WO2015025648A1 - Dynamo-electric machine - Google Patents
Dynamo-electric machine Download PDFInfo
- Publication number
- WO2015025648A1 WO2015025648A1 PCT/JP2014/069057 JP2014069057W WO2015025648A1 WO 2015025648 A1 WO2015025648 A1 WO 2015025648A1 JP 2014069057 W JP2014069057 W JP 2014069057W WO 2015025648 A1 WO2015025648 A1 WO 2015025648A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- oil passage
- core
- groove
- axial direction
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/32—Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
Definitions
- This technology relates to a rotating electrical machine suitable for mounting on, for example, a hybrid vehicle or an electric vehicle, and more particularly to a rotating electrical machine having a built-in rotor and a cooling device for cooling a stator.
- a vehicle drive equipped with a rotating electrical machine such as a hybrid drive device or an electric vehicle drive device, that is, a motor generator (hereinafter simply referred to as “motor”).
- a motor generator hereinafter simply referred to as “motor”.
- IPM motor As an example of such a motor, there is a so-called IPM motor in which a magnet is embedded in a rotor.
- a cooling device for cooling these is provided in order to suppress heat generation of the rotor and stator due to driving.
- this cooling device for example, a cooling device having a cooling oil passage formed in an annular shape on the inner side in the axial direction of an end plate that sandwiches both ends of a plurality of laminated steel plates provided in a rotor is known. (See Patent Document 1).
- the annular flow path formed in the inner portion of the end plate is formed from the inner peripheral side to the outer peripheral side, and the cooling oil is supplied from the inner peripheral side of the rotor shaft to the oil path of the end plate. Is supplied, and the laminated steel plate and magnet that are in contact with the cooling oil are cooled, and finally the entire rotor is cooled.
- a rotating electrical machine having an annular oil passage for cooling oil on the inner side of the end plate and capable of suppressing cooling oil from being discharged from the annular oil passage to the groove even if a groove is formed on the outer peripheral portion of the rotor core. It is intended to provide.
- the rotating electrical machine (1) (see, for example, FIGS. 1 to 3), a rotor support member (2), A rotor core (5) having an annular core plate (50, 51) whose inner peripheral portion is fixedly supported by the rotor support member (2) and stacked in the axial direction, and the rotor core (5) in the axial direction.
- the rotor core (5) is sandwiched between the rotor support member (2) and a plurality of magnets (6) that pass through and expose end faces (6a) at at least one end in the axial direction of the rotor core (5).
- a rotating electrical machine (1) comprising: a stator (4) having an annular stator core (8) disposed on an outer peripheral side of the rotor core (5); At least one of the end plates (7) circulates cooling oil supplied from an inner peripheral side in a circumferential direction on a side surface facing the end surface (6a) of the magnet (6), so that the plurality of magnets ( An annular oil passage (70) for cooling the magnet (6) in contact with all of the exposed end face (6a) of 6),
- the rotor core (5) is formed on the outer peripheral surface (5a) in the axial direction, and includes a groove (52) disposed between the plurality of magnets (6) and the core plate (50, 51).
- a shielding portion (51a) that is formed on at least the core plate (51) adjacent to the annular oil passage (70) and shields the communication between the groove (52) and the annular oil passage (70).
- the annular oil passage formed in the end plate circulates the cooling oil in the circumferential direction to contact all of the end faces of the plurality of magnets and cools the magnet that is the heat generation source.
- the entire rotor can be efficiently cooled. That is, the annular oil passage has an annular shape and can contact the end faces of all the exposed magnets.
- the L-shaped oil passage cannot contact some of the end faces of the plurality of magnets. Compared to the case, the cooling efficiency of the rotor can be improved.
- positioned between the magnets is provided in the outer peripheral surface of the rotor core, the magnetic flux line between adjacent magnets is interrupted
- at least the core plate adjacent to the annular oil passage is provided with a shielding portion that shields the communication between the groove and the annular oil passage, the cooling oil of the annular oil passage is formed in the groove by centrifugal force or the like. It can prevent being discharged.
- the structure of the rotating electrical machine according to the present embodiment will be described with reference to FIGS. 1 to 3.
- the rotary electric machine in this Embodiment shall be mounted in drive devices, such as a hybrid vehicle and an electric vehicle, for example.
- a motor 1 as a rotating electrical machine includes a rotor shaft (rotor support member) 2 that is rotatably supported with respect to a case (not shown) of a drive device, a rotor 3, and a stator. 4.
- the motor 1 is a so-called IPM motor in which a permanent magnet 6 (described later) is embedded in the rotor 3.
- the rotor shaft 2 has a hollow tube shape in the present embodiment, and is rotatably supported by a ball bearing or the like supported by the case.
- the rotor shaft 2 is configured to fix and support a rotor 3 described later from the inner peripheral side. Further, a stopper portion 20 whose diameter is increased in a flange shape is formed on the outer peripheral side of the rotor shaft 2, and a rotor 3 described later is in contact with the shaft in the axial direction.
- FIG. 1A only the upper side of the cross section of the rotor shaft 2 is shown.
- the rotor 3 includes a substantially cylindrical rotor core 5, a plurality of permanent magnets (magnets) 6 that penetrate the rotor core 5 in the axial direction, and a pair of end plates 7 that are provided and sandwiched on both sides of the rotor core 5 in the axial direction. 7a, 7b).
- the rotor core 5 is supported by an inner peripheral portion fixed to the outer peripheral portion of the rotor shaft 2, and as shown in FIG. 2, a steel plate (core plate) 50, which is a plurality of annular magnetic bodies stacked in the axial direction. 51.
- the permanent magnet 6 is embedded through the rotor core 5 in the axial direction, and the end face 6 a is exposed at at least one end of the rotor core 5 in the axial direction.
- the permanent magnet 6 has both end faces 6 a exposed at both ends of the rotor core 5 in the axial direction.
- the permanent magnet 6 has a flat plate shape and is arranged such that the longitudinal direction coincides with the axial direction and the thickness direction coincides with the radial direction.
- Spaces 53 are provided on both sides of the permanent magnet 6 in the circumferential direction. The space 53 can block the magnetic flux lines to the adjacent permanent magnet 6 and reduce the cogging torque and torque ripple of the motor 1.
- each groove 52 is a single linear groove.
- the groove 52 functions as a magnetic barrier that blocks the magnetic flux lines between the adjacent permanent magnets 6, thereby reducing the torque ripple of the motor 1. Moreover, since the groove
- Each end plate 7 (7a, 7b) has a disc shape and is sandwiched by the rotor shaft 2 so that the rotor core 5 is sandwiched in the axial direction.
- Each end plate 7 (7a, 7b) has an annular oil passage 70 to be described later on the inner surface facing the rotor core 5.
- each end plate 7a, 7b in Fig.1 (a) can be made into the same shape.
- the right end plate 7a in FIG. 1 (a) shows a state cut along the line RR in FIG. 1 (b), and the left end plate 7b in FIG. A state cut by the LL line in 1 (b) is shown.
- One end plate 7a is disposed so as to abut against the stopper portion 20 of the rotor shaft 2.
- the other end plate 7 b is pressed and fixed in the direction of the stopper portion 20 by the stopper 10. Accordingly, each end plate 7 sandwiches the rotor core 5, and the entire rotor 3 rotates integrally with the rotor shaft 2.
- the stopper 10 has a disk shape and is fixed to the rotor shaft 2 by, for example, fitting, welding, screwing or the like.
- the stator 4 includes an annular stator core 8 disposed on the outer peripheral side of the rotor core 5 and fixed to the case, and a stator coil 9 wound around the stator core 8.
- the stator core 8 is composed of a plurality of annular steel plates 80 that are laminated in the axial direction, and is fastened to the case by bolts (not shown).
- the stator coil 9 is embedded in the stator core 8, and coil ends 90 protruding from the stator core 8 are formed on both sides in the axial direction of the stator core 8 in order to fold the stator coil 9. Note that the length of each end portion in the axial direction of the stator core 8 is shorter than that of the rotor core 5 by two to three steel plates 80. That is, the axial length of the rotor core 5 is longer than the axial length of the stator core 8.
- the end plate 7 is provided with a circular oil passage 70 on the inner surface as shown in FIGS.
- the annular oil passage 70 is an annular oil passage formed on the side surface facing the end surface 6 a of the permanent magnet 6, that is, the inner side surface, and the cooling oil supplied from the rotor shaft 2 disposed on the inner peripheral side. Is circulated in the circumferential direction so as to contact all of the exposed end faces 6a of the plurality of permanent magnets 6 to cool the permanent magnets 6.
- the end plate 7 introduces cooling oil supplied from the rotor shaft 2 on the inner peripheral side into the annular oil passage 70 and discharges the cooling oil circulating in the annular oil passage 70 in the axial direction. And a discharge hole 72.
- the introduction hole 71 is formed by communicating the inner peripheral surface of the annular oil passage 70 and the inner peripheral surface of the end plate 7 in the radial direction.
- a communication hole 21 that communicates the inside and the outside of the rotor shaft 2 in the radial direction is formed at a position facing the introduction hole 71 of the rotor shaft 2.
- the discharge hole 72 is formed by communicating the side surface of the annular oil passage 70 and the outer surface of the end plate 7 in the axial direction. The formation position of the discharge hole 72 is, for example, an intermediate portion in the radial direction of the annular oil passage 70.
- the cooling oil flowing through the inside of the rotor shaft 2 by these introduction holes 71, the annular oil passage 70, and the discharge holes 72 is discharged from the communication holes 21 by, for example, centrifugal force, passes through the introduction holes 71, and is circular. After being introduced into the circulating oil passage 70 and circulated, it is discharged from the discharge hole 72.
- the introduction hole 71 and the discharge hole 72 are each formed in a circumferential direction by four every 90 °.
- the introduction hole 71 and the discharge hole 72 are arranged so that the phases with respect to the circumferential direction are different by 45 °, for example.
- the cooling oil introduced from the introduction hole 71 is prevented from being immediately discharged from the discharge hole 72 by centrifugal force, as in the case where the introduction hole 71 and the discharge hole 72 are arranged in the same phase.
- the permanent magnet 6 can be efficiently cooled by sufficiently circulating the cooling oil in the annular oil passage 70.
- a steel plate 51 (hereinafter referred to as the endmost steel plate) 51 adjacent to the annular oil passage 70 of the steel plates 50 and 51 constituting the rotor core 5 has a groove 52 and an annular ring.
- a shielding part 51 a that shields communication with the oil passage 70 is provided.
- the shielding part 51 a is formed in the groove 52 portion of the outermost steel plate 51, and by blocking the groove 52, the communication between the groove 52 of the other steel plate 50 and the annular oil passage 70 is shielded. Yes. Thereby, it is possible to prevent the cooling oil inside the annular oil passage 70 from being discharged into the groove 52 due to centrifugal force or the like.
- a discharge part 51b that can discharge the cooling oil stored in the groove 52 in the axial direction from the groove 52 is provided on the outer peripheral side of the shielding part 51a.
- the discharge part 51b makes it possible to discharge the cooling oil inside the groove 52 in the axial direction by forming the outer peripheral side of the shielding part 51a of the outermost steel plate 51 lower than the outer peripheral surface 5a of the rotor core 5.
- the cooling oil circulates with the rotation of the rotor 3, circulates behind the rotation speed of the rotor 3 when the rotor 3 accelerates, and circulates faster than the rotation speed of the rotor 3 when the rotor 3 decelerates.
- the cooling oil contacts the end face 6a of the permanent magnet 6 during circulation, thereby cooling the permanent magnet 6 that is a heat generation source, and in addition, the outermost steel plate 51 is provided at a portion where the annular oil passage 70 faces. Since it cools, the whole rotor 3 can be cooled efficiently.
- the annular oil passage 70 has an annular shape and can contact the end faces 6a of all the permanent magnets 6, so that all the permanent magnets 6 can be cooled.
- an L-shaped oil passage can be used. The cooling efficiency can be improved as compared with the case where a part of the plurality of permanent magnets 6 cannot be cooled.
- the grooves 52 are formed between the permanent magnets 6, in order to shield each groove 52, a shielding portion that protrudes inside the annular oil passage 70 must be provided at a portion corresponding to each groove 52. Don't be.
- the shield part 51a to the groove 52 is formed using the endmost steel plate 51, the annular oil passage 70 does not have a portion protruding inward. It becomes a ring shape, and the shielding part 51a does not hinder the smooth circulation of the cooling oil in the annular oil passage 70, so that the cooling efficiency can be improved.
- a part of the cooling oil circulating in the annular oil passage 70 is pushed out and discharged from a discharge hole 72 arranged in a phase different from that of the communication hole 21. Since the discharged cooling oil is subjected to centrifugal force, it is sprayed to the outer peripheral side and sprayed to the coil end 90. Thereby, the coil end 90 is cooled and the whole stator 4 can be cooled.
- the cooling oil inside the groove 52 Is discharged from the discharge portion 51b of the outermost steel plate 51 based on the centrifugal force.
- the cooling oil that has entered the groove 52 enters between the rotor core 5 and the stator core 8, thereby increasing the rotational resistance of the rotor 3. There is sex.
- the cooling oil that has entered the groove 52 is discharged from the discharge portion 51b before entering the air gap between the rotor core 5 and the stator core 8, so that the rotation loss of the rotor 3 increases. Can be suppressed.
- the annular oil passage 70 formed in the end plate 7 circulates the cooling oil in the circumferential direction so that all of the end faces 6a of the plurality of permanent magnets 6 are present. Since the permanent magnet 6 that is a heat generation source is cooled by being brought into contact with each other, the whole of the rotor 3 can be efficiently cooled by reducing the number of permanent magnets 6 that are not cooled without being in contact with the cooling oil.
- the annular oil passage 70 has an annular shape and can contact the exposed end faces 6a of all the permanent magnets 6.
- an L-shaped independent oil passage is used to form the plurality of permanent magnets 6. The cooling efficiency of the rotor 3 can be improved as compared with the case where a part of the end face 6a cannot be contacted.
- the outermost steel plate 51 adjacent to the annular oil passage 70 is provided with the shielding portion 51 a that shields the communication between the groove 52 and the annular oil passage 70. Therefore, it is possible to prevent the cooling oil in the annular oil passage 70 from being discharged into the groove 52 due to centrifugal force or the like. Thereby, it is possible to prevent a large amount of cooling oil from entering between the rotor core 5 and the stator core 8, and to prevent the rotor 3 from dragging the cooling oil by rotation and increasing rotation loss.
- the outermost steel plate 51 having the shielding part 51a includes the discharge part 51b that can discharge the cooling oil stored in the groove 52 from the groove 52 in the axial direction.
- the discharge part 51b can discharge the cooling oil stored in the groove 52 from the groove 52 in the axial direction.
- At least one end plate 7 circulates through the annular oil passage 70 and the introduction hole 71 for introducing the cooling oil supplied from the inner peripheral side into the annular oil passage 70.
- a discharge hole 72 for discharging the cooling oil in the axial direction, and the introduction hole 71 and the discharge hole 72 are arranged with different phases in the circumferential direction.
- the cooling oil introduced from the introduction hole 71 is immediately discharged from the discharge hole 72 by the centrifugal force as in the case where the introduction hole 71 and the discharge hole 72 are arranged in the same phase.
- the cooling oil can be sufficiently circulated in the annular oil passage 70 to cool the permanent magnet 6 efficiently.
- the introduction hole 71 and the discharge hole 72 are arranged every 90 ° and are arranged with a phase difference of 45 ° with respect to the circumferential direction.
- 71 and the discharge hole 72 will be arrange
- the axial length of the rotor core 5 is made longer than the axial length of the stator core 8.
- the endmost steel plate 51 does not affect the characteristics of the motor 1.
- the groove 52 is not formed in the outermost steel plate 51 of the rotor core 5, and even if the magnetic flux lines between the adjacent permanent magnets 6 are insufficient in the outermost steel plate 51, the torque ripple of the motor 1 is thereby increased. Can be suppressed.
- the length of each end portion in the axial direction of the rotor core 5 is longer than that of the stator core 8 by 2 to 3 sheets of the steel plate 80.
- the steel plate 51 does not face the stator core 8 and can suppress the influence on the characteristics of the motor 1.
- the shielding part 51a and the discharge part 51b were provided only in the endmost steel plate 51 of the rotor core 5 , it is not limited to this, For example, it adjoins the endmost steel plate 51.
- the shielding portion and the discharge portion may be provided on a plurality of steel plates 50 including the outermost steel plate 51 such as the steel plate 50 to be processed. That is, the shielding part 51a and the discharge part 51b should just be formed in the outermost steel plate 51 adjacent to the annular oil path 70 among the some steel plates 50.
- the endmost steel plate 51 does not have the shielding part 51a and the discharge part 51b but has the groove 52, and has the shielding part and the discharge part between the endmost steel plate 51 and the end plate 7.
- the material of the plate-like member may be a magnetic body such as a steel plate, but may be other materials such as resin or ceramic.
- the lower part of the rotor 3 is made into cooling oil.
- the discharge part 51b may not be provided when there is little penetration of the cooling oil between the rotor core 5 and the stator core 8 for reasons such as not being immersed.
- each groove 52 is a single linear groove.
- the present invention is not limited to this.
- two or more parallel straight lines are used.
- a groove or a crossing groove may be used.
- a total of three grooves including one linear groove and two grooves that are thinner and shallower than the central groove disposed on both sides thereof may be provided.
- the number, thickness, depth, and the like of each groove 52 can be appropriately set according to the strength of the permanent magnet 6, the required amount of torque ripple reduction, the degree of weight reduction, and the like.
- the rotating electrical machine can be mounted on, for example, a hybrid vehicle, an electric vehicle, and the like.
- the rotating electrical machine has a cooling device that cools a built-in rotor and a stator. It is suitable for use in those having an annular oil passage.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
At least one end plate (7) is provided with a circular ring oil passage (70) which is formed in a side surface of the at least one end plate (7), the side surface facing end surfaces (6a) of permanent magnets (6). The circular ring oil passage (70) allows cooling oil, which has been supplied from the inner peripheral side, to circumferentially circulate through the circular ring oil passage (70) and makes the cooling oil in contact with all the exposed end surfaces (6a) of the permanent magnets (6) to thereby cool the permanent magnets (6). A rotor core (5) is provided with: grooves (52) which are axially formed in the outer peripheral surface (5a) thereof and which are arranged between the permanent magnets (6); and blocking sections (51a) which are formed in the endmost steel plate (51) among steel plates (50, 51), the endmost steel plate (51) being adjacent to at least the circular ring oil passage (70), and which block the connection between the grooves (52) and the circular ring oil passage (70). The circular ring oil passage (70) can efficiently cool the entire rotor (3), and the blocking sections (51a) can prevent the cooling oil in the circular ring oil passage (70) from being discharged to the grooves (52) by centrifugal force, etc.
Description
この技術は、例えばハイブリッド車両や電気車両等に搭載されるのに適した回転電機に係り、特に、内蔵するロータ及びステータを冷却する冷却装置を有する回転電機に関する。
This technology relates to a rotating electrical machine suitable for mounting on, for example, a hybrid vehicle or an electric vehicle, and more particularly to a rotating electrical machine having a built-in rotor and a cooling device for cooling a stator.
近年、車両の燃費向上や環境性能の向上を図るために、例えばハイブリッド駆動装置や電気車両用駆動装置等の回転電機、即ちモータ・ジェネレータ(以下、単に「モータ」という)を搭載した車両用駆動装置が種々提案されている。
In recent years, in order to improve vehicle fuel efficiency and environmental performance, for example, a vehicle drive equipped with a rotating electrical machine such as a hybrid drive device or an electric vehicle drive device, that is, a motor generator (hereinafter simply referred to as “motor”). Various devices have been proposed.
このようなモータの一例として、ロータに磁石が埋設された所謂IPMモータがある。車両用駆動装置に搭載されるIPMモータでは、駆動によるロータ及びステータの発熱を抑制するため、これらを冷却するための冷却装置が設けられている。この冷却装置としては、例えば、ロータが備える複数の積層鋼板の両端部を挟持するエンドプレートの軸方向の内側部に、環状に形成された冷却油の流路を備えたものが知られている(特許文献1参照)。この冷却装置によると、エンドプレートの内側部に形成された環状の流路は、内周側から外周側まで亘って形成されており、ロータ軸の内周側からエンドプレートの油路に冷却油を供給し、この冷却油が接触する積層鋼板や磁石を冷却し、最終的にはロータ全体を冷却するようになっている。
As an example of such a motor, there is a so-called IPM motor in which a magnet is embedded in a rotor. In an IPM motor mounted on a vehicle drive device, a cooling device for cooling these is provided in order to suppress heat generation of the rotor and stator due to driving. As this cooling device, for example, a cooling device having a cooling oil passage formed in an annular shape on the inner side in the axial direction of an end plate that sandwiches both ends of a plurality of laminated steel plates provided in a rotor is known. (See Patent Document 1). According to this cooling device, the annular flow path formed in the inner portion of the end plate is formed from the inner peripheral side to the outer peripheral side, and the cooling oil is supplied from the inner peripheral side of the rotor shaft to the oil path of the end plate. Is supplied, and the laminated steel plate and magnet that are in contact with the cooling oil are cooled, and finally the entire rotor is cooled.
しかしながら、特許文献1のモータでは、円環油路がエンドプレートの内側部の外周側まで亘って形成されているので、ロータコアの外周面に、例えば、モータのトルクリプルを抑制するために隣り合う磁石同士の間を磁束線が連結しないように隔てる磁気バリアとしての溝や、ロータコアの軽量化を図るための溝等を形成した場合に、溝と円環油路の外周側とが連通して、冷却油が円環油路から溝に排出されてしまう可能性がある。この場合、ロータコアとステータコアとの間に多量の冷却油が入り込んでしまい、ロータが回転により冷却油を引き摺って回転損失を増大させてしまうという問題があった。
However, in the motor of Patent Document 1, since the annular oil passage is formed over the outer peripheral side of the inner side of the end plate, the magnet adjacent to the outer peripheral surface of the rotor core, for example, to suppress torque ripple of the motor When forming a groove as a magnetic barrier that separates the magnetic flux lines from each other or a groove for reducing the weight of the rotor core, the groove and the outer peripheral side of the annular oil passage communicate with each other, Cooling oil may be discharged from the annular oil passage into the groove. In this case, there is a problem that a large amount of cooling oil enters between the rotor core and the stator core, and the rotor drags the cooling oil due to rotation and increases the rotation loss.
そこで、エンドプレートの内側部に冷却油の円環油路を有し、ロータコアの外周部に溝を形成しても円環油路から溝に冷却油が排出されることを抑制できる回転電機を提供することを目的とするものである。
Therefore, there is provided a rotating electrical machine having an annular oil passage for cooling oil on the inner side of the end plate and capable of suppressing cooling oil from being discharged from the annular oil passage to the groove even if a groove is formed on the outer peripheral portion of the rotor core. It is intended to provide.
本回転電機(1)は(例えば図1乃至図3参照)、ロータ支持部材(2)と、
内周部が前記ロータ支持部材(2)に固定して支持され、軸方向に積層した円環状のコアプレート(50,51)を有するロータコア(5)と、軸方向に前記ロータコア(5)を貫通し、前記ロータコア(5)の軸方向の少なくとも一方の端部に端面(6a)を露出する複数の磁石(6)と、前記ロータ支持部材(2)により挟持されることで前記ロータコア(5)を軸方向に挟持する一対のエンドプレート(7)とを有するロータ(3)と、
前記ロータコア(5)の外周側に配置された円環状のステータコア(8)を有するステータ(4)と、を備える回転電機(1)において、
少なくとも一方の前記エンドプレート(7)は、前記磁石(6)の前記端面(6a)に対向する側面に、内周側から供給された冷却油を周方向に循環させて、前記複数の磁石(6)の露出した前記端面(6a)の全てに接触させて前記磁石(6)を冷却する円環形状の円環油路(70)を備え、
前記ロータコア(5)は、外周面(5a)に軸方向に形成されると共に、前記複数の磁石(6)の間に配置された溝(52)と、前記コアプレート(50,51)のうちの少なくとも前記円環油路(70)に隣接するコアプレート(51)に形成されると共に、前記溝(52)と前記円環油路(70)との連通を遮蔽する遮蔽部(51a)と、を備えたことを特徴とする。 The rotating electrical machine (1) (see, for example, FIGS. 1 to 3), a rotor support member (2),
A rotor core (5) having an annular core plate (50, 51) whose inner peripheral portion is fixedly supported by the rotor support member (2) and stacked in the axial direction, and the rotor core (5) in the axial direction. The rotor core (5) is sandwiched between the rotor support member (2) and a plurality of magnets (6) that pass through and expose end faces (6a) at at least one end in the axial direction of the rotor core (5). ) In the axial direction, and a rotor (3) having a pair of end plates (7);
In a rotating electrical machine (1) comprising: a stator (4) having an annular stator core (8) disposed on an outer peripheral side of the rotor core (5);
At least one of the end plates (7) circulates cooling oil supplied from an inner peripheral side in a circumferential direction on a side surface facing the end surface (6a) of the magnet (6), so that the plurality of magnets ( An annular oil passage (70) for cooling the magnet (6) in contact with all of the exposed end face (6a) of 6),
The rotor core (5) is formed on the outer peripheral surface (5a) in the axial direction, and includes a groove (52) disposed between the plurality of magnets (6) and the core plate (50, 51). A shielding portion (51a) that is formed on at least the core plate (51) adjacent to the annular oil passage (70) and shields the communication between the groove (52) and the annular oil passage (70). , Provided.
内周部が前記ロータ支持部材(2)に固定して支持され、軸方向に積層した円環状のコアプレート(50,51)を有するロータコア(5)と、軸方向に前記ロータコア(5)を貫通し、前記ロータコア(5)の軸方向の少なくとも一方の端部に端面(6a)を露出する複数の磁石(6)と、前記ロータ支持部材(2)により挟持されることで前記ロータコア(5)を軸方向に挟持する一対のエンドプレート(7)とを有するロータ(3)と、
前記ロータコア(5)の外周側に配置された円環状のステータコア(8)を有するステータ(4)と、を備える回転電機(1)において、
少なくとも一方の前記エンドプレート(7)は、前記磁石(6)の前記端面(6a)に対向する側面に、内周側から供給された冷却油を周方向に循環させて、前記複数の磁石(6)の露出した前記端面(6a)の全てに接触させて前記磁石(6)を冷却する円環形状の円環油路(70)を備え、
前記ロータコア(5)は、外周面(5a)に軸方向に形成されると共に、前記複数の磁石(6)の間に配置された溝(52)と、前記コアプレート(50,51)のうちの少なくとも前記円環油路(70)に隣接するコアプレート(51)に形成されると共に、前記溝(52)と前記円環油路(70)との連通を遮蔽する遮蔽部(51a)と、を備えたことを特徴とする。 The rotating electrical machine (1) (see, for example, FIGS. 1 to 3), a rotor support member (2),
A rotor core (5) having an annular core plate (50, 51) whose inner peripheral portion is fixedly supported by the rotor support member (2) and stacked in the axial direction, and the rotor core (5) in the axial direction. The rotor core (5) is sandwiched between the rotor support member (2) and a plurality of magnets (6) that pass through and expose end faces (6a) at at least one end in the axial direction of the rotor core (5). ) In the axial direction, and a rotor (3) having a pair of end plates (7);
In a rotating electrical machine (1) comprising: a stator (4) having an annular stator core (8) disposed on an outer peripheral side of the rotor core (5);
At least one of the end plates (7) circulates cooling oil supplied from an inner peripheral side in a circumferential direction on a side surface facing the end surface (6a) of the magnet (6), so that the plurality of magnets ( An annular oil passage (70) for cooling the magnet (6) in contact with all of the exposed end face (6a) of 6),
The rotor core (5) is formed on the outer peripheral surface (5a) in the axial direction, and includes a groove (52) disposed between the plurality of magnets (6) and the core plate (50, 51). A shielding portion (51a) that is formed on at least the core plate (51) adjacent to the annular oil passage (70) and shields the communication between the groove (52) and the annular oil passage (70). , Provided.
これにより、エンドプレートに形成された円環油路が、冷却油を周方向に循環させて複数の磁石の端面の全てに接触させて、発熱源である磁石を冷却するので、冷却油が接触せずに冷却されない磁石を減らすことにより、ロータの全体を効率よく冷却することができる。即ち、円環油路は円環形状であり、露出する全ての磁石の端面に接触することができるので、例えばL字形状の油路により複数の磁石の端面のうちの一部には接触できない場合に比べて、ロータの冷却効率を向上することができる。
As a result, the annular oil passage formed in the end plate circulates the cooling oil in the circumferential direction to contact all of the end faces of the plurality of magnets and cools the magnet that is the heat generation source. By reducing the number of magnets that are not cooled, the entire rotor can be efficiently cooled. That is, the annular oil passage has an annular shape and can contact the end faces of all the exposed magnets. For example, the L-shaped oil passage cannot contact some of the end faces of the plurality of magnets. Compared to the case, the cooling efficiency of the rotor can be improved.
また、ロータコアの外周面に磁石の間に配置された溝が設けられているので、隣接する磁石の間の磁束線が遮断され、モータのトルクリプルを低減することができると共に、ロータコアの外周面に磁石の間に配置された溝が設けられているので、ロータコアの軽量化を図ることができる。また、少なくとも円環油路に隣接するコアプレートには、溝と円環油路との連通を遮蔽する遮蔽部が設けられているので、円環油路の冷却油が遠心力等で溝に排出されてしまうことを防止できる。
Moreover, since the groove | channel arrange | positioned between the magnets is provided in the outer peripheral surface of the rotor core, the magnetic flux line between adjacent magnets is interrupted | blocked, and while being able to reduce the torque ripple of a motor, on the outer peripheral surface of a rotor core Since the groove | channel arrange | positioned between the magnets is provided, the weight reduction of a rotor core can be achieved. In addition, since at least the core plate adjacent to the annular oil passage is provided with a shielding portion that shields the communication between the groove and the annular oil passage, the cooling oil of the annular oil passage is formed in the groove by centrifugal force or the like. It can prevent being discharged.
尚、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、請求の範囲の構成に何等影響を及ぼすものではない。
In addition, although the code | symbol in the said parenthesis is for contrast with drawing, this is for convenience for making an understanding of an invention easy, and has an influence on the structure of a claim. is not.
以下、本実施の形態に係る回転電機の構造について、図1乃至図3に沿って説明する。尚、本実施の形態における回転電機は、例えば、ハイブリッド車両や電気車両等の駆動装置に搭載したものとしている。
Hereinafter, the structure of the rotating electrical machine according to the present embodiment will be described with reference to FIGS. 1 to 3. In addition, the rotary electric machine in this Embodiment shall be mounted in drive devices, such as a hybrid vehicle and an electric vehicle, for example.
回転電機としてのモータ1は、図1(a)に示すように、駆動装置のケース(不図示)に対して回転可能に支持されたロータ軸(ロータ支持部材)2と、ロータ3と、ステータ4と、を備えて構成されている。本実施の形態では、モータ1は、ロータ3に後述する永久磁石6が埋設された所謂IPMモータからなるものとしている。
As shown in FIG. 1A, a motor 1 as a rotating electrical machine includes a rotor shaft (rotor support member) 2 that is rotatably supported with respect to a case (not shown) of a drive device, a rotor 3, and a stator. 4. In the present embodiment, the motor 1 is a so-called IPM motor in which a permanent magnet 6 (described later) is embedded in the rotor 3.
ロータ軸2は、本実施の形態では中空管形状で、ケースに支持されるボールベアリング等により回転可能に支持されている。ロータ軸2は、後述するロータ3を内周側から固定して支持するようになっている。また、ロータ軸2の外周側には、フランジ状に拡径されたストッパ部20が形成されており、後述するロータ3が軸方向に当接されている。尚、図1(a)では、ロータ軸2の断面のうち上側のみ示している。
The rotor shaft 2 has a hollow tube shape in the present embodiment, and is rotatably supported by a ball bearing or the like supported by the case. The rotor shaft 2 is configured to fix and support a rotor 3 described later from the inner peripheral side. Further, a stopper portion 20 whose diameter is increased in a flange shape is formed on the outer peripheral side of the rotor shaft 2, and a rotor 3 described later is in contact with the shaft in the axial direction. In FIG. 1A, only the upper side of the cross section of the rotor shaft 2 is shown.
ロータ3は、略円筒形状のロータコア5と、該ロータコア5を軸方向に貫通する複数の永久磁石(磁石)6と、ロータコア5の軸方向の両側に設けられて挟持する一対のエンドプレート7(7a,7b)とを備えている。ロータコア5は、内周部がロータ軸2の外周部に固定して支持され、図2に示すように、軸方向に積層された円環状の複数の磁性体である鋼板(コアプレート)50,51を有している。
The rotor 3 includes a substantially cylindrical rotor core 5, a plurality of permanent magnets (magnets) 6 that penetrate the rotor core 5 in the axial direction, and a pair of end plates 7 that are provided and sandwiched on both sides of the rotor core 5 in the axial direction. 7a, 7b). The rotor core 5 is supported by an inner peripheral portion fixed to the outer peripheral portion of the rotor shaft 2, and as shown in FIG. 2, a steel plate (core plate) 50, which is a plurality of annular magnetic bodies stacked in the axial direction. 51.
永久磁石6は、図1(a)に示すように、軸方向にロータコア5を貫通して埋設され、ロータコア5の軸方向の少なくとも一方の端部に端面6aを露出している。本実施の形態では、永久磁石6は、いずれもロータコア5の軸方向の両方の端部に端面6aを露出している。図3に示すように、永久磁石6は平板形状で、長手方向を軸方向に一致させ、厚さ方向を径方向に一致させて配置されている。また、永久磁石6の周方向の両側部には空間53が設けられている。この空間53により、隣接する永久磁石6への磁束線を遮断して、モータ1のコギングトルク及びトルクリプルを低減させることができる。
As shown in FIG. 1A, the permanent magnet 6 is embedded through the rotor core 5 in the axial direction, and the end face 6 a is exposed at at least one end of the rotor core 5 in the axial direction. In the present embodiment, the permanent magnet 6 has both end faces 6 a exposed at both ends of the rotor core 5 in the axial direction. As shown in FIG. 3, the permanent magnet 6 has a flat plate shape and is arranged such that the longitudinal direction coincides with the axial direction and the thickness direction coincides with the radial direction. Spaces 53 are provided on both sides of the permanent magnet 6 in the circumferential direction. The space 53 can block the magnetic flux lines to the adjacent permanent magnet 6 and reduce the cogging torque and torque ripple of the motor 1.
ロータコア5の外周面5aには、図2及び図3に示すように、軸方向に形成されると共に各永久磁石6の間に配置された溝52が形成されている。本実施の形態では、各溝52は1本の直線状の溝としている。
As shown in FIGS. 2 and 3, a groove 52 is formed in the axial direction and disposed between the permanent magnets 6 on the outer peripheral surface 5 a of the rotor core 5. In the present embodiment, each groove 52 is a single linear groove.
溝52は、隣接する永久磁石6の間の磁束線を遮断する磁気バリアとして機能し、これによりモータ1のトルクリプルを低減することができる。また、溝52は溝状であるので、溝52を設けない場合に比べて、ロータコア5の軽量化を図ることができる。尚、本実施の形態では、溝52は、磁気バリア及びロータコア5の軽量化という2つの機能を有しているが、これには限られず、例えば、磁気バリアとしては機能せずに、ロータコア5の軽量化のみを図るようにしてもよい。
The groove 52 functions as a magnetic barrier that blocks the magnetic flux lines between the adjacent permanent magnets 6, thereby reducing the torque ripple of the motor 1. Moreover, since the groove | channel 52 is groove shape, the weight reduction of the rotor core 5 can be achieved compared with the case where the groove | channel 52 is not provided. In the present embodiment, the groove 52 has two functions of reducing the weight of the magnetic barrier and the rotor core 5. However, the present invention is not limited to this. For example, the groove 52 does not function as a magnetic barrier. It may be possible to reduce only the weight.
各エンドプレート7(7a,7b)は円板形状で、ロータ軸2により挟持されることで、ロータコア5を軸方向に挟持するようになっている。各エンドプレート7(7a,7b)は、ロータコア5に対向する内側面に、後述する円環油路70を有している。尚、図1(a)中の各エンドプレート7a,7bは、同一形状とすることができる。また、図1(a)中の右側のエンドプレート7aは、図1(b)中のR-R線で切断した状態を示すと共に、図1(a)中の左側のエンドプレート7bは、図1(b)中のL-L線で切断した状態を示している。
Each end plate 7 (7a, 7b) has a disc shape and is sandwiched by the rotor shaft 2 so that the rotor core 5 is sandwiched in the axial direction. Each end plate 7 (7a, 7b) has an annular oil passage 70 to be described later on the inner surface facing the rotor core 5. In addition, each end plate 7a, 7b in Fig.1 (a) can be made into the same shape. Further, the right end plate 7a in FIG. 1 (a) shows a state cut along the line RR in FIG. 1 (b), and the left end plate 7b in FIG. A state cut by the LL line in 1 (b) is shown.
一方のエンドプレート7aは、ロータ軸2のストッパ部20に当接するように配置されている。他方のエンドプレート7bは、ストッパ10によりストッパ部20の方向に押圧されて固定されている。これにより、各エンドプレート7がロータコア5を挟持するようになっており、ロータ3の全体がロータ軸2と一体回転するようになっている。尚、ストッパ10は円板形状で、ロータ軸2に、例えば嵌合、溶接、螺合等により固定されている。
One end plate 7a is disposed so as to abut against the stopper portion 20 of the rotor shaft 2. The other end plate 7 b is pressed and fixed in the direction of the stopper portion 20 by the stopper 10. Accordingly, each end plate 7 sandwiches the rotor core 5, and the entire rotor 3 rotates integrally with the rotor shaft 2. The stopper 10 has a disk shape and is fixed to the rotor shaft 2 by, for example, fitting, welding, screwing or the like.
ステータ4は、ロータコア5の外周側に配置され、ケースに固定された円環状のステータコア8と、該ステータコア8に巻回されたステータコイル9とを備えている。ステータコア8は、軸方向に積層された円環状の複数の磁性体である鋼板80により構成され、不図示のボルトによりケースに締結されている。ステータコイル9はステータコア8に埋設され、ステータコア8の軸方向両側には、ステータコイル9を折り返すために、ステータコア8から突出したコイルエンド90が形成されている。尚、ステータコア8の軸方向の各端部の長さは、ロータコア5に比べて鋼板80の2~3枚分だけ短くされている。即ち、ロータコア5の軸方向の長さは、ステータコア8の軸方向の長さよりも長くなっている。
The stator 4 includes an annular stator core 8 disposed on the outer peripheral side of the rotor core 5 and fixed to the case, and a stator coil 9 wound around the stator core 8. The stator core 8 is composed of a plurality of annular steel plates 80 that are laminated in the axial direction, and is fastened to the case by bolts (not shown). The stator coil 9 is embedded in the stator core 8, and coil ends 90 protruding from the stator core 8 are formed on both sides in the axial direction of the stator core 8 in order to fold the stator coil 9. Note that the length of each end portion in the axial direction of the stator core 8 is shorter than that of the rotor core 5 by two to three steel plates 80. That is, the axial length of the rotor core 5 is longer than the axial length of the stator core 8.
次に、本実施の形態の特徴部であるエンドプレート7及び隣接する最端鋼板51の構成について、詳細に説明する。
Next, the configuration of the end plate 7 and the adjacent endmost steel plate 51, which are the features of the present embodiment, will be described in detail.
エンドプレート7は、図1及び図2に示すように、内側面に円環油路70を備えている。円環油路70は、永久磁石6の端面6aに対向する側面、即ち内側面に形成された円環形状の油路であり、内周側に配置されたロータ軸2から供給された冷却油を周方向に循環させて、複数の永久磁石6の露出した端面6aの全てに接触させて永久磁石6を冷却するようになっている。
The end plate 7 is provided with a circular oil passage 70 on the inner surface as shown in FIGS. The annular oil passage 70 is an annular oil passage formed on the side surface facing the end surface 6 a of the permanent magnet 6, that is, the inner side surface, and the cooling oil supplied from the rotor shaft 2 disposed on the inner peripheral side. Is circulated in the circumferential direction so as to contact all of the exposed end faces 6a of the plurality of permanent magnets 6 to cool the permanent magnets 6.
また、エンドプレート7は、内周側にあるロータ軸2から供給された冷却油を円環油路70に導入する導入孔71と、円環油路70を循環する冷却油を軸方向に排出する排出孔72とを有している。
Further, the end plate 7 introduces cooling oil supplied from the rotor shaft 2 on the inner peripheral side into the annular oil passage 70 and discharges the cooling oil circulating in the annular oil passage 70 in the axial direction. And a discharge hole 72.
導入孔71は、円環油路70の内周面と、エンドプレート7の内周面とを径方向に連通して形成されている。ロータ軸2の導入孔71に対向する位置には、ロータ軸2の内外を径方向に連通する連通孔21が形成されている。排出孔72は、円環油路70の側面と、エンドプレート7の外側面とを軸方向に連通して形成されている。排出孔72の形成位置は、例えば、円環油路70の径方向の中間部としている。これら導入孔71と、円環油路70と、排出孔72とにより、ロータ軸2の内部を流通する冷却油は、例えば遠心力で連通孔21から排出され、導入孔71を通過して円環油路70に導入され循環した後、排出孔72から排出されるようになる。
The introduction hole 71 is formed by communicating the inner peripheral surface of the annular oil passage 70 and the inner peripheral surface of the end plate 7 in the radial direction. A communication hole 21 that communicates the inside and the outside of the rotor shaft 2 in the radial direction is formed at a position facing the introduction hole 71 of the rotor shaft 2. The discharge hole 72 is formed by communicating the side surface of the annular oil passage 70 and the outer surface of the end plate 7 in the axial direction. The formation position of the discharge hole 72 is, for example, an intermediate portion in the radial direction of the annular oil passage 70. The cooling oil flowing through the inside of the rotor shaft 2 by these introduction holes 71, the annular oil passage 70, and the discharge holes 72 is discharged from the communication holes 21 by, for example, centrifugal force, passes through the introduction holes 71, and is circular. After being introduced into the circulating oil passage 70 and circulated, it is discharged from the discharge hole 72.
導入孔71及び排出孔72は、図1(b)に示すように、それぞれ周方向に90°ごとに4つずつ形成されている。導入孔71と排出孔72とは、周方向に対する位相を、例えば45°異ならせて配置されている。これにより、導入孔71と排出孔72とが同位相で配置されている場合のように、導入孔71から導入された冷却油が遠心力によって排出孔72から即座に排出されてしまうことを抑制し、冷却油を円環油路70で十分に循環させて永久磁石6を効率よく冷却することができる。
As shown in FIG. 1B, the introduction hole 71 and the discharge hole 72 are each formed in a circumferential direction by four every 90 °. The introduction hole 71 and the discharge hole 72 are arranged so that the phases with respect to the circumferential direction are different by 45 °, for example. As a result, the cooling oil introduced from the introduction hole 71 is prevented from being immediately discharged from the discharge hole 72 by centrifugal force, as in the case where the introduction hole 71 and the discharge hole 72 are arranged in the same phase. Then, the permanent magnet 6 can be efficiently cooled by sufficiently circulating the cooling oil in the annular oil passage 70.
また、図2及び図3に示すように、ロータコア5を構成する鋼板50,51のうちの円環油路70に隣接する鋼板(以下、最端鋼板という)51には、溝52と円環油路70との連通を遮蔽する遮蔽部51aが設けられている。遮蔽部51aは、最端鋼板51の溝52の部分に形成されており、溝52を塞ぐことで、他の鋼板50の溝52と円環油路70との連通を遮蔽するようになっている。これにより、円環油路70の内部の冷却油が遠心力等で溝52に排出されてしまうことを防止できる。
As shown in FIGS. 2 and 3, a steel plate 51 (hereinafter referred to as the endmost steel plate) 51 adjacent to the annular oil passage 70 of the steel plates 50 and 51 constituting the rotor core 5 has a groove 52 and an annular ring. A shielding part 51 a that shields communication with the oil passage 70 is provided. The shielding part 51 a is formed in the groove 52 portion of the outermost steel plate 51, and by blocking the groove 52, the communication between the groove 52 of the other steel plate 50 and the annular oil passage 70 is shielded. Yes. Thereby, it is possible to prevent the cooling oil inside the annular oil passage 70 from being discharged into the groove 52 due to centrifugal force or the like.
更に、遮蔽部51aの外周側には、溝52に貯留した冷却油を溝52から軸方向に排出可能な排出部51bが設けられている。排出部51bは、最端鋼板51の遮蔽部51aの外周側をロータコア5の外周面5aよりも低く形成することで、溝52の内部の冷却油を軸方向に排出可能にしている。
Furthermore, a discharge part 51b that can discharge the cooling oil stored in the groove 52 in the axial direction from the groove 52 is provided on the outer peripheral side of the shielding part 51a. The discharge part 51b makes it possible to discharge the cooling oil inside the groove 52 in the axial direction by forming the outer peripheral side of the shielding part 51a of the outermost steel plate 51 lower than the outer peripheral surface 5a of the rotor core 5.
上述したモータ1の動作について、冷却油の流れを中心に説明する。尚、図1及び図2において、冷却油の流れを矢印で示す。
The operation of the motor 1 described above will be described focusing on the flow of cooling oil. In FIGS. 1 and 2, the flow of the cooling oil is indicated by arrows.
モータ1のステータコイル9に通電されてロータ3が回転すると、図1及び図2に示すように、ロータ軸2の内部の冷却油が遠心力によって連通孔21から外周側に排出される。連通孔21はエンドプレート7の導入孔71に対向しているので、排出された冷却油は導入孔71に導入され、導入孔71から円環油路70に導入される。
When the stator 3 of the motor 1 is energized and the rotor 3 rotates, as shown in FIGS. 1 and 2, the cooling oil inside the rotor shaft 2 is discharged from the communication hole 21 to the outer peripheral side by centrifugal force. Since the communication hole 21 faces the introduction hole 71 of the end plate 7, the discharged cooling oil is introduced into the introduction hole 71 and introduced into the annular oil passage 70 from the introduction hole 71.
円環油路70では、冷却油はロータ3の回転に伴い循環され、ロータ3の加速時にはロータ3の回転速度より遅れて循環し、ロータ3の減速時にはロータ3の回転速度より速く循環する。冷却油は、循環の際に永久磁石6の端面6aに接触することにより、発熱源である永久磁石6を冷却し、それに加えて円環油路70が対向する部位で最端鋼板51をも冷却するので、ロータ3の全体を効率よく冷却することができる。特に、円環油路70は円環形状であり、全ての永久磁石6の端面6aに接触することができるので、全ての永久磁石6を冷却することができ、例えばL字形状の油路を備えて複数の永久磁石6のうちの一部を冷却できない場合に比べて、冷却効率を向上することができる。
In the annular oil passage 70, the cooling oil circulates with the rotation of the rotor 3, circulates behind the rotation speed of the rotor 3 when the rotor 3 accelerates, and circulates faster than the rotation speed of the rotor 3 when the rotor 3 decelerates. The cooling oil contacts the end face 6a of the permanent magnet 6 during circulation, thereby cooling the permanent magnet 6 that is a heat generation source, and in addition, the outermost steel plate 51 is provided at a portion where the annular oil passage 70 faces. Since it cools, the whole rotor 3 can be cooled efficiently. In particular, the annular oil passage 70 has an annular shape and can contact the end faces 6a of all the permanent magnets 6, so that all the permanent magnets 6 can be cooled. For example, an L-shaped oil passage can be used. The cooling efficiency can be improved as compared with the case where a part of the plurality of permanent magnets 6 cannot be cooled.
そして、円環油路70を循環する冷却油は、最端鋼板51の遮蔽部51aにより溝52に排出されることが防止される。これにより、ロータコア5とステータコア8との間に多量の冷却油が入り込むことを抑制できるので、ロータ3が回転により冷却油を引き摺って回転損失を増大させてしまうことを防止できる。ここで、円環油路70と溝52とを遮蔽する部材として最端鋼板51ではなくエンドプレート7を適用した場合は、円環油路70の周方向の幅が一定でなくなり、冷却油の流通が悪くなってしまう。即ち、溝52は永久磁石6同士の間に形成されているため、各溝52を遮蔽するには円環油路70の内側に突出する遮蔽部を各溝52に対応する部位に設けなければならない。このように、円環油路70の内周面に多数の突出した遮蔽部が設けられることで、冷却油の円滑な循環が阻害され、冷却効率が低減してしまう。これに対し、本実施の形態のモータ1では、最端鋼板51を利用して溝52への遮蔽部51aを形成しているので、円環油路70は内側に突出する部位を有しない円環形状となり、遮蔽部51aが円環油路70での冷却油の円滑な循環を妨げることがなく、冷却効率を向上することができる。
And the cooling oil circulating through the annular oil passage 70 is prevented from being discharged into the groove 52 by the shielding part 51 a of the outermost steel plate 51. Thereby, since it is possible to suppress a large amount of cooling oil from entering between the rotor core 5 and the stator core 8, it is possible to prevent the rotor 3 from dragging the cooling oil by rotation and increasing rotation loss. Here, when the end plate 7 is applied instead of the outermost steel plate 51 as a member for shielding the annular oil passage 70 and the groove 52, the circumferential width of the annular oil passage 70 is not constant, and the cooling oil Distribution will worsen. That is, since the grooves 52 are formed between the permanent magnets 6, in order to shield each groove 52, a shielding portion that protrudes inside the annular oil passage 70 must be provided at a portion corresponding to each groove 52. Don't be. Thus, by providing a large number of protruding shielding portions on the inner peripheral surface of the annular oil passage 70, smooth circulation of the cooling oil is hindered and cooling efficiency is reduced. On the other hand, in the motor 1 of the present embodiment, since the shield part 51a to the groove 52 is formed using the endmost steel plate 51, the annular oil passage 70 does not have a portion protruding inward. It becomes a ring shape, and the shielding part 51a does not hinder the smooth circulation of the cooling oil in the annular oil passage 70, so that the cooling efficiency can be improved.
円環油路70を循環する冷却油の一部は、連通孔21とは異なる位相に配置された排出孔72から押し出されて排出される。排出された冷却油は遠心力が作用しているので、外周側に噴き飛ばされ、コイルエンド90に噴き付けられる。これにより、コイルエンド90が冷却され、ステータ4の全体を冷却することができる。
A part of the cooling oil circulating in the annular oil passage 70 is pushed out and discharged from a discharge hole 72 arranged in a phase different from that of the communication hole 21. Since the discharged cooling oil is subjected to centrifugal force, it is sprayed to the outer peripheral side and sprayed to the coil end 90. Thereby, the coil end 90 is cooled and the whole stator 4 can be cooled.
また、例えば、ロータ3の下部が冷却油に浸かっていて、ロータ3が回転により冷却油を掻き揚げる等して溝52に冷却油が多量に入り込んだ場合には、溝52の内部の冷却油は遠心力に基づいて最端鋼板51の排出部51bから排出される。ここで、最端鋼板51が排出部51bを有さない場合には、溝52に入り込んだ冷却油は、ロータコア5とステータコア8との間に入り込んでしまい、ロータ3の回転抵抗を増大する可能性がある。これに対し、本実施の形態では、溝52に入り込んだ冷却油がロータコア5とステータコア8とのエアギャップに入り込む前に排出部51bから排出されるので、ロータ3の回転損失が増大することを抑制することができる。
Further, for example, when the lower part of the rotor 3 is immersed in the cooling oil, and the rotor 3 rakes up the cooling oil by rotation or the like and the cooling oil enters the groove 52, the cooling oil inside the groove 52 Is discharged from the discharge portion 51b of the outermost steel plate 51 based on the centrifugal force. Here, when the outermost steel plate 51 does not have the discharge part 51 b, the cooling oil that has entered the groove 52 enters between the rotor core 5 and the stator core 8, thereby increasing the rotational resistance of the rotor 3. There is sex. On the other hand, in the present embodiment, the cooling oil that has entered the groove 52 is discharged from the discharge portion 51b before entering the air gap between the rotor core 5 and the stator core 8, so that the rotation loss of the rotor 3 increases. Can be suppressed.
以上説明したように、本実施の形態のモータ1によれば、エンドプレート7に形成された円環油路70が、冷却油を周方向に循環させて複数の永久磁石6の端面6aの全てに接触させて、発熱源である永久磁石6を冷却するので、冷却油が接触せずに冷却されない永久磁石6を減らすことにより、ロータ3の全体を効率よく冷却することができる。即ち、円環油路70は円環形状であり、露出する全ての永久磁石6の端面6aに接触することができるので、例えばL字形状の独立した油路を用いて複数の永久磁石6の端面6aのうちの一部に接触できない場合に比べて、ロータ3の冷却効率を向上することができる。
As described above, according to the motor 1 of the present embodiment, the annular oil passage 70 formed in the end plate 7 circulates the cooling oil in the circumferential direction so that all of the end faces 6a of the plurality of permanent magnets 6 are present. Since the permanent magnet 6 that is a heat generation source is cooled by being brought into contact with each other, the whole of the rotor 3 can be efficiently cooled by reducing the number of permanent magnets 6 that are not cooled without being in contact with the cooling oil. In other words, the annular oil passage 70 has an annular shape and can contact the exposed end faces 6a of all the permanent magnets 6. For example, an L-shaped independent oil passage is used to form the plurality of permanent magnets 6. The cooling efficiency of the rotor 3 can be improved as compared with the case where a part of the end face 6a cannot be contacted.
また、本実施の形態のモータ1によれば、円環油路70に隣接する最端鋼板51には、溝52と円環油路70との連通を遮蔽する遮蔽部51aが設けられているので、円環油路70の冷却油が遠心力等で溝52に排出されてしまうことを防止できる。これにより、ロータコア5とステータコア8との間に多量の冷却油が入り込むことを抑制し、ロータ3が回転により冷却油を引き摺って回転損失を増大させてしまうことを防止できる。
Further, according to the motor 1 of the present embodiment, the outermost steel plate 51 adjacent to the annular oil passage 70 is provided with the shielding portion 51 a that shields the communication between the groove 52 and the annular oil passage 70. Therefore, it is possible to prevent the cooling oil in the annular oil passage 70 from being discharged into the groove 52 due to centrifugal force or the like. Thereby, it is possible to prevent a large amount of cooling oil from entering between the rotor core 5 and the stator core 8, and to prevent the rotor 3 from dragging the cooling oil by rotation and increasing rotation loss.
また、本実施の形態のモータ1では、遮蔽部51aを有する最端鋼板51は、溝52に貯留した冷却油を溝52から軸方向に排出可能な排出部51bを備えている。これにより、例えば、ロータ3の下部が冷却油に浸かっていてロータ3が回転により冷却油を掻き揚げる等して冷却油が溝52に入り込んだ場合に、溝52の内部の冷却油を排出部51bから軸方向に排出することができる。これにより、ロータ3とステータ4とのエアギャップに冷却油が入り込んで回転損失を増大させてしまうことを抑制できる。
Further, in the motor 1 of the present embodiment, the outermost steel plate 51 having the shielding part 51a includes the discharge part 51b that can discharge the cooling oil stored in the groove 52 from the groove 52 in the axial direction. Thereby, for example, when the lower part of the rotor 3 is immersed in the cooling oil and the cooling oil enters the groove 52 due to the rotor 3 being swung up by rotation, the cooling oil inside the groove 52 is discharged. 51b can be discharged in the axial direction. As a result, it is possible to suppress the cooling oil from entering the air gap between the rotor 3 and the stator 4 and increasing the rotation loss.
また、本実施の形態のモータ1では、少なくとも一方のエンドプレート7は、内周側から供給された冷却油を円環油路70に導入する導入孔71と、円環油路70を循環する冷却油を軸方向に排出する排出孔72と、を有し、導入孔71と排出孔72とは、周方向に対する位相を異ならせて配置されるようにしている。これにより、例えば、導入孔71と排出孔72とが同位相で配置されている場合のように、導入孔71から導入された冷却油が遠心力によって排出孔72から即座に排出されてしまうことを抑制し、冷却油を円環油路70で十分に循環させ、永久磁石6を効率よく冷却することができる。特に、本実施の形態では、各エンドプレート7において、導入孔71と排出孔72とはそれぞれ90°ごとに配置されると共に周方向に対する位相を45°異ならせて配置されているので、導入孔71と排出孔72とは等間隔に配置されることになり、等間隔に配置されない場合に比べて冷却油は排出されにくくなって十分に循環される。
Further, in the motor 1 of the present embodiment, at least one end plate 7 circulates through the annular oil passage 70 and the introduction hole 71 for introducing the cooling oil supplied from the inner peripheral side into the annular oil passage 70. A discharge hole 72 for discharging the cooling oil in the axial direction, and the introduction hole 71 and the discharge hole 72 are arranged with different phases in the circumferential direction. Thereby, for example, the cooling oil introduced from the introduction hole 71 is immediately discharged from the discharge hole 72 by the centrifugal force as in the case where the introduction hole 71 and the discharge hole 72 are arranged in the same phase. And the cooling oil can be sufficiently circulated in the annular oil passage 70 to cool the permanent magnet 6 efficiently. In particular, in the present embodiment, in each end plate 7, the introduction hole 71 and the discharge hole 72 are arranged every 90 ° and are arranged with a phase difference of 45 ° with respect to the circumferential direction. 71 and the discharge hole 72 will be arrange | positioned at equal intervals, compared with the case where it is not arrange | positioned at equal intervals, cooling oil becomes difficult to be discharged | emitted, and is fully circulated.
また、本実施の形態のモータ1では、ロータコア5の軸方向の長さは、ステータコア8の軸方向の長さよりも長いようにしている。これにより、最端鋼板51はモータ1の特性に影響しなくなる。ロータコア5の最端鋼板51には溝52が形成されておらず、最端鋼板51では隣接する永久磁石6同士の磁束線の遮断が不十分であっても、それによるモータ1のトルクリプルの増加を抑制することができる。特に、本実施の形態では、ロータコア5の軸方向の各端部の長さはステータコア8に比べて鋼板80の2~3枚分だけ長くされているので、寸法誤差等があっても最端鋼板51はステータコア8には対向せず、モータ1の特性への影響を抑えることができる。
Further, in the motor 1 of the present embodiment, the axial length of the rotor core 5 is made longer than the axial length of the stator core 8. Thereby, the endmost steel plate 51 does not affect the characteristics of the motor 1. The groove 52 is not formed in the outermost steel plate 51 of the rotor core 5, and even if the magnetic flux lines between the adjacent permanent magnets 6 are insufficient in the outermost steel plate 51, the torque ripple of the motor 1 is thereby increased. Can be suppressed. In particular, in the present embodiment, the length of each end portion in the axial direction of the rotor core 5 is longer than that of the stator core 8 by 2 to 3 sheets of the steel plate 80. The steel plate 51 does not face the stator core 8 and can suppress the influence on the characteristics of the motor 1.
尚、上述した本実施の形態においては、ロータコア5の最端鋼板51のみに遮蔽部51a及び排出部51bを設ける場合について説明したが、これには限定されず、例えば、最端鋼板51に隣接する鋼板50等、最端鋼板51を含めた複数枚の鋼板50に遮蔽部及び排出部を設けるようにしてもよい。即ち、遮蔽部51a及び排出部51bは、複数の鋼板50のうちの少なくとも円環油路70に隣接する最端鋼板51に形成されていればよい。
In addition, in this Embodiment mentioned above, although the case where the shielding part 51a and the discharge part 51b were provided only in the endmost steel plate 51 of the rotor core 5 was demonstrated, it is not limited to this, For example, it adjoins the endmost steel plate 51. The shielding portion and the discharge portion may be provided on a plurality of steel plates 50 including the outermost steel plate 51 such as the steel plate 50 to be processed. That is, the shielding part 51a and the discharge part 51b should just be formed in the outermost steel plate 51 adjacent to the annular oil path 70 among the some steel plates 50. FIG.
また、上述した本実施の形態においては、ロータコア5を構成する複数の鋼板50,51の最も端に位置する最端鋼板51に遮蔽部51a及び排出部51bを設ける場合について説明したが、これには限定されず、例えば、最端鋼板51は遮蔽部51a及び排出部51bを有さずに溝52を有するようにし、最端鋼板51とエンドプレート7との間に遮蔽部及び排出部を有する板状の部材を介在させるようにしてもよい。この場合、板状の部材の材質は鋼板等の磁性体であってもよいが、それ以外の例えば樹脂やセラミック等の材質であってもよい。
Moreover, in this Embodiment mentioned above, although the case where the shielding part 51a and the discharge part 51b were provided in the outermost steel plate 51 located in the most end of the some steel plates 50 and 51 which comprise the rotor core 5 was demonstrated, For example, the endmost steel plate 51 does not have the shielding part 51a and the discharge part 51b but has the groove 52, and has the shielding part and the discharge part between the endmost steel plate 51 and the end plate 7. You may make it interpose a plate-shaped member. In this case, the material of the plate-like member may be a magnetic body such as a steel plate, but may be other materials such as resin or ceramic.
また、上述した本実施の形態においては、最端鋼板51に遮蔽部51a及び排出部51bの両方を設ける場合について説明したが、これには限定されず、例えば、ロータ3の下部が冷却油に浸かっていない等の理由でロータコア5とステータコア8との間への冷却油の入り込みが少ない場合等は、排出部51bは無くてもよい。
Moreover, in this Embodiment mentioned above, although the case where both the shielding part 51a and the discharge part 51b were provided in the outermost steel plate 51 was demonstrated, it is not limited to this, For example, the lower part of the rotor 3 is made into cooling oil. The discharge part 51b may not be provided when there is little penetration of the cooling oil between the rotor core 5 and the stator core 8 for reasons such as not being immersed.
また、上述した本実施の形態においては、各溝52は1本の直線状の溝とした場合について説明したが、これには限定されず、例えば、2本以上の複数の平行な直線状の溝、あるいは交差する溝としてもよい。この場合、例えば、1本の直線状の溝と、その両側方に配置された中央の溝よりも細く浅い2本の溝との合計3本の溝を有するようにしてもよい。各溝52の本数や太さ、深さ等は、永久磁石6の強さや要求されるトルクリプルの低減量や軽量化の程度等に応じて適宜設定することができる。
In the above-described embodiment, the case where each groove 52 is a single linear groove has been described. However, the present invention is not limited to this. For example, two or more parallel straight lines are used. A groove or a crossing groove may be used. In this case, for example, a total of three grooves including one linear groove and two grooves that are thinner and shallower than the central groove disposed on both sides thereof may be provided. The number, thickness, depth, and the like of each groove 52 can be appropriately set according to the strength of the permanent magnet 6, the required amount of torque ripple reduction, the degree of weight reduction, and the like.
本回転電機は、例えば、ハイブリッド車両や電気車両等に搭載することが可能であり、特に、内蔵するロータ及びステータを冷却する冷却装置を有する構造にあって、エンドプレートの内側部に冷却油の円環油路を有するものに用いて好適である。
The rotating electrical machine can be mounted on, for example, a hybrid vehicle, an electric vehicle, and the like. In particular, the rotating electrical machine has a cooling device that cools a built-in rotor and a stator. It is suitable for use in those having an annular oil passage.
1 モータ(回転電機)
2 ロータ軸(ロータ支持部材)
3 ロータ
4 ステータ
5 ロータコア
5a 外周面
6 永久磁石(磁石)
6a 端面
7,7a,7b エンドプレート
8 ステータコア
9 ステータコイル
50 鋼板(コアプレート)
51 最端鋼板(円環油路に隣接するコアプレート)
51a 遮蔽部
51b 排出部
52 溝
70 円環油路
71 導入孔
72 排出孔 1 Motor (Rotating electric machine)
2 Rotor shaft (rotor support member)
3Rotor 4 Stator 5 Rotor core 5a Outer peripheral surface 6 Permanent magnet (magnet)
6a End face 7, 7a, 7b End plate 8 Stator core 9 Stator coil 50 Steel plate (core plate)
51 Endmost steel plate (core plate adjacent to the annular oil passage)
51a Shielding portion 51b Discharging portion 52 Groove 70 Circular oil passage 71 Introduction hole 72 Discharging hole
2 ロータ軸(ロータ支持部材)
3 ロータ
4 ステータ
5 ロータコア
5a 外周面
6 永久磁石(磁石)
6a 端面
7,7a,7b エンドプレート
8 ステータコア
9 ステータコイル
50 鋼板(コアプレート)
51 最端鋼板(円環油路に隣接するコアプレート)
51a 遮蔽部
51b 排出部
52 溝
70 円環油路
71 導入孔
72 排出孔 1 Motor (Rotating electric machine)
2 Rotor shaft (rotor support member)
3
51 Endmost steel plate (core plate adjacent to the annular oil passage)
Claims (4)
- ロータ支持部材と、
内周部が前記ロータ支持部材に固定して支持され、軸方向に積層した円環状のコアプレートを有するロータコアと、軸方向に前記ロータコアを貫通し、前記ロータコアの軸方向の少なくとも一方の端部に端面を露出する複数の磁石と、前記ロータ支持部材により挟持されることで前記ロータコアを軸方向に挟持する一対のエンドプレートとを有するロータと、
前記ロータコアの外周側に配置された円環状のステータコアを有するステータと、を備える回転電機において、
少なくとも一方の前記エンドプレートは、前記磁石の前記端面に対向する側面に、内周側から供給された冷却油を周方向に循環させて、前記複数の磁石の露出した前記端面の全てに接触させて前記磁石を冷却する円環形状の円環油路を備え、
前記ロータコアは、外周面に軸方向に形成されると共に、前記複数の磁石の間に配置された溝と、前記コアプレートのうちの少なくとも前記円環油路に隣接するコアプレートに形成されると共に、前記溝と前記円環油路との連通を遮蔽する遮蔽部と、を備えた、
ことを特徴とする回転電機。 A rotor support member;
A rotor core having an annular core plate that is fixedly supported by the rotor support member and is laminated in the axial direction, and at least one end of the rotor core in the axial direction passing through the rotor core in the axial direction A rotor having a plurality of magnets that expose end faces, and a pair of end plates that are clamped by the rotor support member to clamp the rotor core in the axial direction;
In a rotating electrical machine comprising a stator having an annular stator core disposed on the outer peripheral side of the rotor core,
At least one of the end plates circulates cooling oil supplied from the inner peripheral side in a circumferential direction on a side surface facing the end surface of the magnet so as to contact all of the exposed end surfaces of the plurality of magnets. An annular oil passage that cools the magnet
The rotor core is formed in an axial direction on an outer peripheral surface, and is formed in a groove disposed between the plurality of magnets and a core plate adjacent to at least the annular oil passage among the core plates. A shielding portion that shields communication between the groove and the annular oil passage,
Rotating electric machine characterized by that. - 前記遮蔽部を有する前記コアプレートは、前記溝に貯留した冷却油を前記溝から軸方向に排出可能な排出部を備えた、
ことを特徴とする請求項1記載の回転電機。 The core plate having the shielding portion includes a discharge portion capable of discharging the cooling oil stored in the groove in the axial direction from the groove.
The rotating electrical machine according to claim 1. - 前記少なくとも一方のエンドプレートは、
内周側から供給された冷却油を前記円環油路に導入する導入孔と、
前記円環油路を循環する冷却油を軸方向に排出する排出孔と、を有し、
前記導入孔と前記排出孔とは、周方向に対する位相を異ならせて配置された、
ことを特徴とする請求項1又は2に記載の回転電機。 The at least one end plate is
An introduction hole for introducing the cooling oil supplied from the inner peripheral side into the annular oil passage;
A discharge hole for discharging the cooling oil circulating in the annular oil passage in the axial direction;
The introduction hole and the discharge hole are arranged with different phases with respect to the circumferential direction.
The rotating electrical machine according to claim 1 or 2, characterized in that - 前記ロータコアの軸方向の長さは、前記ステータコアの軸方向の長さよりも長い、
ことを特徴とする請求項1乃至3のいずれか1項に記載の回転電機。 The axial length of the rotor core is longer than the axial length of the stator core,
The rotating electric machine according to any one of claims 1 to 3, wherein the rotating electric machine is provided.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-171302 | 2013-08-21 | ||
JP2013171302 | 2013-08-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015025648A1 true WO2015025648A1 (en) | 2015-02-26 |
Family
ID=52483430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069057 WO2015025648A1 (en) | 2013-08-21 | 2014-07-17 | Dynamo-electric machine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015025648A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018172033A1 (en) * | 2017-03-21 | 2018-09-27 | Siemens Aktiengesellschaft | Synchronous reluctance machine |
CN109196754A (en) * | 2016-06-08 | 2019-01-11 | 三菱电机株式会社 | Permanent magnet motor |
US20210159744A1 (en) * | 2019-11-25 | 2021-05-27 | Fanuc Corporation | Rotor including end plate disposed on end face of rotor core and electric motor including rotor |
US20210336510A1 (en) * | 2020-04-28 | 2021-10-28 | GM Global Technology Operations LLC | Rotor end ring with oil jacket |
CN113708549A (en) * | 2021-09-14 | 2021-11-26 | 威海西立电子有限公司 | Motor cooling device and motor |
CN113833768A (en) * | 2021-09-26 | 2021-12-24 | 珠海格力电器股份有限公司 | Bearing lubricating structure and motor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11206063A (en) * | 1997-12-26 | 1999-07-30 | Toyota Motor Corp | Electrical machine, power transmission device and their manufacture |
JP2009072044A (en) * | 2007-09-18 | 2009-04-02 | Toyota Motor Corp | Rotary electric machine |
WO2010119556A1 (en) * | 2009-04-17 | 2010-10-21 | 株式会社日本自動車部品総合研究所 | Dynamo-electric machine |
JP2013059193A (en) * | 2011-09-08 | 2013-03-28 | Toyota Motor Corp | Rotor structure of rotary electric machine |
-
2014
- 2014-07-17 WO PCT/JP2014/069057 patent/WO2015025648A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11206063A (en) * | 1997-12-26 | 1999-07-30 | Toyota Motor Corp | Electrical machine, power transmission device and their manufacture |
JP2009072044A (en) * | 2007-09-18 | 2009-04-02 | Toyota Motor Corp | Rotary electric machine |
WO2010119556A1 (en) * | 2009-04-17 | 2010-10-21 | 株式会社日本自動車部品総合研究所 | Dynamo-electric machine |
JP2013059193A (en) * | 2011-09-08 | 2013-03-28 | Toyota Motor Corp | Rotor structure of rotary electric machine |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109196754A (en) * | 2016-06-08 | 2019-01-11 | 三菱电机株式会社 | Permanent magnet motor |
EP3471240A4 (en) * | 2016-06-08 | 2019-04-17 | Mitsubishi Electric Corporation | Permanent magnet motor |
WO2018172033A1 (en) * | 2017-03-21 | 2018-09-27 | Siemens Aktiengesellschaft | Synchronous reluctance machine |
CN110462982A (en) * | 2017-03-21 | 2019-11-15 | 西门子股份公司 | Synchronous reluctance machine |
US10903707B2 (en) | 2017-03-21 | 2021-01-26 | Siemens Aktiengesellschaft | Synchronous reluctance machine |
US20210159744A1 (en) * | 2019-11-25 | 2021-05-27 | Fanuc Corporation | Rotor including end plate disposed on end face of rotor core and electric motor including rotor |
US20210336510A1 (en) * | 2020-04-28 | 2021-10-28 | GM Global Technology Operations LLC | Rotor end ring with oil jacket |
US11606005B2 (en) * | 2020-04-28 | 2023-03-14 | GM Global Technology Operations LLC | Rotor end ring with oil jacket |
CN113708549A (en) * | 2021-09-14 | 2021-11-26 | 威海西立电子有限公司 | Motor cooling device and motor |
CN113833768A (en) * | 2021-09-26 | 2021-12-24 | 珠海格力电器股份有限公司 | Bearing lubricating structure and motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015025648A1 (en) | Dynamo-electric machine | |
US9991754B2 (en) | Embedded permanent magnet rotary electric machine | |
US9172279B2 (en) | Automotive embedded permanent magnet rotary electric machine | |
EP2961043B1 (en) | Rotor of rotary electric machine | |
JP6079733B2 (en) | Rotating electrical machine rotor | |
US20150162805A1 (en) | Rotor of rotating electrical machine and rotating electrical machine | |
JP6331506B2 (en) | Rotor structure of rotating electrical machine | |
JP5259927B2 (en) | Permanent magnet rotating electric machine | |
US10862381B2 (en) | Rotary electrical machine | |
JP2014176235A (en) | Rotor for rotary electric machine, and rotary electric machine | |
JP2009055737A (en) | Rotor and rotary electric machine | |
JP2020072634A (en) | Rotor and IPM motor using the same | |
JP5549857B2 (en) | Rotor for rotating electrical machines | |
JP2017046545A (en) | Rotary electric machine rotor | |
US20160126791A1 (en) | Rotating electric machine | |
JP6083467B2 (en) | Permanent magnet embedded rotary electric machine | |
JP5120538B2 (en) | Motor cooling structure | |
WO2019049820A1 (en) | Rotor | |
JP2013183481A (en) | Cooling structure of rotor for rotary electric machine and rotary electric machine | |
WO2015174145A1 (en) | Embedded-permanent-magnet dynamoelectric device | |
JP5787184B2 (en) | Rotor and rotating electric machine using the same | |
JP2010200480A (en) | Embedded magnetic motor | |
WO2017064938A1 (en) | Dynamo-electric machine | |
JP2009106001A (en) | Rotary electric machine | |
JP2014176203A (en) | Multi-gap rotary electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14838257 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14838257 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |