Nothing Special   »   [go: up one dir, main page]

WO2015029346A1 - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
WO2015029346A1
WO2015029346A1 PCT/JP2014/004114 JP2014004114W WO2015029346A1 WO 2015029346 A1 WO2015029346 A1 WO 2015029346A1 JP 2014004114 W JP2014004114 W JP 2014004114W WO 2015029346 A1 WO2015029346 A1 WO 2015029346A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
upstream
downstream
evaporator
ejector
Prior art date
Application number
PCT/JP2014/004114
Other languages
English (en)
French (fr)
Inventor
大介 中島
高野 義昭
西嶋 春幸
佳之 横山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US14/914,565 priority Critical patent/US20160200175A1/en
Priority to DE112014003979.9T priority patent/DE112014003979T5/de
Publication of WO2015029346A1 publication Critical patent/WO2015029346A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00185Distribution of conditionned air
    • B60H2001/002Distribution of conditionned air to front and rear part of passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0015Ejectors not being used as compression device using two or more ejectors

Definitions

  • the present disclosure relates to an ejector-type refrigeration cycle including an ejector as a refrigerant decompression device.
  • an ejector refrigeration cycle which is a vapor compression refrigeration cycle equipped with an ejector as a refrigerant decompression device, is known.
  • a branch part that branches the flow of the refrigerant is arranged downstream of a radiator that dissipates high-pressure refrigerant discharged from a compressor, and one of the refrigerants branched at the branch part is disposed in an ejector.
  • An ejector-type refrigeration cycle is disclosed in which it flows out to the nozzle part side and guides the other refrigerant to the refrigerant suction port side of the ejector.
  • a first evaporator that evaporates the refrigerant that has flowed out of the ejector is disposed on the downstream side of the booster section (diffuser section) of the ejector.
  • a fixed throttle for decompressing the refrigerant and a second evaporator (suction side evaporator) for evaporating the refrigerant decompressed by the fixed throttle are disposed between the refrigerant suction port and the refrigerant suction port. In both evaporators, the refrigerant can cool the cooling target fluid.
  • the refrigerant pressurized by the booster of the ejector is caused to flow into the first evaporator, and the pressure is reduced by the nozzle of the ejector on the refrigerant outlet side of the second evaporator.
  • the refrigerant evaporation pressure (refrigerant evaporation temperature) in the second evaporator is made lower than the refrigerant evaporation pressure (refrigerant evaporation temperature) in the first evaporator.
  • the first refrigerant evaporates the mixed refrigerant of the injection refrigerant decompressed by the nozzle portion of the ejector and the suction refrigerant sucked from the refrigerant suction port of the ejector. Therefore, the enthalpy of the refrigerant flowing into the first evaporator tends to be higher than the enthalpy of the refrigerant flowing into the second evaporator.
  • the refrigerating capacity exhibited by the refrigerant in the first evaporator (the value obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the outlet side refrigerant of the evaporator) is greater than the refrigerating capacity exhibited by the refrigerant in the second evaporator. Also tends to be small. Furthermore, the refrigerant flow rate (mass flow rate) flowing into the first evaporator also tends to be different from the refrigerant flow rate (mass flow rate) flowing into the second evaporator.
  • the cooling capacity necessary for cooling the fluid to be cooled at a desired flow rate to a desired temperature is the refrigerant evaporation temperature in the evaporator described above. It is determined by the refrigerating capacity that the refrigerant exhibits in the evaporator, the flow rate of the refrigerant flowing into the evaporator, and the like.
  • the cooling capacity is improved as the refrigerant evaporation temperature in the evaporator is lowered, the cooling capacity is improved as the refrigerating capacity of the refrigerant is increased in the evaporator, and the evaporator As the flow rate of refrigerant flowing into the refrigerant increases, the cooling capacity improves.
  • the cooling capacity in the first evaporator and the cooling capacity in the second evaporator tend to be different. Furthermore, when the cooling capacity in the first evaporator and the cooling capacity in the second evaporator are greatly different from each other, when the different cooling target fluids are cooled in the respective evaporators, the cooling is performed in the respective evaporators. The temperature of the cooling target fluid becomes non-uniform.
  • the ejector-type refrigeration cycle of Patent Document 1 is applied to a vehicle air conditioner of a dual air conditioner type, and one evaporator is used to cool the front seat side blown air that is blown to the vehicle front seat side, If the other evaporator is used to cool the rear-seat-side air blown to the vehicle rear-seat side, the temperature of the front-seat-side air and the rear-seat-side air may become uneven. There is.
  • the present disclosure aims to bring the cooling capacity of the cooling target fluid in each evaporator closer to each other in an ejector-type refrigeration cycle including a plurality of evaporators.
  • the present disclosure has been devised to achieve the above object, and the ejector refrigeration cycle according to the first aspect of the present disclosure includes a compressor that compresses and discharges a refrigerant, and a refrigerant that is discharged from the compressor.
  • the upstream side sucks the refrigerant from the upstream side refrigerant suction port by the suction action of the side injection refrigerant, and pressurizes the mixed refrigerant of the upstream side injection refrigerant and the upstream side suction refrigerant sucked from the upstream side refrigerant suction port in the upstream side boosting unit.
  • a low-pressure side gas-liquid separator a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant flowing out from the upstream-side ejector, and the separated gas-phase refrigerant flows out to the suction port side of the compressor.
  • the separated liquid refrigerant is evaporated
  • An upstream refrigerant suction port comprising: a first evaporator, a decompression device that decompresses the other refrigerant branched at the upstream branching portion, and a second evaporator that evaporates the refrigerant decompressed by the decompression device. Is connected to at least the refrigerant outlet side of the first evaporator.
  • the liquid phase refrigerant separated by the low pressure side gas-liquid separator is caused to flow into the first evaporator, a refrigerant having a relatively low enthalpy can be caused to flow into the first evaporator.
  • the refrigerant that has flowed out of the radiator and depressurized by the decompression device flows into the second evaporator, the refrigerant having a relatively low enthalpy can be flowed into the second evaporator.
  • the difference between the enthalpy of the refrigerant flowing into the first evaporator and the enthalpy of the refrigerant flowing into the second evaporator can be reduced, the refrigerating capacity exhibited by the refrigerant in the first evaporator, and the second evaporation
  • the refrigeration capacity exhibited by the refrigerant can be brought close to the refrigerator.
  • the cooling capacity in the first evaporator and the cooling capacity in the second evaporator can be brought close to each other.
  • An ejector refrigeration cycle includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, and an upstream that branches the flow of the refrigerant that flows out of the radiator
  • the refrigerant is sucked from the upstream refrigerant suction port by the suction action of the high-speed upstream injection refrigerant injected from the upstream nozzle part that depressurizes one refrigerant branched at the side branch part and the upstream branch part
  • An upstream ejector for increasing the pressure of the mixed refrigerant of the upstream injection refrigerant and the upstream suction refrigerant sucked from the upstream refrigerant suction port at the upstream pressure increase unit, and the downstream side for branching the flow of the refrigerant flowing out from the upstream ejector
  • the refrigerant is sucked from the downstream refrigerant suction port by the suction action of the
  • a downstream ejector that boosts the mixed refrigerant of the downstream injection refrigerant and the downstream suction refrigerant sucked from the downstream refrigerant suction port at the downstream boosting unit and the other refrigerant branched at the downstream branching unit evaporate A first evaporator to be depressurized, a depressurizing device that depressurizes the other refrigerant branched in the upstream branching section, and a second evaporator that evaporates the refrigerant depressurized by the depressurizing device.
  • the refrigerant outlet side of the first evaporator is connected to the upstream side refrigerant suction port, and the refrigerant outlet side of the second evaporator is connected to the downstream side refrigerant suction port.
  • the refrigerant evaporation pressure in the second evaporator is larger than the pressure of the refrigerant flowing out from the downstream booster. Can be reduced.
  • the refrigerant evaporation pressure (refrigerant evaporation temperature) in the second evaporator can be lowered so as to approach the refrigerant evaporation pressure (refrigerant evaporation temperature) in the first evaporator.
  • the cooling capacity in the first evaporator and the cooling capacity in the second evaporator can be brought close to each other.
  • the ejector refrigeration cycle according to the third aspect of the present disclosure includes a compressor that compresses and discharges the refrigerant, a radiator that radiates the refrigerant discharged from the compressor, and a flow of the refrigerant that flows out of the radiator
  • the refrigerant is sucked from the upstream refrigerant suction port by the suction action of the high-speed upstream injection refrigerant that is injected from the upstream branch portion that performs the decompression and the upstream nozzle portion that depressurizes one refrigerant branched at the upstream branch portion.
  • the upstream ejector for increasing the pressure of the mixed refrigerant of the upstream injection refrigerant and the upstream suction refrigerant sucked from the upstream refrigerant suction port at the upstream pressure increase unit and the gas-liquid of the refrigerant flowing out from the upstream ejector are separated.
  • the upstream gas-liquid separator that causes the separated gas-phase refrigerant to flow out to the suction port side of the compressor, and the liquid-phase refrigerant separated by the upstream gas-liquid separator are evaporated, and the upstream refrigerant suction
  • the first steam that flows out to the mouth side The refrigerant is sucked from the downstream refrigerant suction port by the suction action of the high-speed downstream injection refrigerant injected from the downstream nozzle portion that depressurizes one of the refrigerant branched at the upstream branch portion.
  • the refrigerant flowing into the first evaporator and the refrigerant flowing into the second evaporator can be configured to depressurize by different pressure reducing devices, respectively, the refrigerant evaporation temperature in the first evaporator and the second It is easy to bring the refrigerant evaporation temperature in the evaporator close to the same temperature. Similarly, the flow rate of the refrigerant flowing into the first evaporator and the flow rate of the refrigerant flowing into the second evaporator are easily brought close to the same flow rate.
  • liquid phase refrigerant separated by the upstream gas-liquid separator is caused to flow into the first evaporator, and the liquid phase refrigerant separated by the downstream gas-liquid separator is caused to flow into the second evaporator. Therefore, it is easy to bring the refrigerating capacity exhibited by the refrigerant in the first evaporator closer to the refrigerating capacity exhibited by the refrigerant in the second evaporator.
  • the cooling capacity of the first evaporator and the cooling capacity of the second evaporator can be effectively brought close to each other.
  • the ejector refrigeration cycle includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates the refrigerant discharged from the compressor, and a flow of the refrigerant that has flowed out of the radiator
  • the upstream refrigerant suction port by the suction action of the high-speed upstream injection refrigerant injected from the upstream nozzle part that depressurizes one refrigerant branched at the first upstream branch part and the one refrigerant branched at the first upstream branch part
  • An upstream ejector that suctions the refrigerant from the upstream side and boosts the mixed refrigerant of the upstream injection refrigerant and the upstream suction refrigerant sucked from the upstream refrigerant suction port at the upstream side boosting unit, and the refrigerant that flows out of the upstream ejector.
  • a gas-liquid separator that separates the gas and liquid and causes the separated gas-phase refrigerant to flow out to the suction port side of the compressor, and a liquid-phase refrigerant separated by the gas-liquid separator are evaporated, and an upstream refrigerant suction
  • the first evaporator that flows out to the mouth side
  • a second upstream branch section that further branches the flow of the other refrigerant branched at the first upstream branch section, and a downstream nozzle section that depressurizes one refrigerant branched at the second upstream branch section
  • the refrigerant is sucked from the downstream refrigerant suction port by the suction action of the high-speed downstream jet refrigerant injected from the downstream, and the mixed refrigerant of the downstream injection refrigerant and the downstream suction refrigerant sucked from the downstream refrigerant suction port is downstream
  • a downstream ejector that boosts the pressure in the side boosting unit, a decompression device that decom
  • the refrigerant flowing into the first evaporator and the refrigerant flowing into the second evaporator can be configured to depressurize by different pressure reducing devices, respectively, the refrigerant evaporation temperature in the first evaporator and the second It is easy to bring the refrigerant evaporation temperature in the evaporator close to the same temperature. Similarly, the flow rate of the refrigerant flowing into the first evaporator and the flow rate of the refrigerant flowing into the second evaporator are easily brought close to the same flow rate.
  • the cooling capacity of the first evaporator and the cooling capacity of the second evaporator can be effectively brought close to each other.
  • the low-pressure refrigerant flowing into the internal heat exchanger can be in a gas-liquid two-phase state, the superheat degree of the refrigerant flowing out of the internal heat exchanger and sucked into the compressor is unnecessarily increased. Can be suppressed. Therefore, it can suppress that the refrigerant
  • FIGS. 1-3 1st Embodiment of this indication is described using FIGS. 1-3.
  • the ejector-type refrigeration cycle 10 of this embodiment is applied to a dual air-conditioner type vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is an air-conditioning target space.
  • the dual air-conditioner type vehicle air conditioner is a front-seat air conditioning unit for blowing air-conditioning air mainly to the front-seat area in the passenger compartment, and air-conditioning air mainly to the rear-seat area.
  • a rear-seat air conditioning unit for blowing out is provided, and a first evaporator 17 and a second evaporator 18 for evaporating the low-pressure refrigerant in the ejector-type refrigeration cycle 10 are disposed in the air passage of the blown air formed in each unit. It is a thing.
  • both the front seat side blown air blown to the vehicle interior front seat side and the rear seat side blown air blown to the vehicle interior rear seat side are the cooling target fluid of the ejector refrigeration cycle 10. It becomes.
  • the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure.
  • an HFO refrigerant specifically, R1234yf
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • the compressor 11 boosts and discharges the refrigerant until it is sucked into a high-pressure refrigerant.
  • the compressor 11 of the present embodiment is an electric compressor configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be adopted. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from a control device to be described later, and either an AC motor or a DC motor may be adopted.
  • the compressor 11 may be an engine-driven compressor that is driven by a rotational driving force transmitted from a vehicle travel engine via a pulley, a belt, or the like.
  • a variable displacement compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or adjusting the refrigerant discharge capacity by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed capacity compressor or the like can be employed.
  • the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port side of the compressor 11.
  • the radiator 12 is a heat exchanger for heat radiation that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and outside air (outside air) blown by the cooling fan 12d. .
  • the radiator 12 is a condensing unit that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12d to radiate and condense the high-pressure gas-phase refrigerant.
  • 12a a receiver unit 12b as a high-pressure side gas-liquid separator that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant, and the liquid-phase refrigerant that flows out from the receiver unit 12b and the cooling fan 12d
  • It is a so-called subcool type condenser configured to have a supercooling section 12c that exchanges heat with the outside air and supercools the liquid refrigerant.
  • the cooling fan 12d is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device.
  • a refrigerant inlet of an upstream branching portion 13 a that branches the flow of the refrigerant that has flowed out of the radiator 12 is connected to the refrigerant outlet side of the supercooling portion 12 c of the radiator 12.
  • the upstream branch portion 13a is configured by a three-way joint having three inflow / outflow ports.
  • One of the three inflow / outflow ports is a refrigerant inflow port, and the remaining two are refrigerant outflow ports.
  • Such a three-way joint may be formed by joining pipes having different pipe diameters, or may be formed by providing a plurality of refrigerant passages in a metal block or a resin block.
  • the refrigerant inlet 41a of the upstream nozzle part 41 of the upstream ejector 14 is connected to one refrigerant outlet of the upstream branch part 13a.
  • An upstream refrigerant formed in the upstream body portion 42 of the upstream ejector 14 is connected to the other refrigerant outlet of the upstream branch portion 13a via a high pressure side fixed throttle 16a and a second evaporator 18 which will be described later.
  • a suction port 41b is connected.
  • the upstream ejector 14 functions as a decompression device that decompresses the high-pressure refrigerant that has flowed out of the radiator 12, and sucks (transports) the refrigerant by the suction action of the injection refrigerant that is injected from the upstream nozzle portion 41 at a high speed.
  • it functions as a refrigerant circulation part (refrigerant transport part) that circulates in the cycle.
  • the upstream ejector 14 includes an upstream nozzle part 41 and an upstream body part 42.
  • the upstream nozzle portion 41 is formed of a substantially cylindrical metal (for example, a stainless alloy) that gradually tapers in the refrigerant flow direction, and isentropically depressurizes the refrigerant that has flowed into the inside.
  • the refrigerant is injected from the refrigerant injection port 41b provided on the most downstream side of the refrigerant flow.
  • a swirling space 41c for swirling the refrigerant flowing in from the refrigerant inlet 41a, and a refrigerant passage for depressurizing the refrigerant flowing out of the swirling space 41c.
  • the refrigerant passage further includes a minimum passage area portion 41d having the smallest refrigerant passage area, a tapered portion 41e for gradually reducing the refrigerant passage area from the swirl space 41c toward the minimum passage area portion 41d, and a minimum passage area portion.
  • a divergent portion 41f that gradually expands the refrigerant passage area from 41d toward the refrigerant injection port 41b is formed.
  • the swirl space 41c is a columnar space that is provided inside the cylindrical portion 41g that is provided on the most upstream side of the refrigerant flow of the upstream nozzle portion 41 and extends coaxially with the axial direction of the upstream nozzle portion 41. . Further, the refrigerant inflow passage connecting the refrigerant inlet 41a and the swirling space 41c extends in the tangential direction of the inner wall surface of the swirling space 41c when viewed from the central axis direction of the swirling space 41c.
  • the cylindrical part 41g constitutes a swirl flow generation part, and in this embodiment, the swirl flow generation part and the upstream nozzle part are integrally formed.
  • the refrigerant pressure on the central axis side is lower than the refrigerant pressure on the outer peripheral side in the swirling space 41c. Therefore, in the present embodiment, during normal operation of the ejector refrigeration cycle 10, the refrigerant pressure on the central axis side in the swirling space 41c is set to the pressure that becomes the saturated liquid phase refrigerant, or the refrigerant boils under reduced pressure (causes cavitation). The pressure is reduced until the pressure is reached.
  • Such adjustment of the refrigerant pressure on the central axis side in the swirling space 41c can be realized by adjusting the swirling flow velocity of the refrigerant swirling in the swirling space 41c.
  • the swirl flow velocity can be adjusted by adjusting, for example, the area ratio between the passage sectional area of the refrigerant inflow passage and the axial vertical sectional area of the swirling space 41c.
  • the swirling flow velocity in the present embodiment means the flow velocity in the swirling direction of the refrigerant in the vicinity of the outermost peripheral portion of the swirling space 41c.
  • the tapered portion 41e is arranged concentrically with the swirl space 41c and is formed in a truncated cone shape that gradually reduces the refrigerant passage area from the swirl space 41c toward the minimum passage area portion 41d.
  • the divergent portion 41f is arranged concentrically with the swirling space 41c and the tapered portion 41e, and is formed in a truncated cone shape that gradually increases the refrigerant passage area from the minimum passage area portion 41d toward the refrigerant injection port 41b.
  • the upstream body portion 42 is formed of a substantially cylindrical metal (for example, aluminum), functions as a fixing member that supports and fixes the upstream nozzle portion 41 therein, and is disposed outside the upstream ejector 14. It forms a shell. More specifically, the upstream nozzle portion 41 is fixed by press-fitting or the like so as to be housed inside the longitudinal body one end side of the upstream body portion 42.
  • a substantially cylindrical metal for example, aluminum
  • a portion corresponding to the outer peripheral side of the upstream nozzle portion 41 is provided so as to penetrate the inside and outside and communicate with the refrigerant injection port 41 b of the upstream nozzle portion 41.
  • the upstream refrigerant suction port 42a thus formed is formed.
  • the upstream refrigerant suction port 42 a is a through hole that sucks the refrigerant that has flowed out of the second evaporator 18 by the suction action of the injection refrigerant injected from the refrigerant injection port 41 b of the upstream nozzle portion 41 into the upstream ejector 14. It is.
  • an inlet space for allowing the refrigerant to flow is formed around the upstream refrigerant suction port 42a inside the upstream body part 42, and the outer peripheral wall surface around the tapered tip of the upstream nozzle part 41 and the upstream body.
  • a suction passage 42c is formed between the inner peripheral wall surface of the portion 42 and guides the suction refrigerant flowing into the upstream body portion 42 to the upstream diffuser portion 42b.
  • the refrigerant passage area of the suction passage 42c is gradually reduced in the refrigerant flow direction.
  • the flow rate of the suction refrigerant flowing through the suction passage 42c is gradually increased, and the energy loss when the suction refrigerant and the injection refrigerant are mixed in the upstream diffuser portion 42b. (Mixing loss) is reduced.
  • the upstream side diffuser portion 42b is arranged so as to be continuous with the outlet side of the suction passage 42c, and is formed so that the refrigerant passage area gradually increases.
  • the function of converting the kinetic energy of the mixed refrigerant of the injection refrigerant and the suction refrigerant into the pressure energy that is, the function of the upstream boosting unit that depressurizes the mixed refrigerant to increase the pressure of the mixed refrigerant.
  • the wall shape of the inner peripheral wall surface of the upstream body portion 42 forming the upstream diffuser portion 42b of the present embodiment is formed by combining a plurality of curves as shown in the axial cross section of FIG. Has been. And since the extent of expansion of the refrigerant passage cross-sectional area of the upstream side diffuser portion 42b gradually increases in the refrigerant flow direction and then decreases again, the refrigerant can be increased in an isentropic manner.
  • the refrigerant inlet of the gas-liquid separator 15 is connected to the refrigerant outlet side of the upstream ejector 14.
  • the gas-liquid separator 15 is a low-pressure side gas-liquid separator that separates the gas-liquid of the refrigerant flowing into the interior.
  • the gas-liquid separator 15 employs a component that causes the separated liquid-phase refrigerant to flow out from the liquid-phase refrigerant outlet without substantially accumulating, but stores excess liquid-phase refrigerant in the cycle. You may employ
  • the suction side of the compressor 11 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 15.
  • the refrigerant inlet side of the first evaporator 17 is connected to the liquid-phase refrigerant outlet of the gas-liquid separator 15 through a low-pressure side fixed throttle 16b as a decompression device.
  • the low-pressure side fixed throttle 16b is a decompression device that decompresses the liquid-phase refrigerant that has flowed out of the gas-liquid separator 15, and specifically, an orifice, a capillary tube, or a nozzle can be employed.
  • the first evaporator 17 exchanges heat between the low-pressure refrigerant decompressed by the upstream ejector 14 and the low-pressure side fixed throttle 16b and the front-seat side blown air blown from the blower fan 17a toward the front seat side in the vehicle interior.
  • This is an endothermic heat exchanger that evaporates the low-pressure refrigerant and exerts an endothermic effect.
  • the blower fan 17a is an electric blower in which the number of rotations (amount of blown air) is controlled by a control voltage output from the control device.
  • the refrigerant outlet side of the first evaporator 17 is connected to one refrigerant inlet of the merging portion 13b.
  • the merge part 13b is configured by a three-way joint similar to the upstream branch part 13a, and two of the three inflow / outflow ports are refrigerant inlets, and the remaining one is a refrigerant outlet.
  • the refrigerant outlet side of the second evaporator 18 is connected to the other refrigerant inlet of the junction 13b, and the upstream refrigerant suction port 42a of the upstream ejector 14 is connected to the refrigerant outlet of the junction 13b. .
  • a high-pressure side fixed throttle 16a as a pressure reducing device for reducing the pressure of the other refrigerant branched at the upstream branching portion 13a is connected to the other refrigerant outlet of the upstream branching portion 13a.
  • the high-pressure side fixed throttle 16a an orifice, a capillary tube, a nozzle, or the like can be adopted as in the low-pressure side fixed throttle 16b.
  • the refrigerant inlet side of the second evaporator 18 is connected to the downstream side of the refrigerant flow of the high pressure side fixed throttle 16a.
  • the second evaporator 18 exchanges heat between the low-pressure refrigerant decompressed by the high-pressure-side fixed throttle 16a and the rear-seat side blown air that is blown from the blower fan 18a toward the rear seat side of the vehicle interior. It is a heat exchanger for heat absorption which evaporates and exhibits endothermic action.
  • the other refrigerant inlet of the merging portion 13b is connected to the refrigerant outlet side of the second evaporator 18.
  • the blower fan 18a is an electric blower in which the number of rotations (amount of blown air) is controlled by a control voltage output from the control device.
  • a control device includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. This control device performs various calculations and processes based on the control program stored in the ROM, and controls the operations of the above-described various electric actuators 11, 12d, 17a, 18a and the like.
  • the control device includes an inside air temperature sensor that detects the temperature inside the vehicle, an outside air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and the temperature of air blown from the first and second evaporators 17 and 18 ( First and second evaporator temperature sensors that detect the temperature of the evaporator), an outlet side temperature sensor that detects the temperature of the radiator 12 outlet side refrigerant, an outlet side pressure sensor that detects the pressure of the radiator 12 outlet side refrigerant, and the like
  • These air conditioning control sensor groups are connected, and the detection values of these sensor groups are input.
  • an operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device, and operation signals from various operation switches provided on the operation panel are input to the control device.
  • various operation switches provided on the operation panel there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
  • control device of the present embodiment is configured integrally with a control unit that controls the operation of various control target devices connected to the output side of the control device.
  • a configuration (hardware and software) for controlling the operation constitutes a control unit of each control target device.
  • operation of the compressor 11 comprises the discharge capability control part.
  • the control device operates the compressor 11, the cooling fan 12d, the blower fans 17a, 18a, and the like. Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it.
  • the refrigerant that has dissipated heat in the condensing unit 12a is gas-liquid separated in the receiver unit 12b.
  • the liquid-phase refrigerant separated by the receiver unit 12b exchanges heat with the outside air blown from the cooling fan 12d in the supercooling unit 12c, and further dissipates heat to become a supercooled liquid-phase refrigerant (a3 in FIG. 3).
  • Point ⁇ b3 point The high-temperature and high-pressure refrigerant (point a3 in FIG. 3) discharged from the compressor 11 flows into the condensing part 12a of the radiator 12, exchanges heat with the outside air blown from the cooling fan 12d, and dissipates and condenses.
  • the flow of the supercooled liquid phase refrigerant that has flowed out of the supercooling portion 12c of the radiator 12 is branched at the upstream branching portion 13a.
  • One refrigerant branched by the upstream branch portion 13a flows into the refrigerant inlet 41a of the upstream nozzle portion 41 of the upstream ejector 14, is decompressed in an isentropic manner, and is injected from the refrigerant injection port 41b ( (B3 point ⁇ c3 point in FIG. 3).
  • the refrigerant that has flowed out of the first evaporator 17 and the second evaporator 18 due to the suction action of the upstream injection refrigerant injected from the refrigerant injection port 41b passes through the merge portion 13b from the upstream refrigerant suction port 42a. Sucked.
  • the upstream suction refrigerant and the upstream suction refrigerant sucked from the upstream refrigerant suction port 42a flow into the upstream diffuser portion 42b (point c3 ⁇ d3 point, point i3 ⁇ d3 point in FIG. 3).
  • the kinetic energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant rises while the upstream injection refrigerant and the upstream suction refrigerant are mixed (d3 point ⁇ e3 point in FIG. 3).
  • the refrigerant that has flowed out of the upstream diffuser portion 42b flows into the gas-liquid separator 15 and is separated into gas and liquid (e3 point ⁇ f3 point, e3 point ⁇ g3 point in FIG. 3).
  • the gas-phase refrigerant separated by the gas-liquid separator 15 is sucked from the suction port of the compressor 11 and compressed again (point f3 ′ ⁇ a3 point in FIG. 3).
  • the reason why the points f3 and f3 ′ are different in FIG. 3 is that the gas-phase refrigerant flowing out from the gas-liquid separator 15 passes from the gas-phase refrigerant outlet of the gas-liquid separator 15 to the inlet of the compressor 11. This is because a pressure loss occurs when the refrigerant pipe is circulated. Therefore, in an ideal cycle, it is desirable that the f3 point and the f3 ′ point coincide. The same applies to other Mollier diagrams.
  • the liquid-phase refrigerant separated by the gas-liquid separator 15 is decompressed in an enthalpy manner by the low-pressure side fixed restrictor 16b (point g3 ⁇ point h3 in FIG. 3) and flows into the first evaporator 17. .
  • the refrigerant flowing into the first evaporator 17 absorbs heat from the front-seat side blown air blown from the blower fan 17a and evaporates. Thereby, front seat side blowing air is cooled.
  • the refrigerant that has flowed out of the first evaporator 17 flows into the merge portion 13b (point h3 ⁇ point i3 in FIG. 3).
  • the other refrigerant branched at the upstream branching portion 13a flows into the high-pressure side fixed throttle 16a and is decompressed and expanded in an enthalpy manner (b3 point ⁇ j3 point in FIG. 3). Flow into.
  • the refrigerant flowing into the second evaporator 18 absorbs heat from the rear seat side blown air blown from the blower fan 18a and evaporates. Thereby, the rear seat side blown air is cooled.
  • the refrigerant that has flowed out of the second evaporator 18 flows into the merge portion 13b (point j3 ⁇ point i3 in FIG. 3).
  • the pressure of the refrigerant flowing into the first evaporator 17 and the pressure of the refrigerant flowing into the second evaporator 18 are substantially equal.
  • the pressure reduction characteristics (flow coefficient) of the side fixed throttle 16a and the low pressure side fixed throttle 16b are determined. Then, the refrigerant flowing out from the junction 13b is sucked from the upstream refrigerant suction port 42a of the upstream ejector 14 as described above.
  • the ejector refrigeration cycle 10 of the present embodiment operates as described above, and can cool the front-seat-side air and the rear-seat-side air. Further, in the ejector refrigeration cycle 10, since the refrigerant whose pressure has been increased by the upstream diffuser portion 42b of the upstream ejector 14 is sucked into the compressor 11, the driving power of the compressor 11 is reduced, and the coefficient of performance of the cycle is reduced. (COP) can be improved.
  • the liquid phase refrigerant separated by the gas-liquid separator 15 which is a gas-liquid separator is caused to flow into the first evaporator 17, which is indicated by a point h ⁇ b> 3 in FIG. 3.
  • a refrigerant having a relatively low enthalpy can be flowed into the first evaporator 17.
  • the second evaporator 18 is shown in FIG.
  • a refrigerant having a relatively low enthalpy can be introduced.
  • the difference between the enthalpy of the refrigerant flowing into the first evaporator 17 and the enthalpy of the refrigerant flowing into the second evaporator 18 can be reduced, and the refrigerating capacity that the refrigerant exhibits in the first evaporator 17 (FIG. 3 and the refrigeration capacity exhibited by the refrigerant in the second evaporator 18 (the enthalpy difference between the i3 point and the j3 point in FIG. 3) can be brought close to each other.
  • the cooling capacity in the first evaporator 17 and the cooling capacity in the second evaporator 18 can be brought close to each other. It can suppress that the temperature of air becomes non-uniform
  • the cooling capacity in an evaporator can be defined as the capacity
  • the high-pressure side fixed throttle so that the refrigerant pressure on the refrigerant inlet side of the first evaporator 17 and the refrigerant pressure on the refrigerant inlet side of the second evaporator 18 are substantially equal.
  • the pressure reduction characteristics (flow coefficient) of 16a and the low pressure side fixed throttle 16b are determined.
  • both the refrigerant outlet side of the first evaporator 17 and the refrigerant outlet side of the second evaporator 18 are connected to the upstream side refrigerant suction port 42a of the upstream side ejector 14 via the junction portion 13b.
  • the refrigerant evaporation pressure (refrigerant evaporation temperature) in the first evaporator 17 and the refrigerant evaporation pressure (refrigerant evaporation temperature) in the second evaporator 18 can be brought closer to each other, and more effectively in the first evaporator 17.
  • the cooling capacity and the cooling capacity in the second evaporator 18 can be brought close to each other.
  • the refrigerant is swirled in the swirling space 41c, and the refrigerant pressure on the swirling center side of the swirling space 41c is changed to a pressure that becomes a saturated liquid phase refrigerant, or The refrigerant is reduced to a pressure at which it boils under reduced pressure (causes cavitation).
  • the gas phase refrigerant is present in the swirl space 41c in the vicinity of the swirl center line in the swirl space 41c so that a larger amount of gas-phase refrigerant exists on the inner periphery side than on the outer periphery side of the swirl center axis. State.
  • the refrigerant in the two-phase separation state flows into the tip 41e of the upstream nozzle portion 41 in this way, in the tip 41e, the wall boiling and the center of the coolant passage that occur when the coolant is separated from the outer peripheral side wall surface Boiling of the refrigerant is promoted by interfacial boiling by the boiling nuclei generated by the cavitation of the refrigerant on the shaft side.
  • the refrigerant flowing into the minimum passage area portion 41d approaches a gas-liquid mixed state in which the gas phase and the liquid phase are homogeneously mixed.
  • the refrigerant flow in the gas-liquid mixed state is blocked (choking), and the gas-liquid mixed state refrigerant that has reached the speed of sound by this choking is accelerated and injected by the divergent portion 41f.
  • the refrigerant in the gas-liquid mixed state can be efficiently accelerated to the sound speed, so that the upstream nozzle portion 41 converts the pressure energy of the refrigerant into kinetic energy. Energy conversion efficiency (nozzle efficiency) can be improved.
  • the radiator 12 of the present embodiment includes the receiver portion 12b as a high-pressure side gas-liquid separator, the swirl formed in the tubular portion 41g of the upstream ejector 14 constituting the swirl flow generating portion.
  • the liquid phase refrigerant can be reliably supplied to the space 41c. Therefore, the nozzle efficiency improvement effect by supplying the refrigerant swirled in the swirling space 41c to the nozzle portion can be obtained with certainty.
  • one refrigerant inlet of the merging portion 13b is connected to the gas-phase refrigerant outlet side of the gas-liquid separator 15, and the merging portion 13b is connected to the refrigerant outlet side of the second evaporator 18.
  • the other refrigerant inlet is connected.
  • the inlet side of the low-pressure refrigerant passage of the internal heat exchanger 19 is connected to the refrigerant outlet of the junction 13b.
  • the internal heat exchanger 19 includes a high-pressure refrigerant that flows through a refrigerant flow path from the upstream branching portion 13a to the high-pressure-side fixed throttle 16a among the high-pressure refrigerant on the downstream side of the radiator 12, and the low-pressure refrigerant on the suction side of the compressor 11 Heat exchange is performed with the low-pressure refrigerant flowing through the refrigerant flow path from the junction 13b to the suction port of the compressor 11.
  • the low-pressure refrigerant flowing through the refrigerant flow path from the merging portion 13b to the suction port of the compressor 11 is the low-pressure where the gas-phase refrigerant flowing out from the gas-liquid separator 15 and the refrigerant flowing out from the second evaporator 18 merge. Becomes a refrigerant.
  • an internal heat exchanger 19 a double-pipe type heat in which an outer pipe that forms a high-pressure refrigerant passage that circulates high-pressure refrigerant is disposed outside an inner pipe that forms a low-pressure refrigerant passage that circulates low-pressure refrigerant.
  • An exchanger or the like can be employed.
  • Other configurations of the ejector refrigeration cycle 10 are the same as those in the first embodiment.
  • coolant in the Mollier diagram of FIG. 5 is the same as what shows the state of the refrigerant
  • the refrigerant discharged from the compressor 11 flows in the order of the radiator 12 ⁇ the upstream branching portion 13a and branches at the upstream branching portion 13a, as in the first embodiment.
  • One of the refrigerants is decompressed in an isentropic manner at the upstream nozzle portion 41 of the upstream ejector 14 (point a5 ⁇ b5 ⁇ c5 in FIG. 5).
  • the refrigerant flowing out of the first evaporator 17 is sucked from the upstream refrigerant suction port 42a and merges with the upstream injection refrigerant (point c5 ⁇ d5 point, point i5 ⁇ d5 point in FIG. 5). Further, the upstream injection refrigerant and the upstream suction refrigerant sucked from the upstream refrigerant suction port 42a are pressurized while being mixed in the upstream diffuser portion 42b (point d5 ⁇ point e5 in FIG. 5), and gas-liquid separation is performed. Gas-liquid separation is performed in the vessel 15 (point e5 ⁇ f5, point e5 ⁇ g5 in FIG. 5).
  • the gas-phase refrigerant separated by the gas-liquid separator 15 flows into the merging section 13 b and merges with the refrigerant flowing out of the second evaporator 18 and flows into the low-pressure refrigerant passage of the internal heat exchanger 19. Further, the liquid-phase refrigerant separated by the gas-liquid separator 15 is decompressed by the low-pressure side fixed throttle 16b (g5 point ⁇ h5 point in FIG. 5) as in the first embodiment, and the first evaporator. 17 absorbs heat from the front-seat side blown air blown from the blower fan 17a and evaporates (point h5 ⁇ point i5 in FIG. 5).
  • the other refrigerant branched at the upstream branch portion 13a flows into the high-pressure refrigerant passage of the internal heat exchanger 19 and exchanges heat with the low-pressure refrigerant flowing through the low-pressure refrigerant passage to further reduce enthalpy ( (B5 point ⁇ b′5 point in FIG. 5).
  • the low-pressure refrigerant flowing through the low-pressure refrigerant passage increases the enthalpy (f5 point ⁇ f ′′ 5 point in FIG. 5).
  • the refrigerant flowing out from the high-pressure refrigerant passage of the internal heat exchanger 19 is decompressed by the high-pressure side fixed restrictor 16a (b′5 point ⁇ j5 point in FIG. 5) as in the first embodiment, and the second evaporator. 18 absorbs heat from the rear-seat-side air blown from the blower fan 18a and evaporates (point j5 ⁇ point f5 in FIG. 5).
  • the refrigerant flowing out from the low-pressure refrigerant passage of the internal heat exchanger 19 is sucked from the suction port of the compressor 11 and compressed again (point f5 ′ ⁇ point a5 in FIG. 5).
  • the ejector refrigeration cycle 10 of this embodiment operates as described above, the same effects as those of the first embodiment can be obtained. That is, it is possible to cool the front seat side blowing air and the rear seat side blowing air. At this time, the temperature of the blowing air blown to the vehicle front seat side and the temperature of the blowing air blown to the vehicle rear seat side are It can suppress becoming non-uniform
  • the liquid-phase refrigerant separated by the gas-liquid separator 15 is caused to flow into the first evaporator 17 as in the first embodiment.
  • a refrigerant having a relatively low enthalpy can be caused to flow into the first evaporator 17.
  • the refrigerant cooled by the internal heat exchanger 19 and depressurized by the high-pressure side fixed restrictor 16a is introduced into the second evaporator 18, the second evaporator 18, as shown at point j5 in FIG.
  • a refrigerant having a relatively low enthalpy can also flow into the evaporator 18.
  • the refrigerating capacity exhibited by the refrigerant in the first evaporator 17 (the enthalpy difference between the points i5 and h5 in FIG. 5) and the refrigerating capacity exhibited by the refrigerant in the second evaporator 18 (the point f5 in FIG. 5).
  • the enthalpy difference between the point j5) and the cooling capacity of the first evaporator 17 and the cooling capacity of the second evaporator 18 can be made close to each other.
  • the ejector refrigeration cycle 10 of the present embodiment includes the internal heat exchanger 19, the enthalpy of the refrigerant flowing into the second evaporator 18 is reduced and the refrigerant is exhibited in the second evaporator 18.
  • the refrigeration capacity to be expanded can be expanded. Therefore, as shown in the Mollier diagram of FIG. 5, even if the refrigerant evaporation temperature in the second evaporator 18 is higher than the refrigerant evaporation temperature in the first evaporator 17, the cooling capacity in the first evaporator 17 is It can suppress that the cooling capacity in the 2nd evaporator 18 deviates greatly.
  • the gas-phase refrigerant separated by the gas-liquid separator 15 and the refrigerant flowing out from the second evaporator 18 are merged into the low-pressure refrigerant passage of the internal heat exchanger 19.
  • the low-pressure refrigerant made to flow in. Therefore, even if liquid refrigerant is mixed with the refrigerant flowing out of the second evaporator 18, the liquid refrigerant can be evaporated by the internal heat exchanger 19, and liquid compression of the compressor 11 can be prevented.
  • downstream ejector 20 In the present embodiment, an example in which a downstream ejector 20 is added to the ejector refrigeration cycle 10 of the first embodiment as shown in the overall configuration diagram of FIG. 6 will be described.
  • the basic configuration of the downstream ejector 20 is the same as that of the upstream ejector 14. Accordingly, the downstream ejector 20 includes the downstream nozzle portion 21 and the downstream body portion 22 similar to the upstream ejector 14.
  • the downstream nozzle portion 21 is formed with a refrigerant inlet 21a through which a refrigerant flows.
  • the downstream body portion 22 has a downstream refrigerant suction port 22a that sucks the refrigerant by the suction action of the downstream injection refrigerant injected from the downstream nozzle portion 21, and a downstream injection refrigerant and a downstream refrigerant suction port 22a.
  • a downstream diffuser portion 22b is formed as a downstream pressure increasing portion for increasing the pressure of the mixed refrigerant with the downstream suction refrigerant sucked from.
  • the gas-phase separator outlet of the gas-liquid separator 15 is connected to the refrigerant inlet 21 a side of the downstream nozzle portion 21 of the downstream-side ejector 20.
  • the refrigerant inlet side of the first evaporator 17 is connected to the liquid phase refrigerant outlet.
  • the downstream refrigerant suction port 22 a side of the downstream ejector 20 is connected to the refrigerant outlet of the second evaporator 18.
  • the gas-liquid separator 15 of the present embodiment not only separates the gas-liquid refrigerant flowing out from the upstream ejector 14, but also branches the separated refrigerant flow to send the branched gas-phase refrigerant downstream. It also functions as a downstream branching portion that flows out to the refrigerant inlet 21 a side of the ejector 20 and flows the branched liquid-phase refrigerant to the refrigerant inlet side of the first evaporator 17.
  • the downstream ejector 20 also functions as a merging unit that merges the gas-phase refrigerant separated by the gas-liquid separator 15 and the refrigerant that has flowed out of the second evaporator 18.
  • the downstream ejector 20 includes a swirl flow generation unit that generates a swirl flow in the refrigerant depressurized by the downstream nozzle unit 21.
  • Other configurations of the ejector refrigeration cycle 10 are the same as those in the first embodiment.
  • the refrigerant discharged from the compressor 11 flows in the order of the radiator 12 ⁇ the upstream branching portion 13a and branches at the upstream branching portion 13a, as in the first embodiment.
  • One of the refrigerants is decompressed in an isentropic manner at the upstream nozzle portion 41 of the upstream ejector 14 (point a7 ⁇ b7 ⁇ c7 in FIG. 7).
  • the refrigerant flowing out of the first evaporator 17 is sucked from the upstream side refrigerant suction port 42a and merges with the upstream side injection refrigerant (point c7 ⁇ d7 point, point i7 ⁇ d7 point in FIG. 7). Further, similarly to the first embodiment, the refrigerant whose pressure is increased in the upstream side diffuser section 42b is separated into gas and liquid by the gas-liquid separator 15 (point e7 ⁇ f7, point e7 ⁇ g7 in FIG. 7). ).
  • the liquid-phase refrigerant separated by the gas-liquid separator 15 is depressurized by the low-pressure side fixed throttle 16b (g7 point ⁇ h7 point in FIG. 5) and blown from the blower fan 17a by the first evaporator 17. It absorbs heat from the front-seat air and evaporates (point h7 ⁇ point i7 in FIG. 7).
  • the gas-phase refrigerant separated by the gas-liquid separator 15 flows into the downstream nozzle portion 21 of the downstream ejector 20, and is isentropically decompressed and injected (point f7 ⁇ m7 in FIG. 7). And the refrigerant
  • downstream suction refrigerant and the downstream suction refrigerant sucked from the downstream refrigerant suction port 22a flow into the downstream diffuser portion 22b (m7 point ⁇ n7 point, k7 point ⁇ n7 point in FIG. 7).
  • downstream side diffuser portion 22b As with the upstream side diffuser portion 42b, the pressure of the mixed refrigerant rises while the downstream side injection refrigerant and the downstream suction refrigerant are mixed (n7 point ⁇ f′7 point in FIG. 7).
  • the refrigerant flowing out from the downstream diffuser portion 22b is sucked into the compressor 11 and compressed again (point f'7 ⁇ point a7 in FIG. 7).
  • the other refrigerant branched at the upstream branching portion 13a is decompressed by the high pressure side fixed restrictor 16a (b7 point ⁇ j7 point in FIG. 7) as in the first embodiment, and the second evaporator. 18, the rear seat side blown air blown from the blower fan 18a absorbs heat and evaporates (point j7 ⁇ point k7 in FIG. 7). Further, the refrigerant flowing out of the second evaporator 18 is sucked from the downstream refrigerant suction port 22a of the downstream ejector 20.
  • the ejector refrigeration cycle 10 of this embodiment operates as described above, the same effects as those of the first embodiment can be obtained. That is, it is possible to cool the front seat side blowing air and the rear seat side blowing air. At this time, the temperature of the blowing air blown to the vehicle front seat side and the temperature of the blowing air blown to the vehicle rear seat side are It can suppress becoming non-uniform
  • the liquid-phase refrigerant separated by the gas-liquid separator 15 is caused to flow into the first evaporator 17 as in the first embodiment.
  • a refrigerant having a relatively low enthalpy can flow into the first evaporator 17.
  • the second evaporator 18 is shown in FIG.
  • a refrigerant having a relatively low enthalpy can be introduced.
  • the refrigerating capacity exhibited by the refrigerant in the first evaporator 17 (the enthalpy difference between the points i7 and h7 in FIG. 7) and the refrigerating capacity exhibited by the refrigerant in the second evaporator 18 (the point k7 in FIG. 7).
  • the enthalpy difference between the point j7 and the cooling capacity of the first evaporator 17 and the cooling capacity of the second evaporator 18 can be made close to each other.
  • the ejector refrigeration cycle 10 of the present embodiment includes the downstream ejector 20, and since the refrigerant outlet side of the second evaporator 18 is connected to the downstream refrigerant suction port 22 a of the downstream ejector 20, The refrigerant evaporating pressure in the second evaporator 18 can be lowered than the pressure of the refrigerant flowing out from the side diffuser portion 22b.
  • the refrigerant evaporation pressure (refrigerant evaporation temperature) in the second evaporator 18 can be lowered so as to approach the refrigerant evaporation pressure (refrigerant evaporation temperature) in the first evaporator 17.
  • the cooling capacity in the first evaporator 17 and the cooling capacity in the second evaporator 18 can be made even more effective.
  • downstream ejector 20 In the present embodiment, an example in which a downstream ejector 20 is added to the ejector refrigeration cycle 10 of the first embodiment as shown in the overall configuration diagram of FIG. 8 will be described.
  • the downstream ejector 20 of the present embodiment is provided with a swirl flow generator similar to that of the first embodiment with respect to the downstream ejector 20 of the third embodiment.
  • the downstream ejector 20 has the same configuration as that of the upstream ejector 14.
  • the refrigerant inlet 41a side of the upstream nozzle portion 41 of the upstream ejector 14 is connected to one refrigerant outlet of the upstream branch portion 13a, and the upstream branch portion 13a.
  • the refrigerant inlet 21a side of the downstream nozzle portion 21 of the downstream ejector 20 is connected to the other refrigerant outlet.
  • a downstream gas-liquid separator 15a is connected to the downstream side of the downstream diffuser portion 22b of the downstream ejector 20.
  • the downstream gas-liquid separator 15 a is a low-pressure gas-liquid separator having the same configuration as the gas-liquid separator 15.
  • the gas-liquid separator 15 is referred to as the upstream gas-liquid separator 15 for the sake of clarity of explanation.
  • the gas-phase refrigerant outlet of the upstream gas-liquid separator 15 and the gas-phase refrigerant outlet of the downstream gas-liquid separator 15a are connected to the suction port side of the compressor 11 via the junction 13b.
  • the refrigerant inlet side of the second evaporator 18 is connected to the liquid-phase refrigerant outlet of the downstream side gas-liquid separator 15a via a second low-pressure side fixed throttle 16c configured similarly to the low-pressure side fixed throttle 16b.
  • the refrigerant outlet of the two evaporator 18 is connected to the downstream refrigerant suction port 22 a of the downstream ejector 20.
  • the upstream ejector 14, the upstream gas-liquid separator 15, the low-pressure fixed throttle 16b, and the first evaporator 17 are the upstream unit, and the downstream ejector 20 is downstream.
  • the side gas-liquid separator 15a, the second low-pressure side fixed throttle 16c, and the second evaporator 18 are downstream units, the two units are connected in parallel to the refrigerant flow.
  • Other configurations are the same as those of the first embodiment.
  • the front-seat-side air and the rear-seat-side air can be cooled, and the upstream-side diffuser portion 42b and the downstream-side ejector 20 of the upstream-side ejector 14 can be cooled.
  • the COP of the cycle can be improved by the boosting action of the downstream diffuser portion 22b.
  • the refrigerant flowing into the first evaporator 17 is decompressed by the upstream nozzle portion 41 and the low pressure side fixed throttle 16b, and the refrigerant flowing into the second evaporator 18 is downstream.
  • the cycle configuration is such that pressure is reduced by the side nozzle portion 21 and the second low-pressure side fixed throttle 16c.
  • the refrigerant evaporation temperature in the first evaporator 17 and the refrigerant evaporation temperature in the second evaporator 18 can be easily brought close to the same temperature.
  • the flow rate of the refrigerant flowing into the first evaporator 17 and the flow rate of the refrigerant flowing into the second evaporator 18 can be easily brought close to the same flow rate.
  • liquid-phase refrigerant separated by the gas-liquid separator 15 flows into the first evaporator 17, and the liquid-phase refrigerant separated by the downstream gas-liquid separator 15a is fed to the second evaporator 18. It has a cycle configuration for inflow.
  • the dryness of the refrigerant flowing into the first evaporator 17 and the dryness of the refrigerant flowing into the second evaporator 18 can be easily brought close to the same dryness. Therefore, the refrigerating capacity exhibited by the refrigerant in the first evaporator 17 and the refrigerating capacity exhibited by the refrigerant in the second evaporator 18 can be brought close to each other.
  • the cooling capacity in the first evaporator 17 and the cooling capacity in the second evaporator 18 can be effectively brought close to each other.
  • the connection mode of the junction part 13b is changed with respect to the ejector-type refrigeration cycle 10 of the first embodiment.
  • one refrigerant inlet side of the merging portion 13b is connected to the gas phase refrigerant outlet of the gas-liquid separator 15, and the other of the merging portion 13b is connected to the refrigerant outlet of the second evaporator 18.
  • the refrigerant inlet side is connected.
  • the inlet side of the compressor 11 is connected to the refrigerant outlet of the junction 13b.
  • Other configurations of the ejector refrigeration cycle 10 are the same as those in the first embodiment.
  • the refrigerant discharged from the compressor 11 flows in the order of the radiator 12 ⁇ the upstream branching portion 13a and branches at the upstream branching portion 13a, as in the first embodiment.
  • One of the refrigerants is decompressed in an isentropic manner at the upstream nozzle portion 41 of the upstream ejector 14 (a10 point ⁇ b10 point ⁇ c10 point in FIG. 10).
  • the refrigerant flowing out of the first evaporator 17 is sucked from the upstream refrigerant suction port 42a and merges with the upstream injection refrigerant (c10 point ⁇ d10 point, i10 point ⁇ d10 point in FIG. 10), and the upstream diffuser.
  • the voltage is increased by the unit 42b (d10 point ⁇ e10 point in FIG. 10).
  • the refrigerant whose pressure has been increased in the upstream side diffuser section 42b is gas-liquid separated in the gas-liquid separator 15 (e10 point ⁇ f10 point, e10 point ⁇ g10 point in FIG. 10).
  • the liquid-phase refrigerant separated by the gas-liquid separator 15 is depressurized by the low-pressure side fixed throttle 16b (g10 point ⁇ h10 point in FIG. 10) and blown from the blower fan 17a by the first evaporator 17. It absorbs heat from the front-seat-side air and evaporates (from point h10 to point i10 in FIG. 10).
  • the gas-phase refrigerant separated by the gas-liquid separator 15 flows into the merging portion 13 b and merges with the refrigerant that has flowed out of the second evaporator 18.
  • the other refrigerant branched by the upstream branching portion 13a is decompressed by the high pressure side fixed restrictor 16a (b10 point ⁇ j10 point in FIG. 10) as in the first embodiment, and the second evaporator. 18, the rear seat side blown air blown from the blower fan 18a absorbs heat and evaporates (j10 point ⁇ f10 point in FIG. 10).
  • the refrigerant that has flowed out of the second evaporator 18 flows into the merging section 13 b and merges with the gas-phase refrigerant separated by the gas-liquid separator 15.
  • the refrigerant flowing out from the junction 13b is sucked into the compressor 11 and compressed again (f'10 point ⁇ a10 point in FIG. 10).
  • the ejector refrigeration cycle 10 of this embodiment operates as described above, the same effects as those of the first embodiment can be obtained. That is, when the liquid refrigerant separated by the gas-liquid separator 15 flows into the first evaporator 17, the refrigerating capacity exhibited by the refrigerant in the first evaporator 17 and the refrigerant in the second evaporator 18. Can be brought close to the refrigeration capacity exhibited by.
  • the gas-phase refrigerant outlet side of the gas-liquid separator 15 and the refrigerant outlet side of the second evaporator 18 are connected via the junction 13b.
  • the refrigerant evaporation temperature in the second evaporator 18 becomes higher than the refrigerant evaporation temperature in the first evaporator 17, and the cooling capacity in the first evaporator 17 is The cooling capacity in the second evaporator 18 is likely to deviate.
  • the refrigerating capacity exhibited by the refrigerant in the second evaporator 18 can be brought closer. Therefore, it can be suppressed that the cooling capacity in the first evaporator 17 and the cooling capacity in the second evaporator 18 are largely separated.
  • an internal heat exchanger 19 is added to the ejector refrigeration cycle 10 described in the first embodiment, as shown in the overall configuration diagram of FIG. More specifically, the internal heat exchanger 19 of the sixth embodiment includes a high-pressure refrigerant that circulates in a refrigerant flow path from the radiator 12 outlet side to the upstream branching portion 13a among the high-pressure refrigerant on the downstream side of the radiator 12.
  • the low-pressure refrigerant on the suction side of the compressor 11 is arranged to exchange heat with the low-pressure refrigerant flowing through the refrigerant flow path from the gas-phase refrigerant outlet of the gas-liquid separator 15 to the inlet of the compressor 11. .
  • the ejector refrigeration cycle 10 of the sixth embodiment not only the same effect as the first embodiment can be obtained, but also the enthalpy of the refrigerant flowing into the second evaporator 18 can be reduced to reduce the second evaporation.
  • the refrigerating capacity exhibited by the refrigerant in the vessel 18 can be expanded.
  • an internal heat exchanger 19 is added to the ejector refrigeration cycle 10 described in the fifth embodiment, as shown in the overall configuration diagram of FIG. More specifically, the internal heat exchanger 19 of the seventh embodiment includes a high-pressure refrigerant that circulates in a refrigerant flow path from the radiator 12 outlet side to the upstream branching portion 13a among the high-pressure refrigerant on the downstream side of the radiator 12.
  • the low-pressure refrigerant on the suction side of the compressor 11 is arranged to exchange heat with the low-pressure refrigerant flowing through the refrigerant flow path from the refrigerant outlet of the junction 13b to the inlet of the compressor 11.
  • the ejector-type refrigeration cycle 10 of the seventh embodiment not only the same effect as the fifth embodiment can be obtained, but also the enthalpy of the refrigerant flowing into the second evaporator 18 can be reduced to reduce the second evaporation.
  • the refrigerating capacity exhibited by the refrigerant in the vessel 18 can be expanded.
  • an internal heat exchanger 19 is added to the ejector refrigeration cycle 10 described in the first embodiment, as shown in the overall configuration diagram of FIG. More specifically, the internal heat exchanger 19 of the eighth embodiment includes a high-pressure refrigerant that circulates in a refrigerant flow path from the upstream branching portion 13a to the high-pressure side fixed throttle 16a among the high-pressure refrigerant on the downstream side of the radiator 12.
  • the low-pressure refrigerant on the suction side of the compressor 11 is arranged to exchange heat with the low-pressure refrigerant flowing through the refrigerant flow path from the gas-phase refrigerant outlet of the gas-liquid separator 15 to the inlet of the compressor 11. .
  • the ejector-type refrigeration cycle 10 of the eighth embodiment not only the same effect as the first embodiment can be obtained, but also the enthalpy of the refrigerant flowing into the second evaporator 18 can be reduced to reduce the second evaporation.
  • the refrigerating capacity exhibited by the refrigerant in the vessel 18 can be expanded.
  • an internal heat exchanger 19 is added to the ejector refrigeration cycle 10 described in the fourth embodiment. More specifically, the internal heat exchanger 19 of the ninth embodiment includes a high-pressure refrigerant that circulates in a refrigerant flow path from the radiator 12 outlet side to the upstream branching portion 13a among the high-pressure refrigerant on the downstream side of the radiator 12.
  • the low-pressure refrigerant on the suction side of the compressor 11 is arranged to exchange heat with the low-pressure refrigerant flowing in the refrigerant flow path from the junction 13b to the suction port of the compressor 11.
  • the ejector refrigeration cycle 10 of the ninth embodiment not only the same effects as in the fourth embodiment can be obtained, but also the enthalpy of the refrigerant flowing into both the first evaporator 17 and the second evaporator 18. And the refrigerating capacity exhibited by the refrigerant in both evaporators 17 and 18 can be expanded.
  • the internal heat exchanger 19 includes a high-pressure refrigerant that flows through a refrigerant flow path from the radiator 12 outlet side to the upstream branching portion 13a, and the gas-liquid separator 15. You may arrange
  • the high-pressure refrigerant that flows through the refrigerant flow path from the radiator 12 outlet side to the upstream branching section 13a and the refrigerant flow path from the gas-phase refrigerant outlet of the downstream gas-liquid separator 15a to the merging section 13b are circulated. It may be arranged to exchange heat with the low-pressure refrigerant.
  • the refrigerant inlet of the first evaporator 17 is connected to one refrigerant outlet of the upstream branching portion 13a via a high-pressure fixed throttle 16a.
  • the refrigerant inlet side of the second evaporator 18 is connected to the other refrigerant outlet of the upstream branch portion 13a via the second high-pressure side fixed throttle 16d.
  • the basic configuration of the second high-pressure side fixed throttle 16d is the same as that of the high-pressure side fixed throttle 16a.
  • the refrigerant outlet side of the first evaporator 17 is connected to the refrigerant inlet 41 a side of the upstream nozzle portion 41 of the upstream ejector 14, and the upstream side of the upstream ejector 14 is connected to the refrigerant outlet side of the second evaporator 18.
  • the upstream side refrigerant suction port 42a side is connected.
  • the upstream ejector 14 of this embodiment is not provided with the swirl
  • the upstream ejector 14 has a function as a merging unit that merges the refrigerant that has flowed out of the first evaporator 17 and the refrigerant that has flowed out of the second evaporator 18.
  • the first evaporator 17 and the second evaporator 18 are connected in parallel to the refrigerant flow.
  • Other configurations are the same as those of the first embodiment.
  • the refrigerant evaporation temperature in the first evaporator 17 becomes higher than the refrigerant evaporation temperature in the second evaporator 18, but the first evaporator 17
  • the refrigerating capacity exhibited by the refrigerant and the refrigerating capacity exhibited by the refrigerant in the second evaporator 18 can be brought close to each other.
  • the refrigerant flow rate flowing into the first evaporator 17 and the refrigerant flowing into the second evaporator 18 are adjusted by appropriately adjusting the pressure reduction characteristics (flow rate coefficients) of the high pressure side fixed throttle 16a and the second high pressure side fixed throttle 16d.
  • the flow rate can be adjusted, and the cooling capacity of the first evaporator 17 and the cooling capacity of the second evaporator 18 can be brought close to each other.
  • the basic configuration of the auxiliary upstream branch 13c is the same as that of the upstream branch 13a.
  • the auxiliary upstream branching portion 13c further branches the flow of the refrigerant flowing out from the other refrigerant outlet of the upstream branching portion 13a, and causes the branched one refrigerant to flow out to the second high-pressure side fixed throttle 16d side.
  • the other branched refrigerant flows out to the high-pressure side fixed throttle 16a side.
  • the high-pressure side fixed throttle 16a of the present embodiment functions as a decompression device that depressurizes a part of the other refrigerant branched by the upstream branching portion 13a
  • the second high-pressure side fixed throttle 16d It functions as an auxiliary decompression device that decompresses another part of the other refrigerant branched by the upstream branching portion 13a.
  • the third evaporator 23 exchanges heat between the low-pressure refrigerant decompressed by the second high-pressure side fixed throttle 16d and the front-seat side blown air blown from the blower fan 23a toward the front seat side of the vehicle interior, It is the heat exchanger for heat absorption which cools front seat side blowing air auxiliary.
  • the refrigerant outlet side of the third evaporator 23 is connected to one refrigerant inlet side of the merging portion 13b.
  • the basic configuration of the blower fan 23a is the same as that of the blower fans 17a and 18a.
  • the refrigerant outlet side of the first evaporator 17 is connected to the other refrigerant inlet of the junction 13b, and the upstream refrigerant suction port 42a side of the upstream ejector 14 is connected to the refrigerant outlet of the junction 13b. ing.
  • Other configurations are the same as those of the third embodiment.
  • both the refrigerant outlet side of the first evaporator 17 and the refrigerant outlet side of the third evaporator 23 are connected to the upstream side refrigerant suction port 42a of the upstream side ejector 14 via the junction portion 13b.
  • coolant evaporation pressure (refrigerant evaporation temperature) in the 3rd evaporator 23 can be closely approached.
  • the refrigerant outlet side of the third evaporator 23 is connected to the upstream refrigerant suction port 42a of the upstream ejector 14 .
  • the refrigerant outlet side of the third evaporator 23 is connected to the downstream ejector.
  • the rear-seat-side blown air may be cooled by the third evaporator 23 by connecting to the 20 downstream refrigerant suction ports 22a.
  • the refrigerant outlet of the first evaporator 17 of the present embodiment is connected to the refrigerant inlet 21a side of the downstream nozzle portion 21 of the downstream ejector 20, and the upstream ejector is connected to the refrigerant outlet of the second evaporator 18.
  • 14 is connected to the refrigerant outlet of the third evaporator 23, and the refrigerant outlet 22a of the downstream ejector 20 is connected to the refrigerant outlet of the third evaporator 23.
  • Other configurations are the same as those in the eleventh embodiment.
  • the refrigerant discharged from the compressor 11 flows in the order of the radiator 12 ⁇ the upstream branching portion 13a and branches at the upstream branching portion 13a, as in the first embodiment.
  • One of the refrigerants is decompressed in an isentropic manner at the upstream nozzle portion 41 of the upstream ejector 14 (a18 point ⁇ b18 point ⁇ c18 point in FIG. 18).
  • the refrigerant flowing out of the second evaporator 18 is sucked from the upstream refrigerant suction port 42a and merges with the upstream injection refrigerant (point c18 ⁇ d18 point, point i18 ⁇ d18 point in FIG. 18).
  • the upstream injection refrigerant and the upstream suction refrigerant are pressurized while being mixed in the upstream diffuser section 42b (d18 point ⁇ e18 point in FIG. 18).
  • the refrigerant that has flowed out of the first evaporator 17 flows into the downstream nozzle portion 21 of the downstream ejector 20, and is isentropically depressurized (f18 point ⁇ m18 point in FIG. 18).
  • the refrigerant flowing out from the third evaporator 23 is sucked from the downstream refrigerant suction port 22a and merges with the downstream injection refrigerant (m18 point ⁇ n18 point, k18 point ⁇ n18 point in FIG. 18).
  • the downstream jet refrigerant jetted from the downstream nozzle section 21 and the upstream suction refrigerant sucked from the downstream refrigerant suction port 22a are pressurized while being mixed in the downstream diffuser section 22b (point n18 in FIG. 18 ⁇ f'18 points).
  • the refrigerant that has flowed out of the downstream side diffuser portion 22b is sucked into the compressor 11 and compressed again (point f'18 ⁇ point a18 in FIG. 18).
  • the flow of the other refrigerant branched at the upstream branching portion 13a flows into the auxiliary upstream branching portion 13c and is further branched.
  • One refrigerant branched by the auxiliary upstream branching portion 13c is depressurized by the high pressure side fixed throttle 16a (b18 point ⁇ j18 point in FIG. 18) and blown from the blower fan 18a by the second evaporator 18. Then, it absorbs heat from the rear-seat-side air and evaporates (j18 point ⁇ i18 point in FIG. 18). Thereby, the rear seat side blown air is cooled.
  • the refrigerant flowing out of the second evaporator 18 is sucked from the upstream side refrigerant suction port 42a of the upstream side ejector 14.
  • the other refrigerant branched by the auxiliary upstream branching portion 13c is decompressed by the second high pressure side fixed throttle 16d (b18 point ⁇ o18 point in FIG. 18), and is blown by the third evaporator 23.
  • the front seat side blown air blown from 23a absorbs heat and evaporates (point o18 ⁇ point k18 in FIG. 18). Thereby, front seat side blowing air is cooled.
  • the refrigerant that has flowed out of the third evaporator 23 is sucked from the downstream refrigerant suction port 22a of the downstream ejector 20.
  • the ejector refrigeration cycle 10 of the present embodiment operates as described above, and can cool the front-seat-side air and the rear-seat-side air. Furthermore, since the downstream ejector 20 is provided, the refrigerant flowing out of the third evaporator 23 can be boosted and sucked into the compressor 11.
  • the density of the refrigerant sucked into the compressor 11 can be increased, and the rotation speed of the compressor 11 is increased.
  • the discharge flow rate can be increased without any problem.
  • the refrigerant inlet side of the first evaporator 17 is connected to the outlet side of the upstream side diffuser portion 42b of the upstream side ejector 14, and the refrigerant outlet side of the first evaporator 17 is connected to the outlet side of the first evaporator 17.
  • the upstream side refrigerant suction port 42a of the upstream side ejector 14 is connected. Therefore, as shown in the Mollier diagram of FIG.
  • the refrigerant evaporation temperature in the first evaporator 17 becomes higher than the refrigerant evaporation temperature in the second evaporator 18, and the cooling capacity in the first evaporator 17 and the second The cooling capacity in the evaporator 18 tends to deviate.
  • the discharge flow rate of the compressor 11 can be increased as described above, the pressure reduction characteristics of the upstream nozzle portion 41, the high pressure side fixed throttle 16a, and the second high pressure side fixed throttle 16d.
  • the refrigerant flow rate flowing into the first evaporator 17 can be made larger than the refrigerant flow rate flowing into the second evaporator 18.
  • the cooling capacity in the first evaporator 17 and the cooling capacity in the second evaporator 18 can be brought close to each other.
  • the refrigerant inlet side of the first evaporator 17 is connected to the outlet side of the upstream diffuser portion 42b of the upstream ejector 14 described in the twelfth embodiment, and the refrigerant of the first evaporator 17 is connected.
  • a modified example of the ejector refrigeration cycle 10 in which the refrigerant inlet 21a side of the downstream nozzle portion 21 of the downstream ejector 20 is connected to the outlet side will be described.
  • the second auxiliary upstream branching portion 13d As shown in the overall configuration diagram of FIG. 19, with respect to the ejector refrigeration cycle 10 of the twelfth embodiment, the second auxiliary upstream branching portion 13d, the third high-pressure side fixed throttle 16e, and the fourth An example in which the evaporator 24 is added will be described.
  • the basic configuration of the second auxiliary upstream branch 13d is the same as that of the upstream branch 13a and the like.
  • the second auxiliary upstream branching portion 13d further branches one refrigerant branched at the auxiliary upstream branching portion 13c, and causes the branched one refrigerant to flow out to the second high-pressure side fixed throttle 16d side, The other branched refrigerant flows out to the third high pressure side fixed throttle 16e side which is the second auxiliary pressure reducing device.
  • the fourth evaporator 24 exchanges heat between the low-pressure refrigerant decompressed by the third high-pressure side fixed throttle 16e and the rear-seat side blown air blown from the blower fan 24a toward the rear seat side of the vehicle interior, It is the 2nd auxiliary heat exchanger which cools backseat side blowing air auxiliary.
  • the refrigerant outlet side of the third evaporator 23 is connected to one refrigerant inlet side of the merging portion 13b.
  • the refrigerant outlet side of the second evaporator 18 is connected to the other refrigerant inlet of the junction 13b, and the upstream refrigerant suction port 42a side of the upstream ejector 14 is connected to the refrigerant outlet of the junction 13b. ing.
  • the ejector refrigeration cycle 10 of the thirteenth embodiment not only the same effects as those of the twelfth embodiment can be obtained, but also the fluid to be cooled in the fourth evaporator 24 (the rear seat side in the thirteenth embodiment). Air) can be cooled.
  • the blower fan 18a is eliminated from the ejector refrigeration cycle 10 of the twelfth embodiment, and the first evaporator 17 and the second evaporator 18 are eliminated. An example in which these are integrated will be described. Therefore, in this embodiment, the blast air sent to the same space to be cooled is cooled by both the first evaporator 17 and the second evaporator 18.
  • the first evaporator 17 and the second evaporator 18 are divided into a plurality of tubes through which the refrigerant flows, and both longitudinal ends of the plurality of tubes. It is configured as a so-called tank and tube type heat exchanger having a pair of distribution and collection tanks arranged on the side for collecting and distributing refrigerant.
  • the distribution and collection tanks of both the evaporators are integrally formed, or in both the evaporators, the heat exchange fins for promoting the heat exchange between the refrigerant and the blown air are used in common. be able to.
  • the first evaporator 17 is arranged on the windward side in the flow direction of the blown air with respect to the second evaporator 18 and when viewed from the flow direction of the blown air, the first evaporator 17
  • the entire area of 17 heat exchange core parts (parts for heat exchange with refrigerant and air) is integrated so as to be polymerized over the entire heat exchange area core part of the second evaporator 18.
  • the same cooling target space can be cooled by passing the blown air in the order of the first evaporator 17 ⁇ the second evaporator 18.
  • the refrigerant evaporation temperature of the first evaporator 17 is higher than the refrigerant evaporation temperature of the second evaporator 18, the refrigerant evaporation temperature of the first evaporator 17 and the second evaporator 18 and the blown air A temperature difference can be secured and the blown air can be efficiently cooled.
  • the first evaporator 17 and the second evaporator 18 are used for cooling the front-seat-side blown air that is blown toward the front-seat side of the vehicle interior.
  • the blower fan 18a is eliminated and the first evaporation is performed as in the fourteenth embodiment.
  • the vessel 17 and the second evaporator 18 are integrated. Therefore, according to the ejector refrigeration cycle 10 of the fifteenth embodiment, the same cooling target space can be efficiently cooled as in the fourteenth embodiment.
  • the first evaporator 17 and the second evaporator 18 are used to cool the front-seat side blown air that is blown toward the front seat side in the vehicle interior.
  • At least one of the third evaporator 23 and the fourth evaporator 24 may be used to cool rear-seat-side air blown toward the rear seat side in the vehicle compartment.
  • a low pressure is provided between the refrigerant outlet side of the fourth evaporator 24 and the merging portion 13b.
  • a side fixed diaphragm 16b is disposed. According to this, the effect similar to 13th Embodiment can be acquired, and the refrigerant
  • coolant evaporation temperature of the 4th evaporator 24 can be raised with respect to the refrigerant
  • connection mode of the downstream ejector 20 is changed as shown in the overall configuration diagram of FIG. 24 with respect to the ejector refrigeration cycle 10 of the third embodiment.
  • the downstream refrigerant suction port 22 a side of the downstream ejector 20 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 15, and the downstream ejector 20 is connected to the refrigerant outlet of the second evaporator 18.
  • the refrigerant inlet 21a side of the downstream nozzle portion 21 is connected.
  • the cooling capacity in the first evaporator 17 and the cooling capacity in the second evaporator 18 can be brought close to each other as in the third embodiment.
  • the density of the refrigerant sucked into the compressor 11 can be increased by the boosting action of the downstream ejector 20, and the discharge flow rate can be increased without increasing the rotational speed of the compressor 11. Can be increased.
  • connection mode of the downstream ejector 20 is changed with respect to the ejector refrigeration cycle 10 of the eleventh embodiment as shown in the overall configuration diagram of FIG. Specifically, as in the eighteenth embodiment, the downstream refrigerant suction port 22a side of the downstream ejector 20 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 15, and the downstream of the refrigerant outlet of the second evaporator 18 is downstream.
  • the refrigerant inlet 21 a side of the downstream nozzle portion 21 of the side ejector 20 is connected.
  • the cooling capacity of the first evaporator 17 and the cooling capacity of the second evaporator 18 can be brought close to each other as in the eleventh embodiment. Further, similarly to the twelfth embodiment, the density of the refrigerant sucked into the compressor 11 can be increased by the boosting action of the downstream ejector 20, and the discharge flow rate can be increased without increasing the rotational speed of the compressor 11. Can be increased.
  • the connection mode of the downstream ejector 20 is changed with respect to the ejector refrigeration cycle 10 of the twelfth embodiment, as shown in the overall configuration diagram of FIG. Specifically, in the present embodiment, the downstream refrigerant suction port 22 a side of the downstream ejector 20 is connected to the refrigerant outlet of the first evaporator 17, and the downstream side of the downstream ejector 20 is connected to the refrigerant outlet of the third evaporator 23. The refrigerant inlet 21a side of the nozzle part 21 is connected. Even with such a cycle configuration, the same effect as in the twelfth embodiment can be obtained.
  • the connection mode of the downstream ejector 20 is changed with respect to the ejector refrigeration cycle 10 of the thirteenth embodiment as shown in the overall configuration diagram of FIG. Specifically, as in the twentieth embodiment, the downstream refrigerant suction port 22a side of the downstream ejector 20 is connected to the refrigerant outlet of the first evaporator 17, and the downstream ejector 20 is connected to the refrigerant outlet of the third evaporator 23. The refrigerant inlet 21a side of the downstream nozzle portion 21 is connected. With such a cycle configuration, the same effect as that of the thirteenth embodiment can be obtained.
  • the connection mode of the downstream ejector 20 is changed with respect to the ejector refrigeration cycle 10 of the fourteenth embodiment as shown in the overall configuration diagram of FIG. Specifically, as in the twentieth embodiment, the downstream refrigerant suction port 22a side of the downstream ejector 20 is connected to the refrigerant outlet of the first evaporator 17, and the downstream ejector 20 is connected to the refrigerant outlet of the third evaporator 23. The refrigerant inlet 21a side of the downstream nozzle portion 21 is connected. Even with such a cycle configuration, the same effects as in the fourteenth embodiment can be obtained.
  • the connection mode of the downstream ejector 20 is changed with respect to the ejector refrigeration cycle 10 of the fifteenth embodiment, as shown in the overall configuration diagram of FIG. Specifically, as in the twentieth embodiment, the downstream refrigerant suction port 22a side of the downstream ejector 20 is connected to the refrigerant outlet of the first evaporator 17, and the downstream ejector 20 is connected to the refrigerant outlet of the third evaporator 23. The refrigerant inlet 21a side of the downstream nozzle portion 21 is connected. Even with such a cycle configuration, the same effect as the fifteenth embodiment can be obtained.
  • the connection mode of the downstream ejector 20 is changed with respect to the ejector refrigeration cycle 10 of the sixteenth embodiment as shown in the overall configuration diagram of FIG. Specifically, as in the twentieth embodiment, the downstream refrigerant suction port 22a side of the downstream ejector 20 is connected to the refrigerant outlet of the first evaporator 17, and the downstream ejector 20 is connected to the refrigerant outlet of the third evaporator 23. The refrigerant inlet 21a side of the downstream nozzle portion 21 is connected. Even with such a cycle configuration, the same effects as in the sixteenth embodiment can be obtained.
  • the connection mode of the downstream ejector 20 is changed with respect to the ejector refrigeration cycle 10 of the seventeenth embodiment as shown in the overall configuration diagram of FIG. Specifically, as in the twentieth embodiment, the downstream refrigerant suction port 22a side of the downstream ejector 20 is connected to the refrigerant outlet of the first evaporator 17, and the downstream ejector 20 is connected to the refrigerant outlet of the third evaporator 23. The refrigerant inlet 21a side of the downstream nozzle portion 21 is connected. Even with such a cycle configuration, the same effect as in the seventeenth embodiment can be obtained.
  • the ejector refrigeration cycle 10 of the present embodiment includes a second upstream branching portion (auxiliary upstream branching portion) 13c that further branches the flow of the other refrigerant branched by the upstream branching portion 13a.
  • auxiliary upstream branching portion 13c that further branches the flow of the other refrigerant branched by the upstream branching portion 13a.
  • the upstream branching portion 13a is referred to as a first upstream branching portion 13a for clarification of explanation.
  • the refrigerant inlet 21a of the downstream nozzle part 21 of the downstream ejector 20 is connected to one refrigerant outlet of the second upstream branch part 13c.
  • the downstream refrigerant suction port 22a of the downstream ejector 20 is connected to the other refrigerant outlet of the second upstream branching portion 13c via the high-pressure fixed throttle 16a and the second evaporator 18.
  • one refrigerant inlet of the junction 13b is connected to the gas-phase refrigerant outlet of the gas-liquid separator 15 that separates the gas-liquid refrigerant flowing out of the upstream diffuser portion 42b of the upstream ejector 14.
  • the other refrigerant inlet of the merging portion 13b is connected to the outlet side of the downstream diffuser portion 22b of the downstream ejector 20.
  • the low-pressure refrigerant in the internal heat exchanger 19 of the present embodiment is a refrigerant that circulates in the refrigerant flow path from the refrigerant outlet side of the junction 13b to the inlet side of the compressor 11.
  • Other configurations of the ejector refrigeration cycle 10 are the same as those in the ninth embodiment.
  • the high-pressure refrigerant flowing into the high-pressure refrigerant passage of the internal heat exchanger 19 exchanges heat with the low-pressure refrigerant flowing through the low-pressure refrigerant passage of the internal heat exchanger 19 to further reduce enthalpy (b33 point ⁇ b′33 in FIG. 33). point).
  • the flow of the refrigerant flowing out from the high-pressure refrigerant passage of the internal heat exchanger 19 is divided at the first upstream branching portion 13a.
  • One refrigerant branched at the first upstream branching portion 13a is isentropically depressurized by the upstream nozzle portion 41 of the upstream ejector 14 (b'33 point ⁇ c33 point in FIG. 33). And the refrigerant
  • the upstream injection refrigerant and the upstream suction refrigerant sucked from the upstream refrigerant suction port 42a are pressurized while being mixed in the upstream diffuser portion 42b (point d33 ⁇ point e33 in FIG. 33), and the gas-liquid separator 15 Gas-liquid separation (e33 point ⁇ f33 point, e33 point ⁇ g33 point in FIG. 33).
  • the gas-phase refrigerant separated by the gas-liquid separator 15 flows into one refrigerant inlet of the junction 13b.
  • the liquid-phase refrigerant separated by the gas-liquid separator 15 is decompressed in an enthalpy manner by the low-pressure side fixed throttle 16b (g33 point ⁇ h33 point in FIG. 33) and flows into the first evaporator 17.
  • the refrigerant flowing into the first evaporator 17 absorbs heat from the front seat side blown air blown from the blower fan 17a and evaporates (point h33 ⁇ point i33 in FIG. 33). Thereby, front seat side blowing air is cooled.
  • the flow of the other refrigerant branched at the first upstream branching portion 13a is further branched at the second upstream branching portion 13c.
  • the change in the state of the refrigerant from the other refrigerant outlet of the first upstream branching portion 13a to the other refrigerant inlet of the merging portion 13b is indicated by a thick broken line. Yes.
  • downstream-side injection refrigerant and the downstream-side suction refrigerant sucked from the downstream-side refrigerant suction port 22a are pressurized while being mixed in the downstream-side diffuser part 22b (q33 point ⁇ r33 point in FIG. 33), and the other of the merging part 13b Into the refrigerant inlet.
  • the other refrigerant branched by the second upstream branching portion 13c is decompressed in an isoenthalpy manner by the high stage fixed throttle 16a (b'33 point-> j33 point in FIG. 33), and the second evaporator 18 Flow into.
  • the refrigerant flowing into the second evaporator 18 absorbs heat from the rear-seat-side air blown from the blower fan 18a and evaporates (j33 point ⁇ k33 point in FIG. 33). Thereby, the rear seat side blown air is cooled.
  • the flow of the gas-phase refrigerant separated by the gas-liquid separator 15 and the flow of the gas-liquid two-phase refrigerant flowing out of the downstream diffuser section 22b merge (point f33 ⁇ point s33 in FIG. 33).
  • R33 point ⁇ s33 point) the low-pressure refrigerant (s33 point in FIG. 33) in a gas-liquid two-phase state having a relatively high dryness flows out to the low-pressure refrigerant passage side of the internal heat exchanger 19.
  • the low-pressure refrigerant flowing into the low-pressure refrigerant passage of the internal heat exchanger 19 exchanges heat with the high-pressure refrigerant flowing through the high-pressure refrigerant passage to increase enthalpy (point s33 ⁇ point t33 in FIG. 33).
  • coolant which flows out out of the low pressure refrigerant path of the internal heat exchanger 19 will be in a gaseous-phase state with a comparatively low superheat degree.
  • the refrigerant flowing out from the low-pressure refrigerant passage of the internal heat exchanger 19 is sucked into the compressor 11 and compressed again (f′33 ⁇ a33 in FIG. 33).
  • the ejector-type refrigeration cycle 10 of the present embodiment operates as described above, and can cool the front-seat-side blast air and the rear-seat-side blast air, as well as the upstream-side diffuser portion 42b and the downstream-side of the upstream-side ejector 14.
  • the COP of the cycle can be improved by the boosting action of the downstream diffuser portion 22b of the ejector 20.
  • the refrigerant flowing into the first evaporator 17 is decompressed by the upstream nozzle portion 41 of the upstream ejector 14, and the second evaporator is constructed by the high stage fixed throttle 16a.
  • 18 is a cycle configuration in which the refrigerant flowing into the refrigerant 18 is decompressed. Therefore, the refrigerant evaporation temperature in the first evaporator 17 and the refrigerant evaporation temperature in the second evaporator 18 can be easily brought close to the same temperature. Similarly, the flow rate of the refrigerant flowing into the first evaporator 17 and the flow rate of the refrigerant flowing into the second evaporator 18 can be easily brought close to the same flow rate.
  • the cooling capacity in the first evaporator 17 and the cooling capacity in the second evaporator 18 can be effectively brought close to each other.
  • the low-pressure refrigerant that flows into the internal heat exchanger 19 is described as the refrigerant that flows through the refrigerant flow path from the refrigerant outlet side of the junction 13b to the inlet side of the compressor 11.
  • the same compressor 11 protection effect is obtained. be able to.
  • the high-pressure refrigerant that flows through the refrigerant flow path from the refrigerant outlet side of the radiator 12 to the inlet side of the first upstream branch portion 13a and the outlet side of the downstream diffuser portion 22b Heat exchange with the low-pressure refrigerant flowing through the refrigerant flow path from the compressor 11 to the suction port side of the compressor 11 will unnecessarily increase the degree of superheat of the low-pressure refrigerant drawn into the compressor 11. Can be suppressed.
  • the ejector refrigeration cycle 10 is applied to a dual air conditioner type vehicle air conditioner, the first evaporator 17 is used to cool the front-seat-side air, Although the example which used 2 evaporator 18 in order to cool back seat side blowing air was demonstrated, the cooling object fluid of the 1st evaporator 17 and the 2nd evaporator 18 is not limited to this.
  • the first evaporator 17 may be used for cooling the rear seat side blowing air
  • the second evaporator 18 may be used for cooling the front seat side blowing air.
  • the third evaporator 23 and the fourth evaporator 24 are used for auxiliary cooling of the front seat side blowing air or the rear seat side blowing air has been described.
  • the evaporator 23 and the fourth evaporator 24 may be used for cooling another cooling target fluid.
  • the application of the ejector refrigeration cycle 10 described in the above embodiment is not limited to the vehicle air conditioner.
  • the present invention may be applied to a stationary air conditioner, a freezer / refrigerator, and the like.
  • the example in which the upstream ejector 14 and the gas-liquid separator 15 are configured separately has been described.
  • the gas-liquid separator 15 is provided on the outlet side of the upstream diffuser portion 42b of the upstream ejector 14. May be integrated, or the downstream gas-liquid separator 15a may be integrated with the outlet side of the downstream diffuser portion 22b of the downstream ejector 20.
  • the upstream side ejector 14 and the downstream side ejector 20 have the fixed nozzle portion in which the refrigerant passage area of the minimum passage area portion does not change has been described.
  • the downstream ejector 20 may have a variable nozzle portion configured to be able to change the refrigerant passage area of the minimum passage area portion.
  • a needle-like or conical valve body is disposed in the passage of the variable nozzle portion, and the valve body is displaced by an electric actuator or the like to adjust the refrigerant passage area. That's fine.
  • R134a or R1234yf or the like can be adopted as the refrigerant, but the refrigerant is not limited to this.
  • R600a, R410A, R404A, R32, R1234yfxf, R407C, etc. can be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

 放熱器(12)から流出した冷媒の流れを分岐する上流側分岐部(13a)と、上流側分岐部(13a)にて分岐された一方の冷媒を減圧させる上流側ノズル部(14a)を有する上流側エジェクタ(14)と、上流側エジェクタ(14)から流出した冷媒の気液を分離する気液分離器(15)とを備える。気液分離器(15)から流出した液相冷媒を低圧側固定絞り(16b)にて減圧させて第1蒸発器(17)にて蒸発させ、上流側分岐部(13a)にて分岐された他方の冷媒を高圧側固定絞り(16a)にて減圧させて第2蒸発器(18)にて蒸発させる。さらに、第1蒸発器(17)から流出した冷媒と第2蒸発器から流出した冷媒とを合流部(13b)にて合流させて上流側エジェクタ(14)の上流側冷媒吸引口(42)から吸引させる。そのため、複数の蒸発器を備えるエジェクタ式冷凍サイクルにおいて、それぞれの蒸発器における冷却対象流体の冷却能力を近づける。

Description

エジェクタ式冷凍サイクル 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年8月29日に出願された日本特許出願2013-177738および2014年7月9日に出願された日本特許出願2014-141424を基にしている。
 本開示は、冷媒減圧装置としてエジェクタを備えるエジェクタ式冷凍サイクルに関する。
 従来、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクルであるエジェクタ式冷凍サイクルが知られている。例えば、特許文献1には、圧縮機から吐出された高圧冷媒を放熱させる放熱器の下流側に冷媒の流れを分岐する分岐部を配置し、分岐部にて分岐された一方の冷媒をエジェクタのノズル部側へ流出させ、他方の冷媒をエジェクタの冷媒吸引口側へ導くエジェクタ式冷凍サイクルが開示されている。
 さらに、特許文献1のエジェクタ式冷凍サイクルでは、エジェクタの昇圧部(ディフューザ部)の下流側にエジェクタから流出した冷媒を蒸発させる第1蒸発器(流出側蒸発器)を配置し、分岐部とエジェクタの冷媒吸引口との間に冷媒を減圧させる固定絞りおよび固定絞りにて減圧された冷媒を蒸発させる第2蒸発器(吸引側蒸発器)を配置している。そして、双方の蒸発器において冷媒が冷却対象流体を冷却できるようにしている。
 この際、特許文献1のエジェクタ式冷凍サイクルでは、エジェクタの昇圧部で昇圧された冷媒を第1蒸発器へ流入させるとともに、第2蒸発器の冷媒出口側にエジェクタのノズル部にて減圧された直後の冷媒の圧力を作用させることによって、第2蒸発器における冷媒蒸発圧力(冷媒蒸発温度)が第1蒸発器における冷媒蒸発圧力(冷媒蒸発温度)よりも低くなるようにしている。
特開2005-308380号公報
 本願の発明の検討によると、特許文献1のエジェクタ式冷凍サイクルでは、エジェクタのノズル部にて減圧された噴射冷媒とエジェクタの冷媒吸引口から吸引された吸引冷媒との混合冷媒を、第1蒸発器へ流入させる構成になっているので、第1蒸発器へ流入する冷媒のエンタルピが、第2蒸発器へ流入する冷媒のエンタルピよりも高くなりやすい。
 このため、第1蒸発器にて冷媒が発揮する冷凍能力(蒸発器の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した値)が、第2蒸発器にて冷媒が発揮する冷凍能力よりも小さくなりやすい。さらに、第1蒸発器へ流入する冷媒流量(質量流量)についても、第2蒸発器へ流入する冷媒流量(質量流量)と異なる値になりやすい。
 ここで、一般的な蒸気圧縮式の冷凍サイクルの蒸発器にて、所望の流量の冷却対象流体を所望の温度となるまで冷却するために必要な冷却能力は、上述した蒸発器における冷媒蒸発温度、冷媒が蒸発器にて発揮する冷凍能力、および蒸発器へ流入する冷媒流量等によって決定される。
 より具体的には、蒸発器における冷媒蒸発温度が低くなるに伴って冷却能力が向上し、冷媒が蒸発器にて発揮する冷凍能力が高くなるに伴って冷却能力が向上し、さらに、蒸発器へ流入する冷媒流量の増加に伴って冷却能力が向上する。
 従って、特許文献1のエジェクタ式冷凍サイクルでは、第1蒸発器における冷却能力と第2蒸発器における冷却能力が異なる能力になってしまいやすい。さらに、第1蒸発器における冷却能力と第2蒸発器における冷却能力が大きく乖離してしまうと、それぞれの蒸発器にて異なる冷却対象流体を冷却する際に、それぞれの蒸発器にて冷却された冷却対象流体の温度が不均一になってしまう。
 例えば、特許文献1のエジェクタ式冷凍サイクルを、デュアルエアコンタイプの車両用空調装置に適用して、一方の蒸発器を車両前席側へ送風される前席側送風空気を冷却するために用い、他方の蒸発器を車両後席側へ送風される後席側送風空気を冷却するために用いると、前席側送風空気の温度と、後席側送風空気の温度が不均一になってしまうおそれがある。
 本開示は、上記点に鑑み、複数の蒸発器を備えるエジェクタ式冷凍サイクルにおいて、それぞれの蒸発器における冷却対象流体の冷却能力を近づけることを目的とする。
 本開示は、上記目的を達成するために案出されたもので、本開示の第1態様のエジェクタ式冷凍サイクルは、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器から流出した冷媒の流れを分岐する上流側分岐部と、上流側分岐部にて分岐された一方の冷媒を減圧させる上流側ノズル部から噴射される高速度の上流側噴射冷媒の吸引作用によって上流側冷媒吸引口から冷媒を吸引し、上流側噴射冷媒と上流側冷媒吸引口から吸引された上流側吸引冷媒との混合冷媒を上流側昇圧部にて昇圧させる上流側エジェクタと、上流側エジェクタから流出した冷媒の気液を分離して、分離された気相冷媒を圧縮機の吸入口側へ流出させる低圧側気液分離器と、低圧側気液分離器にて分離された液相冷媒を蒸発させる第1蒸発器と、上流側分岐部にて分岐された他方の冷媒を減圧させる減圧装置と、減圧装置にて減圧された冷媒を蒸発させる第2蒸発器とを備える上流側冷媒吸引口には、少なくとも第1蒸発器の冷媒出口側が接続されている。
 これによれば、第1蒸発器へ低圧側気液分離器にて分離された液相冷媒を流入させるので、第1蒸発器へ比較的エンタルピの低い冷媒を流入させることができる。また、第2蒸発器へ放熱器から流出して減圧装置にて減圧された冷媒を流入させるので、第2蒸発器へ比較的エンタルピの低い冷媒を流入させることができる。
 従って、第1蒸発器へ流入する冷媒のエンタルピと第2蒸発器へ流入する冷媒のエンタルピとの差を縮小することができ、第1蒸発器にて冷媒が発揮する冷凍能力と、第2蒸発器にて冷媒が発揮する冷凍能力とを近づけることができる。その結果、第1蒸発器における冷却能力と第2蒸発器における冷却能力を近づけることができる。
 本開示の第2態様によるエジェクタ式冷凍サイクルは、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器から流出した冷媒の流れを分岐する上流側分岐部と、上流側分岐部にて分岐された一方の冷媒を減圧させる上流側ノズル部から噴射される高速度の上流側噴射冷媒の吸引作用によって上流側冷媒吸引口から冷媒を吸引し、上流側噴射冷媒と上流側冷媒吸引口から吸引された上流側吸引冷媒との混合冷媒を上流側昇圧部にて昇圧させる上流側エジェクタと、上流側エジェクタから流出した冷媒の流れを分岐する下流側分岐部と、下流側分岐部にて分岐された一方の冷媒を減圧させる下流側ノズル部から噴射される高速度の下流側噴射冷媒の吸引作用によって下流側冷媒吸引口から冷媒を吸引し、下流側噴射冷媒と下流側冷媒吸引口から吸引された下流側吸引冷媒との混合冷媒を下流側昇圧部にて昇圧させる下流側エジェクタと、下流側分岐部にて分岐された他方の冷媒を蒸発させる第1蒸発器と、上流側分岐部にて分岐された他方の冷媒を減圧させる減圧装置と、減圧装置にて減圧された冷媒を蒸発させる第2蒸発器とを備える。上流側冷媒吸引口には、第1蒸発器の冷媒出口側が接続され、下流側冷媒吸引口には、第2蒸発器の冷媒出口側が接続されている。
 これによれば、第2蒸発器の冷媒出口側が下流側エジェクタの下流側冷媒吸引口に接続されているので、下流側昇圧部から流出した冷媒の圧力よりも、第2蒸発器における冷媒蒸発圧力を低下させることができる。
 従って、第2蒸発器における冷媒蒸発圧力(冷媒蒸発温度)を、第1蒸発器における冷媒蒸発圧力(冷媒蒸発温度)に近づくように低下させることができる。その結果、第1蒸発器における冷却能力と第2蒸発器における冷却能力を近づけることができる。
 また、本開示の第3態様によるエジェクタ式冷凍サイクルは、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器から流出した冷媒の流れを分岐する上流側分岐部と、上流側分岐部にて分岐された一方の冷媒を減圧させる上流側ノズル部から噴射される高速度の上流側噴射冷媒の吸引作用によって上流側冷媒吸引口から冷媒を吸引し、上流側噴射冷媒と上流側冷媒吸引口から吸引された上流側吸引冷媒との混合冷媒を上流側昇圧部にて昇圧させる上流側エジェクタと、上流側エジェクタから流出した冷媒の気液を分離して、分離された気相冷媒を圧縮機の吸入口側へ流出させる上流側気液分離器と、上流側気液分離器にて分離された液相冷媒を蒸発させて、上流側冷媒吸引口側へ流出させる第1蒸発器と、上流側分岐部にて分岐された一方の冷媒を減圧させる下流側ノズル部から噴射される高速度の下流側噴射冷媒の吸引作用によって下流側冷媒吸引口から冷媒を吸引し、下流側噴射冷媒と下流側冷媒吸引口から吸引された下流側吸引冷媒との混合冷媒を下流側昇圧部にて昇圧させる下流側エジェクタと、下流側エジェクタから流出した冷媒の気液を分離して、分離された気相冷媒を圧縮機の吸入口側へ流出させる下流側気液分離器と、下流側気液分離器にて分離された液相冷媒を蒸発させて、下流側冷媒吸引口側へ流出させる第2蒸発器と、を備える。
 これによれば、第1蒸発器へ流入する冷媒および第2蒸発器へ流入する冷媒を、それぞれ異なる減圧装置で減圧する構成とすることができるので、第1蒸発器における冷媒蒸発温度と第2蒸発器における冷媒蒸発温度とを同等の温度に近づけやすい。同様に、第1蒸発器へ流入する冷媒流量と第2蒸発器へ流入する冷媒流量とを同等の流量に近づけやすい。
 さらに、第1蒸発器へ上流側気液分離器にて分離された液相冷媒を流入させ、第2蒸発器へ下流側気液分離器にて分離された液相冷媒を流入させる構成になっているので、第1蒸発器にて冷媒が発揮する冷凍能力と、第2蒸発器にて冷媒が発揮する冷凍能力とを近づけやすい。
 その結果、第1蒸発器における冷却能力と第2蒸発器における冷却能力を効果的に近づけることができる。
 また、本開示の第4態様によるエジェクタ式冷凍サイクルは、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器から流出した冷媒の流れを分岐する第1上流側分岐部と、第1上流側分岐部にて分岐された一方の冷媒を減圧させる上流側ノズル部から噴射される高速度の上流側噴射冷媒の吸引作用によって上流側冷媒吸引口から冷媒を吸引し、上流側噴射冷媒と上流側冷媒吸引口から吸引された上流側吸引冷媒との混合冷媒を上流側昇圧部にて昇圧させる上流側エジェクタと、上流側エジェクタから流出した冷媒の気液を分離して、分離された気相冷媒を圧縮機の吸入口側へ流出させる気液分離器と、気液分離器にて分離された液相冷媒を蒸発させて、上流側冷媒吸引口側へ流出させる第1蒸発器と、第1上流側分岐部にて分岐された他方の冷媒の流れをさらに分岐する第2上流側分岐部と、第2上流側分岐部にて分岐された一方の冷媒を減圧させる下流側ノズル部から噴射される高速度の下流側噴射冷媒の吸引作用によって下流側冷媒吸引口から冷媒を吸引し、下流側噴射冷媒と下流側冷媒吸引口から吸引された下流側吸引冷媒との混合冷媒を下流側昇圧部にて昇圧させる下流側エジェクタと、第2上流側分岐部にて分岐された他方の冷媒を減圧させる減圧装置と、減圧装置にて減圧された冷媒を蒸発させて、下流側冷媒吸引口側へ流出させる第2蒸発器と、低圧側気液分離器にて分離された気相冷媒の流れと下流側昇圧部から流出した冷媒の流れとを合流させて、圧縮機の吸入側へ流出させる合流部と、放熱器の冷媒出口側から第1上流側分岐部の入口側へ至る冷媒流路を流通する高圧冷媒と下流側昇圧部の出口側から圧縮機の吸入口側へ至る冷媒流路を流通する低圧冷媒とを熱交換させる内部熱交換器と、を備える。
 これによれば、第1蒸発器へ流入する冷媒および第2蒸発器へ流入する冷媒を、それぞれ異なる減圧装置で減圧する構成とすることができるので、第1蒸発器における冷媒蒸発温度と第2蒸発器における冷媒蒸発温度とを同等の温度に近づけやすい。同様に、第1蒸発器へ流入する冷媒流量と第2蒸発器へ流入する冷媒流量とを同等の流量に近づけやすい。
 その結果、第1蒸発器における冷却能力と第2蒸発器における冷却能力を効果的に近づけることができる。
 さらに、内部熱交換器へ流入する低圧冷媒を気液二相状態とすることができるので、内部熱交換機から流出して圧縮機へ吸入される冷媒の過熱度が不必要に上昇してしまうことを抑制できる。従って、圧縮機から吐出される冷媒が過度に高温となって圧縮機の耐久寿命に悪影響を及ぼしてしまうことを抑制できる。
第1実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第1実施形態のエジェクタの軸方向断面図である。 第1実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第2実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第2実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第3実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第3実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第4実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第5実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第5実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第6実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第7実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第8実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第9実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第10実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第11実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第12実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第12実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第13実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第14実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第15実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第16実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第17実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第18実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第19実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第20実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第21実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第22実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第23実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第24実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第25実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第26実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第26実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。
 (第1実施形態)
 図1~図3を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタ式冷凍サイクル10は、デュアルエアコンタイプの車両用空調装置に適用されており、空調対象空間である車室内に送風される送風空気を冷却する機能を果たす。
 ここで、デュアルエアコンタイプの車両用空調装置とは、車室内のうち主に前席側の領域へ空調風を吹き出すための前席用空調ユニット、および主に後席側の領域へ空調風を吹き出すための後席用空調ユニットを備え、それぞれのユニット内に形成された送風空気の空気通路に、エジェクタ式冷凍サイクル10において低圧冷媒を蒸発させる第1蒸発器17および第2蒸発器18を配置したものである。
 従って、本実施形態では、車室内前席側に送風される前席側送風空気、および車室内後席側へ送風される後席側送風空気の双方が、エジェクタ式冷凍サイクル10の冷却対象流体となる。
 また、このエジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 次に、エジェクタ式冷凍サイクル10の詳細構成について説明する。図1の全体構成図に示すエジェクタ式冷凍サイクル10において、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。
 この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。また、電動モータは、後述する制御装置から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。
 さらに、圧縮機11は、プーリ、ベルト等を介して車両走行用エンジンから伝達された回転駆動力によって駆動されるエンジン駆動式の圧縮機であってもよい。この種のエンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機や、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機等を採用することができる。
 圧縮機11の吐出口側には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。
 より具体的には、この放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える高圧側気液分離器としてのレシーバ部12b、およびレシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器である。
 また、冷却ファン12dは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。
 放熱器12の過冷却部12cの冷媒出口側には、放熱器12から流出した冷媒の流れを分岐する上流側分岐部13aの冷媒流入口が接続されている。上流側分岐部13aは、3つの流入出口を有する三方継手で構成されており、3つの流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。このような三方継手は、管径の異なる配管を接合して形成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けて形成してもよい。
 上流側分岐部13aの一方の冷媒流出口には、上流側エジェクタ14の上流側ノズル部41の冷媒流入口41aが接続されている。また、上流側分岐部13aの他方の冷媒流出口には、後述する高圧側固定絞り16aおよび第2蒸発器18を介して、上流側エジェクタ14の上流側ボデー部42に形成された上流側冷媒吸引口41bが接続されている。
 上流側エジェクタ14は、放熱器12から流出した高圧冷媒を減圧させる減圧装置としての機能を果たすとともに、上流側ノズル部41から高速度で噴射される噴射冷媒の吸引作用によって冷媒を吸引(輸送)してサイクル内を循環させる冷媒循環部(冷媒輸送部)としての機能を果たすものである。
 上流側エジェクタ14の詳細構成については、図2を用いて説明する。上流側エジェクタ14は、図2に示すように、上流側ノズル部41および上流側ボデー部42を有して構成されている。まず、上流側ノズル部41は、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(例えば、ステンレス合金)で形成されており、内部に流入した冷媒を等エントロピ的に減圧させて、冷媒流れ最下流側に設けられた冷媒噴射口41bから噴射するものである。
 上流側ノズル部41の内部には、冷媒流入口41aから流入した冷媒を旋回させる旋回空間41c、並びに、旋回空間41cから流出した冷媒を減圧させる冷媒通路が形成されている。
 さらに、この冷媒通路には、冷媒通路面積が最も縮小した最小通路面積部41d、旋回空間41cから最小通路面積部41dへ向かって冷媒通路面積を徐々に縮小させる先細部41e、および最小通路面積部41dから冷媒噴射口41bへ向かって冷媒通路面積を徐々に拡大させる末広部41fが形成されている。
 旋回空間41cは、上流側ノズル部41の冷媒流れ最上流側に設けられて、上流側ノズル部41の軸線方向と同軸上に延びる筒状部41gの内部に形成された円柱状の空間である。さらに、冷媒流入口41aと旋回空間41cとを接続する冷媒流入通路は、旋回空間41cの中心軸方向から見たときに旋回空間41cの内壁面の接線方向に延びている。
 これにより、冷媒流入口41aから旋回空間41cへ流入した冷媒は、旋回空間41cの内壁面に沿って流れ、旋回空間41cの中心軸周りに旋回する。従って、筒状部41gは、旋回流発生部を構成しており、本実施形態では、旋回流発生部と上流側ノズル部が一体的に形成されていることになる。
 ここで、旋回空間41c内で旋回する冷媒には遠心力が作用するので、旋回空間41c内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、エジェクタ式冷凍サイクル10の通常運転時に、旋回空間41c内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力となるまで低下させるようにしている。
 このような旋回空間41c内の中心軸側の冷媒圧力の調整は、旋回空間41c内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路の通路断面積と旋回空間41cの軸方向垂直断面積との面積比を調整すること等によって行うことができる。なお、本実施形態における旋回流速とは、旋回空間41cの最外周部近傍における冷媒の旋回方向の流速を意味している。
 先細部41eは、旋回空間41cと同軸上に配置されて旋回空間41cから最小通路面積部41dへ向かって冷媒通路面積を徐々に縮小させる円錐台状に形成されている。末広部41fは、旋回空間41cおよび先細部41eと同軸上に配置されて最小通路面積部41dから冷媒噴射口41bへ向かって冷媒通路面積を徐々に拡大させる円錐台状に形成されている。
 次に、上流側ボデー部42は、略円筒状の金属(例えば、アルミニウム)で形成されており、内部に上流側ノズル部41を支持固定する固定部材として機能するとともに、上流側エジェクタ14の外殻を形成するものである。より具体的には、上流側ノズル部41は、上流側ボデー部42の長手方向一端側の内部に収容されるように圧入等によって固定されている。
 また、上流側ボデー部42の外周側面のうち、上流側ノズル部41の外周側に対応する部位には、その内外を貫通して上流側ノズル部41の冷媒噴射口41bと連通するように設けられた上流側冷媒吸引口42aが形成されている。この上流側冷媒吸引口42aは、上流側ノズル部41の冷媒噴射口41bから噴射された噴射冷媒の吸引作用によって第2蒸発器18から流出した冷媒を上流側エジェクタ14の内部へ吸引する貫通穴である。
 従って、上流側ボデー部42の内部の上流側冷媒吸引口42aの周辺には、冷媒を流入させる入口空間が形成され、上流側ノズル部41の先細り形状の先端部周辺の外周壁面と上流側ボデー部42の内周壁面との間には、上流側ボデー部42の内部へ流入した吸引冷媒を上流側ディフューザ部42bへ導く吸引通路42cが形成されている。
 この吸引通路42cの冷媒通路面積は、冷媒流れ方向に向かって徐々に縮小している。これにより、本実施形態の上流側エジェクタ14では、吸引通路42cを流通する吸引冷媒の流速を徐々に増速させて、上流側ディフューザ部42bにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(混合損失)を減少させている。
 上流側ディフューザ部42bは、吸引通路42cの出口側に連続するように配置されて、冷媒通路面積が徐々に拡大するように形成されている。これにより、噴射冷媒と吸引冷媒との混合冷媒の有する運動エネルギを圧力エネルギに変換する機能、すなわち、混合冷媒の流速を減速させて混合冷媒を昇圧させる上流側昇圧部としての機能を果たす。
 より具体的には、本実施形態の上流側ディフューザ部42bを形成する上流側ボデー部42の内周壁面の壁面形状は、図2の軸方向断面に示すように、複数の曲線を組み合わせて形成されている。そして、上流側ディフューザ部42bの冷媒通路断面積の広がり度合が冷媒流れ方向に向かって徐々に大きくなった後に再び小さくなっていることで、冷媒を等エントロピ的に昇圧させることができる。
 上流側エジェクタ14の冷媒出口側には、図1に示すように、気液分離器15の冷媒流入口が接続されている。気液分離器15は、内部に流入した冷媒の気液を分離する低圧側気液分離器である。さらに、本実施形態では、気液分離器15として、分離された液相冷媒を殆ど蓄えることなく液相冷媒流出口から流出させるものを採用しているが、サイクル内の余剰液相冷媒を蓄える貯液部としての機能を有するものを採用してもよい。
 気液分離器15の気相冷媒流出口には、圧縮機11の吸入側が接続されている。一方、気液分離器15の液相冷媒流出口には、減圧装置としての低圧側固定絞り16bを介して、第1蒸発器17の冷媒入口側が接続されている。低圧側固定絞り16bは、気液分離器15から流出した液相冷媒を減圧させる減圧装置であり、具体的には、オリフィス、キャピラリチューブあるいはノズル等を採用できる。
 第1蒸発器17は、上流側エジェクタ14および低圧側固定絞り16bにて減圧された低圧冷媒と送風ファン17aから車室内前席側へ向けて送風される前席側送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。送風ファン17aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。
 第1蒸発器17の冷媒出口側には、合流部13bの一方の冷媒流入口が接続されている。合流部13bは、上流側分岐部13aと同様の三方継手で構成されており、3つの流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としたものである。合流部13bの他方の冷媒流入口には、第2蒸発器18の冷媒出口側が接続され、合流部13bの冷媒流出口には、上流側エジェクタ14の上流側冷媒吸引口42aが接続されている。
 また、上流側分岐部13aの他方の冷媒流出口には、上流側分岐部13aにて分岐された他方の冷媒を減圧させる減圧装置としての高圧側固定絞り16aが接続されている。この高圧側固定絞り16aとしては、低圧側固定絞り16bと同様に、オリフィス、キャピラリチューブあるいはノズル等を採用できる。
 高圧側固定絞り16aの冷媒流れ下流側には、第2蒸発器18の冷媒入口側が接続されている。第2蒸発器18は、高圧側固定絞り16aにて減圧された低圧冷媒と送風ファン18aから車室内後席側へ向けて送風される後席側送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。
 第2蒸発器18の冷媒出口側には、合流部13bの他方の冷媒流入口が接続されている。送風ファン18aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。
 次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上述の各種電気式のアクチュエータ11、12d、17a、18a等の作動を制御する。
 制御装置には、車室内温度を検出する内気温センサ、外気温を検出する外気温センサ、車室内の日射量を検出する日射センサ、第1、第2蒸発器17、18の吹出空気温度(蒸発器の温度)を検出する第1、第2蒸発器温度センサ、放熱器12出口側冷媒の温度を検出する出口側温度センサおよび放熱器12出口側冷媒の圧力を検出する出口側圧力センサ等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
 さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。
 なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。例えば、本実施形態では、圧縮機11の作動を制御する構成(ハードウェアおよびソフトウェア)が吐出能力制御部を構成している。
 次に、上記構成における本実施形態の作動を図3のモリエル線図を用いて説明する。まず、操作パネルの空調作動スイッチが投入(ON)されると、制御装置が圧縮機11、冷却ファン12d、送風ファン17a、18a等を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。
 圧縮機11から吐出された高温高圧冷媒(図3のa3点)は、放熱器12の凝縮部12aへ流入し、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて放熱した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図3のa3点→b3点)。
 放熱器12の過冷却部12cから流出した過冷却液相冷媒の流れは、上流側分岐部13aにて分岐される。上流側分岐部13aにて分岐された一方の冷媒は、上流側エジェクタ14の上流側ノズル部41の冷媒流入口41aへ流入し、等エントロピ的に減圧されて冷媒噴射口41bから噴射される(図3のb3点→c3点)。
 そして、冷媒噴射口41bから噴射された上流側噴射冷媒の吸引作用によって、第1蒸発器17および第2蒸発器18から流出した冷媒が、合流部13bを介して、上流側冷媒吸引口42aから吸引される。上流側噴射冷媒および上流側冷媒吸引口42aから吸引された上流側吸引冷媒は、上流側ディフューザ部42bへ流入する(図3のc3点→d3点、i3点→d3点)。
 上流側ディフューザ部42bでは冷媒通路面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、上流側噴射冷媒と上流側吸引冷媒が混合されながら混合冷媒の圧力が上昇する(図3のd3点→e3点)。上流側ディフューザ部42bから流出した冷媒は、気液分離器15へ流入して気液分離される(図3のe3点→f3点、e3点→g3点)。
 気液分離器15にて分離された気相冷媒は、圧縮機11の吸入口から吸入されて再び圧縮される(図3のf3’点→a3点)。なお、図3においてf3点とf3’点が異なっている理由は、気液分離器15から流出した気相冷媒が、気液分離器15の気相冷媒流出口から圧縮機11の吸入口へ至る冷媒配管を流通する際に、圧力損失が生じるからである。従って、理想的なサイクルでは、f3点とf3’点が一致していることが望ましい。このことは、他のモリエル線図においても同様である。
 また、気液分離器15にて分離された液相冷媒は、低圧側固定絞り16bにて等エンタルピ的に減圧されて(図3のg3点→h3点)、第1蒸発器17へ流入する。第1蒸発器17へ流入した冷媒は、送風ファン17aから送風された前席側送風空気から吸熱して蒸発する。これにより、前席側送風空気が冷却される。さらに、第1蒸発器17から流出した冷媒は、合流部13bへ流入する(図3のh3点→i3点)。
 一方、上流側分岐部13aにて分岐された他方の冷媒は、高圧側固定絞り16aへ流入して等エンタルピ的に減圧膨張されて(図3のb3点→j3点)、第2蒸発器18へ流入する。第2蒸発器18へ流入した冷媒は、送風ファン18aから送風された後席側送風空気から吸熱して蒸発する。これにより、後席側送風空気が冷却される。さらに、第2蒸発器18から流出した冷媒は、合流部13bへ流入する(図3のj3点→i3点)。
 ここで、本実施形態では、エジェクタ式冷凍サイクル10の通常運転時に、第1蒸発器17へ流入する冷媒の圧力と第2蒸発器18へ流入する冷媒の圧力が略同等となるように、高圧側固定絞り16aおよび低圧側固定絞り16bの減圧特性(流量係数)が決定されている。そして、合流部13bから流出した冷媒は、前述の如く、上流側エジェクタ14の上流側冷媒吸引口42aから吸引される。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動して、前席側送風空気および後席側送風空気を冷却することができる。さらに、このエジェクタ式冷凍サイクル10では、上流側エジェクタ14の上流側ディフューザ部42bにて昇圧された冷媒を圧縮機11に吸入させるので、圧縮機11の駆動動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、第1蒸発器17へ気液分離器である気液分離器15にて分離された液相冷媒を流入させるので、図3のh3点に示すように、第1蒸発器17へ比較的エンタルピの低い冷媒を流入させることができる。また、第2蒸発器18へ放熱器12から流出して高圧側固定絞り16aにて等エンタルピ的に減圧された冷媒を流入させるので、図3のj3点に示すように、第2蒸発器18にも比較的エンタルピの低い冷媒を流入させることができる。
 従って、第1蒸発器17へ流入する冷媒のエンタルピと第2蒸発器18へ流入する冷媒のエンタルピとの差を縮小することができ、第1蒸発器17にて冷媒が発揮する冷凍能力(図3のi3点とh3点とのエンタルピ差)と、第2蒸発器18にて冷媒が発揮する冷凍能力(図3のi3点とj3点とのエンタルピ差)とを近づけることができる。
 その結果、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力とを近づけることができ、車両前席側へ送風される送風空気の温度と、車両後席側へ送風される送風空気の温度が不均一になってしまうことを抑制できる。なお、蒸発器における冷却能力とは、所望の流量の冷却対象流体(本実施形態では、送風空気)を所望の温度となるまで冷却する能力と定義することができる。
 また、本実施形態のエジェクタ式冷凍サイクル10では、第1蒸発器17の冷媒入口側の冷媒圧力と第2蒸発器18の冷媒入口側の冷媒圧力が略同等となるように、高圧側固定絞り16aおよび低圧側固定絞り16bの減圧特性(流量係数)が決定されている。さらに、上流側エジェクタ14の上流側冷媒吸引口42aに、合流部13bを介して、第1蒸発器17の冷媒出口側および第2蒸発器18の冷媒出口側の双方が接続されている。
 従って、第1蒸発器17における冷媒蒸発圧力(冷媒蒸発温度)と第2蒸発器18における冷媒蒸発圧力(冷媒蒸発温度)とを近づけることができ、より一層効果的に、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力とを近づけることができる。
 また、本実施形態の上流側エジェクタ14の上流側ノズル部41では、旋回空間41cにて冷媒を旋回させて、旋回空間41cの旋回中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させている。これにより、旋回中心軸の外周側よりも内周側に気相冷媒が多く存在するようにして、旋回空間41c内の旋回中心線近傍はガス単相、その周りは液単相の二相分離状態とすることができる。
 このように二相分離状態となった冷媒が上流側ノズル部41の先細部41eへ流入することで、先細部41eでは、外周側壁面から冷媒が剥離する際に生じる壁面沸騰および冷媒通路の中心軸側の冷媒のキャビテーションによって生じた沸騰核による界面沸騰によって冷媒の沸騰が促進される。これにより、最小通路面積部41dへ流入する冷媒が、気相と液相が均質に混合した気液混合状態に近づく。
 そして、最小通路面積部41dの近傍で気液混合状態の冷媒の流れに閉塞(チョーキング)が生じ、このチョーキングによって音速に到達した気液混合状態の冷媒が末広部41fにて加速されて噴射される。このように、壁面沸騰および界面沸騰の双方による沸騰促進によって、気液混合状態の冷媒を音速となるまで効率よく加速できることで、上流側ノズル部41にて冷媒の圧力エネルギを運動エネルギへ変換するエネルギ変換効率(ノズル効率)を向上させることができる。
 さらに、本実施形態の放熱器12では、高圧側気液分離器としてのレシーバ部12bを備えているので、旋回流発生部を構成する上流側エジェクタ14の筒状部41g内に形成される旋回空間41cへ確実に液相冷媒を供給することができる。従って、旋回空間41cにて旋回させた冷媒をノズル部へ供給することによるノズル効率向上効果を確実に得ることができる。
 (第2実施形態)
 本実施形態では、図4の全体構成図に示すように、第1実施形態のエジェクタ式冷凍サイクル10に対して、放熱器12下流側の高圧冷媒と圧縮機11吸入側の低圧冷媒とを熱交換させる内部熱交換部である内部熱交換器19を追加した例を説明する。なお、図4では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
 より具体的には、本実施形態では、気液分離器15の気相冷媒流出口側に合流部13bの一方の冷媒流入口を接続し、第2蒸発器18の冷媒出口側に合流部13bの他方の冷媒流入口を接続している。さらに、合流部13bの冷媒流出口に内部熱交換器19の低圧冷媒通路の入口側を接続している。
 内部熱交換器19は、放熱器12下流側の高圧冷媒のうち上流側分岐部13aから高圧側固定絞り16aへ至る冷媒流路を流通する高圧冷媒と、圧縮機11吸入側の低圧冷媒のうち合流部13bから圧縮機11の吸入口へ至る冷媒流路を流通する低圧冷媒とを熱交換させるものである。
 なお、合流部13bから圧縮機11の吸入口へ至る冷媒流路を流通する低圧冷媒とは、気液分離器15から流出した気相冷媒と第2蒸発器18から流出した冷媒が合流した低圧冷媒となる。
 このような内部熱交換器19としては、低圧冷媒を流通させる低圧冷媒通路を形成する内側管の外側に、高圧冷媒を流通させる高圧冷媒通路を形成する外側管を配置する二重管方式の熱交換器等を採用することができる。もちろん、低圧冷媒通路を形成する外側管の内側に、高圧冷媒通路を形成する内側管を配置する構成としてもよい。その他のエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。
 次に、上記構成における本実施形態の作動を図5のモリエル線図を用いて説明する。なお、図5のモリエル線図にて冷媒の状態を示す各符号は、第1実施形態で説明した図3のモリエル線図に対してサイクル構成上同等の箇所の冷媒の状態を示すものは同一のアルファベットを用いて示し、添字のみ変更している。このことは、以下のモリエル線図においても同様である。
 本実施形態のエジェクタ式冷凍サイクル10を作動させると、第1実施形態と同様に、圧縮機11吐出冷媒が、放熱器12→上流側分岐部13aの順に流れ、上流側分岐部13aにて分岐された一方の冷媒が上流側エジェクタ14の上流側ノズル部41にて等エントロピ的に減圧される(図5のa5点→b5点→c5点)。
 これにより、第1蒸発器17から流出した冷媒が、上流側冷媒吸引口42aから吸引されて上流側噴射冷媒と合流する(図5のc5点→d5点、i5点→d5点)。さらに、上流側噴射冷媒および上流側冷媒吸引口42aから吸引された上流側吸引冷媒が、上流側ディフューザ部42bにて混合されながら昇圧されて(図5のd5点→e5点)、気液分離器15にて気液分離される(図5のe5点→f5点、e5点→g5点)。
 気液分離器15にて分離された気相冷媒は、合流部13bへ流入して第2蒸発器18から流出した冷媒と合流し、内部熱交換器19の低圧冷媒通路へ流入する。また、気液分離器15にて分離された液相冷媒は、第1実施形態と同様に、低圧側固定絞り16bにて減圧されて(図5のg5点→h5点)、第1蒸発器17にて送風ファン17aから送風された前席側送風空気から吸熱して蒸発する(図5のh5点→i5点)。
 一方、上流側分岐部13aにて分岐された他方の冷媒は、内部熱交換器19の高圧冷媒通路へ流入して、低圧冷媒通路を流通する低圧冷媒と熱交換してさらにエンタルピを低下させる(図5のb5点→b’5点)。一方、低圧冷媒通路を流通する低圧冷媒はエンタルピを上昇させる(図5のf5点→f”5点)。
 内部熱交換器19の高圧冷媒通路から流出した冷媒は、第1実施形態と同様に、高圧側固定絞り16aにて減圧されて(図5のb’5点→j5点)、第2蒸発器18にて送風ファン18aから送風された後席側送風空気から吸熱して蒸発する(図5のj5点→f5点)。また、内部熱交換器19の低圧冷媒通路から流出した冷媒は、圧縮機11の吸入口から吸入されて再び圧縮される(図5のf5’点→a5点)。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動するので、第1実施形態と同様の効果を得ることができる。つまり、前席側送風空気および後席側送風空気を冷却することができ、この際、車両前席側へ送風される送風空気の温度と、車両後席側へ送風される送風空気の温度が不均一になってしまうことを抑制できる。
 より詳細には、本実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様に、第1蒸発器17へ気液分離器15にて分離された液相冷媒を流入させるので、図5のh5点に示すように、第1蒸発器17へ比較的エンタルピの低い冷媒を流入させることができる。また、第2蒸発器18へ内部熱交換器19にて冷却されて高圧側固定絞り16aにて等エンタルピ的に減圧された冷媒を流入させるので、図5のj5点に示すように、第2蒸発器18にも比較的エンタルピの低い冷媒を流入させることができる。
 従って、第1蒸発器17にて冷媒が発揮する冷凍能力(図5のi5点とh5点とのエンタルピ差)と、第2蒸発器18にて冷媒が発揮する冷凍能力(図5のf5点とj5点とのエンタルピ差)とを近づけることができ、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力とを近づけることができる。
 また、本実施形態のエジェクタ式冷凍サイクル10では、内部熱交換器19を備えているので、第2蒸発器18へ流入する冷媒のエンタルピを低下させて、第2蒸発器18にて冷媒が発揮する冷凍能力を拡大することができる。従って、図5のモリエル線図に示すように、第2蒸発器18における冷媒蒸発温度が、第1蒸発器17における冷媒蒸発温度よりも高くなっていても、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力が大きく乖離してしまうことを抑制できる。
 また、本実施形態のエジェクタ式冷凍サイクル10では、内部熱交換器19の低圧冷媒通路に、気液分離器15にて分離された気相冷媒と第2蒸発器18から流出した冷媒とを合流させた低圧冷媒を流入させている。従って、第2蒸発器18から流出した冷媒に液相冷媒が混じっていても内部熱交換器19にて液相冷媒を蒸発気化させることができ、圧縮機11の液圧縮を防止できる。
 (第3実施形態)
 本実施形態では、図6の全体構成図に示すように、第1実施形態のエジェクタ式冷凍サイクル10に対して、下流側エジェクタ20を追加した例を説明する。下流側エジェクタ20の基本的構成は、上流側エジェクタ14と同様である。従って、下流側エジェクタ20は、上流側エジェクタ14と同様の下流側ノズル部21および下流側ボデー部22を有して構成されている。
 より具体的には、下流側ノズル部21には、冷媒を流入させる冷媒流入口21aが形成されている。また、下流側ボデー部22には、下流側ノズル部21から噴射された下流側噴射冷媒の吸引作用によって冷媒を吸引する下流側冷媒吸引口22a、および下流側噴射冷媒と下流側冷媒吸引口22aから吸引された下流側吸引冷媒との混合冷媒を昇圧させる下流側昇圧部としての下流側ディフューザ部22bが形成されている。
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、気液分離器15の気相冷媒流出口に、下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続され、気液分離器15の液相冷媒流出口に、第1蒸発器17の冷媒入口側が接続されている。また、第2蒸発器18の冷媒流出口には、下流側エジェクタ20の下流側冷媒吸引口22a側が接続されている。
 つまり、本実施形態の気液分離器15は、上流側エジェクタ14から流出した冷媒の気液を分離するだけでなく、分離した冷媒の流れを分岐して、分岐された気相冷媒を下流側エジェクタ20の冷媒流入口21a側へ流出させ、分岐された液相冷媒を第1蒸発器17の冷媒入口側へ流出させる下流側分岐部としての機能も果たしている。また、下流側エジェクタ20は、気液分離器15にて分離された気相冷媒と第2蒸発器18から流出した冷媒とを合流させる合流部としての機能も果たしている。
 なお、下流側エジェクタ20の冷媒流入口21aには気相冷媒が流入するので、下流側エジェクタ20は、下流側ノズル部21にて減圧される冷媒に旋回流れを生じさせる旋回流発生部を備えていない。その他のエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。
 次に、上記構成における本実施形態の作動を図7のモリエル線図を用いて説明する。本実施形態のエジェクタ式冷凍サイクル10を作動させると、第1実施形態と同様に、圧縮機11吐出冷媒が、放熱器12→上流側分岐部13aの順に流れ、上流側分岐部13aにて分岐された一方の冷媒が上流側エジェクタ14の上流側ノズル部41にて等エントロピ的に減圧される(図7のa7点→b7点→c7点)。
 これにより、第1蒸発器17流出冷媒が上流側冷媒吸引口42aから吸引されて上流側噴射冷媒と合流する(図7のc7点→d7点、i7点→d7点)。さらに、第1実施形態と同様に、上流側ディフューザ部42bにて昇圧された冷媒が、気液分離器15にて気液分離される(図7のe7点→f7点、e7点→g7点)。
 気液分離器15にて分離された液相冷媒は、低圧側固定絞り16bにて減圧されて(図5のg7点→h7点)、第1蒸発器17にて送風ファン17aから送風された前席側送風空気から吸熱して蒸発する(図7のh7点→i7点)。
 気液分離器15にて分離された気相冷媒は、下流側エジェクタ20の下流側ノズル部21へ流入し、等エントロピ的に減圧されて噴射される(図7のf7点→m7点)。そして、下流側ノズル部21から噴射された下流側噴射冷媒の吸引作用によって、第2蒸発器18から流出した冷媒が、下流側冷媒吸引口22aから吸引される。下流側噴射冷媒および下流側冷媒吸引口22aから吸引された下流側吸引冷媒は、下流側ディフューザ部22bへ流入する(図7のm7点→n7点、k7点→n7点)。
 下流側ディフューザ部22bでは、上流側ディフューザ部42bと同様に、下流側噴射冷媒と下流側吸引冷媒が混合されながら混合冷媒の圧力が上昇する(図7のn7点→f’7点)。下流側ディフューザ部22bから流出した冷媒は、圧縮機11へ吸入されて再び圧縮される(図7のf’7点→a7点)。
 一方、上流側分岐部13aにて分岐された他方の冷媒は、第1実施形態と同様に、高圧側固定絞り16aにて減圧されて(図7のb7点→j7点)、第2蒸発器18にて送風ファン18aから送風された後席側送風空気から吸熱して蒸発する(図7のj7点→k7点)。さらに、第2蒸発器18から流出した冷媒は、下流側エジェクタ20の下流側冷媒吸引口22aから吸引される。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動するので、第1実施形態と同様の効果を得ることができる。つまり、前席側送風空気および後席側送風空気を冷却することができ、この際、車両前席側へ送風される送風空気の温度と、車両後席側へ送風される送風空気の温度が不均一になってしまうことを抑制できる。
 より詳細には、本実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様に、第1蒸発器17へ気液分離器15にて分離された液相冷媒を流入させるので、図7のh7点に示すように、第1蒸発器17へ比較的エンタルピの低い冷媒を流入させることができる。また、第2蒸発器18へ放熱器12から流出して高圧側固定絞り16aにて等エンタルピ的に減圧された冷媒を流入させるので、図7のj7点に示すように、第2蒸発器18にも比較的エンタルピの低い冷媒を流入させることができる。
 従って、第1蒸発器17にて冷媒が発揮する冷凍能力(図7のi7点とh7点とのエンタルピ差)と、第2蒸発器18にて冷媒が発揮する冷凍能力(図7のk7点とj7点とのエンタルピ差)とを近づけることができ、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力とを近づけることができる。
 また、本実施形態のエジェクタ式冷凍サイクル10では、下流側エジェクタ20を備えており、第2蒸発器18の冷媒出口側が下流側エジェクタ20の下流側冷媒吸引口22aに接続されているので、下流側ディフューザ部22bから流出した冷媒の圧力よりも、第2蒸発器18における冷媒蒸発圧力を低下させることができる。
 従って、第2蒸発器18における冷媒蒸発圧力(冷媒蒸発温度)を、第1蒸発器17における冷媒蒸発圧力(冷媒蒸発温度)に近づくように低下させることができる。その結果、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力を、より一層効果的に近づけることができる。
 (第4実施形態)
 本実施形態では、図8の全体構成図に示すように、第1実施形態のエジェクタ式冷凍サイクル10に対して、下流側エジェクタ20を追加した例を説明する。本実施形態の下流側エジェクタ20は、第3実施形態の下流側エジェクタ20に対して、第1実施形態と同様の旋回流発生部を備えている。つまり、本実施形態では、下流側エジェクタ20として、上流側エジェクタ14と全く同様の構成のものが採用されている。
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、上流側分岐部13aの一方の冷媒流出口に、上流側エジェクタ14の上流側ノズル部41の冷媒流入口41a側が接続され、上流側分岐部13aの他方の冷媒流出口に、下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。
 また、下流側エジェクタ20の下流側ディフューザ部22bの下流側には、下流側気液分離器15aが接続されている。この下流側気液分離器15aは、気液分離器15と同様の構成の低圧側気液分離器である。なお、本実施形態では、説明の明確化のために、気液分離器15を上流側気液分離器15と記載する。
 上流側気液分離器15の気相冷媒流出口および下流側気液分離器15aの気相冷媒流出口は、合流部13bを介して、圧縮機11の吸入口側に接続されている。下流側気液分離器15aの液相冷媒流出口には、低圧側固定絞り16bと同様に構成された第2低圧側固定絞り16cを介して第2蒸発器18の冷媒入口側が接続され、第2蒸発器18の冷媒出口には、下流側エジェクタ20の下流側冷媒吸引口22aが接続されている。
 つまり、本実施形態のエジェクタ式冷凍サイクル10では、上流側エジェクタ14、上流側気液分離器15、低圧側固定絞り16bおよび第1蒸発器17を上流側ユニット、そして、下流側エジェクタ20、下流側気液分離器15a、第2低圧側固定絞り16cおよび第2蒸発器18を下流側ユニットとしたときに、2つのユニットが冷媒流れに対して並列的に接続されることになる。その他の構成は、第1実施形態と同様である。
 従って、本実施形態のエジェクタ式冷凍サイクル10を作動させると、前席側送風空気および後席側送風空気を冷却することができるとともに、上流側エジェクタ14の上流側ディフューザ部42bおよび下流側エジェクタ20の下流側ディフューザ部22bの昇圧作用によって、サイクルのCOPを向上させることができる。
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、第1蒸発器17へ流入する冷媒を上流側ノズル部41および低圧側固定絞り16bにて減圧し、第2蒸発器18へ流入する冷媒を下流側ノズル部21および第2低圧側固定絞り16cにて減圧するサイクル構成になっている。
 従って、第1蒸発器17における冷媒蒸発温度と第2蒸発器18における冷媒蒸発温度とを、容易に同等の温度に近づけることができる。同様に、第1蒸発器17へ流入する冷媒流量と第2蒸発器18へ流入する冷媒流量とを、容易に同等の流量に近づけることができる。
 これに加えて、第1蒸発器17へ気液分離器15にて分離された液相冷媒を流入させ、第2蒸発器18へ下流側気液分離器15aにて分離された液相冷媒を流入させるサイクル構成になっている。
 従って、第1蒸発器17へ流入する冷媒の乾き度と第2蒸発器18へ流入する冷媒の乾き度とを、容易に同等の乾き度に近づけることができる。従って、第1蒸発器17にて冷媒が発揮する冷凍能力と、第2蒸発器18にて冷媒が発揮する冷凍能力とを近づけることができる。
 その結果、第4実施形態のエジェクタ式冷凍サイクル10によれば、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力を、効果的に近づけることができる。
 (第5実施形態)
 本実施形態では、図9に示すように、第1実施形態のエジェクタ式冷凍サイクル10に対して、合流部13bの接続態様を変更したものである。具体的には、本実施形態では、気液分離器15の気相冷媒流出口に合流部13bの一方の冷媒流入口側を接続し、第2蒸発器18の冷媒出口に合流部13bの他方の冷媒流入口側を接続している。さらに、合流部13bの冷媒流出口に圧縮機11の吸入口側を接続している。その他のエジェクタ式冷凍サイクル10の構成は第1実施形態と同様である。
 次に、上記構成における本実施形態の作動を図10のモリエル線図を用いて説明する。本実施形態のエジェクタ式冷凍サイクル10を作動させると、第1実施形態と同様に、圧縮機11吐出冷媒が、放熱器12→上流側分岐部13aの順に流れ、上流側分岐部13aにて分岐された一方の冷媒が上流側エジェクタ14の上流側ノズル部41にて等エントロピ的に減圧される(図10のa10点→b10点→c10点)。
 これにより、第1蒸発器17から流出した冷媒が上流側冷媒吸引口42aから吸引されて上流側噴射冷媒と合流し(図10のc10点→d10点、i10点→d10点)、上流側ディフューザ部42bにて昇圧される(図10のd10点→e10点)。さらに、上流側ディフューザ部42bにて昇圧された冷媒は、気液分離器15にて気液分離される(図10のe10点→f10点、e10点→g10点)。
 気液分離器15にて分離された液相冷媒は、低圧側固定絞り16bにて減圧されて(図10のg10点→h10点)、第1蒸発器17にて送風ファン17aから送風された前席側送風空気から吸熱して蒸発する(図10のh10点→i10点)。気液分離器15にて分離された気相冷媒は、合流部13bへ流入して、第2蒸発器18から流出した冷媒と合流する。
 一方、上流側分岐部13aにて分岐された他方の冷媒は、第1実施形態と同様に、高圧側固定絞り16aにて減圧されて(図10のb10点→j10点)、第2蒸発器18にて送風ファン18aから送風された後席側送風空気から吸熱して蒸発する(図10のj10点→f10点)。
 さらに、第2蒸発器18から流出した冷媒は、合流部13bへ流入して、気液分離器15にて分離された気相冷媒と合流する。合流部13bから流出した冷媒は、圧縮機11へ吸入されて再び圧縮される(図10のf’10点→a10点)。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動するので、第1実施形態と同様の効果を得ることができる。つまり、第1蒸発器17へ気液分離器15にて分離された液相冷媒を流入させることによって、第1蒸発器17にて冷媒が発揮する冷凍能力と、第2蒸発器18にて冷媒が発揮する冷凍能力とを近づけることができる。
 ここで、本実施形態のエジェクタ式冷凍サイクル10の構成では、合流部13bを介して、気液分離器15の気相冷媒流出口側と第2蒸発器18の冷媒出口側が接続されている。このため、図10のモリエル線図に示すように、第2蒸発器18における冷媒蒸発温度が、第1蒸発器17における冷媒蒸発温度よりも高くなってしまい、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力が乖離してしまいやすい。
 これに対して、本実施形態では、第1蒸発器17へ気液分離器15にて分離された液相冷媒を流入させることによって、第1蒸発器17にて冷媒が発揮する冷凍能力と、第2蒸発器18にて冷媒が発揮する冷凍能力とを近づけることができる。従って、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力が大きく乖離してしまうことを抑制できる。
 (第6~第9実施形態)
 第6~第9実施形態では、第2実施形態で説明した内部熱交換器19を備えるエジェクタ式冷凍サイクル10の変形例について説明する。
 第6実施形態では、図11の全体構成図に示すように、第1実施形態で説明したエジェクタ式冷凍サイクル10に対して、内部熱交換器19を追加している。より具体的には、第6実施形態の内部熱交換器19は、放熱器12下流側の高圧冷媒のうち放熱器12出口側から上流側分岐部13aへ至る冷媒流路を流通する高圧冷媒と、圧縮機11吸入側の低圧冷媒のうち気液分離器15の気相冷媒流出口から圧縮機11の吸入口へ至る冷媒流路を流通する低圧冷媒とを熱交換させるように配置されている。
 従って、第6実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様の効果を得られるだけでなく、第2蒸発器18へ流入する冷媒のエンタルピを低下させて、第2蒸発器18にて冷媒が発揮する冷凍能力を拡大することができる。
 第7実施形態では、図12の全体構成図に示すように、第5実施形態で説明したエジェクタ式冷凍サイクル10に対して、内部熱交換器19を追加している。より具体的には、第7実施形態の内部熱交換器19は、放熱器12下流側の高圧冷媒のうち放熱器12出口側から上流側分岐部13aへ至る冷媒流路を流通する高圧冷媒と、圧縮機11吸入側の低圧冷媒のうち合流部13bの冷媒流出口から圧縮機11の吸入口へ至る冷媒流路を流通する低圧冷媒とを熱交換させるように配置されている。
 従って、第7実施形態のエジェクタ式冷凍サイクル10によれば、第5実施形態と同様の効果を得られるだけでなく、第2蒸発器18へ流入する冷媒のエンタルピを低下させて、第2蒸発器18にて冷媒が発揮する冷凍能力を拡大することができる。
 第8実施形態では、図13の全体構成図に示すように、第1実施形態で説明したエジェクタ式冷凍サイクル10に対して、内部熱交換器19を追加している。より具体的には、第8実施形態の内部熱交換器19は、放熱器12下流側の高圧冷媒のうち上流側分岐部13aから高圧側固定絞り16aへ至る冷媒流路を流通する高圧冷媒と、圧縮機11吸入側の低圧冷媒のうち気液分離器15の気相冷媒流出口から圧縮機11の吸入口へ至る冷媒流路を流通する低圧冷媒とを熱交換させるように配置されている。
 従って、第8実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様の効果を得られるだけでなく、第2蒸発器18へ流入する冷媒のエンタルピを低下させて、第2蒸発器18にて冷媒が発揮する冷凍能力を拡大することができる。
 第9施形態では、図14の全体構成図に示すように、第4実施形態で説明したエジェクタ式冷凍サイクル10に対して、内部熱交換器19を追加している。より具体的には、第9実施形態の内部熱交換器19は、放熱器12下流側の高圧冷媒のうち放熱器12出口側から上流側分岐部13aへ至る冷媒流路を流通する高圧冷媒と、圧縮機11吸入側の低圧冷媒のうち合流部13bから圧縮機11の吸入口へ至る冷媒流路を流通する低圧冷媒とを熱交換させるように配置されている。
 従って、第9実施形態のエジェクタ式冷凍サイクル10によれば、第4実施形態と同様の効果を得られるだけでなく、第1蒸発器17および第2蒸発器18の双方へ流入する冷媒のエンタルピを低下させて、双方の蒸発器17、18にて冷媒が発揮する冷凍能力を拡大することができる。
 さらに、第9実施形態のエジェクタ式冷凍サイクル10において、内部熱交換器19は、放熱器12出口側から上流側分岐部13aへ至る冷媒流路を流通する高圧冷媒と、気液分離器15の気相冷媒流出口から合流部13bへ至る冷媒流路を流通する低圧冷媒とを熱交換させるように配置されていてもよい。
 また、放熱器12出口側から上流側分岐部13aへ至る冷媒流路を流通する高圧冷媒と、下流側気液分離器15aの気相冷媒流出口から合流部13bへ至る冷媒流路を流通する低圧冷媒とを熱交換させるように配置されていてもよい。
 (第10実施形態)
 本実施形態のエジェクタ式冷凍サイクル10では、図15の全体構成図に示すように、上流側分岐部13aの一方の冷媒流出口に高圧側固定絞り16aを介して第1蒸発器17の冷媒入口側を接続され、上流側分岐部13aの他方の冷媒流出口に第2高圧側固定絞り16dを介して第2蒸発器18の冷媒入口側を接続している。この第2高圧側固定絞り16dの基本的構成は、高圧側固定絞り16aと同様である。
 さらに、第1蒸発器17の冷媒出口側には、上流側エジェクタ14の上流側ノズル部41の冷媒流入口41a側が接続され、第2蒸発器18の冷媒出口側には、上流側エジェクタ14の上流側冷媒吸引口42a側が接続されている。なお、本実施形態の上流側エジェクタ14は、第3実施形態の下流側エジェクタ20と同様に、旋回流発生部を備えていない。
 つまり、本実施形態のエジェクタ式冷凍サイクル10では、上流側エジェクタ14が、第1蒸発器17から流出した冷媒と第2蒸発器18から流出した冷媒とを合流させる合流部としての機能を兼ね備えることによって、第1蒸発器17および第2蒸発器18が冷媒流れに対して並列的に接続されることになる。その他の構成は、第1実施形態と同様である。
 従って、本実施形態のエジェクタ式冷凍サイクル10を作動させると、第1蒸発器17における冷媒蒸発温度が第2蒸発器18における冷媒蒸発温度よりも高くなってしまうものの、第1蒸発器17にて冷媒が発揮する冷凍能力と第2蒸発器18にて冷媒が発揮する冷凍能力と近づけることができる。
 さらに、高圧側固定絞り16aおよび第2高圧側固定絞り16dの減圧特性(流量係数)を適切に調整することで、第1蒸発器17へ流入する冷媒流量と第2蒸発器18へ流入する冷媒流量とを調整することができ、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力を近づけることができる。
 (第11実施形態)
 本実施形態では、図16の全体構成図に示すように、第3実施形態のエジェクタ式冷凍サイクル10に対して、補助上流側分岐部13c、第2高圧側固定絞り16dおよび第3蒸発器23を追加した例を説明する。
 補助上流側分岐部13cの基本的構成は、上流側分岐部13aと同様である。補助上流側分岐部13cは、上流側分岐部13aの他方の冷媒流出口から流出した冷媒の流れをさらに分岐して、分岐された一方の冷媒を第2高圧側固定絞り16d側へ流出させるとともに、分岐された他方の冷媒を高圧側固定絞り16a側へ流出させるものである。
 つまり、本実施形態の高圧側固定絞り16aは、上流側分岐部13aにて分岐された他方の冷媒のうちの一部を減圧させる減圧装置としての機能を果たし、第2高圧側固定絞り16dは、上流側分岐部13aにて分岐された他方の冷媒のうちの別の一部を減圧させる補助減圧装置としての機能を果たす。
 第3蒸発器23は、第2高圧側固定絞り16dにて減圧された低圧冷媒と送風ファン23aから車室内前席側へ向けて送風される前席側送風空気とを熱交換させることによって、前席側送風空気を補助的に冷却する吸熱用熱交換器である。第3蒸発器23の冷媒出口側は、合流部13bの一方の冷媒流入口側に接続されている。また、送風ファン23aの基本的構成は、送風ファン17a、18aと同等である。
 さらに、合流部13bの他方の冷媒流入口には、第1蒸発器17の冷媒出口側が接続され、合流部13bの冷媒流出口には、上流側エジェクタ14の上流側冷媒吸引口42a側が接続されている。その他の構成は、第3実施形態と同様である。
 従って、本実施形態のエジェクタ式冷凍サイクル10を作動させると、第3実施形態と同様の効果を得られるだけでなく、第3蒸発器23にて前席側送風空気を冷却することができる。
 さらに、本実施形態では、上流側エジェクタ14の上流側冷媒吸引口42aに、合流部13bを介して、第1蒸発器17の冷媒出口側および第3蒸発器23の冷媒出口側の双方が接続されている。これにより、第1蒸発器17における冷媒蒸発圧力(冷媒蒸発温度)と第3蒸発器23における冷媒蒸発圧力(冷媒蒸発温度)とを近づけることができる。
 なお、本実施形態では、第3蒸発器23の冷媒出口側を上流側エジェクタ14の上流側冷媒吸引口42aに接続した例を説明したが、第3蒸発器23の冷媒出口側を下流側エジェクタ20の下流側冷媒吸引口22aに接続して、第3蒸発器23にて後席側送風空気を冷却するようにしてもよい。また、第3蒸発器23にて別の冷却対象空間へ送風される送風空気を冷却してもよい。
 (第12実施形態)
 本実施形態では、図17の全体構成図に示すように、第11実施形態のエジェクタ式冷凍サイクル10に対して、気液分離器15を廃止し、上流側エジェクタ14の上流側ディフューザ部42bの出口側に、第1蒸発器17の冷媒入口側を接続した例を説明する。
 さらに、本実施形態の第1蒸発器17の冷媒出口には、下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続され、第2蒸発器18の冷媒出口には、上流側エジェクタ14の上流側冷媒吸引口42a側が接続され、第3蒸発器23の冷媒出口には、下流側エジェクタ20の下流側冷媒吸引口22a側が接続されている。その他の構成は、第11実施形態と同様である。
 次に、上記構成における本実施形態の作動を図18のモリエル線図を用いて説明する。本実施形態のエジェクタ式冷凍サイクル10を作動させると、第1実施形態と同様に、圧縮機11吐出冷媒が、放熱器12→上流側分岐部13aの順に流れ、上流側分岐部13aにて分岐された一方の冷媒が上流側エジェクタ14の上流側ノズル部41にて等エントロピ的に減圧される(図18のa18点→b18点→c18点)。
 これにより、第2蒸発器18から流出した冷媒が上流側冷媒吸引口42aから吸引されて上流側噴射冷媒と合流する(図18のc18点→d18点、i18点→d18点)。上流側噴射冷媒と上流側吸引冷媒は、上流側ディフューザ部42bにて混合されながら昇圧される(図18のd18点→e18点)。
 上流側ディフューザ部42bから流出した冷媒は、第1蒸発器17へ流入して、送風ファン17aから送風された前席側送風空気から吸熱して蒸発する(図18のe18点→f18点)。これにより、前席側送風空気が冷却される。
 第1蒸発器17から流出した冷媒は、下流側エジェクタ20の下流側ノズル部21へ流入して、等エントロピ的に減圧される(図18のf18点→m18点)。これにより、第3蒸発器23から流出した冷媒が下流側冷媒吸引口22aから吸引されて下流側噴射冷媒と合流する(図18のm18点→n18点、k18点→n18点)。
 下流側ノズル部21から噴射された下流側噴射冷媒と下流側冷媒吸引口22aから吸引された上流側吸引冷媒は、下流側ディフューザ部22bにて混合されながら昇圧される(図18のn18点→f’18点)。下流側ディフューザ部22bから流出した冷媒は、圧縮機11に吸入されて再び圧縮される(図18のf’18点→a18点)。
 一方、上流側分岐部13aにて分岐された他方の冷媒の流れは、補助上流側分岐部13cへ流入してさらに分岐される。補助上流側分岐部13cにて分岐された一方の冷媒は、高圧側固定絞り16aにて減圧されて(図18のb18点→j18点)、第2蒸発器18にて送風ファン18aから送風された後席側送風空気から吸熱して蒸発する(図18のj18点→i18点)。これにより、後席側送風空気が冷却される。第2蒸発器18から流出した冷媒は、上流側エジェクタ14の上流側冷媒吸引口42aから吸引される。
 また、補助上流側分岐部13cにて分岐された他方の冷媒は、第2高圧側固定絞り16dにて減圧されて(図18のb18点→o18点)、第3蒸発器23にて送風ファン23aから送風された前席側送風空気から吸熱して蒸発する(図18のo18点→k18点)。これにより、前席側送風空気が冷却される。第3蒸発器23から流出した冷媒は、下流側エジェクタ20の下流側冷媒吸引口22aから吸引される。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動して、前席側送風空気および後席側送風空気を冷却することができる。さらに、下流側エジェクタ20を備えているので、第3蒸発器23から流出した冷媒を昇圧させて圧縮機11へ吸入させることができる。
 従って、第3蒸発器23から流出した冷媒を圧縮機11へ吸入させるサイクル構成に対して、圧縮機11へ吸入される冷媒の密度を上昇させることができ、圧縮機11の回転数を増加させることなく吐出流量を増加させることができる。
 ここで、本実施形態のエジェクタ式冷凍サイクル10では、上流側エジェクタ14の上流側ディフューザ部42bの出口側に第1蒸発器17の冷媒入口側が接続され、第1蒸発器17の冷媒出口側に上流側エジェクタ14の上流側冷媒吸引口42aが接続されている。このため、図18のモリエル線図に示すように、第1蒸発器17における冷媒蒸発温度が、第2蒸発器18における冷媒蒸発温度よりも高くなり、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力が乖離してしまいやすい。
 これに対して、本実施形態では、上記の如く、圧縮機11の吐出流量を増加させることができるので、上流側ノズル部41、高圧側固定絞り16aおよび第2高圧側固定絞り16dの減圧特性(流量係数)を適切に調整することで、第1蒸発器17へ流入する冷媒流量を第2蒸発器18へ流入する冷媒流量よりも増加させることができる。その結果、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力を近づけることができる。
 (第13~第17実施形態)
 第13~第17実施形態では、第12実施形態で説明した、上流側エジェクタ14の上流側ディフューザ部42bの出口側に第1蒸発器17の冷媒入口側が接続され、第1蒸発器17の冷媒出口側に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されたエジェクタ式冷凍サイクル10の変形例について説明する。
 第13実施形態では、図19の全体構成図に示すように、第12実施形態のエジェクタ式冷凍サイクル10に対して、第2補助上流側分岐部13d、第3高圧側固定絞り16eおよび第4蒸発器24を追加した例を説明する。
 第2補助上流側分岐部13dの基本的構成は、上流側分岐部13a等と同様である。第2補助上流側分岐部13dは、補助上流側分岐部13cにて分岐された一方の冷媒をさらに分岐して、分岐された一方の冷媒を第2高圧側固定絞り16d側へ流出させるとともに、分岐された他方の冷媒を第2補助減圧装置である第3高圧側固定絞り16e側へ流出させるものである。
 第4蒸発器24は、第3高圧側固定絞り16eにて減圧された低圧冷媒と送風ファン24aから車室内後席側へ向けて送風される後席側送風空気とを熱交換させることによって、後席側送風空気を補助的に冷却する第2補助熱交換器である。第3蒸発器23の冷媒出口側は、合流部13bの一方の冷媒流入口側に接続されている。
 さらに、合流部13bの他方の冷媒流入口には、第2蒸発器18の冷媒出口側が接続され、合流部13bの冷媒流出口には、上流側エジェクタ14の上流側冷媒吸引口42a側が接続されている。
 従って、第13実施形態のエジェクタ式冷凍サイクル10によれば、第12実施形態と同様の効果を得られるだけでなく、第4蒸発器24にて冷却対象流体(第13実施形態では後席側送風空気)を冷却することができる。
 第14実施形態では、図20の全体構成図に示すように、第12実施形態のエジェクタ式冷凍サイクル10に対して、送風ファン18aを廃止するとともに、第1蒸発器17および第2蒸発器18を一体化させた例を説明する。従って、本実施形態では、第1蒸発器17および第2蒸発器18の双方で、同一の冷却対象空間へ送風される送風空気が冷却されることになる。
 なお、このような蒸発器の一体化の具体的な手段としては、第1蒸発器17および第2蒸発器18を、冷媒が流通する複数本のチューブと、この複数本のチューブの長手方向両端側に配置されて冷媒の集合および分配を行う一対の分配集合用タンクとを有して構成される、いわゆるタンクアンドチューブ型の熱交換器として構成する。
 そして、双方の蒸発器の分配集合用タンクを一体的に形成する、あるいは双方の蒸発器において、冷媒と送風空気との熱交換を促進する熱交換フィンを共通化する等の手段等によって実現することができる。
 さらに、本実施形態では、第1蒸発器17が第2蒸発器18に対して送風空気の流れ方向の風上側に配置されるとともに、送風空気の流れ方向から見たときに、第1蒸発器17の熱交換コア部(冷媒と空気と熱交換させる部位)の全域が、第2蒸発器18の熱交換領域コア部の全域に重合するように一体化されている。
 従って、第14実施形態のエジェクタ式冷凍サイクル10によれば、送風空気を第1蒸発器17→第2蒸発器18の順に通過させて同一の冷却対象空間を冷却できる。この際、第1蒸発器17の冷媒蒸発温度が第2蒸発器18の冷媒蒸発温度よりも高くなっているので、第1蒸発器17および第2蒸発器18の冷媒蒸発温度と送風空気との温度差を確保して、効率的に送風空気を冷却することができる。
 また、第14実施形態のエジェクタ式冷凍サイクル10において、第1蒸発器17および第2蒸発器18を車室内前席側へ向けて送風される前席側送風空気を冷却するために用い、第3蒸発器23を車室内後席側へ向けて送風される後席側送風空気を冷却するために用いてもよい。
 第15実施形態では、図21の全体構成図に示すように、第13実施形態のエジェクタ式冷凍サイクル10に対して、第14実施形態と同様に、送風ファン18aを廃止するとともに、第1蒸発器17および第2蒸発器18を一体化させている。従って、第15実施形態のエジェクタ式冷凍サイクル10によれば、第14実施形態と同様に、同一の冷却対象空間を効率的に冷却することができる。
 また、第15実施形態のエジェクタ式冷凍サイクル10において、第1蒸発器17および第2蒸発器18を車室内前席側へ向けて送風される前席側送風空気を冷却するために用い、第3蒸発器23および第4蒸発器24の少なくとも一方を車室内後席側へ向けて送風される後席側送風空気を冷却するために用いてもよい。
 第16実施形態では、図22の全体構成図に示すように、第13実施形態のエジェクタ式冷凍サイクル10に対して、第4蒸発器24の冷媒出口側と合流部13bとの間に、低圧側固定絞り16bを配置している。これによれば、第13実施形態と同様の効果を得ることができるとともに、第2蒸発器18の冷媒蒸発温度に対して、第4蒸発器24の冷媒蒸発温度を上昇させることができる。
 さらに、第17実施形態では、図23の全体構成図に示すように、第15実施形態のエジェクタ式冷凍サイクル10に対して、第4蒸発器24の冷媒出口側と合流部13bとの間に、低圧側固定絞り16bを配置している。これによれば、第15実施形態と同様の効果を得ることができるとともに、第2蒸発器18の冷媒蒸発温度に対して、第4蒸発器24の冷媒蒸発温度を上昇させることができる。
 (第18、第19実施形態)
 第18実施形態では、第3実施形態のエジェクタ式冷凍サイクル10に対して、図24の全体構成図に示すように、下流側エジェクタ20の接続態様を変更している。具体的には、本実施形態では、気液分離器15の気相冷媒流出口に下流側エジェクタ20の下流側冷媒吸引口22a側が接続され、第2蒸発器18の冷媒出口に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。
 従って、第18実施形態のエジェクタ式冷凍サイクル10を作動させると、第3実施形態と同様に、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力とを近づけることができる。さらに、第12実施形態と同様に、下流側エジェクタ20の昇圧作用によって、圧縮機11へ吸入される冷媒の密度を上昇させることができ、圧縮機11の回転数を増加させることなく吐出流量を増加させることができる。
 第19実施形態では、第11実施形態のエジェクタ式冷凍サイクル10に対して、図25の全体構成図に示すように、下流側エジェクタ20の接続態様を変更している。具体的には、第18実施形態と同様に、気液分離器15の気相冷媒流出口に下流側エジェクタ20の下流側冷媒吸引口22a側が接続され、第2蒸発器18の冷媒出口に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。
 従って、第19実施形態のエジェクタ式冷凍サイクル10を作動させると、第11実施形態と同様に、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力とを近づけることができる。さらに、第12実施形態と同様に、下流側エジェクタ20の昇圧作用によって、圧縮機11へ吸入される冷媒の密度を上昇させることができ、圧縮機11の回転数を増加させることなく吐出流量を増加させることができる。
 (第20~第25実施形態)
 第20実施形態では、第12実施形態のエジェクタ式冷凍サイクル10に対して、図26の全体構成図に示すように、下流側エジェクタ20の接続態様を変更している。具体的には、本実施形態では、第1蒸発器17の冷媒出口に下流側エジェクタ20の下流側冷媒吸引口22a側が接続され、第3蒸発器23の冷媒出口に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。このようなサイクル構成としても第12実施形態と同様の効果を得ることができる。
 第21実施形態では、第13実施形態のエジェクタ式冷凍サイクル10に対して、図27の全体構成図に示すように、下流側エジェクタ20の接続態様を変更している。具体的には、第20実施形態と同様に、第1蒸発器17の冷媒出口に下流側エジェクタ20の下流側冷媒吸引口22a側が接続され、第3蒸発器23の冷媒出口に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。このようなサイクル構成としても第13実施形態と同様の効果を得ることができる。
 第22実施形態では、第14実施形態のエジェクタ式冷凍サイクル10に対して、図28の全体構成図に示すように、下流側エジェクタ20の接続態様を変更している。具体的には、第20実施形態と同様に、第1蒸発器17の冷媒出口に下流側エジェクタ20の下流側冷媒吸引口22a側が接続され、第3蒸発器23の冷媒出口に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。このようなサイクル構成としても第14実施形態と同様の効果を得ることができる。
 第23実施形態では、第15実施形態のエジェクタ式冷凍サイクル10に対して、図29の全体構成図に示すように、下流側エジェクタ20の接続態様を変更している。具体的には、第20実施形態と同様に、第1蒸発器17の冷媒出口に下流側エジェクタ20の下流側冷媒吸引口22a側が接続され、第3蒸発器23の冷媒出口に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。このようなサイクル構成としても第15実施形態と同様の効果を得ることができる。
 第24実施形態では、第16実施形態のエジェクタ式冷凍サイクル10に対して、図30の全体構成図に示すように、下流側エジェクタ20の接続態様を変更している。具体的には、第20実施形態と同様に、第1蒸発器17の冷媒出口に下流側エジェクタ20の下流側冷媒吸引口22a側が接続され、第3蒸発器23の冷媒出口に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。このようなサイクル構成としても第16実施形態と同様の効果を得ることができる。
 第25実施形態では、第17実施形態のエジェクタ式冷凍サイクル10に対して、図31の全体構成図に示すように、下流側エジェクタ20の接続態様を変更している。具体的には、第20実施形態と同様に、第1蒸発器17の冷媒出口に下流側エジェクタ20の下流側冷媒吸引口22a側が接続され、第3蒸発器23の冷媒出口に下流側エジェクタ20の下流側ノズル部21の冷媒流入口21a側が接続されている。このようなサイクル構成としても第17実施形態と同様の効果を得ることができる。
 (第26実施形態)
 本実施形態では、第9実施形態に対して、図32の全体構成図に示すように、上流側エジェクタ14、下流側エジェクタ20、および内部熱交換器19を備えるエジェクタ式冷凍サイクル10のサイクル構成を変更している。
 具体的には、本実施形態のエジェクタ式冷凍サイクル10は、上流側分岐部13aにて分岐された他方の冷媒の流れをさらに分岐する第2上流側分岐部(補助上流側分岐部)13cを備えている。なお、本実施形態では、説明の明確化のために、上流側分岐部13aを第1上流側分岐部13aと記載する。
 この第2上流側分岐部13cの一方の冷媒流出口には、下流側エジェクタ20の下流側ノズル部21の冷媒流入口21aが接続されている。また、第2上流側分岐部13cの他方の冷媒流出口には、高圧側固定絞り16aおよび第2蒸発器18を介して、下流側エジェクタ20の下流側冷媒吸引口22aが接続されている。
 さらに、上流側エジェクタ14の上流側ディフューザ部42bから流出した冷媒の気液を分離する気液分離器15の気相冷媒流出口には、合流部13bの一方の冷媒流入口が接続されている。また、下流側エジェクタ20の下流側ディフューザ部22bの出口側には、合流部13bの他方の冷媒流入口が接続されている。
 合流部13bの冷媒流出口には、内部熱交換器19の低圧冷媒通路の入口側が接続されている。従って、本実施形態の内部熱交換器19における低圧冷媒は、合流部13bの冷媒流出口側から圧縮機11の吸入口側へ至る冷媒流路を流通する冷媒である。その他のエジェクタ式冷凍サイクル10の構成は第9実施形態と同様である。
 次に、上記構成における本実施形態の作動を図33のモリエル線図を用いて説明する。本実施形態のエジェクタ式冷凍サイクル10を作動させると、圧縮機11吐出冷媒(図33のa33点)が、放熱器12にて冷却されて凝縮し(図33のa33点→b33点)、内部熱交換器19の高圧冷媒通路へ流入する。
 内部熱交換器19の高圧冷媒通路へ流入した高圧冷媒は、内部熱交換器19の低圧冷媒通路を流通する低圧冷媒と熱交換してさらにエンタルピを減少させる(図33のb33点→b’33点)。内部熱交換器19の高圧冷媒通路から流出した冷媒の流れは、第1上流側分岐部13aにて分流される。
 第1上流側分岐部13aにて分岐された一方の冷媒は、上流側エジェクタ14の上流側ノズル部41にて等エントロピ的に減圧される(図33のb’33点→c33点)。そして、上流側ノズル部41から噴射された上流側噴射冷媒の吸引作用により、第1蒸発器17から流出した冷媒が、上流側冷媒吸引口42aから吸引される(図33のc33点→d33点、i33点→d33点)。
 上流側噴射冷媒および上流側冷媒吸引口42aから吸引された上流側吸引冷媒は、上流側ディフューザ部42bにて混合されながら昇圧されて(図33のd33点→e33点)、気液分離器15にて気液分離される(図33のe33点→f33点、e33点→g33点)。気液分離器15にて分離された気相冷媒は、合流部13bの一方の冷媒流入口へ流入する。
 気液分離器15にて分離された液相冷媒は、低圧側固定絞り16bにて等エンタルピ的に減圧されて(図33のg33点→h33点)、第1蒸発器17へ流入する。第1蒸発器17へ流入した冷媒は、送風ファン17aから送風された前席側送風空気から吸熱して蒸発する(図33のh33点→i33点)。これにより、前席側送風空気が冷却される。
 第1上流側分岐部13aにて分岐された他方の冷媒の流れは、第2上流側分岐部13cにてさらに分岐される。なお、図33では、図示の明確化のために、第1上流側分岐部13aの他方の冷媒流出口から合流部13bの他方の冷媒流入口へ至る冷媒の状態の変化を太破線で示している。
 第2上流側分岐部13cにて分岐された一方の冷媒は、下流側エジェクタ20の下流側ノズル部21にて等エントロピ的に減圧される(図33のb’33点→p33点)。そして、下流側ノズル部21から噴射された下流側噴射冷媒の吸引作用により、第2蒸発器18から流出した冷媒が、下流側冷媒吸引口22aから吸引される(図33のp33点→q33点、k33点→q33点)。
 下流側噴射冷媒および下流側冷媒吸引口22aから吸引された下流側吸引冷媒は、下流側ディフューザ部22bにて混合されながら昇圧されて(図33のq33点→r33点)、合流部13bの他方の冷媒流入口へ流入する。
 第2上流側分岐部13cにて分岐された他方の冷媒は、高段側固定絞り16aにて等エンタルピ的に減圧されて(図33のb’33点→j33点)、第2蒸発器18へ流入する。第2蒸発器18へ流入した冷媒は、送風ファン18aから送風された後席側送風空気から吸熱して蒸発する(図33のj33点→k33点)。これにより、後席側送風空気が冷却される。
 また、合流部13bでは、気液分離器15にて分離された気相冷媒の流れと下流側ディフューザ部22bから流出した気液二相冷媒の流れが合流し(図33のf33点→s33点、r33点→s33点)、比較的乾き度の高い気液二相状態となった低圧冷媒(図33のs33点)が、内部熱交換器19の低圧冷媒通路側へ流出する。
 内部熱交換器19の低圧冷媒通路へ流入した低圧冷媒は、高圧冷媒通路を流通する高圧冷媒と熱交換してエンタルピを増加させる(図33のs33点→t33点)。これにより、内部熱交換器19の低圧冷媒通路から流出する冷媒は、比較的過熱度の低い気相状態となる。内部熱交換器19の低圧冷媒通路から流出した冷媒は、圧縮機11に吸入され、再び圧縮される(図33のf’33→a33)。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動して、前席側送風空気および後席側送風空気を冷却することができるとともに、上流側エジェクタ14の上流側ディフューザ部42bおよび下流側エジェクタ20の下流側ディフューザ部22bの昇圧作用によって、サイクルのCOPを向上させることができる。
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、上流側エジェクタ14の上流側ノズル部41にて第1蒸発器17へ流入する冷媒を減圧し、高段側固定絞り16aにて第2蒸発器18へ流入する冷媒を減圧するサイクル構成になっている。従って、第1蒸発器17における冷媒蒸発温度と第2蒸発器18における冷媒蒸発温度とを、容易に同等の温度に近づけることができる。同様に、第1蒸発器17へ流入する冷媒流量と第2蒸発器18へ流入する冷媒流量とを、容易に同等の流量に近づけることができる。
 その結果、第1蒸発器17における冷却能力と第2蒸発器18における冷却能力を効果的に近づけることができる。
また、本実施形態のエジェクタ式冷凍サイクル10では、合流部13bにて、気液分離器15にて分離された気相冷媒の流れと、下流側ディフューザ部22bから流出した気液二相冷媒の流れを合流させるので、内部熱交換器19の低圧冷媒通路へ流入する低圧冷媒を気液二相状態とすることができる。
 これにより、内部熱交換器19の低圧冷媒通路から流出して圧縮機11に吸入される低圧冷媒の過熱度が不必要に上昇してしまうことを抑制できる。従って、圧縮機11から吐出される冷媒が過度に高温となって、圧縮機11の耐久寿命に悪影響を及ぼしてしまうことを抑制できる。
 なお、本実施形態では、内部熱交換器19へ流入させる低圧冷媒を、合流部13bの冷媒流出口側から圧縮機11の吸入口側へ至る冷媒流路を流通する冷媒とした例を説明したが、内部熱交換器19へ流入させる低圧冷媒を、下流側昇圧部22bの出口側から合流部13bの入口側へ至る冷媒流路を流通する冷媒としても、同様の圧縮機11保護効果を得ることができる。
 つまり、本実施形態の内部熱交換器19では、放熱器12の冷媒出口側から第1上流側分岐部13aの入口側へ至る冷媒流路を流通する高圧冷媒と下流側ディフューザ部22bの出口側から圧縮機11の吸入口側へ至る冷媒流路を流通する低圧冷媒とを熱交換させるようにすれば、圧縮機11に吸入される低圧冷媒の過熱度が不必要に上昇してしまうことを抑制できる。
 また、本実施形態では、三方継手によって第1上流側分岐部13aおよび第2上流側分岐部13bを構成した例を説明したが、例えば、四方継手によって第1上流側分岐部13aおよび第2上流側分岐部13bを一体的に構成してもよい。
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
 (1)上述の実施形態では、本開示に係るエジェクタ式冷凍サイクル10をデュアルエアコンタイプの車両用空調装置に適用し、第1蒸発器17を前席側送風空気を冷却するために用い、第2蒸発器18を後席側送風空気を冷却するために用いた例を説明したが、第1蒸発器17および第2蒸発器18の冷却対象流体はこれに限定されない。
 例えば、第1蒸発器17を後席側送風空気を冷却するために用い、第2蒸発器18を前席側送風空気を冷却するために用いてもよい。
 さらに、上述の実施形態では、第3蒸発器23および第4蒸発器24を、前席側送風空気あるいは後席側送風空気を補助的に冷却するために用いた例を説明したが、第3蒸発器23および第4蒸発器24を、別の冷却対象流体を冷却するために用いてもよい。例えば、第3蒸発器23あるいは第4蒸発器24を、車室内に配置された車内冷蔵庫(クールボックス)内へ循環送風される庫内用送風空気を冷却するために用いてもよい。
 また、上述の実施形態で説明したエジェクタ式冷凍サイクル10の適用は、車両用空調装置に限定されない。例えば、定置型空調装置、冷凍冷蔵装置等に適用してもよい。
 (2)上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を採用してもよい。
 また、上述の実施形態では、上流側エジェクタ14および下流側エジェクタ20のノズル部41、21およびボデー部42、22といった各種構成部材を金属で形成した例を説明したが、それぞれの構成部材の機能を発揮可能であれば材質は限定されない。従って、これらの構成部材を樹脂等にて形成してもよい。
 また、上述の実施形態では、上流側エジェクタ14と気液分離器15とを別体として構成した例を説明したが、上流側エジェクタ14の上流側ディフューザ部42bの出口側に気液分離器15を一体化させてもよいし、下流側エジェクタ20の下流側ディフューザ部22bの出口側に下流側気液分離器15aを一体化させてもよい。
 また、上述の実施形態では、上流側エジェクタ14および下流側エジェクタ20として、最小通路面積部の冷媒通路面積が変化しない固定ノズル部を有するものを採用した例を説明したが、上流側エジェクタ14および下流側エジェクタ20として、最小通路面積部の冷媒通路面積を変更可能に構成された可変ノズル部を有するものを採用してもよい。
 このような可変ノズル部としては、可変ノズル部の通路内にニードル状あるいは円錐状の弁体を配置し、この弁体を電気式アクチュエータ等によって変位させて、冷媒通路面積を調整する構成とすればよい。
 また、上述の実施形態では、高圧側固定絞り16a、低圧側固定絞り16b等として、固定絞りを採用した例を説明したが、もちろん、温度式膨張弁や電気式膨張弁等の可変絞り機構を採用してもよい。
 (3)上述の第2実施形態等では、内部熱交換器19を備えるエジェクタ式冷凍サイクル10について説明したが、もちろん、第10~第25実施形態にて説明したエジェクタ式冷凍サイクル10に内部熱交換器19を追加してもよい。
 (4)上述の実施形態では、冷媒としてR134aあるいはR1234yf等を採用可能であることを説明したが、冷媒はこれに限定されない。例えば、R600a、R410A、R404A、R32、R1234yfxf、R407C等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。

Claims (12)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器(12)から流出した冷媒の流れを分岐する上流側分岐部(13a)と、
     前記上流側分岐部(13a)にて分岐された一方の冷媒を減圧させる上流側ノズル部(41)から噴射される高速度の上流側噴射冷媒の吸引作用によって上流側冷媒吸引口(42a)から冷媒を吸引し、前記上流側噴射冷媒と前記上流側冷媒吸引口(42a)から吸引された上流側吸引冷媒との混合冷媒を上流側昇圧部(42b)にて昇圧させる上流側エジェクタ(14)と、
     前記上流側エジェクタ(14)から流出した冷媒の気液を分離して、分離された気相冷媒を前記圧縮機(11)の吸入口側へ流出させる低圧側気液分離器(15)と、
     前記低圧側気液分離器(15)にて分離された液相冷媒を蒸発させる第1蒸発器(17)と、
     前記上流側分岐部(13a)にて分岐された他方の冷媒を減圧させる減圧装置(16a)と、
     前記減圧装置(16a)にて減圧された冷媒を蒸発させる第2蒸発器(18)と、を備え、
     前記上流側冷媒吸引口(42a)には、少なくとも前記第1蒸発器(17)の冷媒出口側が接続されているエジェクタ式冷凍サイクル。
  2.  前記上流側冷媒吸引口(42a)には、前記第1蒸発器(17)の冷媒出口側および前記第2蒸発器(18)の冷媒出口側の双方が接続されている請求項1に記載のエジェクタ式冷凍サイクル。
  3.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器(12)から流出した冷媒の流れを分岐する上流側分岐部(13a)と、
     前記上流側分岐部(13a)にて分岐された一方の冷媒を減圧させる上流側ノズル部(41)から噴射される高速度の上流側噴射冷媒の吸引作用によって上流側冷媒吸引口(42a)から冷媒を吸引し、前記上流側噴射冷媒と前記上流側冷媒吸引口(42a)から吸引された上流側吸引冷媒との混合冷媒を上流側昇圧部(42b)にて昇圧させる上流側エジェクタ(14)と、
     前記上流側エジェクタ(14)から流出した冷媒の流れを分岐する下流側分岐部(15)と、
     前記下流側分岐部(15)にて分岐された一方の冷媒を減圧させる下流側ノズル部(21)から噴射される高速度の下流側噴射冷媒の吸引作用によって下流側冷媒吸引口(22a)から冷媒を吸引し、前記下流側噴射冷媒と前記下流側冷媒吸引口(22a)から吸引された下流側吸引冷媒との混合冷媒を下流側昇圧部(22b)にて昇圧させる下流側エジェクタ(20)と、
     前記下流側分岐部(15)にて分岐された他方の冷媒を蒸発させる第1蒸発器(17)と、
     前記上流側分岐部(13a)にて分岐された他方の冷媒を減圧させる減圧装置(16a)と、
     前記減圧装置(16a)にて減圧された冷媒を蒸発させる第2蒸発器(18)と、を備え、
     前記上流側冷媒吸引口(42a)には、前記第1蒸発器(17)の冷媒出口側が接続され、
     前記下流側冷媒吸引口(22a)には、前記第2蒸発器(18)の冷媒出口側が接続されているエジェクタ式冷凍サイクル。
  4.  前記下流側分岐部は、前記上流側エジェクタ(14)から流出した冷媒の気液を分離する低圧側気液分離器(15)によって構成されている請求項3に記載のエジェクタ式冷凍サイクル。
  5.  前記減圧装置(16a)は、前記上流側分岐部(13a)にて分岐された他方の冷媒のうちの一部を減圧させるものであり、
     さらに、前記上流側分岐部(13a)にて分岐された他方の冷媒のうちの別の一部を減圧させる補助減圧装置(16d)と、
     前記補助減圧装置(16d)にて減圧された冷媒を蒸発させる第3蒸発器(23)と、を備え、
     前記第3蒸発器(23)の冷媒出口側は、前記上流側冷媒吸引口(42a)および前記下流側冷媒吸引口(22a)のいずれか一方に接続されている請求項3または4に記載のエジェクタ式冷凍サイクル。
  6.  前記上流側ノズル部(41)にて減圧される冷媒に旋回流れを生じさせる旋回流発生部(41g)を備える請求項1ないし5いずれか1つに記載のエジェクタ式冷凍サイクル。
  7.  前記旋回流発生部(41g)の冷媒流れ上流側に配置されて、前記放熱器(12)にて冷却された冷媒の気液を分離する高圧側気液分離器(12b)を備える請求項6に記載のエジェクタ式冷凍サイクル。
  8.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器(12)から流出した冷媒の流れを分岐する上流側分岐部(13a)と、
     前記上流側分岐部(13a)にて分岐された一方の冷媒を減圧させる上流側ノズル部(41)から噴射される高速度の上流側噴射冷媒の吸引作用によって上流側冷媒吸引口(42a)から冷媒を吸引し、前記上流側噴射冷媒と前記上流側冷媒吸引口(42a)から吸引された上流側吸引冷媒との混合冷媒を上流側昇圧部(42b)にて昇圧させる上流側エジェクタ(14)と、
     前記上流側エジェクタ(14)から流出した冷媒の気液を分離して、分離された気相冷媒を前記圧縮機(11)の吸入口側へ流出させる上流側気液分離器(15)と、
     前記上流側気液分離器(15)にて分離された液相冷媒を蒸発させて、前記上流側冷媒吸引口(42a)側へ流出させる第1蒸発器(17)と、
     前記上流側分岐部(13a)にて分岐された他方の冷媒を減圧させる下流側ノズル部(21)から噴射される高速度の下流側噴射冷媒の吸引作用によって下流側冷媒吸引口(22a)から冷媒を吸引し、前記下流側噴射冷媒と前記下流側冷媒吸引口(22a)から吸引された下流側吸引冷媒との混合冷媒を下流側昇圧部(22b)にて昇圧させる下流側エジェクタ(20)と、
     前記下流側エジェクタ(20)から流出した冷媒の気液を分離して、分離された気相冷媒を前記圧縮機(11)の吸入口側へ流出させる下流側気液分離器(15a)と、
     前記下流側気液分離器(15a)にて分離された液相冷媒を蒸発させて、前記下流側冷媒吸引口(22a)側へ流出させる第2蒸発器(18)と、を備えるエジェクタ式冷凍サイクル。
  9.  前記放熱器(12)下流側の高圧冷媒と前記圧縮機(11)吸入側の低圧冷媒とを熱交換させる内部熱交換部(19)を備える請求項1ないし8のいずれか1つに記載のエジェクタ式冷凍サイクル。
  10.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器(12)から流出した冷媒の流れを分岐する第1上流側分岐部(13a)と、
     前記第1上流側分岐部(13a)にて分岐された一方の冷媒を減圧させる上流側ノズル部(41)から噴射される高速度の上流側噴射冷媒の吸引作用によって上流側冷媒吸引口(42a)から冷媒を吸引し、前記上流側噴射冷媒と前記上流側冷媒吸引口(42a)から吸引された上流側吸引冷媒との混合冷媒を上流側昇圧部(42b)にて昇圧させる上流側エジェクタ(14)と、
     前記上流側エジェクタ(14)から流出した冷媒の気液を分離して、分離された気相冷媒を前記圧縮機(11)の吸入口側へ流出させる気液分離器(15)と、
     前記気液分離器(15)にて分離された液相冷媒を蒸発させて、前記上流側冷媒吸引口(42a)側へ流出させる第1蒸発器(17)と、
     前記第1上流側分岐部(13a)にて分岐された他方の冷媒の流れをさらに分岐する第2上流側分岐部(13c)と、
     前記第2上流側分岐部(13c)にて分岐された一方の冷媒を減圧させる下流側ノズル部(21)から噴射される高速度の下流側噴射冷媒の吸引作用によって下流側冷媒吸引口(22a)から冷媒を吸引し、前記下流側噴射冷媒と前記下流側冷媒吸引口(22a)から吸引された下流側吸引冷媒との混合冷媒を下流側昇圧部(22b)にて昇圧させる下流側エジェクタ(20)と、
     前記第2上流側分岐部(13c)にて分岐された他方の冷媒を減圧させる減圧装置(16a)と、
     前記減圧装置(16a)にて減圧された冷媒を蒸発させて、前記下流側冷媒吸引口(22a)側へ流出させる第2蒸発器(18)と、
     前記低圧側気液分離器(15)にて分離された気相冷媒の流れと前記下流側昇圧部(22b)から流出した冷媒の流れとを合流させて、前記圧縮機(11)の吸入側へ流出させる合流部(13b)と、
     前記放熱器(12)の冷媒出口側から前記第1上流側分岐部(13a)の入口側へ至る冷媒流路を流通する高圧冷媒と前記下流側昇圧部(22b)の出口側から前記圧縮機(11)の吸入口側へ至る冷媒流路を流通する低圧冷媒とを熱交換させる内部熱交換器(19)と、を備えるエジェクタ式冷凍サイクル。
  11.  前記低圧冷媒は、前記合流部(13b)の冷媒流出口側から前記圧縮機(11)の吸入口側へ至る冷媒流路を流通する冷媒である請求項10に記載のエジェクタ式冷凍サイクル。
  12.  前記低圧冷媒は、前記下流側昇圧部(22b)の出口側から前記合流部(13b)の入口側へ至る冷媒流路を流通する冷媒である請求項10に記載のエジェクタ式冷凍サイクル。
PCT/JP2014/004114 2013-08-29 2014-08-06 エジェクタ式冷凍サイクル WO2015029346A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/914,565 US20160200175A1 (en) 2013-08-29 2014-08-06 Ejector refrigeration cycle
DE112014003979.9T DE112014003979T5 (de) 2013-08-29 2014-08-06 Ejektor-Kälteerzeugungskreis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013177738 2013-08-29
JP2013-177738 2013-08-29
JP2014141424A JP6299495B2 (ja) 2013-08-29 2014-07-09 エジェクタ式冷凍サイクル
JP2014-141424 2014-07-09

Publications (1)

Publication Number Publication Date
WO2015029346A1 true WO2015029346A1 (ja) 2015-03-05

Family

ID=52585942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004114 WO2015029346A1 (ja) 2013-08-29 2014-08-06 エジェクタ式冷凍サイクル

Country Status (4)

Country Link
US (1) US20160200175A1 (ja)
JP (1) JP6299495B2 (ja)
DE (1) DE112014003979T5 (ja)
WO (1) WO2015029346A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023363A (zh) * 2019-12-17 2020-04-17 海信(山东)空调有限公司 一种空调器及控制方法
US20230158861A1 (en) * 2021-11-24 2023-05-25 Volkswagen Aktiengesellschaft Climate control system with a controlled ejector

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461275B (zh) * 2014-07-23 2019-04-26 三菱电机株式会社 制冷循环装置
ES2737984T3 (es) * 2015-08-14 2020-01-17 Danfoss As Un sistema de compresión de vapor con al menos dos grupos evaporadores
JP6589537B2 (ja) * 2015-10-06 2019-10-16 株式会社デンソー 冷凍サイクル装置
US10556487B2 (en) * 2016-03-18 2020-02-11 Denso Corporation Accumulating/receiving device and heat pump system
CN206160544U (zh) * 2016-07-29 2017-05-10 广东美的制冷设备有限公司 冷暖型空调器
JP6708161B2 (ja) * 2017-04-24 2020-06-10 株式会社デンソー エジェクタ式冷凍サイクル
JP2019015495A (ja) * 2017-07-07 2019-01-31 三星電子株式会社Samsung Electronics Co.,Ltd. 冷凍サイクル装置
US10758843B2 (en) * 2017-12-11 2020-09-01 Ford Global Technologies, Llc Centrifugal fluid separator
US11835270B1 (en) 2018-06-22 2023-12-05 Booz Allen Hamilton Inc. Thermal management systems
US11448434B1 (en) 2018-11-01 2022-09-20 Booz Allen Hamilton Inc. Thermal management systems
US11112155B1 (en) 2018-11-01 2021-09-07 Booz Allen Hamilton Inc. Thermal management systems
US11835271B1 (en) 2019-03-05 2023-12-05 Booz Allen Hamilton Inc. Thermal management systems
US11629892B1 (en) 2019-06-18 2023-04-18 Booz Allen Hamilton Inc. Thermal management systems
US11148814B2 (en) * 2019-10-03 2021-10-19 Hamilton Sundstrand Corporation Refrigeration circuits, environmental control systems, and methods of controlling flow in refrigeration circuits
US11267318B2 (en) * 2019-11-26 2022-03-08 Ford Global Technologies, Llc Vapor injection heat pump system and controls
EP4113034A4 (en) * 2020-03-31 2023-08-23 Daikin Industries, Ltd. AIR CONDITIONER
DE102021000482A1 (de) 2021-02-01 2022-08-04 Mercedes-Benz Group AG Temperiervorrichtung für ein Fahrzeug
CN116848327A (zh) * 2021-02-17 2023-10-03 松下知识产权经营株式会社 离心式压缩机的吸入配管、带吸入配管的离心式压缩机及制冷装置
CN113720034A (zh) * 2021-09-14 2021-11-30 珠海格力电器股份有限公司 空调循环系统以及空调的控制方法
CN113701376A (zh) * 2021-09-14 2021-11-26 珠海格力电器股份有限公司 空调循环系统以及空调的控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308384A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2006125823A (ja) * 2004-09-29 2006-05-18 Denso Corp エジェクタサイクル
JP2008107055A (ja) * 2006-10-27 2008-05-08 Denso Corp エジェクタ式冷凍サイクル
JP2010210111A (ja) * 2009-03-06 2010-09-24 Denso Corp エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル
JP2010266198A (ja) * 2005-04-01 2010-11-25 Denso Corp エジェクタ式冷凍サイクル
JP2012021761A (ja) * 2010-06-18 2012-02-02 Daikin Industries Ltd 冷凍装置
JP2012149790A (ja) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp 冷凍サイクル装置及び流路切替装置及び流路切替方法
JP2012202653A (ja) * 2011-03-28 2012-10-22 Denso Corp 減圧装置および冷凍サイクル
CN102778076A (zh) * 2012-07-12 2012-11-14 西安交通大学 一种用于双温电冰箱的新型压缩/喷射混合制冷循环系统
US20130111944A1 (en) * 2010-07-23 2013-05-09 Carrier Corporation High Efficiency Ejector Cycle
JP2013108632A (ja) * 2011-11-17 2013-06-06 Denso Corp エジェクタ式冷凍サイクル
JP2014115069A (ja) * 2012-11-16 2014-06-26 Denso Corp エジェクタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400522B2 (ja) * 2005-07-19 2010-01-20 株式会社デンソー エジェクタ式冷凍サイクル
TWI269317B (en) * 2005-07-28 2006-12-21 Polytronics Technology Corp Over-current protection device
JP4888050B2 (ja) * 2006-10-27 2012-02-29 株式会社デンソー 冷凍サイクル装置
FI20065699A0 (fi) * 2006-11-06 2006-11-06 Nokia Corp HARQ-vastaanotto moniradiolaitteessa

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308384A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2006125823A (ja) * 2004-09-29 2006-05-18 Denso Corp エジェクタサイクル
JP2010266198A (ja) * 2005-04-01 2010-11-25 Denso Corp エジェクタ式冷凍サイクル
JP2008107055A (ja) * 2006-10-27 2008-05-08 Denso Corp エジェクタ式冷凍サイクル
JP2010210111A (ja) * 2009-03-06 2010-09-24 Denso Corp エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル
JP2012021761A (ja) * 2010-06-18 2012-02-02 Daikin Industries Ltd 冷凍装置
US20130111944A1 (en) * 2010-07-23 2013-05-09 Carrier Corporation High Efficiency Ejector Cycle
JP2012149790A (ja) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp 冷凍サイクル装置及び流路切替装置及び流路切替方法
JP2012202653A (ja) * 2011-03-28 2012-10-22 Denso Corp 減圧装置および冷凍サイクル
JP2013108632A (ja) * 2011-11-17 2013-06-06 Denso Corp エジェクタ式冷凍サイクル
CN102778076A (zh) * 2012-07-12 2012-11-14 西安交通大学 一种用于双温电冰箱的新型压缩/喷射混合制冷循环系统
JP2014115069A (ja) * 2012-11-16 2014-06-26 Denso Corp エジェクタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023363A (zh) * 2019-12-17 2020-04-17 海信(山东)空调有限公司 一种空调器及控制方法
CN111023363B (zh) * 2019-12-17 2021-10-29 海信(山东)空调有限公司 一种空调器及控制方法
US20230158861A1 (en) * 2021-11-24 2023-05-25 Volkswagen Aktiengesellschaft Climate control system with a controlled ejector
US12049123B2 (en) * 2021-11-24 2024-07-30 Volkswagen Aktiengesellschaft Climate control system with a controlled ejector

Also Published As

Publication number Publication date
JP2015064194A (ja) 2015-04-09
DE112014003979T5 (de) 2016-06-16
JP6299495B2 (ja) 2018-03-28
US20160200175A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP6299495B2 (ja) エジェクタ式冷凍サイクル
JP4506877B2 (ja) エジェクタ
JP4622960B2 (ja) エジェクタ式冷凍サイクル
JP6384374B2 (ja) エジェクタ式冷凍サイクル
JP5413393B2 (ja) 冷媒分配器および冷凍サイクル
JP6277869B2 (ja) エジェクタ式冷凍サイクル
JP6119489B2 (ja) エジェクタ
JP6056596B2 (ja) エジェクタ
JP6287890B2 (ja) 液噴射エジェクタ、およびエジェクタ式冷凍サイクル
JP2018119542A (ja) エジェクタ
JP2016035376A (ja) 蒸発器
JP4888050B2 (ja) 冷凍サイクル装置
JP4725449B2 (ja) エジェクタ式冷凍サイクル
WO2019208428A1 (ja) エジェクタ式冷凍サイクル
JP2019020063A (ja) エジェクタ式冷凍サイクル
JP4666078B2 (ja) エジェクタ
JP2009300027A (ja) エジェクタおよびエジェクタ式冷凍サイクル
JP6511873B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6327088B2 (ja) エジェクタ式冷凍サイクル
WO2016185664A1 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6399009B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6717252B2 (ja) 気液分離器、および冷凍サイクル装置
WO2017187932A1 (ja) 減圧装置および冷凍サイクル装置
WO2018139417A1 (ja) エジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914565

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014003979

Country of ref document: DE

Ref document number: 1120140039799

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840813

Country of ref document: EP

Kind code of ref document: A1