic acid (300 parts by mass), and the warp of the resin substrate, the conductive film The adhesion and electrical conductivity of were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
  • Examples 1 to 15 were superior in all of the warp of the resin base material, the adhesion of the conductive film and the conductivity, but the conductive films of Comparative Examples 1 to 8 were the warp of the resin base material and the adhesion of the conductive film. And at least one of the conductivity was inferior.
  • Example 1 in which the amount of organic residue is 5% by mass or more is more excellent in adhesion of the conductive film than Example 6 in which the amount is less than 5% by mass. did it. Further, according to the comparison between Examples 1 and 5, Example 1 in which the amount of organic residue is 10% by mass or less is more excellent in conductivity of the conductive film than Example 5 exceeding 10% by mass. It could be confirmed.
  • Example 1 in which the average particle diameter of the copper oxide particles is in the range of 20 nm or more and 50 nm or less is more conductive than that of Example 7 that is outside the range. was confirmed to be superior.
  • Example 1 in which the value of the ratio of the total mass of copper particles to the total mass of copper oxide particles (total mass of copper particles / total mass of copper oxide particles) is 2.0 or more is Compared with Example 8 which is less than 2.0, the curvature of the resin base material was suppressed and it has confirmed that the electroconductivity of the electrically conductive film was more excellent. Moreover, from the comparison of Examples 1 and 9, the value of the ratio of the total mass of the copper particles to the total mass of the copper oxide particles (total mass of the copper particles / total mass of the copper oxide particles) is 6.0 or less. It was confirmed that 1 was more excellent in conductivity than Example 8 which was over 6.0.
  • Example 1 in which the average particle diameter of the copper particles is in the range of 0.1 ⁇ m or more and 10 ⁇ m or less is more adhesive than the Example 10 which is out of the range. It was confirmed that the conductivity was more excellent.
  • Example 1 From the comparison of Examples 1, 12 and 13, the value of the ratio of the total mass of polyhydric alcohol to the total mass of copper oxide particles (total mass of polyhydric alcohol / total mass of copper oxide particles) is 1.0 or more. It was confirmed that Example 1, which was within the range of 0 or less, was more excellent in the conductivity of the conductive film than Examples 12 and 13, which were outside the range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Provided is method for producing a conducting film which involves: a coating film formation step for forming a coating film on a resin substrate that has a pyrolysis temperature of TD by providing a conducting film which contains copper oxide particles, copper particles and polyhydric alcohols, has a ratio of total mass of copper particles to total mass of copper oxide particles (total mass of copper particles / total mass of copper oxide particles) of 1.0-8.0, and does not contain an organic compound which is cured by heat or light; and a conducting film formation step for firing the coating film at a firing temperature of TD-50°C or less such that the amount of organic residues in the conducting film is 1-20 mass%, and forming a conducting film that contains metallic copper. Also provided is a conducting film produced by said production method.

Description

導電膜の製造方法および導電膜Method for manufacturing conductive film and conductive film
 本発明は、導電膜の製造方法に関する。より詳細には、酸化銅粒子と、銅粒子と、多価アルコールとを含む導電膜形成用組成物を用いる導電膜の製造方法に関する。 The present invention relates to a method for manufacturing a conductive film. In more detail, it is related with the manufacturing method of the electrically conductive film using the composition for electrically conductive film formation containing a copper oxide particle, a copper particle, and a polyhydric alcohol.
 樹脂基材上に金属膜を形成する方法として、金属酸化物粒子の分散体を印刷法により樹脂基材に塗布し、加熱処理して焼結させることによって金属膜や回路基板における配線等の電気的導通部位を形成する技術が知られている。この方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。 As a method of forming a metal film on a resin base material, a dispersion of metal oxide particles is applied to the resin base material by a printing method, and heat treatment is performed to sinter the metal film or wiring on a circuit board. A technique for forming an electrical conduction site is known. Since this method is simpler, energy-saving, and resource-saving than the conventional high-heat / vacuum process (sputtering) or plating process, it is highly anticipated in the development of next-generation electronics.
 例えば、特許文献1には、粒子径が200nm未満の金属酸化物及び分散媒を含む金属酸化物分散体であって、該分散媒が、多価アルコール及び/またはポリエーテル化合物を含有する該金属酸化物分散体を基板に塗布した後、加熱処理することを含む、金属薄膜の製造方法が開示されている。そして、金属酸化物として酸化銅が記載され、多価アルコールとしてジエチレングリコールが記載されている。 For example, Patent Document 1 discloses a metal oxide dispersion containing a metal oxide having a particle diameter of less than 200 nm and a dispersion medium, wherein the dispersion medium contains a polyhydric alcohol and / or a polyether compound. A method for producing a metal thin film is disclosed, which includes applying a heat treatment after applying an oxide dispersion to a substrate. And copper oxide is described as a metal oxide and diethylene glycol is described as a polyhydric alcohol.
国際公開第2003/051562号International Publication No. 2003/051562
 酸化銅微粒子を含む導電膜形成用組成物を樹脂基材上に塗布して焼成処理を行う場合、省エネのみならず、樹脂基材の汎用性のためにも、低温での焼成処理が求められている。しかし、ポリエチレンテレフタラート(PET)やポリエチレンナフタラート(PEN)を樹脂基材として用いることが可能な200℃以下の焼成温度では、酸化銅および銅表面の酸化被膜の還元が不十分であることから、樹脂基材の反りを抑制しながら、良好な導電性および密着性を有する導電膜を得ることが困難であった。 When a composition for forming a conductive film containing copper oxide fine particles is applied onto a resin substrate and subjected to a baking treatment, not only energy saving but also versatility of the resin substrate requires a low temperature baking treatment. ing. However, at a firing temperature of 200 ° C. or less at which polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) can be used as a resin base material, the reduction of copper oxide and the oxide film on the copper surface is insufficient. It was difficult to obtain a conductive film having good conductivity and adhesion while suppressing warping of the resin base material.
 本発明者らが特許文献1に開示された導電膜の製造方法を検討したところ、得られた導電膜の導電性は昨今要求されるレベルに達していたが、導電膜の密着性は要求レベルに達せず、また樹脂基材の反りを抑制することができなかった。 When the present inventors examined the manufacturing method of the electrically conductive film disclosed by patent document 1, although the electroconductivity of the obtained electrically conductive film reached the level currently requested | required, the adhesiveness of an electrically conductive film is a required level. The warpage of the resin base material could not be suppressed.
 そこで、本発明は、上記実情に鑑みて、樹脂基材の反りを発生させず、密着性および導電性に優れる導電膜を形成することができる導電膜の製造方法を提供することを目的とする。
 また、本発明は、この導電膜の製造方法を用いて製造された導電膜を提供することを目的とする。
Then, in view of the said situation, this invention aims at providing the manufacturing method of the electrically conductive film which can form the electrically conductive film which does not generate | occur | produce the curvature of a resin base material but is excellent in adhesiveness and electroconductivity. .
Moreover, an object of this invention is to provide the electrically conductive film manufactured using this manufacturing method of an electrically conductive film.
 本発明者らは、従来技術の問題点について鋭意検討した結果、導電膜形成用組成物中の酸化銅粒子に対する銅粒子の質量比と、導電膜の製造工程での焼成温度および導電膜中の有機物残渣量とを制御することにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of earnestly examining the problems of the prior art, the present inventors have found that the mass ratio of the copper particles to the copper oxide particles in the conductive film forming composition, the firing temperature in the conductive film production process, and the conductive film It has been found that the above problem can be solved by controlling the amount of organic residue.
That is, it has been found that the above object can be achieved by the following configuration.
(1)熱分解温度Tを有する樹脂基材上に、酸化銅粒子と、銅粒子と、多価アルコールとを含有し、酸化銅粒子の全質量に対する銅粒子の全質量の比の値(銅粒子の全質量/酸化銅粒子の全質量)が1.0以上8.0以下であり、かつ、熱または光によって硬化する有機化合物を含まない導電膜を付与して塗膜を形成する塗膜形成工程と、
 塗膜に対して、T-50℃以下の焼成温度で、導電膜中の有機物残渣量が1質量%以上20質量%以下となるように焼成処理を行い、金属銅を含有する導電膜を形成する導電膜形成工程と
を備える導電膜の製造方法。
(2)焼成温度が220℃以下である、(1)に記載の導電膜の製造方法。
(3)焼成温度が200℃以下である、(1)または(2)に記載の導電膜の製造方法。
(4)有機物残渣量が5質量%以上10質量%以下である、(1)~(3)のいずれか1項に記載の導電膜の製造方法。
(5)酸化銅粒子の全質量に対する銅粒子の全質量の比の値(銅粒子の全質量/酸化銅粒子の全質量)が2.0以上6.0以下である、(1)~(4)のいずれか1項に記載の導電膜の製造方法。
(6)酸化銅粒子の全質量に対する多価アルコールの全質量の比の値(多価アルコールの全質量/酸化銅粒子の全質量)が1.0以上4.0以下である、(1)~(5)のいずれか1項に記載の導電膜の製造方法。
(7)樹脂基材がポリエチレンテレフタラート(PET)基材またはポリエチレンナフタラート(PEN)基材である、(1)~(6)のいずれか1項に記載の導電膜の製造方法。
(8)多価アルコールがアスコルビン酸またはジヒドロキシアセトンである、(1)~(7)のいずれか1項に記載の導電膜の製造方法。
(9)酸化銅粒子の平均粒子径が20nm以上50nm以下である、(1)~(8)のいずれか1項に記載の導電膜の製造方法。
(10)銅粒子の平均粒子径が0.1μm以上10μm以下である、(1)~(9)のいずれか1項に記載の導電膜の製造方法。
(11)焼成処理が不活性ガス雰囲気中で行われる、(1)~(10)のいずれか1項に記載の導電膜の製造方法。
(12)(1)~(11)のいずれか1項に記載の導電膜の製造方法により製造した導電膜。
(1) on a resin substrate having a thermal decomposition temperature T D, and the copper oxide particles, and copper particles, containing the polyhydric alcohol, the total weight ratio of the value of the copper particles to the total weight of copper oxide particles ( Coating that forms a coating film by applying a conductive film that has a total mass of copper particles / total mass of copper oxide particles of 1.0 or more and 8.0 or less and that does not include an organic compound that is cured by heat or light. A film forming step;
The coating film is subjected to a firing treatment at a firing temperature of T D −50 ° C. or less so that the amount of organic residue in the conductive film is 1% by mass or more and 20% by mass or less. The manufacturing method of an electrically conductive film provided with the electrically conductive film formation process formed.
(2) The manufacturing method of the electrically conductive film as described in (1) whose baking temperature is 220 degrees C or less.
(3) The manufacturing method of the electrically conductive film as described in (1) or (2) whose baking temperature is 200 degrees C or less.
(4) The method for producing a conductive film according to any one of (1) to (3), wherein the amount of organic residue is 5% by mass or more and 10% by mass or less.
(5) The ratio of the total mass of copper particles to the total mass of copper oxide particles (total mass of copper particles / total mass of copper oxide particles) is 2.0 or more and 6.0 or less, (1) to ( The method for producing a conductive film according to any one of 4).
(6) The value of the ratio of the total mass of polyhydric alcohol to the total mass of copper oxide particles (total mass of polyhydric alcohol / total mass of copper oxide particles) is 1.0 or more and 4.0 or less, (1) The method for producing a conductive film according to any one of (5) to (5).
(7) The method for producing a conductive film according to any one of (1) to (6), wherein the resin base material is a polyethylene terephthalate (PET) base material or a polyethylene naphthalate (PEN) base material.
(8) The method for producing a conductive film according to any one of (1) to (7), wherein the polyhydric alcohol is ascorbic acid or dihydroxyacetone.
(9) The method for producing a conductive film according to any one of (1) to (8), wherein the average particle diameter of the copper oxide particles is 20 nm or more and 50 nm or less.
(10) The method for producing a conductive film according to any one of (1) to (9), wherein an average particle diameter of the copper particles is 0.1 μm or more and 10 μm or less.
(11) The method for producing a conductive film according to any one of (1) to (10), wherein the baking treatment is performed in an inert gas atmosphere.
(12) A conductive film produced by the method for producing a conductive film according to any one of (1) to (11).
 本発明によれば、樹脂基材の反りを発生させず、密着性および導電性に優れる導電膜を形成することができる導電膜の製造方法を提供することができる。
 また、本発明によれば、該導電膜の製造方法を用いて製造された導電膜を提供することもできる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrically conductive film which can form the electrically conductive film excellent in adhesiveness and electroconductivity can be provided, without generating the curvature of a resin base material.
Moreover, according to this invention, the electrically conductive film manufactured using the manufacturing method of this electrically conductive film can also be provided.
 以下に、本発明の導電膜の製造方法および導電膜形成用組成物の好適態様について詳細に説明する。
 まず、本発明の従来技術と比較した特徴点について詳述する。
Below, the manufacturing method of the electrically conductive film of this invention and the suitable aspect of the composition for electrically conductive film formation are demonstrated in detail.
First, the feature point compared with the prior art of this invention is explained in full detail.
 本発明の特徴の一つは、熱分解温度Tを有する樹脂基材上に形成した塗膜に対して、T-50℃以下の焼成温度で、導電膜中の有機物残渣量が1質量%以上20質量%以下となるように焼成処理を行う点にある。この条件で焼成処理を行うことにより、樹脂基材の反りを発生させず、樹脂基材上に、密着性および導電性に優れた導電膜を形成することができる。
 また、本発明の特徴のもう一つは、導電膜形成用組成物が、酸化銅粒子および銅粒子を、酸化銅粒子の全質量に対する銅粒子の全質量の比の値(銅粒子の全質量/酸化銅粒子の全質量)が1.0以上8.0以下となるように含有する点にある。この条件で酸化銅粒子および銅粒子を含有することにより、樹脂基材の反りを発生させず、樹脂基材上に、密着性および導電性に優れた導電膜を形成することができる。
One of the features of the present invention is that the amount of the organic residue in the conductive film is 1 mass at a firing temperature of T D -50 ° C. or less with respect to the coating film formed on the resin substrate having the thermal decomposition temperature T D. It is in the point which performs a baking process so that it may become 20 to 20 mass%. By performing the baking treatment under these conditions, a conductive film excellent in adhesion and conductivity can be formed on the resin base material without causing warpage of the resin base material.
Another feature of the present invention is that the composition for forming a conductive film contains copper oxide particles and copper particles, the value of the ratio of the total mass of copper particles to the total mass of copper oxide particles (total mass of copper particles). / The total mass of the copper oxide particles) is 1.0 to 8.0. By containing the copper oxide particles and the copper particles under these conditions, a conductive film having excellent adhesion and conductivity can be formed on the resin base material without causing warpage of the resin base material.
 以下では、まず、導電膜形成用組成物の各種成分(酸化銅粒子、銅粒子および多価アルコールなど)について詳述し、その後、導電膜の製造方法について詳述する。
 なお、本発明において、ある数値範囲について、「X以上Y以下」または「X~Y」と記載した場合、XおよびYはその数値範囲に含まれる。
Below, the various components (copper oxide particle, copper particle, polyhydric alcohol, etc.) of the composition for electrically conductive film formation are explained in full detail first, and the manufacturing method of an electrically conductive film is explained in full detail after that.
In the present invention, when “X or more and Y or less” or “X to Y” is described for a certain numerical range, X and Y are included in the numerical range.
〈酸化銅粒子〉
 導電膜形成用組成物には酸化銅粒子が含まれる。酸化銅粒子の酸化銅は、焼成処理によって金属銅に還元され、後述する銅粒子とともに導電膜中の金属銅を構成する。
<Copper oxide particles>
The composition for forming a conductive film contains copper oxide particles. The copper oxide of the copper oxide particles is reduced to metallic copper by a baking treatment, and constitutes metallic copper in the conductive film together with copper particles described later.
 酸化銅粒子の平均粒子径は、特に制限されないが、10nm以上100nm以下の範囲内が好ましく、20nm以上50nm以下の範囲内がより好ましい。
 酸化銅粒子の平均粒子径が10nm以上であると、粒子表面の活性が高くなりすぎず、組成物中で分散が容易となり、取扱い性、保存性に優れる。また、酸化銅粒子の平均粒子径が100nm以下であると、組成物をインクジェット用インク組成物として用い、印刷法により配線等のパターン形成を行うことが容易になるとともに、組成物を導体化する際に活性面が広がるため金属銅への還元が起こりやすく、得られる導電膜の導電性がより良好になる。酸化銅粒子の平均粒子径が20nm以上50nm以下の範囲内であると、得られる導電膜の導電性がさらに優れる。
The average particle diameter of the copper oxide particles is not particularly limited, but is preferably in the range of 10 nm to 100 nm, and more preferably in the range of 20 nm to 50 nm.
When the average particle diameter of the copper oxide particles is 10 nm or more, the activity on the particle surface does not become too high, the dispersion becomes easy in the composition, and the handleability and storage stability are excellent. Further, when the average particle diameter of the copper oxide particles is 100 nm or less, the composition can be used as an ink-jet ink composition, and it is easy to form a pattern such as wiring by a printing method, and the composition is made conductive. At this time, since the active surface spreads, reduction to metallic copper is likely to occur, and the conductivity of the obtained conductive film becomes better. When the average particle diameter of the copper oxide particles is in the range of 20 nm to 50 nm, the conductivity of the obtained conductive film is further improved.
 本発明における「酸化銅」とは、酸化されていない銅を実質的に含まない化合物であり、具体的には、X線回折による結晶解析において、酸化銅由来のピークが検出され、かつ金属由来のピークが検出されない化合物のことを指す。銅を実質的に含まないとは、銅の含有量が酸化銅粒子の全質量中、1質量%以下であることをいう。 The “copper oxide” in the present invention is a compound that substantially does not contain copper that has not been oxidized. Specifically, in a crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and is derived from a metal. Refers to a compound for which no peak is detected. The phrase “substantially free of copper” means that the copper content is 1% by mass or less in the total mass of the copper oxide particles.
 また、酸化銅としては、酸化銅(I)または酸化銅(II)が好ましく、安価に入手可能であること、空気中での安定性に優れることから酸化銅(II)であることが更に好ましい。 Further, as the copper oxide, copper oxide (I) or copper oxide (II) is preferable, and copper (II) oxide is more preferable because it is available at a low cost and has excellent stability in the air. .
 酸化銅粒子としては、導電膜形成用組成物に用いられる公知の酸化銅粒子を使用することができる。例えば、酸化銅粒子として、シーアイ化成社製のNanoTek(R) CuO、NanoTek(R) Slurry CuO、イオリテック(Iolitec)社製NO-0004-HP、NO-0031-HP、シグマ・アルドリッチ社製の酸化銅(II)ナノパウダー等を使用することができる。 As a copper oxide particle, the well-known copper oxide particle used for the composition for electrically conductive film formation can be used. For example, as the copper oxide particles, NanoTek (R) CuO, NanoTek (R) Slurry CuO, manufactured by CI Kasei Co., Ltd., NO-0004-HP, NO-0031-HP, manufactured by Sigma Aldrich, manufactured by Sigma Aldrich Copper (II) oxide nanopowder and the like can be used.
 なお、本発明における酸化銅粒子の平均粒子径は、平均一次粒子径のことを指す。平均粒子径は、透過型電子顕微鏡(TEM)観察または走査型電子顕微鏡(SEM)観察により、少なくとも50個以上の酸化銅粒子の粒子径(直径)を測定し、それらを算術平均して求める。なお、観察図中、酸化銅粒子の形状が真円状でない場合、長径を直径として測定する。 In addition, the average particle diameter of the copper oxide particle in this invention points out an average primary particle diameter. The average particle diameter is determined by measuring the particle diameter (diameter) of at least 50 or more copper oxide particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM) and arithmetically averaging them. In the observation diagram, when the shape of the copper oxide particles is not a perfect circle, the major axis is measured as the diameter.
〈銅粒子〉
 導電膜形成用組成物には銅粒子が含まれる。銅粒子は、前述した酸化銅粒子の酸化銅が成膜時の焼成処理によって還元されて生じる金属銅とともに導電膜中の金属銅を構成する。
<Copper particles>
The conductive film-forming composition contains copper particles. The copper particles constitute metal copper in the conductive film together with the metal copper produced by reducing the copper oxide of the copper oxide particles described above by the firing treatment during film formation.
 銅粒子の平均粒子径は、特に制限されないが、0.1μm以上20μm以下の範囲内が好ましく、0.1μm以上10μm以下の範囲内がより好ましい。
 銅粒子の平均粒子径が0.1μm以上であると、得られる導電膜の導電性がより優れる。また、銅粒子の平均粒子径が20μm以下であると、微細配線が形成しやすくなる。銅粒子の平均粒子径が0.1μm以上10μm以下の範囲内であると、導電膜の密着性および導電性がさらに優れるため、より好ましい。
The average particle diameter of the copper particles is not particularly limited, but is preferably in the range of 0.1 μm to 20 μm, and more preferably in the range of 0.1 μm to 10 μm.
The electroconductivity of the electrically conductive film obtained as the average particle diameter of a copper particle is 0.1 micrometer or more is more excellent. Moreover, it becomes easy to form fine wiring as the average particle diameter of a copper particle is 20 micrometers or less. It is more preferable that the average particle diameter of the copper particles is in the range of 0.1 μm or more and 10 μm or less because the adhesion and conductivity of the conductive film are further improved.
 銅粒子としては、導電膜形成用組成物に用いられる公知の金属銅粒子を使用することができる。例えば、銅粒子として、三井金属鉱業社製のフレーク状銅粉1050YP、1100YP、1200YP、1400YP、MA-C08JF、MA-C025KFD、MA-C05KFD、微粒アトマイズ銅粉MA-C015K、MA-C02K、MA-C03K、MA-C04K、MA-C08J、MA-CJU、湿式銅粉1030Y、1050Y、1100Y、1200N、1400Y、1400YM、1110等を使用することができる。 As a copper particle, the well-known metal copper particle used for the composition for electrically conductive film formation can be used. For example, flake copper powders 1050YP, 1100YP, 1200YP, 1400YP, MA-C08JF, MA-C025KFD, MA-C05KFD, fine atomized copper powder MA-C015K, MA-C02K, MA- C03K, MA-C04K, MA-C08J, MA-CJU, wet copper powder 1030Y, 1050Y, 1100Y, 1200N, 1400Y, 1400YM, 1110, and the like can be used.
 なお、本発明における銅粒子の平均粒子径は、平均一次粒子径のことを指す。平均粒子径は、透過型電子顕微鏡(TEM)観察または走査型電子顕微鏡(SEM)観察により、少なくとも50個以上の銅粒子の粒子径(直径)を測定し、それらを算術平均して求める。なお、観察図中、銅粒子の形状が真円状でない場合、長径を直径として測定する。 In addition, the average particle diameter of the copper particle in this invention points out an average primary particle diameter. The average particle size is obtained by measuring the particle size (diameter) of at least 50 copper particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM) and arithmetically averaging them. In addition, when the shape of a copper particle is not a perfect circle shape in an observation figure, a major axis is measured as a diameter.
〈多価アルコール〉
 導電膜形成用組成物には多価アルコールが含まれる。多価アルコールは還元性を有するので、焼成処理の際に導電膜中の酸化銅を還元し、金属銅に変換する。
 多価アルコールは、1分子中に2個以上のヒドロキシ基を有する化合物であれば特に限定されないが、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-ブテン-1,4-ジオール、2,3-ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、1,1,1-トリスヒドロキシメチルエタン、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール、1,2,6-ヘキサントリオール、1,2,3-ヘキサントリオール、1,2,4-ブタントリオール、アスコルビン酸、エリソルビン酸、糖アルコール類、単糖類、二糖類、三糖類などが挙げられる。
<Polyhydric alcohol>
The composition for forming a conductive film contains a polyhydric alcohol. Since the polyhydric alcohol has a reducing property, the copper oxide in the conductive film is reduced and converted to metallic copper during the baking treatment.
The polyhydric alcohol is not particularly limited as long as it is a compound having two or more hydroxy groups in one molecule. For example, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, 2-butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, 1,1,1- Trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3-propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1,2,4-butanetriol, ascorbic acid Erythorbic acid, sugar alcohols, monosaccharides, disaccharides, trisaccharides and the like.
 糖アルコール類としては、グリセリンを含むトリトール類、エリトリトール、トレイトール等のテトリトール類、アラビニトール、キシリトール、リビトール(アドニトール)等のペンチトール類、イジトール、ガラクチトール(ダルシトール)、グルシトール(ソルビトール)、マンニトール等のヘキシトール類、ボレミトール、ペルセイトール等のヘプチトール類などが挙げられる。 Sugar alcohols include glycerin-containing tritols, erythritol, tetritols such as threitol, pentitols such as arabinitol, xylitol, ribitol (aditol), iditol, galactitol (dulcitol), glucitol (sorbitol), mannitol, etc. Hexitols, boremitol, heptitols such as perseitol, and the like.
 単糖類としては、グリセルアルデヒド、トレオース、エリトロース、リボース、アラビノース、キシロース、リキソース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース等のアルドース類、ジヒドロキシアセトン、エリトルロース、キシルロース、リブロース、プシコース、フルクトース、ソルボース、タガトース、セドヘプツロース、コリオース等のケトース類などが挙げられる。 Monosaccharides include glyceraldehyde, threose, erythrose, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, talose and other aldoses, dihydroxyacetone, erythrulose, xylulose, ribulose And ketoses such as psicose, fructose, sorbose, tagatose, sedoheptulose, and coliose.
 二糖類としては、スクロース、トレハロース、イソトレハロース(β,β-トレハロース)、ネオトレハロース(α,β-トレハロース)、ガラクトスクロース等の非還元糖、ラクツロース、ラクトース、マルトース、セロビオース、コージビオース、ニゲロース、イソマルトース、ソホロース、ラミナリビオース、ゲンチビオース、ツラノース、マルツロース、パラチノース、ゲンチビウロース、マンノビオース、メリビオース、メリビウロース、ネオラクトース、シラビオース、ルチノース、ルチヌロース、ビシアノース、キシロビオース、プリメベロース等の還元糖などが挙げられる。 Examples of disaccharides include non-reducing sugars such as sucrose, trehalose, isotrehalose (β, β-trehalose), neotrehalose (α, β-trehalose), galactosucrose, lactulose, lactose, maltose, cellobiose, cordobiose, nigerose, iso Examples thereof include reducing sugars such as maltose, sophorose, laminaribiose, gentibiose, turanose, maltulose, palatinose, gentibiurose, mannobiose, melibiose, melibiose, neolactoses, sylabiose, rutinose, rutinulose, vicyanose, xylobiose, and primeverose.
 三糖類としては、ニゲロトリオース、マルトトリオース、メレジトース、マルトトリウロース、ラフィノース、ケストース等が挙げられる。 Examples of the trisaccharide include nigerotriose, maltotriose, melezitose, maltotriurose, raffinose, and kestose.
 なお、多価アルコールは、エナンチオマーが存在する場合には、そのエナンチオマーも含む。例えば、アスコルビン酸は、L-アスコルビン酸およびD-アスコルビン酸を含み、グルコースはD-グルコース、L-グルコース等を含む。また、多価アルコールは、トートマーが存在する場合には、そのトートマーも含む。例えば、グルコースはα-グルコピラノース、β-グルコピラノース、α-グルコフラノース、β-グルコフラノース等を含む。 In addition, the polyhydric alcohol includes an enantiomer when the enantiomer is present. For example, ascorbic acid includes L-ascorbic acid and D-ascorbic acid, and glucose includes D-glucose, L-glucose and the like. In addition, the polyhydric alcohol includes a totomer if present. For example, glucose includes α-glucopyranose, β-glucopyranose, α-glucofuranose, β-glucofuranose, and the like.
〈溶媒およびその他の成分〉
 導電膜形成用組成物は、必要に応じて、酸化銅粒子、銅粒子および多価アルコールに加えて溶媒(分散媒)や各種添加剤(レベリング剤、カップリング剤、粘度調整剤、酸化防止剤、密着剤等。)等のその他の成分を、本発明の効果を損なわない範囲で含んでいてもよい。特に、適度な流動性を有する組成物を得るために、溶媒を含有させることが好ましい。
<Solvent and other ingredients>
The composition for forming a conductive film comprises, as necessary, a solvent (dispersion medium) and various additives (leveling agent, coupling agent, viscosity modifier, antioxidant, in addition to copper oxide particles, copper particles and polyhydric alcohol. , Other adhesive components, etc.) may be included within a range not impairing the effects of the present invention. In particular, in order to obtain a composition having appropriate fluidity, it is preferable to contain a solvent.
 溶媒としては、例えば、水、アルコール類、エーテル類、エステル類、炭化水素類および芳香族炭化水素類から選ばれる1種、または相溶性のある2種以上の混合物が挙げられる。 Examples of the solvent include one selected from water, alcohols, ethers, esters, hydrocarbons, and aromatic hydrocarbons, or a compatible mixture of two or more.
 溶媒は、多価アルコールとの相溶性に優れることから、水、水溶性アルコール(1価のアルコールに限る)、水溶性アルコール由来のアルキルエーテル(1分子中にヒドロキシ基が1個以下であるものに限る)、水溶性アルコール由来のアルキルエステル(1分子中にヒドロキシ基が1個以下であるものに限る)、またはこれらの混合物が好ましく用いられる。 Since the solvent is excellent in compatibility with polyhydric alcohols, water, water-soluble alcohols (limited to monohydric alcohols), alkyl ethers derived from water-soluble alcohols (one having 1 or less hydroxy group in one molecule) However, alkyl esters derived from water-soluble alcohols (limited to those having 1 or less hydroxy group in one molecule) or mixtures thereof are preferably used.
 水としては、少なくともイオン交換水のレベルの純度を有するものが好ましい。
 水溶性アルコール(1価のアルコールに限る)としては、具体的には、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、シクロヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、グリシドール、メチルシクロヘキサノール、2-メチル-1-ブタノール、3-メチル-2-ブタノール、4-メチル-2-ペンタノール、イソプロピルアルコール、2-エチルブタノール、2-エチルヘキサノール、2-オクタノール、テルピネオール、ジヒドロテルピネオール、2-メトキシエタノール、2-エトキシエタノール、2-n-ブトキシエタノール、カルビトール、エチルカルビトール、n-ブチルカルビトール、ジアセトンアルコール等が例示される。
 これらのなかでも、メタノール、2-メトキシエタノールおよびイソプロピルアルコールから選択される少なくとも1つが、沸点が高すぎず導電膜形成後に残存しにくいことから好ましい。
As water, what has the purity of the level of ion-exchange water at least is preferable.
Specific examples of water-soluble alcohols (limited to monohydric alcohols) include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, and 1-octanol. 1-nonanol, 1-decanol, glycidol, methylcyclohexanol, 2-methyl-1-butanol, 3-methyl-2-butanol, 4-methyl-2-pentanol, isopropyl alcohol, 2-ethylbutanol, 2- Examples include ethylhexanol, 2-octanol, terpineol, dihydroterpineol, 2-methoxyethanol, 2-ethoxyethanol, 2-n-butoxyethanol, carbitol, ethyl carbitol, n-butyl carbitol, diacetone alcohol, etc. .
Among these, at least one selected from methanol, 2-methoxyethanol and isopropyl alcohol is preferable because the boiling point is not too high and it is difficult to remain after formation of the conductive film.
 水溶性アルコール由来のアルキルエーテル(1分子中にヒドロキシ基が1個以下であるものに限る)としては、具体的には、ジエチルエーテル、ジイソブチルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、メチルシクロヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン等が例示される。
 これらのなかでも、ジエチルエーテル、ジエチレングリコールジメチルエーテルおよびテトラヒドロフランから選択される少なくとも1つが、沸点が高すぎず導電膜形成後に残存しにくいことから好ましい。
Specific examples of alkyl ethers derived from water-soluble alcohols (limited to those having one or less hydroxy group in one molecule) include diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, and methylcyclohexyl ether. And diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane and the like.
Among these, at least one selected from diethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran is preferable because the boiling point is not too high and it is difficult to remain after forming the conductive film.
 水溶性アルコール由来のアルキルエステル(1分子中にヒドロキシ基が1個以下であるものに限る)としては、具体的には、ギ酸メチル、ギ酸エチル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、γ-ブチロラクトン等が例示される。
 これらのなかでも、ギ酸メチル、ギ酸エチルおよび酢酸メチルから選択される少なくとも1つが、沸点が高すぎず導電膜形成後に残存しにくいことから好ましい。
Specific examples of alkyl esters derived from water-soluble alcohols (limited to those having 1 or less hydroxy group in one molecule) include methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, Examples include methyl propionate, ethyl propionate, butyl propionate, and γ-butyrolactone.
Among these, at least one selected from methyl formate, ethyl formate, and methyl acetate is preferable because it does not have a high boiling point and hardly remains after formation of the conductive film.
 溶媒の中でも、沸点が高すぎないことから、特に水または水溶性アルコール(1価のアルコールに限る)を主溶媒として用いることが好ましい。主溶媒とは、溶媒の中で含有率が最も多い溶媒である。 Among the solvents, since the boiling point is not too high, it is particularly preferable to use water or a water-soluble alcohol (limited to monovalent alcohol) as the main solvent. The main solvent is a solvent having the highest content in the solvent.
[導電膜形成用組成物の製造方法]
 本発明の導電膜形成用組成物は、酸化銅粒子と、銅粒子と、多価アルコールと、所望により溶媒およびその他の成分とを含むが、熱または光によって硬化する有機化合物を含まない。
[Method for producing composition for forming conductive film]
The composition for forming a conductive film of the present invention contains copper oxide particles, copper particles, a polyhydric alcohol, and optionally a solvent and other components, but does not contain an organic compound that is cured by heat or light.
 熱または光によって硬化する有機化合物とは、加熱により硬化する有機化合物、または光照射により硬化する有機化合物をいう。光照射は電磁波照射を含む。
 加熱により硬化する有機化合物としては、例えば、熱硬化性樹脂が挙げられる。熱硬化性樹脂としては、具体的には、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂(ユリア樹脂)、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド等が挙げられる。
 光照射により硬化する有機化合物としては、例えば、光硬化性樹脂が挙げられる。光硬化性樹脂としては、光重合開始剤の活性化によりモノマーやオリゴマーの重合が進行する樹脂が挙げられる。
 また、「含まない」とは、酸化銅粒子、銅粒子および多価アルコールの合計に対する、熱または光によって硬化する有機化合物の割合が、1質量%以下であることをいい、0質量%であることが好ましい。
The organic compound that is cured by heat or light refers to an organic compound that is cured by heating or an organic compound that is cured by light irradiation. Light irradiation includes electromagnetic wave irradiation.
As an organic compound which hardens | cures by heating, a thermosetting resin is mentioned, for example. Specific examples of the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin (urea resin), unsaturated polyester resin, alkyd resin, polyurethane, and thermosetting polyimide.
As an organic compound hardened | cured by light irradiation, photocurable resin is mentioned, for example. Examples of the photocurable resin include resins in which polymerization of monomers and oligomers proceeds by activation of a photopolymerization initiator.
Further, “does not contain” means that the ratio of the organic compound cured by heat or light to the total of copper oxide particles, copper particles and polyhydric alcohol is 1% by mass or less, and is 0% by mass. It is preferable.
 導電膜形成用組成物中における銅粒子の含有量は、酸化銅粒子の全質量に対する銅粒子の全質量の比の値(銅粒子の全質量/酸化銅粒子の全質量)が1.0以上8.0以下、好ましくは2.0以上6.0以下となる量である。酸化銅粒子の全質量に対する銅粒子の全質量の比の値がこの範囲内であると、導電パスが増加するため、得られる導電膜の導電性が優れ、かつ、導電膜形成用組成物の流動性を向上させるため、導電膜形成用組成物の印刷性に優れる。酸化銅粒子の全質量に対する銅粒子の全質量の比の値が、1.0未満では焼成処理の際に樹脂基材の反りを抑制することができず、8.0超では製造される導電膜の密着性および導電性が要求されるレベルに達しない。 The content of the copper particles in the conductive film forming composition is such that the ratio of the total mass of the copper particles to the total mass of the copper oxide particles (total mass of the copper particles / total mass of the copper oxide particles) is 1.0 or more. The amount is 8.0 or less, preferably 2.0 or more and 6.0 or less. When the value of the ratio of the total mass of the copper particles to the total mass of the copper oxide particles is within this range, the conductive path is increased, so that the conductivity of the obtained conductive film is excellent, and the conductive film forming composition In order to improve fluidity | liquidity, it is excellent in the printability of the composition for electrically conductive film formation. When the value of the ratio of the total mass of the copper particles to the total mass of the copper oxide particles is less than 1.0, the warp of the resin base material cannot be suppressed during the firing treatment, and when it exceeds 8.0, the produced conductivity The adhesion and conductivity of the film do not reach the required levels.
 導電膜形成用組成物中における多価アルコールの含有量は、特に限定されないが、酸化銅粒子の全質量に対する多価アルコールの全質量の比の値(多価アルコールの全質量/酸化銅粒子の全質量)が、好ましくは0.5以上4.5以下、より好ましくは1.0以上4.0以下となる量である。酸化銅粒子の全質量に対する多価アルコールの全質量の比の値がこの範囲内であると、酸化銅を十分に還元することができ、得られる導電膜の導電性がより優れる。 The content of the polyhydric alcohol in the composition for forming a conductive film is not particularly limited, but the ratio of the total mass of the polyhydric alcohol to the total mass of the copper oxide particles (total mass of polyhydric alcohol / copper oxide particles) The total mass) is preferably 0.5 to 4.5 and more preferably 1.0 to 4.0. When the value of the ratio of the total mass of the polyhydric alcohol to the total mass of the copper oxide particles is within this range, the copper oxide can be sufficiently reduced, and the conductivity of the obtained conductive film is more excellent.
 導電膜形成用組成物中に溶媒を含む場合、その含有量は特に限定されないが、導電膜形成用組成物の粘度の上昇が抑制され、取扱い性により優れる点から、導電膜形成用組成物の合計質量に対して、10質量%以上60質量%以下が好ましく、20質量%以上50質量%以下がより好ましい。 In the case where the composition for forming a conductive film contains a solvent, the content is not particularly limited, but the increase in the viscosity of the composition for forming a conductive film is suppressed, and the composition for forming a conductive film is superior in terms of handleability. 10 mass% or more and 60 mass% or less are preferable with respect to a total mass, and 20 mass% or more and 50 mass% or less are more preferable.
 導電膜形成用組成物の粘度は、インクジェット、スクリーン印刷等の印刷用途に適するような粘度に調整させることが好ましい。インクジェット吐出を行う場合、1~50cPが好ましく、1~40cPがより好ましい。スクリーン印刷を行う場合は、1000~100000cPが好ましく、10000~80000cPがより好ましい。 The viscosity of the conductive film forming composition is preferably adjusted to a viscosity suitable for printing applications such as inkjet and screen printing. When inkjet discharge is performed, 1 to 50 cP is preferable, and 1 to 40 cP is more preferable. When screen printing is performed, it is preferably from 1,000 to 100,000 cP, more preferably from 10,000 to 80,000 cP.
 導電膜形成用組成物の調製方法は特に制限されず、公知の方法を採用できる。例えば、溶媒中に、酸化銅粒子と、銅粒子と、多価アルコールと、所望により溶媒およびその他の成分とを添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の手段により成分を分散させることによって、組成物を得ることができる。 The method for preparing the conductive film forming composition is not particularly limited, and a known method can be adopted. For example, after adding copper oxide particles, copper particles, polyhydric alcohol, and optionally a solvent and other components in a solvent, an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, 3 A composition can be obtained by dispersing the components by a known means such as the present roll method or ball mill method.
[導電膜の製造方法]
 本発明の導電膜の製造方法は、少なくとも塗膜形成工程と導電膜形成工程とを有する。以下に、それぞれの工程について詳述する。
[Method for producing conductive film]
The manufacturing method of the electrically conductive film of this invention has a coating-film formation process and an electrically conductive film formation process at least. Below, each process is explained in full detail.
〈塗膜形成工程〉
 塗膜形成工程は、上述した導電膜形成用組成物を樹脂基材上に付与して塗膜を形成する工程である。本工程により焼成処理が施される前の塗膜が得られる。後述する導電膜形成工程の前に、塗膜を乾燥してもよい。
<Coating film formation process>
A coating-film formation process is a process of providing the composition for electrically conductive film formation mentioned above on a resin base material, and forming a coating film. The coating film before baking processing is obtained by this process. You may dry a coating film before the electrically conductive film formation process mentioned later.
 本工程で使用される樹脂基材としては、公知のものを用いることができる。樹脂基材としては、低密度ポリエチレン樹脂基材、高密度ポリエチレン樹脂基材、ABS樹脂基材、アクリル樹脂基材、スチレン樹脂基材、塩化ビニル樹脂基材、ポリエステル樹脂基材(ポリエチレンテレフタラート(PET)基材、ポリエチレンナフタラート(PEN)基材)、ポリアセタール樹脂基材、ポリサルフォン樹脂基材、ポリエーテルイミド樹脂基材(ポリイミド樹脂基材)、ポリエーテルケトン樹脂基材、セルロース誘導体基材、紙-フェノール樹脂基材(紙フェノール樹脂基材)、紙-エポキシ樹脂基材(紙エポキシ樹脂基材)、紙-ポリエステル樹脂基材(紙ポリエステル樹脂基材)、ガラス布-エポキシ樹脂基材(ガラスエポキシ樹脂基材)、ガラス布-ポリイミド系樹脂基材(ガラスポリイミド樹脂基材)、またはガラス布-フッ素樹脂基材(ガラスフッ素樹脂基材)等からなるものが挙げられる。これらの中でも、ポリエチレンテレフタラート(PET)基材またはポリエチレンナフタラート(PEN)基材が好ましく、ポリエチレンテレフタラート(PET)基材がより好ましい。 As the resin base material used in this step, known materials can be used. Resin base materials include low density polyethylene resin base materials, high density polyethylene resin base materials, ABS resin base materials, acrylic resin base materials, styrene resin base materials, vinyl chloride resin base materials, polyester resin base materials (polyethylene terephthalate ( PET) base material, polyethylene naphthalate (PEN) base material), polyacetal resin base material, polysulfone resin base material, polyetherimide resin base material (polyimide resin base material), polyether ketone resin base material, cellulose derivative base material, Paper-phenolic resin substrate (paper phenolic resin substrate), paper-epoxy resin substrate (paper epoxy resin substrate), paper-polyester resin substrate (paper polyester resin substrate), glass cloth-epoxy resin substrate ( Glass epoxy resin substrate), glass cloth-polyimide resin substrate (glass polyimide resin substrate), or glass Scan cloth - fluororesin base material made of (Garasufu' containing resin base material) and the like. Among these, a polyethylene terephthalate (PET) base material or a polyethylene naphthalate (PEN) base material is preferable, and a polyethylene terephthalate (PET) base material is more preferable.
 なお、樹脂基材の熱分解温度Tは、10%分解温度(℃)であり、具体的には、示差熱熱重量同時測定装置(TG/DTA)を用いて、窒素雰囲気中で熱重量を測定した際の10%重量減少時の温度(10%重量減少温度)(℃)である。一般に、同じ種類の樹脂であっても、分子量や分子量分布、分岐度、架橋密度などによって熱分解挙動に差が生じるため、Tが相違する場合がある。 The thermal decomposition temperature T D of the resin base material is a 10% decomposition temperature (° C.), specifically, using a differential thermogravimetric simultaneous measurement device (TG / DTA), thermogravimetric in a nitrogen atmosphere Is the temperature at the time of 10% weight reduction when measured (10% weight reduction temperature) (° C.). In general, even with the same kind of resin, the molecular weight and molecular weight distribution, degree of branching, a difference in thermal decomposition behavior, such as by cross-linking density occurring, there is a case where T D is different.
 導電膜形成用組成物を樹脂基材上に付与する方法は特に制限されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などの塗布法が挙げられる。
 塗布の形状は特に制限されず、樹脂基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
 樹脂基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚(厚み)は0.01~1000μmが好ましく、0.1~100μmがより好ましく、0.1~50μmがさらに好ましく、1~30μmがいっそう好ましい。
The method for applying the conductive film-forming composition onto the resin substrate is not particularly limited, and a known method can be employed. For example, coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
The shape of application is not particularly limited, and may be a planar shape covering the entire surface of the resin base material or a pattern shape (for example, a wiring shape or a dot shape).
The coating amount of the composition for forming a conductive film on a resin substrate may be appropriately adjusted according to the desired thickness of the conductive film. Usually, the thickness (thickness) of the coating film is 0.01 to 1000 μm is preferable, 0.1 to 100 μm is more preferable, 0.1 to 50 μm is more preferable, and 1 to 30 μm is even more preferable.
〈乾燥工程〉
 本工程は、形成された塗膜に対して乾燥処理を行い、溶剤を除去する工程である。本工程は、所望により、前述した塗膜形成工程の後、かつ、後述する導電膜形成工程の前に実施することができる。
 残存する溶剤を除去することにより、導電膜形成工程において、溶剤の気化膨張に起因する微小なクラックや空隙の発生を抑制することができ、導電膜の導電性および導電膜と樹脂基材との密着性の点で好ましい。
 乾燥処理の方法としては、例えば、温風乾燥機などを用いて加熱することにより行うことができ、後述する焼成温度よりも低い温度で乾燥処理を行うことが好ましい。具体的に例示すると、乾燥温度としては、40℃以上200℃未満が好ましく、50℃以上150℃未満がより好ましい。
 本発明においては、乾燥処理は、不活性ガス雰囲気中、大気中などで行うことができるが、不活性ガス雰囲気中で行うことが好ましい。
<Drying process>
This step is a step in which the formed coating film is dried to remove the solvent. If desired, this step can be performed after the above-described coating film forming step and before the conductive film forming step described later.
By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the conductive film forming step. It is preferable in terms of adhesion.
As a method for the drying treatment, for example, it can be carried out by heating using a hot air dryer or the like, and it is preferable to carry out the drying treatment at a temperature lower than the firing temperature described later. Specifically, the drying temperature is preferably 40 ° C. or higher and lower than 200 ° C., more preferably 50 ° C. or higher and lower than 150 ° C.
In the present invention, the drying treatment can be performed in an inert gas atmosphere or in the air, but is preferably performed in an inert gas atmosphere.
〈導電膜形成工程〉
 導電膜形成工程は、塗膜形成工程により樹脂基材上に形成した塗膜に、T-50℃以下の焼成温度で、導電膜中の有機物残渣量を1質量%以上20質量%以下とする時間、焼成することにより、導電膜を形成する工程である。ここで、Tは樹脂基材の熱分解温度である。
 焼成のための加熱手段は特に制限されず、オーブン、ホットプレート等公知の加熱手段を用いることができる。本発明では、焼成処理を比較的低温で行うことにより導電膜の形成が可能であり、従って、プロセスコストが安いという利点を有する。
 焼成処理を行うことにより、多価アルコールが還元剤として働き、酸化銅が還元されて金属銅に変換される。より具体的には、焼成処理を施すことにより、塗膜中の酸化銅粒子が還元されて生じた金属銅粒子が、銅粒子どうしの接着・融着を促進してグレインを形成し、さらにグレイン同士が接着・融着して銅膜を形成する。
<Conductive film formation process>
In the conductive film forming step, the amount of organic residue in the conductive film is 1% by mass or more and 20% by mass or less at a firing temperature of T D −50 ° C. or less on the coating film formed on the resin substrate by the coating film forming step. In this step, the conductive film is formed by firing for a period of time. Here, T D is the thermal decomposition temperature of the resin substrate.
The heating means for firing is not particularly limited, and known heating means such as an oven and a hot plate can be used. In the present invention, the conductive film can be formed by performing the baking treatment at a relatively low temperature, and therefore, the process cost is low.
By performing the baking treatment, the polyhydric alcohol works as a reducing agent, and the copper oxide is reduced and converted to metallic copper. More specifically, by subjecting the copper oxide particles in the coating film to reduction by the firing treatment, the metal copper particles promote the adhesion and fusion between the copper particles to form grains, and further the grains. The copper films are formed by bonding and fusing together.
 焼成処理の温度(焼成温度)は、T-50℃以下であれば特に限定されないが、T-50℃を超えない限りにおいて、220℃以下が好ましく、200℃以下がより好ましい。また、焼成温度の下限は導電膜形成用組成物中の酸化銅を還元して金属銅に変換することができる温度で、かつT-50℃以下であれば特に限定されないが、T-50℃を超えない限りにおいて、150℃以上が好ましく、180℃以上がより好ましい。 Calcination treatment temperature (sintering temperature) is not particularly limited as long as T D -50 ° C. or less, as long as it does not exceed T D -50 ° C., preferably 220 ° C. or less, more preferably 200 ° C. or less. The lower limit of the firing temperature is a temperature capable of converting by reducing copper oxide in the conductive film forming composition to metallic copper, and is not particularly limited as long as T D -50 ° C. or less, T D - As long as it does not exceed 50 ° C, 150 ° C or higher is preferable, and 180 ° C or higher is more preferable.
 焼成処理の時間(焼成時間)は、導電膜中の有機物残渣量を1質量%以上20質量%以下とする時間であれば特に限定されないが、5質量%以上10質量%以下とする時間が好ましい。なお、「有機物残渣量」は焼成処理後の導電膜中に残存している有機物量(単位:質量%)であり、焼成処理後の導電膜を示差熱熱重量同時測定装置(TG/DTA)により、窒素雰囲気中で、500℃に加熱することによって測定した有機物分の重量減少量から算出することができる。 The time for the baking treatment (baking time) is not particularly limited as long as the amount of the organic matter residue in the conductive film is 1% by mass or more and 20% by mass or less, but the time for 5% by mass or more and 10% by mass or less is preferable. . The “organic residue amount” is the amount of organic matter (unit: mass%) remaining in the conductive film after the baking treatment, and the differential thermal and thermogravimetric simultaneous measurement device (TG / DTA) for the conductive film after the baking treatment. Thus, it can be calculated from the weight reduction amount of the organic matter measured by heating to 500 ° C. in a nitrogen atmosphere.
 本発明においては、焼成処理は、不活性ガス雰囲気中、大気中などで行うことができるが、不活性ガス雰囲気中で行うことが好ましい。 In the present invention, the baking treatment can be performed in an inert gas atmosphere or in the air, but is preferably performed in an inert gas atmosphere.
[導電膜]
 上記工程を実施することにより、金属銅を含有する導電膜(金属銅膜)が得られる。
 導電膜の膜厚(厚み)は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましく、0.1~50μmがさらに好ましく、1~30μmがいっそう好ましい。
 なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
 導電膜体積抵抗値は、導電膜の表面抵抗率を四探針法にて測定後、得られた表面抵抗率に膜厚を乗算することで算出することができる。
[Conductive film]
By carrying out the above steps, a conductive film (metal copper film) containing metal copper is obtained.
The film thickness (thickness) of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Among these, from the viewpoint of printed circuit board use, 0.01 to 1000 μm is preferable, 0.1 to 100 μm is more preferable, 0.1 to 50 μm is further preferable, and 1 to 30 μm is even more preferable.
The film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
The conductive film volume resistivity can be calculated by multiplying the obtained surface resistivity by the film thickness after measuring the surface resistivity of the conductive film by the four-probe method.
 導電膜は樹脂基材の全面、または、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
 パターン状の導電膜を得る方法としては、上記導電膜形成用組成物をパターン状に樹脂基材に付与して、上記加熱処理を行う方法や、樹脂基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
 エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
The conductive film may be provided on the entire surface of the resin base material or in a pattern. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
As a method for obtaining a patterned conductive film, the above conductive film-forming composition is applied to a resin base material in a pattern, and the above heat treatment is performed, or the conductive film provided on the entire surface of the resin base material is patterned. And a method of etching into a shape.
The etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
 パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。 When a patterned conductive film is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
 絶縁膜の材料は特に制限されないが、例えば、エポキシ樹脂、ガラスエポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
 これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。
The material of the insulating film is not particularly limited. For example, epoxy resin, glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
 また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10-204150号公報や、特開2003-222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。 The solder resist, which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired. As the solder resist, commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
 上記で得られた導電膜を有する樹脂基材(導電膜付き樹脂基材)は、種々の用途に使用することができる。例えば、フレキシブルプリント基板、リジッドフレキシブルプリント基板、リジッドプリント基板、TFT、RFIDなどが挙げられる。 The resin base material (resin base material with a conductive film) having the conductive film obtained above can be used for various applications. For example, a flexible printed circuit board, a rigid flexible printed circuit board, a rigid printed circuit board, TFT, RFID, etc. are mentioned.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
〈導電膜形成用組成物の調製〉
 酸化銅粒子1(平均粒子径40nm;シーアイ化成社製,NanoTek(R) CuO)(100質量部)と、銅粒子1(平均粒子径3μm;三井金属鉱業社製,フレーク状銅粉1200YP)(250質量部)と、アスコルビン酸(300質量部)と、水(超純水)(500質量部)とを添加し、自転公転ミキサー(THINKY社製,あわとり練太郎ARE-310)で5分間処理することで導電膜形成用組成物を得た。
〈導電膜の作製〉
 PET基材(T=320℃;富士フイルムビジネスサプライ社製,FUJIX OHP FILM)上に、得られた導電膜形成用組成物をストライプ状(L/S=1mm/1mm)に塗布し、その後、100℃で10分間乾燥させることで、導電膜形成用組成物層がパターン印刷された塗膜を得た。その後、RTA焼結装置(Allwin21社製,AccuThermo)を用い、180℃まで加熱し、導電膜中の有機物残渣量が5質量%となる時間保持し、その後、1040℃まで冷却してサンプルを取り出すことで、導電膜を得た。
 ここで、有機物残渣量は、焼成処理後の導電膜を示差熱熱重量同時測定装置(TG/DTA)により、窒素雰囲気中で、500℃に加熱して測定した有機物分の重量減少量から算出した。
[Example 1]
<Preparation of composition for forming conductive film>
Copper oxide particles 1 (average particle size of 40 nm; manufactured by CI Kasei Co., Ltd., NanoTek (R) CuO) (100 parts by mass) and copper particles 1 (average particle size of 3 μm; manufactured by Mitsui Metal Mining Co., Ltd., flaky copper powder 1200YP) ( 250 parts by mass), ascorbic acid (300 parts by mass), and water (ultra pure water) (500 parts by mass) were added, and the mixture was rotated for 5 minutes with a rotating / revolving mixer (manufactured by THINKY, Awatori Kentaro ARE-310). The composition for electrically conductive film formation was obtained by processing.
<Preparation of conductive film>
On the PET substrate (T D = 320 ° C .; manufactured by FUJIX OHP FILM, manufactured by FUJIFILM Business Supply Co., Ltd.), the obtained composition for forming a conductive film is applied in a stripe shape (L / S = 1 mm / 1 mm), and then By drying at 100 ° C. for 10 minutes, a coating film on which the conductive film-forming composition layer was printed was obtained. Then, using an RTA sintering apparatus (Allwin21, AccuThermo), the sample is heated to 180 ° C. and held for a time when the amount of organic residue in the conductive film becomes 5% by mass, and then cooled to 1040 ° C. and the sample is taken out. Thus, a conductive film was obtained.
Here, the amount of organic matter residue is calculated from the weight reduction amount of the organic matter measured by heating the conductive film after baking treatment to 500 ° C. in a nitrogen atmosphere with a differential thermogravimetric simultaneous measurement device (TG / DTA). did.
〈樹脂基材の反りの評価〉
 得られた導電膜付き樹脂基材(本評価項目において、以下「試料」という。)について、JIS C 6481:1996の5.22に記載されている方法により、定盤と試料の辺との間の隔たりを0.1mm単位で測定を行った。評価基準は以下のとおりである。なお、実用上、A評価またはB評価が望ましい。評価の結果を表1の該当欄に示す。
A:定盤と試料の辺との隔たりが0.5mm以下である。
B:定盤と試料の辺との隔たりが0.5mm超、1.0mm以下である。
C:定盤と試料の辺との隔たりが1.0mm超、2.0mm以下である。
D:定盤と試料の辺との隔たりが2.0mm超、5.0mm以下である。
E:定盤と試料の辺との隔たりが5.0mm超である。
<Evaluation of warpage of resin substrate>
About the obtained resin base material with a conductive film (hereinafter referred to as “sample” in this evaluation item), between the surface plate and the side of the sample by the method described in 5.22 of JIS C 6481: 1996. Was measured in units of 0.1 mm. The evaluation criteria are as follows. In practice, A evaluation or B evaluation is desirable. The result of evaluation is shown in the corresponding column of Table 1.
A: The distance between the surface plate and the side of the sample is 0.5 mm or less.
B: The distance between the surface plate and the side of the sample is more than 0.5 mm and not more than 1.0 mm.
C: The distance between the surface plate and the side of the sample is more than 1.0 mm and not more than 2.0 mm.
D: The distance between the surface plate and the side of the sample is more than 2.0 mm and 5.0 mm or less.
E: The distance between the surface plate and the side of the sample is more than 5.0 mm.
〈導電膜の密着性の評価〉
 得られた導電膜にセロハンテープ(幅24mm、ニチバン社製)を密着させてから剥がした。剥がした後の導電膜の外観を目視で観察して密着性を評価した。評価基準は以下のとおりである。なお、実用上、A評価またはB評価が望ましい。評価の結果を表1の該当欄に示す。
A:テープに導電膜の付着が見られず、導電膜と樹脂基材との界面での剥離もみられない。
B:テープに導電膜の付着がやや見られるが、導電膜と樹脂基材との界面での剥離はみられない。
C:テープに導電膜の付着がはっきり見られ、導電膜と樹脂基材との界面での剥離が5%未満の面積でみられる。
D:テープに導電膜の付着がはっきり見られ、導電膜と樹脂基材との界面での剥離が5%以上50%未満の面積でみられる。
E:テープに導電膜の付着がはっきり見られ、導電膜と樹脂基材との界面での剥離が50%以上の面積でみられる。
<Evaluation of adhesion of conductive film>
A cellophane tape (width: 24 mm, manufactured by Nichiban Co., Ltd.) was adhered to the obtained conductive film and then peeled off. The appearance of the conductive film after peeling was visually observed to evaluate the adhesion. The evaluation criteria are as follows. In practice, A evaluation or B evaluation is desirable. The result of evaluation is shown in the corresponding column of Table 1.
A: Adhesion of the conductive film is not observed on the tape, and peeling at the interface between the conductive film and the resin substrate is not observed.
B: Adhesion of the conductive film is slightly observed on the tape, but peeling at the interface between the conductive film and the resin substrate is not observed.
C: Adhesion of the conductive film is clearly seen on the tape, and peeling at the interface between the conductive film and the resin substrate is observed in an area of less than 5%.
D: Adhesion of the conductive film is clearly seen on the tape, and peeling at the interface between the conductive film and the resin substrate is seen in an area of 5% or more and less than 50%.
E: Adhesion of the conductive film is clearly seen on the tape, and peeling at the interface between the conductive film and the resin substrate is seen in an area of 50% or more.
〈導電膜の導電性の評価〉
 得られた導電膜について、四探針法抵抗率計を用いて体積抵抗率を測定し、導電性を評価した。評価基準は以下のとおりである。なお、実用上、A評価またはB評価が望ましい。評価の結果を表1の該当欄に示す。
A:体積抵抗率が50μΩ・cm未満である。
B:体積抵抗率が50μΩ・cm以上100μΩ・cm未満である。
C:体積抵抗率が100μΩ・cm以上1000μΩ・cm未満である。
D:体積抵抗率が1000μΩ・cm以上である。
<Evaluation of conductivity of conductive film>
About the obtained electrically conductive film, volume resistivity was measured using the four-probe method resistivity meter, and electroconductivity was evaluated. The evaluation criteria are as follows. In practice, A evaluation or B evaluation is desirable. The result of evaluation is shown in the corresponding column of Table 1.
A: Volume resistivity is less than 50 μΩ · cm.
B: Volume resistivity is 50 μΩ · cm or more and less than 100 μΩ · cm.
C: Volume resistivity is 100 μΩ · cm or more and less than 1000 μΩ · cm.
D: Volume resistivity is 1000 μΩ · cm or more.
[実施例2、3]
 焼成温度を表1に示す温度に変更した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Examples 2 and 3]
Except for the point that the firing temperature was changed to the temperature shown in Table 1, a conductive film was prepared in the same manner as in Example 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[実施例4]
 PET基材に代えて、PEN基材(帝人デュポンフィルム社製、テオネックス、T=410℃)を使用した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Example 4]
A conductive film was prepared in the same manner as in Example 1 except that a PEN substrate (manufactured by Teijin DuPont Films, Teonex, T D = 410 ° C.) was used instead of the PET substrate. The adhesion and conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[実施例5、6]
 有機物残渣量が表1に示す量となるように加熱時間を変更した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Examples 5 and 6]
A conductive film was prepared in the same manner as in Example 1 except that the heating time was changed so that the amount of organic residue was the amount shown in Table 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were determined. evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[実施例7]
 酸化銅粒子1(100質量部)に代えて、酸化銅粒子2(平均粒子径80nm;イオリテック社製,NO-0031-HP)(100質量部)を使用した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Example 7]
Example 1 except that copper oxide particles 2 (average particle diameter 80 nm; manufactured by Iritech, NO-0031-HP) (100 parts by mass) was used instead of copper oxide particles 1 (100 parts by mass). Similarly, a conductive film was prepared, and the warpage of the resin base material, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[実施例8、9]
 銅粒子1の含有量を表1に示す量に変更した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Examples 8 and 9]
Except for the point that the content of the copper particles 1 was changed to the amount shown in Table 1, a conductive film was prepared in the same manner as in Example 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[実施例10]
 銅粒子1(250質量部)に代えて、銅粒子2(平均粒子径17μm;三井金属鉱業社製,微粒アトマイズ銅粉MA-CJF)を使用した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Example 10]
Conductiveness was conducted in the same manner as in Example 1 except that copper particles 2 (average particle diameter 17 μm; manufactured by Mitsui Mining & Smelting Co., Ltd., fine atomized copper powder MA-CJF) was used instead of copper particles 1 (250 parts by mass). A film was prepared, and the warp of the resin base material, the adhesion of the conductive film, and the conductivity were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[実施例11]
 アスコルビン酸(300質量部)に代えて、ジヒドロキシアセトン(300質量部)を使用した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Example 11]
A conductive film was produced in the same manner as in Example 1 except that dihydroxyacetone (300 parts by mass) was used in place of ascorbic acid (300 parts by mass), and the warp of the resin base material, the adhesion of the conductive film and Conductivity was evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[実施例12、13]
 アスコルビン酸の含有量を表1に示す量に変更した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Examples 12 and 13]
Except for the point that the content of ascorbic acid was changed to the amount shown in Table 1, a conductive film was prepared in the same manner as in Example 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[実施例14、15]
 焼成処理を表1に示すとおりN(窒素)雰囲気中または大気中で行った点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Examples 14 and 15]
A conductive film was produced in the same manner as in Example 1 except that the baking treatment was performed in an N 2 (nitrogen) atmosphere or in the air as shown in Table 1, and the warpage of the resin base material, the adhesion of the conductive film, and Conductivity was evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[比較例1]
 焼成温度を290℃とした点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Comparative Example 1]
Except for the point that the firing temperature was 290 ° C., a conductive film was prepared in the same manner as in Example 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[比較例2、3]
 有機物残渣量が表1に示す量となるように加熱時間を変更した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Comparative Examples 2 and 3]
A conductive film was prepared in the same manner as in Example 1 except that the heating time was changed so that the amount of organic residue was the amount shown in Table 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were determined. evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[比較例4]
 酸化銅粒子を含まない点を除き、実施例1と同様にして導電膜を得、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Comparative Example 4]
Except the point which does not contain a copper oxide particle, the electrically conductive film was obtained like Example 1, and the curvature of the resin base material, the adhesiveness of the electrically conductive film, and electroconductivity were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[比較例5]
 銅粒子を含まない点を除き、実施例1と同様にして導電膜を得、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Comparative Example 5]
Except the point which does not contain a copper particle, the electrically conductive film was obtained like Example 1, and the curvature of the resin base material, the adhesiveness of the electrically conductive film, and electroconductivity were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[比較例6]
 銅粒子を含まない点、およびアスコルビン酸(300質量部)に代えて、ジエチレングリコール(300g)を使用した点を除き、実施例1と同様にして導電膜を得、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Comparative Example 6]
A conductive film was obtained in the same manner as in Example 1 except that diethylene glycol (300 g) was used instead of copper particles and ascorbic acid (300 parts by mass), and the warp of the resin substrate, the conductive film The adhesion and electrical conductivity of were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
[比較例7、8]
 銅粒子1の含有量を表1に示す量に変更した点を除き、実施例1と同様にして導電膜を作製し、樹脂基材の反り、導電膜の密着性および導電性を評価した。評価の結果を表1の該当欄に示す。
[Comparative Examples 7 and 8]
Except for the point that the content of the copper particles 1 was changed to the amount shown in Table 1, a conductive film was prepared in the same manner as in Example 1, and the warpage of the resin substrate, the adhesion and the conductivity of the conductive film were evaluated. The result of evaluation is shown in the corresponding column of Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~15は、樹脂基材の反り、導電膜の密着性および導電性のすべてにおいて優れていたが、比較例1~8の導電膜は、樹脂基材の反り、導電膜の密着性および導電性のうち少なくとも1つについて劣っていた。 Examples 1 to 15 were superior in all of the warp of the resin base material, the adhesion of the conductive film and the conductivity, but the conductive films of Comparative Examples 1 to 8 were the warp of the resin base material and the adhesion of the conductive film. And at least one of the conductivity was inferior.
 実施例1~3の対比によれば、焼成温度が低い方が樹脂基材の反りが抑制されることが確認できた。 According to the comparison of Examples 1 to 3, it was confirmed that the lower the firing temperature, the lower the warp of the resin base material.
 実施例1および6の対比によれば、有機物残渣量が5質量%以上である実施例1は、5質量%未満である実施例6に比べて、導電膜の密着性がより優れることが確認できた。
 また、実施例1および5の対比によれば、有機物残渣量が10質量%以下である実施例1は、10質量%を超える実施例5に比べて、導電膜の導電性がより優れることが確認できた。
According to the comparison between Examples 1 and 6, it is confirmed that Example 1 in which the amount of organic residue is 5% by mass or more is more excellent in adhesion of the conductive film than Example 6 in which the amount is less than 5% by mass. did it.
Further, according to the comparison between Examples 1 and 5, Example 1 in which the amount of organic residue is 10% by mass or less is more excellent in conductivity of the conductive film than Example 5 exceeding 10% by mass. It could be confirmed.
 実施例1および7の対比によれば、酸化銅粒子の平均粒子径が20nm以上50nm以下の範囲内である実施例1は、その範囲外である実施例7に比べて、導電膜の導電性がより優れていることが確認できた。 According to the comparison between Examples 1 and 7, Example 1 in which the average particle diameter of the copper oxide particles is in the range of 20 nm or more and 50 nm or less is more conductive than that of Example 7 that is outside the range. Was confirmed to be superior.
 実施例1および8の対比から、酸化銅粒子の全質量に対する銅粒子の全質量の比の値(銅粒子の全質量/酸化銅粒子の全質量)が2.0以上である実施例1は、2.0未満である実施例8に比べて、樹脂基材の反りが抑制され、導電膜の導電性がより優れていることが確認できた。
 また、実施例1および9の対比から、酸化銅粒子の全質量に対する銅粒子の全質量の比の値(銅粒子の全質量/酸化銅粒子の全質量)が6.0以下である実施例1は、6.0超である実施例8に比べて、導電性がより優れていることが確認できた。
From the comparison of Examples 1 and 8, Example 1 in which the value of the ratio of the total mass of copper particles to the total mass of copper oxide particles (total mass of copper particles / total mass of copper oxide particles) is 2.0 or more is Compared with Example 8 which is less than 2.0, the curvature of the resin base material was suppressed and it has confirmed that the electroconductivity of the electrically conductive film was more excellent.
Moreover, from the comparison of Examples 1 and 9, the value of the ratio of the total mass of the copper particles to the total mass of the copper oxide particles (total mass of the copper particles / total mass of the copper oxide particles) is 6.0 or less. It was confirmed that 1 was more excellent in conductivity than Example 8 which was over 6.0.
 実施例1および10の対比から、銅粒子の平均粒子径が0.1μm以上10μm以下の範囲内である実施例1は、その範囲外である実施例10に比べて、導電膜の密着性および導電性がより優れていることが確認できた。 From the comparison of Examples 1 and 10, Example 1 in which the average particle diameter of the copper particles is in the range of 0.1 μm or more and 10 μm or less is more adhesive than the Example 10 which is out of the range. It was confirmed that the conductivity was more excellent.
 実施例1、12および13の対比から、酸化銅粒子の全質量に対する多価アルコールの全質量の比の値(多価アルコールの全質量/酸化銅粒子の全質量)が1.0以上4.0以下の範囲内である実施例1は、その範囲外である実施例12および13に比べて、導電膜の導電性がより優れていることが確認できた。 From the comparison of Examples 1, 12 and 13, the value of the ratio of the total mass of polyhydric alcohol to the total mass of copper oxide particles (total mass of polyhydric alcohol / total mass of copper oxide particles) is 1.0 or more. It was confirmed that Example 1, which was within the range of 0 or less, was more excellent in the conductivity of the conductive film than Examples 12 and 13, which were outside the range.
 実施例1、14および15の対比から、不活性ガス雰囲気中で焼成処理を行った実施例1および14は、大気中で焼成処理を行った実施例15に比べて、導電膜の密着性および導電性がより優れていることが確認できた。 From the comparison of Examples 1, 14 and 15, Examples 1 and 14 in which the baking treatment was performed in an inert gas atmosphere were more effective than those in Example 15 in which the baking treatment was performed in the atmosphere. It was confirmed that the conductivity was more excellent.

Claims (12)

  1.  熱分解温度Tを有する樹脂基材上に、酸化銅粒子と、銅粒子と、多価アルコールとを含有し、前記酸化銅粒子の全質量に対する前記銅粒子の全質量の比の値が1.0以上8.0以下であり、かつ、熱または光によって硬化する有機化合物を含まない導電膜形成用組成物を付与して塗膜を形成する塗膜形成工程と、
     前記塗膜に対して、T-50℃以下の焼成温度で、導電膜中の有機物残渣量が1質量%以上20質量%以下となるように焼成処理を行い、金属銅を含有する導電膜を形成する導電膜形成工程と
    を備える導電膜の製造方法。
    On a resin substrate having a thermal decomposition temperature T D, and the copper oxide particles, and copper particles, containing the polyhydric alcohol, the value of the ratio of the total weight of the copper particles to the total weight of the copper oxide particles is 1 A coating film forming step of forming a coating film by applying a composition for forming a conductive film that is not less than 0.0 and not more than 8.0 and does not contain an organic compound that is cured by heat or light;
    Conductive treatment is performed on the coating film at a firing temperature of T D −50 ° C. or less so that the amount of organic residue in the conductive film is 1% by mass or more and 20% by mass or less, and the conductive film contains metallic copper. The manufacturing method of an electrically conductive film provided with the electrically conductive film formation process of forming.
  2.  前記焼成温度が220℃以下である、請求項1に記載の導電膜の製造方法。 The manufacturing method of the electrically conductive film of Claim 1 whose said baking temperature is 220 degrees C or less.
  3.  前記焼成温度が200℃以下である、請求項1または2に記載の導電膜の製造方法。 The manufacturing method of the electrically conductive film of Claim 1 or 2 whose said baking temperature is 200 degrees C or less.
  4.  前記有機物残渣量が5質量%以上10質量%以下である、請求項1~3のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 3, wherein the amount of the organic substance residue is 5 mass% or more and 10 mass% or less.
  5.  前記酸化銅粒子の全質量に対する前記銅粒子の全質量の比の値が2.0以上6.0以下である、請求項1~4のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 4, wherein a value of a ratio of a total mass of the copper particles to a total mass of the copper oxide particles is 2.0 or more and 6.0 or less.
  6.  前記酸化銅粒子の全質量に対する前記多価アルコールの全質量の比の値が1.0以上4.0以下である、請求項1~5のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 5, wherein a value of a ratio of a total mass of the polyhydric alcohol to a total mass of the copper oxide particles is 1.0 or more and 4.0 or less.
  7.  前記樹脂基材がポリエチレンテレフタラート基材またはポリエチレンナフタラート基材である、請求項1~6のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 6, wherein the resin base material is a polyethylene terephthalate base material or a polyethylene naphthalate base material.
  8.  前記多価アルコールがアスコルビン酸またはジヒドロキシアセトンである、請求項1~7のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 7, wherein the polyhydric alcohol is ascorbic acid or dihydroxyacetone.
  9.  前記酸化銅粒子の平均粒子径が20nm以上50nm以下である、請求項1~8のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 8, wherein an average particle diameter of the copper oxide particles is 20 nm or more and 50 nm or less.
  10.  前記銅粒子の平均粒子径が0.1μm以上10μm以下である、請求項1~9のいずれか1項に記載の導電膜の製造方法。 10. The method for producing a conductive film according to claim 1, wherein an average particle diameter of the copper particles is 0.1 μm or more and 10 μm or less.
  11.  前記焼成処理が不活性ガス雰囲気中で行われる、請求項1~10のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 10, wherein the baking treatment is performed in an inert gas atmosphere.
  12.  請求項1~11のいずれか1項に記載の導電膜の製造方法により製造した導電膜。 A conductive film produced by the method for producing a conductive film according to any one of claims 1 to 11.
PCT/JP2014/070610 2013-08-29 2014-08-05 Method for producing conducting film, and conducting film WO2015029715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-178290 2013-08-29
JP2013178290A JP2015046369A (en) 2013-08-29 2013-08-29 Method for producing conductive film and conductive film

Publications (1)

Publication Number Publication Date
WO2015029715A1 true WO2015029715A1 (en) 2015-03-05

Family

ID=52586287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070610 WO2015029715A1 (en) 2013-08-29 2014-08-05 Method for producing conducting film, and conducting film

Country Status (3)

Country Link
JP (1) JP2015046369A (en)
TW (1) TW201510278A (en)
WO (1) WO2015029715A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031275A1 (en) 2015-08-18 2017-02-23 3M Innovative Properties Company Self-sealing articles including elastic porous layer
EP3940036A2 (en) 2020-07-13 2022-01-19 Asahi Kasei Kabushiki Kaisha Material for pressure-sensitive adhesive, method for producing pressure-sensitive adhesive, pressure-sensitive adhesive, multilayer film, and package

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270809B2 (en) 2017-03-16 2022-03-08 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051562A1 (en) * 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Metal oxide dispersion
JP2009001883A (en) * 2007-06-22 2009-01-08 Mitsuboshi Belting Ltd Dispersion liquid containing fine metal particle, and thin metal film
WO2013077448A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051562A1 (en) * 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Metal oxide dispersion
JP2009001883A (en) * 2007-06-22 2009-01-08 Mitsuboshi Belting Ltd Dispersion liquid containing fine metal particle, and thin metal film
WO2013077448A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031275A1 (en) 2015-08-18 2017-02-23 3M Innovative Properties Company Self-sealing articles including elastic porous layer
EP3940036A2 (en) 2020-07-13 2022-01-19 Asahi Kasei Kabushiki Kaisha Material for pressure-sensitive adhesive, method for producing pressure-sensitive adhesive, pressure-sensitive adhesive, multilayer film, and package

Also Published As

Publication number Publication date
TW201510278A (en) 2015-03-16
JP2015046369A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5993812B2 (en) Manufacturing method of conductive film
WO2014156594A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
JP2015032493A (en) Composition for formation of conductive film and method of producing conductive film using the same
US9868864B2 (en) Electroconductive-film-forming composition and method for producing electroconductive film
WO2015029715A1 (en) Method for producing conducting film, and conducting film
WO2013145954A1 (en) Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
WO2014041956A1 (en) Conductive layer fabrication method and printed circuit board
WO2015033823A1 (en) Production method for conductive film
WO2015005046A1 (en) Composition for forming electrically conductive film, method for producing electrically conductive film, and electrically conductive film
JP2014196427A (en) Composition for forming an electroconductive film and method for manufacturing electroconductive film using the same
JP5871762B2 (en) Conductive film forming composition and conductive film manufacturing method
JP5526576B2 (en) Conductive ink
WO2014157303A1 (en) Composition for forming conductive films and method for producing conductive film using same
JP5286649B2 (en) Method for producing conductive film, conductive ink
WO2014156345A1 (en) Composition for forming conductive films and method for producing conductive film using same
JP2014167872A (en) Method for producing conductive film, and wiring board
JP6104782B2 (en) Conductive film forming composition, conductive film manufacturing method, and conductive film
WO2015005178A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using same
JP2014025085A (en) Composition for forming conductive film and process for producing conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840119

Country of ref document: EP

Kind code of ref document: A1