Nothing Special   »   [go: up one dir, main page]

WO2015020088A1 - Industrial robot - Google Patents

Industrial robot Download PDF

Info

Publication number
WO2015020088A1
WO2015020088A1 PCT/JP2014/070735 JP2014070735W WO2015020088A1 WO 2015020088 A1 WO2015020088 A1 WO 2015020088A1 JP 2014070735 W JP2014070735 W JP 2014070735W WO 2015020088 A1 WO2015020088 A1 WO 2015020088A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
main body
robot
housing
industrial robot
Prior art date
Application number
PCT/JP2014/070735
Other languages
French (fr)
Japanese (ja)
Inventor
康行 北原
俊道 風間
保 栗林
正義 齋地
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013247027A external-priority patent/JP6509487B2/en
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to US14/896,788 priority Critical patent/US9539727B2/en
Priority to KR1020167002890A priority patent/KR102277372B1/en
Priority to CN201480040727.0A priority patent/CN105378908B/en
Publication of WO2015020088A1 publication Critical patent/WO2015020088A1/en
Priority to US15/259,539 priority patent/US10213924B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices

Definitions

  • the present invention relates to an industrial robot that constitutes a part of EFEM (Equipment Front End Module) and transports a semiconductor wafer between a FOUP (Front Open Unified Pod) and a semiconductor wafer processing apparatus.
  • EFEM Equipment Front End Module
  • FOUP Front Open Unified Pod
  • an industrial robot that constitutes a part of an EFEM and conveys a semiconductor wafer between a FOUP (or a plurality of FOUPs) and a semiconductor wafer processing apparatus is known (for example, see Patent Document 1).
  • the industrial robot described in Patent Document 1 includes two hands on which semiconductor wafers are mounted, an arm that is coupled to the two hands so as to be pivotable to the distal end side, and a base end side of the arm that is pivotable. And a main body portion to be connected.
  • the arm includes a first arm whose base end side is rotatably connected to the main body, a second arm whose base end side is rotatably connected to the tip end side of the first arm, and a tip end of the second arm.
  • the base end side is rotatably connected to the side, and the hand is rotatably connected to the distal end side.
  • An arm elevating mechanism that elevates and lowers the first arm is housed inside the main body.
  • FOUP is manufactured based on SEMI (Semiconductor Equipment and Materials Institute) standard, and the height of FOUP is a fixed dimension.
  • SEMI semiconductor Equipment and Materials Institute
  • the height of FOUP is arbitrarily set. Therefore, depending on the specifications of the semiconductor wafer processing apparatus, the arm lifting mechanism may not be lifted up and down, and the industrial robot described in Patent Document 1 may not be used as it is in EFEM.
  • a first problem of the present invention is to provide a robot main body in an industrial robot that transports a semiconductor wafer between a plurality of FOUPs arranged in a fixed direction and a semiconductor wafer processing apparatus and constitutes a part of an EFEM.
  • a robot main body in an industrial robot that transports a semiconductor wafer between a plurality of FOUPs arranged in a fixed direction and a semiconductor wafer processing apparatus and constitutes a part of an EFEM.
  • the second problem of the present invention is that, in an industrial robot constituting a part of the EFEM, even if the lifting mechanism for lifting the robot main body is arranged outside the robot main body, the drive unit and guide portion of the lifting mechanism. It is an object of the present invention to provide an industrial robot capable of effectively suppressing the dust generated from the outflow from the connecting portion between the robot body and the lifting mechanism into the EFEM.
  • the industrial robot of the present invention conveys a semiconductor wafer between a plurality of FOUPs arranged in a fixed direction and a semiconductor wafer processing apparatus and constitutes a part of the EFEM.
  • An industrial robot includes a robot body and a lifting mechanism that is disposed outside the robot body and moves the robot body up and down.
  • the robot body is connected to a hand on which a semiconductor wafer is mounted and is connected to each other so as to be relatively rotatable.
  • An arm portion that is rotatably connected to the distal end side, a main body portion that is rotatably connected to the proximal end side of the arm, and an arm lifting mechanism that lifts and lowers the arm.
  • the FOUP arrangement direction is the first direction
  • the vertical direction and the direction orthogonal to the first direction are the second direction
  • one of the second directions is the third direction
  • the other of the second directions When the fourth direction is viewed, the rotation center of the base end side of the arm with respect to the main body when viewed from the up and down direction is disposed on the third direction side with respect to the center of the main body, and the arm contracts to form a plurality of arm portions.
  • a part of the arm is disposed on the fourth direction side of the main body, the main body is fixed to the lifting mechanism, It is characterized by being arranged on at least one of both sides of the main body part in the first direction and / or on the fourth direction side of the main body part.
  • the main body portion of the robot main body is fixed to an elevating mechanism for elevating and lowering the robot main body, and the elevating mechanism includes at least one of both sides of the main body portion in the first direction and / or the main body. In the fourth direction.
  • the industrial robot can be arranged inside the EFEM housing in a state where the side surface on the third direction side of the industrial robot is close to the side surface on the third direction side of the EFEM housing. Become. Therefore, in the present invention, even if the lifting mechanism for raising and lowering the robot body is arranged outside the robot body, the EFEM is set in the second direction perpendicular to the arrangement direction (first direction) and the vertical direction of the plurality of FOUPs. It becomes possible to reduce the size.
  • the arm includes, as an arm portion, a first arm portion whose base end side is rotatably connected to the main body portion, and the lifting mechanism is a first arm with respect to the main body portion when viewed from the vertical direction. It is preferable to be within the rotation area of the part. If comprised in this way, it will become possible to set the width
  • the main body is formed so that the shape when viewed from above and below is a substantially rectangular shape or a substantially square shape having side surfaces parallel to the first direction.
  • the industrial robot can be arranged inside the EFEM housing with the side surface on the third direction side of the industrial robot closer to the side surface on the third direction side of the EFEM housing. Become. Therefore, the EFEM can be further downsized in the second direction.
  • a side surface on the fourth direction side of the main body is attached to the lifting mechanism.
  • the industrial robot of the present invention is an industrial robot that constitutes a part of the EFEM and transports a semiconductor wafer between the FOUP and the semiconductor wafer processing apparatus.
  • the robot body includes a hand on which a semiconductor wafer is mounted, an arm on which the hand is rotatably connected to the tip side, A main body part rotatably connected to the base end side of the arm and an arm elevating mechanism for elevating the arm are provided.
  • the elevating mechanism includes a drive part for driving the robot main body in the vertical direction and a robot main body in the vertical direction.
  • the cover is formed with a slit-like through hole elongated in the vertical direction so that the coupling member can be moved in the vertical direction, and the coupling member has a through hole passage portion disposed in the through hole.
  • the width of the through hole passage portion and the width of the through hole in the width direction of the through hole orthogonal to the thickness direction and the vertical direction of the cover are narrower than the width of the guide block in the width direction of the through hole. It is characterized by that.
  • the drive unit, the guide rail, and the guide block that constitute a part of the lifting mechanism are accommodated in the housing.
  • a flat cover that constitutes a part of the housing is disposed between the guide block and the main body of the robot body, and a slit-like through hole that is elongated in the vertical direction is formed in the cover.
  • the connecting member for connecting the robot body and the guide block is formed with a through hole passage portion disposed in the through hole, and the width of the through hole passage portion and the through hole in the width direction of the through hole Is narrower than the width of the guide block in the width direction of the through hole.
  • variety of a through-hole can be narrowed. Therefore, in the present invention, even if the lifting mechanism for moving the robot body up and down is disposed outside the robot body, dust generated from the drive unit and the guide unit of the lifting mechanism is EFEM from the connecting portion between the robot body and the lifting mechanism. It is possible to effectively suppress the flow out into the interior of the.
  • the main body is formed so that the shape when viewed from above and below is a substantially rectangular shape or a substantially square shape, and the elevating mechanism is arranged outside the housing and one side surface of the main body is fixed. It is preferable that a fixing member is provided, and the fixing member is fixed to the tip of the through-hole passage portion. If comprised in this way, since a robot main body and a raising / lowering mechanism can be connected using the fixing member arrange
  • the elevating mechanism preferably includes an exhaust fan that is attached to the housing and exhausts the air inside the housing to the outside of the EFEM. If comprised in this way, it will become possible to suppress more effectively that the dust which generate
  • the elevating mechanism is fixed to two guide rails arranged at a predetermined interval in the width direction of the through hole, and a guide block that engages with each of the two guide rails.
  • a semiconductor wafer is transferred between a plurality of FOUPs arranged in a fixed direction and a semiconductor wafer processing apparatus, and a part of the EFEM is configured.
  • the EFEM can be miniaturized in a direction orthogonal to the arrangement direction of the plurality of FOUPs and the vertical direction even if a lifting mechanism for raising and lowering the robot body is arranged outside the robot body. Become.
  • the lifting mechanism that lifts and lowers the robot body is arranged outside the robot body.
  • FIG. 1 is a perspective view of an industrial robot according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the industrial robot shown in FIG. 1 in a state where the robot body and the arm are raised and the arm is extended.
  • FIG. 2 is a schematic plan view of a semiconductor manufacturing system in which the industrial robot shown in FIG. 1 is used. It is a side view of the robot main body shown in FIG. It is a perspective view of the raising / lowering mechanism shown in FIG. It is a figure for demonstrating the structure of the raising / lowering mechanism shown in FIG. 5 from the front side. It is a figure for demonstrating the structure of the raising / lowering mechanism shown in FIG. 5 from the upper side.
  • (A) is an enlarged view of the E part of FIG. 7
  • (B) is an enlarged view of the F part of FIG.
  • FIG. 1 is a perspective view of an industrial robot 1 according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the industrial robot 1 shown in FIG. 1 in a state where the robot body 3 and the arm 16 are raised and the arm 16 is extended.
  • FIG. 3 is a schematic plan view of a semiconductor manufacturing system 5 in which the industrial robot 1 shown in FIG. 1 is used.
  • the industrial robot 1 of this embodiment is a horizontal articulated robot for transporting a semiconductor wafer 2 (see FIG. 3).
  • the industrial robot 1 includes a robot body 3 and a lifting mechanism 4 that lifts and lowers the robot body 3.
  • the industrial robot 1 is referred to as “robot 1”
  • the semiconductor wafer 2 is referred to as “wafer 2”.
  • the Y direction orthogonal to the vertical direction and the left-right direction is referred to as “front-rear direction”
  • the X1 direction side is referred to as “right ”Side
  • the X2 direction side is the“ left ”side
  • the Y1 direction side is the“ front ”side
  • the Y2 direction side is the“ rear (back) ”side.
  • the robot 1 is used by being incorporated in a semiconductor manufacturing system 5.
  • the semiconductor manufacturing system 5 includes an EFEM 6 and a semiconductor wafer processing apparatus 7 that performs predetermined processing on the wafer 2.
  • the EFEM 6 is disposed on the front side of the semiconductor wafer processing apparatus 7.
  • the robot 1 constitutes a part of the EFEM 6.
  • the EFEM 6 includes a plurality of load ports 9 that open and close the FOUP 8 and a housing 10 in which the robot 1 is accommodated.
  • the housing 10 is formed in a rectangular parallelepiped box shape elongated in the left-right direction.
  • the front surface and the rear surface of the housing 10 are parallel to a plane composed of an up-down direction and a left-right direction.
  • the inside of the housing 10 is a clean space. That is, the inside of the EFEM 6 is a clean space, and a predetermined cleanliness is secured inside the EFEM 6.
  • the FOUP 8 is manufactured based on the SEMI standard, and the FOUP 8 can accommodate 25 or 13 wafers 2.
  • the load port 9 is disposed on the front side of the housing 10.
  • the EFEM 6 of this embodiment includes four load ports 9 arranged at a predetermined pitch in the left-right direction.
  • four FOUPs 8 are arranged at a predetermined pitch in the left-right direction.
  • the robot 1 transports the wafer 2 between the four FOUPs 8 and the semiconductor wafer processing apparatus 7.
  • the left-right direction as the arrangement direction of the four FOUPs 8 is the first direction
  • the front-rear direction is a second direction orthogonal to the left-right direction, which is the first direction, and the up-down direction.
  • the front direction (Y1 direction) which is one of the second directions is the third direction
  • the rear direction (Y2 direction) which is the other of the second directions is the fourth direction.
  • FIG. 4 is a side view of the robot body 3 shown in FIG.
  • the robot body 3 includes two hands 14 and 15 on which the wafer 2 is mounted, an arm 16 to which the hands 14 and 15 are rotatably connected to the distal end side, and a base end side of the arm 16 to be rotatably connected.
  • the main body part 17 is provided.
  • the arm 16 has a first arm portion 18 whose base end side is rotatably connected to the main body portion 17, and a second arm portion whose base end side is rotatably connected to the distal end side of the first arm portion 18. 19 and a third arm portion 20 whose base end side is rotatably connected to the distal end side of the second arm portion 19. That is, the arm 16 includes three arm portions that are connected to each other so as to be relatively rotatable.
  • the 1st arm part 18, the 2nd arm part 19, and the 3rd arm part 20 are formed in the hollow shape.
  • the length of the first arm portion 18, the length of the second arm portion 19, and the length of the third arm portion 20 are equal.
  • the main body part 17, the first arm part 18, the second arm part 19, and the third arm part 20 are arranged in this order from the lower side in the vertical direction.
  • the hands 14 and 15 are formed so that the shape when viewed from above and below is substantially Y-shaped, and the wafer 2 is mounted on the tips of the hands 14 and 15 having a bifurcated shape.
  • the proximal end sides of the hands 14 and 15 are rotatably connected to the distal end side of the third arm portion 20.
  • the hands 14 and 15 are arranged so as to overlap in the vertical direction. Specifically, the hand 14 is disposed on the upper side and the hand 15 is disposed on the lower side.
  • the hands 14 and 15 are disposed above the third arm portion 20.
  • the hand 14 and the hand 15 may overlap in the vertical direction, but in most cases, the hand 14 and the hand 15 do not overlap in the vertical direction.
  • the rotation angle of the hand 15 relative to the hand 14 is, for example, 120 ° to 150 °.
  • the main body portion 17 includes a housing 21 and a columnar member 22 (see FIG. 2) to which the proximal end side of the first arm portion 18 is rotatably connected.
  • the housing 21 is formed in a substantially rectangular parallelepiped shape elongated in the vertical direction, and the shape of the housing 21 when viewed from the vertical direction is a substantially rectangular shape or a substantially square shape. Further, the front surface and the rear surface of the housing 21 are parallel to a plane composed of an up-down direction and a left-right direction, and both left and right side surfaces of the housing 21 are parallel to a plane composed of an up-down direction and a front-rear direction. It has become.
  • the main body portion 17 is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction so that the shape when viewed from the vertical direction is a substantially rectangular shape or a substantially square shape. Further, the front surface and the rear surface of the main body portion 17 are parallel to a plane composed of the up-down direction and the left-right direction, and the left and right side surfaces of the main body portion 17 are planes composed of the up-down direction and the front-back direction. It is parallel to.
  • the columnar member 22 is formed in a vertically long and narrow columnar shape.
  • An arm elevating mechanism (not shown) for elevating the columnar member 22 is accommodated in the housing 21. That is, an arm elevating mechanism that elevates and lowers the first arm portion 18 relative to the main body portion 17 (that is, elevates and lowers the arm 16) is housed in the housing 21.
  • the arm elevating mechanism includes, for example, a ball screw arranged with the vertical direction as an axial direction, a nut member that engages with the ball screw, a motor that rotates the ball screw, and the like. As shown in FIG.
  • the arm elevating mechanism has a columnar shape between a position where the columnar member 22 is accommodated in the housing 21 and a position where the columnar member 22 protrudes upward from the housing 21 as shown in FIG.
  • the member 22 is moved up and down. That is, the arm lifting mechanism moves the arm 16 up and down between a position where the columnar member 22 is accommodated in the housing 21 and a position where the columnar member 22 protrudes upward from the housing 21.
  • the columnar member 22 is disposed on the front end side of the housing 21.
  • the proximal end side of the first arm portion 18 is rotatably connected to the upper end of the columnar member 22. That is, as shown in FIG. 3, when viewed from above and below, the rotation center of the first arm portion 18 relative to the main body portion 17 (that is, the rotation center on the base end side of the arm 16) C1 is the main body portion 17. It is arranged on the front side (FOUP8 side) from the center of.
  • the columnar member 22 is disposed at the center position of the housing 21 in the left-right direction.
  • the arm 16 is contracted, and the first arm 18, the second arm 19, the third arm 20, and the hands 14 and 15 overlap each other in the vertical direction.
  • 1 standby state In this standby state, a part of the arm 16 and the hands 14 and 15 protrude rearward from the main body portion 17.
  • the robot body 3 includes an arm unit driving mechanism that rotates the first arm unit 18 and the second arm unit 19 to extend and contract a part of the arm 16 including the first arm unit 18 and the second arm unit 19.
  • the arm unit drive mechanism includes a motor 25 serving as a drive source, a speed reducer 26 that decelerates the power of the motor 25 and transmits the power to the first arm unit 18, and decelerates the power of the motor 25. And a speed reducer 27 for transmission to the second arm portion 19.
  • the motor 25 is disposed inside the housing 21.
  • the reduction gear 26 constitutes a joint portion that connects the main body portion 17 and the first arm portion 18.
  • the reduction gear 27 constitutes a joint portion that connects the first arm portion 18 and the second arm portion 19.
  • the reduction gears 26 and 27 are, for example, harmonic drive (registered trademark) which is a wave gear device.
  • the motor 25 and the speed reducer 26 are connected via a pulley and a belt (not shown), and the motor 25 and the speed reducer 27 are not shown. Are connected via a pulley and a belt.
  • the third arm unit drive mechanism includes a motor 28 serving as a drive source, and a speed reducer 29 for decelerating the power of the motor 28 and transmitting it to the third arm unit 20.
  • the motor 28 is disposed inside the distal end side of the second arm portion 19.
  • the speed reducer 29 constitutes a joint portion that connects the second arm portion 19 and the third arm portion 20.
  • the reducer 29 is, for example, a harmonic drive (registered trademark).
  • the motor 28 and the speed reducer 29 are connected via a gear train (not shown).
  • the first hand drive mechanism includes a motor 30 as a drive source and a speed reducer 31 for decelerating the power of the motor 30 and transmitting it to the hand 14.
  • the second hand drive mechanism includes a motor 32 as a drive source and a speed reducer 33 for decelerating the power of the motor 32 and transmitting it to the hand 15.
  • the motors 30 and 32 and the speed reducers 31 and 33 are disposed inside the third arm unit 20.
  • the reducers 31 and 33 are, for example, harmonic drives (registered trademark).
  • the speed reducer 31 is attached to the output shaft of the motor 30, and the speed reducer 33 is attached to the output shaft of the motor 32.
  • the hand 14 and the speed reducer 31 are connected via a pulley and a belt (not shown), and the hand 15 and the speed reducer 33 are connected via a pulley and a belt (not shown).
  • the wafer 2 can be taken in and out of the FOUP 8 even with the robot main body 3 alone. That is, even in the robot body 3 in the state where the lifting mechanism 4 is not attached, the columnar member 22 is raised and lowered, and the first arm 18, the second arm 19, and the third arm 20 are rotated to expand and contract the arm 16. In addition, by rotating the hands 14 and 15, the wafer 2 can be taken in and out of the FOUP 8.
  • FIG. 5 is a perspective view of the lifting mechanism 4 shown in FIG.
  • FIG. 6 is a diagram for explaining the configuration of the lifting mechanism 4 shown in FIG. 5 from the front side.
  • FIG. 7 is a diagram for explaining the configuration of the lifting mechanism 4 shown in FIG. 5 from above.
  • FIG. 8A is an enlarged view of a portion E in FIG. 7, and
  • FIG. 8B is an enlarged view of a portion F in FIG.
  • the elevating mechanism 4 is formed separately from the robot body 3 and is disposed outside the robot body 3.
  • the lifting mechanism 4 is fixed to the bottom surface of the housing 10.
  • the elevating mechanism 4 is engaged with a drive unit 36 for driving the robot main body 3 in the vertical direction, two guide rails 37 for guiding the robot main body 3 in the vertical direction, and the two guide rails 37.
  • the guide block 38 that slides in the vertical direction, the housing 39 in which the drive unit 36, the guide rail 37, and the guide block 38 are accommodated, and the robot body 3 disposed outside the housing 39 and the guide block 38 are coupled.
  • Two connecting members 40 for fixing, a fixing member 41 arranged outside the housing 39 and to which the robot main body 3 is fixed, and air inside the housing 39 are discharged to the outside of the EFEM 6 (that is, outside the housing 10).
  • Two exhaust fans 42 are provided.
  • the housing 39 is formed in a substantially rectangular parallelepiped shape that is long in the vertical direction as a whole.
  • the housing 39 constitutes an upper surface portion 39 a constituting the upper surface of the housing 39, a bottom surface portion 39 b constituting the bottom surface of the housing 39, side surface portions 39 c constituting the left and right side surfaces of the housing 39, and a front surface of the housing 39. It is comprised from the front-surface part 39d and the rear surface part 39e which comprises the rear surface of the housing 39.
  • the upper surface portion 39a and the bottom surface portion 39b are formed in a substantially rectangular flat plate shape having the vertical direction as the thickness direction.
  • the front surface portion 39d and the rear surface portion 39e are formed in a substantially rectangular flat plate shape having the front-rear direction as the thickness direction and the vertical direction as the longitudinal direction.
  • the side part 39c is formed in a trapezoidal flat plate shape with the left-right direction being the thickness direction.
  • the upper end surface and the lower end surface of the side surface portion 39c are orthogonal to the up-down direction, and the rear end surface of the side surface portion 39c is orthogonal to the front-rear direction.
  • the front end surface of the side surface portion 39c is an inclined surface that inclines so as to expand to the front side as it goes downward.
  • the lower surface of the upper surface portion 39a is in contact with the upper end surface of the side surface portion 39c, and the front surface of the rear surface portion 39e is in contact with the rear end surface of the side surface portion 39c.
  • the outer side surface in the left-right direction of the bottom surface portion 39b is in contact with the lower end side of the inner surface in the left-right direction of the side surface portion 39c.
  • the upper surface of the front surface portion 39d is in contact with the lower surface of the upper surface portion 39a, and the lower surface of the front surface portion 39d is in contact with the upper surface of the bottom surface portion 39b.
  • the front end surface of the upper surface portion 39a and the front end surface of the bottom surface portion 39b substantially coincide with the front surface of the front surface portion 39d.
  • the left and right inner surfaces of the side surface portion 39c are in contact with the left and right end surfaces of the front surface portion 39d.
  • the front end side of the side surface portion 39c is a protruding portion 39f that protrudes to the front side of the front surface portion 39d.
  • the front surface portion 39d is formed with a slit-like through hole 39g that is elongated in the vertical direction.
  • the through hole 39g is formed in substantially the entire area of the front surface portion 39d in the vertical direction so that the connecting member 40 can move in the vertical direction.
  • two through holes 39g are formed in the front surface portion 39d with a predetermined interval in the left-right direction.
  • the left-right direction is the width direction of the through hole 39g.
  • the drive unit 36 includes a motor 45 serving as a drive source, a ball screw 46 that is rotated by the power of the motor 45, and a nut member 47 that is screwed into the ball screw 46.
  • the motor 45 is fixed to a holding member 48 fixed to the upper surface of the bottom surface portion 39 b and is disposed on the lower end side inside the housing 39.
  • the motor 45 is fixed to the holding member 48 so that its output shaft protrudes downward.
  • a pulley 49 is fixed to the output shaft of the motor 45.
  • the ball screw 46 is arranged with the vertical direction as the axial direction.
  • the lower end side of the ball screw 46 is rotatably supported by a bearing 50 disposed on the lower end side inside the housing 39.
  • the bearing 50 is attached to the holding member 48.
  • a pulley 51 is fixed to the lower end side of the ball screw 46.
  • a belt 52 is bridged between the pulley 49 and the pulley 51.
  • the nut member 47 is fixed to one of the two connecting members
  • the guide rail 37 is fixed to a rail mounting portion 39h that protrudes inward in the left-right direction from the inner side surface in the left-right direction of the side surface portion 39c. That is, the two guide rails 37 are arranged in a state where a predetermined interval is left in the left-right direction.
  • a drive unit 36 is disposed between the two guide rails 37 in the left-right direction.
  • the guide rail 37 is fixed to the rail attachment portion 39h with the vertical direction as the longitudinal direction.
  • the guide rail 37 is fixed to the front surface of the rail attachment portion 39h.
  • the guide block 38 is engaged with the front side of the guide rail 37.
  • the connecting member 40 is formed in a substantially rectangular parallelepiped block shape that is long in the vertical direction.
  • An outer portion in the left-right direction of the connecting member 40 is a block fixing portion 40 a that is fixed to the guide block 38.
  • the block fixing portion 40a is fixed to the front surface of the guide block 38.
  • the block fixing portion 40a is fixed to the front surface of the guide block 38 in a state where the front surface of the guide block 38 and the rear surface of the block fixing portion 40a are in contact with each other. That is, each of the two connecting members 40 is fixed to a guide block 38 that engages with each of the two guide rails 37.
  • the two connecting members 40 are connected by a connecting member 54 formed in a flat plate shape.
  • the connection member 54 is disposed inside the housing 39.
  • the left and right ends of the connection member 54 are fixed to the front surface of the inner side portion of the connecting member 40 in the left-right direction.
  • a nut member 47 is fixed to one of the two connecting members 40.
  • the ball screw 46 and the nut member 47 are arranged on the right side of the motor 45, and the nut member 47 is fixed to the left end surface of the connecting member 40 arranged on the right side.
  • a through-hole passage portion 40b disposed in the through-hole 39g is formed in the inner portion in the left-right direction of the connecting member 40 so as to pass through the through-hole 39g in the front-rear direction.
  • the through-hole passage portion 40b is formed so as to protrude forward from the block fixing portion 40a.
  • the through-hole passage portion 40b is formed in the entire area of the connecting member 40 in the vertical direction, and is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction.
  • the front end side (front end side) of the through-hole passage portion 40b protrudes forward from the front surface portion 39d. That is, the portion of the connecting member 40 excluding the tip end side of the through hole passage portion 40 b is accommodated in the housing 39.
  • the front end surface (front end surface) of the through-hole passage portion 40b is formed in a planar shape orthogonal to the front-rear direction.
  • the width H1 of the through-hole passage portion 40b in the left-right direction is narrower than the width H2 of the guide block 38 in the left-right direction. Further, the width H3 of the through hole 39g in the left-right direction is narrower than the width H2 of the guide block 38.
  • the fixing member 41 is formed in a flat plate shape having the front-rear direction as the thickness direction.
  • the fixing member 41 is disposed on the front side of the front surface portion 39d. Further, the fixing member 41 is disposed between the two protruding portions 39f in the left-right direction.
  • the fixing member 41 is fixed to the front end surface of the through-hole passage portion 40b. Specifically, the fixing member 41 is fixed to the front end surface of the through-hole passage portion 40b in a state where the front end surface of the through-hole passage portion 40b and the rear surface of the fixing member 41 are in contact with each other.
  • the robot body 3 is fixed to the front surface of the fixing member 41.
  • the rear surface of the casing 21 that is one side surface of the main body portion 17 is fixed to the front surface of the fixing member 41. That is, the rear surface of the main body portion 17 is attached to the elevating mechanism 4, and the elevating mechanism 4 is disposed on the rear side of the main body portion 17. Further, a part of the rear surface side of the main body portion 17 is disposed between the two protruding portions 39f in the left-right direction.
  • the front surface portion 39 d of the second embodiment is a cover that is disposed between the guide block 38 and the main body portion 17.
  • the elevating mechanism 4 is within the rotation region of the first arm portion 18 relative to the main body portion 17 when viewed from the vertical direction.
  • the elevating mechanism 4 has a trajectory of the tip of the first arm portion 18 when the first arm portion 18 rotates around the rotation center C1 of the first arm portion 18 when viewed from the vertical direction ( Specifically, it is within the inner circumference side of the arcuate locus (R).
  • the exhaust fan 42 is attached to the upper surface of the bottom 39b of the housing 39. Further, the exhaust fan 42 is disposed behind the drive unit 36. The two exhaust fans 42 are adjacently arranged in the left-right direction. A through hole through which air discharged from the exhaust fan 42 passes is formed in the bottom surface portion 39b. A through-hole through which air exhausted by the exhaust fan 42 passes is also formed in a portion of the bottom surface of the housing 10 where the lifting mechanism 4 is fixed. Therefore, the air inside the housing 39 is discharged to the outside of the EFEM 6 by the exhaust fan 42.
  • the robot body 3 moves up and down with respect to the casing 39 of the lifting mechanism 4 as necessary.
  • the arm 16 is contracted, and the first arm portion 18, the second arm portion 19, the third arm portion 20, and the hands 14, 15 overlap in the vertical direction.
  • some of the arms 16 and the hands 14 and 15 protrude rearward from the main body portion 17.
  • the main body portion 17 of the robot main body 3 is fixed to the elevating mechanism 4, and the elevating mechanism 4 is disposed on the rear side of the main body portion 17. Therefore, in this embodiment, it is possible to place the robot 1 inside the housing 10 with the front surface of the robot 1 being close to the front surface of the housing 10 of the EFEM 6. Therefore, in this embodiment, the EFEM 6 can be miniaturized in the front-rear direction even when the lifting mechanism 4 that lifts and lowers the robot body 3 is disposed outside the robot body 3.
  • the main body portion 17 is formed so that the shape when viewed in the vertical direction is a substantially rectangular shape or a substantially square shape. Since it is parallel to the plane formed, the robot 1 can be placed inside the housing 10 with the front surface of the robot 1 being closer to the front surface of the housing 10 of the EFEM 6. Therefore, in this embodiment, the EFEM 6 can be further downsized in the front-rear direction.
  • the first arm portion 18 is rotated when the first arm portion 18 is rotated around the rotation center C1 of the first arm portion 18 when viewed from the vertical direction. Since the elevating mechanism 4 is accommodated on the inner peripheral side of the locus R of the tip, the width of the casing 10 in the front-rear direction can be set to rotate the first arm unit 18 with respect to the main body unit 17 without considering the size of the elevating mechanism 4. It becomes possible to set based on the radius. Therefore, in this embodiment, the EFEM 6 can be further downsized in the front-rear direction.
  • the elevating mechanism 4 is disposed on the rear side of the main body portion 17, the robot 1 can be reduced in size in the left-right direction.
  • the drive unit 36, the guide rail 37, and the guide block 38 that constitute the elevating mechanism 4 are accommodated in the housing 39.
  • a flat plate-like front surface portion 39d is disposed between the guide block 38 and the main body portion 17, and a slit-like through hole 39g elongated in the vertical direction is formed in the front surface portion 39d.
  • a through hole passage portion 40b is formed in the connecting member 40 for connecting the robot body 3 and the guide block 38, and the width H1 of the through hole passage portion 40b and the width H3 of the through hole 39g in the left-right direction. However, it is narrower than the width H2 of the guide block 38 in the left-right direction.
  • the width of the through hole 39g can be made narrower than in the case where the guide block 38 is disposed in the through hole 39g. Therefore, in this embodiment, even if the lifting mechanism 4 that lifts and lowers the robot body 3 is disposed outside the robot body 3, dust generated from the drive unit 36, the guide rail 37, and the guide block 38 is lifted and lowered by the robot body 3. It is possible to effectively suppress the outflow from the connecting portion with the mechanism 4 to the inside of the EFEM 6.
  • the exhaust fan 42 for discharging the air inside the housing 39 to the outside of the EFEM 6 is attached to the housing 39, so that it is generated from the drive unit 36, the guide rail 37, and the guide block 38. It is possible to more effectively suppress the dust that flows out from the connecting portion between the robot body 3 and the lifting mechanism 4 into the EFEM 6.
  • the rear surface of the casing 21 of the main body portion 17 is fixed to a fixing member 41 arranged outside the casing 39. That is, in this embodiment, the robot main body 3 and the lifting mechanism 4 are connected by using a flat fixing member 41 arranged outside the housing 39 and the rear surface of the housing 21 formed in a flat shape. Therefore, in this embodiment, the robot body 3 and the lifting mechanism 4 can be easily connected.
  • the rotation center C1 of the first arm portion 18 is arranged in front of the center of the main body portion 17 when viewed from the vertical direction, and the first arm portion 18 and the first In the standby state of the robot 1 in which the two arm part 19, the third arm part 20, and the hands 14, 15 overlap in the vertical direction, a part of the arm 16 and the hands 14, 15 are located behind the main body part 17. It protrudes. Further, in the embodiment described above, the lifting mechanism 4 is disposed on the rear side of the main body portion 17.
  • the rotation center C1 of the first arm portion 18 is disposed behind the center of the main body portion 17, and the arm 16 and A part of the hands 14, 15 may protrude forward from the main body 17, the front surface of the main body 17 may be fixed to the lifting mechanism 4, and the lifting mechanism 4 may be disposed on the front side of the main body 17.
  • the robot 1 can be disposed inside the housing 10 with the rear surface of the robot 1 being close to the rear surface of the housing 10 of the EFEM 6, the EFEM 6 can be downsized in the front-rear direction. It becomes possible.
  • the elevating mechanism 4 is disposed on the rear side of the main body portion 17, but the elevating mechanism 4 may be disposed on the right side or the left side of the main body portion 17. Further, the elevating mechanism 4 may be arranged on both the left and right sides of the main body portion 17. Even in this case, it is possible to place the robot 1 inside the housing 10 with the front surface of the robot 1 being close to the front surface of the housing 10 of the EFEM 6, or the rear surface of the robot 1 is the housing 10. Since the robot 1 can be disposed inside the housing 10 in the state of being close to the rear surface, the EFEM 6 can be downsized in the front-rear direction.
  • the motor 45 of the raising / lowering mechanism 4 arrange
  • the elevating mechanism 4 may be disposed on the left and right sides and the rear side of the main body portion 17. Even in this case, since the robot 1 can be arranged inside the housing 10 with the front surface of the robot 1 being close to the front surface of the housing 10, the EFEM 6 can be downsized in the front-rear direction. It becomes possible.
  • the elevating mechanism 4 is the first when the first arm portion 18 is rotated around the rotation center C1 of the first arm portion 18 when viewed from the vertical direction. It is within the inner circumference of the locus R at the tip of the arm portion 18. In addition to this, for example, when viewed from the vertical direction, the corner portion on the rear surface side of the lifting mechanism 4 may protrude to the outer peripheral side of the locus R of the tip of the first arm portion 18.
  • the main body portion 17 is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction.
  • the main body portion 17 may be formed in a substantially cylindrical shape, or a shape when viewed from the vertical direction. May be formed in a polygonal column shape having a substantially hexagonal shape or a substantially octagonal shape.
  • the two hands 14 and 15 are attached to the distal end side of the third arm portion 20, but one hand is attached to the distal end side of the third arm portion 20. Also good.
  • the arm 16 is constituted by three arm portions, that is, the first arm portion 18, the second arm portion 19, and the third arm portion 20, but the arm 16 is composed of two arm portions. It may be comprised by 4 or more arm parts.
  • the fixing member 41 is fixed to the through-hole passage portion 40b of the connecting member 40, and the robot body 3 is fixed to the fixing member 41.
  • the robot body 3 may be directly fixed to the through-hole passage portion 40b.
  • the main body portion 17 is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction, but the main body portion 17 may be formed in a substantially cylindrical shape.
  • the main-body part 17 may be formed in the polygonal column shape from which a shape when it sees from an up-down direction becomes a substantially hexagonal shape or a substantially octagonal shape.
  • the nut member 47 is fixed to one of the two connecting members 40, but the nut member 47 may be fixed to the connecting member 54.
  • the semiconductor wafer processing apparatus 7 is arranged behind the EFEM 6 in the semiconductor manufacturing system 5.
  • the semiconductor wafer processing apparatus 7 may be disposed on the right side, the left side, or the left and right sides of the EFEM 6.
  • a semiconductor wafer processing apparatus 7 may be arranged on the right side of the EFEM 6 as indicated by a two-dot chain line in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Provided is an industrial robot for conveying semiconductor wafers between a plurality of FOUPs arranged in a fixed direction and a semiconductor wafer processing device, the robot constituting a part of an EFEM, wherein the size of the EFEM can be reduced in the direction orthogonal to the direction of arrangement of the plurality of FOUPs and the vertical direction, even when a raising and lowering mechanism for raising and lowering the robot body is disposed outside the robot body. In a standby state where an arm (16) of the industrial robot (1) is retracted and a plurality of arm parts (18-20) and hands (14, 15) are vertically overlapping, a part of the arm (16) is disposed farther toward the (Y2) direction than a body section (17) of a robot body (3). The body section (17) of the industrial robot (1) is secured to a raising and lowering mechanism (4) for raising and lowering the robot body (3), the raising and lowering mechanism (4) being disposed on the (Y2) direction side of the body section (17).

Description

産業用ロボットIndustrial robot
 本発明は、EFEM(Equipment Front End Module)の一部を構成するとともにFOUP(Front Open Unified Pod)と半導体ウエハ処理装置との間で半導体ウエハを搬送する産業用ロボットに関する。 The present invention relates to an industrial robot that constitutes a part of EFEM (Equipment Front End Module) and transports a semiconductor wafer between a FOUP (Front Open Unified Pod) and a semiconductor wafer processing apparatus.
 従来、EFEMの一部を構成するとともにFOUP(または複数のFOUP)と半導体ウエハ処理装置との間で半導体ウエハを搬送する産業用ロボットが知られている(たとえば、特許文献1参照)。特許文献1に記載の産業用ロボットは、半導体ウエハが搭載される2個のハンドと、2個のハンドが先端側に回動可能に連結されるアームと、アームの基端側が回動可能に連結される本体部とを備えている。アームは、本体部にその基端側が回動可能に連結される第1アームと、第1アームの先端側にその基端側が回動可能に連結される第2アームと、第2アームの先端側にその基端側が回動可能に連結されるとともにその先端側にハンドが回動可能に連結される第3アームとから構成されている。本体部の内部には、第1アームを昇降させるアーム昇降機構が収容されている。 Conventionally, an industrial robot that constitutes a part of an EFEM and conveys a semiconductor wafer between a FOUP (or a plurality of FOUPs) and a semiconductor wafer processing apparatus is known (for example, see Patent Document 1). The industrial robot described in Patent Document 1 includes two hands on which semiconductor wafers are mounted, an arm that is coupled to the two hands so as to be pivotable to the distal end side, and a base end side of the arm that is pivotable. And a main body portion to be connected. The arm includes a first arm whose base end side is rotatably connected to the main body, a second arm whose base end side is rotatably connected to the tip end side of the first arm, and a tip end of the second arm. The base end side is rotatably connected to the side, and the hand is rotatably connected to the distal end side. An arm elevating mechanism that elevates and lowers the first arm is housed inside the main body.
特開2011-230256号公報JP 2011-230256 A
 FOUPは、SEMI(Semiconductor Equipment and Materials Institute)規格に基づいて製造されており、FOUPの高さは、一定の寸法となっている。一方で、半導体ウエハ処理装置に関しては、特定の規格が定まっておらず、半導体ウエハ処理装置の高さは任意に設定されている。そのため、半導体ウエハ処理装置の仕様によっては、アーム昇降機構の昇降量が足りなくて、特許文献1に記載の産業用ロボットをそのままEFEMで使用することができない場合がある。 FOUP is manufactured based on SEMI (Semiconductor Equipment and Materials Institute) standard, and the height of FOUP is a fixed dimension. On the other hand, no specific standard has been established for the semiconductor wafer processing apparatus, and the height of the semiconductor wafer processing apparatus is arbitrarily set. Therefore, depending on the specifications of the semiconductor wafer processing apparatus, the arm lifting mechanism may not be lifted up and down, and the industrial robot described in Patent Document 1 may not be used as it is in EFEM.
 この場合、本体部の内部に配置されるアーム昇降機構の構成を変更して、アーム昇降機構の昇降量を大きくすれば良い。しかしながら、アーム昇降機構の昇降量を大きくする場合、本体部全体の構成を見直さなければならないおそれがあり、産業用ロボットの設計が煩雑になる。また、アーム昇降機構の昇降量を大きくする場合には、半導体ウエハ処理装置の高さに応じてアーム昇降機構の昇降量の異なる複数種類の産業用ロボットを製造する必要が生じるため、産業用ロボットの製造コストが嵩むおそれがある。 In this case, it is only necessary to change the configuration of the arm lifting mechanism arranged inside the main body to increase the lifting amount of the arm lifting mechanism. However, when the lifting amount of the arm lifting mechanism is increased, there is a risk that the configuration of the entire main body must be reviewed, and the design of the industrial robot becomes complicated. Further, when the lifting amount of the arm lifting mechanism is increased, it is necessary to manufacture a plurality of types of industrial robots having different lifting amounts of the arm lifting mechanism according to the height of the semiconductor wafer processing apparatus. There is a risk that the manufacturing cost of the product increases.
 一方で、本体部の内部に配置されるアーム昇降機構の昇降量が足りない場合に、特許文献1に記載の産業用ロボットそのものを昇降させる昇降機構を産業用ロボットの外部に設ければ、上述の問題を解消することはできる。しかしながら、産業用ロボットの外部に昇降機構を設ける場合には、EFEMが大型化するおそれがある。 On the other hand, if the raising / lowering mechanism for raising / lowering the industrial robot itself described in Patent Document 1 is provided outside the industrial robot when the amount of raising / lowering of the arm raising / lowering mechanism arranged inside the main body is not enough, Can solve the problem. However, when an elevating mechanism is provided outside the industrial robot, the EFEM may be increased in size.
 そこで、本発明の第一の課題は、一定方向に配列される複数のFOUPと半導体ウエハ処理装置との間で半導体ウエハを搬送するとともにEFEMの一部を構成する産業用ロボットにおいて、ロボット本体を昇降させる昇降機構がロボット本体の外部に配置されていても、複数のFOUPの配列方向と上下方向とに直交する方向において、EFEMを小型化することが可能な産業用ロボットを提供することにある。 Therefore, a first problem of the present invention is to provide a robot main body in an industrial robot that transports a semiconductor wafer between a plurality of FOUPs arranged in a fixed direction and a semiconductor wafer processing apparatus and constitutes a part of an EFEM. To provide an industrial robot capable of reducing the size of an EFEM in a direction orthogonal to an arrangement direction of a plurality of FOUPs and an up-down direction even when an elevating mechanism for elevating is arranged outside the robot body. .
 次に、本体部の内部に配置されるアーム昇降機構の昇降量が足りない場合に、特許文献1に記載の産業用ロボットそのものを昇降させる昇降機構を産業用ロボットの外部に設ければ、上述の問題を解消することはできる。この場合、産業用ロボットを上下方向へ駆動するための昇降機構の駆動部や、産業用ロボットを上下方向へ案内するための昇降機構のガイド部を筺体の内部に収容すれば、この駆動部やガイド部から発生する塵埃がEFEMの内部へ流出するのを抑制することは可能になる。しかしながら、昇降機構の駆動部やガイド部が筺体の内部に収容されても、駆動部やガイド部から発生する塵埃が産業用ロボットと昇降機構との連結部分からEFEMの内部に流出して、EFEMの内部のクリーン度を確保できなくなるおそれがある。 Next, if the raising / lowering mechanism for raising / lowering the industrial robot itself described in Patent Document 1 is provided outside the industrial robot when the amount of raising / lowering of the arm raising / lowering mechanism arranged inside the main body is insufficient, the above-described case will be described. Can solve the problem. In this case, if the drive unit of the elevating mechanism for driving the industrial robot in the vertical direction and the guide unit of the elevating mechanism for guiding the industrial robot in the vertical direction are accommodated in the housing, this drive unit or It is possible to suppress the dust generated from the guide portion from flowing into the EFEM. However, even if the drive unit and guide unit of the lifting mechanism are accommodated inside the housing, dust generated from the drive unit and guide unit flows out from the connecting portion between the industrial robot and the lifting mechanism into the EFEM, and the EFEM There is a risk that it will not be possible to ensure the cleanliness of the interior of the.
 そこで、本発明の第二の課題は、EFEMの一部を構成する産業用ロボットにおいて、ロボット本体を昇降させる昇降機構がロボット本体の外部に配置されていても、昇降機構の駆動部やガイド部から発生する塵埃が、ロボット本体と昇降機構との連結部分からEFEMの内部に流出するのを効果的に抑制することが可能な産業用ロボットを提供することにある。 Therefore, the second problem of the present invention is that, in an industrial robot constituting a part of the EFEM, even if the lifting mechanism for lifting the robot main body is arranged outside the robot main body, the drive unit and guide portion of the lifting mechanism. It is an object of the present invention to provide an industrial robot capable of effectively suppressing the dust generated from the outflow from the connecting portion between the robot body and the lifting mechanism into the EFEM.
 上記の第一の課題を解決するため、本発明の産業用ロボットは、一定方向に配列される複数のFOUPと半導体ウエハ処理装置との間で半導体ウエハを搬送するとともにEFEMの一部を構成する産業用ロボットにおいて、ロボット本体と、ロボット本体の外部に配置されロボット本体を昇降させる昇降機構とを備え、ロボット本体は、半導体ウエハが搭載されるハンドと、互いに相対回動可能に連結される複数のアーム部によって構成されハンドが先端側に回動可能に連結されるアームと、アームの基端側が回動可能に連結される本体部と、アームを昇降させるアーム昇降機構とを備え、複数のFOUPの配列方向を第1方向とし、上下方向と第1方向とに直交する方向を第2方向とし、第2方向の一方を第3方向とし、第2方向の他方を第4方向とすると、上下方向から見たときに、本体部に対するアームの基端側の回動中心は、本体部の中心よりも第3方向側に配置され、アームが縮んで複数のアーム部およびハンドが上下方向で重なっている産業用ロボットの待機状態において、アームの一部は、本体部よりも第4方向側に配置され、昇降機構には、本体部が固定され、昇降機構は、本体部の、第1方向の両側の少なくともいずれか一方、および/または、本体部の、第4方向側に配置されていることを特徴とする。 In order to solve the above first problem, the industrial robot of the present invention conveys a semiconductor wafer between a plurality of FOUPs arranged in a fixed direction and a semiconductor wafer processing apparatus and constitutes a part of the EFEM. An industrial robot includes a robot body and a lifting mechanism that is disposed outside the robot body and moves the robot body up and down. The robot body is connected to a hand on which a semiconductor wafer is mounted and is connected to each other so as to be relatively rotatable. An arm portion that is rotatably connected to the distal end side, a main body portion that is rotatably connected to the proximal end side of the arm, and an arm lifting mechanism that lifts and lowers the arm. The FOUP arrangement direction is the first direction, the vertical direction and the direction orthogonal to the first direction are the second direction, one of the second directions is the third direction, and the other of the second directions When the fourth direction is viewed, the rotation center of the base end side of the arm with respect to the main body when viewed from the up and down direction is disposed on the third direction side with respect to the center of the main body, and the arm contracts to form a plurality of arm portions. In the standby state of the industrial robot in which the hands overlap in the vertical direction, a part of the arm is disposed on the fourth direction side of the main body, the main body is fixed to the lifting mechanism, It is characterized by being arranged on at least one of both sides of the main body part in the first direction and / or on the fourth direction side of the main body part.
 本発明の産業用ロボットでは、アームが縮んで複数のアーム部およびハンドが上下方向で重なっている産業用ロボットの待機状態において、アームの一部は、ロボット本体の本体部よりも第4方向側に配置されている。また、本発明では、ロボット本体を昇降させる昇降機構にロボット本体の本体部が固定されるとともに、この昇降機構は、本体部の、第1方向の両側の少なくともいずれか一方、および/または、本体部の、第4方向側に配置されている。そのため、本発明では、産業用ロボットの第3方向側の側面を、EFEMの筺体の第3方向側の側面に近づけた状態で、EFEMの筺体の内部に産業用ロボットを配置することが可能になる。したがって、本発明では、ロボット本体を昇降させる昇降機構がロボット本体の外部に配置されていても、複数のFOUPの配列方向(第1方向)と上下方向とに直交する第2方向において、EFEMを小型化することが可能になる。 In the industrial robot of the present invention, in the standby state of the industrial robot in which the arm is contracted and the plurality of arm portions and the hands are overlapped in the vertical direction, a part of the arm is on the fourth direction side with respect to the main body portion of the robot body. Is arranged. In the present invention, the main body portion of the robot main body is fixed to an elevating mechanism for elevating and lowering the robot main body, and the elevating mechanism includes at least one of both sides of the main body portion in the first direction and / or the main body. In the fourth direction. Therefore, according to the present invention, the industrial robot can be arranged inside the EFEM housing in a state where the side surface on the third direction side of the industrial robot is close to the side surface on the third direction side of the EFEM housing. Become. Therefore, in the present invention, even if the lifting mechanism for raising and lowering the robot body is arranged outside the robot body, the EFEM is set in the second direction perpendicular to the arrangement direction (first direction) and the vertical direction of the plurality of FOUPs. It becomes possible to reduce the size.
 本発明において、アームは、アーム部として、その基端側が本体部に回動可能に連結される第1アーム部を備え、昇降機構は、上下方向から見たときに、本体部に対する第1アーム部の回動領域内に収まっていることが好ましい。このように構成すると、第2方向におけるEFEMの筺体の幅を、昇降機構の大きさを考慮することなく、本体部に対する第1アーム部の回転半径に基づいて設定することが可能となる。したがって、第2方向において、EFEMをより小型化することが可能になる。 In the present invention, the arm includes, as an arm portion, a first arm portion whose base end side is rotatably connected to the main body portion, and the lifting mechanism is a first arm with respect to the main body portion when viewed from the vertical direction. It is preferable to be within the rotation area of the part. If comprised in this way, it will become possible to set the width | variety of the housing of EFEM in a 2nd direction based on the rotation radius of the 1st arm part with respect to a main-body part, without considering the magnitude | size of a raising / lowering mechanism. Therefore, the EFEM can be further downsized in the second direction.
 本発明において、本体部は、上下方向から見たときの形状が第1方向に平行な側面を有する略長方形状または略正方形状となるように形成されていることが好ましい。このように構成すると、産業用ロボットの第3方向側の側面を、EFEMの筺体の第3方向側の側面により近づけた状態で、EFEMの筺体の内部に産業用ロボットを配置することが可能になる。したがって、第2方向において、EFEMをより小型化することが可能になる。 In the present invention, it is preferable that the main body is formed so that the shape when viewed from above and below is a substantially rectangular shape or a substantially square shape having side surfaces parallel to the first direction. With this configuration, the industrial robot can be arranged inside the EFEM housing with the side surface on the third direction side of the industrial robot closer to the side surface on the third direction side of the EFEM housing. Become. Therefore, the EFEM can be further downsized in the second direction.
 本発明において、昇降機構には、本体部の、第4方向側の側面が取り付けられていることが好ましい。このように構成すると、第1方向において、産業用ロボットを小型化することが可能になる。 In the present invention, it is preferable that a side surface on the fourth direction side of the main body is attached to the lifting mechanism. With this configuration, the industrial robot can be reduced in size in the first direction.
 次に、上記の第二の課題を解決するため、本発明の産業用ロボットは、EFEMの一部を構成するとともにFOUPと半導体ウエハ処理装置との間で半導体ウエハを搬送する産業用ロボットにおいて、ロボット本体と、ロボット本体の外部に配置されロボット本体を昇降させる昇降機構とを備え、ロボット本体は、半導体ウエハが搭載されるハンドと、ハンドが先端側に回動可能に連結されるアームと、アームの基端側が回動可能に連結される本体部と、アームを昇降させるアーム昇降機構とを備え、昇降機構は、上下方向へロボット本体を駆動するための駆動部と、上下方向へロボット本体を案内するためのガイドレールと、ガイドレールに係合して上下方向へスライドするガイドブロックと、駆動部、ガイドレールおよびガイドブロックが収容される筺体と、筺体の外部に配置されるロボット本体とガイドブロックとを連結するための連結部材とを備え、筺体は、ガイドブロックと本体部との間に配置される平板状のカバーを備え、カバーには、上下方向に細長いスリット状の貫通孔が、連結部材の上下方向への移動が可能となるように形成され、連結部材には、貫通孔に配置される貫通孔通過部が形成され、カバーの厚み方向と上下方向とに直交する貫通孔の幅方向における貫通孔通過部の幅および貫通孔の幅は、貫通孔の幅方向におけるガイドブロックの幅よりも狭くなっていることを特徴とする。 Next, in order to solve the second problem described above, the industrial robot of the present invention is an industrial robot that constitutes a part of the EFEM and transports a semiconductor wafer between the FOUP and the semiconductor wafer processing apparatus. A robot body, and an elevating mechanism that is disposed outside the robot body and raises and lowers the robot body. The robot body includes a hand on which a semiconductor wafer is mounted, an arm on which the hand is rotatably connected to the tip side, A main body part rotatably connected to the base end side of the arm and an arm elevating mechanism for elevating the arm are provided. The elevating mechanism includes a drive part for driving the robot main body in the vertical direction and a robot main body in the vertical direction. A guide rail for guiding the guide, a guide block that engages with the guide rail and slides up and down, a drive unit, a guide rail, and a guide block And a connecting member for connecting the guide body and the robot body disposed outside the housing, and the housing is a flat cover disposed between the guide block and the body portion. The cover is formed with a slit-like through hole elongated in the vertical direction so that the coupling member can be moved in the vertical direction, and the coupling member has a through hole passage portion disposed in the through hole. The width of the through hole passage portion and the width of the through hole in the width direction of the through hole orthogonal to the thickness direction and the vertical direction of the cover are narrower than the width of the guide block in the width direction of the through hole. It is characterized by that.
 本発明の産業用ロボットでは、昇降機構の一部を構成する駆動部とガイドレールとガイドブロックとが筺体に収容されている。また、本発明では、ガイドブロックとロボット本体の本体部との間に、筺体の一部を構成する平板状のカバーが配置され、このカバーに、上下方向に細長いスリット状の貫通孔が形成されている。さらに、本発明では、ロボット本体とガイドブロックとを連結するための連結部材に、貫通孔に配置される貫通孔通過部が形成され、貫通孔の幅方向における貫通孔通過部の幅および貫通孔の幅が、貫通孔の幅方向におけるガイドブロックの幅よりも狭くなっている。そのため、本発明では、カバーの貫通孔にガイドブロックが配置される場合と比較して、貫通孔の幅を狭くすることができる。したがって、本発明では、ロボット本体を昇降させる昇降機構がロボット本体の外部に配置されていても、昇降機構の駆動部やガイド部から発生する塵埃が、ロボット本体と昇降機構との連結部分からEFEMの内部に流出するのを効果的に抑制することが可能になる。 In the industrial robot of the present invention, the drive unit, the guide rail, and the guide block that constitute a part of the lifting mechanism are accommodated in the housing. In the present invention, a flat cover that constitutes a part of the housing is disposed between the guide block and the main body of the robot body, and a slit-like through hole that is elongated in the vertical direction is formed in the cover. ing. Further, in the present invention, the connecting member for connecting the robot body and the guide block is formed with a through hole passage portion disposed in the through hole, and the width of the through hole passage portion and the through hole in the width direction of the through hole Is narrower than the width of the guide block in the width direction of the through hole. Therefore, in this invention, compared with the case where a guide block is arrange | positioned at the through-hole of a cover, the width | variety of a through-hole can be narrowed. Therefore, in the present invention, even if the lifting mechanism for moving the robot body up and down is disposed outside the robot body, dust generated from the drive unit and the guide unit of the lifting mechanism is EFEM from the connecting portion between the robot body and the lifting mechanism. It is possible to effectively suppress the flow out into the interior of the.
 本発明において、本体部は、上下方向から見たときの形状が略長方形状または略正方形状となるように形成され、昇降機構は、筺体の外部に配置され本体部の1つの側面が固定される固定部材を備え、貫通孔通過部の先端に固定部材が固定されていることが好ましい。このように構成すると、平面状に形成されるロボット本体の側面と筺体の外部に配置される固定部材とを用いてロボット本体と昇降機構とを連結することができるため、ロボット本体と昇降機構とを容易に連結することが可能になる。 In the present invention, the main body is formed so that the shape when viewed from above and below is a substantially rectangular shape or a substantially square shape, and the elevating mechanism is arranged outside the housing and one side surface of the main body is fixed. It is preferable that a fixing member is provided, and the fixing member is fixed to the tip of the through-hole passage portion. If comprised in this way, since a robot main body and a raising / lowering mechanism can be connected using the fixing member arrange | positioned outside the side surface of a robot main body formed in a planar shape, and a robot main body, a raising / lowering mechanism, Can be easily connected.
 本発明において、昇降機構は、筺体に取り付けられ筺体の内部の空気をEFEMの外部へ排出する排気ファンを備えることが好ましい。このように構成すると、昇降機構の駆動部やガイド部から発生する塵埃が、ロボット本体と昇降機構との連結部分からEFEMの内部に流出するのをより効果的に抑制することが可能になる。 In the present invention, the elevating mechanism preferably includes an exhaust fan that is attached to the housing and exhausts the air inside the housing to the outside of the EFEM. If comprised in this way, it will become possible to suppress more effectively that the dust which generate | occur | produces from the drive part and guide part of a raising / lowering mechanism flows out into the inside of EFEM from the connection part of a robot main body and a raising / lowering mechanism.
 本発明において、たとえば、昇降機構は、貫通孔の幅方向において、所定の間隔をあけた状態で配置される2本のガイドレールと、2本のガイドレールのそれぞれに係合するガイドブロックに固定される2個の連結部材と、筺体の内部に配置され2個の連結部材を繋ぐ接続部材とを備え、2個の連結部材のうちの一方の連結部材に駆動部が連結されている。 In the present invention, for example, the elevating mechanism is fixed to two guide rails arranged at a predetermined interval in the width direction of the through hole, and a guide block that engages with each of the two guide rails. Two connecting members and a connecting member that is arranged inside the housing and connects the two connecting members, and the drive unit is connected to one of the two connecting members.
 以上のように、上述した第一の課題を解決するため、本発明では、一定方向に配列される複数のFOUPと半導体ウエハ処理装置との間で半導体ウエハを搬送するとともにEFEMの一部を構成する産業用ロボットにおいて、ロボット本体を昇降させる昇降機構がロボット本体の外部に配置されていても、複数のFOUPの配列方向と上下方向とに直交する方向において、EFEMを小型化することが可能になる。 As described above, in order to solve the first problem described above, in the present invention, a semiconductor wafer is transferred between a plurality of FOUPs arranged in a fixed direction and a semiconductor wafer processing apparatus, and a part of the EFEM is configured. In an industrial robot, the EFEM can be miniaturized in a direction orthogonal to the arrangement direction of the plurality of FOUPs and the vertical direction even if a lifting mechanism for raising and lowering the robot body is arranged outside the robot body. Become.
 以上のように、上述した第二の課題を解決するため、本発明では、EFEMの一部を構成する産業用ロボットにおいて、ロボット本体を昇降させる昇降機構がロボット本体の外部に配置されていても、昇降機構の駆動部やガイド部から発生する塵埃が、ロボット本体と昇降機構との連結部分からEFEMの内部に流出するのを効果的に抑制することが可能になる。 As described above, in order to solve the above-described second problem, in the present invention, in the industrial robot that constitutes a part of the EFEM, the lifting mechanism that lifts and lowers the robot body is arranged outside the robot body. Thus, it is possible to effectively suppress the dust generated from the driving unit and the guide unit of the lifting mechanism from flowing out from the connecting portion between the robot body and the lifting mechanism into the EFEM.
本発明の実施の形態にかかる産業用ロボットの斜視図である。1 is a perspective view of an industrial robot according to an embodiment of the present invention. 図1に示す産業用ロボットの、ロボット本体およびアームが上昇するとともにアームが伸びている状態の斜視図である。FIG. 2 is a perspective view of the industrial robot shown in FIG. 1 in a state where the robot body and the arm are raised and the arm is extended. 図1に示す産業用ロボットが使用される半導体製造システムの概略平面図である。FIG. 2 is a schematic plan view of a semiconductor manufacturing system in which the industrial robot shown in FIG. 1 is used. 図1に示すロボット本体の側面図である。It is a side view of the robot main body shown in FIG. 図1に示す昇降機構の斜視図である。It is a perspective view of the raising / lowering mechanism shown in FIG. 図5に示す昇降機構の構成を正面側から説明するための図である。It is a figure for demonstrating the structure of the raising / lowering mechanism shown in FIG. 5 from the front side. 図5に示す昇降機構の構成を上側から説明するための図である。It is a figure for demonstrating the structure of the raising / lowering mechanism shown in FIG. 5 from the upper side. (A)は、図7のE部の拡大図であり、(B)は、図7のF部の拡大図である。(A) is an enlarged view of the E part of FIG. 7, (B) is an enlarged view of the F part of FIG.
 以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお、上述した第一の課題を解決するための産業用ロボットに関する説明については、第一実施の形態として説明する。同様に、上述した第二の課題を解決するための産業用ロボットに関する説明については、第二実施の形態として説明する。これ以外は両者共通の実施の形態として説明している。 In addition, description regarding the industrial robot for solving the first problem described above will be described as a first embodiment. Similarly, the description regarding the industrial robot for solving the second problem described above will be described as a second embodiment. Other than this, it is described as an embodiment common to both.
 (産業用ロボットの概略構成) (Schematic configuration of industrial robot)
 図1は、本発明の実施の形態にかかる産業用ロボット1の斜視図である。図2は、図1に示す産業用ロボット1の、ロボット本体3およびアーム16が上昇するとともにアーム16が伸びている状態の斜視図である。図3は、図1に示す産業用ロボット1が使用される半導体製造システム5の概略平面図である。 FIG. 1 is a perspective view of an industrial robot 1 according to an embodiment of the present invention. FIG. 2 is a perspective view of the industrial robot 1 shown in FIG. 1 in a state where the robot body 3 and the arm 16 are raised and the arm 16 is extended. FIG. 3 is a schematic plan view of a semiconductor manufacturing system 5 in which the industrial robot 1 shown in FIG. 1 is used.
 本形態の産業用ロボット1は、半導体ウエハ2(図3参照)を搬送するための水平多関節ロボットである。この産業用ロボット1は、ロボット本体3と、ロボット本体3を昇降させる昇降機構4とから構成されている。以下の説明では、産業用ロボット1を「ロボット1」とし、半導体ウエハ2を「ウエハ2」とする。また、以下の説明では、上下方向に直交する図1等のX方向を「左右方向」とし、上下方向および左右方向に直交するY方向を「前後方向」とするとともに、X1方向側を「右」側、X2方向側を「左」側、Y1方向側を「前」側、Y2方向側を「後(後ろ)」側とする。 The industrial robot 1 of this embodiment is a horizontal articulated robot for transporting a semiconductor wafer 2 (see FIG. 3). The industrial robot 1 includes a robot body 3 and a lifting mechanism 4 that lifts and lowers the robot body 3. In the following description, the industrial robot 1 is referred to as “robot 1”, and the semiconductor wafer 2 is referred to as “wafer 2”. Further, in the following description, the X direction in FIG. 1 or the like orthogonal to the vertical direction is referred to as “left-right direction”, the Y direction orthogonal to the vertical direction and the left-right direction is referred to as “front-rear direction”, and the X1 direction side is referred to as “right ”Side, the X2 direction side is the“ left ”side, the Y1 direction side is the“ front ”side, and the Y2 direction side is the“ rear (back) ”side.
 図3に示すように、ロボット1は、半導体製造システム5に組み込まれて使用される。この半導体製造システム5は、EFEM6と、ウエハ2に対して所定の処理を行う半導体ウエハ処理装置7とを備えている。EFEM6は、半導体ウエハ処理装置7の前側に配置されている。ロボット1は、EFEM6の一部を構成している。また、EFEM6は、FOUP8を開閉する複数のロードポート9と、ロボット1が収容される筺体10とを備えている。筺体10は、左右方向に細長い直方体の箱状に形成されている。筺体10の前面および後面は、上下方向と左右方向とから構成される平面に平行になっている。筺体10の内部は、清浄空間となっている。すなわち、EFEM6の内部は、清浄空間となっており、EFEM6の内部では所定のクリーン度が確保されている。 As shown in FIG. 3, the robot 1 is used by being incorporated in a semiconductor manufacturing system 5. The semiconductor manufacturing system 5 includes an EFEM 6 and a semiconductor wafer processing apparatus 7 that performs predetermined processing on the wafer 2. The EFEM 6 is disposed on the front side of the semiconductor wafer processing apparatus 7. The robot 1 constitutes a part of the EFEM 6. The EFEM 6 includes a plurality of load ports 9 that open and close the FOUP 8 and a housing 10 in which the robot 1 is accommodated. The housing 10 is formed in a rectangular parallelepiped box shape elongated in the left-right direction. The front surface and the rear surface of the housing 10 are parallel to a plane composed of an up-down direction and a left-right direction. The inside of the housing 10 is a clean space. That is, the inside of the EFEM 6 is a clean space, and a predetermined cleanliness is secured inside the EFEM 6.
 FOUP8は、SEMI規格に基づいて製造されており、FOUP8には、25枚または13枚のウエハ2が収容可能となっている。ロードポート9は、筺体10の前側に配置されている。本形態のEFEM6は、左右方向に所定のピッチで配列される4個のロードポート9を備えており、EFEM6では、4個のFOUP8が左右方向に所定のピッチで配列される。ロボット1は、4個のFOUP8と半導体ウエハ処理装置7との間でウエハ2を搬送する。本第一の実施の形態では、4個のFOUP8の配列方向となる左右方向は、第1方向であり、前後方向は、第1方向である左右方向と上下方向とに直交する第2方向であり、第2方向の一方となる前方向(Y1方向)は、第3方向であり、第2方向の他方となる後ろ方向(Y2方向)は、第4方向である。 The FOUP 8 is manufactured based on the SEMI standard, and the FOUP 8 can accommodate 25 or 13 wafers 2. The load port 9 is disposed on the front side of the housing 10. The EFEM 6 of this embodiment includes four load ports 9 arranged at a predetermined pitch in the left-right direction. In the EFEM 6, four FOUPs 8 are arranged at a predetermined pitch in the left-right direction. The robot 1 transports the wafer 2 between the four FOUPs 8 and the semiconductor wafer processing apparatus 7. In the first embodiment, the left-right direction as the arrangement direction of the four FOUPs 8 is the first direction, and the front-rear direction is a second direction orthogonal to the left-right direction, which is the first direction, and the up-down direction. Yes, the front direction (Y1 direction) which is one of the second directions is the third direction, and the rear direction (Y2 direction) which is the other of the second directions is the fourth direction.
 (ロボット本体の構成)
 図4は、図1に示すロボット本体3の側面図である。
(Robot body configuration)
FIG. 4 is a side view of the robot body 3 shown in FIG.
 ロボット本体3は、ウエハ2が搭載される2個のハンド14、15と、ハンド14、15が先端側に回動可能に連結されるアーム16と、アーム16の基端側が回動可能に連結される本体部17とを備えている。アーム16は、その基端側が本体部17に回動可能に連結される第1アーム部18と、第1アーム部18の先端側にその基端側が回動可能に連結される第2アーム部19と、第2アーム部19の先端側にその基端側が回動可能に連結される第3アーム部20とから構成されている。すなわち、アーム16は、互いに相対回動可能に連結される3個のアーム部を備えている。第1アーム部18、第2アーム部19および第3アーム部20は、中空状に形成されている。また、本形態では、第1アーム部18の長さと、第2アーム部19の長さと、第3アーム部20の長さとが等しくなっている。本体部17と第1アーム部18と第2アーム部19と第3アーム部20とは、上下方向において、下側からこの順番で配置されている。 The robot body 3 includes two hands 14 and 15 on which the wafer 2 is mounted, an arm 16 to which the hands 14 and 15 are rotatably connected to the distal end side, and a base end side of the arm 16 to be rotatably connected. The main body part 17 is provided. The arm 16 has a first arm portion 18 whose base end side is rotatably connected to the main body portion 17, and a second arm portion whose base end side is rotatably connected to the distal end side of the first arm portion 18. 19 and a third arm portion 20 whose base end side is rotatably connected to the distal end side of the second arm portion 19. That is, the arm 16 includes three arm portions that are connected to each other so as to be relatively rotatable. The 1st arm part 18, the 2nd arm part 19, and the 3rd arm part 20 are formed in the hollow shape. In this embodiment, the length of the first arm portion 18, the length of the second arm portion 19, and the length of the third arm portion 20 are equal. The main body part 17, the first arm part 18, the second arm part 19, and the third arm part 20 are arranged in this order from the lower side in the vertical direction.
 ハンド14、15は、上下方向から見たときの形状が略Y形状となるように形成されており、二股状になっているハンド14、15の先端部にウエハ2が搭載される。ハンド14、15の基端側は、第3アーム部20の先端側に回動可能に連結されている。ハンド14、15は、上下方向で重なるように配置されている。具体的には、ハンド14が上側に配置され、ハンド15が下側に配置されている。また、ハンド14、15は、第3アーム部20よりも上側に配置されている。 The hands 14 and 15 are formed so that the shape when viewed from above and below is substantially Y-shaped, and the wafer 2 is mounted on the tips of the hands 14 and 15 having a bifurcated shape. The proximal end sides of the hands 14 and 15 are rotatably connected to the distal end side of the third arm portion 20. The hands 14 and 15 are arranged so as to overlap in the vertical direction. Specifically, the hand 14 is disposed on the upper side and the hand 15 is disposed on the lower side. The hands 14 and 15 are disposed above the third arm portion 20.
 なお、図3では、ハンド15の図示を省略している。また、本形態のロボット1の動作時には、ハンド14とハンド15とが上下方向で重なる場合もあるが、ほとんどの場合、ハンド14とハンド15とは、上下方向で重なっていない。たとえば、図3の二点鎖線で示すように、ハンド14がFOUP8の中へ入り込んでいるときには、ハンド15は、本体部17側へ回転しており、FOUP8の中に入っていない。このときのハンド14に対するハンド15の回転角度は、たとえば、120°~150°である。 In addition, illustration of the hand 15 is abbreviate | omitted in FIG. Further, during the operation of the robot 1 of the present embodiment, the hand 14 and the hand 15 may overlap in the vertical direction, but in most cases, the hand 14 and the hand 15 do not overlap in the vertical direction. For example, as indicated by a two-dot chain line in FIG. 3, when the hand 14 enters the FOUP 8, the hand 15 rotates to the main body 17 side and does not enter the FOUP 8. At this time, the rotation angle of the hand 15 relative to the hand 14 is, for example, 120 ° to 150 °.
 本体部17は、筺体21と、第1アーム部18の基端側が回動可能に連結される柱状部材22(図2参照)とを備えている。筺体21は、上下方向に細長い略直方体状に形成されており、上下方向から見たときの筺体21の形状は、略長方形状または略正方形状となっている。また、筺体21の前面および後面は、上下方向と左右方向とから構成される平面に平行になっており、筺体21の左右の両側面は、上下方向と前後方向とから構成される平面に平行になっている。すなわち、本体部17は、上下方向から見たときの形状が略長方形状または略正方形状となる上下方向に細長い略直方体状に形成されている。また、本体部17の前面および後面は、上下方向と左右方向とから構成される平面に平行になっており、本体部17の左右の両側面は、上下方向と前後方向とから構成される平面に平行になっている。 The main body portion 17 includes a housing 21 and a columnar member 22 (see FIG. 2) to which the proximal end side of the first arm portion 18 is rotatably connected. The housing 21 is formed in a substantially rectangular parallelepiped shape elongated in the vertical direction, and the shape of the housing 21 when viewed from the vertical direction is a substantially rectangular shape or a substantially square shape. Further, the front surface and the rear surface of the housing 21 are parallel to a plane composed of an up-down direction and a left-right direction, and both left and right side surfaces of the housing 21 are parallel to a plane composed of an up-down direction and a front-rear direction. It has become. That is, the main body portion 17 is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction so that the shape when viewed from the vertical direction is a substantially rectangular shape or a substantially square shape. Further, the front surface and the rear surface of the main body portion 17 are parallel to a plane composed of the up-down direction and the left-right direction, and the left and right side surfaces of the main body portion 17 are planes composed of the up-down direction and the front-back direction. It is parallel to.
 柱状部材22は、上下方向の細長い柱状に形成されている。筺体21の内部には、柱状部材22を昇降させるアーム昇降機構(図示省略)が収納されている。すなわち、筺体21の内部には、本体部17に対して第1アーム部18を昇降させる(すなわち、アーム16を昇降させる)アーム昇降機構が収納されている。このアーム昇降機構は、たとえば、上下方向を軸方向として配置されるボールネジ、このボールネジに係合するナット部材、および、ボールネジを回転させるモータ等によって構成されている。アーム昇降機構は、図1に示すように、柱状部材22が筺体21に収容される位置と、図2に示すように、柱状部材22が筺体21から上側に突出する位置との間で、柱状部材22を昇降させる。すなわち、アーム昇降機構は、柱状部材22が筺体21に収容される位置と、柱状部材22が筺体21から上側に突出する位置との間で、アーム16を昇降させる。 The columnar member 22 is formed in a vertically long and narrow columnar shape. An arm elevating mechanism (not shown) for elevating the columnar member 22 is accommodated in the housing 21. That is, an arm elevating mechanism that elevates and lowers the first arm portion 18 relative to the main body portion 17 (that is, elevates and lowers the arm 16) is housed in the housing 21. The arm elevating mechanism includes, for example, a ball screw arranged with the vertical direction as an axial direction, a nut member that engages with the ball screw, a motor that rotates the ball screw, and the like. As shown in FIG. 1, the arm elevating mechanism has a columnar shape between a position where the columnar member 22 is accommodated in the housing 21 and a position where the columnar member 22 protrudes upward from the housing 21 as shown in FIG. The member 22 is moved up and down. That is, the arm lifting mechanism moves the arm 16 up and down between a position where the columnar member 22 is accommodated in the housing 21 and a position where the columnar member 22 protrudes upward from the housing 21.
 柱状部材22は、筺体21の前端側に配置されている。第1アーム部18の基端側は、柱状部材22の上端に回動可能に連結されている。すなわち、図3に示すように、上下方向から見たときに、本体部17に対する第1アーム部18の回動中心(すなわち、アーム16の基端側の回動中心)C1は、本体部17の中心よりも前側(FOUP8側)に配置されている。また、左右方向において、柱状部材22は、筺体21の中心位置に配置されている。 The columnar member 22 is disposed on the front end side of the housing 21. The proximal end side of the first arm portion 18 is rotatably connected to the upper end of the columnar member 22. That is, as shown in FIG. 3, when viewed from above and below, the rotation center of the first arm portion 18 relative to the main body portion 17 (that is, the rotation center on the base end side of the arm 16) C1 is the main body portion 17. It is arranged on the front side (FOUP8 side) from the center of. The columnar member 22 is disposed at the center position of the housing 21 in the left-right direction.
 図1、図4に示すように、アーム16が縮んで、第1アーム部18と第2アーム部19と第3アーム部20とハンド14、15とが上下方向で重なっている状態が、ロボット1の待機状態となる。この待機状態においては、アーム16およびハンド14、15の一部が本体部17よりも後ろ側へ突出している。 As shown in FIGS. 1 and 4, the arm 16 is contracted, and the first arm 18, the second arm 19, the third arm 20, and the hands 14 and 15 overlap each other in the vertical direction. 1 standby state. In this standby state, a part of the arm 16 and the hands 14 and 15 protrude rearward from the main body portion 17.
 また、ロボット本体3は、第1アーム部18および第2アーム部19を回動させて第1アーム部18と第2アーム部19とからなるアーム16の一部を伸縮させるアーム部駆動機構と、第3アーム部20を回転駆動する第3アーム駆動機構と、ハンド14を回転駆動する第1ハンド駆動機構と、ハンド15を回転駆動する第2ハンド駆動機構とを備えている。 In addition, the robot body 3 includes an arm unit driving mechanism that rotates the first arm unit 18 and the second arm unit 19 to extend and contract a part of the arm 16 including the first arm unit 18 and the second arm unit 19. A third arm driving mechanism for rotating the third arm unit 20; a first hand driving mechanism for rotating the hand 14; and a second hand driving mechanism for rotating the hand 15.
 アーム部駆動機構は、図4に示すように、駆動源となるモータ25と、モータ25の動力を減速して第1アーム部18に伝達するための減速機26と、モータ25の動力を減速して第2アーム部19に伝達するための減速機27とを備えている。モータ25は、筺体21の内部に配置されている。減速機26は、本体部17と第1アーム部18とを繋ぐ関節部を構成している。減速機27は、第1アーム部18と第2アーム部19とを繋ぐ関節部を構成している。減速機26、27は、たとえば、波動歯車装置であるハーモニックドライブ(登録商標)である。上述の特許文献1に記載された産業用ロボットと同様に、モータ25と減速機26とは、図示を省略するプーリおよびベルトを介して連結され、モータ25と減速機27とは、図示を省略するプーリおよびベルトを介して連結されている。 As shown in FIG. 4, the arm unit drive mechanism includes a motor 25 serving as a drive source, a speed reducer 26 that decelerates the power of the motor 25 and transmits the power to the first arm unit 18, and decelerates the power of the motor 25. And a speed reducer 27 for transmission to the second arm portion 19. The motor 25 is disposed inside the housing 21. The reduction gear 26 constitutes a joint portion that connects the main body portion 17 and the first arm portion 18. The reduction gear 27 constitutes a joint portion that connects the first arm portion 18 and the second arm portion 19. The reduction gears 26 and 27 are, for example, harmonic drive (registered trademark) which is a wave gear device. Similar to the industrial robot described in Patent Document 1 described above, the motor 25 and the speed reducer 26 are connected via a pulley and a belt (not shown), and the motor 25 and the speed reducer 27 are not shown. Are connected via a pulley and a belt.
 第3アーム部駆動機構は、図4に示すように、駆動源となるモータ28と、モータ28の動力を減速して第3アーム部20に伝達するための減速機29とを備えている。モータ28は、第2アーム部19の先端側の内部に配置されている。減速機29は、第2アーム部19と第3アーム部20とを繋ぐ関節部を構成している。減速機29は、たとえば、ハーモニックドライブ(登録商標)である。モータ28と減速機29とは、たとえば、図示を省略する歯車列を介して連結されている。 As shown in FIG. 4, the third arm unit drive mechanism includes a motor 28 serving as a drive source, and a speed reducer 29 for decelerating the power of the motor 28 and transmitting it to the third arm unit 20. The motor 28 is disposed inside the distal end side of the second arm portion 19. The speed reducer 29 constitutes a joint portion that connects the second arm portion 19 and the third arm portion 20. The reducer 29 is, for example, a harmonic drive (registered trademark). For example, the motor 28 and the speed reducer 29 are connected via a gear train (not shown).
 第1ハンド駆動機構は、図4に示すように、駆動源となるモータ30と、モータ30の動力を減速してハンド14に伝達するための減速機31とを備えている。第2ハンド駆動機構は、第1ハンド駆動機構と同様に、駆動源となるモータ32と、モータ32の動力を減速してハンド15に伝達するための減速機33とを備えている。モータ30、32および減速機31、33は、第3アーム部20の内部に配置されている。減速機31、33は、たとえば、ハーモニックドライブ(登録商標)である。上述の特許文献1に記載された産業用ロボットと同様に、減速機31は、モータ30の出力軸に取り付けられ、減速機33は、モータ32の出力軸に取り付けられている。また、ハンド14と減速機31とは、図示を省略するプーリおよびベルトを介して連結され、ハンド15と減速機33とは、図示を省略するプーリおよびベルトを介して連結されている。 As shown in FIG. 4, the first hand drive mechanism includes a motor 30 as a drive source and a speed reducer 31 for decelerating the power of the motor 30 and transmitting it to the hand 14. Similar to the first hand drive mechanism, the second hand drive mechanism includes a motor 32 as a drive source and a speed reducer 33 for decelerating the power of the motor 32 and transmitting it to the hand 15. The motors 30 and 32 and the speed reducers 31 and 33 are disposed inside the third arm unit 20. The reducers 31 and 33 are, for example, harmonic drives (registered trademark). Similar to the industrial robot described in Patent Document 1 described above, the speed reducer 31 is attached to the output shaft of the motor 30, and the speed reducer 33 is attached to the output shaft of the motor 32. The hand 14 and the speed reducer 31 are connected via a pulley and a belt (not shown), and the hand 15 and the speed reducer 33 are connected via a pulley and a belt (not shown).
 本形態のロボット本体3は、ロボット本体3単体でもFOUP8に対するウエハ2の出し入れが可能となっている。すなわち、昇降機構4が取り付けられていない状態のロボット本体3でも、柱状部材22を昇降させ、第1アーム部18、第2アーム部19および第3アーム部20を回動させてアーム16を伸縮させるとともに、ハンド14、15を回転させることで、FOUP8に対するウエハ2の出し入れが可能となっている。 In the robot main body 3 of the present embodiment, the wafer 2 can be taken in and out of the FOUP 8 even with the robot main body 3 alone. That is, even in the robot body 3 in the state where the lifting mechanism 4 is not attached, the columnar member 22 is raised and lowered, and the first arm 18, the second arm 19, and the third arm 20 are rotated to expand and contract the arm 16. In addition, by rotating the hands 14 and 15, the wafer 2 can be taken in and out of the FOUP 8.
 (昇降機構の構成) (Configuration of lifting mechanism)
 図5は、図1に示す昇降機構4の斜視図である。図6は、図5に示す昇降機構4の構成を正面側から説明するための図である。図7は、図5に示す昇降機構4の構成を上側から説明するための図である。図8(A)は、図7のE部の拡大図であり、図8(B)は、図7のF部の拡大図である。 FIG. 5 is a perspective view of the lifting mechanism 4 shown in FIG. FIG. 6 is a diagram for explaining the configuration of the lifting mechanism 4 shown in FIG. 5 from the front side. FIG. 7 is a diagram for explaining the configuration of the lifting mechanism 4 shown in FIG. 5 from above. FIG. 8A is an enlarged view of a portion E in FIG. 7, and FIG. 8B is an enlarged view of a portion F in FIG.
 昇降機構4は、ロボット本体3と別体で形成され、ロボット本体3の外部に配置されている。また、昇降機構4は、筺体10の底面部に固定されている。この昇降機構4は、上下方向へロボット本体3を駆動するための駆動部36と、上下方向へロボット本体3を案内するための2本のガイドレール37と、2本のガイドレール37に係合して上下方向へスライドするガイドブロック38と、駆動部36、ガイドレール37およびガイドブロック38が収容される筺体39と、筺体39の外部に配置されるロボット本体3とガイドブロック38とを連結するための2個の連結部材40と、筺体39の外部に配置されロボット本体3が固定される固定部材41と、筺体39の内部の空気をEFEM6の外部(すなわち、筺体10の外部)へ排出するための2個の排気ファン42(図7参照)とを備えている。 The elevating mechanism 4 is formed separately from the robot body 3 and is disposed outside the robot body 3. The lifting mechanism 4 is fixed to the bottom surface of the housing 10. The elevating mechanism 4 is engaged with a drive unit 36 for driving the robot main body 3 in the vertical direction, two guide rails 37 for guiding the robot main body 3 in the vertical direction, and the two guide rails 37. Then, the guide block 38 that slides in the vertical direction, the housing 39 in which the drive unit 36, the guide rail 37, and the guide block 38 are accommodated, and the robot body 3 disposed outside the housing 39 and the guide block 38 are coupled. Two connecting members 40 for fixing, a fixing member 41 arranged outside the housing 39 and to which the robot main body 3 is fixed, and air inside the housing 39 are discharged to the outside of the EFEM 6 (that is, outside the housing 10). Two exhaust fans 42 (see FIG. 7) are provided.
 筺体39は、全体として上下方向に長い略直方体状に形成されている。この筺体39は、筺体39の上面を構成する上面部39aと、筺体39の底面を構成する底面部39bと、筺体39の左右の側面を構成する側面部39cと、筺体39の前面を構成する前面部39dと、筺体39の後面を構成する後面部39eとから構成されている。 The housing 39 is formed in a substantially rectangular parallelepiped shape that is long in the vertical direction as a whole. The housing 39 constitutes an upper surface portion 39 a constituting the upper surface of the housing 39, a bottom surface portion 39 b constituting the bottom surface of the housing 39, side surface portions 39 c constituting the left and right side surfaces of the housing 39, and a front surface of the housing 39. It is comprised from the front-surface part 39d and the rear surface part 39e which comprises the rear surface of the housing 39. FIG.
 上面部39aおよび底面部39bは、上下方向を厚み方向とする略長方形の平板状に形成されている。前面部39dおよび後面部39eは、前後方向を厚み方向とするとともに上下方向を長手方向とする略長方形の平板状に形成されている。側面部39cは、左右方向を厚み方向とする台形の平板状に形成されている。側面部39cの上端面および下端面は、上下方向に直交し、側面部39cの後端面は、前後方向に直交している。また、側面部39cの前端面は、下側に向かうにしたがって、前側へ広がるように傾斜する傾斜面となっている。 The upper surface portion 39a and the bottom surface portion 39b are formed in a substantially rectangular flat plate shape having the vertical direction as the thickness direction. The front surface portion 39d and the rear surface portion 39e are formed in a substantially rectangular flat plate shape having the front-rear direction as the thickness direction and the vertical direction as the longitudinal direction. The side part 39c is formed in a trapezoidal flat plate shape with the left-right direction being the thickness direction. The upper end surface and the lower end surface of the side surface portion 39c are orthogonal to the up-down direction, and the rear end surface of the side surface portion 39c is orthogonal to the front-rear direction. Further, the front end surface of the side surface portion 39c is an inclined surface that inclines so as to expand to the front side as it goes downward.
 側面部39cの上端面には、上面部39aの下面が当接し、側面部39cの後端面には、後面部39eの前面が当接している。側面部39cの左右方向の内側面の下端側には、底面部39bの左右方向の外側面が当接している。前面部39dの上端面には、上面部39aの下面が当接し、前面部39dの下端面には、底面部39bの上面が当接している。また、上面部39aの前端面および底面部39bの前端面と、前面部39dの前面とが略一致している。前面部39dの左右の両端面には、側面部39cの左右方向の内側面が当接している。側面部39cの前端側は、前面部39dよりも前側に突出する突出部39fとなっている。 The lower surface of the upper surface portion 39a is in contact with the upper end surface of the side surface portion 39c, and the front surface of the rear surface portion 39e is in contact with the rear end surface of the side surface portion 39c. The outer side surface in the left-right direction of the bottom surface portion 39b is in contact with the lower end side of the inner surface in the left-right direction of the side surface portion 39c. The upper surface of the front surface portion 39d is in contact with the lower surface of the upper surface portion 39a, and the lower surface of the front surface portion 39d is in contact with the upper surface of the bottom surface portion 39b. In addition, the front end surface of the upper surface portion 39a and the front end surface of the bottom surface portion 39b substantially coincide with the front surface of the front surface portion 39d. The left and right inner surfaces of the side surface portion 39c are in contact with the left and right end surfaces of the front surface portion 39d. The front end side of the side surface portion 39c is a protruding portion 39f that protrudes to the front side of the front surface portion 39d.
 前面部39dには、上下方向に細長いスリット状の貫通孔39gが形成されている。貫通孔39gは、連結部材40の上下方向への移動が可能となるように、上下方向における前面部39dの略全域に形成されている。また、前面部39dには、左右方向に所定の間隔をあけた状態で、2個の貫通孔39gが形成されている。本第二の実施の形態では、左右方向は、貫通孔39gの幅方向である。 The front surface portion 39d is formed with a slit-like through hole 39g that is elongated in the vertical direction. The through hole 39g is formed in substantially the entire area of the front surface portion 39d in the vertical direction so that the connecting member 40 can move in the vertical direction. In addition, two through holes 39g are formed in the front surface portion 39d with a predetermined interval in the left-right direction. In the second embodiment, the left-right direction is the width direction of the through hole 39g.
 駆動部36は、駆動源となるモータ45と、モータ45の動力で回転するボールネジ46と、ボールネジ46に螺合するナット部材47とを備えている。モータ45は、底面部39bの上面に固定される保持部材48に固定されており、筺体39の内部の下端側に配置されている。また、モータ45は、その出力軸が下側へ突出するように保持部材48に固定されている。モータ45の出力軸には、プーリ49が固定されている。ボールネジ46は、上下方向を軸方向として配置されている。ボールネジ46の下端側は、筺体39の内部の下端側に配置される軸受50に回転可能に支持されている。軸受50は、保持部材48に取り付けられている。ボールネジ46の下端側には、プーリ51が固定されている。プーリ49とプーリ51とには、ベルト52が架け渡されている。ナット部材47は、後述のように、2個の連結部材40のうちの一方の連結部材40に固定されている。 The drive unit 36 includes a motor 45 serving as a drive source, a ball screw 46 that is rotated by the power of the motor 45, and a nut member 47 that is screwed into the ball screw 46. The motor 45 is fixed to a holding member 48 fixed to the upper surface of the bottom surface portion 39 b and is disposed on the lower end side inside the housing 39. The motor 45 is fixed to the holding member 48 so that its output shaft protrudes downward. A pulley 49 is fixed to the output shaft of the motor 45. The ball screw 46 is arranged with the vertical direction as the axial direction. The lower end side of the ball screw 46 is rotatably supported by a bearing 50 disposed on the lower end side inside the housing 39. The bearing 50 is attached to the holding member 48. A pulley 51 is fixed to the lower end side of the ball screw 46. A belt 52 is bridged between the pulley 49 and the pulley 51. The nut member 47 is fixed to one of the two connecting members 40 as will be described later.
 ガイドレール37は、側面部39cの左右方向の内側面から左右方向の内側に向かって突出するレール取付部39hに固定されている。すなわち、2本のガイドレール37は、左右方向において所定の間隔をあけた状態で配置されている。左右方向において、2本のガイドレール37の間には、駆動部36が配置されている。ガイドレール37は、上下方向を長手方向としてレール取付部39hに固定されている。また、ガイドレール37は、レール取付部39hの前面に固定されている。ガイドブロック38は、ガイドレール37の前面側に係合している。 The guide rail 37 is fixed to a rail mounting portion 39h that protrudes inward in the left-right direction from the inner side surface in the left-right direction of the side surface portion 39c. That is, the two guide rails 37 are arranged in a state where a predetermined interval is left in the left-right direction. A drive unit 36 is disposed between the two guide rails 37 in the left-right direction. The guide rail 37 is fixed to the rail attachment portion 39h with the vertical direction as the longitudinal direction. The guide rail 37 is fixed to the front surface of the rail attachment portion 39h. The guide block 38 is engaged with the front side of the guide rail 37.
 連結部材40は、上下方向に長い略直方体のブロック状に形成されている。連結部材40の左右方向の外側部分は、ガイドブロック38に固定されるブロック固定部40aとなっている。ブロック固定部40aは、ガイドブロック38の前面に固定されている。具体的には、ブロック固定部40aは、ガイドブロック38の前面とブロック固定部40aの後面とが当接した状態で、ガイドブロック38の前面に固定されている。すなわち、2個の連結部材40のそれぞれは、2本のガイドレール37のそれぞれに係合するガイドブロック38に固定されている。 The connecting member 40 is formed in a substantially rectangular parallelepiped block shape that is long in the vertical direction. An outer portion in the left-right direction of the connecting member 40 is a block fixing portion 40 a that is fixed to the guide block 38. The block fixing portion 40a is fixed to the front surface of the guide block 38. Specifically, the block fixing portion 40a is fixed to the front surface of the guide block 38 in a state where the front surface of the guide block 38 and the rear surface of the block fixing portion 40a are in contact with each other. That is, each of the two connecting members 40 is fixed to a guide block 38 that engages with each of the two guide rails 37.
 2個の連結部材40は、平板状に形成される接続部材54によって接続されている。接続部材54は、筺体39の内部に配置されている。また、接続部材54の左右両端側は、連結部材40の左右方向の内側部分の前面に固定されている。2個の連結部材40のうちの一方の連結部材40には、ナット部材47が固定されている。本形態では、モータ45の右側にボールネジ46およびナット部材47が配置されており、右側に配置される連結部材40の左端面にナット部材47が固定されている。 The two connecting members 40 are connected by a connecting member 54 formed in a flat plate shape. The connection member 54 is disposed inside the housing 39. The left and right ends of the connection member 54 are fixed to the front surface of the inner side portion of the connecting member 40 in the left-right direction. A nut member 47 is fixed to one of the two connecting members 40. In this embodiment, the ball screw 46 and the nut member 47 are arranged on the right side of the motor 45, and the nut member 47 is fixed to the left end surface of the connecting member 40 arranged on the right side.
 連結部材40の左右方向の内側部分には、前後方向で貫通孔39gを通過するように貫通孔39gに配置される貫通孔通過部40bが形成されている。貫通孔通過部40bは、ブロック固定部40aから前側に突出するように形成されている。また、貫通孔通過部40bは、上下方向における連結部材40の全域に形成されるとともに、上下方向に細長い略直方体状に形成されている。貫通孔通過部40bの先端側(前端側)は、前面部39dよりも前側に突出している。すなわち、連結部材40の、貫通孔通過部40bの先端側を除いた部分は、筺体39の内部に収容されている。貫通孔通過部40bの先端面(前端面)は、前後方向に直交する平面状に形成されている。 A through-hole passage portion 40b disposed in the through-hole 39g is formed in the inner portion in the left-right direction of the connecting member 40 so as to pass through the through-hole 39g in the front-rear direction. The through-hole passage portion 40b is formed so as to protrude forward from the block fixing portion 40a. The through-hole passage portion 40b is formed in the entire area of the connecting member 40 in the vertical direction, and is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction. The front end side (front end side) of the through-hole passage portion 40b protrudes forward from the front surface portion 39d. That is, the portion of the connecting member 40 excluding the tip end side of the through hole passage portion 40 b is accommodated in the housing 39. The front end surface (front end surface) of the through-hole passage portion 40b is formed in a planar shape orthogonal to the front-rear direction.
 図8に示すように、左右方向における貫通孔通過部40bの幅H1は、左右方向におけるガイドブロック38の幅H2よりも狭くなっている。また、左右方向における貫通孔39gの幅H3は、ガイドブロック38の幅H2よりも狭くなっている。 As shown in FIG. 8, the width H1 of the through-hole passage portion 40b in the left-right direction is narrower than the width H2 of the guide block 38 in the left-right direction. Further, the width H3 of the through hole 39g in the left-right direction is narrower than the width H2 of the guide block 38.
 固定部材41は、前後方向を厚み方向とする平板状に形成されている。この固定部材41は、前面部39dの前側に配置されている。また、固定部材41は、左右方向において、2個の突出部39fの間に配置されている。固定部材41は、貫通孔通過部40bの先端面に固定されている。具体的には、固定部材41は、貫通孔通過部40bの前端面と固定部材41の後面とが当接した状態で、貫通孔通過部40bの前端面に固定されている。 The fixing member 41 is formed in a flat plate shape having the front-rear direction as the thickness direction. The fixing member 41 is disposed on the front side of the front surface portion 39d. Further, the fixing member 41 is disposed between the two protruding portions 39f in the left-right direction. The fixing member 41 is fixed to the front end surface of the through-hole passage portion 40b. Specifically, the fixing member 41 is fixed to the front end surface of the through-hole passage portion 40b in a state where the front end surface of the through-hole passage portion 40b and the rear surface of the fixing member 41 are in contact with each other.
 ロボット本体3は、固定部材41の前面に固定されている。具体的には、本体部17の1つの側面である筺体21の後面が固定部材41の前面に固定されている。すなわち、昇降機構4には、本体部17の後面が取り付けられており、昇降機構4は、本体部17の後ろ側に配置されている。また、本体部17の後面側の一部分は、左右方向において、2個の突出部39fの間に配置されている。本第二の実施の形態の前面部39dは、ガイドブロック38と本体部17との間に配置されるカバーである。 The robot body 3 is fixed to the front surface of the fixing member 41. Specifically, the rear surface of the casing 21 that is one side surface of the main body portion 17 is fixed to the front surface of the fixing member 41. That is, the rear surface of the main body portion 17 is attached to the elevating mechanism 4, and the elevating mechanism 4 is disposed on the rear side of the main body portion 17. Further, a part of the rear surface side of the main body portion 17 is disposed between the two protruding portions 39f in the left-right direction. The front surface portion 39 d of the second embodiment is a cover that is disposed between the guide block 38 and the main body portion 17.
 図3に示すように、昇降機構4は、上下方向から見たときに、本体部17に対する第1アーム部18の回動領域内に収まっている。すなわち、昇降機構4は、上下方向から見たときに、第1アーム部18の回動中心C1を中心にして第1アーム部18が回動したときの第1アーム部18の先端の軌跡(具体的には、円弧状の軌跡)Rの内周側に収まっている。 As shown in FIG. 3, the elevating mechanism 4 is within the rotation region of the first arm portion 18 relative to the main body portion 17 when viewed from the vertical direction. In other words, the elevating mechanism 4 has a trajectory of the tip of the first arm portion 18 when the first arm portion 18 rotates around the rotation center C1 of the first arm portion 18 when viewed from the vertical direction ( Specifically, it is within the inner circumference side of the arcuate locus (R).
 排気ファン42は、筺体39の底面部39bの上面に取り付けられている。また、排気ファン42は、駆動部36の後ろ側に配置されている。2個の排気ファン42は、左右方向で隣接配置されている。底面部39bには、排気ファン42が排出する空気が通過する貫通孔が形成されている。また、筺体10の底面部の、昇降機構4が固定される部分にも、排気ファン42が排出する空気が通過する貫通孔が形成されている。そのため、筺体39の内部の空気は、排気ファン42によってEFEM6の外部へ排出される。 The exhaust fan 42 is attached to the upper surface of the bottom 39b of the housing 39. Further, the exhaust fan 42 is disposed behind the drive unit 36. The two exhaust fans 42 are adjacently arranged in the left-right direction. A through hole through which air discharged from the exhaust fan 42 passes is formed in the bottom surface portion 39b. A through-hole through which air exhausted by the exhaust fan 42 passes is also formed in a portion of the bottom surface of the housing 10 where the lifting mechanism 4 is fixed. Therefore, the air inside the housing 39 is discharged to the outside of the EFEM 6 by the exhaust fan 42.
 本形態では、FOUP8と半導体ウエハ処理装置7との間でウエハ2を搬送する際に、必要に応じて、ロボット本体3が昇降機構4の筺体39に対して昇降する。 In this embodiment, when the wafer 2 is transferred between the FOUP 8 and the semiconductor wafer processing apparatus 7, the robot body 3 moves up and down with respect to the casing 39 of the lifting mechanism 4 as necessary.
 (本第一の実施の形態の主な効果) (Main effects of the first embodiment)
 以上説明したように、本第一の実施の形態では、アーム16が縮んで、第1アーム部18と第2アーム部19と第3アーム部20とハンド14、15とが上下方向で重なっているロボット1の待機状態において、アーム16およびハンド14、15の一部は、本体部17よりも後ろ側へ突出している。また、本形態では、昇降機構4にロボット本体3の本体部17が固定されるとともに、昇降機構4は、本体部17の後ろ側に配置されている。そのため、本形態では、ロボット1の前面をEFEM6の筺体10の前面に近づけた状態で、筺体10の内部にロボット1を配置することが可能になる。したがって、本形態では、ロボット本体3を昇降させる昇降機構4がロボット本体3の外部に配置されていても、前後方向において、EFEM6を小型化することが可能になる。 As described above, in the first embodiment, the arm 16 is contracted, and the first arm portion 18, the second arm portion 19, the third arm portion 20, and the hands 14, 15 overlap in the vertical direction. In the standby state of the robot 1, some of the arms 16 and the hands 14 and 15 protrude rearward from the main body portion 17. In the present embodiment, the main body portion 17 of the robot main body 3 is fixed to the elevating mechanism 4, and the elevating mechanism 4 is disposed on the rear side of the main body portion 17. Therefore, in this embodiment, it is possible to place the robot 1 inside the housing 10 with the front surface of the robot 1 being close to the front surface of the housing 10 of the EFEM 6. Therefore, in this embodiment, the EFEM 6 can be miniaturized in the front-rear direction even when the lifting mechanism 4 that lifts and lowers the robot body 3 is disposed outside the robot body 3.
 特に本第一の実施の形態では、上下方向から見たときの形状が略長方形状または略正方形状となるように本体部17が形成され、本体部17の前面が上下方向と左右方向とから構成される平面に平行になっているため、ロボット1の前面をEFEM6の筺体10の前面により近づけた状態で、筺体10の内部にロボット1を配置することが可能になる。したがって、本形態では、前後方向において、EFEM6をより小型化することが可能になる。 In particular, in the first embodiment, the main body portion 17 is formed so that the shape when viewed in the vertical direction is a substantially rectangular shape or a substantially square shape. Since it is parallel to the plane formed, the robot 1 can be placed inside the housing 10 with the front surface of the robot 1 being closer to the front surface of the housing 10 of the EFEM 6. Therefore, in this embodiment, the EFEM 6 can be further downsized in the front-rear direction.
 また、本第一の実施の形態では、上下方向から見たときに、第1アーム部18の回動中心C1を中心にして第1アーム部18が回動したときの第1アーム部18の先端の軌跡Rの内周側に昇降機構4が収まっているため、前後方向における筺体10の幅を、昇降機構4の大きさを考慮することなく、本体部17に対する第1アーム部18の回転半径に基づいて設定することが可能となる。したがって、本形態では、前後方向において、EFEM6をより小型化することが可能になる。 In the first embodiment, the first arm portion 18 is rotated when the first arm portion 18 is rotated around the rotation center C1 of the first arm portion 18 when viewed from the vertical direction. Since the elevating mechanism 4 is accommodated on the inner peripheral side of the locus R of the tip, the width of the casing 10 in the front-rear direction can be set to rotate the first arm unit 18 with respect to the main body unit 17 without considering the size of the elevating mechanism 4. It becomes possible to set based on the radius. Therefore, in this embodiment, the EFEM 6 can be further downsized in the front-rear direction.
 また、本第一の実施の形態では、本体部17の後ろ側に昇降機構4が配置されているため、左右方向において、ロボット1を小型化することが可能になる。 In the first embodiment, since the elevating mechanism 4 is disposed on the rear side of the main body portion 17, the robot 1 can be reduced in size in the left-right direction.
 (本第二の実施の形態の主な効果) (Main effects of the second embodiment)
 以上説明したように、本第二の実施の形態では、昇降機構4を構成する駆動部36とガイドレール37とガイドブロック38とが筺体39に収容されている。また、本形態では、ガイドブロック38と本体部17との間に、平板状の前面部39dが配置され、この前面部39dに、上下方向に細長いスリット状の貫通孔39gが形成されている。さらに、本形態では、ロボット本体3とガイドブロック38とを連結するための連結部材40に貫通孔通過部40bが形成され、左右方向における貫通孔通過部40bの幅H1および貫通孔39gの幅H3が、左右方向におけるガイドブロック38の幅H2よりも狭くなっている。そのため、本形態では、貫通孔39gにガイドブロック38が配置される場合と比較して、貫通孔39gの幅を狭くすることができる。したがって、本形態では、ロボット本体3を昇降させる昇降機構4がロボット本体3の外部に配置されていても、駆動部36やガイドレール37、ガイドブロック38から発生する塵埃が、ロボット本体3と昇降機構4との連結部分からEFEM6の内部に流出するのを効果的に抑制することが可能になる。 As described above, in the second embodiment, the drive unit 36, the guide rail 37, and the guide block 38 that constitute the elevating mechanism 4 are accommodated in the housing 39. Further, in the present embodiment, a flat plate-like front surface portion 39d is disposed between the guide block 38 and the main body portion 17, and a slit-like through hole 39g elongated in the vertical direction is formed in the front surface portion 39d. Furthermore, in this embodiment, a through hole passage portion 40b is formed in the connecting member 40 for connecting the robot body 3 and the guide block 38, and the width H1 of the through hole passage portion 40b and the width H3 of the through hole 39g in the left-right direction. However, it is narrower than the width H2 of the guide block 38 in the left-right direction. Therefore, in this embodiment, the width of the through hole 39g can be made narrower than in the case where the guide block 38 is disposed in the through hole 39g. Therefore, in this embodiment, even if the lifting mechanism 4 that lifts and lowers the robot body 3 is disposed outside the robot body 3, dust generated from the drive unit 36, the guide rail 37, and the guide block 38 is lifted and lowered by the robot body 3. It is possible to effectively suppress the outflow from the connecting portion with the mechanism 4 to the inside of the EFEM 6.
 また、本第二の実施の形態では、筺体39の内部の空気をEFEM6の外部へ排出する排気ファン42が筺体39に取り付けられているため、駆動部36やガイドレール37、ガイドブロック38から発生する塵埃が、ロボット本体3と昇降機構4との連結部分からEFEM6の内部に流出するのをより効果的に抑制することが可能になる。 Further, in the second embodiment, the exhaust fan 42 for discharging the air inside the housing 39 to the outside of the EFEM 6 is attached to the housing 39, so that it is generated from the drive unit 36, the guide rail 37, and the guide block 38. It is possible to more effectively suppress the dust that flows out from the connecting portion between the robot body 3 and the lifting mechanism 4 into the EFEM 6.
 本第二の実施の形態では、筺体39の外部に配置される固定部材41に本体部17の筺体21の後面が固定されている。すなわち、本形態では、筺体39の外部に配置される平板状の固定部材41と平面状に形成される筺体21の後面とを用いて、ロボット本体3と昇降機構4とを連結している。そのため、本形態では、ロボット本体3と昇降機構4とを容易に連結することが可能になる。 In the second embodiment, the rear surface of the casing 21 of the main body portion 17 is fixed to a fixing member 41 arranged outside the casing 39. That is, in this embodiment, the robot main body 3 and the lifting mechanism 4 are connected by using a flat fixing member 41 arranged outside the housing 39 and the rear surface of the housing 21 formed in a flat shape. Therefore, in this embodiment, the robot body 3 and the lifting mechanism 4 can be easily connected.
 (他の実施の形態) (Other embodiments)
 上述した第一、第二の実施の形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。 The above-described first and second embodiments are examples of preferred embodiments of the present invention, but are not limited thereto, and various modifications can be made without departing from the scope of the present invention.
 上述した第一の実施の形態では、上下方向から見たときに、第1アーム部18の回動中心C1が本体部17の中心よりも前側に配置されるとともに、第1アーム部18と第2アーム部19と第3アーム部20とハンド14、15とが上下方向で重なっているロボット1の待機状態において、アーム16およびハンド14、15の一部は、本体部17よりも後ろ側へ突出している。また、上述した形態では、昇降機構4は、本体部17の後ろ側に配置されている。この他にもたとえば、上下方向から見たときに、第1アーム部18の回動中心C1が本体部17の中心よりも後ろ側に配置されるとともに、ロボット1の待機状態において、アーム16およびハンド14、15の一部が本体部17よりも前側へ突出し、かつ、昇降機構4に本体部17の前面が固定されて、昇降機構4が本体部17の前側に配置されても良い。この場合であっても、ロボット1の後面をEFEM6の筺体10の後面に近づけた状態で、筺体10の内部にロボット1を配置することが可能になるため、前後方向において、EFEM6を小型化することが可能になる。 In the first embodiment described above, the rotation center C1 of the first arm portion 18 is arranged in front of the center of the main body portion 17 when viewed from the vertical direction, and the first arm portion 18 and the first In the standby state of the robot 1 in which the two arm part 19, the third arm part 20, and the hands 14, 15 overlap in the vertical direction, a part of the arm 16 and the hands 14, 15 are located behind the main body part 17. It protrudes. Further, in the embodiment described above, the lifting mechanism 4 is disposed on the rear side of the main body portion 17. In addition to this, for example, when viewed from above and below, the rotation center C1 of the first arm portion 18 is disposed behind the center of the main body portion 17, and the arm 16 and A part of the hands 14, 15 may protrude forward from the main body 17, the front surface of the main body 17 may be fixed to the lifting mechanism 4, and the lifting mechanism 4 may be disposed on the front side of the main body 17. Even in this case, since the robot 1 can be disposed inside the housing 10 with the rear surface of the robot 1 being close to the rear surface of the housing 10 of the EFEM 6, the EFEM 6 can be downsized in the front-rear direction. It becomes possible.
 また、上述した第一の実施の形態では、昇降機構4は、本体部17の後ろ側に配置されているが、昇降機構4は、本体部17の右側または左側に配置されても良い。また、本体部17の左右両側に昇降機構4が配置されても良い。この場合であっても、ロボット1の前面をEFEM6の筺体10の前面に近づけた状態で、筺体10の内部にロボット1を配置することが可能になるため、あるいは、ロボット1の後面を筺体10の後面に近づけた状態で、筺体10の内部にロボット1を配置することが可能になるため、前後方向において、EFEM6を小型化することが可能になる。なお、本体部17の両側に昇降機構4が配置される場合には、本体部17の右側に配置される昇降機構4のモータ45と、本体部17の左側に配置される昇降機構4のモータ45とが同期して駆動する。 In the first embodiment described above, the elevating mechanism 4 is disposed on the rear side of the main body portion 17, but the elevating mechanism 4 may be disposed on the right side or the left side of the main body portion 17. Further, the elevating mechanism 4 may be arranged on both the left and right sides of the main body portion 17. Even in this case, it is possible to place the robot 1 inside the housing 10 with the front surface of the robot 1 being close to the front surface of the housing 10 of the EFEM 6, or the rear surface of the robot 1 is the housing 10. Since the robot 1 can be disposed inside the housing 10 in the state of being close to the rear surface, the EFEM 6 can be downsized in the front-rear direction. In addition, when the raising / lowering mechanism 4 is arrange | positioned at the both sides of the main-body part 17, the motor 45 of the raising / lowering mechanism 4 arrange | positioned at the right side of the main-body part 17, and the motor of the raising / lowering mechanism 4 arrange | positioned at the left side of the main-body part 17 45 is driven synchronously.
 また、本体部17の左右両側および後ろ側に昇降機構4が配置されても良い。この場合であっても、ロボット1の前面を筺体10の前面に近づけた状態で、筺体10の内部にロボット1を配置することが可能になるため、前後方向において、EFEM6を小型化することが可能になる。なお、この場合には、本体部17の右側に配置される昇降機構4のモータ45と、本体部17の左側に配置される昇降機構4のモータ45と、本体部17の後ろ側に配置される昇降機構4のモータ45とが同期して駆動する。 Further, the elevating mechanism 4 may be disposed on the left and right sides and the rear side of the main body portion 17. Even in this case, since the robot 1 can be arranged inside the housing 10 with the front surface of the robot 1 being close to the front surface of the housing 10, the EFEM 6 can be downsized in the front-rear direction. It becomes possible. In this case, the motor 45 of the lifting mechanism 4 disposed on the right side of the main body 17, the motor 45 of the lifting mechanism 4 disposed on the left side of the main body 17, and the rear side of the main body 17. The motor 45 of the lifting mechanism 4 is driven in synchronization.
 上述した第一の実施の形態では、昇降機構4は、上下方向から見たときに、第1アーム部18の回動中心C1を中心にして第1アーム部18が回動したときの第1アーム部18の先端の軌跡Rの内周側に収まっている。この他にもたとえば、上下方向から見たときに、昇降機構4の後面側の角部が、第1アーム部18の先端の軌跡Rの外周側へはみ出していても良い。また、上述した形態では、本体部17は、上下方向に細長い略直方体状に形成されているが、本体部17は、略円柱状に形成されても良いし、上下方向から見たときの形状が略六角形状や略八角形状となる多角柱状に形成されても良い。 In the first embodiment described above, the elevating mechanism 4 is the first when the first arm portion 18 is rotated around the rotation center C1 of the first arm portion 18 when viewed from the vertical direction. It is within the inner circumference of the locus R at the tip of the arm portion 18. In addition to this, for example, when viewed from the vertical direction, the corner portion on the rear surface side of the lifting mechanism 4 may protrude to the outer peripheral side of the locus R of the tip of the first arm portion 18. Further, in the above-described form, the main body portion 17 is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction. However, the main body portion 17 may be formed in a substantially cylindrical shape, or a shape when viewed from the vertical direction. May be formed in a polygonal column shape having a substantially hexagonal shape or a substantially octagonal shape.
 上述した第一の実施の形態では、第3アーム部20の先端側に2個のハンド14、15が取り付けられているが、第3アーム部20の先端側に1個のハンドが取り付けられても良い。また、上述した形態では、アーム16は、第1アーム部18、第2アーム部19および第3アーム部20の3個のアーム部によって構成されているが、アーム16は、2個のアーム部によって構成されても良いし、4個以上のアーム部によって構成されても良い。 In the first embodiment described above, the two hands 14 and 15 are attached to the distal end side of the third arm portion 20, but one hand is attached to the distal end side of the third arm portion 20. Also good. In the above-described form, the arm 16 is constituted by three arm portions, that is, the first arm portion 18, the second arm portion 19, and the third arm portion 20, but the arm 16 is composed of two arm portions. It may be comprised by 4 or more arm parts.
 次に、上述した第二の実施の形態では、連結部材40の貫通孔通過部40bに固定部材41が固定され、固定部材41にロボット本体3が固定されている。この他にもたとえば、貫通孔通過部40bにロボット本体3が直接、固定されても良い。また、上述した形態では、本体部17は、上下方向に細長い略直方体状に形成されているが、本体部17は、略円柱状に形成されても良い。また、本体部17は、上下方向から見たときの形状が略六角形状や略八角形状となる多角柱状に形成されても良い。また、上述した形態では、ナット部材47は、2個の連結部材40のうちの一方の連結部材40に固定されているが、ナット部材47は、接続部材54に固定されても良い。 Next, in the second embodiment described above, the fixing member 41 is fixed to the through-hole passage portion 40b of the connecting member 40, and the robot body 3 is fixed to the fixing member 41. In addition, for example, the robot body 3 may be directly fixed to the through-hole passage portion 40b. In the embodiment described above, the main body portion 17 is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction, but the main body portion 17 may be formed in a substantially cylindrical shape. Moreover, the main-body part 17 may be formed in the polygonal column shape from which a shape when it sees from an up-down direction becomes a substantially hexagonal shape or a substantially octagonal shape. In the embodiment described above, the nut member 47 is fixed to one of the two connecting members 40, but the nut member 47 may be fixed to the connecting member 54.
 上述した第一、第二の実施の形態では、半導体製造システム5において、半導体ウエハ処理装置7は、EFEM6の後ろ側に配置されている。この他にもたとえば、半導体ウエハ処理装置7は、EFEM6の右側、左側または左右の両側に配置されても良い。たとえば、図3の二点鎖線で示すように、EFEM6の右側に半導体ウエハ処理装置7が配置されても良い。 In the first and second embodiments described above, the semiconductor wafer processing apparatus 7 is arranged behind the EFEM 6 in the semiconductor manufacturing system 5. In addition, for example, the semiconductor wafer processing apparatus 7 may be disposed on the right side, the left side, or the left and right sides of the EFEM 6. For example, a semiconductor wafer processing apparatus 7 may be arranged on the right side of the EFEM 6 as indicated by a two-dot chain line in FIG.
 1 ロボット(産業用ロボット)
 2 ウエハ(半導体ウエハ)
 3 ロボット本体
 4 昇降機構
 6 EFEM
 7 半導体ウエハ処理装置
 8 FOUP
 14、15 ハンド
 16 アーム
 17 本体部
 18 第1アーム部(アーム部)
 19 第2アーム部(アーム部)
 20 第3アーム部(アーム部)
 C1 アームの基端側の回動中心
 X 第1方向(複数のFOUPの配列方向)(第一実施の形態)
 Y 第2方向(第一実施の形態)
 Y1 第3方向(第一実施の形態)
 Y2 第4方向(第一実施の形態)
 36 駆動部
 37 ガイドレール
 38 ガイドブロック
 39 筺体
 39d 前面部(カバー)
 39g 貫通孔
 40 連結部材
 40b 貫通孔通過部
 41 固定部材
 42 排気ファン
 54 接続部材
 H1 貫通孔の幅方向おける貫通孔通過部の幅
 H2 貫通孔の幅方向おけるガイドブロックの幅
 H3 貫通孔の幅
 X 貫通孔の幅方向(第二実施の形態)
 Y カバーの厚み方向(第二実施の形態)
1 Robot (industrial robot)
2 Wafer (semiconductor wafer)
3 Robot body 4 Elevating mechanism 6 EFEM
7 Semiconductor wafer processing equipment 8 FOUP
14, 15 Hand 16 Arm 17 Body 18 First arm (arm)
19 Second arm (arm)
20 Third arm (arm)
C1 Rotation center on the base end side of the arm X First direction (arrangement direction of a plurality of FOUPs) (first embodiment)
Y second direction (first embodiment)
Y1 third direction (first embodiment)
Y2 4th direction (first embodiment)
36 Drive part 37 Guide rail 38 Guide block 39 Housing 39d Front part (cover)
39g Through-hole 40 Connecting member 40b Through-hole passage portion 41 Fixing member 42 Exhaust fan 54 Connection member H1 Width of the through-hole passage portion in the width direction of the through-hole H2 Width of the guide block in the width direction of the through-hole H3 Width of the through-hole X Through-hole width direction (second embodiment)
Y cover thickness direction (second embodiment)

Claims (8)

  1.  一定方向に配列される複数のFOUPと半導体ウエハ処理装置との間で半導体ウエハを搬送するとともにEFEMの一部を構成する産業用ロボットにおいて、
     ロボット本体と、前記ロボット本体の外部に配置され前記ロボット本体を昇降させる昇降機構とを備え、
     前記ロボット本体は、前記半導体ウエハが搭載されるハンドと、互いに相対回動可能に連結される複数のアーム部によって構成され前記ハンドが先端側に回動可能に連結されるアームと、前記アームの基端側が回動可能に連結される本体部と、前記アームを昇降させるアーム昇降機構とを備え、
     複数の前記FOUPの配列方向を第1方向とし、上下方向と前記第1方向とに直交する方向を第2方向とし、前記第2方向の一方を第3方向とし、前記第2方向の他方を第4方向とすると、
     上下方向から見たときに、前記本体部に対する前記アームの基端側の回動中心は、前記本体部の中心よりも前記第3方向側に配置され、
     前記アームが縮んで複数の前記アーム部および前記ハンドが上下方向で重なっている前記産業用ロボットの待機状態において、前記アームの一部は、前記本体部よりも前記第4方向側に配置され、
     前記昇降機構には、前記本体部が固定され、
     前記昇降機構は、前記本体部の、前記第1方向の両側の少なくともいずれか一方、および/または、前記本体部の、前記第4方向側に配置されていることを特徴とする産業用ロボット。
    In an industrial robot that transports a semiconductor wafer between a plurality of FOUPs arranged in a certain direction and a semiconductor wafer processing apparatus and constitutes a part of an EFEM,
    A robot body, and an elevating mechanism arranged outside the robot body to raise and lower the robot body,
    The robot body includes a hand on which the semiconductor wafer is mounted, a plurality of arm portions connected to each other so as to be rotatable relative to each other, and an arm to which the hand is rotatably connected to a distal end side; A main body part rotatably connected to the base end side, and an arm elevating mechanism for elevating the arm,
    A direction in which the plurality of FOUPs are arranged is a first direction, a direction perpendicular to the vertical direction and the first direction is a second direction, one of the second directions is a third direction, and the other of the second directions is the other direction. Assuming the fourth direction,
    When viewed from the up and down direction, the rotation center of the base end side of the arm with respect to the main body portion is disposed on the third direction side with respect to the center of the main body portion,
    In the standby state of the industrial robot in which the arm is contracted and the plurality of arm parts and the hands overlap in the vertical direction, a part of the arm is disposed on the fourth direction side with respect to the main body part,
    The body portion is fixed to the lifting mechanism,
    The industrial robot according to claim 1, wherein the elevating mechanism is disposed on at least one of both sides of the main body portion in the first direction and / or on the fourth direction side of the main body portion.
  2.  前記アームは、前記アーム部として、その基端側が前記本体部に回動可能に連結される第1アーム部を備え、
     前記昇降機構は、上下方向から見たときに、前記本体部に対する前記第1アーム部の回動領域内に収まっていることを特徴とする請求項1記載の産業用ロボット。
    The arm includes, as the arm portion, a first arm portion whose base end side is rotatably connected to the main body portion,
    The industrial robot according to claim 1, wherein the lifting mechanism is within a rotation region of the first arm portion with respect to the main body portion when viewed from the vertical direction.
  3.  前記本体部は、上下方向から見たときの形状が前記第1方向に平行な側面を有する略長方形状または略正方形状となるように形成されていることを特徴とする請求項1または2記載の産業用ロボット。 The said main-body part is formed so that the shape when it sees from an up-down direction may become a substantially rectangular shape or a substantially square shape which has a side surface parallel to the said 1st direction. Industrial robots.
  4.  前記昇降機構には、前記本体部の、前記第4方向側の側面が取り付けられていることを特徴とする請求項3記載の産業用ロボット。 4. The industrial robot according to claim 3, wherein a side surface of the main body portion on the fourth direction side is attached to the lifting mechanism.
  5.  EFEMの一部を構成するとともにFOUPと半導体ウエハ処理装置との間で半導体ウエハを搬送する産業用ロボットにおいて、
     ロボット本体と、前記ロボット本体の外部に配置され前記ロボット本体を昇降させる昇降機構とを備え、
     前記ロボット本体は、前記半導体ウエハが搭載されるハンドと、前記ハンドが先端側に回動可能に連結されるアームと、前記アームの基端側が回動可能に連結される本体部と、前記アームを昇降させるアーム昇降機構とを備え、
     前記昇降機構は、上下方向へ前記ロボット本体を駆動するための駆動部と、上下方向へ前記ロボット本体を案内するためのガイドレールと、前記ガイドレールに係合して上下方向へスライドするガイドブロックと、前記駆動部、前記ガイドレールおよび前記ガイドブロックが収容される筺体と、前記筺体の外部に配置される前記ロボット本体と前記ガイドブロックとを連結するための連結部材とを備え、
     前記筺体は、前記ガイドブロックと前記本体部との間に配置される平板状のカバーを備え、
     前記カバーには、上下方向に細長いスリット状の貫通孔が、前記連結部材の上下方向への移動が可能となるように形成され、
     前記連結部材には、前記貫通孔に配置される貫通孔通過部が形成され、
     前記カバーの厚み方向と上下方向とに直交する前記貫通孔の幅方向における前記貫通孔通過部の幅および前記貫通孔の幅は、前記貫通孔の幅方向における前記ガイドブロックの幅よりも狭くなっていることを特徴とする産業用ロボット。
    In an industrial robot that forms part of an EFEM and transports a semiconductor wafer between a FOUP and a semiconductor wafer processing apparatus,
    A robot body, and an elevating mechanism arranged outside the robot body to raise and lower the robot body,
    The robot main body includes a hand on which the semiconductor wafer is mounted, an arm to which the hand is rotatably connected to a distal end side, a main body portion to which a base end side of the arm is rotatably connected, and the arm Arm lifting mechanism for lifting and lowering,
    The elevating mechanism includes a drive unit for driving the robot body in the vertical direction, a guide rail for guiding the robot body in the vertical direction, and a guide block that engages with the guide rail and slides in the vertical direction And a housing in which the drive unit, the guide rail, and the guide block are accommodated, and a connecting member for connecting the robot body and the guide block disposed outside the housing,
    The housing includes a flat cover disposed between the guide block and the main body,
    In the cover, a slit-like through hole elongated in the vertical direction is formed so that the connection member can be moved in the vertical direction,
    The connecting member is formed with a through-hole passage portion disposed in the through-hole,
    The width of the through hole passage portion and the width of the through hole in the width direction of the through hole perpendicular to the thickness direction and the vertical direction of the cover are smaller than the width of the guide block in the width direction of the through hole. An industrial robot characterized by
  6.  前記本体部は、上下方向から見たときの形状が略長方形状または略正方形状となるように形成され、
     前記昇降機構は、前記筺体の外部に配置され前記本体部の1つの側面が固定される固定部材を備え、
     前記貫通孔通過部の先端に前記固定部材が固定されていることを特徴とする請求項5記載の産業用ロボット。
    The main body is formed so that the shape when viewed from above and below is substantially rectangular or substantially square,
    The elevating mechanism includes a fixing member disposed outside the housing and fixed to one side surface of the main body.
    The industrial robot according to claim 5, wherein the fixing member is fixed to a tip of the through-hole passage portion.
  7.  前記昇降機構は、前記筺体に取り付けられ前記筺体の内部の空気を前記EFEMの外部へ排出する排気ファンを備えることを特徴とする請求項5または6記載の産業用ロボット。 The industrial robot according to claim 5 or 6, wherein the elevating mechanism includes an exhaust fan attached to the housing and exhausting air inside the housing to the outside of the EFEM.
  8.  前記昇降機構は、前記貫通孔の幅方向において、所定の間隔をあけた状態で配置される2本の前記ガイドレールと、2本の前記ガイドレールのそれぞれに係合する前記ガイドブロックに固定される2個の前記連結部材と、前記筺体の内部に配置され2個の前記連結部材を繋ぐ接続部材とを備え、
     2個の前記連結部材のうちの一方の前記連結部材に前記駆動部が連結されていることを特徴とする請求項5から7のいずれかに記載の産業用ロボット。
    The elevating mechanism is fixed to the two guide rails arranged at a predetermined interval in the width direction of the through hole, and the guide block engaging with each of the two guide rails. Two connecting members, and a connecting member arranged inside the housing and connecting the two connecting members,
    The industrial robot according to claim 5, wherein the drive unit is connected to one of the two connecting members.
PCT/JP2014/070735 2013-08-09 2014-08-06 Industrial robot WO2015020088A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/896,788 US9539727B2 (en) 2013-08-09 2014-08-06 Industrial robot with elevating mechanism and arm-elevating mechanism
KR1020167002890A KR102277372B1 (en) 2013-08-09 2014-08-06 Industrial robot
CN201480040727.0A CN105378908B (en) 2013-08-09 2014-08-06 Industrial robot
US15/259,539 US10213924B2 (en) 2013-08-09 2016-09-08 Industrial robot with slit through-hole in cover

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361864272P 2013-08-09 2013-08-09
US61/864,272 2013-08-09
JP2013-247027 2013-11-29
JP2013-247028 2013-11-29
JP2013247027A JP6509487B2 (en) 2013-08-09 2013-11-29 Industrial robot
JP2013247028A JP6235881B2 (en) 2013-08-09 2013-11-29 Industrial robot

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/896,788 A-371-Of-International US9539727B2 (en) 2013-08-09 2014-08-06 Industrial robot with elevating mechanism and arm-elevating mechanism
US15/259,539 Division US10213924B2 (en) 2013-08-09 2016-09-08 Industrial robot with slit through-hole in cover

Publications (1)

Publication Number Publication Date
WO2015020088A1 true WO2015020088A1 (en) 2015-02-12

Family

ID=52461419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070735 WO2015020088A1 (en) 2013-08-09 2014-08-06 Industrial robot

Country Status (1)

Country Link
WO (1) WO2015020088A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111745659A (en) * 2020-06-03 2020-10-09 陈曦 More humanized usher robot
CN113211471A (en) * 2021-04-29 2021-08-06 沈阳芯源微电子设备股份有限公司 Wafer clamping mechanism on wafer transfer robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264980A (en) * 2007-04-24 2008-11-06 Kawasaki Heavy Ind Ltd Substrate carrier robot
WO2009066573A1 (en) * 2007-11-21 2009-05-28 Kabushiki Kaisha Yaskawa Denki Conveyance robot, locally cleaned housing with the conveyance robot, and semiconductor manufacturing device with the housing
JP2012056033A (en) * 2010-09-09 2012-03-22 Sinfonia Technology Co Ltd Robot arm device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264980A (en) * 2007-04-24 2008-11-06 Kawasaki Heavy Ind Ltd Substrate carrier robot
WO2009066573A1 (en) * 2007-11-21 2009-05-28 Kabushiki Kaisha Yaskawa Denki Conveyance robot, locally cleaned housing with the conveyance robot, and semiconductor manufacturing device with the housing
JP2012056033A (en) * 2010-09-09 2012-03-22 Sinfonia Technology Co Ltd Robot arm device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111745659A (en) * 2020-06-03 2020-10-09 陈曦 More humanized usher robot
CN113211471A (en) * 2021-04-29 2021-08-06 沈阳芯源微电子设备股份有限公司 Wafer clamping mechanism on wafer transfer robot

Similar Documents

Publication Publication Date Title
JP6235881B2 (en) Industrial robot
TWI415778B (en) Multi - joint robots
US8807911B2 (en) Transfer robot and equipment front end module including transfer robot with vent part
JP2011119556A (en) Horizontal multi-joint robot and transportation apparatus including the same
US10780586B2 (en) Horizontal articulated robot with bevel gears
JP2011199121A (en) Conveying apparatus
WO2016189565A1 (en) Horizontal articulated robot
TW201343344A (en) Robot
KR102612257B1 (en) Horizontally articulated robot and manufacturing system
KR102314362B1 (en) Robot for transferring substrate
JP2007030163A (en) Double arm type robot
WO2015020088A1 (en) Industrial robot
WO2015020089A1 (en) Horizontal multi-joint robot and production method for horizontal multi-joint robot
KR102612256B1 (en) Manufacturing system
KR102314364B1 (en) Robot for transferring substrate
WO2017026256A1 (en) Industrial robot
JP7191564B2 (en) industrial robot
JP6630162B2 (en) Industrial robot
JP2013082067A (en) Industrial robot
JP2017035771A (en) Industrial robot
JP3488393B2 (en) Articulated robot device
KR102312697B1 (en) Robot for transferring substrate
JP4471874B2 (en) Linear drive
JP5474328B2 (en) Substrate transfer robot
JP2023119659A (en) Horizontal articulated robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14896788

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167002890

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834084

Country of ref document: EP

Kind code of ref document: A1