WO2015029418A1 - Communication apparatus and method in communication system, and communication path control apparatus and method - Google Patents
Communication apparatus and method in communication system, and communication path control apparatus and method Download PDFInfo
- Publication number
- WO2015029418A1 WO2015029418A1 PCT/JP2014/004364 JP2014004364W WO2015029418A1 WO 2015029418 A1 WO2015029418 A1 WO 2015029418A1 JP 2014004364 W JP2014004364 W JP 2014004364W WO 2015029418 A1 WO2015029418 A1 WO 2015029418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication
- communication path
- virtual
- gateway
- plane
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/04—Network layer protocols, e.g. mobile IP [Internet Protocol]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
Definitions
- the present invention relates to a communication system that communicates between communication devices via a communication path, and more particularly to control of a communication path.
- a communication terminal such as a mobile phone can communicate with a base station and access the Internet via a core network.
- the communication terminal communicates with a device (for example, a gateway) provided in the core network via a communication path (for example, a bearer) established.
- a device for example, a gateway
- a communication path for example, a bearer
- a core network node for example, a gateway
- a core network node for example, a gateway
- the procedure for establishing a communication path is described in, for example, Chapter 5.3.2 of Non-Patent Document 1.
- GPRS General Packet Packet Radio Service
- a core network node such as a gateway is assigned to the established communication path. Therefore, when switching the path of a communication path, it is assumed that a communication path re-establishment procedure is executed in order to reassign a core network node to a new communication path.
- a communication path re-establishment procedure is executed, various influences on the communication service are assumed, for example, the communication executed on the communication path before switching is interrupted.
- an object of the present invention is to provide a communication technique and a communication path control technique capable of suppressing the influence on the communication service when switching the communication path route.
- the communication device of the present invention is a communication device that communicates through a communication path set in a network, and is identified by an identification rule for identifying a communication flow based on information including a communication path identifier, and the identification rule.
- a first processing unit capable of receiving a processing rule including a processing rule indicating that the received packet is transferred to a gateway corresponding to the communication path identifier; and a communication path identifier of the received packet based on the processing rule.
- second means capable of transferring the received packet to the corresponding gateway.
- the control device of the present invention is a control device capable of controlling a communication device communicating via a communication path set in a network, and a first means capable of managing a correspondence relationship between the communication path and the gateway; An identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier And a second means capable of notifying the communication device of the processing rule.
- the communication method of the present invention is a communication method for communicating via a communication path set in a network, and is identified by an identification rule for identifying a communication flow based on information including a communication path identifier, and the identification rule.
- the reception packet is transferred.
- the control method of the present invention is a control method for controlling a communication device that communicates via a communication path set in a network, and manages a correspondence relationship between the communication path and the gateway, and includes information including a communication path identifier
- the present invention it is possible to suppress the influence on the communication service when switching the communication path, and it is possible to provide a technology capable of various communication quality control.
- FIG. 1 is a system configuration diagram showing an example of a communication system to which the first embodiment of the present invention is applied.
- FIG. 2 is a schematic diagram showing an example of a communication path in the communication system shown in FIG.
- FIG. 3 is a block diagram showing a first example of a communication system according to the first embodiment of the present invention.
- FIG. 4 is a block diagram showing a second example of the communication system according to the first embodiment of the present invention.
- FIG. 5 is a block diagram showing a third example of the communication system according to the first embodiment of the present invention.
- FIG. 6 is a sequence diagram showing an operation example of the communication apparatus according to the first embodiment of the present invention.
- FIG. 7 is a block diagram showing a configuration of a control device according to the second embodiment of the present invention.
- FIG. 1 is a system configuration diagram showing an example of a communication system to which the first embodiment of the present invention is applied.
- FIG. 2 is a schematic diagram showing an example of a communication path in the communication system shown
- FIG. 8 is a block diagram showing an example of the route information DB in the control device according to the second embodiment of the present invention.
- FIG. 9 is a block diagram showing an example of a communication apparatus according to the second embodiment of the present invention.
- FIG. 10 is a schematic configuration diagram for explaining a functional configuration of a communication device according to the third embodiment of the present invention.
- FIG. 11 is a system configuration diagram showing a first example of a communication system according to the third embodiment of the present invention.
- FIG. 12 is a system configuration diagram showing a second example of the communication system according to the third embodiment of the present invention.
- FIG. 13 is a system configuration diagram showing a third example of the communication system according to the third embodiment of the present invention.
- FIG. 14 is a block diagram showing a first example of the route information DB in the control device according to the third embodiment of the present invention.
- FIG. 15 is a block diagram showing a first example of the route information DB in the communication device according to the third embodiment of the present invention.
- FIG. 16 is a schematic system configuration diagram for explaining a first operation example of the communication system according to the third embodiment of the present invention.
- FIG. 17 is a block diagram showing a second example of the route information DB in the control device according to the third embodiment of the present invention.
- FIG. 18 is a block diagram showing a second example of the route information DB in the communication apparatus according to the third embodiment of the present invention.
- FIG. 19 is a schematic system configuration diagram for explaining a second operation example of the communication system according to the third embodiment of the present invention.
- FIG. 20 is a schematic system configuration diagram for explaining a third operation example of the communication system according to the third embodiment of the present invention.
- FIG. 21 is a sequence diagram showing a first operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 22 is a sequence diagram showing a second operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 23 is a sequence diagram showing a third operation example of the communication system according to the fourth embodiment of the present invention.
- FIG. 24 is a sequence diagram showing a fourth operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 25 is a sequence diagram showing a fifth operation example of the communication system according to the fourth embodiment of the present invention.
- FIG. 21 is a sequence diagram showing a first operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 22 is a sequence diagram showing a second operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 26 is a sequence diagram showing a seventh operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 27 is a sequence diagram showing an eighth operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 28 is a sequence diagram showing a ninth operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 29 is a sequence diagram showing a tenth operation example of the communication system according to the fourth exemplary embodiment of the present invention.
- FIG. 30 is a system configuration diagram showing a first example of a communication system according to a fifth embodiment of the present invention.
- FIG. 31 is a block diagram showing a configuration of a control device according to the fifth embodiment of the present invention.
- FIG. 32 is a block diagram showing an example of a flow entry DB in the control device according to the fifth embodiment of the present invention.
- FIG. 33 is a block diagram showing a configuration of a communication apparatus according to the fifth embodiment of the present invention.
- FIG. 34 is a schematic system configuration diagram for explaining the operation of the communication system according to the sixth embodiment of the present invention.
- FIG. 35 is a block diagram showing a first example of the route information DB in the control device according to the sixth embodiment of the present invention.
- FIG. 36 is a block diagram showing a second example of the route information DB in the control device according to the sixth embodiment of the present invention.
- FIG. 37 is a block diagram showing a third example of the route information DB in the control device according to the sixth embodiment of the present invention.
- FIG. 38 is a block diagram showing a fourth example of the route information DB in the control device according to the sixth embodiment of the present invention.
- FIG. 39 is a block diagram showing a fifth example of the route information DB in the control device according to the sixth embodiment of the present invention.
- FIG. 40 is a schematic system configuration diagram for explaining a first example of the operation of the communication system according to the seventh embodiment of the present invention.
- FIG. 41 is a block diagram showing a configuration of a control device according to the seventh embodiment of the present invention.
- FIG. 42 is a block diagram showing an example of a policy DB of the control device according to the seventh embodiment of the present invention.
- FIG. 43 is a schematic system configuration diagram for explaining a second example of the operation of the communication system according to the seventh embodiment of the present invention.
- FIG. 40 is a schematic system configuration diagram for explaining a first example of the operation of the communication system according to the seventh embodiment of the present invention.
- FIG. 41 is a block diagram showing a configuration of a control device
- FIG. 44 is a block diagram showing an example of a policy DB of the control device in the communication system shown in FIG.
- FIG. 45 is a schematic system configuration diagram for explaining a third example of the operation of the communication system according to the seventh embodiment of the present invention.
- 46 is a block diagram showing an example of a policy DB of the control device in the communication system shown in FIG.
- FIG. 47 is a block diagram showing a first example of a management apparatus according to the eighth embodiment of the present invention.
- FIG. 48 is a block diagram showing a second example of the management apparatus according to the eighth embodiment of the present invention.
- FIG. 49 is a schematic diagram showing an example of a user interface of the management device according to the eighth embodiment of the present invention.
- FIG. 50 is a block diagram showing a third example of the management apparatus according to the eighth embodiment of the present invention.
- FIG. 51 is a schematic diagram showing a first example of a user interface of the management device according to the ninth embodiment of the present invention.
- FIG. 52 is a block diagram showing a first example of the route information DB in the management device according to the ninth embodiment of the present invention.
- FIG. 53 is a schematic diagram showing a second example of the user interface of the management device according to the ninth embodiment of the present invention.
- FIG. 54 is a block diagram showing a second example of the route information DB in the management device according to the ninth embodiment of the present invention.
- FIG. 55 is a schematic diagram showing a third example of the user interface of the management device according to the ninth embodiment of the present invention.
- FIG. 56 is a block diagram showing a third example of the path information DB in the management apparatus according to the ninth embodiment of the present invention.
- LTE Long Term Evolution
- UMTS Universal Mobile Telecommunication System
- the communication system includes a mobile phone, a PC (Personal Computer), a mobile router terminal (Mobile Terminal) 1, a base station (eNB) 2, and a gateway 3.
- the base station 2 provides a radio access function to the terminal 1.
- the gateway 3 is a network node such as S-GW (Serving Gateway) or P-GW (Packet Data Network Gateway).
- the gateway 3 may be SGSN (Serving GPRS Support Node) or GGSN (Gateway GPRS Support Node).
- the gateway 3 provides, for example, a function for terminating a communication path (for example, bearer) set in a network and a function as a connection point with an external network (for example, the Internet).
- the terminal 1 transmits and receives data via a communication path (for example, a bearer) established between the terminal 1 and the gateway 3.
- the communication path includes, for example, a wireless channel established between the terminal 1 and the base station and a GTP (GPRS Tunneling Protocol) tunnel that terminates at the gateway 3 (endpoint).
- GTP GPRS Tunneling Protocol
- a communication device 4 capable of switching the path of a communication path between the base station 2 and the gateway 3 or between the S-GW and the P-GW. Is placed.
- the communication device 4 can switch the packet transfer path so that the packet belonging to the communication path passes through the switched gateway 3.
- the communication device 4 By switching the packet transfer path on the path of the communication path by the communication device 4, it becomes possible to conceal the switching of the gateway from the terminal 1. Therefore, even if the gateway 3 corresponding to the communication path is switched, the communication system can avoid executing the communication path re-establishment procedure.
- the communication device 4 can switch a plurality of gateways, a case where three gateways are switched will be described as an example in order to avoid complication of the following description.
- the communication device 4 includes a communication path identification unit 40 and a switching unit 41, and can switch between the gateways 3 (a), 3 (b), and 3 (c) according to the communication path. And
- the communication path identification unit 40 identifies the communication path to which the received packet belongs. For example, the communication path identification unit 40 identifies a communication path to which a received packet belongs based on a communication path identifier such as a TEID (Tunnel Endpoint Identifier) or a GRE (Generic Routing Encapsulation) key.
- a communication path identifier such as a TEID (Tunnel Endpoint Identifier) or a GRE (Generic Routing Encapsulation) key.
- the switching unit 41 transfers the received packet to the gateway 3 corresponding to the communication path identified by the communication path identifier.
- the switching unit 41 has a function of managing the correspondence relationship between the communication path and the gateway 3, and transfers the received packet to the corresponding gateway 3 based on the correspondence relationship.
- the switching unit 41 sets the received packet (A) to the gateway 3 (a), the received packet (B) to the gateway 3 (b), and the received packet (C) to the gateway (c). Forward.
- a gateway 3A can be configured on the server 33 by software such as a virtual machine (VM), and the communication device 4 can transfer a received packet to the gateway 3A.
- the server 33 can construct a plurality of virtual gateways 3A according to, for example, the load on the communication system.
- the switching unit 41 transfers the received packet to the corresponding virtual gateway based on the correspondence relationship between the communication path and the virtual gateway.
- the above-described functions of the communication device 4 can be realized by a virtual switch 4 ⁇ / b> A constructed on the server 33. That is, in the example of FIG. 5, the server 33 can operate as the communication device 4. That is, the virtual switch 4A and the virtual gateway (gateway 3A) can be configured by software such as VM on the control unit (not shown) of the server 33.
- the communication path identifying unit 40 of the virtual switch 4A identifies the communication path to which the received packet belongs, and the switching unit 41 of the virtual switch 4A transfers the received packet to the virtual gateway 3A corresponding to the identified communication path.
- FIGS. 3 to 5 Although only one communication device 4 (virtual switch 4A) is shown in FIGS. 3 to 5, a plurality of communication devices 4 may be used. Further, the communication device 4 and the virtual switch 4A may be used in combination.
- the communication path identification unit 40 identifies the communication path to which the received packet belongs (operation S2). For example, the communication path identifying unit 40 identifies the communication path to which the received packet belongs based on a communication path identifier such as TEID or GRE Key.
- the switching unit 41 of the communication device 4 transfers the received packet to the gateway 3 corresponding to the identified communication path (operation S3).
- the communication apparatus 4 switches the packet transfer path on the path of the communication path, so that the communication system conceals the switching of the gateway 3 corresponding to the communication path from the terminal 1. It becomes possible. Therefore, even if the gateway 3 corresponding to the communication path is switched, the communication system can avoid executing the communication path re-establishment procedure.
- Second Embodiment A second embodiment of the present invention is applicable to the communication system illustrated in FIG.
- the communication device 4 in the communication system according to the second embodiment can switch the communication path according to the instruction notified from the control device 5 as in the first embodiment described above. Since the control device 5 can centrally control the operation of the communication device 4, the operation efficiency of the system is improved.
- the control device 5 includes a route information DB (database) 50, a control unit 51, and a communication interface 52.
- the communication interface 52 has a function of communicating with the communication device 4.
- the communication interface 52 can communicate with the communication device 4 using a protocol such as OpenFlow, ForCES (Forwarding and Control Element Separation), or I2RS (Interface to Routing System).
- the route information DB 50 is a database for managing the correspondence between the communication path and the gateway 3.
- the control unit 51 has a function of generating information stored in the route information DB 50 and a function of controlling the communication device 4 via the communication interface 52 based on information stored in the route information DB 50.
- the route information DB 50 stores correspondence information between each communication path and the corresponding gateway.
- a communication path identifier such as TEID or GRE Key can be used, and the corresponding gateway 3 can be managed based on each communication path identifier.
- the control unit 51 controls the communication device 4 based on information managed by the route information DB 50. For example, the control unit 51 notifies the correspondence between the communication path and the gateway 3 to the switching unit 41 of the communication device 4 based on the route information DB 50.
- the communication device 4 may be provided with a route information DB 42 to store the route information notified from the control device 5.
- the communication path identifying unit 40 and the switching unit 41 of the communication device 4 refer to the route information DB 42 and transfer the packet to the gateway 3 corresponding to the communication path to which the packet belongs.
- the control unit 51 of the control device 5 notifies the communication device 4 of the changed correspondence information.
- the communication device 4 stores the notified information in the route information DB 42.
- the control unit 51 of the control device 5 can also operate the gateway 3A (illustrated in FIG. 5), which is a virtual gateway, on the server 33 illustrated in FIG. That is, in response to the activation instruction from the control unit 51, the server 33 activates an application having a function corresponding to the gateway 3 on the virtual machine.
- the gateway 3A illustrated in FIG. 5
- the server 33 activates an application having a function corresponding to the gateway 3 on the virtual machine.
- the control device 5 can be configured by using, for example, a PCRF (Policy and Charging Rule Function), an MME (Mobility Management Entity), or an NMS (Network Management System) of the LTE communication system.
- the MME has a function of controlling the establishment and deletion of bearers, a mobility control such as a handover of the terminal 1, and a user authentication of the terminal 1.
- the PCRF has functions such as policy control such as QoS and charging control for data transfer.
- the gateway executes policy control based on the notification information from the PCRF.
- the NMS has functions such as network traffic monitoring and network device alive monitoring.
- a third embodiment of the present invention is applicable to any technique disclosed in the first embodiment or the second embodiment described above.
- the function of the gateway 3 is virtually configured by software such as VM.
- the communication system is usually designed so as to have a capability to withstand a peak load. Therefore, there is a possibility that a dedicated appliance (for example, a gateway device or the like) constituting the communication system becomes redundant with respect to the non-peak traffic.
- a dedicated appliance for example, a gateway device or the like
- One solution to this problem is to configure the functions of a dedicated appliance such as a gateway device by software such as a virtual machine. For example, it is possible to construct a system according to the state of the communication system by adding a virtual machine having a function of a dedicated appliance according to the communication amount of the communication system.
- the gateway 3 when the function of the gateway 3 is dynamically scaled out, it is possible to switch the gateway 3 corresponding to the communication path.
- the communication device 4 switches the packet transfer path on the communication path, the communication device 4 can conceal the switching of the gateway 3 corresponding to the communication path from the terminal 1. Therefore, even if the gateway 3 corresponding to the communication path is switched, the communication system can avoid executing the communication path re-establishment procedure.
- the third embodiment of the present invention will be described below with reference to the examples of FIGS.
- the gateway 3 has a control plane (C-Plane) and a user plane (U-Plane).
- C-Plane has a function of processing a control signal transmitted in the communication system.
- U-Plane has a function of processing data transmitted in a communication system.
- C-Plane and U-Plane can communicate with each other via different interfaces 32.
- an IP address is assigned to each interface.
- a communication path (for example, a bearer) is established between the gateway 3 and the terminal 1.
- the gateway 3 communicates using, for example, an IP address assigned to the interface 32.
- the gateway 3 constructs a tunnel (for example, a GTP tunnel or a GRE tunnel) for establishing a communication path.
- the gateway 3 described above is configured as a virtual gateway 3A by software such as VM.
- the virtual gateway 3A is constructed on the server 33, for example.
- C-Plane and U-Plane are configured by software such as VM.
- the functions corresponding to C-Plane and U-Plane are labeled “virtual C-plane 30” and “virtual U-plane 31”, respectively.
- the virtual C-plane 30 and the virtual U-plane 31 can communicate with each other through an internal interface.
- the operator of the communication system can add a virtual C-plane 30 and a virtual U-plane 31 according to the load of the communication system, for example. Since the virtual C-plane 30 and the virtual U-plane 31 are configured by software, the operator can add gateways more easily and at a lower cost than when the gateway 3 of the hardware device is added.
- the virtual C-Plane 30 and the virtual U-Plane 31 each operate as a network node that provides a function for terminating a communication path and a function as a connection point with an external network.
- the virtual gateway 3A when an IP address is assigned to each interface 32 like the gateway 3, a virtual C-plane or a virtual U-plane is added.
- communication path reconstruction occurs.
- the virtual U-plane 31 when the virtual U-plane 31 is added, a new IP address is assigned to the interface 32 of the added virtual U-plane 31.
- the IP address corresponding to the communication path is changed to the IP address assigned to the added virtual U-plane 31.
- communication path reconstruction occurs.
- each function constituting the communication system such as eNB, SGW, or PGW executes a communication path reconstruction procedure. Therefore, it is assumed that the communication path is reconstructed every time the virtual C-plane 30 or the virtual U-plane 31 is added, and the influence on the performance of the communication system is increased.
- addresses commonly assigned to a plurality of virtual C-Planes and a plurality of virtual U-Planes are not limited to IP addresses, and may be MAC addresses, for example.
- the first example of the communication system according to the third embodiment of the present invention includes a virtual gateway 3A, a communication device 4, and a control device 5.
- the virtual gateway 3A can configure a virtual C-plane 30 and a virtual U-plane 31 by software such as VM.
- a virtual C-plane 30 and a virtual U-plane 31 are configured on the server by software such as VM.
- the control device 5 manages the correspondence between the communication path and the virtual gateway 3A.
- the control device 5 has a function of managing the correspondence between the communication path and the virtual U-plane 31.
- the control device 5 has a function of managing the correspondence between the communication path and the virtual C-Plane 30.
- the control device 5 has a function of controlling the operation of the communication device 4. As already described, the control device 5 identifies the communication path to which the received packet belongs, and instructs the communication device 4 to transfer the received packet to the virtual U-Plane 31 corresponding to the identified communication path.
- the control device 5 can also operate the virtual gateway 3A (or virtual C-Plane 30 or virtual U-Plane 31) on the server 33.
- the control device 5 can instruct the server 33 to start the virtual gateway 3A.
- the server 33 activates an application having a function corresponding to the gateway 3 on the virtual machine in response to an activation instruction from the control device 5.
- the control device 5 can also control the virtual U-Plane 31 in parallel with the communication device 4. For example, in order to switch the virtual U-Plane 31 corresponding to the communication path, the control device 5 controls the communication device 4 to switch the packet transfer path on the path of the communication path, and also switches the virtual U-Plane 31 of the switching destination. -Perform control for terminating the communication path in Plane 31. For example, the control unit 51 of the control device 5 notifies the virtual U-Plane 31 of information (for example, a communication path identifier) related to a communication path in which the virtual U-Plane 31 is newly terminated by route switching.
- information for example, a communication path identifier
- the function of the communication device 4 is configured on the server 33 by software such as VM. That is, in the example of FIG. 12, the server 33 can operate as the communication device 4.
- the server 33 includes, for example, a control unit (not shown in FIG. 12) that can activate the virtual gateway 3A on the server 33.
- the virtual gateway 3A the virtual C-Plane 30, the virtual U-Plane 31, and the virtual switch 4A are built on the server 33, and the function of the communication device 4 is built on the server 33 as the virtual switch 4A.
- the server 33 includes a virtual switch 4A that can operate as the communication device 4 as in the example of FIG. Are configured on the server 33 by software such as VM.
- the function of the control device 5 is constructed on the server 33 as the virtual controller 5A.
- the server 33 includes, for example, a control unit (not shown in FIG. 13) that can activate at least one of the virtual switch 4A, the virtual gateway 3A, or the virtual controller 5A on the server 33.
- the virtual gateway 3A includes a virtual C-Plane 30, a virtual U-Plane 31, a virtual switch 4A, and a virtual controller 5A.
- the server 33 can operate as the control device 5 having at least one function of the virtual switch 4A or the virtual gateway 3A.
- Control device management information (first example) As illustrated in FIG. 14, the management information stored in the path information DB 50 of the control device 5 is information managed by the control device 5 for the virtual gateway 3A functioning as the P-GW here.
- the control device 5 manages, for example, communication path information and information on the virtual U-Plane 31 corresponding to the communication path identified by the communication path information (“virtual U-Plane” in FIG. 14).
- the communication path information is, for example, an IP address (“GW IP addr” in FIG. 14) assigned to the virtual U-plane and a communication path identifier (TEID in FIG. 14).
- GW IP addr is an IP address commonly assigned to each virtual U-Plane 31.
- the control device 5 manages the above-mentioned GW IP addr and TEID as communication path information for uplink communication (communication directed from the terminal 1 to an external network such as the Internet).
- the communication path information may include information related to the virtual U-Plane 31 corresponding to the communication path (for example, identification information of the virtual U-plane. Information indicated as “virtual U-Plane” in FIG. 14).
- a communication path in which “GW IP addr” is GW-U and “TEID” is TEID # A corresponds to virtual U-Plane # 1.
- the control device 5 includes, for example, information including the IP address of the terminal 1 (“UE IP addr” in FIG. 14) as communication path information for downlink communication (communication directed from the external network to the terminal 1). to manage. For example, the control device 5 acquires communication path information from the virtual C-plane 30.
- an IP address is not assigned to each virtual U-plane 31, but a common IP address (“GW IP addr”) is assigned to each virtual U-plane.
- GW IP addr a common IP address
- “Not only such an allocation method but also a plurality of IP addresses (for example,“ GW-U # 1 ”and“ GW-U # 2 ”) may be allocated to the virtual U-plane. It is also possible to adopt an allocation method in which "GW-U # 1" is assigned to U-Plane # 1- # n and "GW-U # 2" is assigned to virtual U-Plane # m- # x. .
- Communication device control information (first example) As illustrated in FIG. 15, the control device 5 can set control information in the communication device 4.
- the control device 5 notifies, for example, an instruction for processing the received packet as control information to the communication device 4 that processes Uplink communication.
- the communication device 4 processes the received packet according to the notified control information.
- the control information notified by the control device 5, for example, identifies the bearer to which the received packet belongs based on the IP address ("GW IP addr") assigned to the virtual U-plane and the TEID, and corresponds to the identified bearer
- the communication apparatus 4 is instructed to transfer the received packet to the virtual U-plane 31 to be transmitted.
- the control information notified to the communication device 4 for Uplink communication includes, for example, “Matching Key” (identification condition) and “Instruction” (instruction).
- “Matching Key” indicates a condition for identifying a packet based on the IP address for U-plane (“GW IP addr”) that is the destination address of the packet and the TEID.
- “Instruction” indicates a method of processing a packet that matches the condition of “Matching Key”. For example, when a packet whose destination address (Dst Addr) is “GW-U” and whose TEID is “#A” is identified, the packet is instructed to be transferred to “virtual U-plane # 1”. .
- the control device 5 notifies, for example, an instruction for processing the received packet as control information to the communication device 4 that processes Downlink communication.
- the communication device 4 processes the received packet according to the notified control information.
- the control information notified by the control device 5 identifies the bearer to which the received packet belongs based on the IP address of the terminal 1 that is the destination of the packet (“UE IP addr”), and the virtual U corresponding to the identified bearer. -Instruct the plane 31 to transfer the received packet.
- the control information notified to the communication device 4 for Downlink communication includes, for example, “Matching Key” and “Instruction”.
- “Matching Key” indicates a condition for identifying a packet based on the IP address (“UE IP addr”) of the terminal 1 that is the destination address of the packet.
- “Instruction” indicates a method of processing a packet that matches the condition of “Matching Key”. For example, when a packet whose destination address (Dst Addr) is “UE # A ′” is identified, the packet is instructed to be transferred to “virtual U-plane # 1”.
- the communication device 4 transfers the received packet to the virtual U-plane 31 according to the control information illustrated in FIG. 15. More specifically, the communication device 4 searches for a “Matching Key” corresponding to the received packet. When a matching “Matching Key” is found, the communication device 4 follows the “Instruction” corresponding to the “Matching Key”. Is transferred to the virtual U-plane 31.
- a packet addressed to the virtual gateway 3 (a packet with Dst Addr being “GW-U”) is transferred to the virtual U-plane 31 according to the TEID.
- a packet with TEID “#A” is in virtual U-plane # 1
- a packet with TEID “#B” is in virtual U-plane # 2
- a packet with TEID “#C” is virtual. Each is transferred to U-plane # 3.
- the received packet is transferred to the virtual U-plane 31 according to the destination IP address.
- a packet whose destination IP address is “UE # A ′” is to virtual U-plane # 1
- a packet whose destination IP address is “UE # B ′” is to virtual U-plane # 2
- Packets with the address “UE # C ′” are transferred to the virtual U-plane # 3, respectively.
- Control device management information (second example) As illustrated in FIG. 17, the management information stored in the path information DB 50 of the control device 5 is information managed by the control device 5 for the virtual gateway 3A functioning as the S-GW.
- the control device 5 manages, for example, communication path information and information regarding the virtual U-Plane 31 corresponding to the communication path identified by the communication path information.
- the communication path information is, for example, an IP address (“GW IP addr” in FIG. 17) assigned to the virtual U-plane and a communication path identifier (TEID in FIG. 17).
- the control device 5 manages, for example, the above-described GW IP addr and TEID as communication path information for Uplink communication.
- the communication path information may include information on the virtual U-Plane 31 corresponding to the communication path (for example, identification information of the virtual U-Plane. Information indicated as “virtual U-Plane” in FIG. 17).
- the control device 5 manages, for example, the above-described GW IP addr and TEID as communication path information for Downlink communication.
- the communication path information may include information on the virtual U-Plane 31 corresponding to the communication path (for example, identification information of the virtual U-Plane. Information indicated as “virtual U-Plane” in FIG. 17). For example, the control device 5 acquires communication path information from the virtual C-plane 30.
- an IP address is not assigned to each virtual U-plane 31, but a common IP address (“GW IP addr”) is assigned to the virtual U-plane.
- GW IP addr a common IP address
- an IP address “GW-U” for Uplink and an IP address “GW-U ′” for Downlink are assigned to the virtual U-plane, respectively.
- a plurality of IP addresses for example, “GW-U # 1”, “GW-U # 2”, “GW-U ′ # 1”, “GW-U ′ # 2”) for the virtual U-plane May be assigned.
- GW-U # 1 and “GW-U ′ # 1” are assigned to the virtual U-Plane # 1- # n
- “GW-U # 2” is assigned to the virtual U-Plane # m- # x.
- "And" GW-U '# 2 "are assigned.
- Communication device control information (second example) As illustrated in FIG. 18, the control device 5 can set control information in the communication device 4.
- the control device 5 notifies, for example, an instruction for processing the received packet as control information to the communication device 4 that processes Uplink communication.
- the communication device 4 processes the received packet according to the notified control information.
- the control information notified by the control device 5 is, for example, identifying the communication path to which the received packet belongs based on the IP address (“GW IP addr”) assigned to the virtual U-plane and the TEID, and the identified communication path
- the communication device 4 is instructed to transfer the received packet to the virtual U-plane 31 corresponding to.
- the control information notified to the communication device 4 for Uplink communication includes, for example, “Matching Key” and “Instruction”.
- “Matching Key” indicates a condition for identifying a packet based on the IP address for U-plane (“GW IP addr”) that is the destination address of the packet and the TEID.
- “Instruction” indicates a method of processing a packet that matches the condition of “Matching Key”. For example, when a packet whose destination address is “GW-U” and TEID is “#A” is identified, the packet is instructed to be transferred to “virtual U-plane # 1”.
- the control device 5 notifies, for example, an instruction for processing the received packet as control information to the communication device 4 that processes Downlink communication.
- the communication device 4 processes the received packet according to the notified control information.
- the control information notified by the control device 5 is, for example, identifying the communication path to which the received packet belongs based on the IP address (“GW IP addr”) assigned to the U-plane and the TEID.
- the communication device 4 is instructed to transfer the received packet to the corresponding virtual U-plane 31.
- the control information notified to the communication device 4 for Downlink communication includes, for example, “Matching Key” and “Instruction”.
- “Matching Key” indicates a condition for identifying a packet based on the IP address for U-plane (“GW IP addr”) that is the destination address of the packet and the TEID.
- “Instruction” indicates a method of processing a packet that matches the condition of “Matching Key”. For example, when a packet whose destination address is “GW-U ′” and TEID is “#A ′” is identified, the packet is instructed to be transferred to “virtual U-plane # 1”.
- the communication device 4 transfers the received packet to the virtual U-plane 31 according to the control information illustrated in FIG. 18. More specifically, the communication device 4 searches for a “Matching Key” corresponding to the received packet, and if a matching “Matching Key” is found, the communication device 4 transmits the received packet according to the “Instruction” corresponding to the “Matching Key”. Transfer to virtual U-planes 31.
- a packet addressed to the gateway 3 (a packet whose Dst Addr is “GW-U”) is transferred to the virtual U-plane 31 according to the TEID.
- a packet with TEID “#A” is a virtual U-plane # 1
- a packet with TEID “#B” is a virtual U-plane # 2
- a packet with TEID “#C” is a virtual Each is transferred to U-plane # 3.
- a packet addressed to the gateway 3 (a packet whose Dst Addr is “GW-U ′”) is transferred to the virtual U-plane 31 according to the TEID.
- a packet with TEID “#A” is in virtual U-plane # 1
- a packet with TEID “#B” is in virtual U-plane # 2
- a TEID is “#C”.
- the packet is transferred to the virtual U-plane # 3.
- control device 5 may also control a packet that has passed through the virtual U-plane.
- Control of a packet that has passed through the virtual U-plane can be, for example, control based on a destination IP address.
- the communication path is assigned to the virtual C-Plane and the virtual U-Plane.
- the communication path may be assigned to the virtual gateway 3A.
- an IP address “vGW” is assigned to the virtual gateway 3A, and a different IP address (eg, “IP # 1”) is assigned to each virtual U-Plane.
- the communication device 4 When the communication device 4 receives the packet having the destination address “vGW”, the communication device 4 converts the destination address according to the TEID of the packet. For example, when the TEID is “#A”, the communication device 4 converts the destination address “vGW” into the IP address “IP # 1” of the virtual U-Plane # 1 corresponding to the TEID “#A”.
- the communication device 4 When the communication device 4 receives a packet whose source address is the IP address of the virtual U-Plane, the communication device 4 converts the source address to the IP address “vGW” of the virtual gateway 3A.
- the MAC address may be converted together with the IP address.
- the MAC address “vGW_MAC” is assigned to the virtual gateway 3A, and a different MAC address (for example, “MAC # 1”) is assigned to each virtual U-Plane.
- a common IP address is assigned to the virtual U-plane and the virtual C-plane. Even if the constituent virtual U-planes 31 are added, the switching of the gateway 3 corresponding to the communication path can be hidden from the terminal 1, and the occurrence of the reconstruction of the communication path can be avoided.
- the packet transfer policy of the communication device 4 or the virtual switch 4A is updated.
- the present embodiment can be applied to any technique disclosed in the first, second, or third embodiment.
- various examples of updating the packet transfer policy of the communication device 4 or the virtual switch 4A will be described.
- Transfer policy update (first example)
- the transfer policy update sequence illustrated in FIG. 21 is a sequence for updating the packet transfer policy in the sequence (attach procedure “Attach Procedure”) disclosed in the LTE standard specification (3GPP TS23.401 V12.1.0). It is a procedure. “Attach Procedure” is disclosed in section 5.3.2 of the standard specification.
- the attach procedure in FIG. 21 shows a part related to the present embodiment in the sequence described in the standard specification, and details of other sequences are omitted. Note that when the attach procedure is completed, a communication path for communication by the terminal 1 is set.
- control device 5 operates as an MME of the LTE system. Or the function of the control apparatus 5 illustrated by the above-mentioned embodiment is added to MME of a LTE system.
- MME5 the MME to which the function of the control device 5 is added.
- the attach procedure is executed in the system. For example, in response to the start of the attach procedure, the MME 5 selects a virtual U-Plane to be assigned to the communication path set by the attach procedure (Operation S11).
- the MME 5 transmits a “Create Session Request” message to the gateway 3 (S-GW) (Operation S12).
- “Create Session Request” is a message for the MME 5 to request the S-GW to set a communication path.
- the MME 5 selects the S-GW and the P-GW, assigns an ID (for example, EPS bearer ID) corresponding to the communication path of the terminal 1, and assigns the ID and communication path assigned to the gateway information and the communication path.
- Information about QoS corresponding to (QCI, etc.) is notified to the S-GW by a “Create Session Request” message.
- the S-GW notifies the gateway 3 (P-GW) of the communication path ID, the QoS information (QCI, etc.) corresponding to the communication path, etc. by the “Create Session Request” message (operation S13).
- the P-GW that has received the “Create Session Request” message returns a “Create Session Response” message to the S-GW (operation S14).
- the S-GW transmits a “Create Session Response” message to the MME 5 (operation S15).
- the S-GW TEID for the S1-U interface and the S-GW TEID for the S5 / S8 interface are notified to the MME5 and the S-GW used in the communication path Is notified to the MME 5.
- the S-GW address used in the communication path is, for example, an IP address common to each virtual U-Plane constituting the S-GW.
- the MME 5 sets the packet transfer policy of the communication device 4 (“Routing Policy” in FIG. 21) based on the S-GW TEID and the S-GW address notified by the S-GW, and sends them to the communication device 4 Transmit (operation S16).
- the packet transfer policy is, for example, the control information exemplified in the above-described third embodiment (that is, control information set by the control device 5 in the communication device 4).
- the MME 5 sets the packet transfer policy illustrated in FIG. 18 in the communication device 4 based on the information notified from the S-GW.
- a packet transfer policy based on the S1-U interface TEID is set for the communication device 4 on the uplink side
- a packet transfer based on the TEID for the S5 / S8 interface is set for the communication device 4 on the downlink side.
- a policy is set.
- the gateway 3 and the communication device 4 are illustrated as different devices.
- the present invention is not limited to this, and for example, as in the example of FIG. 5, the communication device 4 including the virtual switch 4A and the virtual gateway 3A.
- the communication device 4 including the virtual switch 4A and the virtual gateway 3A.
- the S-GW notifies the P-GW of the “Create Session Request” message and also notifies the MME 5 of the S-GW TEID for the S5 / S8 interface (operation S13a).
- the P-GW may notify the MME 5 of the S-GW TEID for the S5 / S8 interface in response to the “Create Session Request” message received from the S-GW.
- the gateway 3 and the communication device 4 are illustrated as different devices.
- the present invention is not limited to this.
- the communication device 4 including the virtual switch 4A and the virtual gateway 3A. It is also possible to operate according to the packet transfer policy notified from the control device 5.
- Transfer policy update (third example)
- the packet transfer policy of the communication device 4 is updated in accordance with the configuration change of the virtual U-Plane 31 of the virtual gateway 3A.
- the configuration change of the virtual U-Plane 31 means, for example, installation of the virtual U-Plane 31 by newly starting a VM or uninstallation of the virtual U-Plane 31 by stopping the VM.
- the MME 5 When the MME 5 detects the configuration change of the virtual U-Plane 31 (Operation S20), the MME 5 changes the correspondence between the communication path and the virtual U-Plane 31 (Operation S21). For example, the MME 5 determines a communication path to be assigned to the virtual U-Plane 31 newly installed in the virtual gateway 3A. For example, the MME 5 assigns the communication path assigned to the virtual U-Plane 31 that is uninstalled from the virtual gateway 3A to the other virtual U-Plane 31.
- the load status of the virtual U-Plane 31 constituting the virtual gateway 3A is used instead of the configuration change of the virtual U-Plane 31 of the virtual gateway 3A. You can also. For example, there is control for switching a communication path from a virtual U-Plane 31 having a high load to a virtual U-Plane 31 having a low load.
- the MME 5 updates the packet transfer policy of the communication device 4 based on the change in the correspondence relationship between the communication path and the virtual U-Plane 31 (Operation S22).
- Transfer policy update (fourth example)
- the MME 5 acquires information from the gateway 3 (S-GW) in order to update the packet transfer policy.
- the MME 5 requests the TE-GW of the communication path established by the attach procedure of the standard specification (TS23.401) described above, for example, from the S-GW (operation S30).
- the S-GW In response to the TEID request, the S-GW notifies the MME 5 of the TEID by a TEID response (operation S31). For example, the S-GW TEID for the S1-U interface and the S-GW TEID for the S5 / S8 interface are notified to the MME 5. At that time, for example, the S-GW notifies the TEID of the communication path established by the attach procedure of the standard specification (TS23.401) described above.
- the MME 5 determines the virtual U-Plane 31 to be assigned to the TEID notified from the S-GW, and updates the packet transfer policy of the communication device 4 by notifying the communication device 4 (operation S32). That is, the MME 5 updates the packet transfer policy of the communication device 4 so that a packet corresponding to the TEID notified from the S-GW is transferred to the virtual U-Plane 31 assigned to the TEID.
- the gateway 3 and the communication device 4 are illustrated as different devices.
- the present invention is not limited to this.
- the communication device 4 including the virtual switch 4A and the virtual gateway 3A.
- Transfer policy update (fifth example)
- the transfer policy update sequence illustrated in FIG. 25 is a packet transfer policy update procedure when the virtual gateway 3A has the functions of the communication device 4 and the control device 5 (for example, the configuration illustrated in FIG. 13). That is, the gateway 3 (S-GW) shown in FIG. 25 includes a virtual switch 4A and a virtual controller 5A.
- the S-GW virtual controller 5A changes the correspondence between the communication path and the virtual U-Plane 31 (operation S40). For example, the path of the communication path #A is switched from the virtual U-Plane 31 (# 1) to the virtual U-Plane 31 (# 2).
- the virtual controller 5A updates the packet transfer policy of the virtual switch 4A according to the change of the correspondence relationship between the communication path and the virtual U-Plane 31 (Operation S41). For example, the virtual controller 5A instructs the virtual switch 4A to switch the route of the communication path #A corresponding to the virtual U-Plane 31 (# 1) to a route via the virtual U-Plane 31 (# 2).
- FIG. 26 shows a procedure for updating the packet transfer policy in the sequence (“Attach Procedure”) disclosed in the LTE standard specification (3GPP TS23.401 V12.1.0). “Attach Procedure” is disclosed in section 5.3.2 of the standard specification.
- the control device 5 illustrated in FIG. 26 operates as a PCRF of the LTE system. That is, the function of the control device 5 exemplified in the above embodiment is added to the PCRF of the LTE system. That is, in the attach procedure of the terminal 1 (the procedure disclosed in TS23.401), the control device 5 (PCRF) sets a packet transfer policy for the communication device 4.
- PCRF5 the PCRF to which the function of the control device 5 is added
- IP-CAN IP Connectivity Session Establishment / Modification
- IP-CAN IP Connectivity Session Establishment / Modification
- IMS IP Multimedia Subsystem
- the PCRF 5 selects, for example, the virtual U-Plane 31 to be assigned to the communication path established in the attach procedure in the “IP-CAN (IP Connectivity) Session Establishment / Modification” procedure (operation S52).
- the PCRF 5 sets a packet transfer policy in the communication device 4 so that packets belonging to the communication path established by the attach procedure are transferred to the virtual U-Plane 31 assigned to the communication path (operation S53). It is assumed that the PCRF 5 has acquired a TEID related to the P-GW.
- the gateway 3 and the communication device 4 are illustrated as different devices.
- the present invention is not limited to this.
- the communication device 4 including the virtual switch 4A and the virtual gateway 3A It is also possible to operate according to the packet transfer policy notified from the control device 5.
- the gateway 3 in FIG. 27 is configured as a virtual gateway 3A on the server. Also in FIG. 27, as in the example of FIG. 26, since the function of the control device 5 exemplified in the above embodiment is added to the PCRF of the LTE system, such a PCRF is hereinafter referred to as “PCRF5”. .
- the packet transfer policy of the communication device 4 or the virtual switch 4A is updated according to the configuration change of the virtual U-Plane 31 of the virtual gateway 3A.
- the configuration change of the virtual U-Plane 31 means, for example, installation of the virtual U-Plane 31 by newly starting a VM or uninstallation of the virtual U-Plane 31 by stopping the VM.
- the communication path is switched from the virtual U-Plane 31 having a high load to the virtual U-Plane 31 having a low load.
- the PCRF 5 When the PCRF 5 detects a configuration change of the virtual U-Plane 31 (operation S60), the PCRF 5 changes the correspondence between the communication path and the virtual U-Plane 31 (operation S61). For example, when the virtual U-Plane 31 is newly installed in the virtual gateway 3A, the PCRF 5 determines a communication path to be assigned to the virtual U-Plane 31. Further, for example, when the virtual U-Plane 31 is uninstalled from the virtual gateway 3A, the PCRF assigns the communication path assigned to the virtual U-Plane 31 to the other virtual U-Plane 31. The PCRF 5 updates the packet transfer policy of the communication device 4 or the virtual switch 4A based on the change in the correspondence between the communication path and the virtual U-Plane 31 (Operation S62).
- Transfer policy update (eighth example)
- the PCRF 5 acquires information from the gateway 3 (P-GW) in order to update the packet transfer policy.
- the PCRF 5 requests a TEID of the communication path from the P-GW (Operation S70).
- the TEID of the communication path established by the attach procedure of the standard specification (TS23.401) described above is required.
- the P-GW that has received the communication path TEID request notifies the PCRF 5 of the communication path TEID by a TEID response (operation S71).
- the P-GW notifies the PCRF of the P-GW TEID of the communication path established by the above-described standard specification (TS23.401) attach procedure.
- the PCRF 5 determines the virtual U-Plane 31 to be assigned to the TEID notified from the P-GW, and updates the packet transfer policy of the communication device 4 or the virtual switch 4A (Operation S72). This packet transfer policy is updated so that, for example, a packet corresponding to the TEID notified from the P-GW is transferred to the virtual U-Plane 31 assigned to the TEID.
- the gateway 3 and the communication device 4 are exemplified as different devices.
- the present invention is not limited to this.
- the communication device 4 including the virtual switch 4A and the virtual gateway 3A.
- FIG. 29 illustrates an example of a packet transfer policy update procedure when the gateway 3 has the functions of the communication device 4 or the virtual switch 4A and the control device 5 (for example, the configuration of the virtual gateway 3A illustrated in FIG. 13).
- the gateway 3 (P-GW) includes a virtual switch 4A and a virtual controller 5A.
- the P-GW virtual controller 5A changes, for example, the correspondence between the communication path and the virtual U-Plane 31 (operation S80). For example, the virtual controller 5A switches the path of the communication path #A from the virtual U-Plane 31 (# 1) to the virtual U-Plane 31 (# 2).
- the virtual controller 5A updates the packet transfer policy of the virtual switch 4A according to the change in the correspondence between the communication path and the virtual U-Plane 31 (Operation S81). For example, the virtual controller 5A instructs the virtual switch 4A to switch the route of the communication path #A corresponding to the virtual U-Plane 31 (# 1) to a route via the virtual U-Plane 31 (# 2).
- the fourth embodiment of the present invention it is possible to cope with a change in the configuration of the virtual U-plane by updating the route policy of the communication device or the virtual switch.
- the switching of the gateway 3 corresponding to the communication path can be concealed from the terminal 1. It is possible to avoid the occurrence of communication path reconstruction.
- the communication path may be assigned to the virtual gateway 3A.
- control device controls the communication device according to a control protocol called OpenFlow.
- OpenFlow a control protocol called OpenFlow.
- the fifth embodiment can be applied to any technique disclosed in the first to fourth embodiments described above.
- OpenFlow recognizes communication as an end-to-end flow and can perform path control and the like on a per-flow basis. Therefore, by using OpenFlow for the present invention, communication path control can be executed more flexibly.
- the flow refers to a series of communication packets having a predetermined attribute that is identified based on information included in the packet (information such as a packet destination address and a source address).
- FIG. 30 illustrates a system according to a fifth embodiment of the present invention using the OpenFlow technology.
- the communication device 4B is a network switch that employs OpenFlow technology, and is centrally controlled by the control device 5A.
- a control channel is set between the communication device 4B and the control device 5A, and the control device 5A controls the operation of the communication device 4B via the control channel.
- This control channel is a communication path on which measures for preventing eavesdropping and tampering of communication have been made.
- the control device 5A controls the operation of the communication device 4B by setting a processing rule (flow entry) in the flow table of the communication device 4B.
- the flow entry is an instruction that specifies a matching rule for matching with information (for example, destination IP address, VLAN ID, etc.) included in the header of the packet received by the communication device 4B and a processing rule for a packet that matches the matching rule. (Instruction).
- the control device 5 ⁇ / b> A includes a communication interface 52, a control unit 51, and a flow entry DB 53.
- the communication interface 52 is an interface for communicating with the communication device 4B by the OpenFlow protocol.
- the control unit 51 has a function of generating information stored in the flow entry DB 53 and a function of controlling the communication device 4B based on information stored in the flow entry DB 53.
- the control device 5A can set a communication path identifier (for example, TEID or GRE Key) in the communication device 4B as a matching rule.
- the communication path identifier is not defined as information that can be identified as a matching rule.
- the control device 5A can set the communication path identifier as a matching rule.
- the flow entry DB 53 illustrated in FIG. 32 includes a matching rule (Matching Rule) based on IP addresses and communication path identifiers commonly assigned to a plurality of virtual U-Planes 31. It shall consist of instructions.
- the communication device 4B includes a control unit 43 and a flow entry DB 46 (that is, a flow table).
- the control unit 43 includes a search unit 44 and a processing unit 45.
- the flow entry DB 46 stores the flow entry notified from the control device 5A.
- the search unit 44 searches the flow entry DB 46 for a flow entry corresponding to the received packet.
- the search unit 44 of the communication device 4B can expand the OpenFlow protocol and search the flow table using the communication path identifier included in the received packet as a key. Accordingly, the search unit 44 searches for a flow entry corresponding to the communication path identifier of the received packet. That is, an entry in which an identifier corresponding to the communication path identifier of the received packet is defined as a matching rule is searched.
- the search unit 44 can search the flow entry corresponding to the received packet from the flow entry DB 46 based on the information included in the outer header of the received packet. If the flow entry corresponding to the received packet is not set in the entry DB 46, the search unit 44 can inquire the flow entry corresponding to the received packet to the control device 5A.
- the processing unit 45 processes the received packet according to the “Instruction” of the flow entry searched by the search unit 44. As shown in FIG. 32, here, according to “Instruction”, the packet is transferred to the virtual U-Plane corresponding to the communication path identifier. Note that the processing unit 45 can NAT the destination address according to the processing rule, for example, as in the example of FIG.
- control device 5 groups communication paths and assigns a group including a plurality of communication paths to the virtual U-Plane 31.
- the sixth embodiment can be applied to any technique disclosed in the first to fifth embodiments described above.
- control device 5 assigns communication paths to different virtual U-planes in units of groups.
- the communication path group (1) is assigned to the virtual U-plane (# 1).
- control device 5 Since the control device 5 manages communication paths in units of groups, it is easy to manage the correspondence between the virtual U-Plane 31 and the communication paths. For example, in the route information DB 50, the control device 5 can manage the virtual U-Plane 31 corresponding to the communication path in units of communication path groups. Note that the control device 5 can also manage the virtual U-Plane 31 exemplified in the first and second embodiments in units of groups.
- the control device 5 groups communication paths according to the attributes of the terminal 1 corresponding to each communication path. Examples of attributes of the terminal 1 are shown below. ⁇ Stay area of terminal 1 (E-UTRAN Cell ID, etc.) -Charging characteristics related to terminal 1 (regular charging, prepaid charging, flat rate, etc.) ⁇ Communication status of terminal 1 (whether or not a certain amount of communication has been performed during a certain period) -Operator ID (ID of the operator of the core network to which the terminal 1 is connected) ⁇ Packet Data Network (PDN) to which the terminal 1 is connected -Service types that need to be chained after leaving the communication path-QoS characteristics-Terminal 1 status (IDLE state, CONNECTED state): For example, the IDLE state is the session management and mobility between the terminal 1 and the core network.
- PDN Packet Data Network
- the CONNECTED state means, for example, a state in which the terminal 1 is continuously exchanging control signals for session management and mobility management with the core network, or a state in which the terminal 1 is wirelessly connected to the base station.
- control device 5 can group communication paths according to other attributes.
- the control device 5 groups communication paths based on information on UE (User Equipment) in “EPS Bearer Context” disclosed in Chapter 5.7 of the standard specification (3GPP TS23.401). It is possible.
- control device 5 can group communication paths according to the contract contents between the user of the terminal 1 and the communication carrier.
- the control device 5 may group communication paths related to a user (for example, “Premium Subscriber”) who has concluded a contract with a telecommunications carrier with a higher price than other users, and / or a user related to a normal contract. It is possible to group communication paths.
- the control device 5 can also group communication paths based on information on the location of the terminal 1 (for example, GSP information, base station information to which the terminal 1 is attached). For example, it is possible to group communication paths of terminals that are close to each other based on information regarding the position.
- control device 5 can also group communication paths according to QoS (Quality of Service) information of the communication paths.
- QoS Quality of Service
- the control device 5 can group communication paths according to QCI (Quality Class Indicator) corresponding to each communication path.
- QCI Quality Class Indicator
- the route switching causes a delay in communication related to the communication path and the user's QoE (Quality of Experience) is lowered.
- a new virtual U- By assigning to the plane, it is possible to stop the communication path in which the QoE is lowered to the communication path with a low priority.
- the TEID of each communication path may be assigned so that the TEIDs of the plurality of communication paths belonging to the group can be collectively identified.
- the TEID is assigned to each of a plurality of communication paths belonging to the group so that the upper 24 bits of the TEID configured by 32-bit information are the same.
- the control device 5 can collectively identify a plurality of communication paths belonging to the group based on the information of the upper 24 bits of the TEID.
- the IP address of the terminal 1 is assigned to each of a plurality of terminals 1 belonging to the group so that the IP addresses of the respective terminals 1 can be collectively identified. May be.
- the IP address of the terminal 1 is assigned to a plurality of terminals 1 belonging to the group so that the upper 24 bits of the IP address composed of 32-bit information are the same.
- the control device 5 can collectively identify traffic related to a plurality of communication paths belonging to the group based on the information of the upper 24 bits of the IP address of the terminal 1.
- the route information DB 50 of the control device 5 has the same configuration as that of the example of FIG.
- the communication device 4 searches the route information DB 42 using the communication path identifier of the received packet as a key, and transfers the received packet to the virtual U-Plane 31 corresponding to the communication path identifier of the received packet.
- the control device 5 can switch the corresponding gateway for each group of communication paths. For example, the control device 5 can switch the gateway corresponding to the group to which the communication paths with the communication path identifiers (A) to (C) belong from the gateway (a) to the gateway (e).
- the control device 5 can significantly reduce the amount of control signal information for the communication device 4 by switching the corresponding gateway for each group of communication paths. As shown in FIG. 36, the control device 5 can transmit a corresponding gateway switching instruction to the communication device 4 using the group ID as a key.
- the route information DB 42 of the communication device 4 has a configuration as shown in FIG.
- the control device 5 switches the corresponding gateway of the group (1) from the gateway (a) to (e) as shown in FIG. 36
- the control device 5 makes a communication path identifier (A) to the communication device 4. )-(C)
- the control device 5 transmits a control signal using the group ID as a key as in the sixth embodiment, the control signal is reduced to one third in the example of FIG. That is, according to the sixth embodiment, the control device 5 has an advantage that the amount of control signal reduction increases as the number of communication paths to be grouped increases, and the switching speed of the communication path gateway is increased. It becomes possible to do.
- FIG. 37 shows another configuration example of the route information DB 42. Note that the path information DB 50 of the control device 5 has the same configuration as the example of FIG.
- the communication path identifier is set so that the identifiers of the communication paths belonging to the group can be collectively identified.
- the communication path identifier is set so that a part of the identifiers of the communication paths belonging to the same group are common.
- the identifiers of the communication paths belonging to the same group are set so that the values of the upper 24 bits are common, and the values common to the upper 24 bits of the communication path identifiers (A) to (B) (see FIG. In the example of 37, “X”) is set.
- the number of entries in the route information DB 42 is reduced.
- an entry in the route information DB 42 is set for each communication path identifier.
- entries related to communication paths belonging to the same group can be consolidated into one entry, and the number of entries in the route information DB 42 is reduced.
- the control signal transmitted from the control device 5 to the communication device 4 can be reduced. That is, the control device 5 can instruct switching of the corresponding gateway using the upper 24 bits of the communication path identifier as a key.
- the control device 5 switches the gateway corresponding to the value “X” of the upper 24 bits of the communication path identifier. Instruct. That is, the control device 5 does not have to instruct the switching of the gateway to each of the communication path identifiers (A) to (C). Therefore, when the gateway is switched, the control signal transmitted from the control device 5 to the communication device 4 is reduced. Gateway switching is speeded up by reducing control signals.
- FIG. 38 shows an example of the flow entry DB 46 of the communication device 4 when an OpenFlow flow table is used in the sixth embodiment. Note that the path information DB 50 of the control device 5 has the same configuration as the example of FIG.
- OpenFlow has a function of regarding a plurality of packet processes as one group. Grouped packet processing is handled in the group table.
- the communication device 4 includes a flow entry DB 46 that functions as a normal flow table, and a group table 46a of the flow entry DB 46.
- the communication path identifiers (A) to (C) belong to the same communication path group.
- the same processing group ID is set in “Instruction” corresponding to each flow entry whose matching rule is the communication path identifier (A)-(C).
- “Instruction” that defines grouped packet processing is set for each processing group ID.
- the control device 5 sets the flow entry DB 46 and the group table 46a in the example of FIG.
- the communication device 4 searches the flow entry DB 46 using the communication path identifier of the received packet as a key.
- the communication device 4 searches for an entry in which “processing group ID (1)” is set as “Instruction”. Subsequently, the group table 46a is searched using the processing group ID as a key.
- the communication device 4 searches the group table 46a using “processing group ID (1)” as a key, and “processing group ID (1)”. The received packet is transferred to the gateway (a) in accordance with “Instruction” corresponding to.
- the control device 5 When switching the virtual U-Plane 31 corresponding to the communication path group, the control device 5 transmits a control signal for changing the entry in the group table based on the processing group ID to the communication device 4. For example, in the example of FIG. 38, when the gateway corresponding to the communication path identifiers (A) to (C) is changed from (a) to (e), the control device 5 uses the identifier (A) ⁇ in the group table 46a. “Instruction” of the entry of “processing group ID (1)” corresponding to (C) is changed. That is, the control device 5 only needs to change the entry in the group table, and does not need to change the entry in the normal flow table. In the example of FIG.
- the control device 5 does not need to change each entry corresponding to the identifiers (A) to (C), and does not change the entry corresponding to “processing group ID (1)” in the group table 46a. Change it. Therefore, when the gateway is switched, the control signal transmitted from the control device 5 to the communication device 4 is reduced. Gateway switching is speeded up by reducing control signals.
- FIG. 39 shows another example of the flow entry DB 46 when an OpenFlow flow table is used in the sixth embodiment.
- the route information DB 50 of the control device 5 has the same configuration as that in FIG.
- OpenFlow switch can have multiple flow tables.
- the communication device 4 has a plurality of flow entry DBs 46 (a flow table 46-1 and a flow table 46-2). For example, when receiving a packet, the communication device 4 searches a plurality of flow tables in a predetermined order. For example, in the example of FIG. 39, the communication device 4 searches the flow table 46-1 and then searches the flow table 46-2.
- the communication path identifiers (A) to (C) belong to the same communication path group.
- the flow table 46-1 in the “Instruction” corresponding to each flow entry whose matching rule is the communication path identifier (A)-(C), packet processing for adding “ID (1)” to the packet header is performed. Is set. The ID given to the packet is set for each group of communication paths.
- the control device 5 sets the flow entry DB 46 in the example of FIG.
- the communication device 4 searches the flow entry DB 46 (flow table 46-1) using the communication path identifier of the received packet as a key. Specifically, when the communication device 4 receives the packet with the communication path identifier (A), the communication device 4 searches for an entry in which “Instruction” indicating that “ID (1)” is added to the header of the packet. . Next, the communication device 4 searches the flow entry DB 46 (flow table 46-2) using “ID (1)” given to the packet as a key, and follows “Instruction” corresponding to “ID (1)”. The ID is deleted from the header, and the received packet is transferred to the gateway (a).
- the control device 5 When the control device 5 switches the virtual U-Plane 31 corresponding to the communication path group, the control device 5 transmits to the communication device 4 a control signal for changing the entry based on the ID corresponding to the communication path group. For example, when the gateway corresponding to the communication path identifiers (A) to (C) is changed from (a) to (e), the control device 5 uses the identifier (A) in the flow entry DB 46 (flow table 46-2). -Change "Instruction" of the entry of "ID (1)" corresponding to (C). That is, the control device 5 may change the entry corresponding to the ID of the communication path group, and does not need to change the entry corresponding to each of the communication path identifiers. In the example of FIG.
- the control device 5 does not need to change each entry corresponding to the identifiers (A) to (C), and “ID (1)” is stored in the flow entry DB 46 (flow table 46-2).
- the entry corresponding to can be changed. Therefore, when the gateway is switched, the control signal transmitted from the control device 5 to the communication device 4 is reduced. Gateway switching is speeded up by reducing control signals.
- the control device 5 can group communication paths based on other information (for example, an IP address or a PDN), and the communication device 4 can perform other information (for example, an IP address or an IP address). , PDN), it is possible to identify a group of communication paths.
- the control device 5 selects the virtual U-Plane 31 to be assigned to the communication path according to the policy for selecting the virtual U-Plane 31 associated with the communication path. For example, according to the installation / uninstallation of the virtual U-Plane 31, it is possible to dynamically select the virtual U-Plane 31 associated with the communication path according to the policy. In addition, the control device 5 can dynamically change the virtual U-Plane 31 assigned to the communication path in accordance with a change in conditions regarding the policy.
- an example of a policy for selecting the virtual U-Plane 31 is shown. However, this policy can also be used for selecting the gateway 3 exemplified in the first and second embodiments. Is possible.
- the control device 5 includes a policy DB 54 in addition to the configuration example of the control device 5 illustrated in FIG.
- the control unit 51 can select the virtual U-Plane 31 associated with the communication path with reference to the policy DB 54.
- the policy stored in the policy DB 54 is configured such that, for example, the virtual U-Plane 31 corresponding to the communication quality requirement regarding the communication path is selected.
- the policy stored in the policy DB 54 may be configured such that, for example, the virtual U-Plane 31 is selected for each group of communication paths in accordance with a communication quality request related to the communication path. For example, when the virtual U-Plane 31 is added, the control unit 51 refers to the policy DB 54 and selects the virtual U-Plane 31 associated with the communication path.
- the control unit 51 selects the virtual U-Plane 31 associated with the communication path and adds an entry to the route information DB 50.
- the control unit 51 notifies the communication device 4 of the correspondence between the communication path and the virtual U-Plane 31 based on the route information DB 50.
- the control device 5 determines a virtual U-Plane 31 to be associated with the communication path based on the policy regarding the QCI corresponding to the communication path. For example, the control device 5 can acquire the QCI of the communication path from the MME.
- the priority is set to the communication path corresponding to each QCI according to the value of QCI.
- the control device 5 selects the virtual U-Plane 31 to be associated with the communication path according to the priority that is a condition for selecting the virtual U-Plane 31. For example, when the virtual U-Plane 31 is newly installed in the communication system, the control device 5 determines the newly installed virtual U-Plane 31 in order from the communication path corresponding to the QCI whose priority is set to “Low”. Associate with. That is, the control device 5 determines the correspondence between the newly installed virtual U-Plane 31 and the communication path in the order of priority of the QCI.
- Switching the virtual U-Plane 31 corresponding to the communication path may cause a communication delay or the like due to the switching, but the virtual U-Plane 31 associated with the communication path in order from the communication path with the lowest QCI priority. By switching the, the deterioration of the communication quality of the communication path having a high QCI priority is suppressed. Thereby, the control apparatus 5 can select the virtual U-Plane 31 corresponding to the quality requirement corresponding to the QCI.
- the priority for the QCI is “High”, “Mid”, and “Low”, but the method of assigning the priority is not limited to the example of FIG.
- a value indicating the priority may be assigned to each QCI.
- the control device 5 can determine the gateway associated with the communication path according to the priority of each QCI. For example, the control device 5 can associate a communication path corresponding to a QCI having a priority equal to or higher than a predetermined value with a virtual U-Plane 31 that can guarantee a communication band. Further, for example, the control device 5 can associate a communication path corresponding to a QCI having a priority level equal to or higher than a predetermined value with a virtual U-Plane 31 whose operation load is equal to or lower than a predetermined value.
- the control device 5 can determine the gateway associated with the communication path for each QCI. For example, the control device 5 determines a communication path associated with a certain gateway according to the QCI. In this case, the QCIs of a plurality of communication paths assigned to a certain gateway are the same.
- control device 5 can also determine the virtual U-Plane 31 associated with the communication path according to the communication amount and communication time of the communication path.
- the control device 5 can monitor the virtual U-Plane 31 and acquire the communication amount and communication time through the communication path.
- thresholds relating to the communication amount and communication time are set according to the communication path identifier.
- a threshold value may be set for each group of communication paths as in the sixth embodiment.
- the control device 5 selects the virtual U-Plane 31 to be associated with the communication path according to the threshold for communication volume and communication time, which are conditions for selecting the virtual U-Plane 31.
- the virtual U-Plane 31 to be associated with the communication path is determined based on the policy regarding the communication amount and communication time by the communication path.
- the control device 5 when the user of the terminal 1 concludes a prepaid billing contract with a communication carrier, the user can communicate up to the communication amount corresponding to the prepaid fee (that is, the communication amount threshold).
- the control device 5 information related to a contract between the user of the terminal 1 and the communication carrier is set.
- the control device 5 switches the communication path with a margin with respect to the threshold set in the policy DB 54.
- the traffic (“X” Byte) is set as the threshold value of the communication path with the communication path identifier “A”.
- control device 5 monitors the communication amount of the communication path with the identifier “A” from the virtual U-Plane 31 functioning as the P-GW, and the difference between the communication amount and the threshold (“X” Byte) is less than a predetermined value. If there is, the communication path is excluded from switching targets.
- the user of the terminal 1 when the user of the terminal 1 concludes a two-stage charging contract with a communication carrier, the user pays a communication fee according to the communication amount until the communication amount exceeds a specific threshold value. Regardless of the amount, the communication fee is a flat rate (Flat). If the threshold value is exceeded, it is not necessary to accurately monitor the traffic volume. Therefore, when the control device 5 switches the communication path in accordance with installation or uninstallation of the virtual U-Plane 31, the traffic volume exceeds the threshold value. Switch the communication path with priority.
- Flat flat rate
- the control device 5 When switching the communication path according to the installation or uninstallation of the virtual U-Plane 31, the control device 5 preferentially switches the communication path whose communication amount exceeds the threshold set in the policy DB 54.
- the traffic (“Y” Byte) is set as the threshold value of the communication path with the communication path identifier “D”.
- the control device 5 monitors the communication amount of the communication path with the identifier “D” from the virtual U-Plane 31 functioning as the P-GW, and when the communication amount exceeds the threshold (“Y” Byte). Switches the communication path.
- a virtual U-Plane 31 according to the request can be selected.
- the control device 5 has a bearer that has a margin with respect to the deadline determined by the contract (for example, a bearer that has a margin of one hour or more with respect to the deadline). ) To switch. By switching bearers in this way, it is possible to suppress the possibility that a time limit will be exceeded during execution of bearer switching and communication that exceeds the contractual time limit will occur.
- the control device 5 monitors the communication time of the identifier “B” communication path from the virtual U-Plane 31 functioning as the P-GW, and when the communication time exceeds the threshold (“23H”), The communication path is excluded from switching targets.
- the control device 5 can select the virtual U-Plane 31 associated with the communication path according to the frequency of activating the virtual U-Plane 31.
- the control device 5 selects the virtual U-Plane 31 to be associated with the communication path according to the frequency of installation or uninstallation of the virtual U-Plane 31 (or the frequency of activation or deactivation). Is possible.
- the control device 5 selects the virtual U-Plane 31 to be associated with the communication path according to the install / uninstall frequency that is a condition for selecting the virtual U-Plane 31.
- the control device 5 can monitor the virtual U-Plane 31 and acquire the install / uninstall frequency.
- a priority for each communication path identifier is set.
- a priority may be set for each group of communication paths as in the sixth embodiment.
- the control device 5 selects the virtual U-Plane 31 to be associated with the communication path in accordance with a threshold related to priority, which is a condition for selecting the virtual U-Plane 31.
- the control device 5 determines a virtual U-Plane 31 associated with a communication path based on a policy regarding the priority of the communication path identifier.
- the control device 5 monitors the frequency of installation / uninstallation of the virtual U-plane 31, for example. For example, the control device 5 associates a communication path with a low priority (for example, a communication path with a priority of “Low” in the policy DB 54) with the virtual U-plane 31 that is frequently installed / uninstalled.
- a communication path with a low priority for example, a communication path with a priority of “Low” in the policy DB 54
- the control device 5 can suppress deterioration in communication quality of a communication path with a high priority.
- the control device 5 can also determine the virtual U-Plane 31 to be associated with the communication path using a policy based on SLA (Service Level Agreement) required for the service regarding the communication path. For example, the control device 5 confirms the communication band required by the SLA based on the policy, and selects the virtual U-Plane 31 that can secure the communication band corresponding to the SLA. For example, the control device 5 can manage the communication band used in each virtual U-Plane 31 and the maximum communication band that can be secured in each virtual U-Plane 31, and the free band of each virtual U-Plane 31. Can select a gateway that meets the requirements of the SLA. Further, the control device 5 can associate a communication path with an SLA equal to or greater than a predetermined value with a virtual U-Plane 31 with an operation load equal to or less than a predetermined value.
- SLA Service Level Agreement
- the policy DB 54 can store a plurality of types of policies.
- the policy DB 54 can store the policy illustrated in FIG. 42 and the policy illustrated in FIG. 44.
- the control device 5 can select the virtual U-Plane 31 based on a plurality of types of policies stored in the policy DB 54.
- the management device 6 is provided, and the control device generates control information used for selecting the virtual U-Plane 31 associated with the communication path.
- the operator of the communication system manages the control device via the management device 6.
- a plurality of control devices are assumed to be distributed in the communication system. In such a case, by managing the control device through the management device 6, the operator of the communication system can efficiently manage the communication system.
- the control device 5 notifies the control device 5 of the control information, so that the control device 5 refers to the control information in accordance with the virtual U-Plane 31 dynamically added, and adds the virtual U -A communication path corresponding to Plane 31 can be determined.
- the management device 6 for controlling the correspondence between the communication path and the virtual U-Plane 31 is shown.
- the management device 6 is a gateway exemplified in the first and second embodiments. 3 can also be used to control the correspondence between the communication path 3 and the communication path.
- Management device (first example) 47 the management device 6 includes a policy generation unit 60 and an interface 61, and communicates with the control device 5 (or the control device 5A) via the interface 61.
- the policy generation unit 60 can generate control information for the control device 5 to select a virtual U-Plane 31 associated with a communication path.
- the policy generation unit 60 generates control information so that, for example, the virtual U-Plane 31 corresponding to the communication quality request regarding the communication path is selected.
- a policy stored in the policy DB 54 exemplified in the seventh embodiment is generated as the control information.
- the policy generation unit 60 can generate information stored in the policy DB 54 (for example, information illustrated in FIGS. 42, 44, and 46) according to the operation of the operator of the communication system.
- the policy generating unit 60 can generate a plurality of types of policies.
- the policy generation unit 60 notifies the generated information to the control device 5 via the interface 61.
- the control device 5 stores the policy notified from the management device 6 in the policy DB 54 and controls the communication device 4 based on the policy DB 54.
- the policy generation unit 60 can also generate control information for the control device 5 to select a virtual U-Plane 31 associated with a communication path for each group of communication paths.
- the policy generation unit 60 can generate the information exemplified in FIGS. 42, 44, and 46 for each group of communication paths.
- the policy generation unit 60 can generate, for example, a policy (policy illustrated in FIG. 42) configured with a priority according to the QCI for each group of communication paths.
- the policy generation unit 60 can generate the threshold illustrated in FIG. 44 for each communication path group, for example.
- the policy generation unit 60 can generate the priority exemplified in FIG. 46 for each communication path group, for example.
- the policy generation unit 60 may generate a policy for associating a communication path newly constructed by the attach procedure disclosed in the fourth embodiment with the virtual U-Plane 31.
- An example of a policy for associating a communication path newly constructed by the attach procedure with the virtual U-Plane 31 is shown below.
- the policy generation unit 60 generates a policy for determining, in round robin, the virtual U-Plane 31 associated with the communication path from the virtual U-Plane 31 activated in the communication system. For example, the policy generation unit 60 generates a policy for determining the virtual U-Plane 31 associated with the communication path in a round robin manner according to the load of each virtual U-Plane 31.
- the policy generation unit 60 generates a policy based on information regarding the location where the terminal 1 stays, such as E-UTRAN Cell ID. For example, the policy generation unit 60 generates a policy for determining the virtual U-Plane 31 associated with the communication path based on at least one of the conditions exemplified below.
- -Communication path corresponding to a predetermined Cell ID-Communication path corresponding to any of a plurality of Cell IDs (for example, communication path corresponding to any of a plurality of adjacent cells)
- a communication path corresponding to a predetermined base station A communication path corresponding to any of a plurality of base stations (for example, a communication path corresponding to any of a plurality of adjacent base stations)
- the policy generation unit 60 generates a policy indicating that the communication path corresponding to the Cell ID “a” is associated with the virtual gateway “A”. Further, for example, the policy generation unit 60 generates a policy indicating that the communication path corresponding to the cell ID “b” or “c” is associated with the virtual gateway “B”. Further, for example, the policy generation unit 60 creates a policy indicating that the communication path corresponding to the Cell ID “d” is associated with the gateway selected from the virtual gateways “C”, “D”, and “E” by the round robin. Generate.
- the policy generation unit 60 generates a policy based on information on the QoS characteristic of the communication path. For example, the policy generation unit 60 generates a policy for determining the virtual U-Plane 31 associated with the communication path based on at least one of the conditions exemplified below. -Communication path corresponding to a predetermined QCI value-Communication path corresponding to one of a plurality of QCI values
- the policy generation unit 60 generates a policy indicating that the communication path having the QCI value “5” is associated with the virtual gateway “A”. For example, the policy generation unit 60 generates a policy indicating that the communication path corresponding to the QCI value “1” or “3” is associated with the virtual gateway “B”. Further, for example, the policy generation unit 60 associates the communication path corresponding to the QCI value “4” with the gateway selected by the round robin from the virtual gateways “C”, “D”, and “E”. Is generated.
- the policy generation unit 60 determines the communication path based on the conditions (for example, the conditions exemplified below) combining the above (2) and (3).
- a policy for determining the virtual U-Plane 31 to be associated with the user may be generated.
- the policy generation unit 60 may generate a policy for determining the virtual U-Plane 31 to be associated with the communication path group based on the attribute of the communication path group exemplified in the sixth embodiment. . Examples of communication path group attributes are shown below.
- ⁇ Group by terminal 1's stay area E-UTRAN Cell ID, etc.
- Communication status of terminal 1 by charging characteristics normal charging, prepaid billing, flat rate, etc.
- charging characteristics normal charging, prepaid billing, flat rate, etc.
- PDN Packet Data Network
- Service types that need to be chained after leaving the communication path ⁇ QoS characteristics
- Terminal 1 status IDLE status, CONNECTED status
- the policy generation unit 60 when the communication path belongs to a group of prepaid billing characteristics, the policy generation unit 60 generates a policy indicating that the communication path is associated with the virtual gateway “A”.
- the management device 6 can generate a policy, notify the control device 5 and operate the control device 5 according to the policy. Further, the management device 6 can also operate the route information DB 50 of the control device 5 as described below.
- Management device (second example)
- the management device 6 illustrated in FIG. 48 includes a UI (User Interface) display unit 62, a control unit 63, and a display 64 in addition to the configuration of FIG.
- the UI display unit 62 displays a user interface as shown in the example of FIG.
- the operator of the communication system can operate the user interface illustrated in FIG. 49 to operate the correspondence between the communication path and the virtual gateway.
- the control unit 63 operates the route information DB 50 of the control device 5 based on the correspondence relationship between the communication path and the virtual gateway determined according to the operation of the operator. For example, it is assumed that the operator has changed the virtual gateway corresponding to the communication path with the communication path identifier “A” from the virtual gateway (a) to (e). In this case, the control unit 63 operates the route information DB 50 to change the virtual gateway corresponding to the communication path identifier “A” from the virtual gateway (a) to (e).
- FIG. 49 shows an example of a GUI (Graphical User Interface) 700 displayed on the display 64 by the UI display unit 62.
- the GUI 700 includes a network display window 701 and an operation window 702.
- a network display window 701 displays an outline of the network configuration of the communication system.
- the operation window 702 can display, for example, network objects including communication paths, virtual U-Planes 31 constituting gateways, and servers 33 corresponding to the virtual U-Planes 31.
- the operation window 702 can display information on attributes (property) of the network object including the communication path and the virtual U-Plane 31. For example, the operator can select the virtual U-Plane 31 associated with the communication path with reference to information on the attribute of the network object.
- the operation window 702 can display, for example, the IDs of the virtual U-Plane 31 and the server 33, the loads of the virtual U-Plane 31 and the server 33, and further, for example, the number of communication paths associated with the virtual U-Plane 31, the virtual U-Plane 31, The throughput of the U-Plane 31 and the free communication band of the virtual U-Plane 31 can be displayed as attributes of the network object.
- the operation window 702 can display, for example, QCI related to a communication path, SLA of a service related to a communication path, and the like as attributes of a network object.
- the operation window 702 can also display a plurality of attributes.
- the operation window 702 can display the communication path set for each virtual U-Plane 31.
- the operator can switch the communication path displayed in the window 702 to another virtual U-Plane 31 by Drag & Drop operation.
- the operator can switch the communication path to the virtual U-Plane 31 with a low load by referring to the loads on the virtual U-Plane 31 and the server 33 displayed in the window 702.
- the control unit 63 can change the correspondence relationship between the communication path and the virtual U-Plane 31 by operating the route information DB 50 of the control device 5.
- the control unit 63 generates control information related to the correspondence between the communication path and the virtual U-Plane 31 by combining network objects, and notifies the control device 5 of the generated control information to change the route information DB 50.
- the control device 5 notifies the communication device 4 of a change in the correspondence between the communication path and the virtual U-Plane 31 in response to the change of the route information DB 50.
- Management device (third example)
- the management apparatus 6 illustrated in FIG. 50 can directly control the path information DB 50 of the control apparatus 5 without generating information to be stored in the policy DB 54.
- the management device 6 includes a route information generation unit 65 and an interface 61.
- the route information generation unit 65 can generate control information for the control device 5 to select a virtual U-Plane 31 associated with a communication path.
- the route information generation unit 65 generates control information so that, for example, the virtual U-Plane 31 corresponding to the communication quality request regarding the communication path is selected.
- the path information generation unit 65 generates control information in response to the addition of the virtual U-Plane 31.
- Information to be stored in the route information DB 50 of the control device 5 is generated as control information.
- the route information generation unit 65 determines the correspondence between the communication path and the gateway.
- the route information generation unit 65 sets a correspondence relationship between the communication path and the gateway in the route information DB 50 of the control device 5 via the interface 61.
- the route information generation unit 65 can also generate control information (for example, a database having a structure exemplified in the sixth embodiment) for managing gateways corresponding to communication paths in units of communication path groups. .
- the route information generation unit 65 can generate information set in the route information DB 50 based on, for example, the policy exemplified in the seventh embodiment.
- the route information generation unit 65 can generate information to be set in the route information DB 50 based on the policies illustrated in FIGS. 42, 44, and 46.
- the route information generation unit 65 sends information necessary for generating information to be set in the route information DB 50 (for example, communication amount and communication time of a communication path, frequency of adding a virtual gateway, etc.) via the control device 5. Can be collected.
- the route information generation unit 65 can generate information to be set in the route information DB 50 based on, for example, the policies exemplified in the eighth embodiment (the above policies (1) to (5)).
- the operator uses the management device 6 to group communication paths and manage them. By grouping the communication paths, the operator can efficiently manage the correspondence between the communication paths and the virtual U-Plane 31. Further, the management device 6 groups and visualizes the communication paths separately from the control grouping performed by the control device 5 in the sixth embodiment, so that the operator can view the communication paths and the virtual U-Plane 31. Can be managed efficiently.
- the gateway 3 and the communication path exemplified in the first and second embodiments It is also possible to use it to control the correspondence between
- the operator can group communication paths by using the GUI 700 displayed by the management apparatus 6.
- An operation window 702 illustrated in FIG. 51 displays an aggregation policy 703 for aggregating (grouping) communication paths established in the virtual gateway 3.
- the aggregation policy is set based on the attribute of the communication path, for example.
- An example of the aggregation policy 703 is shown below.
- ⁇ Stay area of terminal 1 E-UTRAN Cell ID, etc.
- -Charging characteristics related to terminal 1 return to terminal 1
- -Operator ID ID of the operator of the core network to which the terminal 1 is connected
- -State of terminal 1 IDLE state, CONNECTED state
- PDN Packet Data Network
- the management device 6 can aggregate communication paths based on the example of the aggregation policy 703 described above.
- the policy disclosed in the sixth embodiment as a condition for grouping communication paths can be used as the aggregation policy 703.
- the control unit 63 of the management device 6 aggregates communication paths based on the clicked policy in response to, for example, the operator clicking one of the policies displayed in the aggregation policy 703. For example, the control unit 63 aggregates communication paths having the same aggregation policy attribute. For example, when “QoS characteristics” is selected as the aggregation policy, as illustrated in FIG. 51, the control unit 63 aggregates communication paths having the same QCI value.
- the control unit 63 cancels the aggregation of communication paths and displays each communication path individually in response to, for example, clicking on “cancel aggregation” displayed in the aggregation policy 703.
- the maximum number of communication paths managed by the GUI 700 is nine types for each virtual gateway 3 (defined by standard specifications such as 3GPP). Nine types of QCI are collected).
- the number of communication paths managed by the operator can be reduced in a pseudo manner, and the management cost of the operator is greatly reduced.
- the control unit 63 can change the route information DB 50 of the control device 5 in response to the operator collecting communication paths according to the aggregation policy.
- FIG. 52 shows an example of the route information DB 50 when communication paths are aggregated based on the QCI.
- the control unit 63 aggregates the communication paths based on the attribute of the aggregation policy (QCI in the example of FIG. 52), and associates each of the aggregated communication paths with the attribute of the aggregation policy (group ID in FIG. 52).
- the control unit 63 changes the route information DB 50 so that the communication paths aggregated based on the QCI and the QCI value (group ID) are associated with each other.
- the management device 6 changes the route information DB 50 as described above, the control device 5 can control the communication device 4 by the method exemplified in the sixth embodiment.
- the control unit 63 of the management device 6 or the control unit 51 of the control device 5 can execute communication path reconstruction when the state of the communication path is changed from the attribute of the aggregate policy, for example.
- Reconstructing a communication path means reconstructing a communication path after releasing the communication path.
- the control unit 63 or the control unit 51 can reconfigure the corresponding communication path when the communication path state is changed from the attribute of the aggregate policy. For example, when the communication amount of the terminal 1 per unit period exceeds a certain value, the control unit 63 or the control unit 51 prompts the reconstruction of the corresponding communication path. Further, the route information DB 50 may be changed as necessary.
- the communication path can belong to a group suitable for the current state.
- control device 5 and the management device 6 reassign the communication path to the virtual U-plane 31 when the virtual U-plane 31 is increased or decreased by causing the communication path to belong to the group that matches the current state.
- An excessive increase in the load can be suppressed. This is because if there is a communication path that does not belong to the group that matches the current state, it is necessary to control the communication path separately from the grouping and control.
- FIG. 53 shows an example in which the operator manages the communication paths aggregated. For example, the operator selects an aggregated communication path, and drags and drops the selected communication path to another virtual gateway 3 to switch the correspondence relationship between the aggregated communication path and the virtual gateway 3.
- the control unit 63 changes the route information DB 50 of the control device 5 in response to switching of the correspondence relationship between the aggregated communication path and the virtual gateway 3.
- FIG. 54 shows an example in which the control unit 63 changes the route information DB 50.
- the control unit 63 changes the gateway corresponding to the group using the group ID (ID corresponding to the QCI value in the example of FIG. 54) as a key.
- the control unit 63 switches the virtual gateway 3 corresponding to the aggregated communication path having the QCI value “3” from the gateway having the ID “X” to the gateway having the ID “XX”.
- the control device 5 changes the route information DB 42 of the communication device 4 by the method exemplified in the sixth embodiment, for example, in response to the change of the route information DB 50.
- control unit 63 can collectively change the gateways corresponding to the aggregated communication paths using the group ID as a key. Therefore, the control unit 63 can significantly reduce the amount of control signal and the gateway switching time, compared with the case where the gateway corresponding to each entry of the route information DB 50 is changed.
- FIG. 55 shows an example in which the management apparatus 6 aggregates communication paths using a plurality of aggregation policies.
- the communication paths are aggregated based on the QCI of the communication path and the state of the terminal 1.
- the operator selects a communication path aggregated by the QCI value (“1. Click”), and selects another aggregation policy (“2. Click”).
- the management device 6 divides and displays the aggregated communication path having the QCI value “3” according to the state of the terminal 1 (IDLE state or CONNECTED state).
- the control unit 63 changes the route information DB 50 of the control device 5 in response to the communication paths being aggregated based on a plurality of aggregation policies.
- FIG. 56 shows an example of the route information DB 50 based on a plurality of aggregation policies. As shown in the example of FIG. 56, the control unit 63 responds to the addition of the aggregate policy regarding the state of the terminal 1 to the aggregated communication path having the QCI value “3” as in the example of FIG. The route information DB 50 is changed.
- the present invention is applicable to general communication systems that communicate via a communication path.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
[Problem] To provide a communication technique and a communication path control technique that, when switching the routes of communication paths, can suppress the influences on communication services. [Solution] A communication apparatus (4B) for performing communications via communication paths established in a network comprises: first means (43, 46) that can receive processing regulations including an identification rule, which is used to identify a communication flow on the basis of information including a communication path identifier, and a processing rule indicating to transfer a packet, which has been identified according to the identification rule, to a gateway corresponding to the communication path identifier; and second means (44, 45) that can transfer, on the basis of the processing regulations, a received packet to the gateway corresponding to the communication path identifier of the received packet.
Description
本発明は、通信装置間で通信パスを介して通信する通信システムに係り、特に通信パスの制御に関する。
The present invention relates to a communication system that communicates between communication devices via a communication path, and more particularly to control of a communication path.
モバイル通信システムにおいて、携帯電話等の通信端末は、基地局と通信し、コアネットワークを経由してインターネットにアクセスすることができる。通信端末は、コアネットワークに設けられた装置(例えば、ゲートウェイ)との間に確立された通信パス(例えばベアラ)を介して通信する。
In a mobile communication system, a communication terminal such as a mobile phone can communicate with a base station and access the Internet via a core network. The communication terminal communicates with a device (for example, a gateway) provided in the core network via a communication path (for example, a bearer) established.
通信パスが確立されると、当該通信パスに対して、通信パスを中継するためのコアネットワークノード(例えば、ゲートウェイ)が割り当てられる。通信パスの確立手順は、例えば、非特許文献1の5.3.2章に記載されている。
When a communication path is established, a core network node (for example, a gateway) for relaying the communication path is assigned to the communication path. The procedure for establishing a communication path is described in, for example, Chapter 5.3.2 of Non-Patent Document 1.
上述のように、確立した通信パスに対してゲートウェイ等のコアネットワークノードが割り当てられる。よって、通信パスの経路を切り替える場合、新たな通信パスに対してコアネットワークノードを再割り当てするために、通信パスの再確立手順が実行されることが想定される。通信パスの再確立手順が実行されると、例えば、切り替え前の通信パスで実行されていた通信が中断される等、通信サービスに対する様々な影響が想定される。
As described above, a core network node such as a gateway is assigned to the established communication path. Therefore, when switching the path of a communication path, it is assumed that a communication path re-establishment procedure is executed in order to reassign a core network node to a new communication path. When the communication path re-establishment procedure is executed, various influences on the communication service are assumed, for example, the communication executed on the communication path before switching is interrupted.
そこで、本発明の目的は、通信パスの経路を切り替える際に、通信サービスに対する影響を抑止することが可能な通信技術および通信パス制御技術を提供することである。
Therefore, an object of the present invention is to provide a communication technique and a communication path control technique capable of suppressing the influence on the communication service when switching the communication path route.
本発明の通信装置は、ネットワークに設定される通信パスを介して通信する通信装置であって、通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を受信可能な第一の手段と、前記処理規則に基づいて、受信パケットの通信パス識別子に対応するゲートウェイに対して当該受信パケットを転送可能な第二の手段とを含むことを特徴とする。
本発明の制御装置は、ネットワークに設定される通信パスを介して通信する通信装置を制御可能な制御装置であって、前記通信パスと前記ゲートウェイとの対応関係を管理可能な第一の手段と、通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を、前記通信装置に通知可能な第二の手段とを含むことを特徴とする。
本発明の通信方法は、ネットワークに設定される通信パスを介して通信する通信方法であって、通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を受信し、前記処理規則に基づいて、受信パケットの通信パス識別子に対応するゲートウェイに対して当該受信パケットを転送することを特徴とする。
本発明の制御方法は、ネットワークに設定される通信パスを介して通信する通信装置を制御する制御方法であって、前記通信パスと前記ゲートウェイとの対応関係を管理し、通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を、前記通信装置に通知することを特徴とする。 The communication device of the present invention is a communication device that communicates through a communication path set in a network, and is identified by an identification rule for identifying a communication flow based on information including a communication path identifier, and the identification rule. A first processing unit capable of receiving a processing rule including a processing rule indicating that the received packet is transferred to a gateway corresponding to the communication path identifier; and a communication path identifier of the received packet based on the processing rule. And second means capable of transferring the received packet to the corresponding gateway.
The control device of the present invention is a control device capable of controlling a communication device communicating via a communication path set in a network, and a first means capable of managing a correspondence relationship between the communication path and the gateway; An identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier And a second means capable of notifying the communication device of the processing rule.
The communication method of the present invention is a communication method for communicating via a communication path set in a network, and is identified by an identification rule for identifying a communication flow based on information including a communication path identifier, and the identification rule. A processing rule including a processing rule indicating that the received packet is transferred to a gateway corresponding to the communication path identifier, and based on the processing rule, a gateway corresponding to the communication path identifier of the received packet is received. The reception packet is transferred.
The control method of the present invention is a control method for controlling a communication device that communicates via a communication path set in a network, and manages a correspondence relationship between the communication path and the gateway, and includes information including a communication path identifier A processing rule including an identification rule for identifying a communication flow based on the communication rule, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier. It is characterized by notifying.
本発明の制御装置は、ネットワークに設定される通信パスを介して通信する通信装置を制御可能な制御装置であって、前記通信パスと前記ゲートウェイとの対応関係を管理可能な第一の手段と、通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を、前記通信装置に通知可能な第二の手段とを含むことを特徴とする。
本発明の通信方法は、ネットワークに設定される通信パスを介して通信する通信方法であって、通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を受信し、前記処理規則に基づいて、受信パケットの通信パス識別子に対応するゲートウェイに対して当該受信パケットを転送することを特徴とする。
本発明の制御方法は、ネットワークに設定される通信パスを介して通信する通信装置を制御する制御方法であって、前記通信パスと前記ゲートウェイとの対応関係を管理し、通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を、前記通信装置に通知することを特徴とする。 The communication device of the present invention is a communication device that communicates through a communication path set in a network, and is identified by an identification rule for identifying a communication flow based on information including a communication path identifier, and the identification rule. A first processing unit capable of receiving a processing rule including a processing rule indicating that the received packet is transferred to a gateway corresponding to the communication path identifier; and a communication path identifier of the received packet based on the processing rule. And second means capable of transferring the received packet to the corresponding gateway.
The control device of the present invention is a control device capable of controlling a communication device communicating via a communication path set in a network, and a first means capable of managing a correspondence relationship between the communication path and the gateway; An identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier And a second means capable of notifying the communication device of the processing rule.
The communication method of the present invention is a communication method for communicating via a communication path set in a network, and is identified by an identification rule for identifying a communication flow based on information including a communication path identifier, and the identification rule. A processing rule including a processing rule indicating that the received packet is transferred to a gateway corresponding to the communication path identifier, and based on the processing rule, a gateway corresponding to the communication path identifier of the received packet is received. The reception packet is transferred.
The control method of the present invention is a control method for controlling a communication device that communicates via a communication path set in a network, and manages a correspondence relationship between the communication path and the gateway, and includes information including a communication path identifier A processing rule including an identification rule for identifying a communication flow based on the communication rule, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier. It is characterized by notifying.
本発明により、通信パスを切り替える際に通信サービスに対する影響を抑止することができ、多様な通信品質制御が可能な技術を提供することができる。
According to the present invention, it is possible to suppress the influence on the communication service when switching the communication path, and it is possible to provide a technology capable of various communication quality control.
以下、本発明の実施形態を説明する。各実施形態は例示であり、本発明は各実施形態に限定されるものではない。
Hereinafter, embodiments of the present invention will be described. Each embodiment is an exemplification, and the present invention is not limited to each embodiment.
1.第1実施形態
1.1)システム
以下、本実施形態による通信システムとして、LTE(Long Term Evolution)の通信システムの例を示す。ただし、本発明が適用される通信システムはLTEに限定されない。例えば、本発明は、GPRS(General Packet Radio Service)やUMTS(Universal Mobile Telecommunication System)にも適用可能である。 1. 1. First Embodiment 1.1) System Hereinafter, an example of an LTE (Long Term Evolution) communication system is shown as a communication system according to the present embodiment. However, the communication system to which the present invention is applied is not limited to LTE. For example, the present invention is also applicable to GPRS (General Packet Radio Service) and UMTS (Universal Mobile Telecommunication System).
1.1)システム
以下、本実施形態による通信システムとして、LTE(Long Term Evolution)の通信システムの例を示す。ただし、本発明が適用される通信システムはLTEに限定されない。例えば、本発明は、GPRS(General Packet Radio Service)やUMTS(Universal Mobile Telecommunication System)にも適用可能である。 1. 1. First Embodiment 1.1) System Hereinafter, an example of an LTE (Long Term Evolution) communication system is shown as a communication system according to the present embodiment. However, the communication system to which the present invention is applied is not limited to LTE. For example, the present invention is also applicable to GPRS (General Packet Radio Service) and UMTS (Universal Mobile Telecommunication System).
図1において、本実施形態による通信システムは、携帯電話、PC(Personal Computer)、モバイルルータ等の端末(Mobile Terminal)1、基地局(eNB)2、ゲートウェイ3を含む。基地局2は、端末1に対して、無線アクセス機能を提供する。ゲートウェイ3は、例えば、S-GW(Serving Gateway)やP-GW(Packet Data Network Gateway)等のネットワークノードである。なお、ゲートウェイ3は、SGSN(Serving GPRS Support Node)やGGSN(Gateway GPRS Support Node)でもよい。ゲートウェイ3は、例えば、ネットワークに設定される通信パス(例えば、ベアラ)を終端する機能や、外部ネットワーク(例えばインターネット)との接続点としての機能を提供する。
1, the communication system according to the present embodiment includes a mobile phone, a PC (Personal Computer), a mobile router terminal (Mobile Terminal) 1, a base station (eNB) 2, and a gateway 3. The base station 2 provides a radio access function to the terminal 1. The gateway 3 is a network node such as S-GW (Serving Gateway) or P-GW (Packet Data Network Gateway). The gateway 3 may be SGSN (Serving GPRS Support Node) or GGSN (Gateway GPRS Support Node). The gateway 3 provides, for example, a function for terminating a communication path (for example, bearer) set in a network and a function as a connection point with an external network (for example, the Internet).
図2に示すように、端末1は、端末1とゲートウェイ3との間に構築された通信パス(例えばベアラ)を介して、データを送受信する。通信パスは、例えば、端末1と基地局との間に構築される無線チャネルや、ゲートウェイ3を終端(エンドポイント)とするGTP(GPRS Tunneling Protocol)トンネルで構成される。
As shown in FIG. 2, the terminal 1 transmits and receives data via a communication path (for example, a bearer) established between the terminal 1 and the gateway 3. The communication path includes, for example, a wireless channel established between the terminal 1 and the base station and a GTP (GPRS Tunneling Protocol) tunnel that terminates at the gateway 3 (endpoint).
図1に示す本実施形態による通信システムでは、例えば、基地局2とゲートウェイ3との間や、S-GWとP-GWとの間に、通信パスの経路を切り替えることが可能な通信装置4が配置される。通信装置4は、例えば、通信パスに対応するゲートウェイ3を切り替える場合、当該通信パスに属するパケットが切り替え後のゲートウェイ3を経由するようにパケットの転送経路を切り替え可能である。通信装置4が通信パスの経路上でパケットの転送経路を切り替えることにより、ゲートウェイの切り替えを端末1に対して隠蔽することが可能となる。従って、通信パスに対応するゲートウェイ3が切り替えられたとしても、通信システムは、通信パスの再確立手順の実行を回避できる。
In the communication system according to the present embodiment shown in FIG. 1, for example, a communication device 4 capable of switching the path of a communication path between the base station 2 and the gateway 3 or between the S-GW and the P-GW. Is placed. For example, when switching the gateway 3 corresponding to the communication path, the communication device 4 can switch the packet transfer path so that the packet belonging to the communication path passes through the switched gateway 3. By switching the packet transfer path on the path of the communication path by the communication device 4, it becomes possible to conceal the switching of the gateway from the terminal 1. Therefore, even if the gateway 3 corresponding to the communication path is switched, the communication system can avoid executing the communication path re-establishment procedure.
1.2)通信装置
本実施形態による通信装置4は複数のゲートウェイを切り替えることができるが、以下説明の複雑化を回避するために、3つのゲートウェイが切り替えられる場合を一例として説明する。 1.2) Communication Device Although the communication device 4 according to the present embodiment can switch a plurality of gateways, a case where three gateways are switched will be described as an example in order to avoid complication of the following description.
本実施形態による通信装置4は複数のゲートウェイを切り替えることができるが、以下説明の複雑化を回避するために、3つのゲートウェイが切り替えられる場合を一例として説明する。 1.2) Communication Device Although the communication device 4 according to the present embodiment can switch a plurality of gateways, a case where three gateways are switched will be described as an example in order to avoid complication of the following description.
図3に例示するように、通信装置4は、通信パス識別部40および切替部41を含み、通信パスに応じてゲートウェイ3(a)、3(b)および3(c)を切り替え可能であるとする。
As illustrated in FIG. 3, the communication device 4 includes a communication path identification unit 40 and a switching unit 41, and can switch between the gateways 3 (a), 3 (b), and 3 (c) according to the communication path. And
通信パス識別部40は、受信パケットが属する通信パスを識別する。例えば、通信パス識別部40は、TEID(Tunnel Endpoint Identifier)や、GRE(Generic Routing Encapsulation)key等の通信パス識別子に基づいて、受信パケットが属する通信パスを識別する。
The communication path identification unit 40 identifies the communication path to which the received packet belongs. For example, the communication path identification unit 40 identifies a communication path to which a received packet belongs based on a communication path identifier such as a TEID (Tunnel Endpoint Identifier) or a GRE (Generic Routing Encapsulation) key.
切替部41は、通信パス識別子により識別された通信パスに対応するゲートウェイ3に、受信パケットを転送する。切替部41は、例えば、通信パスとゲートウェイ3の対応関係を管理する機能を有し、その対応関係に基づいて、受信パケットを対応するゲートウェイ3に転送する。図3の例では、切替部41は、受信パケット(A)をゲートウェイ3(a)に、受信パケット(B)をゲートウェイ3(b)に、受信パケット(C)をゲートウェイ(c)に、それぞれ転送する。
The switching unit 41 transfers the received packet to the gateway 3 corresponding to the communication path identified by the communication path identifier. For example, the switching unit 41 has a function of managing the correspondence relationship between the communication path and the gateway 3, and transfers the received packet to the corresponding gateway 3 based on the correspondence relationship. In the example of FIG. 3, the switching unit 41 sets the received packet (A) to the gateway 3 (a), the received packet (B) to the gateway 3 (b), and the received packet (C) to the gateway (c). Forward.
図4に例示するように、サーバ33上に仮想マシン(VM:Virtual Machine)等のソフトウェアによりゲートウェイ3A(仮想ゲートウェイ)を構成し、通信装置4が受信パケットをゲートウェイ3Aに転送することも可能である。サーバ33は、例えば、通信システムの負荷等に応じて、複数の仮想ゲートウェイ3Aを構築することが可能である。切替部41は、例えば、通信パスと仮想ゲートウェイとの対応関係に基づいて、受信パケットを対応する仮想ゲートウェイに転送する。
As illustrated in FIG. 4, a gateway 3A (virtual gateway) can be configured on the server 33 by software such as a virtual machine (VM), and the communication device 4 can transfer a received packet to the gateway 3A. is there. The server 33 can construct a plurality of virtual gateways 3A according to, for example, the load on the communication system. For example, the switching unit 41 transfers the received packet to the corresponding virtual gateway based on the correspondence relationship between the communication path and the virtual gateway.
図5に例示するように、通信装置4が有する上述した機能をサーバ33上に構築された仮想スイッチ4Aにより実現することも可能である。つまり、図5の例では、サーバ33は、通信装置4として動作可能である。すなわち、サーバ33の制御部(図示せず)上に仮想スイッチ4Aと仮想ゲートウェイ(ゲートウェイ3A)とをVM等のソフトウェアにより構成することも可能である。仮想スイッチ4Aの通信パス識別部40は、受信したパケットが属する通信パスを識別し、仮想スイッチ4Aの切替部41は、識別された通信パスに対応する仮想ゲートウェイ3Aに受信パケットを転送する。
As exemplified in FIG. 5, the above-described functions of the communication device 4 can be realized by a virtual switch 4 </ b> A constructed on the server 33. That is, in the example of FIG. 5, the server 33 can operate as the communication device 4. That is, the virtual switch 4A and the virtual gateway (gateway 3A) can be configured by software such as VM on the control unit (not shown) of the server 33. The communication path identifying unit 40 of the virtual switch 4A identifies the communication path to which the received packet belongs, and the switching unit 41 of the virtual switch 4A transfers the received packet to the virtual gateway 3A corresponding to the identified communication path.
なお、図3~図5では、1つの通信装置4(仮想スイッチ4A)しか記載されていないが、複数個使用しても良い。また、通信装置4と仮想スイッチ4Aとを組み合わせて用いても良い。
Although only one communication device 4 (virtual switch 4A) is shown in FIGS. 3 to 5, a plurality of communication devices 4 may be used. Further, the communication device 4 and the virtual switch 4A may be used in combination.
1.3)通信パス制御
図6において、通信装置4は、パケットを受信すると(動作S1)、通信パス識別部40が受信パケットの属する通信パスを識別する(動作S2)。例えば、通信パス識別部40は、TEIDやGRE Key等の通信パス識別子に基づいて、受信パケットが属する通信パスを識別する。 1.3) Communication Path Control In FIG. 6, when the communication device 4 receives a packet (operation S1), the communicationpath identification unit 40 identifies the communication path to which the received packet belongs (operation S2). For example, the communication path identifying unit 40 identifies the communication path to which the received packet belongs based on a communication path identifier such as TEID or GRE Key.
図6において、通信装置4は、パケットを受信すると(動作S1)、通信パス識別部40が受信パケットの属する通信パスを識別する(動作S2)。例えば、通信パス識別部40は、TEIDやGRE Key等の通信パス識別子に基づいて、受信パケットが属する通信パスを識別する。 1.3) Communication Path Control In FIG. 6, when the communication device 4 receives a packet (operation S1), the communication
通信装置4の切替部41は、識別された通信パスに対応するゲートウェイ3に、受信パケットを転送する(動作S3)。
The switching unit 41 of the communication device 4 transfers the received packet to the gateway 3 corresponding to the identified communication path (operation S3).
1.4)効果
以上の動作により、通信装置4が通信パスの経路上でパケットの転送経路を切り替えることにより、通信システムは、通信パスに対応するゲートウェイ3の切り替えを端末1に対して隠蔽することが可能となる。従って、通信パスに対応するゲートウェイ3が切り替えられたとしても、通信システムは、通信パスの再確立手順の実行を回避できる。 1.4) Effect With the above operation, the communication apparatus 4 switches the packet transfer path on the path of the communication path, so that the communication system conceals the switching of thegateway 3 corresponding to the communication path from the terminal 1. It becomes possible. Therefore, even if the gateway 3 corresponding to the communication path is switched, the communication system can avoid executing the communication path re-establishment procedure.
以上の動作により、通信装置4が通信パスの経路上でパケットの転送経路を切り替えることにより、通信システムは、通信パスに対応するゲートウェイ3の切り替えを端末1に対して隠蔽することが可能となる。従って、通信パスに対応するゲートウェイ3が切り替えられたとしても、通信システムは、通信パスの再確立手順の実行を回避できる。 1.4) Effect With the above operation, the communication apparatus 4 switches the packet transfer path on the path of the communication path, so that the communication system conceals the switching of the
2.第2実施形態
本発明の第2実施形態は、図1に例示された通信システムに適用可能である。 2. Second Embodiment A second embodiment of the present invention is applicable to the communication system illustrated in FIG.
本発明の第2実施形態は、図1に例示された通信システムに適用可能である。 2. Second Embodiment A second embodiment of the present invention is applicable to the communication system illustrated in FIG.
第2実施形態による通信システムにおける通信装置4は、制御装置5から通知された指示に従って、上述した第1実施形態と同様に、通信パスの経路切替を実行することが可能である。制御装置5が通信装置4の動作を集中制御できるので、システムの運用効率が向上する。
The communication device 4 in the communication system according to the second embodiment can switch the communication path according to the instruction notified from the control device 5 as in the first embodiment described above. Since the control device 5 can centrally control the operation of the communication device 4, the operation efficiency of the system is improved.
図7に示すように、制御装置5は、経路情報DB(データベース)50、制御部51および通信インターフェース52を含む。
通信インターフェース52は、通信装置4と通信する機能を有する。通信インターフェース52は、例えば、OpenFlow、ForCES(Forwarding and Control Element Separation)、I2RS(Interface to Routing System)等のプロトコルを用いて、通信装置4と通信することが可能である。 As shown in FIG. 7, thecontrol device 5 includes a route information DB (database) 50, a control unit 51, and a communication interface 52.
Thecommunication interface 52 has a function of communicating with the communication device 4. The communication interface 52 can communicate with the communication device 4 using a protocol such as OpenFlow, ForCES (Forwarding and Control Element Separation), or I2RS (Interface to Routing System).
通信インターフェース52は、通信装置4と通信する機能を有する。通信インターフェース52は、例えば、OpenFlow、ForCES(Forwarding and Control Element Separation)、I2RS(Interface to Routing System)等のプロトコルを用いて、通信装置4と通信することが可能である。 As shown in FIG. 7, the
The
経路情報DB50は、通信パスとゲートウェイ3との対応関係を管理するためのデータベースである。制御部51は、経路情報DB50に格納する情報を生成する機能や、経路情報DB50に記憶された情報に基づいて通信インターフェース52を介して通信装置4を制御する機能を有する。
The route information DB 50 is a database for managing the correspondence between the communication path and the gateway 3. The control unit 51 has a function of generating information stored in the route information DB 50 and a function of controlling the communication device 4 via the communication interface 52 based on information stored in the route information DB 50.
図8に例示されるように、経路情報DB50は、各通信パスとそれに対応するゲートウェイとの対応情報を記憶する。通信パスを識別するための情報として、TEIDやGRE Key等の通信パス識別子を用いることができ、各通信パス識別子に基づいて、対応するゲートウェイ3を管理することができる。
As exemplified in FIG. 8, the route information DB 50 stores correspondence information between each communication path and the corresponding gateway. As information for identifying a communication path, a communication path identifier such as TEID or GRE Key can be used, and the corresponding gateway 3 can be managed based on each communication path identifier.
制御部51は、経路情報DB50で管理される情報に基づいて、通信装置4を制御する。例えば、制御部51は、経路情報DB50に基づいて、通信装置4の切替部41に通信パスとゲートウェイ3との対応関係を通知する。
The control unit 51 controls the communication device 4 based on information managed by the route information DB 50. For example, the control unit 51 notifies the correspondence between the communication path and the gateway 3 to the switching unit 41 of the communication device 4 based on the route information DB 50.
図9の例示するように、通信装置4に経路情報DB42を設け、制御装置5から通知された経路情報を記憶してもよい。この場合、通信装置4の通信パス識別部40および切替部41は、経路情報DB42を参照し、パケットが属する通信パスに対応するゲートウェイ3に対して、当該パケットを転送する。
As illustrated in FIG. 9, the communication device 4 may be provided with a route information DB 42 to store the route information notified from the control device 5. In this case, the communication path identifying unit 40 and the switching unit 41 of the communication device 4 refer to the route information DB 42 and transfer the packet to the gateway 3 corresponding to the communication path to which the packet belongs.
制御装置5の制御部51は、例えば、通信パスに対応するゲートウェイ3の変更が生じると、その変更された対応関係の情報を通信装置4に通知する。通信装置4は、通知された情報を経路情報DB42に記憶する。
For example, when the gateway 3 corresponding to the communication path is changed, the control unit 51 of the control device 5 notifies the communication device 4 of the changed correspondence information. The communication device 4 stores the notified information in the route information DB 42.
制御装置5の制御部51は、図5に例示したサーバ33上に仮想ゲートウェイであるゲートウェイ3A(図5に例示)を、例えば起動指示により稼働させることも可能である。すなわち、制御部51からの起動指示に応じて、サーバ33は、仮想マシン上に、ゲートウェイ3に対応する機能を有するアプリケーションを起動する。
The control unit 51 of the control device 5 can also operate the gateway 3A (illustrated in FIG. 5), which is a virtual gateway, on the server 33 illustrated in FIG. That is, in response to the activation instruction from the control unit 51, the server 33 activates an application having a function corresponding to the gateway 3 on the virtual machine.
制御装置5は、例えば、LTE通信システムのPCRF(Policy and Charging Rule Function)やMME(Mobility Management Entity)等、またNMS(Network Management System)等を用いて構成されうる。MMEは、ベアラの確立や削除を制御する機能、端末1のハンドオーバー等の移動制御や端末1のユーザ認証等の機能を有する。PCRFは、QoSなどのポリシ制御やデータ転送に対する課金制御等の機能を有する。ゲートウェイは、PCRFからの通知情報に基づいて、ポリシ制御を実行する。NMSは、ネットワークトラフィックの監視や、ネットワーク機器の死活監視等の機能を有する。
The control device 5 can be configured by using, for example, a PCRF (Policy and Charging Rule Function), an MME (Mobility Management Entity), or an NMS (Network Management System) of the LTE communication system. The MME has a function of controlling the establishment and deletion of bearers, a mobility control such as a handover of the terminal 1, and a user authentication of the terminal 1. The PCRF has functions such as policy control such as QoS and charging control for data transfer. The gateway executes policy control based on the notification information from the PCRF. The NMS has functions such as network traffic monitoring and network device alive monitoring.
3.第3実施形態
本発明の第3実施形態は、上述の第1実施形態もしくは第2実施形態で開示されたいずれの技術にも適用可能である。第3実施形態では、ゲートウェイ3の機能がVM等のソフトウェアにより仮想的に構成される。 3. Third Embodiment A third embodiment of the present invention is applicable to any technique disclosed in the first embodiment or the second embodiment described above. In the third embodiment, the function of thegateway 3 is virtually configured by software such as VM.
本発明の第3実施形態は、上述の第1実施形態もしくは第2実施形態で開示されたいずれの技術にも適用可能である。第3実施形態では、ゲートウェイ3の機能がVM等のソフトウェアにより仮想的に構成される。 3. Third Embodiment A third embodiment of the present invention is applicable to any technique disclosed in the first embodiment or the second embodiment described above. In the third embodiment, the function of the
現在の通信システムは、様々なネットワーク機能を実行するため、ハードウェア機器である専用アプライアンスを用いている。通信システムの構築には、このような専用アプライアンスが必要となるため、ネットワークサービスを新たに立ち上げる場合、ネットワークオペレータは、新たな専用アプライアンスの導入を強いられる。すなわち、専用アプライアンスを導入するために、ネットワークオペレータは、専用アプライアンスの購入費用や設置スペース等の多大なコストを払う。
Current communication systems use dedicated appliances, which are hardware devices, to perform various network functions. Since the construction of a communication system requires such a dedicated appliance, when a new network service is started, the network operator is forced to introduce a new dedicated appliance. That is, in order to introduce a dedicated appliance, the network operator pays a great deal of cost such as the purchase cost and installation space of the dedicated appliance.
また、通信システムは、通常、ピーク負荷に耐える性能を有するように通設計される。よって、通信システムを構成する専用アプライアンス(例えば、ゲートウェイ装置等)は、非ピーク時の通信量に対して余剰となる可能性がある。この問題の一つの解決策は、ゲートウェイ装置等の専用アプライアンスの機能を仮想マシン等のソフトウェアにより構成することである。例えば、通信システムの通信量に応じて、専用アプライアンスの機能を有する仮想マシンを増設することで、通信システムの状況に応じたシステム構築が可能となる。
In addition, the communication system is usually designed so as to have a capability to withstand a peak load. Therefore, there is a possibility that a dedicated appliance (for example, a gateway device or the like) constituting the communication system becomes redundant with respect to the non-peak traffic. One solution to this problem is to configure the functions of a dedicated appliance such as a gateway device by software such as a virtual machine. For example, it is possible to construct a system according to the state of the communication system by adding a virtual machine having a function of a dedicated appliance according to the communication amount of the communication system.
本発明の第3実施形態では、ゲートウェイ3の機能が動的にスケールアウトされた場合に、通信パスに対応するゲートウェイ3を切り替えることが可能である。通信装置4が通信パスの経路上でパケットの転送経路を切り替えることにより、通信装置4は、通信パスに対応するゲートウェイ3の切り替えを端末1に対して隠蔽することが可能となる。従って、通信パスに対応するゲートウェイ3が切り替えられたとしても、通信システムは、通信パスの再確立手順の実行を回避できる。以下、図10~図20の例を参照しながら、本発明の第3実施形態について説明する。
In the third embodiment of the present invention, when the function of the gateway 3 is dynamically scaled out, it is possible to switch the gateway 3 corresponding to the communication path. When the communication device 4 switches the packet transfer path on the communication path, the communication device 4 can conceal the switching of the gateway 3 corresponding to the communication path from the terminal 1. Therefore, even if the gateway 3 corresponding to the communication path is switched, the communication system can avoid executing the communication path re-establishment procedure. The third embodiment of the present invention will be described below with reference to the examples of FIGS.
3.1)ゲートウェイ構成
図10の左側に示すように、ゲートウェイ3は、制御プレーン(C-Plane)とユーザプレーン(U-Plane)を有する。C-Planeは、通信システムで伝送される制御信号を処理する機能を有する。U-Planeは、通信システムで伝送されるデータを処理する機能を有する。C-PlaneとU-Planeは、それぞれ異なるインターフェース32を介して通信することも可能である。ゲートウェイ3では、例えば、IPアドレスが、それぞれのインターフェースに割り当てられる。 3.1) Gateway Configuration As shown on the left side of FIG. 10, thegateway 3 has a control plane (C-Plane) and a user plane (U-Plane). C-Plane has a function of processing a control signal transmitted in the communication system. U-Plane has a function of processing data transmitted in a communication system. C-Plane and U-Plane can communicate with each other via different interfaces 32. In the gateway 3, for example, an IP address is assigned to each interface.
図10の左側に示すように、ゲートウェイ3は、制御プレーン(C-Plane)とユーザプレーン(U-Plane)を有する。C-Planeは、通信システムで伝送される制御信号を処理する機能を有する。U-Planeは、通信システムで伝送されるデータを処理する機能を有する。C-PlaneとU-Planeは、それぞれ異なるインターフェース32を介して通信することも可能である。ゲートウェイ3では、例えば、IPアドレスが、それぞれのインターフェースに割り当てられる。 3.1) Gateway Configuration As shown on the left side of FIG. 10, the
端末1がインターネット等の外部網と通信するため、ゲートウェイ3と端末1との間に通信パス(例えば、ベアラ)が確立される。通信パスにおいて、ゲートウェイ3は、例えば、インターフェース32に割り当てられたIPアドレスを用いて通信する。ゲートウェイ3は、通信パスを確立するためのトンネル(例えば、GTPトンネルやGREトンネル)を構築する。
Since the terminal 1 communicates with an external network such as the Internet, a communication path (for example, a bearer) is established between the gateway 3 and the terminal 1. In the communication path, the gateway 3 communicates using, for example, an IP address assigned to the interface 32. The gateway 3 constructs a tunnel (for example, a GTP tunnel or a GRE tunnel) for establishing a communication path.
図10の右側に示すように、上述のゲートウェイ3は、VM等のソフトウェアにより仮想ゲートウェイ3Aとして構成される。仮想ゲートウェイ3Aは、例えば、サーバ33上に構築される。仮想ゲートウェイ3Aにおいて、C-PlaneやU-Planeは、VM等のソフトウェアにより構成される。図10において、C-PlaneやU-Planeに対応する機能は、それぞれ、”仮想C-plane30”、”仮想U-plane31”と標記される。仮想C-plane30と仮想U-plane31は、内部インターフェースにより相互通信が可能である。通信システムのオペレータは、例えば、通信システムの負荷等に応じて、仮想C-plane30や仮想U-plane31を増設することができる。仮想C-plane30や仮想U-plane31はソフトウェアにより構成されるので、オペレータは、ハードウェア装置のゲートウェイ3を増設する場合よりも、容易かつ低コストで、ゲートウェイを増設可能である。
As shown on the right side of FIG. 10, the gateway 3 described above is configured as a virtual gateway 3A by software such as VM. The virtual gateway 3A is constructed on the server 33, for example. In the virtual gateway 3A, C-Plane and U-Plane are configured by software such as VM. In FIG. 10, the functions corresponding to C-Plane and U-Plane are labeled “virtual C-plane 30” and “virtual U-plane 31”, respectively. The virtual C-plane 30 and the virtual U-plane 31 can communicate with each other through an internal interface. The operator of the communication system can add a virtual C-plane 30 and a virtual U-plane 31 according to the load of the communication system, for example. Since the virtual C-plane 30 and the virtual U-plane 31 are configured by software, the operator can add gateways more easily and at a lower cost than when the gateway 3 of the hardware device is added.
仮想C-Plane30、仮想U-Plane31は、それぞれ、通信パスを終端する機能や、外部ネットワークとの接続点となる機能を提供するネットワークノードとして動作する。
The virtual C-Plane 30 and the virtual U-Plane 31 each operate as a network node that provides a function for terminating a communication path and a function as a connection point with an external network.
本発明が解決しようする課題の項で述べたように、仮想ゲートウェイ3Aにおいて、ゲートウェイ3のようにインターフェース32毎にIPアドレスが割り当てられると、仮想C-planeや仮想U-planeが増設された場合に、通信パスの再構築が発生することが想定される。例えば、仮想U-plane31が増設された場合、増設された仮想U-plane31のインターフェース32に新たなIPアドレスが割り当てられる。既存の仮想U-plane31に設定されている通信パスを、増設された仮想U-plane31に切り替える場合、通信パスに対応するIPアドレスが増設された仮想U-plane31に割り当てられたIPアドレスに変更されるため、通信パスの再構築が発生する。通信パスの再構築を行うためには、eNB、SGW、PGW等の通信システムを構成する各機能が、通信パスの再構築手順を実行する。よって、仮想C-plane30や仮想U-plane31を増設する度に通信パスの再構築が発生し、通信システムの性能等に対する影響が大きくなることが想定される。
As described in the section of the problem to be solved by the present invention, in the virtual gateway 3A, when an IP address is assigned to each interface 32 like the gateway 3, a virtual C-plane or a virtual U-plane is added. In addition, it is assumed that communication path reconstruction occurs. For example, when the virtual U-plane 31 is added, a new IP address is assigned to the interface 32 of the added virtual U-plane 31. When switching the communication path set in the existing virtual U-plane 31 to the added virtual U-plane 31, the IP address corresponding to the communication path is changed to the IP address assigned to the added virtual U-plane 31. As a result, communication path reconstruction occurs. In order to reconstruct the communication path, each function constituting the communication system such as eNB, SGW, or PGW executes a communication path reconstruction procedure. Therefore, it is assumed that the communication path is reconstructed every time the virtual C-plane 30 or the virtual U-plane 31 is added, and the influence on the performance of the communication system is increased.
そこで、本発明の第3実施形態では、仮想C-plane30や仮想U-plane31の各々のインターフェース32にIPアドレスを割り当てるのではなく、例えば、仮想U-planeや仮想C-planeに対して共通のIPアドレスを割り当てる。つまり、複数の仮想C-planeや複数の仮想U-planeに対して、共通のIPアドレスが割り当てられる。よって、例えば、U-planeを構成する仮想U-plane31が増設されたとしても、各仮想U-plane31に対して共通のIPアドレスが割り当てられるため、通信パスを仮想U-plane31間で切り替えたとしても、通信パスの再構築の発生を回避できる。なお、複数の仮想C-Planeや複数の仮想U-Planeに対して共通に割り当てられるアドレスは、IPアドレスに限定されず、例えば、MACアドレスであってもよい。
Therefore, in the third embodiment of the present invention, instead of assigning an IP address to each interface 32 of the virtual C-plane 30 and the virtual U-plane 31, for example, it is common to the virtual U-plane and the virtual C-plane. Assign an IP address. That is, a common IP address is assigned to a plurality of virtual C-planes and a plurality of virtual U-planes. Therefore, for example, even if the virtual U-plane 31 constituting the U-plane is added, a common IP address is assigned to each virtual U-plane 31, and therefore, the communication path is switched between the virtual U-planes 31. Also, it is possible to avoid the occurrence of communication path reconstruction. Note that addresses commonly assigned to a plurality of virtual C-Planes and a plurality of virtual U-Planes are not limited to IP addresses, and may be MAC addresses, for example.
3.2)システム
図11において、本発明の第3実施形態による通信システムの第1例は、仮想ゲートウェイ3A、通信装置4および制御装置5を含む。 3.2) System In FIG. 11, the first example of the communication system according to the third embodiment of the present invention includes a virtual gateway 3A, a communication device 4, and acontrol device 5.
図11において、本発明の第3実施形態による通信システムの第1例は、仮想ゲートウェイ3A、通信装置4および制御装置5を含む。 3.2) System In FIG. 11, the first example of the communication system according to the third embodiment of the present invention includes a virtual gateway 3A, a communication device 4, and a
仮想ゲートウェイ3Aは、VM等のソフトウェアにより仮想C-plane30、仮想U-plane31を構成可能である。例えば、仮想C-Plane30や仮想U-Plane31は、VM等のソフトウェアによりサーバ上に構成される。
The virtual gateway 3A can configure a virtual C-plane 30 and a virtual U-plane 31 by software such as VM. For example, the virtual C-Plane 30 and the virtual U-Plane 31 are configured on the server by software such as VM.
制御装置5は、通信パスと仮想ゲートウェイ3Aとの対応関係を管理する。例えば、制御装置5は、通信パスと仮想U-plane31との対応関係を管理する機能を有する。また、例えば、制御装置5は、通信パスと仮想C-Plane30との対応関係を管理する機能を有する。
The control device 5 manages the correspondence between the communication path and the virtual gateway 3A. For example, the control device 5 has a function of managing the correspondence between the communication path and the virtual U-plane 31. For example, the control device 5 has a function of managing the correspondence between the communication path and the virtual C-Plane 30.
制御装置5は、通信装置4の動作を制御する機能を有する。既に述べたように、制御装置5は、受信パケットが属する通信パスを識別し、識別された通信パスに対応する仮想U-Plane31に受信パケットを転送することを通信装置4に指示する。
The control device 5 has a function of controlling the operation of the communication device 4. As already described, the control device 5 identifies the communication path to which the received packet belongs, and instructs the communication device 4 to transfer the received packet to the virtual U-Plane 31 corresponding to the identified communication path.
制御装置5は、仮想ゲートウェイ3A(もしくは、仮想C-Plane30や仮想U-Plane31)をサーバ33上に稼働させることも可能である。例えば、制御装置5は、サーバ33に、仮想ゲートウェイ3Aの起動を指示することが可能である。サーバ33は、制御装置5からの起動指示に応じて、仮想マシン上にゲートウェイ3に対応する機能を有するアプリケーションを起動する。
The control device 5 can also operate the virtual gateway 3A (or virtual C-Plane 30 or virtual U-Plane 31) on the server 33. For example, the control device 5 can instruct the server 33 to start the virtual gateway 3A. The server 33 activates an application having a function corresponding to the gateway 3 on the virtual machine in response to an activation instruction from the control device 5.
制御装置5は、仮想U-Plane31を通信装置4と並行して制御することも可能である。例えば、制御装置5は、通信パスに対応する仮想U-Plane31の切り替えを実施するために、通信装置4を制御して通信パスの経路上でパケットの転送経路を切り替えると共に、切り替え先の仮想U-Plane31で該当の通信パスを終端するための制御を行う。例えば、制御装置5の制御部51は、仮想U-Plane31に対して、経路切り替えにより仮想U-Plane31が新たに終端する通信パスに関する情報(例えば、通信パス識別子)を通知する。
The control device 5 can also control the virtual U-Plane 31 in parallel with the communication device 4. For example, in order to switch the virtual U-Plane 31 corresponding to the communication path, the control device 5 controls the communication device 4 to switch the packet transfer path on the path of the communication path, and also switches the virtual U-Plane 31 of the switching destination. -Perform control for terminating the communication path in Plane 31. For example, the control unit 51 of the control device 5 notifies the virtual U-Plane 31 of information (for example, a communication path identifier) related to a communication path in which the virtual U-Plane 31 is newly terminated by route switching.
図12に示すように、は、第3実施形態による通信システムの第2例では、通信装置4の機能が、VM等のソフトウェアによりサーバ33上に構成される。つまり、図12の例では、サーバ33は、通信装置4として動作可能である。サーバ33は、例えば、仮想ゲートウェイ3Aをサーバ33上に起動可能な制御部(図12には図示せず)を備える。仮想ゲートウェイ3Aでは、仮想C-Plane30、仮想U-Plane31および仮想スイッチ4Aがサーバ33上に構築され、通信装置4の機能が仮想スイッチ4Aとして、サーバ33上に構築される。
As shown in FIG. 12, in the second example of the communication system according to the third embodiment, the function of the communication device 4 is configured on the server 33 by software such as VM. That is, in the example of FIG. 12, the server 33 can operate as the communication device 4. The server 33 includes, for example, a control unit (not shown in FIG. 12) that can activate the virtual gateway 3A on the server 33. In the virtual gateway 3A, the virtual C-Plane 30, the virtual U-Plane 31, and the virtual switch 4A are built on the server 33, and the function of the communication device 4 is built on the server 33 as the virtual switch 4A.
図13に示すように、第3実施形態による通信システムの第3例では、図12の例と同様に、サーバ33が通信装置4として動作可能な仮想スイッチ4Aを含むが、さらに、制御装置5の機能がVM等のソフトウェアによりサーバ33上に構成される。図13の例では、制御装置5の機能は、仮想コントローラ5Aとして、サーバ33上に構築される。サーバ33は、例えば、仮想スイッチ4A、仮想ゲートウェイ3Aもしくは仮想コントローラ5Aの少なくとも1つをサーバ33上に起動可能な制御部(図13には図示せず)を備える。図13の例では、仮想ゲートウェイ3Aは、仮想C-Plane30、仮想U-Plane31、仮想スイッチ4Aおよび仮想コントローラ5Aで構成される。図13の例では、サーバ33は、仮想スイッチ4Aもしくは仮想ゲートウェイ3Aの少なくとも一つの機能を有する制御装置5として動作可能である。
As shown in FIG. 13, in the third example of the communication system according to the third embodiment, the server 33 includes a virtual switch 4A that can operate as the communication device 4 as in the example of FIG. Are configured on the server 33 by software such as VM. In the example of FIG. 13, the function of the control device 5 is constructed on the server 33 as the virtual controller 5A. The server 33 includes, for example, a control unit (not shown in FIG. 13) that can activate at least one of the virtual switch 4A, the virtual gateway 3A, or the virtual controller 5A on the server 33. In the example of FIG. 13, the virtual gateway 3A includes a virtual C-Plane 30, a virtual U-Plane 31, a virtual switch 4A, and a virtual controller 5A. In the example of FIG. 13, the server 33 can operate as the control device 5 having at least one function of the virtual switch 4A or the virtual gateway 3A.
以下の第3実施形態の説明は、図11に例示されたシステム構成に基づいて行われるが、本実施形態は図11のシステム構成に限定されるものではなく、図12や図13およびこれらのシステム構成の変形・置換・調整による形態をも含む。
The following description of the third embodiment will be made based on the system configuration illustrated in FIG. 11, but the present embodiment is not limited to the system configuration in FIG. 11, and FIG. 12 and FIG. It also includes forms by changing, replacing, and adjusting the system configuration.
3.3)制御装置の管理情報(第1例)
図14に例示するように、制御装置5の経路情報DB50に格納される管理情報は、ここでは、P-GWとして機能する仮想ゲートウェイ3A用に制御装置5が管理する情報である。 3.3) Control device management information (first example)
As illustrated in FIG. 14, the management information stored in thepath information DB 50 of the control device 5 is information managed by the control device 5 for the virtual gateway 3A functioning as the P-GW here.
図14に例示するように、制御装置5の経路情報DB50に格納される管理情報は、ここでは、P-GWとして機能する仮想ゲートウェイ3A用に制御装置5が管理する情報である。 3.3) Control device management information (first example)
As illustrated in FIG. 14, the management information stored in the
制御装置5は、例えば、通信パス情報と、通信パス情報により識別される通信パスに対応する仮想U-Plane31に関する情報(図14の“仮想U-Plane”)を管理する。通信パス情報は、例えば、仮想U-planeに割り当てられたIPアドレス(図14の“GW IP addr”)と、通信パス識別子(図14のTEID)である。なお、図14の“GW IP addr”は、それぞれの仮想U-Plane31に共通に割り当てられたIPアドレスである。
The control device 5 manages, for example, communication path information and information on the virtual U-Plane 31 corresponding to the communication path identified by the communication path information (“virtual U-Plane” in FIG. 14). The communication path information is, for example, an IP address (“GW IP addr” in FIG. 14) assigned to the virtual U-plane and a communication path identifier (TEID in FIG. 14). Note that “GW IP addr” in FIG. 14 is an IP address commonly assigned to each virtual U-Plane 31.
制御装置5は、上り(Uplink)通信(端末1からインターネット等の外部網へ向けられた通信)用の通信パス情報として、上述のGW IP addrとTEIDを管理する。通信パス情報は、通信パスに対応する仮想U-Plane31に関する情報(例えば、仮想U-planeの識別情報。図14で“仮想U-Plane”として示された情報)を含んでもよい。図14では、例えば、“GW IP addr”がGW-Uであり、“TEID”がTEID#Aである通信パスは、仮想U-Plane#1に対応することを示す。
The control device 5 manages the above-mentioned GW IP addr and TEID as communication path information for uplink communication (communication directed from the terminal 1 to an external network such as the Internet). The communication path information may include information related to the virtual U-Plane 31 corresponding to the communication path (for example, identification information of the virtual U-plane. Information indicated as “virtual U-Plane” in FIG. 14). In FIG. 14, for example, a communication path in which “GW IP addr” is GW-U and “TEID” is TEID # A corresponds to virtual U-Plane # 1.
制御装置5は、下り(Downlink)通信(外部網から端末1へ向けられた通信)用の通信パス情報として、例えば、端末1のIPアドレス(図14の”UE IP addr”)を含む情報を管理する。制御装置5は、例えば、通信パス情報を、仮想C-plane30から取得する。
The control device 5 includes, for example, information including the IP address of the terminal 1 (“UE IP addr” in FIG. 14) as communication path information for downlink communication (communication directed from the external network to the terminal 1). to manage. For example, the control device 5 acquires communication path information from the virtual C-plane 30.
図14に例示されるように、それぞれの仮想U-plane31にIPアドレスが割り当てられるのではなく、各仮想U-planeに共通のIPアドレス(“GW IP addr”)が割り当てられる。“このような割り当て方法だけでなく、仮想U-planeに対して複数のIPアドレス(例えば、”GW-U#1”や”GW-U#2”)が割り当てられてもよい。例えば、仮想U-Plane#1-#nに “GW-U#1”が割り当てられ、仮想U-Plane#m-#xに “GW-U#2”が割り当てられる、という割り当て方法を採用することもできる。
As illustrated in FIG. 14, an IP address is not assigned to each virtual U-plane 31, but a common IP address (“GW IP addr”) is assigned to each virtual U-plane. “Not only such an allocation method but also a plurality of IP addresses (for example,“ GW-U # 1 ”and“ GW-U # 2 ”) may be allocated to the virtual U-plane. It is also possible to adopt an allocation method in which "GW-U # 1" is assigned to U-Plane # 1- # n and "GW-U # 2" is assigned to virtual U-Plane # m- # x. .
3.4)通信装置の制御情報(第1例)
図15に例示するように、制御装置5は制御情報を通信装置4に設定することができる。 3.4) Communication device control information (first example)
As illustrated in FIG. 15, thecontrol device 5 can set control information in the communication device 4.
図15に例示するように、制御装置5は制御情報を通信装置4に設定することができる。 3.4) Communication device control information (first example)
As illustrated in FIG. 15, the
制御装置5は、例えば、Uplink通信を処理する通信装置4に、受信パケットを処理するための指示を、制御情報として通知する。通信装置4は、通知された制御情報に従って、受信パケットを処理する。制御装置5が通知する制御情報は、例えば、仮想U-planeに割り当てられたIPアドレス(“GW IP addr”)とTEIDとに基づいて受信パケットが属するベアラを識別し、識別されたベアラに対応する仮想U-plane31に受信パケットを転送することを、通信装置4に指示する。
The control device 5 notifies, for example, an instruction for processing the received packet as control information to the communication device 4 that processes Uplink communication. The communication device 4 processes the received packet according to the notified control information. The control information notified by the control device 5, for example, identifies the bearer to which the received packet belongs based on the IP address ("GW IP addr") assigned to the virtual U-plane and the TEID, and corresponds to the identified bearer The communication apparatus 4 is instructed to transfer the received packet to the virtual U-plane 31 to be transmitted.
図15において、Uplink通信用の通信装置4に通知される制御情報は、例えば、”Matching Key”(識別条件)と”Instruction”(指示)を含む。”Matching Key”は、パケットの宛先アドレスであるU-plane用IPアドレス(“GW IP addr”)とTEIDに基づいてパケットを識別するための条件を示す。また、”Instruction”は、”Matching Key”の条件にマッチするパケットの処理方法を示す。例えば、宛先アドレス(Dst Addr)が”GW-U”であり、かつ、TEIDが”#A”であるパケットが識別されると、当該パケットは”仮想U-plane#1”へ転送指示される。
In FIG. 15, the control information notified to the communication device 4 for Uplink communication includes, for example, “Matching Key” (identification condition) and “Instruction” (instruction). “Matching Key” indicates a condition for identifying a packet based on the IP address for U-plane (“GW IP addr”) that is the destination address of the packet and the TEID. “Instruction” indicates a method of processing a packet that matches the condition of “Matching Key”. For example, when a packet whose destination address (Dst Addr) is “GW-U” and whose TEID is “#A” is identified, the packet is instructed to be transferred to “virtual U-plane # 1”. .
制御装置5は、例えば、Downlink通信を処理する通信装置4に、受信パケットを処理するための指示を、制御情報として通知する。通信装置4は、通知された制御情報に従って、受信パケットを処理する。制御装置5が通知する制御情報は、例えば、パケットの宛先である端末1のIPアドレス(“UE IP addr”)に基づいて受信パケットが属するベアラを識別し、識別されたベアラに対応する仮想U-plane31に受信パケットを転送することを指示する。
The control device 5 notifies, for example, an instruction for processing the received packet as control information to the communication device 4 that processes Downlink communication. The communication device 4 processes the received packet according to the notified control information. For example, the control information notified by the control device 5 identifies the bearer to which the received packet belongs based on the IP address of the terminal 1 that is the destination of the packet (“UE IP addr”), and the virtual U corresponding to the identified bearer. -Instruct the plane 31 to transfer the received packet.
図15において、Downlink通信用の通信装置4に通知される制御情報は、例えば、”Matching Key”と”Instruction”を含む。”Matching Key”は、パケットの宛先アドレスである端末1のIPアドレス(“UE IP addr”)に基づいてパケットを識別するための条件を示す。また、”Instruction”は、”Matching Key”の条件にマッチするパケットの処理方法を示す。例えば、宛先アドレス(Dst Addr)が”UE#A’”であるパケットが識別されると、当該パケットは”仮想U-plane#1”へ転送指示される。
In FIG. 15, the control information notified to the communication device 4 for Downlink communication includes, for example, “Matching Key” and “Instruction”. “Matching Key” indicates a condition for identifying a packet based on the IP address (“UE IP addr”) of the terminal 1 that is the destination address of the packet. “Instruction” indicates a method of processing a packet that matches the condition of “Matching Key”. For example, when a packet whose destination address (Dst Addr) is “UE # A ′” is identified, the packet is instructed to be transferred to “virtual U-plane # 1”.
3.5)通信パス制御動作(第1例)
図16において、通信装置4は、図15に例示された制御情報に従って、受信パケットを仮想U-plane31に転送する。より詳しくは、通信装置4は、受信パケットに対応する”Matching Key”を検索し、マッチするする”Matching Key”が検索された場合、その”Matching Key”に対応する”Instruction”に従って、受信パケットを仮想U-plane31に転送する。 3.5) Communication path control operation (first example)
In FIG. 16, the communication device 4 transfers the received packet to the virtual U-plane 31 according to the control information illustrated in FIG. 15. More specifically, the communication device 4 searches for a “Matching Key” corresponding to the received packet. When a matching “Matching Key” is found, the communication device 4 follows the “Instruction” corresponding to the “Matching Key”. Is transferred to thevirtual U-plane 31.
図16において、通信装置4は、図15に例示された制御情報に従って、受信パケットを仮想U-plane31に転送する。より詳しくは、通信装置4は、受信パケットに対応する”Matching Key”を検索し、マッチするする”Matching Key”が検索された場合、その”Matching Key”に対応する”Instruction”に従って、受信パケットを仮想U-plane31に転送する。 3.5) Communication path control operation (first example)
In FIG. 16, the communication device 4 transfers the received packet to the virtual U-plane 31 according to the control information illustrated in FIG. 15. More specifically, the communication device 4 searches for a “Matching Key” corresponding to the received packet. When a matching “Matching Key” is found, the communication device 4 follows the “Instruction” corresponding to the “Matching Key”. Is transferred to the
たとえば、Uplink側の通信装置4において、仮想ゲートウェイ3宛のパケット(Dst Addrが”GW-U”のパケット)は、TEIDに応じて仮想U-plane31に転送される。図16の例では、TEIDが”#A”のパケットは仮想U-plane#1に、TEIDが”#B”のパケットは仮想U-plane#2に、TEIDが”#C”のパケットは仮想U-plane#3に、それぞれ転送される。
For example, in the communication device 4 on the Uplink side, a packet addressed to the virtual gateway 3 (a packet with Dst Addr being “GW-U”) is transferred to the virtual U-plane 31 according to the TEID. In the example of FIG. 16, a packet with TEID “#A” is in virtual U-plane # 1, a packet with TEID “#B” is in virtual U-plane # 2, and a packet with TEID “#C” is virtual. Each is transferred to U-plane # 3.
また、Downlink側の通信装置4において、受信パケットは、宛先IPアドレスに応じて仮想U-plane31に転送される。図16の例では、宛先IPアドレスが”UE#A’”のパケットは仮想U-plane#1に、宛先IPアドレスが”UE#B’”のパケットは仮想U-plane#2に、宛先IPアドレスが”UE#C’”のパケットは仮想U-plane#3に、それぞれ転送される。
Further, in the communication device 4 on the downlink side, the received packet is transferred to the virtual U-plane 31 according to the destination IP address. In the example of FIG. 16, a packet whose destination IP address is “UE # A ′” is to virtual U-plane # 1, a packet whose destination IP address is “UE # B ′” is to virtual U-plane # 2, Packets with the address “UE # C ′” are transferred to the virtual U-plane # 3, respectively.
3.6)制御装置の管理情報(第2例)
図17に例示するように、制御装置5の経路情報DB50に格納される管理情報は、S-GWとして機能する仮想ゲートウェイ3A用に、制御装置5が管理する情報である。 3.6) Control device management information (second example)
As illustrated in FIG. 17, the management information stored in thepath information DB 50 of the control device 5 is information managed by the control device 5 for the virtual gateway 3A functioning as the S-GW.
図17に例示するように、制御装置5の経路情報DB50に格納される管理情報は、S-GWとして機能する仮想ゲートウェイ3A用に、制御装置5が管理する情報である。 3.6) Control device management information (second example)
As illustrated in FIG. 17, the management information stored in the
制御装置5は、例えば、通信パス情報と、通信パス情報により識別される通信パスに対応する仮想U-Plane31に関する情報を管理する。通信パス情報は、例えば、仮想U-planeに割り当てられたIPアドレス(図17の”GW IP addr”)と、通信パス識別子(図17のTEID)である。制御装置5は、Uplink通信用の通信パス情報として、例えば、上述のGW IP addrとTEIDを管理する。通信パス情報は、通信パスに対応する仮想U-Plane31に関する情報(例えば、仮想U-planeの識別情報。図17で“仮想U-Plane”として示された情報)を含んでもよい。
The control device 5 manages, for example, communication path information and information regarding the virtual U-Plane 31 corresponding to the communication path identified by the communication path information. The communication path information is, for example, an IP address (“GW IP addr” in FIG. 17) assigned to the virtual U-plane and a communication path identifier (TEID in FIG. 17). The control device 5 manages, for example, the above-described GW IP addr and TEID as communication path information for Uplink communication. The communication path information may include information on the virtual U-Plane 31 corresponding to the communication path (for example, identification information of the virtual U-Plane. Information indicated as “virtual U-Plane” in FIG. 17).
制御装置5は、Downlink通信用の通信パス情報として、例えば、上述のGW IP addrとTEIDを管理する。通信パス情報は、通信パスに対応する仮想U-Plane31に関する情報(例えば、仮想U-planeの識別情報。図17で“仮想U-Plane”として示された情報)を含んでもよい。制御装置5は、例えば、通信パス情報を、仮想C-plane30から取得する。
The control device 5 manages, for example, the above-described GW IP addr and TEID as communication path information for Downlink communication. The communication path information may include information on the virtual U-Plane 31 corresponding to the communication path (for example, identification information of the virtual U-Plane. Information indicated as “virtual U-Plane” in FIG. 17). For example, the control device 5 acquires communication path information from the virtual C-plane 30.
図17に例示されるように、それぞれの仮想U-plane31にIPアドレスが割り当てられるのではなく、仮想U-planeに対して共通のIPアドレス(“GW IP addr”)が割り当てられる。図17の例では、仮想U-planeに対して、Uplink用IPアドレス”GW-U”とDownlink用IPアドレス”GW-U’”がそれぞれ割り当てられている。なお、仮想U-planeに対して複数のIPアドレス(例えば、”GW-U#1”や”GW-U#2”、”GW-U’#1”や”GW-U’#2”)が割り当てられてもよい。例えば、仮想U-Plane#1-#nには“GW-U#1”と”GW-U’#1”が割り当てられ、仮想U-Plane#m-#xには“GW-U#2”と”GW-U’#2”が割り当てられる。
As illustrated in FIG. 17, an IP address is not assigned to each virtual U-plane 31, but a common IP address (“GW IP addr”) is assigned to the virtual U-plane. In the example of FIG. 17, an IP address “GW-U” for Uplink and an IP address “GW-U ′” for Downlink are assigned to the virtual U-plane, respectively. A plurality of IP addresses (for example, “GW-U # 1”, “GW-U # 2”, “GW-U ′ # 1”, “GW-U ′ # 2”) for the virtual U-plane May be assigned. For example, “GW-U # 1” and “GW-U ′ # 1” are assigned to the virtual U-Plane # 1- # n, and “GW-U # 2” is assigned to the virtual U-Plane # m- # x. "And" GW-U '# 2 "are assigned.
3.7)通信装置の制御情報(第2例)
図18に例示するように、制御装置5は制御情報を通信装置4に設定することができる。 3.7) Communication device control information (second example)
As illustrated in FIG. 18, thecontrol device 5 can set control information in the communication device 4.
図18に例示するように、制御装置5は制御情報を通信装置4に設定することができる。 3.7) Communication device control information (second example)
As illustrated in FIG. 18, the
制御装置5は、例えば、Uplink通信を処理する通信装置4に、受信パケットを処理するための指示を、制御情報として通知する。通信装置4は、通知された制御情報に従って、受信パケットを処理する。制御装置5が通知する制御情報は、例えば、仮想U-planeに割り当てられたIPアドレス(“GW IP addr”)とTEIDとに基づいて受信パケットが属する通信パスを識別し、識別された通信パスに対応する仮想U-plane31に受信パケットを転送することを、通信装置4に指示する。
The control device 5 notifies, for example, an instruction for processing the received packet as control information to the communication device 4 that processes Uplink communication. The communication device 4 processes the received packet according to the notified control information. The control information notified by the control device 5 is, for example, identifying the communication path to which the received packet belongs based on the IP address (“GW IP addr”) assigned to the virtual U-plane and the TEID, and the identified communication path The communication device 4 is instructed to transfer the received packet to the virtual U-plane 31 corresponding to.
図18において、Uplink通信用の通信装置4に通知される制御情報は、例えば、”Matching Key”と”Instruction”を含む。”Matching Key”は、パケットの宛先アドレスであるU-plane用IPアドレス(“GW IP addr”)とTEIDに基づいてパケットを識別するための条件を示す。また、”Instruction”は、”Matching Key”の条件にマッチするパケットの処理方法を示す。例えば、宛先アドレスが”GW-U”であり、かつ、TEIDが”#A”であるパケットが識別されると、当該パケットは、”仮想U-plane#1”に転送指示される。
In FIG. 18, the control information notified to the communication device 4 for Uplink communication includes, for example, “Matching Key” and “Instruction”. “Matching Key” indicates a condition for identifying a packet based on the IP address for U-plane (“GW IP addr”) that is the destination address of the packet and the TEID. “Instruction” indicates a method of processing a packet that matches the condition of “Matching Key”. For example, when a packet whose destination address is “GW-U” and TEID is “#A” is identified, the packet is instructed to be transferred to “virtual U-plane # 1”.
制御装置5は、例えば、Downlink通信を処理する通信装置4に、受信パケットを処理するための指示を、制御情報として通知する。通信装置4は、通知された制御情報に従って、受信パケットを処理する。制御装置5が通知する制御情報は、例えば、U-planeに割り当てられたIPアドレス(“GW IP addr”)とTEIDとに基づいて受信パケットが属する通信パスを識別し、識別された通信パスに対応する仮想U-plane31に受信パケットを転送することを、通信装置4に指示する。
The control device 5 notifies, for example, an instruction for processing the received packet as control information to the communication device 4 that processes Downlink communication. The communication device 4 processes the received packet according to the notified control information. The control information notified by the control device 5 is, for example, identifying the communication path to which the received packet belongs based on the IP address (“GW IP addr”) assigned to the U-plane and the TEID. The communication device 4 is instructed to transfer the received packet to the corresponding virtual U-plane 31.
図18において、Downlink通信用の通信装置4に通知される制御情報は、例えば、”Matching Key”と”Instruction”を含む。”Matching Key”は、パケットの宛先アドレスであるU-plane用IPアドレス(“GW IP addr”)とTEIDに基づいてパケットを識別するための条件を示す。また、”Instruction”は、”Matching Key”の条件にマッチするパケットの処理方法を示す。例えば、宛先アドレスが”GW-U’”であり、かつ、TEIDが”#A’”であるパケットが識別されると、当該パケットは、”仮想U-plane#1”に転送指示される。
In FIG. 18, the control information notified to the communication device 4 for Downlink communication includes, for example, “Matching Key” and “Instruction”. “Matching Key” indicates a condition for identifying a packet based on the IP address for U-plane (“GW IP addr”) that is the destination address of the packet and the TEID. “Instruction” indicates a method of processing a packet that matches the condition of “Matching Key”. For example, when a packet whose destination address is “GW-U ′” and TEID is “#A ′” is identified, the packet is instructed to be transferred to “virtual U-plane # 1”.
3.8)通信パス制御動作(第2例)
図19において、通信装置4は、図18に例示された制御情報に従って、受信パケットを仮想U-plane31に転送する。より詳しくは、通信装置4は、受信パケットに対応する”Matching Key”を検索し、マッチする”Matching Key”が検索された場合、その”Matching Key”に対応する”Instruction”に従って、受信パケットを仮想U-planes31に転送する。 3.8) Communication path control operation (second example)
In FIG. 19, the communication device 4 transfers the received packet to the virtual U-plane 31 according to the control information illustrated in FIG. 18. More specifically, the communication device 4 searches for a “Matching Key” corresponding to the received packet, and if a matching “Matching Key” is found, the communication device 4 transmits the received packet according to the “Instruction” corresponding to the “Matching Key”. Transfer to virtual U-planes 31.
図19において、通信装置4は、図18に例示された制御情報に従って、受信パケットを仮想U-plane31に転送する。より詳しくは、通信装置4は、受信パケットに対応する”Matching Key”を検索し、マッチする”Matching Key”が検索された場合、その”Matching Key”に対応する”Instruction”に従って、受信パケットを仮想U-planes31に転送する。 3.8) Communication path control operation (second example)
In FIG. 19, the communication device 4 transfers the received packet to the virtual U-plane 31 according to the control information illustrated in FIG. 18. More specifically, the communication device 4 searches for a “Matching Key” corresponding to the received packet, and if a matching “Matching Key” is found, the communication device 4 transmits the received packet according to the “Instruction” corresponding to the “Matching Key”. Transfer to virtual U-planes 31.
Uplink側の通信装置4において、ゲートウェイ3宛のパケット(Dst Addrが”GW-U”のパケット)は、TEIDに応じて仮想U-plane31に転送される。図19の例では、TEIDが”#A”のパケットは仮想U-plane#1に、TEIDが”#B”のパケットは仮想U-plane#2に、TEIDが”#C”のパケットは仮想U-plane#3に、それぞれ転送される。
In the communication device 4 on the Uplink side, a packet addressed to the gateway 3 (a packet whose Dst Addr is “GW-U”) is transferred to the virtual U-plane 31 according to the TEID. In the example of FIG. 19, a packet with TEID “#A” is a virtual U-plane # 1, a packet with TEID “#B” is a virtual U-plane # 2, and a packet with TEID “#C” is a virtual Each is transferred to U-plane # 3.
Downlink側の通信装置4において、ゲートウェイ3宛のパケット(Dst Addrが”GW-U’”のパケット)は、TEIDに応じて仮想U-plane31に転送される。図19の例では、TEIDが”#A’”のパケットは仮想U-plane#1に、TEIDが”#B’”のパケットは仮想U-plane#2に、TEIDが”#C’”のパケットは仮想U-plane#3に、それぞれ転送される。
In the communication device 4 on the downlink side, a packet addressed to the gateway 3 (a packet whose Dst Addr is “GW-U ′”) is transferred to the virtual U-plane 31 according to the TEID. In the example of FIG. 19, a packet with TEID “#A” is in virtual U-plane # 1, a packet with TEID “#B” is in virtual U-plane # 2, and a TEID is “#C”. The packet is transferred to the virtual U-plane # 3.
なお、上述した図14-図19の例では、仮想U-planeの例を示したが、本発明は、仮想C-planeにも適用可能である。
Note that in the examples of FIGS. 14 to 19 described above, an example of a virtual U-plane has been shown, but the present invention is also applicable to a virtual C-plane.
また、第3実施形態では、仮想U-planeに向かう方向のパケット制御について説明したが、制御装置5は仮想U-planeを通過したパケットの制御も行っても良い。仮想U-planeを通過したパケットの制御は、例えば、宛先IPアドレスに基づいた制御などが考えられる。
In the third embodiment, packet control in the direction toward the virtual U-plane has been described. However, the control device 5 may also control a packet that has passed through the virtual U-plane. Control of a packet that has passed through the virtual U-plane can be, for example, control based on a destination IP address.
また、第3の実施形態では、仮想C-Planeや仮想U-Planeに対して通信パスが割り当てられる例を示したが、仮想ゲートウェイ3Aに対して通信パスが割り当てられても良い。
In the third embodiment, the communication path is assigned to the virtual C-Plane and the virtual U-Plane. However, the communication path may be assigned to the virtual gateway 3A.
また、第3実施形態では、P-GW、S-GWが単独で動作する例を示したが、1台の仮想U-plane上でP-GW、S-GW両方の機能が共存していても良い。
In the third embodiment, an example in which the P-GW and S-GW operate independently has been described. However, the functions of both the P-GW and S-GW coexist on one virtual U-plane. Also good.
3.9)通信パス制御動作(第3例)
上述の例では、仮想ゲートウェイ3Aを構成するそれぞれの仮想U-Planeに共通のIPアドレスが割り当てられる例が示されたが、本発明はこれらの例に限定されない。例えば、本発明は、図20に例示されるように、NAT(Network Address Translation)を利用する例でも実施可能である。 3.9) Communication path control operation (third example)
In the above-described example, an example in which a common IP address is assigned to each virtual U-Plane constituting the virtual gateway 3A is shown, but the present invention is not limited to these examples. For example, the present invention can be implemented in an example using NAT (Network Address Translation) as illustrated in FIG.
上述の例では、仮想ゲートウェイ3Aを構成するそれぞれの仮想U-Planeに共通のIPアドレスが割り当てられる例が示されたが、本発明はこれらの例に限定されない。例えば、本発明は、図20に例示されるように、NAT(Network Address Translation)を利用する例でも実施可能である。 3.9) Communication path control operation (third example)
In the above-described example, an example in which a common IP address is assigned to each virtual U-Plane constituting the virtual gateway 3A is shown, but the present invention is not limited to these examples. For example, the present invention can be implemented in an example using NAT (Network Address Translation) as illustrated in FIG.
図20において、仮想ゲートウェイ3Aに対してIPアドレス“vGW”が割り当てられ、それぞれの仮想U-Planeに対して異なるIPアドレス(例えば、“IP#1”)が割り当てられるものとする。
In FIG. 20, an IP address “vGW” is assigned to the virtual gateway 3A, and a different IP address (eg, “IP # 1”) is assigned to each virtual U-Plane.
通信装置4は、宛先アドレスが“vGW”のパケットを受信すると、パケットのTEIDに応じて宛先アドレスを変換する。例えば、TEIDが“#A”の場合、通信装置4は、宛先アドレス“vGW”を、TEID“#A”に対応する仮想U-Plane#1のIPアドレス“IP#1”に変換する。
When the communication device 4 receives the packet having the destination address “vGW”, the communication device 4 converts the destination address according to the TEID of the packet. For example, when the TEID is “#A”, the communication device 4 converts the destination address “vGW” into the IP address “IP # 1” of the virtual U-Plane # 1 corresponding to the TEID “#A”.
通信装置4は、送信元アドレスが仮想U-PlaneのIPアドレスであるパケットを受信すると、送信元アドレスを、仮想ゲートウェイ3AのIPアドレス“vGW”に変換する。
When the communication device 4 receives a packet whose source address is the IP address of the virtual U-Plane, the communication device 4 converts the source address to the IP address “vGW” of the virtual gateway 3A.
なお、NATを行う際に、IPアドレスと共に、MACアドレスの変換を行っても良い。この場合、仮想ゲートウェイ3Aに対してMACアドレス“vGW_MAC”が割り当てられ、それぞれの仮想U-Planeに対して異なるMACアドレス(例えば、“MAC#1”)が割り当てられる。
Note that when performing NAT, the MAC address may be converted together with the IP address. In this case, the MAC address “vGW_MAC” is assigned to the virtual gateway 3A, and a different MAC address (for example, “MAC # 1”) is assigned to each virtual U-Plane.
図20の例のように、通信装置4がNATにより、仮想U-PlaneのIPアドレスを隠蔽することにより、通信パスに対応する仮想U-Planeが変更されたとしても、通信パスの再構築手順の発生を回避できる。
As shown in the example of FIG. 20, even if the virtual U-Plane corresponding to the communication path is changed by the communication device 4 concealing the IP address of the virtual U-Plane by NAT, the communication path reconstruction procedure Can be avoided.
3.10)効果
本発明の第3実施形態によれば、第1実施形態と同様に、仮想U-planeや仮想C-planeに対して共通のIPアドレスを割り当てるので、例えば、U-planeを構成する仮想U-plane31が増設されたとしても、通信パスに対応するゲートウェイ3の切り替えを端末1に対して隠蔽することが可能となり、通信パスの再構築の発生を回避できる。 3.10) Effect According to the third embodiment of the present invention, as in the first embodiment, a common IP address is assigned to the virtual U-plane and the virtual C-plane. Even if the constituent virtual U-planes 31 are added, the switching of thegateway 3 corresponding to the communication path can be hidden from the terminal 1, and the occurrence of the reconstruction of the communication path can be avoided.
本発明の第3実施形態によれば、第1実施形態と同様に、仮想U-planeや仮想C-planeに対して共通のIPアドレスを割り当てるので、例えば、U-planeを構成する仮想U-plane31が増設されたとしても、通信パスに対応するゲートウェイ3の切り替えを端末1に対して隠蔽することが可能となり、通信パスの再構築の発生を回避できる。 3.10) Effect According to the third embodiment of the present invention, as in the first embodiment, a common IP address is assigned to the virtual U-plane and the virtual C-plane. Even if the constituent virtual U-planes 31 are added, the switching of the
4.第4実施形態
本発明の第4実施形態によれば、通信装置4若しくは仮想スイッチ4Aのパケット転送ポリシがアップデートされる。本実施形態は、上述の第1、第2もしくは第3実施形態で開示されたいずれの技術にも適用可能である。以下、通信装置4若しくは仮想スイッチ4Aのパケット転送ポリシをアップデートする様々な例を示す。 4). Fourth Embodiment According to the fourth embodiment of the present invention, the packet transfer policy of the communication device 4 or thevirtual switch 4A is updated. The present embodiment can be applied to any technique disclosed in the first, second, or third embodiment. Hereinafter, various examples of updating the packet transfer policy of the communication device 4 or the virtual switch 4A will be described.
本発明の第4実施形態によれば、通信装置4若しくは仮想スイッチ4Aのパケット転送ポリシがアップデートされる。本実施形態は、上述の第1、第2もしくは第3実施形態で開示されたいずれの技術にも適用可能である。以下、通信装置4若しくは仮想スイッチ4Aのパケット転送ポリシをアップデートする様々な例を示す。 4). Fourth Embodiment According to the fourth embodiment of the present invention, the packet transfer policy of the communication device 4 or the
4.1)転送ポリシ更新(第1例)
図21に例示する転送ポリシ更新シーケンスは、LTEに関する標準仕様書(3GPP TS23.401 V12.1.0)に開示されたシーケンス(アタッチ手順“Attach Procedure”)において、パケット転送ポリシをアップデートするための手順である。“Attach Procedure”は、上記標準仕様書の5.3.2章に開示されている。図21におけるアタッチ手順は、上記標準仕様書に記載されたシーケンスのうち、本実施形態に関連する部分が示されており、その他のシーケンスの詳細は省略される。なお、アタッチ手順が完了することにより、端末1が通信するための通信パスが設定される。 4.1) Transfer policy update (first example)
The transfer policy update sequence illustrated in FIG. 21 is a sequence for updating the packet transfer policy in the sequence (attach procedure “Attach Procedure”) disclosed in the LTE standard specification (3GPP TS23.401 V12.1.0). It is a procedure. “Attach Procedure” is disclosed in section 5.3.2 of the standard specification. The attach procedure in FIG. 21 shows a part related to the present embodiment in the sequence described in the standard specification, and details of other sequences are omitted. Note that when the attach procedure is completed, a communication path for communication by theterminal 1 is set.
図21に例示する転送ポリシ更新シーケンスは、LTEに関する標準仕様書(3GPP TS23.401 V12.1.0)に開示されたシーケンス(アタッチ手順“Attach Procedure”)において、パケット転送ポリシをアップデートするための手順である。“Attach Procedure”は、上記標準仕様書の5.3.2章に開示されている。図21におけるアタッチ手順は、上記標準仕様書に記載されたシーケンスのうち、本実施形態に関連する部分が示されており、その他のシーケンスの詳細は省略される。なお、アタッチ手順が完了することにより、端末1が通信するための通信パスが設定される。 4.1) Transfer policy update (first example)
The transfer policy update sequence illustrated in FIG. 21 is a sequence for updating the packet transfer policy in the sequence (attach procedure “Attach Procedure”) disclosed in the LTE standard specification (3GPP TS23.401 V12.1.0). It is a procedure. “Attach Procedure” is disclosed in section 5.3.2 of the standard specification. The attach procedure in FIG. 21 shows a part related to the present embodiment in the sequence described in the standard specification, and details of other sequences are omitted. Note that when the attach procedure is completed, a communication path for communication by the
図21において、制御装置5は、LTEシステムのMMEとして動作する。あるいは、LTEシステムのMMEに、上述の実施形態で例示された制御装置5の機能が追加される。以下、このような制御装置5の機能を追加したMMEを「MME5」と記す。
In FIG. 21, the control device 5 operates as an MME of the LTE system. Or the function of the control apparatus 5 illustrated by the above-mentioned embodiment is added to MME of a LTE system. Hereinafter, the MME to which the function of the control device 5 is added is referred to as “MME5”.
MME5が、eNB(基地局2)を介して端末1からアタッチ要求(Attach Request)を受信すると(動作S10)、システムにおいてアタッチ手順が実行される。MME5は、例えば、アタッチ手順が開始されたことに応じて、アタッチ手順により設定される通信パスに割り当てる仮想U-Planeを選択する(動作S11)。
When the MME 5 receives an attach request (Attach Request) from the terminal 1 via the eNB (base station 2) (operation S10), the attach procedure is executed in the system. For example, in response to the start of the attach procedure, the MME 5 selects a virtual U-Plane to be assigned to the communication path set by the attach procedure (Operation S11).
MME5は、ゲートウェイ3(S-GW)に対して、“Create Session Request”メッセージを送信する(動作S12)。“Create Session Request”は、MME5がS-GWに対して通信パス設定を要求するためのメッセージである。この例の場合、MME5は、S-GWおよびP-GWを選択し、端末1の通信パスに対応するID(例えば、EPSベアラID)を割り当て、ゲートウェイ情報や通信パスに割り当てたID、通信パスに対応するQoSに関する情報(QCI等)を“Create Session Request”メッセージによりS-GWに通知する。
The MME 5 transmits a “Create Session Request” message to the gateway 3 (S-GW) (Operation S12). “Create Session Request” is a message for the MME 5 to request the S-GW to set a communication path. In this example, the MME 5 selects the S-GW and the P-GW, assigns an ID (for example, EPS bearer ID) corresponding to the communication path of the terminal 1, and assigns the ID and communication path assigned to the gateway information and the communication path. Information about QoS corresponding to (QCI, etc.) is notified to the S-GW by a “Create Session Request” message.
S-GWは、ゲートウェイ3(P-GW)に対して、通信パスIDや当該通信パスに対応するQoSに関する情報(QCI等)などを“Create Session Request”メッセージにより通知する(動作S13)。“Create Session Request”メッセージを受信したP-GWは、“Create Session Response”メッセージをS-GWへ返信する(動作S14)。
The S-GW notifies the gateway 3 (P-GW) of the communication path ID, the QoS information (QCI, etc.) corresponding to the communication path, etc. by the “Create Session Request” message (operation S13). The P-GW that has received the “Create Session Request” message returns a “Create Session Response” message to the S-GW (operation S14).
S-GWは、P-GWから受信した“Create Session Response”メッセージに応じて、MME5に対して“Create Session Response”メッセージを送信する(動作S15)。この“Create Session Response”メッセージにより、たとえば、S1-Uインターフェース用のS-GW TEIDと、S5/S8インターフェース用のS-GW TEIDとがMME5へ通知され、また、通信パスで使用するS-GWのアドレスがMME5に通知される。通信パスで使用するS-GWのアドレスは、例えば、S-GWを構成するそれぞれの仮想U-Planeに共通のIPアドレスである。
In response to the “Create Session Response” message received from the P-GW, the S-GW transmits a “Create Session Response” message to the MME 5 (operation S15). With this “Create Session Response” message, for example, the S-GW TEID for the S1-U interface and the S-GW TEID for the S5 / S8 interface are notified to the MME5 and the S-GW used in the communication path Is notified to the MME 5. The S-GW address used in the communication path is, for example, an IP address common to each virtual U-Plane constituting the S-GW.
MME5は、S-GWにより通知されたS-GWのTEIDとS-GWのアドレスとに基づいて、通信装置4のパケット転送ポリシ(図21の“Routing Policy”)を設定し、通信装置4へ送信する(動作S16)。なお、パケット転送ポリシは、例えば、上述した第3実施形態で例示された制御情報(即ち、制御装置5が通信装置4に設定する制御情報)である。MME5は、例えば、S-GWから通知された情報に基づいて、図18に例示されたパケット転送ポリシを通信装置4に設定する。例えば、Uplink側の通信装置4に対しては、S1-Uインターフェース用のTEIDに基づくパケット転送ポリシが設定され、Downlink側の通信装置4に対してはS5/S8インターフェース用のTEIDに基づくパケット転送ポリシが設定される。
The MME 5 sets the packet transfer policy of the communication device 4 (“Routing Policy” in FIG. 21) based on the S-GW TEID and the S-GW address notified by the S-GW, and sends them to the communication device 4 Transmit (operation S16). The packet transfer policy is, for example, the control information exemplified in the above-described third embodiment (that is, control information set by the control device 5 in the communication device 4). For example, the MME 5 sets the packet transfer policy illustrated in FIG. 18 in the communication device 4 based on the information notified from the S-GW. For example, a packet transfer policy based on the S1-U interface TEID is set for the communication device 4 on the uplink side, and a packet transfer based on the TEID for the S5 / S8 interface is set for the communication device 4 on the downlink side. A policy is set.
図21の例では、ゲートウェイ3と通信装置4とが異なる装置として例示されたが、これに限定されず、例えば図5の例のように、仮想スイッチ4Aと仮想ゲートウェイ3Aとを含む通信装置4が、制御装置5から通知されたパケット転送ポリシに従って動作することも可能である。
In the example of FIG. 21, the gateway 3 and the communication device 4 are illustrated as different devices. However, the present invention is not limited to this, and for example, as in the example of FIG. 5, the communication device 4 including the virtual switch 4A and the virtual gateway 3A. However, it is also possible to operate according to the packet transfer policy notified from the control device 5.
4.2)転送ポリシ更新(第2例)
図22に例示する転送ポリシ更新シーケンスでは、S-GWがS5/S8インターフェース用のS-GW TEIDをMME5に通知する動作(S13a)が図21に例示するシーケンス動作(S13)と異なる。 4.2) Transfer policy update (second example)
In the transfer policy update sequence illustrated in FIG. 22, the operation (S13a) in which the S-GW notifies theMME 5 of the S-GW TEID for the S5 / S8 interface is different from the sequence operation (S13) illustrated in FIG.
図22に例示する転送ポリシ更新シーケンスでは、S-GWがS5/S8インターフェース用のS-GW TEIDをMME5に通知する動作(S13a)が図21に例示するシーケンス動作(S13)と異なる。 4.2) Transfer policy update (second example)
In the transfer policy update sequence illustrated in FIG. 22, the operation (S13a) in which the S-GW notifies the
図22において、S-GWは、P-GWに対して“Create Session Request”メッセージを通知すると共に、MME5に対して、S5/S8インターフェース用のS-GW TEIDを通知する(動作S13a)。他の方法として、S-GWから受信した“Create Session Request”メッセージに応じて、P-GWは、MME5に対して、S5/S8インターフェース用のS-GW TEIDを通知してもよい。
22, the S-GW notifies the P-GW of the “Create Session Request” message and also notifies the MME 5 of the S-GW TEID for the S5 / S8 interface (operation S13a). As another method, the P-GW may notify the MME 5 of the S-GW TEID for the S5 / S8 interface in response to the “Create Session Request” message received from the S-GW.
図22の例では、ゲートウェイ3と通信装置4とは異なる装置として例示されたが、これに限定されず、例えば図5の例のように、仮想スイッチ4Aと仮想ゲートウェイ3Aとを含む通信装置4が制御装置5から通知されたパケット転送ポリシに従って動作することも可能である。
In the example of FIG. 22, the gateway 3 and the communication device 4 are illustrated as different devices. However, the present invention is not limited to this. For example, as in the example of FIG. 5, the communication device 4 including the virtual switch 4A and the virtual gateway 3A. It is also possible to operate according to the packet transfer policy notified from the control device 5.
4.3)転送ポリシ更新(第3例)
図23に例示する転送ポリシ更新シーケンスでは、仮想ゲートウェイ3Aの仮想U-Plane31の構成変更に応じて、通信装置4のパケット転送ポリシがアップデートされる。仮想U-Plane31の構成変更とは、例えば、VMを新たに起動することによる仮想U-Plane31のインストールや、VMを停止することによる仮想U-Plane31のアンインストールを意味する。 4.3) Transfer policy update (third example)
In the transfer policy update sequence illustrated in FIG. 23, the packet transfer policy of the communication device 4 is updated in accordance with the configuration change of thevirtual U-Plane 31 of the virtual gateway 3A. The configuration change of the virtual U-Plane 31 means, for example, installation of the virtual U-Plane 31 by newly starting a VM or uninstallation of the virtual U-Plane 31 by stopping the VM.
図23に例示する転送ポリシ更新シーケンスでは、仮想ゲートウェイ3Aの仮想U-Plane31の構成変更に応じて、通信装置4のパケット転送ポリシがアップデートされる。仮想U-Plane31の構成変更とは、例えば、VMを新たに起動することによる仮想U-Plane31のインストールや、VMを停止することによる仮想U-Plane31のアンインストールを意味する。 4.3) Transfer policy update (third example)
In the transfer policy update sequence illustrated in FIG. 23, the packet transfer policy of the communication device 4 is updated in accordance with the configuration change of the
MME5は、仮想U-Plane31の構成変更を検知すると(動作S20)、通信パスと仮想U-Plane31との対応関係を変更する(動作S21)。例えば、MME5は、仮想ゲートウェイ3Aに新たにインストールされた仮想U-Plane31に割り当てる通信パスを決定する。また、例えば、MME5は、仮想ゲートウェイ3Aからアンインストールされる仮想U-Plane31に割り当てられていた通信パスを、他の仮想U-Plane31に割り当てる。
When the MME 5 detects the configuration change of the virtual U-Plane 31 (Operation S20), the MME 5 changes the correspondence between the communication path and the virtual U-Plane 31 (Operation S21). For example, the MME 5 determines a communication path to be assigned to the virtual U-Plane 31 newly installed in the virtual gateway 3A. For example, the MME 5 assigns the communication path assigned to the virtual U-Plane 31 that is uninstalled from the virtual gateway 3A to the other virtual U-Plane 31.
通信装置4若しくは仮想スイッチ4Aのパケット転送ポリシをアップデートする要因としては、仮想ゲートウェイ3Aの仮想U-Plane31の構成変更ではなく、例えば、仮想ゲートウェイ3Aを構成する仮想U-Plane31の負荷状況を用いることもできる。たとえば、負荷の高い仮想U-Plane31から負荷の低い仮想U-Plane31へ通信パスの切り替える制御が挙げられる。MME5は、通信パスと仮想U-Plane31との対応関係の変更に基づいて、通信装置4のパケット転送ポリシをアップデートする(動作S22)。
As a factor for updating the packet transfer policy of the communication device 4 or the virtual switch 4A, for example, the load status of the virtual U-Plane 31 constituting the virtual gateway 3A is used instead of the configuration change of the virtual U-Plane 31 of the virtual gateway 3A. You can also. For example, there is control for switching a communication path from a virtual U-Plane 31 having a high load to a virtual U-Plane 31 having a low load. The MME 5 updates the packet transfer policy of the communication device 4 based on the change in the correspondence relationship between the communication path and the virtual U-Plane 31 (Operation S22).
4.4)転送ポリシ更新(第4例)
図24に例示するパケット転送ポリシ更新シーケンスでは、MME5が、パケット転送ポリシをアップデートするために、ゲートウェイ3(S-GW)から情報を取得する。 4.4) Transfer policy update (fourth example)
In the packet transfer policy update sequence illustrated in FIG. 24, theMME 5 acquires information from the gateway 3 (S-GW) in order to update the packet transfer policy.
図24に例示するパケット転送ポリシ更新シーケンスでは、MME5が、パケット転送ポリシをアップデートするために、ゲートウェイ3(S-GW)から情報を取得する。 4.4) Transfer policy update (fourth example)
In the packet transfer policy update sequence illustrated in FIG. 24, the
図24において、MME5は、S-GWに対して、例えば、上述の標準仕様書(TS23.401)のアタッチ手順で確立された通信パスのTEIDを要求する(動作S30)。
24, the MME 5 requests the TE-GW of the communication path established by the attach procedure of the standard specification (TS23.401) described above, for example, from the S-GW (operation S30).
TEID要求に応じて、S-GWは、MME5に対して、TEIDをTEID応答により通知する(動作S31)。例えば、S1-Uインターフェース用のS-GW TEIDと、S5/S8インターフェース用のS-GW TEIDとがMME5へ通知される。その際、S-GWは、例えば、上述の標準仕様書(TS23.401)のアタッチ手順で確立された通信パスのTEIDを通知する。
In response to the TEID request, the S-GW notifies the MME 5 of the TEID by a TEID response (operation S31). For example, the S-GW TEID for the S1-U interface and the S-GW TEID for the S5 / S8 interface are notified to the MME 5. At that time, for example, the S-GW notifies the TEID of the communication path established by the attach procedure of the standard specification (TS23.401) described above.
MME5は、S-GWから通知されたTEIDに割り当てる仮想U-Plane31を決定し、通信装置4へ通知することで通信装置4のパケット転送ポリシをアップデートする(動作S32)。すなわち、MME5は、S-GWから通知されたTEIDに対応するパケットが、当該TEIDに割り当てられた仮想U-Plane31に転送されるように、通信装置4のパケット転送ポリシをアップデートする。
The MME 5 determines the virtual U-Plane 31 to be assigned to the TEID notified from the S-GW, and updates the packet transfer policy of the communication device 4 by notifying the communication device 4 (operation S32). That is, the MME 5 updates the packet transfer policy of the communication device 4 so that a packet corresponding to the TEID notified from the S-GW is transferred to the virtual U-Plane 31 assigned to the TEID.
図24の例では、ゲートウェイ3と通信装置4とが異なる装置として例示されたが、これに限定されず、例えば図5の例のように、仮想スイッチ4Aと仮想ゲートウェイ3Aとを含む通信装置4が、制御装置5から通知されたパケット転送ポリシに従って動作することも可能である。
In the example of FIG. 24, the gateway 3 and the communication device 4 are illustrated as different devices. However, the present invention is not limited to this. For example, as in the example of FIG. 5, the communication device 4 including the virtual switch 4A and the virtual gateway 3A. However, it is also possible to operate according to the packet transfer policy notified from the control device 5.
4.5)転送ポリシ更新(第5例)
図25に例示する転送ポリシ更新シーケンスは、仮想ゲートウェイ3Aが通信装置4および制御装置5の機能を有する場合(例えば、図13に例示された構成)におけるパケット転送ポリシのアップデート手順である。すなわち、図25に示すゲートウェイ3(S-GW)は、仮想スイッチ4Aと仮想コントローラ5Aとを含んでいる。 4.5) Transfer policy update (fifth example)
The transfer policy update sequence illustrated in FIG. 25 is a packet transfer policy update procedure when the virtual gateway 3A has the functions of the communication device 4 and the control device 5 (for example, the configuration illustrated in FIG. 13). That is, the gateway 3 (S-GW) shown in FIG. 25 includes avirtual switch 4A and a virtual controller 5A.
図25に例示する転送ポリシ更新シーケンスは、仮想ゲートウェイ3Aが通信装置4および制御装置5の機能を有する場合(例えば、図13に例示された構成)におけるパケット転送ポリシのアップデート手順である。すなわち、図25に示すゲートウェイ3(S-GW)は、仮想スイッチ4Aと仮想コントローラ5Aとを含んでいる。 4.5) Transfer policy update (fifth example)
The transfer policy update sequence illustrated in FIG. 25 is a packet transfer policy update procedure when the virtual gateway 3A has the functions of the communication device 4 and the control device 5 (for example, the configuration illustrated in FIG. 13). That is, the gateway 3 (S-GW) shown in FIG. 25 includes a
図25において、S-GWの仮想コントローラ5Aは、通信パスと仮想U-Plane31との対応関係を変更する(動作S40)。例えば、通信パス#Aの経路が仮想U-Plane31(#1)から仮想U-Plane31(#2)に切り替えられる。
25, the S-GW virtual controller 5A changes the correspondence between the communication path and the virtual U-Plane 31 (operation S40). For example, the path of the communication path #A is switched from the virtual U-Plane 31 (# 1) to the virtual U-Plane 31 (# 2).
仮想コントローラ5Aは、通信パスと仮想U-Plane31との対応関係の変更に応じて、仮想スイッチ4Aのパケット転送ポリシをアップデートする(動作S41)。例えば、仮想コントローラ5Aは、仮想U-Plane31(#1)に対応する通信パス#Aの経路を、仮想U-Plane31(#2)を経由する経路に切り替えることを仮想スイッチ4Aに指示する。
The virtual controller 5A updates the packet transfer policy of the virtual switch 4A according to the change of the correspondence relationship between the communication path and the virtual U-Plane 31 (Operation S41). For example, the virtual controller 5A instructs the virtual switch 4A to switch the route of the communication path #A corresponding to the virtual U-Plane 31 (# 1) to a route via the virtual U-Plane 31 (# 2).
4.6)転送ポリシ更新(第6例)
図26は、LTEに関する標準仕様書(3GPP TS23.401 V12.1.0)に開示されたシーケンス(“Attach Procedure”)において、パケット転送ポリシをアップデートするための手順を示す。“Attach Procedure”は、上記標準仕様書の5.3.2章に開示されている。 4.6) Transfer policy update (sixth example)
FIG. 26 shows a procedure for updating the packet transfer policy in the sequence (“Attach Procedure”) disclosed in the LTE standard specification (3GPP TS23.401 V12.1.0). “Attach Procedure” is disclosed in section 5.3.2 of the standard specification.
図26は、LTEに関する標準仕様書(3GPP TS23.401 V12.1.0)に開示されたシーケンス(“Attach Procedure”)において、パケット転送ポリシをアップデートするための手順を示す。“Attach Procedure”は、上記標準仕様書の5.3.2章に開示されている。 4.6) Transfer policy update (sixth example)
FIG. 26 shows a procedure for updating the packet transfer policy in the sequence (“Attach Procedure”) disclosed in the LTE standard specification (3GPP TS23.401 V12.1.0). “Attach Procedure” is disclosed in section 5.3.2 of the standard specification.
図26に例示する制御装置5は、LTEシステムのPCRFとして動作する。つまり、LTEシステムのPCRFに、上述の実施形態で例示された制御装置5の機能が追加される。すなわち、端末1のアタッチ手順(TS23.401に開示された手順)において、制御装置5(PCRF)が通信装置4に対して、パケット転送ポリシを設定する。以下、制御装置5の機能が追加されたPCRFを「PCRF5」と記す。
The control device 5 illustrated in FIG. 26 operates as a PCRF of the LTE system. That is, the function of the control device 5 exemplified in the above embodiment is added to the PCRF of the LTE system. That is, in the attach procedure of the terminal 1 (the procedure disclosed in TS23.401), the control device 5 (PCRF) sets a packet transfer policy for the communication device 4. Hereinafter, the PCRF to which the function of the control device 5 is added is referred to as “PCRF5”.
PCRF5とゲートウェイ3(P-GW)は、アタッチ手順において、必要に応じて、“IP-CAN(IP Connectivity)Session Establishment/Modification”を実行する(動作S51)。“IP-CAN(IP Connectivity)Session Establishment/Modification”は、外部ネットワーク(例えば、IMS(IP Multimedia Subsystem))とIP接続の確立等を実行するための手順である。
The PCRF 5 and the gateway 3 (P-GW) execute “IP-CAN (IP Connectivity) Session Establishment / Modification” as necessary in the attach procedure (operation S51). “IP-CAN (IP Connectivity) Session Establishment / Modification” is a procedure for executing establishment of an IP connection with an external network (for example, IMS (IP Multimedia Subsystem)).
PCRF5は、例えば、“IP-CAN(IP Connectivity)Session Establishment/Modification”手順において、アタッチ手順で確立される通信パスに割り当てる仮想U-Plane31を選択する(動作S52)。
The PCRF 5 selects, for example, the virtual U-Plane 31 to be assigned to the communication path established in the attach procedure in the “IP-CAN (IP Connectivity) Session Establishment / Modification” procedure (operation S52).
PCRF5は、アタッチ手順で確立される通信パスに属するパケットが、当該通信パスに割り当てられた仮想U-Plane31に転送されるように、通信装置4にパケット転送ポリシを設定する(動作S53)。なお、PCRF5は、P-GWに関するTEIDを取得しているものとする。
The PCRF 5 sets a packet transfer policy in the communication device 4 so that packets belonging to the communication path established by the attach procedure are transferred to the virtual U-Plane 31 assigned to the communication path (operation S53). It is assumed that the PCRF 5 has acquired a TEID related to the P-GW.
図26の例では、ゲートウェイ3と通信装置4とが異なる装置として例示したが、これに限定されず、例えば図5の例のように、仮想スイッチ4Aと仮想ゲートウェイ3Aとを含む通信装置4が、制御装置5から通知されたパケット転送ポリシに従って動作することも可能である。
In the example of FIG. 26, the gateway 3 and the communication device 4 are illustrated as different devices. However, the present invention is not limited to this. For example, as in the example of FIG. 5, the communication device 4 including the virtual switch 4A and the virtual gateway 3A It is also possible to operate according to the packet transfer policy notified from the control device 5.
4.7)転送ポリシ更新(第7例)
図27におけるゲートウェイ3は、サーバ上に仮想ゲートウェイ3Aとして構成されているものとする。また、図27においても、図26の例と同様に、LTEシステムのPCRFに、上述の実施形態で例示された制御装置5の機能が追加されるので、以下、このようなPCRFを「PCRF5」と記す。 4.7) Transfer policy update (seventh example)
Thegateway 3 in FIG. 27 is configured as a virtual gateway 3A on the server. Also in FIG. 27, as in the example of FIG. 26, since the function of the control device 5 exemplified in the above embodiment is added to the PCRF of the LTE system, such a PCRF is hereinafter referred to as “PCRF5”. .
図27におけるゲートウェイ3は、サーバ上に仮想ゲートウェイ3Aとして構成されているものとする。また、図27においても、図26の例と同様に、LTEシステムのPCRFに、上述の実施形態で例示された制御装置5の機能が追加されるので、以下、このようなPCRFを「PCRF5」と記す。 4.7) Transfer policy update (seventh example)
The
図27において、仮想ゲートウェイ3Aの仮想U-Plane31の構成変更に応じて、通信装置4若しくは仮想スイッチ4Aのパケット転送ポリシがアップデートされる。仮想U-Plane31の構成変更とは、例えば、VMを新たに起動することによる仮想U-Plane31のインストールや、VMを停止することによる仮想U-Plane31のアンインストールを意味する。
27, the packet transfer policy of the communication device 4 or the virtual switch 4A is updated according to the configuration change of the virtual U-Plane 31 of the virtual gateway 3A. The configuration change of the virtual U-Plane 31 means, for example, installation of the virtual U-Plane 31 by newly starting a VM or uninstallation of the virtual U-Plane 31 by stopping the VM.
通信装置4若しくは仮想スイッチ4Aのパケット転送ポリシをアップデートする要因としては、仮想ゲートウェイ3Aの仮想U-Plane31の構成変更だけでなく、例えば、仮想ゲートウェイ3Aを構成する仮想U-Plane31の負荷状況を用いることもできる。この場合、負荷の高い仮想U-Plane31から負荷の低い仮想U-Plane31へ通信パスの切り替えが行われる。
As a factor for updating the packet transfer policy of the communication device 4 or the virtual switch 4A, not only the configuration change of the virtual U-Plane 31 of the virtual gateway 3A but also the load status of the virtual U-Plane 31 configuring the virtual gateway 3A is used. You can also In this case, the communication path is switched from the virtual U-Plane 31 having a high load to the virtual U-Plane 31 having a low load.
PCRF5は、仮想U-Plane31の構成変更を検知すると(動作S60)、通信パスと仮想U-Plane31との対応関係を変更する(動作S61)。例えば、PCRF5は、仮想ゲートウェイ3Aに仮想U-Plane31が新たにインストールされた場合、当該仮想U-Plane31に割り当てる通信パスを決定する。また、例えば、PCRFは、仮想ゲートウェイ3Aから仮想U-Plane31がアンインストールされる場合、当該仮想U-Plane31に割り当てられていた通信パスを、他の仮想U-Plane31に割り当てる。PCRF5は、通信パスと仮想U-Plane31との対応関係の変更に基づいて、通信装置4もしくは仮想スイッチ4Aのパケット転送ポリシをアップデートする(動作S62)。
When the PCRF 5 detects a configuration change of the virtual U-Plane 31 (operation S60), the PCRF 5 changes the correspondence between the communication path and the virtual U-Plane 31 (operation S61). For example, when the virtual U-Plane 31 is newly installed in the virtual gateway 3A, the PCRF 5 determines a communication path to be assigned to the virtual U-Plane 31. Further, for example, when the virtual U-Plane 31 is uninstalled from the virtual gateway 3A, the PCRF assigns the communication path assigned to the virtual U-Plane 31 to the other virtual U-Plane 31. The PCRF 5 updates the packet transfer policy of the communication device 4 or the virtual switch 4A based on the change in the correspondence between the communication path and the virtual U-Plane 31 (Operation S62).
4.8)転送ポリシ更新(第8例)
図28に示す例では、PCRF5が、パケット転送ポリシをアップデートするためにゲートウェイ3(P-GW)から情報を取得する。 4.8) Transfer policy update (eighth example)
In the example shown in FIG. 28, thePCRF 5 acquires information from the gateway 3 (P-GW) in order to update the packet transfer policy.
図28に示す例では、PCRF5が、パケット転送ポリシをアップデートするためにゲートウェイ3(P-GW)から情報を取得する。 4.8) Transfer policy update (eighth example)
In the example shown in FIG. 28, the
まず、PCRF5は、P-GWに対して、通信パスのTEIDを要求する(動作S70)。例えば、上述の標準仕様書(TS23.401)のアタッチ手順で確立された通信パスのTEIDが要求される。
First, the PCRF 5 requests a TEID of the communication path from the P-GW (Operation S70). For example, the TEID of the communication path established by the attach procedure of the standard specification (TS23.401) described above is required.
通信パスのTEID要求を受信したP-GWは、PCRF5に対して、通信パスのTEIDをTEID応答により通知する(動作S71)。例えば、P-GWは、PCRFに対して、上述の標準仕様書(TS23.401)のアタッチ手順で確立された通信パスのP-GW TEIDを通知する。
The P-GW that has received the communication path TEID request notifies the PCRF 5 of the communication path TEID by a TEID response (operation S71). For example, the P-GW notifies the PCRF of the P-GW TEID of the communication path established by the above-described standard specification (TS23.401) attach procedure.
PCRF5は、P-GWから通知されたTEIDに割り当てる仮想U-Plane31を決定し、通信装置4もしくは仮想スイッチ4Aのパケット転送ポリシをアップデートする(動作S72)。このパケット転送ポリシは、例えば、P-GWから通知されたTEIDに対応するパケットが当該TEIDに割り当てられた仮想U-Plane31に転送されるようにアップデートされる。
The PCRF 5 determines the virtual U-Plane 31 to be assigned to the TEID notified from the P-GW, and updates the packet transfer policy of the communication device 4 or the virtual switch 4A (Operation S72). This packet transfer policy is updated so that, for example, a packet corresponding to the TEID notified from the P-GW is transferred to the virtual U-Plane 31 assigned to the TEID.
図28の例では、ゲートウェイ3と通信装置4とが異なる装置として例示されたが、これに限定されず、例えば図5の例のように、仮想スイッチ4Aと仮想ゲートウェイ3Aとを含む通信装置4が、制御装置5から通知されたパケット転送ポリシに従って動作することも可能である。
In the example of FIG. 28, the gateway 3 and the communication device 4 are exemplified as different devices. However, the present invention is not limited to this. For example, as in the example of FIG. 5, the communication device 4 including the virtual switch 4A and the virtual gateway 3A. However, it is also possible to operate according to the packet transfer policy notified from the control device 5.
4.9)転送ポリシ更新(第9例)
図29は、ゲートウェイ3が通信装置4もしくは仮想スイッチ4Aと制御装置5との機能を有する場合(例えば、図13に例示された仮想ゲートウェイ3Aの構成)におけるパケット転送ポリシのアップデート手順の例を示す。図29の例では、ゲートウェイ3(P-GW)は、仮想スイッチ4Aと仮想コントローラ5Aを有する。 4.9) Transfer Policy Update (Ninth Example)
FIG. 29 illustrates an example of a packet transfer policy update procedure when thegateway 3 has the functions of the communication device 4 or the virtual switch 4A and the control device 5 (for example, the configuration of the virtual gateway 3A illustrated in FIG. 13). . In the example of FIG. 29, the gateway 3 (P-GW) includes a virtual switch 4A and a virtual controller 5A.
図29は、ゲートウェイ3が通信装置4もしくは仮想スイッチ4Aと制御装置5との機能を有する場合(例えば、図13に例示された仮想ゲートウェイ3Aの構成)におけるパケット転送ポリシのアップデート手順の例を示す。図29の例では、ゲートウェイ3(P-GW)は、仮想スイッチ4Aと仮想コントローラ5Aを有する。 4.9) Transfer Policy Update (Ninth Example)
FIG. 29 illustrates an example of a packet transfer policy update procedure when the
P-GWの仮想コントローラ5Aは、例えば、通信パスと仮想U-Plane31との対応関係を変更する(動作S80)。例えば、仮想コントローラ5Aは、通信パス#Aの経路を、仮想U-Plane31(#1)から仮想U-Plane31(#2)に切り替える。
The P-GW virtual controller 5A changes, for example, the correspondence between the communication path and the virtual U-Plane 31 (operation S80). For example, the virtual controller 5A switches the path of the communication path #A from the virtual U-Plane 31 (# 1) to the virtual U-Plane 31 (# 2).
仮想コントローラ5Aは、通信パスと仮想U-Plane31との対応関係の変更に応じて、仮想スイッチ4Aのパケット転送ポリシをアップデートする(動作S81)。例えば、仮想コントローラ5Aは、仮想U-Plane31(#1)に対応する通信パス#Aの経路を、仮想U-Plane31(#2)を経由する経路に切り替えることを仮想スイッチ4Aに指示する。
The virtual controller 5A updates the packet transfer policy of the virtual switch 4A according to the change in the correspondence between the communication path and the virtual U-Plane 31 (Operation S81). For example, the virtual controller 5A instructs the virtual switch 4A to switch the route of the communication path #A corresponding to the virtual U-Plane 31 (# 1) to a route via the virtual U-Plane 31 (# 2).
4.10)効果
本発明の第4実施形態によれば、仮想U-planeの構成変更があっても、通信装置あるいは仮想スイッチの経路ポリシを更新することで対応することができる。その際、第1実施形態と同様に、仮想U-planeや仮想C-planeに対して共通のIPアドレスを割り当てるので、通信パスに対応するゲートウェイ3の切り替えを端末1に対して隠蔽することができ、通信パスの再構築の発生を回避できる。 4.10) Effect According to the fourth embodiment of the present invention, it is possible to cope with a change in the configuration of the virtual U-plane by updating the route policy of the communication device or the virtual switch. At this time, as in the first embodiment, since a common IP address is assigned to the virtual U-plane and virtual C-plane, the switching of thegateway 3 corresponding to the communication path can be concealed from the terminal 1. It is possible to avoid the occurrence of communication path reconstruction.
本発明の第4実施形態によれば、仮想U-planeの構成変更があっても、通信装置あるいは仮想スイッチの経路ポリシを更新することで対応することができる。その際、第1実施形態と同様に、仮想U-planeや仮想C-planeに対して共通のIPアドレスを割り当てるので、通信パスに対応するゲートウェイ3の切り替えを端末1に対して隠蔽することができ、通信パスの再構築の発生を回避できる。 4.10) Effect According to the fourth embodiment of the present invention, it is possible to cope with a change in the configuration of the virtual U-plane by updating the route policy of the communication device or the virtual switch. At this time, as in the first embodiment, since a common IP address is assigned to the virtual U-plane and virtual C-plane, the switching of the
また、第4実施形態では、仮想U-planeに関するパケット転送ポリシのアップデート手順の例を示したが、本発明は、仮想C-planeに関するパケット転送ポリシのアップデート手順にも適用可能である。
In the fourth embodiment, an example of the packet transfer policy update procedure for the virtual U-plane has been described. However, the present invention can also be applied to a packet transfer policy update procedure for the virtual C-plane.
また、第4実施形態では、仮想C-Planeや仮想U-Planeに対して通信パスが割り当てられる例が示されたが、仮想ゲートウェイ3Aに対して通信パスが割り当てられても良い。
In the fourth embodiment, the example in which the communication path is assigned to the virtual C-Plane or the virtual U-Plane is shown, but the communication path may be assigned to the virtual gateway 3A.
5.第5実施形態
本発明の第5実施形態によれば、制御装置がOpenFlowという制御プロトコルに従って通信装置を制御する。第5実施形態は、上述の第1-第4実施形態で開示されたいずれの技術にも適用可能である。 5. Fifth Embodiment According to the fifth embodiment of the present invention, the control device controls the communication device according to a control protocol called OpenFlow. The fifth embodiment can be applied to any technique disclosed in the first to fourth embodiments described above.
本発明の第5実施形態によれば、制御装置がOpenFlowという制御プロトコルに従って通信装置を制御する。第5実施形態は、上述の第1-第4実施形態で開示されたいずれの技術にも適用可能である。 5. Fifth Embodiment According to the fifth embodiment of the present invention, the control device controls the communication device according to a control protocol called OpenFlow. The fifth embodiment can be applied to any technique disclosed in the first to fourth embodiments described above.
OpenFlowは、通信をエンドツーエンドのフローとして認識し、フロー単位で経路制御等を実行できる。よって、OpenFlowを本発明に利用することにより、通信パスの制御をより柔軟に実行できる。ここで、フローとは、パケットに含まれる情報(パケットの宛先アドレスや送信元アドレス等の情報)に基づいて識別される所定の属性を有する一連の通信パケット群をいう。
OpenFlow recognizes communication as an end-to-end flow and can perform path control and the like on a per-flow basis. Therefore, by using OpenFlow for the present invention, communication path control can be executed more flexibly. Here, the flow refers to a series of communication packets having a predetermined attribute that is identified based on information included in the packet (information such as a packet destination address and a source address).
5.1)システム
図30にはOpenFlow技術を利用した本発明の第5実施形態によるシステムが例示されている。通信装置4BはOpenFlow技術を採用したネットワークスイッチであり、制御装置5Aにより集中制御される。 5.1) System FIG. 30 illustrates a system according to a fifth embodiment of the present invention using the OpenFlow technology. The communication device 4B is a network switch that employs OpenFlow technology, and is centrally controlled by the control device 5A.
図30にはOpenFlow技術を利用した本発明の第5実施形態によるシステムが例示されている。通信装置4BはOpenFlow技術を採用したネットワークスイッチであり、制御装置5Aにより集中制御される。 5.1) System FIG. 30 illustrates a system according to a fifth embodiment of the present invention using the OpenFlow technology. The communication device 4B is a network switch that employs OpenFlow technology, and is centrally controlled by the control device 5A.
通信装置4Bと制御装置5Aとの間には制御チャネルが設定され、、制御装置5Aは、制御チャネルを介して、通信装置4Bの動作を制御する。この制御チャネルは、通信の盗聴や改ざん等を防止するための処置がなされた通信経路である。
A control channel is set between the communication device 4B and the control device 5A, and the control device 5A controls the operation of the communication device 4B via the control channel. This control channel is a communication path on which measures for preventing eavesdropping and tampering of communication have been made.
制御装置5Aは、通信装置4Bのフローテーブルに処理規則(フローエントリ)を設定することで、通信装置4Bの動作を制御する。フローエントリは、通信装置4Bが受信したパケットのヘッダに含まれる情報(例えば、宛先IPアドレスやVLAN ID等)と照合するためのマッチングルールと、マッチングルールにマッチするパケットの処理ルールを規定する指示(Instruction)と、を含む。
The control device 5A controls the operation of the communication device 4B by setting a processing rule (flow entry) in the flow table of the communication device 4B. The flow entry is an instruction that specifies a matching rule for matching with information (for example, destination IP address, VLAN ID, etc.) included in the header of the packet received by the communication device 4B and a processing rule for a packet that matches the matching rule. (Instruction).
<制御装置>
図31において、制御装置5Aは、通信インターフェース52、制御部51およびフローエントリDB53を含む。通信インターフェース52は、OpenFlowプロトコルにより、通信装置4Bと通信するためのインターフェースである。制御部51は、フローエントリDB53に格納する情報を生成する機能や、フローエントリDB53に記憶された情報に基づいて通信装置4Bを制御する機能を有する。制御装置5Aは、マッチングルールとして、通信パス識別子(例えば、TEIDやGRE Key)を通信装置4Bに設定可能である。OpenFlowプロトコルでは、通信パス識別子がマッチングルールとして識別可能な情報として定義されていないが、本発明の第5実施形態では、制御装置5Aがマッチングルールとして通信パス識別子を設定可能である。 <Control device>
In FIG. 31, thecontrol device 5 </ b> A includes a communication interface 52, a control unit 51, and a flow entry DB 53. The communication interface 52 is an interface for communicating with the communication device 4B by the OpenFlow protocol. The control unit 51 has a function of generating information stored in the flow entry DB 53 and a function of controlling the communication device 4B based on information stored in the flow entry DB 53. The control device 5A can set a communication path identifier (for example, TEID or GRE Key) in the communication device 4B as a matching rule. In the OpenFlow protocol, the communication path identifier is not defined as information that can be identified as a matching rule. However, in the fifth embodiment of the present invention, the control device 5A can set the communication path identifier as a matching rule.
図31において、制御装置5Aは、通信インターフェース52、制御部51およびフローエントリDB53を含む。通信インターフェース52は、OpenFlowプロトコルにより、通信装置4Bと通信するためのインターフェースである。制御部51は、フローエントリDB53に格納する情報を生成する機能や、フローエントリDB53に記憶された情報に基づいて通信装置4Bを制御する機能を有する。制御装置5Aは、マッチングルールとして、通信パス識別子(例えば、TEIDやGRE Key)を通信装置4Bに設定可能である。OpenFlowプロトコルでは、通信パス識別子がマッチングルールとして識別可能な情報として定義されていないが、本発明の第5実施形態では、制御装置5Aがマッチングルールとして通信パス識別子を設定可能である。 <Control device>
In FIG. 31, the
図32に例示されたフローエントリDB53は、第3実施形態で例示されたように、複数の仮想U-Plane31に共通に割り当てられたIPアドレスと通信パス識別子とに基づくマッチングルール(Matching Rule)と指示(Instruction)とで構成されるものとする。
<通信装置>
図33に例示されるように、通信装置4Bは、制御部43およびフローエントリDB46(すなわちフローテーブル)を含む。制御部43は、検索部44および処理部45を含む。フローエントリDB46は、制御装置5Aから通知されたフローエントリを記憶する。 As illustrated in the third embodiment, the flow entry DB 53 illustrated in FIG. 32 includes a matching rule (Matching Rule) based on IP addresses and communication path identifiers commonly assigned to a plurality of virtual U-Planes 31. It shall consist of instructions.
<Communication device>
As illustrated in FIG. 33, the communication device 4B includes a control unit 43 and a flow entry DB 46 (that is, a flow table). The control unit 43 includes asearch unit 44 and a processing unit 45. The flow entry DB 46 stores the flow entry notified from the control device 5A.
<通信装置>
図33に例示されるように、通信装置4Bは、制御部43およびフローエントリDB46(すなわちフローテーブル)を含む。制御部43は、検索部44および処理部45を含む。フローエントリDB46は、制御装置5Aから通知されたフローエントリを記憶する。 As illustrated in the third embodiment, the flow entry DB 53 illustrated in FIG. 32 includes a matching rule (Matching Rule) based on IP addresses and communication path identifiers commonly assigned to a plurality of virtual U-Planes 31. It shall consist of instructions.
<Communication device>
As illustrated in FIG. 33, the communication device 4B includes a control unit 43 and a flow entry DB 46 (that is, a flow table). The control unit 43 includes a
検索部44は、パケットを受信すると、受信パケットに対応するフローエントリをフローエントリDB46から検索する。通信装置4Bの検索部44は、OpenFlowプロトコルを拡張し、受信パケットに含まれる通信パス識別子をキーとしてフローテーブルを検索することが可能である。したがって、検索部44は受信パケットの通信パス識別子に対応するフローエントリを検索する。すなわち、受信パケットの通信パス識別子に対応する識別子がマッチングルールとして規定されたエントリが検索される。
When the search unit 44 receives a packet, the search unit 44 searches the flow entry DB 46 for a flow entry corresponding to the received packet. The search unit 44 of the communication device 4B can expand the OpenFlow protocol and search the flow table using the communication path identifier included in the received packet as a key. Accordingly, the search unit 44 searches for a flow entry corresponding to the communication path identifier of the received packet. That is, an entry in which an identifier corresponding to the communication path identifier of the received packet is defined as a matching rule is searched.
LTE等の通信システムでは、パケットに通信パス識別子等の情報を付与するために、パケットがカプセル化され、それによりアウターヘッダが付与される。したがって、検索部44は、受信パケットのアウターヘッダに含まれる情報に基づいて、フローエントリDB46から受信パケットに対応するフローエントリを検索可能である。もし受信パケットに対応するフローエントリがエントリDB46に未設定であれば、検索部44は、制御装置5Aに、受信パケットに対応するフローエントリを問い合わせることが可能である。
In a communication system such as LTE, a packet is encapsulated in order to give information such as a communication path identifier to the packet, and thereby an outer header is given. Therefore, the search unit 44 can search the flow entry corresponding to the received packet from the flow entry DB 46 based on the information included in the outer header of the received packet. If the flow entry corresponding to the received packet is not set in the entry DB 46, the search unit 44 can inquire the flow entry corresponding to the received packet to the control device 5A.
処理部45は、検索部44が検索したフローエントリの“Instruction”に従って、受信パケットを処理する。図32に示すように、ここでは、“Instruction”に従って、通信パス識別子に対応する仮想U-Planeにパケットを転送する。なお、処理部45は、例えば、図20の例のように、処理規則に従って宛先アドレスをNATすることも可能である。
The processing unit 45 processes the received packet according to the “Instruction” of the flow entry searched by the search unit 44. As shown in FIG. 32, here, according to “Instruction”, the packet is transferred to the virtual U-Plane corresponding to the communication path identifier. Note that the processing unit 45 can NAT the destination address according to the processing rule, for example, as in the example of FIG.
6.第6実施形態
本発明の第6実施形態によれば、制御装置5は、通信パスをグループ化し、複数の通信パスで構成されるグループを仮想U-Plane31に割り当てる。第6の実施形態は、上述の第1-第5の実施形態で開示されたいずれの技術にも適用可能である。 6). Sixth Embodiment According to the sixth embodiment of the present invention, thecontrol device 5 groups communication paths and assigns a group including a plurality of communication paths to the virtual U-Plane 31. The sixth embodiment can be applied to any technique disclosed in the first to fifth embodiments described above.
本発明の第6実施形態によれば、制御装置5は、通信パスをグループ化し、複数の通信パスで構成されるグループを仮想U-Plane31に割り当てる。第6の実施形態は、上述の第1-第5の実施形態で開示されたいずれの技術にも適用可能である。 6). Sixth Embodiment According to the sixth embodiment of the present invention, the
6.1)システム概要
以下、図34を参照して第6実施形態の概要について説明する。図34に例示するシステムにおいて、制御装置5は、通信パスをグループ単位で異なる仮想U-planeに割り当てるものとする。たとえば、通信パスグループ(1)は仮想U-plane(#1)に割り当てられる。 6.1) System Overview Hereinafter, an overview of the sixth embodiment will be described with reference to FIG. In the system illustrated in FIG. 34, thecontrol device 5 assigns communication paths to different virtual U-planes in units of groups. For example, the communication path group (1) is assigned to the virtual U-plane (# 1).
以下、図34を参照して第6実施形態の概要について説明する。図34に例示するシステムにおいて、制御装置5は、通信パスをグループ単位で異なる仮想U-planeに割り当てるものとする。たとえば、通信パスグループ(1)は仮想U-plane(#1)に割り当てられる。 6.1) System Overview Hereinafter, an overview of the sixth embodiment will be described with reference to FIG. In the system illustrated in FIG. 34, the
制御装置5では通信パスをグループ単位で管理するので、仮想U-Plane31と通信パスとの対応関係の管理が容易となる。制御装置5は、例えば、経路情報DB50において、通信パスに対応する仮想U-Plane31を、通信パスのグループ単位で管理可能である。なお、制御装置5は、第1および第2実施形態に例示された仮想U-Plane31をグループ単位で管理することも可能である。
Since the control device 5 manages communication paths in units of groups, it is easy to manage the correspondence between the virtual U-Plane 31 and the communication paths. For example, in the route information DB 50, the control device 5 can manage the virtual U-Plane 31 corresponding to the communication path in units of communication path groups. Note that the control device 5 can also manage the virtual U-Plane 31 exemplified in the first and second embodiments in units of groups.
6.2)通信パスのグループ化
制御装置5は、例えば、各通信パスに対応する端末1の属性に応じて、通信パスをグループ化する。端末1の属性の例を以下に示す。
・端末1の滞在エリア(E-UTRAN Cell ID等)
・端末1に関する課金特性(通常課金、プリペイド課金、フラットレート等)
・端末1の通信状態(一定期間に一定量以上の通信をしたか否か)
・オペレータID(端末1が接続しているコアネットワークのオペレータのID)
・端末1が接続しているPacket Data Network(PDN)
・通信パスを抜けた後に、チェイニングが必要なサービス種類
・QoS特性
・端末1の状態(IDLE状態、CONNECTED状態): IDLE状態は、例えば、端末1がコアネットワークとの間でセッション管理およびモビリティ管理のための制御信号の継続的な交換を行っていない状態や、基地局との無線接続が解放(Release)された状態を意味する。CONNECTED状態は、例えば、端末1がコアネットワークとの間でセッション管理およびモビリティ管理のための制御信号の継続的な交換を行っている状態や、基地局と無線接続している状態を意味する。 6.2) Grouping of communication paths For example, thecontrol device 5 groups communication paths according to the attributes of the terminal 1 corresponding to each communication path. Examples of attributes of the terminal 1 are shown below.
・ Stay area of terminal 1 (E-UTRAN Cell ID, etc.)
-Charging characteristics related to terminal 1 (regular charging, prepaid charging, flat rate, etc.)
・ Communication status of terminal 1 (whether or not a certain amount of communication has been performed during a certain period)
-Operator ID (ID of the operator of the core network to which theterminal 1 is connected)
・ Packet Data Network (PDN) to which theterminal 1 is connected
-Service types that need to be chained after leaving the communication path-QoS characteristics-Terminal 1 status (IDLE state, CONNECTED state): For example, the IDLE state is the session management and mobility between the terminal 1 and the core network. This means a state in which control signals for management are not continuously exchanged or a state in which a wireless connection with a base station is released. The CONNECTED state means, for example, a state in which the terminal 1 is continuously exchanging control signals for session management and mobility management with the core network, or a state in which the terminal 1 is wirelessly connected to the base station.
制御装置5は、例えば、各通信パスに対応する端末1の属性に応じて、通信パスをグループ化する。端末1の属性の例を以下に示す。
・端末1の滞在エリア(E-UTRAN Cell ID等)
・端末1に関する課金特性(通常課金、プリペイド課金、フラットレート等)
・端末1の通信状態(一定期間に一定量以上の通信をしたか否か)
・オペレータID(端末1が接続しているコアネットワークのオペレータのID)
・端末1が接続しているPacket Data Network(PDN)
・通信パスを抜けた後に、チェイニングが必要なサービス種類
・QoS特性
・端末1の状態(IDLE状態、CONNECTED状態): IDLE状態は、例えば、端末1がコアネットワークとの間でセッション管理およびモビリティ管理のための制御信号の継続的な交換を行っていない状態や、基地局との無線接続が解放(Release)された状態を意味する。CONNECTED状態は、例えば、端末1がコアネットワークとの間でセッション管理およびモビリティ管理のための制御信号の継続的な交換を行っている状態や、基地局と無線接続している状態を意味する。 6.2) Grouping of communication paths For example, the
・ Stay area of terminal 1 (E-UTRAN Cell ID, etc.)
-Charging characteristics related to terminal 1 (regular charging, prepaid charging, flat rate, etc.)
・ Communication status of terminal 1 (whether or not a certain amount of communication has been performed during a certain period)
-Operator ID (ID of the operator of the core network to which the
・ Packet Data Network (PDN) to which the
-Service types that need to be chained after leaving the communication path-QoS characteristics-
なお、上記の端末1の属性は例示であり、制御装置5は、他の属性により通信パスをグループ化することも可能である。例えば、制御装置5は、標準仕様書(3GPP TS23.401)の5.7章に開示されている“EPS Bearer Context”のうち、UE(User Equipment)に関する情報に基づいて通信パスをグループ化することが可能である。
Note that the above-described attributes of the terminal 1 are merely examples, and the control device 5 can group communication paths according to other attributes. For example, the control device 5 groups communication paths based on information on UE (User Equipment) in “EPS Bearer Context” disclosed in Chapter 5.7 of the standard specification (3GPP TS23.401). It is possible.
また、制御装置5は、端末1の利用者と通信事業者との契約内容に応じて、通信パスをグループ化することも可能である。例えば、制御装置5は、他の利用者よりも高額の契約を通信事業者と締結した利用者(たとえば“Premium Subscriber”)に関する通信パスをグループ化すること、および/または通常契約の利用者に関する通信パスをグループ化することが可能である。
In addition, the control device 5 can group communication paths according to the contract contents between the user of the terminal 1 and the communication carrier. For example, the control device 5 may group communication paths related to a user (for example, “Premium Subscriber”) who has concluded a contract with a telecommunications carrier with a higher price than other users, and / or a user related to a normal contract. It is possible to group communication paths.
また、制御装置5は、端末1の位置に関する情報(たとえばGSP情報、端末1がアタッチしている基地局情報)に基づいて通信パスをグループ化することも可能である。例えば、位置に関する情報から互いに近接する端末の通信パスをグループ化することが可能である。
The control device 5 can also group communication paths based on information on the location of the terminal 1 (for example, GSP information, base station information to which the terminal 1 is attached). For example, it is possible to group communication paths of terminals that are close to each other based on information regarding the position.
さらに、制御装置5は、通信パスのQoS(Quality of Service)情報に応じて、通信パスをグループ化することも可能である。例えば、制御装置5は、各通信パスに対応するQCI(Quality Class Indicator)に応じて、通信パスをグループ化することができる。例えば、優先度が所定値よりも低いQCIに対応する通信パスをグループ化し、仮想U-plane31が新たにインストールされた場合に、そのグループに属する通信パスを当該新たな仮想U-plane31に割り当てる。この場合、経路切替えにより、通信パスに関する通信に遅延等が発生し、ユーザのQoE(Quality of Experience)が低下することが想定されるが、低優先の通信パスをグループ化して新たな仮想U-planeに割り当てることで、QoEが低下する通信パスを優先度が低い通信パスに止めることができる。
Furthermore, the control device 5 can also group communication paths according to QoS (Quality of Service) information of the communication paths. For example, the control device 5 can group communication paths according to QCI (Quality Class Indicator) corresponding to each communication path. For example, when communication paths corresponding to QCI having a priority lower than a predetermined value are grouped and a virtual U-plane 31 is newly installed, communication paths belonging to the group are assigned to the new virtual U-plane 31. In this case, it is assumed that the route switching causes a delay in communication related to the communication path and the user's QoE (Quality of Experience) is lowered. However, a new virtual U- By assigning to the plane, it is possible to stop the communication path in which the QoE is lowered to the communication path with a low priority.
各通信パスのTEIDは、グループに属する複数の通信パスの各々のTEIDを一括して識別できるように割り当てられてもよい。例えば、TEIDは、グループに属する複数の通信パスの各々に対して、32bitの情報で構成されるTEIDの上位24bitが同一となるように割り当てられる。このようにTEIDを割り当てることにより、制御装置5は、TEIDの上位24bitの情報により、グループに属する複数の通信パスを一括して識別できる。
The TEID of each communication path may be assigned so that the TEIDs of the plurality of communication paths belonging to the group can be collectively identified. For example, the TEID is assigned to each of a plurality of communication paths belonging to the group so that the upper 24 bits of the TEID configured by 32-bit information are the same. By assigning the TEID in this way, the control device 5 can collectively identify a plurality of communication paths belonging to the group based on the information of the upper 24 bits of the TEID.
また、仮想U-Plane31がP-GWである場合、端末1のIPアドレスは、グループに属する複数の端末1の各々に対して、各端末1のIPアドレスを一括して識別できるように割り当てられてもよい。例えば、端末1のIPアドレスは、グループに属する複数の端末1に対して、32bitの情報で構成されるIPアドレスの上位24bitが同一となるように割り当てられる。このように端末1のIPアドレスを割り当てることにより、制御装置5は、端末1のIPアドレスの上位24bitの情報により、グループに属する複数の通信パスに関するトラフィックを一括して識別できる。
When the virtual U-Plane 31 is a P-GW, the IP address of the terminal 1 is assigned to each of a plurality of terminals 1 belonging to the group so that the IP addresses of the respective terminals 1 can be collectively identified. May be. For example, the IP address of the terminal 1 is assigned to a plurality of terminals 1 belonging to the group so that the upper 24 bits of the IP address composed of 32-bit information are the same. By assigning the IP address of the terminal 1 in this way, the control device 5 can collectively identify traffic related to a plurality of communication paths belonging to the group based on the information of the upper 24 bits of the IP address of the terminal 1.
6.3)グループ化された経路情報
図35に例示するように、通信装置4の経路情報DB42において、通信パスのグループは、グループIDにより識別され、各IDに対して、対応する仮想U-Plane31が割り当てられている。なお、制御装置5の経路情報DB50も、図35の例と同様の構成である。 6.3) Grouped route information As illustrated in FIG. 35, in the route information DB 42 of the communication device 4, a group of communication paths is identified by a group ID, and for each ID, a corresponding virtual U-Plane 31 is assigned. The route information DB 50 of the control device 5 has the same configuration as that of the example of FIG.
図35に例示するように、通信装置4の経路情報DB42において、通信パスのグループは、グループIDにより識別され、各IDに対して、対応する仮想U-Plane31が割り当てられている。なお、制御装置5の経路情報DB50も、図35の例と同様の構成である。 6.3) Grouped route information As illustrated in FIG. 35, in the route information DB 42 of the communication device 4, a group of communication paths is identified by a group ID, and for each ID, a corresponding virtual U-
通信装置4は、受信パケットの通信パス識別子をキーとして経路情報DB42を検索し、受信パケットの通信パス識別子に対応する仮想U-Plane31に対して受信パケットを転送する。
The communication device 4 searches the route information DB 42 using the communication path identifier of the received packet as a key, and transfers the received packet to the virtual U-Plane 31 corresponding to the communication path identifier of the received packet.
図36に例示するように、制御装置5は、通信パスのグループ毎に、対応ゲートウェイを切り替えることが可能である。例えば、制御装置5は、通信パス識別子(A)-(C)の通信パスが属するグループに対応するゲートウェイを、ゲートウェイ(a)からゲートウェイ(e)に切り替えることが可能である。
As illustrated in FIG. 36, the control device 5 can switch the corresponding gateway for each group of communication paths. For example, the control device 5 can switch the gateway corresponding to the group to which the communication paths with the communication path identifiers (A) to (C) belong from the gateway (a) to the gateway (e).
制御装置5は、通信パスのグループ毎に対応ゲートウェイを切り替えることで、通信装置4に対する制御信号の情報量を大幅に削減できる。図36に示すように、制御装置5は、通信装置4に対して、グループIDをキーとして、対応ゲートウェイの切替指示を送信することが可能である。
The control device 5 can significantly reduce the amount of control signal information for the communication device 4 by switching the corresponding gateway for each group of communication paths. As shown in FIG. 36, the control device 5 can transmit a corresponding gateway switching instruction to the communication device 4 using the group ID as a key.
仮に通信装置4の経路情報DB42が図8のような構成であったとする。この場合、制御装置5が図36のようにグループ(1)の対応ゲートウェイを、ゲートウェイ(a)から(e)に切り替えると、制御装置5は、通信装置4に対して、通信パス識別子(A)-(C)のそれぞれについて、対応ゲートウェイを変更するための制御信号を送信する必要がある。しかし、第6実施形態のように、制御装置5がグループIDをキーとして制御信号を送信すれば、図36の例では制御信号が3分の1になる。つまり、第6実施形態によれば、制御装置5は、グループ化する通信パスの数が多くなるほど、制御信号の削減量が多くなるという利点を有し、通信パスのゲートウェイ切替の高速化を達成することが可能となる。
Suppose that the route information DB 42 of the communication device 4 has a configuration as shown in FIG. In this case, when the control device 5 switches the corresponding gateway of the group (1) from the gateway (a) to (e) as shown in FIG. 36, the control device 5 makes a communication path identifier (A) to the communication device 4. )-(C), it is necessary to transmit a control signal for changing the corresponding gateway. However, if the control device 5 transmits a control signal using the group ID as a key as in the sixth embodiment, the control signal is reduced to one third in the example of FIG. That is, according to the sixth embodiment, the control device 5 has an advantage that the amount of control signal reduction increases as the number of communication paths to be grouped increases, and the switching speed of the communication path gateway is increased. It becomes possible to do.
図37は、経路情報DB42の他の構成例を示す。なお、制御装置5の経路情報DB50は、図37の例と同様の構成である。
FIG. 37 shows another configuration example of the route information DB 42. Note that the path information DB 50 of the control device 5 has the same configuration as the example of FIG.
図37の例では、通信パス識別子は、グループに属する通信パスの各々の識別子を一括で識別できるように設定されている。例えば、同一グループに属する通信パスの識別子の一部が共通となるように、通信パス識別子が設定される。図37の例では、同一グループに属する通信パスの識別子は、上位24ビットの値が共通となるように設定され、通信パス識別子(A)-(B)の上位24ビットに共通の値(図37の例では“X”)が設定される。
In the example of FIG. 37, the communication path identifier is set so that the identifiers of the communication paths belonging to the group can be collectively identified. For example, the communication path identifier is set so that a part of the identifiers of the communication paths belonging to the same group are common. In the example of FIG. 37, the identifiers of the communication paths belonging to the same group are set so that the values of the upper 24 bits are common, and the values common to the upper 24 bits of the communication path identifiers (A) to (B) (see FIG. In the example of 37, “X”) is set.
このように同一グループに属する通信パスの識別子の上位所定ビットを共通に設定することで、経路情報DB42のエントリ数が削減される。比較例として、図8を参照すると、通信パス識別子毎に経路情報DB42のエントリが設定される。これに対して、図37の例では、同一グループに属する通信パスに関するエントリを一つのエントリに集約することができ、経路情報DB42のエントリ数が削減される。
As described above, by commonly setting the upper predetermined bits of the identifiers of communication paths belonging to the same group, the number of entries in the route information DB 42 is reduced. As a comparative example, referring to FIG. 8, an entry in the route information DB 42 is set for each communication path identifier. On the other hand, in the example of FIG. 37, entries related to communication paths belonging to the same group can be consolidated into one entry, and the number of entries in the route information DB 42 is reduced.
また、図37の例では、通信パスに対応する仮想U-Plane31を変更する場合に、制御装置5から通信装置4に送信される制御信号を削減することもできる。すなわち、制御装置5は、通信パス識別子の上位24ビットをキーとして、対応ゲートウェイの切り替えを指示することができる。例えば、図37の例では、通信パス識別子(A)-(C)に対応するゲートウェイが切り替えられる場合、制御装置5は、通信パス識別子の上位24ビットの値“X”に対応するゲートウェイの切り替えを指示する。つまり、制御装置5は、通信パス識別子(A)-(C)それぞれに対してゲートウェイの切り替えを指示しなくてもよい。よって、ゲートウェイを切り替える場合、制御装置5から通信装置4に送信される制御信号が削減される。制御信号の削減により、ゲートウェイ切り替えが高速化される。
In the example of FIG. 37, when the virtual U-Plane 31 corresponding to the communication path is changed, the control signal transmitted from the control device 5 to the communication device 4 can be reduced. That is, the control device 5 can instruct switching of the corresponding gateway using the upper 24 bits of the communication path identifier as a key. For example, in the example of FIG. 37, when the gateway corresponding to the communication path identifiers (A) to (C) is switched, the control device 5 switches the gateway corresponding to the value “X” of the upper 24 bits of the communication path identifier. Instruct. That is, the control device 5 does not have to instruct the switching of the gateway to each of the communication path identifiers (A) to (C). Therefore, when the gateway is switched, the control signal transmitted from the control device 5 to the communication device 4 is reduced. Gateway switching is speeded up by reducing control signals.
図38は、第6実施形態において、OpenFlowのフローテーブルを利用した場合の通信装置4のフローエントリDB46の例を示す。なお、制御装置5の経路情報DB50は、図38の例と同様の構成である。
FIG. 38 shows an example of the flow entry DB 46 of the communication device 4 when an OpenFlow flow table is used in the sixth embodiment. Note that the path information DB 50 of the control device 5 has the same configuration as the example of FIG.
OpenFlowは、複数のパケット処理を一つのグループとみなす機能を有する。グループ化されたパケット処理は、グループテーブルで扱われる。図38の例では、通信装置4は、通常のフローテーブルとして機能するフローエントリDB46と、フローエントリDB46のグループテーブル46aとを有する。
OpenFlow has a function of regarding a plurality of packet processes as one group. Grouped packet processing is handled in the group table. In the example of FIG. 38, the communication device 4 includes a flow entry DB 46 that functions as a normal flow table, and a group table 46a of the flow entry DB 46.
図38の例では、通信パス識別子(A)-(C)は、同一の通信パスグループに属する。マッチングルールが通信パス識別子(A)-(C)である各フローエントリに対応する“Instruction”には、同一の処理グループIDが設定される。グループテーブル46aには、処理グループID毎に、グループ化されたパケット処理を規定した“Instruction”が設定される。制御装置5は、通信装置4に対して、図38の例のフローエントリDB46およびグループテーブル46aを設定する。
38, the communication path identifiers (A) to (C) belong to the same communication path group. The same processing group ID is set in “Instruction” corresponding to each flow entry whose matching rule is the communication path identifier (A)-(C). In the group table 46a, “Instruction” that defines grouped packet processing is set for each processing group ID. The control device 5 sets the flow entry DB 46 and the group table 46a in the example of FIG.
通信装置4は、受信パケットの通信パス識別子をキーとして、フローエントリDB46を検索する。図38の例では、通信装置4は、通信パス識別子(A)のパケットを受信した場合、“Instruction”として“処理グループID(1)”が設定されたエントリを検索する。続いて、処理グループIDをキーとしてグループテーブル46aを検索する。図38の例では、通信装置4は、通信パス識別子(A)のパケットを受信した場合、“処理グループID(1)”をキーとしてグループテーブル46aを検索し、“処理グループID(1)”に対応する“Instruction”に従って、受信パケットをゲートウェイ(a)に転送する。
The communication device 4 searches the flow entry DB 46 using the communication path identifier of the received packet as a key. In the example of FIG. 38, when the communication device 4 receives the packet with the communication path identifier (A), the communication device 4 searches for an entry in which “processing group ID (1)” is set as “Instruction”. Subsequently, the group table 46a is searched using the processing group ID as a key. In the example of FIG. 38, when the communication device 4 receives the packet of the communication path identifier (A), the communication device 4 searches the group table 46a using “processing group ID (1)” as a key, and “processing group ID (1)”. The received packet is transferred to the gateway (a) in accordance with “Instruction” corresponding to.
制御装置5は、通信パスのグループに対応する仮想U-Plane31を切り替える場合、処理グループIDに基づいてグループテーブルのエントリを変更する制御信号を、通信装置4に送信する。例えば、図38の例では、通信パス識別子(A)-(C)に対応するゲートウェイを(a)から(e)に変更する場合、制御装置5は、グループテーブル46aにおいて、識別子(A)-(C)に対応する“処理グループID(1)”のエントリの“Instruction”を変更する。つまり、制御装置5は、グループテーブルのエントリを変更すればよく、通常のフローテーブルのエントリを変更する必要はない。図38の例では、制御装置5は、識別子(A)-(C)に対応するそれぞれのエントリを変更する必要はなく、グループテーブル46aにおいて、“処理グループID(1)”に対応するエントリを変更すればよい。よって、ゲートウェイを切り替える場合、制御装置5から通信装置4に送信される制御信号が削減される。制御信号の削減により、ゲートウェイ切り替えが高速化される。
When switching the virtual U-Plane 31 corresponding to the communication path group, the control device 5 transmits a control signal for changing the entry in the group table based on the processing group ID to the communication device 4. For example, in the example of FIG. 38, when the gateway corresponding to the communication path identifiers (A) to (C) is changed from (a) to (e), the control device 5 uses the identifier (A) − in the group table 46a. “Instruction” of the entry of “processing group ID (1)” corresponding to (C) is changed. That is, the control device 5 only needs to change the entry in the group table, and does not need to change the entry in the normal flow table. In the example of FIG. 38, the control device 5 does not need to change each entry corresponding to the identifiers (A) to (C), and does not change the entry corresponding to “processing group ID (1)” in the group table 46a. Change it. Therefore, when the gateway is switched, the control signal transmitted from the control device 5 to the communication device 4 is reduced. Gateway switching is speeded up by reducing control signals.
図39は、第6実施形態において、OpenFlowのフローテーブルを利用した場合のフローエントリDB46の他の例を示す。なお、制御装置5の経路情報DB50は、図39と同様の構成である。
FIG. 39 shows another example of the flow entry DB 46 when an OpenFlow flow table is used in the sixth embodiment. The route information DB 50 of the control device 5 has the same configuration as that in FIG.
OpenFlowスイッチは、複数のフローテーブルを持つことが可能である。図39の例では、通信装置4は、複数のフローエントリDB46(フローテーブル46-1とフローテーブル46-2)を有する。通信装置4は、例えば、パケットを受信すると、複数のフローテーブルを所定の順序で検索する。例えば、図39の例では、通信装置4は、フローテーブル46-1を検索し、次いで、フローテーブル46-2を検索する。
OpenFlow switch can have multiple flow tables. In the example of FIG. 39, the communication device 4 has a plurality of flow entry DBs 46 (a flow table 46-1 and a flow table 46-2). For example, when receiving a packet, the communication device 4 searches a plurality of flow tables in a predetermined order. For example, in the example of FIG. 39, the communication device 4 searches the flow table 46-1 and then searches the flow table 46-2.
図39の例では、通信パス識別子(A)-(C)は、同一の通信パスグループに属する。フローテーブル46-1において、マッチングルールが通信パス識別子(A)-(C)である各フローエントリに対応する“Instruction”には、パケットのヘッダに“ID(1)”を付与するパケット処理が設定される。パケットに付与されるIDは、通信パスのグループ毎に設定される。
39, the communication path identifiers (A) to (C) belong to the same communication path group. In the flow table 46-1, in the “Instruction” corresponding to each flow entry whose matching rule is the communication path identifier (A)-(C), packet processing for adding “ID (1)” to the packet header is performed. Is set. The ID given to the packet is set for each group of communication paths.
フローテーブル46-2において、パケットに付与されたID毎に、グループ化された通信パスに対応するパケット処理を規定した“Instruction”が設定される。図39の例では、“ID(1)”に対応する“Instruction”として、パケットのヘッダから“ID(1)”を削除し、ゲートウェイ(a)に転送することを示すパケット処理が設定される。
In the flow table 46-2, for each ID assigned to the packet, "Instruction" that defines packet processing corresponding to the grouped communication path is set. In the example of FIG. 39, as “Instruction” corresponding to “ID (1)”, packet processing indicating that “ID (1)” is deleted from the header of the packet and transferred to the gateway (a) is set. .
制御装置5は、通信装置4に対して、図39の例のフローエントリDB46を設定したものとする。この場合、通信装置4は、受信パケットの通信パス識別子をキーとして、フローエントリDB46(フローテーブル46-1)を検索する。具体的には、通信装置4は、通信パス識別子(A)のパケットを受信した場合、パケットのヘッダに“ID(1)”を付与することを示す“Instruction”が設定されたエントリを検索する。次に、通信装置4は、パケットに付与された“ID(1)”をキーとして、フローエントリDB46(フローテーブル46-2)を検索し、“ID(1)”に対応する“Instruction”に従って、ヘッダからIDを削除し、受信パケットをゲートウェイ(a)に転送する。
It is assumed that the control device 5 sets the flow entry DB 46 in the example of FIG. In this case, the communication device 4 searches the flow entry DB 46 (flow table 46-1) using the communication path identifier of the received packet as a key. Specifically, when the communication device 4 receives the packet with the communication path identifier (A), the communication device 4 searches for an entry in which “Instruction” indicating that “ID (1)” is added to the header of the packet. . Next, the communication device 4 searches the flow entry DB 46 (flow table 46-2) using “ID (1)” given to the packet as a key, and follows “Instruction” corresponding to “ID (1)”. The ID is deleted from the header, and the received packet is transferred to the gateway (a).
制御装置5は、通信パスのグループに対応する仮想U-Plane31を切り替える場合、通信パスのグループに対応するIDに基づいてエントリを変更する制御信号を、通信装置4に送信する。例えば、通信パス識別子(A)-(C)に対応するゲートウェイを(a)から(e)に変更する場合、制御装置5は、フローエントリDB46(フローテーブル46-2)において、識別子(A)-(C)に対応する“ID(1)”のエントリの“Instruction”を変更する。つまり、制御装置5は、通信パスのグループのIDに対応するエントリを変更すればよく、通信パス識別子のそれぞれに対応するエントリを変更する必要はない。図39の例では、制御装置5は、識別子(A)-(C)に対応するそれぞれのエントリを変更する必要はなく、フローエントリDB46(フローテーブル46-2)において、“ID(1)”に対応するエントリを変更すればよい。よって、ゲートウェイを切り替える場合、制御装置5から通信装置4に送信される制御信号が削減される。制御信号の削減により、ゲートウェイ切り替えが高速化される。
When the control device 5 switches the virtual U-Plane 31 corresponding to the communication path group, the control device 5 transmits to the communication device 4 a control signal for changing the entry based on the ID corresponding to the communication path group. For example, when the gateway corresponding to the communication path identifiers (A) to (C) is changed from (a) to (e), the control device 5 uses the identifier (A) in the flow entry DB 46 (flow table 46-2). -Change "Instruction" of the entry of "ID (1)" corresponding to (C). That is, the control device 5 may change the entry corresponding to the ID of the communication path group, and does not need to change the entry corresponding to each of the communication path identifiers. In the example of FIG. 39, the control device 5 does not need to change each entry corresponding to the identifiers (A) to (C), and “ID (1)” is stored in the flow entry DB 46 (flow table 46-2). The entry corresponding to can be changed. Therefore, when the gateway is switched, the control signal transmitted from the control device 5 to the communication device 4 is reduced. Gateway switching is speeded up by reducing control signals.
上述した図35-図39の例では、通信装置4が、通信パス識別子に基づいて、通信パスのグループを識別する例が示されたが、本発明はこの例に限定されない。例えば、制御装置5は、他の情報(例えば、IPアドレスや、PDN)に基づいて通信パスをグループ化することが可能であり、また、通信装置4は、他の情報(例えば、IPアドレスや、PDN)に基づいて、通信パスのグループを識別することが可能である。
In the example of FIGS. 35 to 39 described above, an example in which the communication device 4 identifies a group of communication paths based on the communication path identifier is shown, but the present invention is not limited to this example. For example, the control device 5 can group communication paths based on other information (for example, an IP address or a PDN), and the communication device 4 can perform other information (for example, an IP address or an IP address). , PDN), it is possible to identify a group of communication paths.
7.第7実施形態
次に、図40~図46の例を参照して、本発明の第7実施形態について説明する。第7実施形態は、上述の第1-第6の実施形態で開示されたいずれの技術にも適用可能である。 7. Seventh Embodiment Next, a seventh embodiment of the present invention will be described with reference to the examples of FIGS. The seventh embodiment can be applied to any technique disclosed in the first to sixth embodiments described above.
次に、図40~図46の例を参照して、本発明の第7実施形態について説明する。第7実施形態は、上述の第1-第6の実施形態で開示されたいずれの技術にも適用可能である。 7. Seventh Embodiment Next, a seventh embodiment of the present invention will be described with reference to the examples of FIGS. The seventh embodiment can be applied to any technique disclosed in the first to sixth embodiments described above.
7.1)システム(第1例)
図40に例示されるように、制御装置5は、通信パスに関連付ける仮想U-Plane31を選択するためのポリシに従って、通信パスに割り当てる仮想U-Plane31を選択する。たとえば、仮想U-Plane31のインストール/アンインストールに応じて、通信パスに関連付ける仮想U-Plane31を、ポリシに従って動的に選択することが可能である。また、制御装置5は、ポリシに関する条件の変動に応じて、通信パスに割り当てる仮想U-Plane31を動的に変更することが可能である。なお、第7実施形態では、仮想U-Plane31を選択するためのポリシの例を示すが、このポリシは、第1、第2の実施形態に例示されたゲートウェイ3を選択するために用いることも可能である。 7.1) System (first example)
As illustrated in FIG. 40, thecontrol device 5 selects the virtual U-Plane 31 to be assigned to the communication path according to the policy for selecting the virtual U-Plane 31 associated with the communication path. For example, according to the installation / uninstallation of the virtual U-Plane 31, it is possible to dynamically select the virtual U-Plane 31 associated with the communication path according to the policy. In addition, the control device 5 can dynamically change the virtual U-Plane 31 assigned to the communication path in accordance with a change in conditions regarding the policy. In the seventh embodiment, an example of a policy for selecting the virtual U-Plane 31 is shown. However, this policy can also be used for selecting the gateway 3 exemplified in the first and second embodiments. Is possible.
図40に例示されるように、制御装置5は、通信パスに関連付ける仮想U-Plane31を選択するためのポリシに従って、通信パスに割り当てる仮想U-Plane31を選択する。たとえば、仮想U-Plane31のインストール/アンインストールに応じて、通信パスに関連付ける仮想U-Plane31を、ポリシに従って動的に選択することが可能である。また、制御装置5は、ポリシに関する条件の変動に応じて、通信パスに割り当てる仮想U-Plane31を動的に変更することが可能である。なお、第7実施形態では、仮想U-Plane31を選択するためのポリシの例を示すが、このポリシは、第1、第2の実施形態に例示されたゲートウェイ3を選択するために用いることも可能である。 7.1) System (first example)
As illustrated in FIG. 40, the
図41において、制御装置5は、図7に例示された制御装置5の構成例に加え、ポリシDB54を有する。制御部51は、ポリシDB54を参照し、通信パスに関連付ける仮想U-Plane31を選択することが可能である。ポリシDB54に格納されたポリシは、例えば、通信パスに関する通信の品質要求に応じた仮想U-Plane31が選択されるように構成される。ポリシDB54に格納されたポリシは、例えば、通信パスに関する通信の品質要求に応じて、通信パスのグループ毎に仮想U-Plane31が選択されるように構成されてもよい。制御部51は、例えば、仮想U-Plane31が増設されたことに応じて、ポリシDB54を参照し、通信パスに関連付ける仮想U-Plane31を選択する。制御部51は、通信パスに関連付ける仮想U-Plane31を選択し、経路情報DB50にエントリを追加する。制御部51は、経路情報DB50に基づいて、通信パスと仮想U-Plane31との対応関係を、通信装置4に通知する。
41, the control device 5 includes a policy DB 54 in addition to the configuration example of the control device 5 illustrated in FIG. The control unit 51 can select the virtual U-Plane 31 associated with the communication path with reference to the policy DB 54. The policy stored in the policy DB 54 is configured such that, for example, the virtual U-Plane 31 corresponding to the communication quality requirement regarding the communication path is selected. The policy stored in the policy DB 54 may be configured such that, for example, the virtual U-Plane 31 is selected for each group of communication paths in accordance with a communication quality request related to the communication path. For example, when the virtual U-Plane 31 is added, the control unit 51 refers to the policy DB 54 and selects the virtual U-Plane 31 associated with the communication path. The control unit 51 selects the virtual U-Plane 31 associated with the communication path and adds an entry to the route information DB 50. The control unit 51 notifies the communication device 4 of the correspondence between the communication path and the virtual U-Plane 31 based on the route information DB 50.
図42に例示するポリシDB54では、制御装置5は、通信パスに対応するQCIに関するポリシに基づいて、通信パスに関連付ける仮想U-Plane31を決定する。制御装置5は、例えば、通信パスのQCIをMMEから取得することが可能である。
42, in the policy DB 54 illustrated in FIG. 42, the control device 5 determines a virtual U-Plane 31 to be associated with the communication path based on the policy regarding the QCI corresponding to the communication path. For example, the control device 5 can acquire the QCI of the communication path from the MME.
図42の例では、QCIの値に応じて、各QCIに対応する通信パスに優先度が設定されている。制御装置5は、仮想U-Plane31を選択するための条件である優先度に応じて、通信パスに関連付ける仮想U-Plane31を選択する。制御装置5は、例えば、仮想U-Plane31が通信システムに新たにインストールされた場合、優先度が“Low”に設定されたQCIに対応する通信パスから順に、新たにインストールされた仮想U-Plane31に関連付ける。つまり、制御装置5は、QCIの優先度順に、新たにインストールされた仮想U-Plane31と通信パスとの対応関係を決定する。通信パスに対応する仮想U-Plane31を切り替えることで、切り替えに伴う通信遅延等が発生する可能性があるが、QCIの優先度が低い通信パスから順に、当該通信パスに関連付けられる仮想U-Plane31を切り替えることで、QCIの優先度が高い通信パスの通信品質の低下が抑止される。これにより、制御装置5は、QCIに対応する品質要求に応じた仮想U-Plane31を選択することができる。
In the example of FIG. 42, the priority is set to the communication path corresponding to each QCI according to the value of QCI. The control device 5 selects the virtual U-Plane 31 to be associated with the communication path according to the priority that is a condition for selecting the virtual U-Plane 31. For example, when the virtual U-Plane 31 is newly installed in the communication system, the control device 5 determines the newly installed virtual U-Plane 31 in order from the communication path corresponding to the QCI whose priority is set to “Low”. Associate with. That is, the control device 5 determines the correspondence between the newly installed virtual U-Plane 31 and the communication path in the order of priority of the QCI. Switching the virtual U-Plane 31 corresponding to the communication path may cause a communication delay or the like due to the switching, but the virtual U-Plane 31 associated with the communication path in order from the communication path with the lowest QCI priority. By switching the, the deterioration of the communication quality of the communication path having a high QCI priority is suppressed. Thereby, the control apparatus 5 can select the virtual U-Plane 31 corresponding to the quality requirement corresponding to the QCI.
図42の例では、QCIに対する優先度は、“High”、“Mid”、“Low”であるが、優先度の付与方法は、図42の例に限定されない。例えば、各QCIに対して優先度を示す値が付与されてもよい。制御装置5は、各QCIの優先度に応じて、通信パスに関連付けるゲートウェイを決定できる。例えば、制御装置5は、優先度が所定値以上のQCIに対応する通信パスを、通信帯域が保障可能な仮想U-Plane31に関連付けることが可能である。また、例えば、制御装置5は、優先度が所定値以上のQCIに対応する通信パスを、動作負荷が所定値以下の仮想U-Plane31に関連付けることが可能である。
In the example of FIG. 42, the priority for the QCI is “High”, “Mid”, and “Low”, but the method of assigning the priority is not limited to the example of FIG. For example, a value indicating the priority may be assigned to each QCI. The control device 5 can determine the gateway associated with the communication path according to the priority of each QCI. For example, the control device 5 can associate a communication path corresponding to a QCI having a priority equal to or higher than a predetermined value with a virtual U-Plane 31 that can guarantee a communication band. Further, for example, the control device 5 can associate a communication path corresponding to a QCI having a priority level equal to or higher than a predetermined value with a virtual U-Plane 31 whose operation load is equal to or lower than a predetermined value.
制御装置5は、QCI毎に、通信パスに関連付けるゲートウェイを決定することが可能である。例えば、制御装置5は、あるゲートウェイに関連付ける通信パスを、QCIに応じて決定する。この場合、あるゲートウェイに割り当てられる複数の通信パスのQCIは同一となる。
The control device 5 can determine the gateway associated with the communication path for each QCI. For example, the control device 5 determines a communication path associated with a certain gateway according to the QCI. In this case, the QCIs of a plurality of communication paths assigned to a certain gateway are the same.
7.2)システム(第2例)
図43に例示するように、制御装置5は、通信パスによる通信量や通信時間に応じて、通信パスに関連付ける仮想U-Plane31を決定することも可能である。制御装置5は、仮想U-Plane31をモニタし、通信パスによる通信量や通信時間を取得することが可能である。 7.2) System (second example)
As illustrated in FIG. 43, thecontrol device 5 can also determine the virtual U-Plane 31 associated with the communication path according to the communication amount and communication time of the communication path. The control device 5 can monitor the virtual U-Plane 31 and acquire the communication amount and communication time through the communication path.
図43に例示するように、制御装置5は、通信パスによる通信量や通信時間に応じて、通信パスに関連付ける仮想U-Plane31を決定することも可能である。制御装置5は、仮想U-Plane31をモニタし、通信パスによる通信量や通信時間を取得することが可能である。 7.2) System (second example)
As illustrated in FIG. 43, the
図44に例示するポリシDB54には、通信パス識別子に応じて、通信量や通信時間に関する閾値が設定されている。なお、図44のポリシDB54には、第6実施形態のように、通信パスのグループ毎に閾値が設定されてもよい。制御装置5は、仮想U-Plane31を選択するための条件である通信量や通信時間に関する閾値に応じて、通信パスに関連付ける仮想U-Plane31を選択する。ここでは、通信パスによる通信量や通信時間に関するポリシに基づいて、通信パスに関連付ける仮想U-Plane31が決定される。
44. In the policy DB 54 illustrated in FIG. 44, thresholds relating to the communication amount and communication time are set according to the communication path identifier. In the policy DB 54 of FIG. 44, a threshold value may be set for each group of communication paths as in the sixth embodiment. The control device 5 selects the virtual U-Plane 31 to be associated with the communication path according to the threshold for communication volume and communication time, which are conditions for selecting the virtual U-Plane 31. Here, the virtual U-Plane 31 to be associated with the communication path is determined based on the policy regarding the communication amount and communication time by the communication path.
端末1の利用者は、例えば、通信事業者とプリペイド課金の契約を締結した場合、プリペイド料金に対応する通信量(即ち、通信量の閾値)まで通信が可能である。制御装置5には、端末1の利用者と通信事業者との間の契約に関する情報が設定されている。制御装置5は、仮想U-Plane31のインストールやアンインストールに応じて通信パスを切り替える場合、通信量がポリシDB54に設定された閾値に対して余裕がある通信パスを優先して切り替える。図44の例では、ポリシDB54には、通信パス識別子“A”の通信パスの閾値として、通信量(“X” Byte)が設定されている。制御装置5は、例えば、P-GWとして機能する仮想U-Plane31から識別子“A”の通信パスの通信量をモニタし、その通信量と閾値(“X” Byte)の差が所定値以下である場合には、当該通信パスを切り替え対象から除外する。
For example, when the user of the terminal 1 concludes a prepaid billing contract with a communication carrier, the user can communicate up to the communication amount corresponding to the prepaid fee (that is, the communication amount threshold). In the control device 5, information related to a contract between the user of the terminal 1 and the communication carrier is set. When switching the communication path in accordance with the installation or uninstallation of the virtual U-Plane 31, the control device 5 switches the communication path with a margin with respect to the threshold set in the policy DB 54. In the example of FIG. 44, in the policy DB 54, the traffic (“X” Byte) is set as the threshold value of the communication path with the communication path identifier “A”. For example, the control device 5 monitors the communication amount of the communication path with the identifier “A” from the virtual U-Plane 31 functioning as the P-GW, and the difference between the communication amount and the threshold (“X” Byte) is less than a predetermined value. If there is, the communication path is excluded from switching targets.
上記のように通信パスを切り替えることで、通信パスの切り替え中に、通信量が閾値を超過してしまい、課金管理にミスが生じる可能性を抑止され、制御装置5は、通信サービスの品質要求に応じた仮想U-Plane31を選択することができる。
By switching the communication path as described above, it is possible to suppress the possibility that the communication amount exceeds the threshold value during the switching of the communication path and causes a mistake in billing management. It is possible to select a virtual U-Plane 31 according to the above.
端末1の利用者は、例えば、通信事業者と2段階課金の契約を締結した場合、通信量が特定の閾値を超えるまでは通信量に応じて通信料金を支払い、前記閾値を超過すると、通信量に拠らず定額(Flat)の通信料金となる。前記閾値を超えてしまえば、正確な通信量の監視が不要であるため、制御装置5は、仮想U-Plane31のインストールやアンインストールに応じて通信パスを切り替える場合、通信量が前記閾値を超えた通信パスを優先して切り替える。
For example, when the user of the terminal 1 concludes a two-stage charging contract with a communication carrier, the user pays a communication fee according to the communication amount until the communication amount exceeds a specific threshold value. Regardless of the amount, the communication fee is a flat rate (Flat). If the threshold value is exceeded, it is not necessary to accurately monitor the traffic volume. Therefore, when the control device 5 switches the communication path in accordance with installation or uninstallation of the virtual U-Plane 31, the traffic volume exceeds the threshold value. Switch the communication path with priority.
図44の例では、通信パス識別子 “D”の通信パスに対応する端末1は、通信事業者と2段階課金の契約を締結しているものとする。制御装置5には、端末1の利用者と通信事業者との間の契約に関する情報が設定されている。制御装置5は、仮想U-Plane31のインストールやアンインストールに応じて通信パスを切り替える場合、通信量がポリシDB54に設定された閾値を超過した通信パスを優先して切り替える。例えば、図44の例では、ポリシDB54には、通信パス識別子 “D”の通信パスの閾値として、通信量(“Y” Byte)が設定されている。制御装置5は、例えば、P-GWとして機能する仮想U-Plane31から識別子 “D”の通信パスの通信量をモニタし、その通信量が閾値(“Y” Byte)を超過している場合には、当該通信パスを切り替える。
44, it is assumed that the terminal 1 corresponding to the communication path having the communication path identifier “D” has signed a two-stage billing contract with the communication carrier. In the control device 5, information related to a contract between the user of the terminal 1 and the communication carrier is set. When switching the communication path according to the installation or uninstallation of the virtual U-Plane 31, the control device 5 preferentially switches the communication path whose communication amount exceeds the threshold set in the policy DB 54. For example, in the example of FIG. 44, in the policy DB 54, the traffic (“Y” Byte) is set as the threshold value of the communication path with the communication path identifier “D”. For example, the control device 5 monitors the communication amount of the communication path with the identifier “D” from the virtual U-Plane 31 functioning as the P-GW, and when the communication amount exceeds the threshold (“Y” Byte). Switches the communication path.
上記のように、課金に関する通信量の管理が不要となった通信パスを切り替えることで、通信パスの切り替え中に課金管理にミスが生じる可能性を抑止され、制御装置5は、通信サービスの品質要求に応じた仮想U-Plane31を選択できる。
As described above, by switching communication paths that do not require management of communication traffic related to charging, the possibility of mistakes in charging management during switching of communication paths can be suppressed, and the control device 5 can control communication service quality. A virtual U-Plane 31 according to the request can be selected.
端末1の利用者は、例えば、通信事業者と時間制限のある通信契約を締結する場合、契約で定められた期限内(例えば24時間以内)で通信可能である。制御装置5は、仮想U-Plane31のインストールやアンインストールに応じて通信パスを切り替える場合、契約で定められた期限に対して余裕のあるベアラ(例えば、期限に対して1時間以上余裕があるベアラ)を優先して切り替える。このようにベアラを切り替えることで、ベアラ切り替えの実行中に、期限を超過してしまい、契約上の期限を越えた通信が発生する可能性を抑止できる。
For example, when the user of the terminal 1 concludes a communication contract with a time limit with a communication carrier, the user can communicate within the time limit (for example, within 24 hours) specified in the contract. When switching the communication path according to the installation or uninstallation of the virtual U-Plane 31, the control device 5 has a bearer that has a margin with respect to the deadline determined by the contract (for example, a bearer that has a margin of one hour or more with respect to the deadline). ) To switch. By switching bearers in this way, it is possible to suppress the possibility that a time limit will be exceeded during execution of bearer switching and communication that exceeds the contractual time limit will occur.
図44の例では、通信パス識別子 “B”の通信パスに対応する端末1は、通信事業者と24時間制限の契約(24時間を超過すると通信不可)を締結しているものとする。制御装置5には、端末1の利用者と通信事業者との間の契約に関する情報が設定されている。制御装置5は、仮想U-Plane31のインストールやアンインストールに応じて通信パスを切り替える場合、通信時間がポリシDB54に設定された閾値を超過した通信パスを、切り替え対象から除外する。図44の例では、ポリシDB54には、通信パス識別子“B”の通信パスの閾値として、通信時間(“23H”)が設定されている。制御装置5は、例えば、P-GWとして機能する仮想U-Plane31から識別子“B”通信パスの通信時間をモニタし、その通信時間が閾値(“23H”)を超過している場合には、当該通信パスを切り替え対象から除外する。
In the example of FIG. 44, it is assumed that the terminal 1 corresponding to the communication path with the communication path identifier “B” has concluded a 24-hour restriction contract (communication is not possible after exceeding 24 hours) with the communication carrier. In the control device 5, information related to a contract between the user of the terminal 1 and the communication carrier is set. When switching the communication path according to the installation or uninstallation of the virtual U-Plane 31, the control device 5 excludes the communication path whose communication time has exceeded the threshold set in the policy DB 54 from the switching target. In the example of FIG. 44, communication time (“23H”) is set in the policy DB 54 as the threshold value of the communication path with the communication path identifier “B”. For example, the control device 5 monitors the communication time of the identifier “B” communication path from the virtual U-Plane 31 functioning as the P-GW, and when the communication time exceeds the threshold (“23H”), The communication path is excluded from switching targets.
上記のように通信パスを切り替えることで、通信パスの切り替え中に、通信時間が契約上の制限時間を超過してしまい、課金管理にミスが生じる可能性を抑止できる。
By switching the communication path as described above, it is possible to suppress the possibility that the communication time exceeds the contract time limit during the switching of the communication path, resulting in a mistake in billing management.
7.3)システム(第3例)
制御装置5は、仮想U-Plane31を活性化する頻度に応じて、通信パスに関連付ける仮想U-Plane31を選択することが可能である。 7.3) System (third example)
Thecontrol device 5 can select the virtual U-Plane 31 associated with the communication path according to the frequency of activating the virtual U-Plane 31.
制御装置5は、仮想U-Plane31を活性化する頻度に応じて、通信パスに関連付ける仮想U-Plane31を選択することが可能である。 7.3) System (third example)
The
図45に例示するように、制御装置5は、仮想U-Plane31のインストールやアンインストールの頻度(もしくは、アクティベーションやディアクティベーションの頻度)に応じて、通信パスに関連付ける仮想U-Plane31を選択することが可能である。制御装置5は、仮想U-Plane31を選択するための条件であるインストール/アンインストール頻度に応じて、通信パスに関連付ける仮想U-Plane31を選択する。制御装置5は、仮想U-Plane31をモニタし、インストール/アンインストールの頻度を取得することが可能である。
As illustrated in FIG. 45, the control device 5 selects the virtual U-Plane 31 to be associated with the communication path according to the frequency of installation or uninstallation of the virtual U-Plane 31 (or the frequency of activation or deactivation). Is possible. The control device 5 selects the virtual U-Plane 31 to be associated with the communication path according to the install / uninstall frequency that is a condition for selecting the virtual U-Plane 31. The control device 5 can monitor the virtual U-Plane 31 and acquire the install / uninstall frequency.
図46に例示するポリシDB54には、通信パス識別子毎の優先度が設定されている。なお、図46のポリシDB54には、第6実施形態のように、通信パスのグループ毎に優先度が設定されてもよい。制御装置5は、仮想U-Plane31を選択するための条件である優先度に関する閾値に応じて、通信パスに関連付ける仮想U-Plane31を選択する。図46の例では、制御装置5は、通信パス識別子の優先度に関するポリシに基づいて、通信パスに関連付ける仮想U-Plane31を決定する。
In the policy DB 54 illustrated in FIG. 46, a priority for each communication path identifier is set. In the policy DB 54 of FIG. 46, a priority may be set for each group of communication paths as in the sixth embodiment. The control device 5 selects the virtual U-Plane 31 to be associated with the communication path in accordance with a threshold related to priority, which is a condition for selecting the virtual U-Plane 31. In the example of FIG. 46, the control device 5 determines a virtual U-Plane 31 associated with a communication path based on a policy regarding the priority of the communication path identifier.
制御装置5は、例えば、仮想U-plane31のインストール/アンインストールの頻度を監視する。制御装置5は、例えば、優先度が低い通信パス(例えば、ポリシDB54で優先度が“Low”の通信パス)を、高い頻度でインストール/アンインストールされる仮想U-plane31に関連付ける。高頻度でインストール/アンインストールが発生する仮想U-plane31に割り当てられた通信パスは、高頻度で仮想U-plane31との接続が切り替えられ、通信品質が劣化する可能性が高い。よって、優先度が低い通信パスを高頻度でインストール/アンインストールが発生する仮想U-plane31に関連付けることで、制御装置5は、優先度が高い通信パスの通信品質の劣化を抑止することができる。
The control device 5 monitors the frequency of installation / uninstallation of the virtual U-plane 31, for example. For example, the control device 5 associates a communication path with a low priority (for example, a communication path with a priority of “Low” in the policy DB 54) with the virtual U-plane 31 that is frequently installed / uninstalled. There is a high possibility that the communication path assigned to the virtual U-plane 31 that is frequently installed / uninstalled is switched to the virtual U-plane 31 at a high frequency and the communication quality is deteriorated. Therefore, by associating a communication path with a low priority with the virtual U-plane 31 that is frequently installed / uninstalled, the control device 5 can suppress deterioration in communication quality of a communication path with a high priority. .
制御装置5は、通信パスに関するサービスに要求されるSLA(Service Level Agreement)に基づくポリシを用いて、通信パスに関連付ける仮想U-Plane31を決定することも可能である。例えば、制御装置5は、ポリシに基づいてSLAで要求される通信帯域を確認し、SLAに対応する通信帯域を確保可能な仮想U-Plane31を選択する。制御装置5は、例えば、それぞれの仮想U-Plane31で使用されている通信帯域と、それぞれの仮想U-Plane31で確保可能な最大通信帯域とを管理可能であり、各仮想U-Plane31の空き帯域がSLAの要求を満たすゲートウェイを選択可能である。また、制御装置5は、SLAが所定値以上の通信パスを、動作負荷が所定値以下の仮想U-Plane31に関連付けることが可能である。
The control device 5 can also determine the virtual U-Plane 31 to be associated with the communication path using a policy based on SLA (Service Level Agreement) required for the service regarding the communication path. For example, the control device 5 confirms the communication band required by the SLA based on the policy, and selects the virtual U-Plane 31 that can secure the communication band corresponding to the SLA. For example, the control device 5 can manage the communication band used in each virtual U-Plane 31 and the maximum communication band that can be secured in each virtual U-Plane 31, and the free band of each virtual U-Plane 31. Can select a gateway that meets the requirements of the SLA. Further, the control device 5 can associate a communication path with an SLA equal to or greater than a predetermined value with a virtual U-Plane 31 with an operation load equal to or less than a predetermined value.
第7実施形態において、ポリシDB54は、複数種類のポリシを記憶することが可能である。例えば、ポリシDB54は、図42に例示されたポリシと、図44に例示されたポリシとを記憶することが可能である。制御装置5は、ポリシDB54に記憶された複数種類のポリシに基づいて、仮想U-Plane31を選択することが可能である。
In the seventh embodiment, the policy DB 54 can store a plurality of types of policies. For example, the policy DB 54 can store the policy illustrated in FIG. 42 and the policy illustrated in FIG. 44. The control device 5 can select the virtual U-Plane 31 based on a plurality of types of policies stored in the policy DB 54.
8.第8実施形態
次に、図47~図50の例を参照して、本発明の第8実施形態について説明する。第8実施形態は、上述の第1-第7の実施形態で開示されたいずれの技術にも適用可能である。 8). Eighth Embodiment Next, an eighth embodiment of the present invention will be described with reference to examples of FIGS. The eighth embodiment can be applied to any technique disclosed in the first to seventh embodiments described above.
次に、図47~図50の例を参照して、本発明の第8実施形態について説明する。第8実施形態は、上述の第1-第7の実施形態で開示されたいずれの技術にも適用可能である。 8). Eighth Embodiment Next, an eighth embodiment of the present invention will be described with reference to examples of FIGS. The eighth embodiment can be applied to any technique disclosed in the first to seventh embodiments described above.
第8実施形態による通信システムには管理装置6が設けられ、制御装置が通信パスに関連付ける仮想U-Plane31を選択するために用いられる制御情報を生成する。通信システムのオペレータは、管理装置6を介して、制御装置を管理する。通信システムの規模によっては、複数の制御装置が、通信システムに分散して配置されることが想定される。このような場合、管理装置6を介して制御装置を管理することにより、通信システムのオペレータは、通信システムを効率的に管理することが可能となる。また、管理装置6により制御装置5に制御情報を通知することにより、制御装置5は、仮想U-Plane31が動的に増設されたことに応じて、制御情報を参照して増設された仮想U-Plane31に対応する通信パスを決定することができる。
In the communication system according to the eighth embodiment, the management device 6 is provided, and the control device generates control information used for selecting the virtual U-Plane 31 associated with the communication path. The operator of the communication system manages the control device via the management device 6. Depending on the scale of the communication system, a plurality of control devices are assumed to be distributed in the communication system. In such a case, by managing the control device through the management device 6, the operator of the communication system can efficiently manage the communication system. Further, the control device 5 notifies the control device 5 of the control information, so that the control device 5 refers to the control information in accordance with the virtual U-Plane 31 dynamically added, and adds the virtual U -A communication path corresponding to Plane 31 can be determined.
なお、第8実施形態では、通信パスと仮想U-Plane31の対応関係を制御するための管理装置6の例を示すが、管理装置6は、第1、第2の実施形態に例示されたゲートウェイ3と通信パスとの対応関係を制御するために用いることも可能である。
In the eighth embodiment, an example of the management device 6 for controlling the correspondence between the communication path and the virtual U-Plane 31 is shown. The management device 6 is a gateway exemplified in the first and second embodiments. 3 can also be used to control the correspondence between the communication path 3 and the communication path.
8.1)管理装置(第1例)
図47において、管理装置6は、ポリシ生成部60およびインターフェース61を含み、インターフェース61を介して、制御装置5(若しくは制御装置5A)と通信する。 8.1) Management device (first example)
47, the management device 6 includes a policy generation unit 60 and an interface 61, and communicates with the control device 5 (or the control device 5A) via the interface 61.
図47において、管理装置6は、ポリシ生成部60およびインターフェース61を含み、インターフェース61を介して、制御装置5(若しくは制御装置5A)と通信する。 8.1) Management device (first example)
47, the management device 6 includes a policy generation unit 60 and an interface 61, and communicates with the control device 5 (or the control device 5A) via the interface 61.
ポリシ生成部60は、通信パスに関連付ける仮想U-Plane31を制御装置5が選択するための制御情報を生成可能である。ポリシ生成部60は、例えば、通信パスに関する通信の品質要求に応じた仮想U-Plane31が選択されるように、制御情報を生成する。例えば、制御情報として、第7実施形態で例示されたポリシDB54に格納するポリシが生成される。さらに、ポリシ生成部60は、通信システムのオペレータの操作に応じて、ポリシDB54に格納する情報(例えば図42、図44、図46に例示された情報)を生成することができる。また、ポリシ生成部60は、複数種類のポリシを生成することが可能である。ポリシ生成部60は、生成した情報を、インターフェース61を介して、制御装置5に通知する。制御装置5は、管理装置6から通知されたポリシをポリシDB54に記憶し、当該ポリシDB54に基づいて通信装置4を制御する。
The policy generation unit 60 can generate control information for the control device 5 to select a virtual U-Plane 31 associated with a communication path. The policy generation unit 60 generates control information so that, for example, the virtual U-Plane 31 corresponding to the communication quality request regarding the communication path is selected. For example, a policy stored in the policy DB 54 exemplified in the seventh embodiment is generated as the control information. Furthermore, the policy generation unit 60 can generate information stored in the policy DB 54 (for example, information illustrated in FIGS. 42, 44, and 46) according to the operation of the operator of the communication system. The policy generating unit 60 can generate a plurality of types of policies. The policy generation unit 60 notifies the generated information to the control device 5 via the interface 61. The control device 5 stores the policy notified from the management device 6 in the policy DB 54 and controls the communication device 4 based on the policy DB 54.
ポリシ生成部60は、通信パスに関連付ける仮想U-Plane31を、通信パスのグループ毎に制御装置5が選択するための制御情報を生成することも可能である。例えば、ポリシ生成部60は、図42、図44、図46に例示された情報を、通信パスのグループ毎に生成可能である。ポリシ生成部60は、例えば、QCIに応じた優先度により構成されたポリシ(図42に例示されたポリシ)を、通信パスのグループ毎に生成することが可能である。ポリシ生成部60は、例えば、通信パスのグループ毎に、図44に例示された閾値を生成することが可能である。ポリシ生成部60は、例えば、通信パスのグループ毎に、図46に例示された優先度を生成することが可能である。
The policy generation unit 60 can also generate control information for the control device 5 to select a virtual U-Plane 31 associated with a communication path for each group of communication paths. For example, the policy generation unit 60 can generate the information exemplified in FIGS. 42, 44, and 46 for each group of communication paths. The policy generation unit 60 can generate, for example, a policy (policy illustrated in FIG. 42) configured with a priority according to the QCI for each group of communication paths. The policy generation unit 60 can generate the threshold illustrated in FIG. 44 for each communication path group, for example. The policy generation unit 60 can generate the priority exemplified in FIG. 46 for each communication path group, for example.
ポリシ生成部60は、第4の実施形態で開示されたアタッチ手順により新たに構築される通信パスを仮想U-Plane31に関連付けるためのポリシを生成してもよい。アタッチ手順により新たに構築される通信パスを仮想U-Plane31に関連付けるためのポリシの例を以下に示す。
The policy generation unit 60 may generate a policy for associating a communication path newly constructed by the attach procedure disclosed in the fourth embodiment with the virtual U-Plane 31. An example of a policy for associating a communication path newly constructed by the attach procedure with the virtual U-Plane 31 is shown below.
(1)ラウンドロビン: ポリシ生成部60は、通信システムにおいて起動している仮想U-Plane31から、通信パスに関連付ける仮想U-Plane31をラウンドロビンで決定するためのポリシを生成する。ポリシ生成部60は、例えば、各仮想U-Plane31の負荷に応じて、通信パスに関連付ける仮想U-Plane31をラウンドロビンで決定するためのポリシを生成する。
(1) Round Robin: The policy generation unit 60 generates a policy for determining, in round robin, the virtual U-Plane 31 associated with the communication path from the virtual U-Plane 31 activated in the communication system. For example, the policy generation unit 60 generates a policy for determining the virtual U-Plane 31 associated with the communication path in a round robin manner according to the load of each virtual U-Plane 31.
(2)端末1の位置: ポリシ生成部60は、E-UTRAN Cell ID等の端末1が滞在する位置に関する情報に基づいて、ポリシを生成する。ポリシ生成部60は、例えば、以下に例示された条件の少なくとも一つに基づいて通信パスに関連付ける仮想U-Plane31を決定するためのポリシを生成する。
・所定のCell IDに対応する通信パス
・複数のCell IDのいずれかに対応する通信パス(例えば、隣接する複数のセルのいずれかに対応する通信パス)
・所定の基地局に対応する通信パス
・複数の基地局のいずれかに対応する通信パス(例えば、隣接する複数の基地局のいずれかに対応する通信パス) (2) Location of terminal 1: The policy generation unit 60 generates a policy based on information regarding the location where theterminal 1 stays, such as E-UTRAN Cell ID. For example, the policy generation unit 60 generates a policy for determining the virtual U-Plane 31 associated with the communication path based on at least one of the conditions exemplified below.
-Communication path corresponding to a predetermined Cell ID-Communication path corresponding to any of a plurality of Cell IDs (for example, communication path corresponding to any of a plurality of adjacent cells)
A communication path corresponding to a predetermined base station A communication path corresponding to any of a plurality of base stations (for example, a communication path corresponding to any of a plurality of adjacent base stations)
・所定のCell IDに対応する通信パス
・複数のCell IDのいずれかに対応する通信パス(例えば、隣接する複数のセルのいずれかに対応する通信パス)
・所定の基地局に対応する通信パス
・複数の基地局のいずれかに対応する通信パス(例えば、隣接する複数の基地局のいずれかに対応する通信パス) (2) Location of terminal 1: The policy generation unit 60 generates a policy based on information regarding the location where the
-Communication path corresponding to a predetermined Cell ID-Communication path corresponding to any of a plurality of Cell IDs (for example, communication path corresponding to any of a plurality of adjacent cells)
A communication path corresponding to a predetermined base station A communication path corresponding to any of a plurality of base stations (for example, a communication path corresponding to any of a plurality of adjacent base stations)
例えば、ポリシ生成部60は、Cell ID“a”に対応する通信パスを、仮想ゲートウェイ“A”に関連付けることを示すポリシを生成する。また、例えば、ポリシ生成部60は、Cell IDが“b”または“c”に対応する通信パスを、仮想ゲートウェイ“B”に関連付けることを示すポリシを生成する。また、例えば、ポリシ生成部60は、Cell ID“d”に対応する通信パスを、仮想ゲートウェイ“C”、“D”、“E”からラウンドロビンで選択されたゲートウェイに関連付けることを示すポリシを生成する。
For example, the policy generation unit 60 generates a policy indicating that the communication path corresponding to the Cell ID “a” is associated with the virtual gateway “A”. Further, for example, the policy generation unit 60 generates a policy indicating that the communication path corresponding to the cell ID “b” or “c” is associated with the virtual gateway “B”. Further, for example, the policy generation unit 60 creates a policy indicating that the communication path corresponding to the Cell ID “d” is associated with the gateway selected from the virtual gateways “C”, “D”, and “E” by the round robin. Generate.
(3)通信パスのQoS特性: ポリシ生成部60は、通信パスのQoS特性に関する情報に基づいて、ポリシを生成する。ポリシ生成部60は、例えば、以下に例示された条件の少なくとも一つに基づいて通信パスに関連付ける仮想U-Plane31を決定するためのポリシを生成する。
・所定のQCI値に対応する通信パス
・複数のQCI値のいずれかに対応する通信パス (3) QoS characteristic of communication path: The policy generation unit 60 generates a policy based on information on the QoS characteristic of the communication path. For example, the policy generation unit 60 generates a policy for determining the virtual U-Plane 31 associated with the communication path based on at least one of the conditions exemplified below.
-Communication path corresponding to a predetermined QCI value-Communication path corresponding to one of a plurality of QCI values
・所定のQCI値に対応する通信パス
・複数のQCI値のいずれかに対応する通信パス (3) QoS characteristic of communication path: The policy generation unit 60 generates a policy based on information on the QoS characteristic of the communication path. For example, the policy generation unit 60 generates a policy for determining the virtual U-Plane 31 associated with the communication path based on at least one of the conditions exemplified below.
-Communication path corresponding to a predetermined QCI value-Communication path corresponding to one of a plurality of QCI values
例えば、ポリシ生成部60は、QCI値が“5”の通信パスを、仮想ゲートウェイ“A”に関連付けることを示すポリシを生成する。また、例えば、ポリシ生成部60は、QCI値が“1”または“3”に対応する通信パスを、仮想ゲートウェイ“B”に関連付けることを示すポリシを生成する。また、例えば、ポリシ生成部60は、QCI値が“4”に対応する通信パスを、仮想ゲートウェイ“C”、“D”、“E”からラウンドロビンで選択されたゲートウェイに関連付けることを示すポリシを生成する。
For example, the policy generation unit 60 generates a policy indicating that the communication path having the QCI value “5” is associated with the virtual gateway “A”. For example, the policy generation unit 60 generates a policy indicating that the communication path corresponding to the QCI value “1” or “3” is associated with the virtual gateway “B”. Further, for example, the policy generation unit 60 associates the communication path corresponding to the QCI value “4” with the gateway selected by the round robin from the virtual gateways “C”, “D”, and “E”. Is generated.
(4)端末1の位置と、通信パスのQoS特性の組合せ: ポリシ生成部60は、上記(2)と(3)を組み合わせた条件(例えば、以下に例示された条件)に基づいて通信パスに関連付ける仮想U-Plane31を決定するためのポリシを生成してもよい。
・所定のQCI値、及び、所定のCell ID(若しくは所定の基地局)に対応する通信パス
・所定のQCI値、及び、複数のCell IDのいずれか(若しくは複数の基地局のいずれか)に対応する通信パス
・複数のQCI値のいずれかに対応し、かつ、所定のCell ID(若しくは所定の基地局)に対応する通信パス
・複数のQCI値のいずれかに対応し、かつ、複数のCell IDのいずれか(若しくは複数の基地局のいずれか) (4) Combination of the position of theterminal 1 and the QoS characteristic of the communication path: The policy generation unit 60 determines the communication path based on the conditions (for example, the conditions exemplified below) combining the above (2) and (3). A policy for determining the virtual U-Plane 31 to be associated with the user may be generated.
-A communication path corresponding to a predetermined QCI value and a predetermined Cell ID (or a predetermined base station)-Either a predetermined QCI value and a plurality of Cell IDs (or any of a plurality of base stations) Corresponding to one of the corresponding communication path / multiple QCI values, corresponding to one of the communication path / multiple QCI values corresponding to a predetermined cell ID (or predetermined base station), and a plurality of Any of Cell ID (or any of multiple base stations)
・所定のQCI値、及び、所定のCell ID(若しくは所定の基地局)に対応する通信パス
・所定のQCI値、及び、複数のCell IDのいずれか(若しくは複数の基地局のいずれか)に対応する通信パス
・複数のQCI値のいずれかに対応し、かつ、所定のCell ID(若しくは所定の基地局)に対応する通信パス
・複数のQCI値のいずれかに対応し、かつ、複数のCell IDのいずれか(若しくは複数の基地局のいずれか) (4) Combination of the position of the
-A communication path corresponding to a predetermined QCI value and a predetermined Cell ID (or a predetermined base station)-Either a predetermined QCI value and a plurality of Cell IDs (or any of a plurality of base stations) Corresponding to one of the corresponding communication path / multiple QCI values, corresponding to one of the communication path / multiple QCI values corresponding to a predetermined cell ID (or predetermined base station), and a plurality of Any of Cell ID (or any of multiple base stations)
(5)通信パスグループ: ポリシ生成部60は、第6の実施形態で例示した通信パスグループの属性に基づいて通信パスグループに関連付ける仮想U-Plane31を決定するためのポリシを生成してもよい。通信パスグループの属性の例を以下に示す。
・端末1の滞在エリア(E-UTRAN Cell ID等)によるグループ
・端末1に関する課金特性(通常課金、プリペイド課金、フラットレート等)によるグループ
・端末1の通信状態(一定期間に一定量以上の通信をしたか否か)
・オペレータID(端末1が接続しているコアネットワークのオペレータのID)によるグループ
・端末1が接続しているPacket Data Network(PDN)
・通信パスを抜けた後に、チェイニングが必要なサービス種類
・QoS特性
・端末1の状態(IDLE状態、CONNECTED状態) (5) Communication path group: The policy generation unit 60 may generate a policy for determining the virtual U-Plane 31 to be associated with the communication path group based on the attribute of the communication path group exemplified in the sixth embodiment. . Examples of communication path group attributes are shown below.
・ Group by terminal 1's stay area (E-UTRAN Cell ID, etc.) ・ Communication status ofterminal 1 by charging characteristics (normal charging, prepaid billing, flat rate, etc.) related to terminal 1 (communication more than a certain amount in a certain period) Whether or not)
・ Group by operator ID (ID of operator of core network to whichterminal 1 is connected) ・ Packet Data Network (PDN) to which terminal 1 is connected
・ Service types that need to be chained after leaving the communication path ・ QoS characteristics ・Terminal 1 status (IDLE status, CONNECTED status)
・端末1の滞在エリア(E-UTRAN Cell ID等)によるグループ
・端末1に関する課金特性(通常課金、プリペイド課金、フラットレート等)によるグループ
・端末1の通信状態(一定期間に一定量以上の通信をしたか否か)
・オペレータID(端末1が接続しているコアネットワークのオペレータのID)によるグループ
・端末1が接続しているPacket Data Network(PDN)
・通信パスを抜けた後に、チェイニングが必要なサービス種類
・QoS特性
・端末1の状態(IDLE状態、CONNECTED状態) (5) Communication path group: The policy generation unit 60 may generate a policy for determining the virtual U-Plane 31 to be associated with the communication path group based on the attribute of the communication path group exemplified in the sixth embodiment. . Examples of communication path group attributes are shown below.
・ Group by terminal 1's stay area (E-UTRAN Cell ID, etc.) ・ Communication status of
・ Group by operator ID (ID of operator of core network to which
・ Service types that need to be chained after leaving the communication path ・ QoS characteristics ・
ポリシ生成部60は、例えば、通信パスが、プリペイド課金の課金特性のグループに属する場合、当該通信パスを仮想ゲートウェイ“A”に関連付けることを示すポリシを生成する。
For example, when the communication path belongs to a group of prepaid billing characteristics, the policy generation unit 60 generates a policy indicating that the communication path is associated with the virtual gateway “A”.
上述のように、管理装置6は、ポリシを生成して制御装置5に通知し、ポリシに従って制御装置5を動作させることが可能である。また、管理装置6は、以下に述べるように、制御装置5の経路情報DB50を操作することも可能である。
As described above, the management device 6 can generate a policy, notify the control device 5 and operate the control device 5 according to the policy. Further, the management device 6 can also operate the route information DB 50 of the control device 5 as described below.
8.2)管理装置(第2例)
図48に例示する管理装置6は、図47の構成に加え、UI(User Interface)表示部62、制御部63およびディスプレイ64を含む。 8.2) Management device (second example)
The management device 6 illustrated in FIG. 48 includes a UI (User Interface) display unit 62, a control unit 63, and a display 64 in addition to the configuration of FIG.
図48に例示する管理装置6は、図47の構成に加え、UI(User Interface)表示部62、制御部63およびディスプレイ64を含む。 8.2) Management device (second example)
The management device 6 illustrated in FIG. 48 includes a UI (User Interface) display unit 62, a control unit 63, and a display 64 in addition to the configuration of FIG.
UI表示部62は、ディスプレイ64に、図49の例のようなユーザインターフェースを表示する。通信システムのオペレータは、図49に例示されたユーザインターフェースを操作し、通信パスと仮想ゲートウェイの対応関係を操作することが可能である。
The UI display unit 62 displays a user interface as shown in the example of FIG. The operator of the communication system can operate the user interface illustrated in FIG. 49 to operate the correspondence between the communication path and the virtual gateway.
制御部63は、オペレータの操作に応じて決定された、通信パスと仮想ゲートウェイとの対応関係に基づいて、制御装置5の経路情報DB50を操作する。例えば、オペレータが、通信パス識別子 “A”の通信パスに対応する仮想ゲートウェイを、仮想ゲートウェイ(a)から(e)に変更したものと想定する。この場合、制御部63は、経路情報DB50を操作し、通信パス識別子“A”に対応する仮想ゲートウェイを、仮想ゲートウェイ(a)から(e)に変更する。
The control unit 63 operates the route information DB 50 of the control device 5 based on the correspondence relationship between the communication path and the virtual gateway determined according to the operation of the operator. For example, it is assumed that the operator has changed the virtual gateway corresponding to the communication path with the communication path identifier “A” from the virtual gateway (a) to (e). In this case, the control unit 63 operates the route information DB 50 to change the virtual gateway corresponding to the communication path identifier “A” from the virtual gateway (a) to (e).
図49は、UI表示部62がディスプレイ64に表示するGUI(Graphical User Interface)700の例を示す。GUI700は、ネットワーク表示ウィンドウ701、オペレーションウィンドウ702を含む。ネットワーク表示ウィンドウ701は、通信システムのネットワーク構成の概略を表示する。
FIG. 49 shows an example of a GUI (Graphical User Interface) 700 displayed on the display 64 by the UI display unit 62. The GUI 700 includes a network display window 701 and an operation window 702. A network display window 701 displays an outline of the network configuration of the communication system.
図49において、オペレータが、ネットワーク表示ウィンドウ701に表示されたネットワークのエンティティ(例えば、S-GW)をクリックすると、オペレーションウィンドウ702に、クリックされたエンティティを構成する仮想U-Plane31に関する情報が表示される。
In FIG. 49, when the operator clicks a network entity (for example, S-GW) displayed in the network display window 701, information regarding the virtual U-Plane 31 constituting the clicked entity is displayed in the operation window 702. The
オペレーションウィンドウ702は、例えば、通信パス、ゲートウェイを構成する仮想U-Plane31、各仮想U-Plane31に対応するサーバ33を含むネットワークオブジェクトを表示可能である。
The operation window 702 can display, for example, network objects including communication paths, virtual U-Planes 31 constituting gateways, and servers 33 corresponding to the virtual U-Planes 31.
オペレーションウィンドウ702は、通信パス、仮想U-Plane31を含むネットワークオブジェクトの属性(Property)に関する情報を表示可能である。オペレータは、例えば、ネットワークオブジェクトの属性に関する情報を参照し、通信パスに関連付ける仮想U-Plane31を選択可能である。オペレーションウィンドウ702は、例えば、仮想U-Plane31およびサーバ33のID、仮想U-Plane31およびサーバ33の負荷を表示可能であり、更に、例えば、仮想U-Plane31に関連付けられている通信パス数、仮想U-Plane31のスループット、仮想U-Plane31の空き通信帯域等を、ネットワークオブジェクトの属性として表示可能である。また、オペレーションウィンドウ702は、例えば、通信パスに関するQCI、通信パスに関するサービスのSLA等を、ネットワークオブジェクトの属性として表示可能である。オペレーションウィンドウ702は、複数の属性を表示することも可能である。また、オペレーションウィンドウ702は、各仮想U-Plane31に設定された通信パスを表示することが可能である。
The operation window 702 can display information on attributes (property) of the network object including the communication path and the virtual U-Plane 31. For example, the operator can select the virtual U-Plane 31 associated with the communication path with reference to information on the attribute of the network object. The operation window 702 can display, for example, the IDs of the virtual U-Plane 31 and the server 33, the loads of the virtual U-Plane 31 and the server 33, and further, for example, the number of communication paths associated with the virtual U-Plane 31, the virtual U-Plane 31, The throughput of the U-Plane 31 and the free communication band of the virtual U-Plane 31 can be displayed as attributes of the network object. Further, the operation window 702 can display, for example, QCI related to a communication path, SLA of a service related to a communication path, and the like as attributes of a network object. The operation window 702 can also display a plurality of attributes. In addition, the operation window 702 can display the communication path set for each virtual U-Plane 31.
オペレータは、ウィンドウ702に表示された通信パスを、Drag&Drop操作により、他の仮想U-Plane31に切り替えることが可能である。例えば、オペレータは、ウィンドウ702に表示された仮想U-Plane31やサーバ33の負荷を参照し、負荷が低い仮想U-Plane31に通信パスを切り替えることが可能である。
The operator can switch the communication path displayed in the window 702 to another virtual U-Plane 31 by Drag & Drop operation. For example, the operator can switch the communication path to the virtual U-Plane 31 with a low load by referring to the loads on the virtual U-Plane 31 and the server 33 displayed in the window 702.
オペレータの操作に応じて、制御部63は、制御装置5の経路情報DB50を操作し、通信パスと仮想U-Plane31との対応関係を変更可能である。例えば、制御部63は、ネットワークオブジェクトの組み合わせにより、通信パスと仮想U-Plane31との対応関係に関する制御情報を生成し、生成した制御情報を制御装置5に通知することで、経路情報DB50を変更可能である。制御装置5は、例えば、経路情報DB50が変更されたことに応じて、通信パスと仮想U-Plane31との対応関係の変更を、通信装置4に通知する。
In response to the operator's operation, the control unit 63 can change the correspondence relationship between the communication path and the virtual U-Plane 31 by operating the route information DB 50 of the control device 5. For example, the control unit 63 generates control information related to the correspondence between the communication path and the virtual U-Plane 31 by combining network objects, and notifies the control device 5 of the generated control information to change the route information DB 50. Is possible. For example, the control device 5 notifies the communication device 4 of a change in the correspondence between the communication path and the virtual U-Plane 31 in response to the change of the route information DB 50.
8.3)管理装置(第3例)
図50に例示された管理装置6は、ポリシDB54に格納する情報を生成することなく、制御装置5の経路情報DB50を直接制御することが可能である。管理装置6は、経路情報生成部65およびインターフェース61を含む。 8.3) Management device (third example)
The management apparatus 6 illustrated in FIG. 50 can directly control thepath information DB 50 of the control apparatus 5 without generating information to be stored in the policy DB 54. The management device 6 includes a route information generation unit 65 and an interface 61.
図50に例示された管理装置6は、ポリシDB54に格納する情報を生成することなく、制御装置5の経路情報DB50を直接制御することが可能である。管理装置6は、経路情報生成部65およびインターフェース61を含む。 8.3) Management device (third example)
The management apparatus 6 illustrated in FIG. 50 can directly control the
経路情報生成部65は、通信パスに関連付ける仮想U-Plane31を制御装置5が選択するための制御情報を生成可能である。経路情報生成部65は、例えば、通信パスに関する通信の品質要求に応じた仮想U-Plane31が選択されるように、制御情報を生成する。経路情報生成部65は、例えば、仮想U-Plane31が増設されたことに応じて、制御情報を生成する。制御情報として、制御装置5の経路情報DB50に格納する情報が生成される。経路情報生成部65は、通信パスとゲートウェイとの対応関係を決定する。経路情報生成部65は、インターフェース61を介して、制御装置5の経路情報DB50に、通信パスとゲートウェイとの対応関係を設定する。
The route information generation unit 65 can generate control information for the control device 5 to select a virtual U-Plane 31 associated with a communication path. The route information generation unit 65 generates control information so that, for example, the virtual U-Plane 31 corresponding to the communication quality request regarding the communication path is selected. For example, the path information generation unit 65 generates control information in response to the addition of the virtual U-Plane 31. Information to be stored in the route information DB 50 of the control device 5 is generated as control information. The route information generation unit 65 determines the correspondence between the communication path and the gateway. The route information generation unit 65 sets a correspondence relationship between the communication path and the gateway in the route information DB 50 of the control device 5 via the interface 61.
経路情報生成部65は、通信パスに対応するゲートウェイを、通信パスのグループ単位で管理するための制御情報(例えば、第6実施形態に例示された構造のデータベース)を生成することも可能である。
The route information generation unit 65 can also generate control information (for example, a database having a structure exemplified in the sixth embodiment) for managing gateways corresponding to communication paths in units of communication path groups. .
経路情報生成部65は、例えば、第7実施形態に例示されたポリシに基づいて、経路情報DB50に設定する情報を生成することが可能である。例えば、経路情報生成部65は、図42、図44、図46に例示されたポリシに基づいて、経路情報DB50に設定する情報を生成可能である。経路情報生成部65は、例えば、経路情報DB50に設定する情報を生成するために必要な情報(例えば、通信パスの通信量や通信時間、仮想ゲートウェイの増設頻度等)を、制御装置5を介して収集することが可能である。また、経路情報生成部65は、例えば、第8実施形態で例示されたポリシ(上述のポリシ(1)-(5))に基づいて、経路情報DB50に設定する情報を生成可能である。
The route information generation unit 65 can generate information set in the route information DB 50 based on, for example, the policy exemplified in the seventh embodiment. For example, the route information generation unit 65 can generate information to be set in the route information DB 50 based on the policies illustrated in FIGS. 42, 44, and 46. For example, the route information generation unit 65 sends information necessary for generating information to be set in the route information DB 50 (for example, communication amount and communication time of a communication path, frequency of adding a virtual gateway, etc.) via the control device 5. Can be collected. Further, the route information generation unit 65 can generate information to be set in the route information DB 50 based on, for example, the policies exemplified in the eighth embodiment (the above policies (1) to (5)).
9.第9実施形態
以下、図51~図56の例を参照して本発明の第9実施形態について説明する。第9実施形態は、上述の第1-第8実施形態で開示されたいずれの技術にも適用可能である。 9. Ninth Embodiment Hereinafter, a ninth embodiment of the present invention will be described with reference to the examples of FIGS. The ninth embodiment can be applied to any technique disclosed in the first to eighth embodiments described above.
以下、図51~図56の例を参照して本発明の第9実施形態について説明する。第9実施形態は、上述の第1-第8実施形態で開示されたいずれの技術にも適用可能である。 9. Ninth Embodiment Hereinafter, a ninth embodiment of the present invention will be described with reference to the examples of FIGS. The ninth embodiment can be applied to any technique disclosed in the first to eighth embodiments described above.
第9実施形態では、オペレータが、管理装置6により、通信パスをグループ化して管理する。通信パスをグループ化することにより、オペレータは、通信パスと仮想U-Plane31との対応関係の管理等を効率的に実行できる。また、管理装置6が、第6実施形態で制御装置5が行った制御のためのグループ化とは別に、通信パスをグループ化して可視化することで、オペレータは、通信パスと仮想U-Plane31を効率的に管理できる。
In the ninth embodiment, the operator uses the management device 6 to group communication paths and manage them. By grouping the communication paths, the operator can efficiently manage the correspondence between the communication paths and the virtual U-Plane 31. Further, the management device 6 groups and visualizes the communication paths separately from the control grouping performed by the control device 5 in the sixth embodiment, so that the operator can view the communication paths and the virtual U-Plane 31. Can be managed efficiently.
なお、第9実施形態では、通信パスと仮想U-Plane31の対応関係を制御するための管理装置6の例を示すが、第1、第2の実施形態に例示されたゲートウェイ3と通信パスとの対応関係を制御するために用いることも可能である。
In the ninth embodiment, an example of the management device 6 for controlling the correspondence between the communication path and the virtual U-Plane 31 is shown. However, the gateway 3 and the communication path exemplified in the first and second embodiments It is also possible to use it to control the correspondence between
図51に例示するGUI700において、オペレータは、管理装置6により表示されたGUI700を用いて、通信パスをグループ化することが可能である。
51, the operator can group communication paths by using the GUI 700 displayed by the management apparatus 6.
図51に例示されたオペレーションウィンドウ702は、仮想ゲートウェイ3に構築された通信パスを集約(グループ化)するための集約ポリシ703を表示する。集約ポリシは、例えば、通信パスの属性に基づいて設定される。集約ポリシ703の例を以下に示す。
・端末1の滞在エリア(E-UTRAN Cell ID等)
・端末1に関する課金特性(通常課金、プリペイド課金、フラットレート等)
・オペレータID(端末1が接続しているコアネットワークのオペレータのID)
・端末1の状態(IDLE状態、CONNECTED状態):
・QoS特性
・端末1が接続しているPacket Data Network(PDN)
・通信パスを抜けた後に、チェイニングが必要なサービス種類 An operation window 702 illustrated in FIG. 51 displays anaggregation policy 703 for aggregating (grouping) communication paths established in the virtual gateway 3. The aggregation policy is set based on the attribute of the communication path, for example. An example of the aggregation policy 703 is shown below.
・ Stay area of terminal 1 (E-UTRAN Cell ID, etc.)
-Charging characteristics related to terminal 1 (regular charging, prepaid charging, flat rate, etc.)
-Operator ID (ID of the operator of the core network to which theterminal 1 is connected)
-State of terminal 1 (IDLE state, CONNECTED state):
-QoS characteristics-Packet Data Network (PDN) to which theterminal 1 is connected
・ Service types that require chaining after leaving the communication path
・端末1の滞在エリア(E-UTRAN Cell ID等)
・端末1に関する課金特性(通常課金、プリペイド課金、フラットレート等)
・オペレータID(端末1が接続しているコアネットワークのオペレータのID)
・端末1の状態(IDLE状態、CONNECTED状態):
・QoS特性
・端末1が接続しているPacket Data Network(PDN)
・通信パスを抜けた後に、チェイニングが必要なサービス種類 An operation window 702 illustrated in FIG. 51 displays an
・ Stay area of terminal 1 (E-UTRAN Cell ID, etc.)
-Charging characteristics related to terminal 1 (regular charging, prepaid charging, flat rate, etc.)
-Operator ID (ID of the operator of the core network to which the
-State of terminal 1 (IDLE state, CONNECTED state):
-QoS characteristics-Packet Data Network (PDN) to which the
・ Service types that require chaining after leaving the communication path
管理装置6は、上記の集約ポリシ703の例に基づいて、通信パスを集約することが可能である。なお、集約ポリシ703は、例えば、第6実施形態において通信パスをグループ化するための条件として開示されたポリシを用いることも可能である。
The management device 6 can aggregate communication paths based on the example of the aggregation policy 703 described above. For example, the policy disclosed in the sixth embodiment as a condition for grouping communication paths can be used as the aggregation policy 703.
管理装置6の制御部63は、例えば、集約ポリシ703に表示されたいずれかのポリシをオペレータがクリックしたことに応じて、クリックされたポリシに基づいて通信パスを集約する。制御部63は、例えば、集約ポリシの属性が同一の通信パスを集約する。例えば、集約ポリシとして“QoS特性”が選択されると、図51に例示されるように、制御部63は、同一のQCI値の通信パスを集約する。
The control unit 63 of the management device 6 aggregates communication paths based on the clicked policy in response to, for example, the operator clicking one of the policies displayed in the aggregation policy 703. For example, the control unit 63 aggregates communication paths having the same aggregation policy attribute. For example, when “QoS characteristics” is selected as the aggregation policy, as illustrated in FIG. 51, the control unit 63 aggregates communication paths having the same QCI value.
制御部63は、例えば、集約ポリシ703に表示された“集約解除”がクリックされたことに応じて、通信パスの集約を解除し、それぞれの通信パスを個別に表示する。
The control unit 63 cancels the aggregation of communication paths and displays each communication path individually in response to, for example, clicking on “cancel aggregation” displayed in the aggregation policy 703.
集約ポリシに基づいて通信パスを集約することで、オペレータの管理コストが大幅に削減される。例えば、図51の例のように、QCIに基づいて通信パスを集約することで、GUI700で管理される通信パスの数は、仮想ゲートウェイ3毎に最大で9種類(3GPP等の標準仕様で定義されているQCIは9種類)に集約される。集約ポリシに基づいて通信パスを集約することで、オペレータが管理する通信パスの数を擬似的に削減することが可能となり、オペレータの管理コストが大幅に削減される。
集約 By consolidating communication paths based on the aggregation policy, operator management costs are greatly reduced. For example, as shown in the example of FIG. 51, by integrating communication paths based on QCI, the maximum number of communication paths managed by the GUI 700 is nine types for each virtual gateway 3 (defined by standard specifications such as 3GPP). Nine types of QCI are collected). By aggregating communication paths based on the aggregation policy, the number of communication paths managed by the operator can be reduced in a pseudo manner, and the management cost of the operator is greatly reduced.
制御部63は、オペレータが集約ポリシに応じて通信パスを集約したことに応じて、制御装置5の経路情報DB50を変更することが可能である。
The control unit 63 can change the route information DB 50 of the control device 5 in response to the operator collecting communication paths according to the aggregation policy.
図52は、QCIに基づいて通信パスを集約した場合の経路情報DB50の例を示す。制御部63は、集約ポリシの属性(図52の例ではQCI)に基づいて通信パスを集約し、集約した通信パスの各々と集約ポリシの属性(図52のグループID)とを対応付ける。図52の例では、制御部63は、QCIに基づいて集約された通信パスとQCI値(グループID)とが対応付けられるように、経路情報DB50を変更する。管理装置6が、上述のように経路情報DB50を変更することで、制御装置5は、第6の実施形態で例示された方法で通信装置4を制御することが可能となる。
FIG. 52 shows an example of the route information DB 50 when communication paths are aggregated based on the QCI. The control unit 63 aggregates the communication paths based on the attribute of the aggregation policy (QCI in the example of FIG. 52), and associates each of the aggregated communication paths with the attribute of the aggregation policy (group ID in FIG. 52). In the example of FIG. 52, the control unit 63 changes the route information DB 50 so that the communication paths aggregated based on the QCI and the QCI value (group ID) are associated with each other. When the management device 6 changes the route information DB 50 as described above, the control device 5 can control the communication device 4 by the method exemplified in the sixth embodiment.
管理装置6の制御部63もしくは制御装置5の制御部51は、例えば、通信パスの状態が集約ポリシの属性から変更された場合に、通信パス再構築を実行することが可能である。通信パスの再構築とは、通信パスの解放後、再度通信パスの構築をすることを意味する。例えば、制御部63もしくは制御部51は、通信パスの状態が集約ポリシの属性から変更された場合に、該当の通信パスの再構築を行うことが可能である。例えば、制御部63もしくは制御部51は、単位期間あたりの端末1の通信量が一定の値を超過した場合に、該当の通信パスの再構築を促す。また、必要に応じて、経路情報DB50を変更しても良い。通信パスの再構築を行うことで、通信パスは現在の状態に合ったグループに所属することができる。このように、制御装置5や管理装置6は、現在の状態に合ったグループに通信パスを所属させることにより、仮想U-plane31の増減設時の通信パスの仮想U-plane31への再割り当て処理負荷が過剰に高くなることを抑制することができる。なぜなら、現在の状態に合ったグループに所属していない通信パスが存在すると、グループ化して制御とは別に、その通信パスを個別に制御する必要があるためである。
The control unit 63 of the management device 6 or the control unit 51 of the control device 5 can execute communication path reconstruction when the state of the communication path is changed from the attribute of the aggregate policy, for example. Reconstructing a communication path means reconstructing a communication path after releasing the communication path. For example, the control unit 63 or the control unit 51 can reconfigure the corresponding communication path when the communication path state is changed from the attribute of the aggregate policy. For example, when the communication amount of the terminal 1 per unit period exceeds a certain value, the control unit 63 or the control unit 51 prompts the reconstruction of the corresponding communication path. Further, the route information DB 50 may be changed as necessary. By reconstructing the communication path, the communication path can belong to a group suitable for the current state. As described above, the control device 5 and the management device 6 reassign the communication path to the virtual U-plane 31 when the virtual U-plane 31 is increased or decreased by causing the communication path to belong to the group that matches the current state. An excessive increase in the load can be suppressed. This is because if there is a communication path that does not belong to the group that matches the current state, it is necessary to control the communication path separately from the grouping and control.
図53は、オペレータが集約された通信パスを管理する例を示す。オペレータは、例えば、集約された通信パスを選択し、選択した通信パスを他の仮想ゲートウェイ3にDrag&Dropすることで、集約された通信パスと仮想ゲートウェイ3との対応関係を切り替える。集約された通信パスと仮想ゲートウェイ3との対応関係が切り替えられたことに応じて、制御部63は、制御装置5の経路情報DB50を変更する。
FIG. 53 shows an example in which the operator manages the communication paths aggregated. For example, the operator selects an aggregated communication path, and drags and drops the selected communication path to another virtual gateway 3 to switch the correspondence relationship between the aggregated communication path and the virtual gateway 3. The control unit 63 changes the route information DB 50 of the control device 5 in response to switching of the correspondence relationship between the aggregated communication path and the virtual gateway 3.
図54は、制御部63が経路情報DB50を変更する例を示す。制御部63は、グループID(図54の例ではQCI値に対応するID)をキーとして、グループに対応するゲートウェイを変更する。図53および図54の例では、制御部63は、QCI値が“3”の集約通信パスに対応する仮想ゲートウェイ3を、IDが“X”のゲートウェイからIDが“XX”のゲートウェイに切り替える。制御装置5は、経路情報DB50が変更されたことに応じて、例えば第6実施形態で例示された方法で、通信装置4の経路情報DB42を変更する。
FIG. 54 shows an example in which the control unit 63 changes the route information DB 50. The control unit 63 changes the gateway corresponding to the group using the group ID (ID corresponding to the QCI value in the example of FIG. 54) as a key. In the example of FIGS. 53 and 54, the control unit 63 switches the virtual gateway 3 corresponding to the aggregated communication path having the QCI value “3” from the gateway having the ID “X” to the gateway having the ID “XX”. The control device 5 changes the route information DB 42 of the communication device 4 by the method exemplified in the sixth embodiment, for example, in response to the change of the route information DB 50.
上述のように、制御部63は、グループIDをキーとして、集約された通信パスに対応するゲートウェイを一括で変更できる。よって、制御部63は、経路情報DB50のそれぞれのエントリに対応するゲートウェイを変更する場合と比較して、制御信号の量やゲートウェイの切り替え時間を大幅に削減できる。
As described above, the control unit 63 can collectively change the gateways corresponding to the aggregated communication paths using the group ID as a key. Therefore, the control unit 63 can significantly reduce the amount of control signal and the gateway switching time, compared with the case where the gateway corresponding to each entry of the route information DB 50 is changed.
図55は、管理装置6が、複数の集約ポリシにより通信パスを集約する例を示す。図55の例では、通信パスは、通信パスのQCIと、端末1の状態とに基づいて集約される。
FIG. 55 shows an example in which the management apparatus 6 aggregates communication paths using a plurality of aggregation policies. In the example of FIG. 55, the communication paths are aggregated based on the QCI of the communication path and the state of the terminal 1.
図55において、オペレータは、QCI値で集約された通信パスを選択( “1.Click”)し、他の集約ポリシを選択( “2.Click”)する。オペレータの操作により、管理装置6は、QCI値が“3”の集約通信パスを、端末1の状態(IDLE状態 or CONNECTED状態)に応じて分割して表示する。
55, the operator selects a communication path aggregated by the QCI value (“1. Click”), and selects another aggregation policy (“2. Click”). By the operation of the operator, the management device 6 divides and displays the aggregated communication path having the QCI value “3” according to the state of the terminal 1 (IDLE state or CONNECTED state).
制御部63は、通信パスが複数の集約ポリシに基づいて集約されたことに応じて、制御装置5の経路情報DB50を変更する。図56は、複数の集約ポリシに基づく経路情報DB50の例を示す。制御部63は、図55の例のように、QCI値が“3”の集約通信パスに、端末1の状態に関する集約ポリシが更に追加されたことに応じて、図56の例のように、経路情報DB50を変更する。
The control unit 63 changes the route information DB 50 of the control device 5 in response to the communication paths being aggregated based on a plurality of aggregation policies. FIG. 56 shows an example of the route information DB 50 based on a plurality of aggregation policies. As shown in the example of FIG. 56, the control unit 63 responds to the addition of the aggregate policy regarding the state of the terminal 1 to the aggregated communication path having the QCI value “3” as in the example of FIG. The route information DB 50 is changed.
以上、本発明の実施形態を説明したが、本発明は、上記したそれぞれの実施形態に限定されるものではない。本発明は、各実施形態の変形・置換・調整に基づいて実施できる。また、本発明は、各実施形態を任意に組み合わせて実施することもできる。即ち、本発明は、本明細書の全ての開示内容、技術的思想に従って実現できる各種変形、修正を含む。また、本発明は、SDN(Software-Defined Network)の技術分野にも適用可能である。
As mentioned above, although embodiment of this invention was described, this invention is not limited to each above-mentioned embodiment. The present invention can be implemented based on modifications, substitutions, and adjustments of the embodiments. The present invention can also be implemented by arbitrarily combining the embodiments. That is, the present invention includes various modifications and corrections that can be realized in accordance with all the disclosed contents and technical ideas of the present specification. The present invention can also be applied to the technical field of SDN (Software-Defined Network).
本発明は、通信パスを介して通信する通信システム一般に適用可能である。
The present invention is applicable to general communication systems that communicate via a communication path.
1 端末
2 基地局
3 ゲートウェイ
3A 仮想ゲートウェイ
4 通信装置
4A 仮想スイッチ
4B 通信装置
5 制御装置
5A 制御装置(仮想コントローラ)
6 管理装置
30 仮想C-plane
31 仮想U-plane
32 インターフェース
33 サーバ
40 通信パス識別部
41 切替部
42 経路情報DB
43 制御部
44 検索部
45 処理部
46 フローエントリDB
50 経路情報DB
51 制御部
52 通信インターフェース
53 フローエントリDB
54 ポリシDB
60 ポリシ生成部
61 インターフェース
62 UI表示部
63 制御部
64 ディスプレイ
65 経路情報生成部
700 GUI
701 ネットワーク表示ウィンドウ
702 オペレーションウィンドウ
703 集約ポリシ DESCRIPTION OFSYMBOLS 1 Terminal 2 Base station 3 Gateway 3A Virtual gateway 4 Communication apparatus 4A Virtual switch 4B Communication apparatus 5 Control apparatus 5A Control apparatus (virtual controller)
6Management device 30 Virtual C-plane
31 Virtual U-plane
32 Interface 33Server 40 Communication path identification unit 41 Switching unit 42 Route information DB
43Control unit 44 Search unit 45 Processing unit 46 Flow entry DB
50 Route information DB
51Control Unit 52 Communication Interface 53 Flow Entry DB
54 Policy DB
60 Policy generation unit 61 Interface 62 UI display unit 63 Control unit 64 Display 65 Routeinformation generation unit 700 GUI
701 Network display window 702Operation window 703 Aggregation policy
2 基地局
3 ゲートウェイ
3A 仮想ゲートウェイ
4 通信装置
4A 仮想スイッチ
4B 通信装置
5 制御装置
5A 制御装置(仮想コントローラ)
6 管理装置
30 仮想C-plane
31 仮想U-plane
32 インターフェース
33 サーバ
40 通信パス識別部
41 切替部
42 経路情報DB
43 制御部
44 検索部
45 処理部
46 フローエントリDB
50 経路情報DB
51 制御部
52 通信インターフェース
53 フローエントリDB
54 ポリシDB
60 ポリシ生成部
61 インターフェース
62 UI表示部
63 制御部
64 ディスプレイ
65 経路情報生成部
700 GUI
701 ネットワーク表示ウィンドウ
702 オペレーションウィンドウ
703 集約ポリシ DESCRIPTION OF
6
31 Virtual U-plane
32 Interface 33
43
50 Route information DB
51
54 Policy DB
60 Policy generation unit 61 Interface 62 UI display unit 63 Control unit 64 Display 65 Route
701 Network display window 702
Claims (30)
- ネットワークに設定される通信パスを介して通信する通信装置であって、
通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を受信可能な第一の手段と、
前記処理規則に基づいて、受信パケットの通信パス識別子に対応するゲートウェイに対して当該受信パケットを転送可能な第二の手段と
を含むことを特徴とする通信装置。 A communication device that communicates via a communication path set in a network,
A process including an identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier A first means capable of receiving the rules;
And a second means capable of transferring the received packet to the gateway corresponding to the communication path identifier of the received packet based on the processing rule. - 前記第二の手段は、前記受信パケットのアウターヘッダに含まれる前記情報に基づいて、前記受信パケットに対応する前記処理規則を検索可能である
ことを特徴とする請求項1の通信装置。 The communication apparatus according to claim 1, wherein the second means can search for the processing rule corresponding to the received packet based on the information included in an outer header of the received packet. - 前記第一の手段は、前記通信パスと前記ゲートウェイとの対応関係を管理する制御装置から、前記処理規則を受信する
ことを特徴とする請求項1または2の通信装置。 The communication device according to claim 1, wherein the first unit receives the processing rule from a control device that manages a correspondence relationship between the communication path and the gateway. - 前記第二の手段は、前記受信パケットに対応する前記処理規則が未設定の場合、前記受信パケットに対応する前記処理規則を、制御装置に要求可能である
ことを特徴とする請求項1乃至3のいずれか1項の通信装置。 The second means can request the processing rule corresponding to the received packet to the control device when the processing rule corresponding to the received packet is not set. The communication device according to any one of the above. - 前記第一の手段は、複数の前記ゲートウェイに対して共通に割り当てられたアドレスと前記通信パス識別子とを含む前記情報に基づいて前記通信フローを識別するための前記識別ルールと、前記処理ルールとを含む前記処理規則を受信可能である
ことを特徴とする請求項1乃至4のいずれか1項の通信装置。 The first means includes the identification rule for identifying the communication flow based on the information including an address commonly assigned to a plurality of the gateways and the communication path identifier, and the processing rule. The communication apparatus according to any one of claims 1 to 4, wherein the processing rule including: can be received. - 前記第二の手段は、前記受信パケットの宛先アドレスを、前記受信パケットの通信パス識別子に対応するゲートウェイに割り当てられたアドレスに変換し、当該ゲートウェイに前記受信パケットを転送可能である
ことを特徴とする請求項1乃至4のいずれか1項の通信装置。 The second means is capable of converting a destination address of the received packet into an address assigned to a gateway corresponding to a communication path identifier of the received packet, and transferring the received packet to the gateway. The communication apparatus according to any one of claims 1 to 4. - 前記第二の手段は、前記ネットワークノードから受信した前記受信パケットの送信元アドレスを、前記複数のネットワークノードに対して共通に割り当てられたアドレスに変換し、前記受信パケットを転送可能である
ことを特徴とする請求項1乃至4のいずれか1項の通信装置。 The second means can convert the source address of the received packet received from the network node to an address commonly assigned to the plurality of network nodes, and can transfer the received packet. The communication device according to any one of claims 1 to 4, wherein the communication device is characterized in that: - ネットワークに設定される通信パスを介して通信する通信装置を制御可能な制御装置であって、
前記通信パスと前記ゲートウェイとの対応関係を管理可能な第一の手段と、
通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を、前記通信装置に通知可能な第二の手段と
を含むことを特徴とする制御装置。 A control device capable of controlling a communication device that communicates via a communication path set in a network,
A first means capable of managing a correspondence relationship between the communication path and the gateway;
A process including an identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier And a second means capable of notifying the communication device of a rule. - 前記第二の手段は、前記パケットのアウターヘッダに含まれる前記情報に基づいて前記通信フローを識別するための前記識別ルールを含む前記処理規則を、前記通信装置に通知可能である
ことを特徴とする請求項8の制御装置。 The second means is capable of notifying the communication device of the processing rule including the identification rule for identifying the communication flow based on the information included in the outer header of the packet. The control device according to claim 8. - 前記第二の手段は、前記受信パケットに対応する前記処理規則が未設定の場合に、前記通信装置から送信された要求に応じて、前記処理規則を前記通信装置に通知可能である
ことを特徴とする請求項8または9の制御装置。 The second means is capable of notifying the communication device of the processing rule in response to a request transmitted from the communication device when the processing rule corresponding to the received packet is not set. The control device according to claim 8 or 9. - 前記第二の手段は、複数の前記ゲートウェイに対して共通に割り当てられたアドレスと前記通信パス識別子とを含む前記情報に基づいて前記通信フローを識別するための前記識別ルールと、前記処理ルールとを含む前記処理規則を、前記通信装置に通知可能である
ことを特徴とする請求項8乃至10のいずれか1項の制御装置。 The second means includes the identification rule for identifying the communication flow based on the information including an address commonly assigned to the plurality of gateways and the communication path identifier, and the processing rule. The control device according to any one of claims 8 to 10, wherein the processing rule including: can be notified to the communication device. - 前記第二の手段は、前記受信パケットの宛先アドレスを、前記受信パケットの通信パス識別子に対応するゲートウェイに割り当てられたアドレスに変換し、当該ゲートウェイに前記受信パケットを転送するための前記処理ルールを含む前記処理規則を、前記通信装置に通知可能である
ことを特徴とする請求項8乃至10のいずれか1項の制御装置。 The second means converts the destination address of the received packet into an address assigned to a gateway corresponding to a communication path identifier of the received packet, and sets the processing rule for transferring the received packet to the gateway. The control device according to any one of claims 8 to 10, wherein the processing rule including the information can be notified to the communication device. - 前記第二の手段は、前記ゲートウェイから受信した前記受信パケットの送信元アドレスを、前記複数のゲートウェイに対して共通に割り当てられたアドレスに変換し、前記受信パケットを転送するための前記処理ルールを含む前記処理規則を、前記通信装置に通知可能である
ことを特徴とする請求項8乃至10のいずれか1項の制御装置。 The second means converts the source address of the received packet received from the gateway into an address commonly assigned to the plurality of gateways, and transfers the processing rule for transferring the received packet. The control device according to any one of claims 8 to 10, wherein the processing rule including the information can be notified to the communication device. - 前記第二の手段は、前記受信パケットが属する前記通信パスに関連付けられた前記ゲートウェイに対して、当該通信パスを終端するための指示を通知可能である
ことを特徴とする請求項8乃至14のいずれか1項の制御装置。 15. The second means can notify the gateway associated with the communication path to which the received packet belongs to an instruction for terminating the communication path. Any one control device. - ネットワークに設定される通信パスを介して通信する通信方法であって、
通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を受信し、
前記処理規則に基づいて、受信パケットの通信パス識別子に対応するゲートウェイに対して当該受信パケットを転送する
を含むことを特徴とする通信方法。 A communication method for communicating via a communication path set in a network,
A process including an identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier Receive the rules,
A communication method comprising: forwarding the received packet to a gateway corresponding to the communication path identifier of the received packet based on the processing rule. - 前記受信パケットのアウターヘッダに含まれる前記情報に基づいて、前記受信パケットに対応する前記処理規則を検索する
ことを特徴とする請求項15の通信方法。 The communication method according to claim 15, wherein the processing rule corresponding to the received packet is searched based on the information included in the outer header of the received packet. - 前記通信パスと前記ゲートウェイとの対応関係を管理する制御装置から、前記処理規則を受信する
ことを特徴とする請求項15または16の通信方法。 The communication method according to claim 15 or 16, wherein the processing rule is received from a control device that manages a correspondence relationship between the communication path and the gateway. - 前記受信パケットに対応する前記処理規則が未設定の場合、前記受信パケットに対応する前記処理規則を、制御装置に要求する
ことを特徴とする請求項15乃至17のいずれか1項の通信方法。 The communication method according to any one of claims 15 to 17, wherein when the processing rule corresponding to the received packet is not set, the processing rule corresponding to the received packet is requested to a control device. - 複数の前記ゲートウェイに対して共通に割り当てられたアドレスと前記通信パス識別子とを含む前記情報に基づいて前記通信フローを識別するための前記識別ルールと、前記処理ルールとを含む前記処理規則を受信する
ことを特徴とする請求項15乃至18のいずれか1項の通信方法。 The processing rule including the identification rule for identifying the communication flow based on the information including an address commonly assigned to the plurality of gateways and the communication path identifier, and the processing rule is received. The communication method according to any one of claims 15 to 18, wherein: - 前記受信パケットの宛先アドレスを、前記受信パケットの通信パス識別子に対応するゲートウェイに割り当てられたアドレスに変換し、当該ゲートウェイに前記受信パケットを転送する
ことを特徴とする請求項15乃至18のいずれか1項の通信方法。 19. The destination address of the received packet is converted into an address assigned to a gateway corresponding to a communication path identifier of the received packet, and the received packet is transferred to the gateway. The communication method according to Item 1. - 前記ネットワークノードから受信した前記受信パケットの送信元アドレスを、前記複数のネットワークノードに対して共通に割り当てられたアドレスに変換し、前記受信パケットを転送する
ことを特徴とする請求項15乃至18のいずれか1項の通信方法。 19. The source address of the received packet received from the network node is converted into an address commonly assigned to the plurality of network nodes, and the received packet is forwarded. The communication method according to any one of the items. - ネットワークに設定される通信パスを介して通信する通信装置を制御する制御方法であって、
前記通信パスと前記ゲートウェイとの対応関係を管理し、
通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を、前記通信装置に通知する
ことを特徴とする制御方法。 A control method for controlling a communication device that communicates via a communication path set in a network,
Managing the correspondence between the communication path and the gateway;
A process including an identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier A rule is notified to the communication device. - 前記パケットのアウターヘッダに含まれる前記情報に基づいて前記通信フローを識別するための前記識別ルールを含む前記処理規則を、前記通信装置に通知する
ことを特徴とする請求項22の制御方法。 The control method according to claim 22, wherein the processing rule including the identification rule for identifying the communication flow based on the information included in an outer header of the packet is notified to the communication device. - 前記受信パケットに対応する前記処理規則が未設定の場合に、前記通信装置から送信された要求に応じて、前記処理規則を前記通信装置に通知する
ことを特徴とする請求項22または23の制御方法。 The control according to claim 22 or 23, wherein when the processing rule corresponding to the received packet is not set, the processing rule is notified to the communication device in response to a request transmitted from the communication device. Method. - 複数の前記ゲートウェイに対して共通に割り当てられたアドレスと前記通信パス識別子とを含む前記情報に基づいて前記通信フローを識別するための前記識別ルールと、前記処理ルールとを含む前記処理規則を、前記通信装置に通知する
ことを特徴とする請求項22乃至24のいずれか1項の制御方法。 The processing rule including the identification rule for identifying the communication flow based on the information including an address commonly assigned to a plurality of the gateways and the communication path identifier, and the processing rule. The control method according to any one of claims 22 to 24, wherein the communication device is notified. - 前記受信パケットの宛先アドレスを、前記受信パケットの通信パス識別子に対応するゲートウェイに割り当てられたアドレスに変換し、当該ゲートウェイに前記受信パケットを転送するための前記処理ルールを含む前記処理規則を、前記通信装置に通知する
ことを特徴とする請求項22乃至24のいずれか1項の制御方法。 The processing rule including the processing rule for converting the destination address of the received packet into an address assigned to the gateway corresponding to the communication path identifier of the received packet and forwarding the received packet to the gateway, The control method according to any one of claims 22 to 24, wherein the communication device is notified. - 前記ゲートウェイから受信した前記受信パケットの送信元アドレスを、前記複数のゲートウェイに対して共通に割り当てられたアドレスに変換し、前記受信パケットを転送するための前記処理ルールを含む前記処理規則を、前記通信装置に通知する
ことを特徴とする請求項22乃至24のいずれか1項の制御方法。 The processing rule including the processing rule for converting the source address of the received packet received from the gateway to an address commonly assigned to the plurality of gateways and transferring the received packet, The control method according to any one of claims 22 to 24, wherein the communication device is notified. - 前記受信パケットが属する前記通信パスに関連付けられた前記ゲートウェイに対して、当該通信パスを終端するための指示を通知する
ことを特徴とする請求項22乃至27のいずれか1項の制御方法。 The control method according to any one of claims 22 to 27, wherein an instruction for terminating the communication path is notified to the gateway associated with the communication path to which the received packet belongs. - ネットワークに設定される通信パスを介して通信する通信装置に、
通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を受信する処理と、
前記処理規則に基づいて、受信パケットの通信パス識別子に対応するゲートウェイに対して当該受信パケットを転送する処理と
を実行させることを特徴とするプログラム。 To a communication device that communicates via a communication path set in the network,
A process including an identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier Processing to receive the rules;
A program for causing a gateway corresponding to a communication path identifier of a received packet to execute a process of transferring the received packet based on the processing rule. - ネットワークに設定される通信パスを介して通信する通信装置を制御可能な制御装置
に、
前記通信パスと前記ゲートウェイとの対応関係を管理する処理と、
通信パス識別子を含む情報に基づいて通信フローを識別するための識別ルールと、前記識別ルールにより識別されたパケットを、前記通信パス識別子に対応するゲートウェイに転送することを示す処理ルールとを含む処理規則を、前記通信装置に通知する処理と
を実行させることを特徴とするプログラム。 To a control device that can control a communication device that communicates via a communication path set in the network,
A process for managing the correspondence between the communication path and the gateway;
A process including an identification rule for identifying a communication flow based on information including a communication path identifier, and a processing rule indicating that a packet identified by the identification rule is transferred to a gateway corresponding to the communication path identifier A program for causing a rule to be notified to the communication device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015533991A JP6500777B2 (en) | 2013-08-26 | 2014-08-25 | Communication apparatus and method in communication system, control apparatus and method for communication path |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361870119P | 2013-08-26 | 2013-08-26 | |
US61/870,119 | 2013-08-26 | ||
JP2013250065 | 2013-12-03 | ||
JP2013-250065 | 2013-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015029418A1 true WO2015029418A1 (en) | 2015-03-05 |
Family
ID=52586008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004364 WO2015029418A1 (en) | 2013-08-26 | 2014-08-25 | Communication apparatus and method in communication system, and communication path control apparatus and method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6500777B2 (en) |
WO (1) | WO2015029418A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021192628A1 (en) * | 2020-03-25 | 2021-09-30 | ソニーグループ株式会社 | Network control device, network control method, and program |
JP7528544B2 (en) | 2020-06-04 | 2024-08-06 | 富士フイルムビジネスイノベーション株式会社 | COMMUNICATION CONTROL DEVICE, COMMUNICATION CONTROL PROGRAM, AND COMMUNICATION CONTROL SYSTEM |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013121841A1 (en) * | 2012-02-16 | 2013-08-22 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile communication system, communication system, control node, call-processing node, and communication control method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9615318B2 (en) * | 2011-09-20 | 2017-04-04 | Nokia Solutions And Networks Oy | Multiplexing core networks in RAN sharing |
-
2014
- 2014-08-25 JP JP2015533991A patent/JP6500777B2/en active Active
- 2014-08-25 WO PCT/JP2014/004364 patent/WO2015029418A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013121841A1 (en) * | 2012-02-16 | 2013-08-22 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile communication system, communication system, control node, call-processing node, and communication control method |
Non-Patent Citations (1)
Title |
---|
SHIGEAKI MAEDA: "OpenFlow ver1.1 Oyobi verl.2 no Tsuika Kino to Katsuyorei", THINK IT, 23 February 2012 (2012-02-23), Retrieved from the Internet <URL:http://thinkit.co.jp/story/2012/02/23/3388> * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021192628A1 (en) * | 2020-03-25 | 2021-09-30 | ソニーグループ株式会社 | Network control device, network control method, and program |
JP7528544B2 (en) | 2020-06-04 | 2024-08-06 | 富士フイルムビジネスイノベーション株式会社 | COMMUNICATION CONTROL DEVICE, COMMUNICATION CONTROL PROGRAM, AND COMMUNICATION CONTROL SYSTEM |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015029418A1 (en) | 2017-03-02 |
JP6500777B2 (en) | 2019-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015029420A1 (en) | Communication apparatus, communication method, control apparatus and management apparatus in communication system | |
US9819578B2 (en) | Communication device and method in a communication system, and device and method for communication path control | |
JP6436103B2 (en) | Information processing apparatus, communication method, network control apparatus, network control method, communication system, and program | |
US10638376B2 (en) | RAN based gateway functions | |
EP3107249B1 (en) | Information processing device, communication method, and computer program | |
WO2015029417A1 (en) | Communication apparatus and method in communication system, and communication path control apparatus and method | |
WO2015133124A1 (en) | Server, control device, management device, communication system, communication method, control method, management method, and program | |
WO2015133126A1 (en) | Server, control device, management device, communication system, communication method, control method, management method, and program | |
WO2015133125A1 (en) | Server, control device, management device, communication system, communication method, control method, management method, and program | |
JP6414065B2 (en) | Communication apparatus and method in communication system, communication path control apparatus and method | |
US20170164253A1 (en) | Communication system, communication apparatus, communication method, and program | |
JP6515920B2 (en) | Communication apparatus, communication method, communication system and program | |
WO2015029418A1 (en) | Communication apparatus and method in communication system, and communication path control apparatus and method | |
US20170099221A1 (en) | Service packet distribution method and apparatus | |
WO2015122178A1 (en) | Information processing device, communication method, network control device, network control method, communication system, and program | |
WO2015141227A1 (en) | Communication device, communication method, communication system, and program | |
WO2015029419A1 (en) | Management apparatus and method in communication system | |
US20170134505A1 (en) | Communication apparatus, communication method, and program | |
WO2015141229A1 (en) | Communication device, communication method, communication system, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14840157 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015533991 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14840157 Country of ref document: EP Kind code of ref document: A1 |