고크롬 페라이트계 스테인리스강의 산세 방법Pickling method of high chrome ferritic stainless steel
본 발명은 우수한 표면 품질을 요하는 고크롬 페라이트계 스테인리스 냉연강판을 고속으로 산세하는 방법에 관한 것으로, 보다 구체적으로는 소둔 온도 및 강종 성분계에 따라 전해 산세 시 인가 전류량을 조절하고, 혼산 침적 시 혼산 용액 내 자유 불산의 함량과 산화환원전위를 조절하여 산세함으로써, 상기 냉연강판에 존재하는 소둔 스케일을 효과적으로 제거하는 방법에 관한 것이다. The present invention relates to a method for pickling high chromium ferritic stainless steel cold rolled steel sheets requiring high surface quality at high speed, and more specifically, to adjust the amount of applied current during electrolytic pickling according to the annealing temperature and the steel grade component system, The present invention relates to a method for effectively removing annealing scale present in the cold rolled steel sheet by pickling by adjusting the free hydrofluoric acid content and redox potential in the solution.
일반적으로, 페라이트계 스테인리스 강은 크롬 함량에 따라 저크롬 페라이트계 스테인리스 강과 고크롬 페라이트 스테인리스 강으로 구별된다. 통상 크롬 함량이 11~14중량%인 경우를 저크롬 페라이트 스테인리스 강이라고 하며, 크롬 함량이 17~26중량%인 경우를 고크롬 페라이트계 스테인리스 강이라고 한다.In general, ferritic stainless steels are classified into low chromium ferritic stainless steels and high chromium ferritic stainless steels depending on the chromium content. In general, a chromium content of 11 to 14% by weight is called low chromium ferritic stainless steel, and a chromium content of 17 to 26% by weight is called high chromium ferritic stainless steel.
크롬 함량에 따라서 소둔 열처리 시 형성되는 스케일의 특성이 변화하므로, 크롬 함량에 따른 산세 방법을 달리 수행해야 한다. 일반적으로 저크롬 페라이트 강의 경우 소둔 열처리 시 스케일이 두껍게 형성되며, 고크롬 페라이트 강의 경우 소둔 열처리 시 스케일의 두께가 저크롬 페라이트 강에 비하여 상대적으로 얇게 형성된다. Since the characteristics of the scale formed during the annealing heat treatment vary depending on the chromium content, the pickling method according to the chromium content should be performed differently. In general, in the case of low chromium ferrite steel, the scale is thickly formed during the annealing heat treatment, and in the case of the high chromium ferrite steel, the scale is thinner than the low chromium ferrite steel.
또한, 강종 별 특성에 따라 소둔 시 열처리 온도에 차이가 있는데, 소둔 온도가 높을수록 스케일이 두껍게 형성되며, 스케일 내에 크롬 성분의 함량도 높아진다.In addition, there is a difference in the heat treatment temperature during annealing according to the characteristics of the steel type, the higher the annealing temperature is formed, the thicker the scale, the higher the content of chromium component in the scale.
한편, 이러한 스케일은 제품의 외관 품질을 저하시킬 뿐만 아니라, 산화 스케일에서부터 부식이 시작되어 내식성을 저하시키는 요인으로 작용할 수 있으므로, 산세 과정을 통해 표면에 형성된 스케일을 제거할 필요가 있다.On the other hand, such a scale may not only reduce the appearance quality of the product, but also may cause corrosion from the oxidized scale to reduce the corrosion resistance, it is necessary to remove the scale formed on the surface through the pickling process.
통상적으로, 스테인리스 냉연강판을 제조함에 있어서, 강판 상에 형성된 산화 스케일을 제거하여 미려한 표면 품질을 얻고, 강판의 내식성을 향상시키기 위하여, 브러쉬 처리나 쇼트볼 블라스팅과 같은 물리적 디스케일링, 황산나트륨, 황산 또는 질산 전해질 등을 사용하는 전해 디스케일링, 염욕 또는 혼산 등에 의한 화학적 디스케일링 등의 다양한 방법이 수행되고 있는데, 이러한 과정을 통틀어서 '산세 공정' 이라고 한다. Typically, in the manufacture of stainless steel cold rolled steel sheet, physical descaling, such as brush treatment or shotball blasting, sodium sulfate, sulfuric acid or Various methods, such as electrolytic descaling using a nitric acid electrolyte and the like, chemical descaling by a salt bath or mixed acid, etc., have been performed. This process is referred to as a 'pickling process'.
이러한 산세 공정에서 상기 전해 디스케일링과 같은 1단계 전해 산세와 화학적 디스케일링과 같은 2단계 혼산 침지 과정이 구별된다.In this pickling process, one-step electrolytic pickling, such as electrolytic descaling, and two-step mixed acid immersion, such as chemical descaling, are distinguished.
이렇게, 스테인리스 냉연강판을 산세하는 공정은, 종래부터 일반적으로 80~180g/L의 질산 및 2~40g/L의 불산을 포함하는 혼산 용액을 이용하여 수행되어 왔다. 그런데, 상기 혼산 용액 내 포함된 질산은 산세조 내의 pH를 낮추어 불산의 활동도를 높이고, 강판 표면에서 용해된 2가 철이온을 3가로 산화시켜 산세에 적정한 산화환원전위를 유지시켜주는 역할을 하지만, 대기배출 규제물질인 NOx를 발생시키고, 폐산 및 세척수에 질산성 질소(NO3-N)가 다량 포함되어 문제가 되고 있다. Thus, the process of pickling stainless steel cold rolled steel sheet has conventionally been performed using a mixed acid solution containing 80 to 180 g / L nitric acid and 2 to 40 g / L hydrofluoric acid. However, the nitric acid contained in the mixed acid solution lowers the pH in the pickling bath to increase the activity of hydrofluoric acid, and serves to maintain a redox potential appropriate for pickling by oxidizing divalent iron ions dissolved in the surface of the steel sheet to trivalent. It generates NOx, an air emission control substance, and contains a large amount of nitrate nitrogen (NO 3 -N) in waste acid and washing water.
이에 따라, 국내외 환경 규제 강화에 의해 배출 방류수의 총 질소의 양을 제한하고 대기 배출시설의 NOx의 농도를 제한하는 등에 의해, 산세 공정에서 환경오염 방지시설을 추가적으로 설치 및 운용하는 것이 요구되었으나, 상기와 같은 시설을 운용함에 있어서 비용이 많이 발생하여 생산 단가가 현저히 증가한다는 문제점 또한 발생하게 되었다.Accordingly, it is required to additionally install and operate an environmental pollution prevention facility in the pickling process by restricting the total amount of nitrogen in the discharged water and limiting the concentration of NOx in the air discharge facility by strengthening environmental regulations at home and abroad. In the operation of such a facility, a lot of costs are generated, which leads to a significant increase in production costs.
따라서 이러한 문제점을 해결하기 위하여, 종래 산세 공정에서 사용되던 혼산 용액에 포함되는 질산을 염산 또는 황산 등으로 대체하는 방법이 제안되었지만, 그 경우, 혼산 용액의 산화성이 약하기 때문에 스케일에 대한 용해 속도가 낮고 용해 과정에서 금속 표면에 흑변 현상이 발생될 수 있다.Therefore, in order to solve this problem, a method of replacing nitric acid contained in the mixed acid solution used in the conventional pickling process with hydrochloric acid or sulfuric acid, etc. has been proposed. In this case, since the oxidative property of the mixed acid solution is weak, the dissolution rate on the scale is low. In the dissolution process, blackening may occur on the metal surface.
따라서, 산세성이 가장 우수한 스트립 표면 전위에 도달할 수 있도록, 과산화수소, 과망간산칼륨, 3가 철이온 및 공기 주입에 의해 부족한 산화력을 보충하는 방법이 개발되어 왔고, 그 중에서도 특히 분해 시에도 환경에 부담을 주지 않는 과산화수소가 산화제로 통상 사용되고 있다.Thus, methods have been developed to compensate for the insufficient oxidative power by hydrogen peroxide, potassium permanganate, trivalent iron ions and air injection, so as to reach the strip surface potential with the best pickling properties, and especially on degradation, especially during decomposition. Hydrogen peroxide, which does not give it, is commonly used as an oxidizing agent.
그러나, 이 경우, 첨가되는 산화제의 적정 투입량을 찾기가 용이하지 않아, 경우에 따라서는 미산세 또는 과산세의 결과를 초래할 수 있고, 강판 표면에 흑변 현상이 발생하는 등의 문제에 효과적이고, 정량적으로 대응할 수 없는 문제점이 있다.In this case, however, it is not easy to find an appropriate dosage of the added oxidizing agent, and in some cases, it may result in unpickling or peroxidation, and it is effective for problems such as blackening on the surface of the steel sheet. There is a problem that can not cope with.
한편, 미국특허공보 제5908511호에서는 황산, 불산, 철염을 함유하며 과산화수소를 정기적으로 투입하고, 습윤제, 광택제, 부식 억제제 등의 조성을 조절하여 산세하며, 산세 용액은 Fe(Ⅲ) 및 이에 따른 산화환원전위(oxidation-reduction potential, ORP)를 자동 제어하는 방식을 통하여 관리하는 기술이 제안되었다.On the other hand, US Patent Publication No. 5908511 contains sulfuric acid, hydrofluoric acid, iron salts and hydrogen peroxide is regularly added, and the pickling is adjusted by adjusting the composition of the wetting agent, the brightening agent, the corrosion inhibitor, etc., the pickling solution is Fe (III) and redox accordingly A technique for managing the oxidation-reduction potential (ORP) through automatic control has been proposed.
이와 함께, 상기 미국 특허의 산세 용액은 CLEANOX352 제품으로 상용화되어 전세계적으로 가장 널리 사용되고 있고, 상기 특허의 산세 방법은 선재 및 열연 제품에 실용화되어 사용되고 있다. In addition, the pickling solution of the US patent is commercialized as a CLEANOX352 product is the world's most widely used, the pickling method of the patent has been put to practical use in wire rods and hot rolled products.
그런데, 상기한 미국 특허의 산세 방법에 의하는 경우, 제품의 생산 단가가 기존 대비 20% 이상 높고, 복잡한 용액 조성과 관리 방법을 채택하고 있어 문제가 되고 있으며, 가장 결정적으로는 산세 속도가 1.5~3 g/m2·min 정도로 비교적 느린 속도를 갖고 있어, 10~100초 내에 혼산 산세가 완료되어야 하는 고속 산세 라인에는 적합하지 않다는 문제점이 제기되고 있다.However, in the case of the pickling method of the above-described US patent, the production cost of the product is more than 20% higher than the conventional, and adopts a complex solution composition and management method, which is a problem, and most crucially, the pickling rate is 1.5 to It has a relatively slow speed of about 3 g / m 2 · min and poses a problem that it is not suitable for high speed pickling lines in which mixed acid pickling should be completed within 10 to 100 seconds.
이에, 상기 미국 특허에 대한 개량 특허로, 유럽 공개특허공보 제1040211호 및 미국 특허공개공보 제2000-560982호에서는 구리 및 염소 이온을 산세 조성물에 추가하여 산세 속도를 높이는 방법이 제안되었으나, 상기 방법에 의하는 경우, 페라이트계 스테인리스 강판 표면에 형성되는 표면전위(Open circuit potential, OCP)가 구리 이온의 산화환원전위인 0.1V 보다 낮게 되면, 산세 과정에서 강판 표면에 구리입자가 석출되어 강판을 변색시킬 우려가 있고, 산세 용액에 염소 이온을 일정한 농도 이상으로 함유할 경우 공식(pitting corrosion)이 발생할 위험이 있다.Thus, as an improved patent for the US patent, European Patent Publication No. 1040211 and US Patent Publication No. 2000-560982 have proposed a method of increasing the pickling rate by adding copper and chlorine ions to the pickling composition, but the method In this case, when the open circuit potential (OCP) formed on the surface of the ferritic stainless steel sheet is lower than 0.1 V, which is the redox potential of the copper ions, copper particles precipitate on the surface of the steel sheet during the pickling process to discolor the steel sheet. If the pickling solution contains more than a certain concentration of chlorine ions, pitting corrosion may occur.
본 발명은 잔류하는 산화 스케일이 없고, 표면 광택도가 우수한 스테인리스 강판을 제공할 수 있도록 한다. The present invention makes it possible to provide a stainless steel sheet having no residual oxidation scale and excellent surface glossiness.
또한, 본 발명은 강판을 혼산 용액에 침지할 때, 산화환원전위에 따라 혼산 용액에 투입하는 과산화수소의 적정량을 확인할 수 있도록 하여, 강판 표면이 미산세 또는 과산세되거나, 혹은 흑변 현상이 발생하는 것을 방지할 수 있도록 한다. In addition, the present invention, when immersing the steel sheet in the mixed acid solution, it is possible to determine the appropriate amount of hydrogen peroxide to be added to the mixed acid solution according to the redox potential, so that the surface of the steel sheet is not pickled or over-acidified, or black phenomena occur To prevent it.
또한, 본 발명은 강판의 산세 공정 시 사용되는 혼산 용액으로 질산을 사용하지 않아, 폐수 및 배기 가스에 대한 처리의 부담을 줄일 수 있도록 한다.In addition, the present invention does not use nitric acid as a mixed acid solution used in the pickling process of the steel sheet, it is possible to reduce the burden of treatment for waste water and exhaust gas.
본 발명의 일 구현 예에 따르면, 1030℃ 이상 1050℃ 이하의 소둔 온도에서 소둔된 17~26중량% 크롬을 함유하는 고크롬 페라이트계 스테인리스 냉연강판을 중성염 전해 산세 및 황산 전해 산세하는 전해 산세 단계; 및According to one embodiment of the present invention, an electrolytic pickling step of neutral salt electrolytic pickling and sulfuric acid electrolytic pickling of a high chromium ferritic stainless steel cold rolled steel sheet containing 17-26 wt% chromium annealed at an annealing temperature of 1030 ° C. or more and 1050 ° C. or less. ; And
상기 전해 산세를 수행한 냉연강판을 황산 및 불산을 포함하는 혼산 용액에 침지하는 혼산 침지 단계를 포함하며, It comprises a mixed acid immersion step of immersing the cold rolled steel sheet subjected to the electrolytic pickling in a mixed acid solution containing sulfuric acid and hydrofluoric acid,
상기 전해 산세 단계 시 중성염 전해 산세의 인가 전류량과 황산 전해 산세의 인가 전류량의 합은 12A/dm2 이상 20A/dm2 이하로 조절되는, 고크롬 페라이트계 스테인리스 냉연강판의 산세 방법을 제공한다.The sum of the application of the electrolytic neutral salt during the pickling step pickling current and applied to the electrolytic pickling sulfate, the amount of current provides a pickling method of the high-chromium ferritic stainless cold-rolled steel sheet, which is adjusted to not more than 12A / dm 2 or more 20A / dm 2.
본 발명의 다른 구현 예에 따르면, 930℃ 이상 1030℃ 미만의 소둔 온도에서 소둔된 17~26중량% 크롬을 함유하는 고크롬 페라이트계 스테인리스 냉연강판을 중성염 전해 산세 및 황산 전해 산세하는 전해 산세 단계; 및According to another embodiment of the present invention, an electrolytic pickling step of neutral salt electrolytic pickling and sulfuric acid electrolytic pickling of a high chromium ferritic stainless steel cold rolled steel sheet containing 17-26 wt% chromium annealed at an annealing temperature of 930 ° C. or more and less than 1030 ° C. ; And
상기 전해 산세를 수행한 냉연강판을 황산 및 불산을 포함하는 혼산 용액에 침지하는 혼산 침지 단계를 포함하며, It comprises a mixed acid immersion step of immersing the cold rolled steel sheet subjected to the electrolytic pickling in a mixed acid solution containing sulfuric acid and hydrofluoric acid,
상기 전해 산세 단계 시 중성염 전해 산세의 인가 전류량과 황산 전해 산세의 인가 전류량의 합은 30A/dm2 이상 50A/dm2 이하로 조절되는, 고크롬 페라이트계 스테인리스 냉연강판의 산세 방법을 제공한다.In the electrolytic pickling step, the sum of the applied current amount of neutral salt electrolytic pickling and the applied current amount of sulfuric acid electrolytic pickling is adjusted to 30 A / dm 2 or more and 50 A / dm 2 or less, to provide a method for pickling a high chromium ferritic stainless steel cold rolled steel sheet.
상기 중성염 전해 산세의 인가 전류량은 8A/dm2 이상이고, 황산 전해 산세의 인가 전류량은 0 또는 8A/dm2 이상일 수 있다. The amount of applied current of the neutral salt electrolytic pickling may be 8 A / dm 2 or more, and the amount of applied current of sulfuric acid electrolytic pickling may be 0 or 8 A / dm 2 or more.
상기 냉연강판 총 중량에 대하여 규소(Si) 함량이 0.3 중량% 이하이거나, 몰리브덴(Mo) 함량이 0.5 중량% 이하인 경우, When the silicon (Si) content is 0.3% by weight or less or the molybdenum (Mo) content is 0.5% by weight or less with respect to the total weight of the cold rolled steel sheet,
상기 혼산 침지 단계 시 사용되는 혼산 용액은 80~150g/L 황산 및 5~12g/L 자유 불산을 포함하며, 산화환원전위(ORP)가 550mV이상일 수 있다. The mixed acid solution used in the mixed acid immersion step includes 80 to 150 g / L sulfuric acid and 5 to 12 g / L free hydrofluoric acid, and an redox potential (ORP) may be 550 mV or more.
상기 혼산 용액의 산화환원전위가 550mV 이상 유지되도록 혼산 용액에 과산화수소를 추가할 수 있다.Hydrogen peroxide may be added to the mixed acid solution such that the redox potential of the mixed acid solution is maintained at 550 mV or more.
상기 냉연강판 총 중량에 대하여 규소(Si) 함량이 0.3 중량% 초과하거나, 몰리브덴(Mo) 함량이 0.5 중량% 초과하는 경우, When the silicon (Si) content is more than 0.3% by weight or the molybdenum (Mo) content is more than 0.5% by weight relative to the total weight of the cold rolled steel sheet,
상기 혼산 침지 단계 시 사용되는 혼산 용액은 80~150g/L 황산 및 20~30g/L 자유 불산을 포함하며, 산화환원전위(ORP)가 320mV이상일 수 있다.The mixed acid solution used in the mixed acid immersion step includes 80 to 150 g / L sulfuric acid and 20 to 30 g / L free hydrofluoric acid, and an redox potential (ORP) may be 320 mV or more.
상기 혼산 용액의 산화환원전위가 320mV 이상으로 유지되도록 과산화수소를 추가할 수 있다. Hydrogen peroxide may be added to maintain the redox potential of the mixed acid solution at 320 mV or more.
상기 중성염 전해 산세는 100~250g/L 농도의 황산 나트륨을 포함하는 전해액을 사용하며 수행될 수 있다.The neutral salt electrolytic pickling may be performed using an electrolyte solution containing sodium sulfate at a concentration of 100 to 250 g / L.
상기 중성염 전해 산세 시 사용되는 전해액의 온도는 50~90℃일 수 있다.The temperature of the electrolyte used during the neutral salt electrolytic pickling may be 50 ~ 90 ℃.
상기 중성염 전해 산세는 24~100초 동안 수행될 수 있다. The neutral salt electrolytic pickling may be performed for 24 to 100 seconds.
상기 황산 전해 산세는 50~150g/l의 황산 또는 50~150g/l의 황산에 철, 크롬, 니켈, 구리, 망간 및 티타늄으로 이루어진 그룹으로부터 선택된 하나 이상의 금속이 용해되어 형성된 메탈 황산염을 포함하는 전해액을 사용하며 수행될 수 있다.The sulfuric acid electrolytic pickling is an electrolyte solution comprising a metal sulfate formed by dissolving at least one metal selected from the group consisting of iron, chromium, nickel, copper, manganese and titanium in 50 to 150 g / l sulfuric acid or 50 to 150 g / l sulfuric acid. Can be performed using
상기 황산 전해 산세 시 사용되는 전해액의 온도는 30~60℃일 수 있다.The temperature of the electrolyte solution used in the sulfuric acid electrolytic pickling may be 30 ~ 60 ℃.
상기 황산 전해 산세는 10~50초 동안 수행될 수 있다.The sulfuric acid electrolytic pickling may be performed for 10 to 50 seconds.
상기 혼산 침지 단계는 25 내지 90초 동안 수행될 수 있다.The mixed acid immersion step may be performed for 25 to 90 seconds.
상기 혼산 침지 단계 시 냉연강판의 표면 전위는 -0.2 내지 0V 범위로 유지될 수 있다.The surface potential of the cold rolled steel sheet during the mixed acid immersion step may be maintained in the range of -0.2 to 0V.
본 발명은 잔류하는 산화 스케일이 없고, 표면 광택도가 우수한 고크롬 페라이트계 스테인리스 냉연강판을 제공할 수 있도록 한다. The present invention provides a high chromium ferritic stainless steel cold rolled steel sheet having no residual oxidation scale and excellent surface glossiness.
또한, 본 발명은 강판을 혼산 용액에 침지할 때, 산화환원전위에 따라 혼산 용액에 투입하는 과산화수소의 적정량을 확인할 수 있도록 하여, 강판 표면이 미산세 또는 과산세되거나, 흑변 현상이 발생하는 문제점을 방지할 수 있도록 한다. In addition, the present invention, when immersing the steel plate in the mixed acid solution, it is possible to determine the appropriate amount of hydrogen peroxide that is added to the mixed acid solution according to the redox potential, so that the surface of the steel sheet is not pickled or over-acidified, or black phenomena occur To prevent it.
또한, 본 발명은 강판의 산세 공정 시 사용되는 혼산 용액으로 질산을 사용하지 않아, 폐수 및 배기 가스에 대한 처리의 부담을 줄일 수 있도록 한다.In addition, the present invention does not use nitric acid as a mixed acid solution used in the pickling process of the steel sheet, it is possible to reduce the burden of treatment for waste water and exhaust gas.
도 1은 439강 및 441강의 소둔 스케일의 깊이에 따른 Cr/Fe 함량비를 그래프로 도시한 것이다.1 is a graph showing the Cr / Fe content ratio according to the depth of the annealing scale of the 439 steel and 441 steel.
도 2는 소둔 온도에 따라 전해 산세 가능한 중성염 전해조 및 황산 전해조의 인가 전류 영역을 그림으로 나타낸 것이다.Figure 2 shows the applied current region of the electrolytic pickling neutral salt electrolytic cell and sulfuric acid electrolytic cell according to the annealing temperature.
도 3은 냉연강판에 포함된 규소 및 몰리브덴의 함량에 따라 혼산 침지단계에서 사용하는 혼산 용액 내 포함된 자유 불산의 농도 및 혼산 용액의 산화환원전위 영역을 그림으로 나타낸 것이다.Figure 3 shows the concentration of free hydrofluoric acid contained in the mixed acid solution used in the mixed acid immersion step and the redox potential region of the mixed acid solution according to the content of silicon and molybdenum contained in the cold rolled steel sheet.
도 4의 (a) 내지 (d)는 비교예 1, 실시예 1, 비교예 8 및 비교예 9에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것이다.Figure 4 (a) to (d) shows a photograph of the surface of the stainless steel after pickling in Comparative Example 1, Example 1, Comparative Example 8 and Comparative Example 9.
도 5의 (a) 내지 (c)는 비교예 16, 실시예 6 및 비교예 28에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것이다.5A to 5C show photographs of the surface of stainless steel after pickling in Comparative Examples 16, 6, and 28. FIG.
도 6의 (a) 및 (b)는 비교예 29 및 비교예 31에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것이다.6 (a) and 6 (b) show photographs of the surface of stainless steel after pickling in Comparative Examples 29 and 31. FIG.
도 7의 (a) 및 (b)는 비교예 32 및 실시예 16에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것이다.Figure 7 (a) and (b) is a photograph showing the surface of the stainless steel after pickling in Comparative Example 32 and Example 16.
도 8의 (a) 및 (b)는 비교예 33 및 실시예 19에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것이다.(A) and (b) of FIG. 8 are photographs of the surface of stainless steel after pickling in Comparative Examples 33 and 19. FIG.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
본 발명은 냉연강판 총 중량에 대하여 17~26중량% 크롬을 함유하는 고크롬 페라이트계 스테인리스 냉연강판의 표면에 존재하는 산화 스케일을 제거하기 위하여 산세하는 방법에 관한 것이다. The present invention relates to a method for pickling to remove an oxidation scale present on the surface of a high chromium ferritic stainless steel cold rolled steel sheet containing 17 to 26% by weight chromium based on the total weight of the cold rolled steel sheet.
보다 구체적으로, 본원발명에서 제공하는 고크롬 페라이트계 스테인리스 냉연강판의 산세 방법은 상기 고크롬 페라이트계 스테인리스 냉연강판을 중성염 전해 산세 및 황산 전해 산세하는 전해 산세 단계 및 상기 전해 산세를 수행한 냉연강판을 황산 및 불산을 포함하는 혼산 용액에 침지하는 혼산 침지 단계를 포함하되, 상기 전해 산세 단계 시 소둔 온도에 따라 인가 전류량을 조절하고, 상기 혼산 침지 단계 시 강종 성분에 따라 혼산 용액에 포함된 자유 불산(Free HF)의 함량 및 산화환원전위(ORP)를 조절하는 것을 특징으로 한다.More specifically, the method for pickling a high chromium ferritic stainless steel cold rolled steel sheet provided by the present invention includes an electrolytic pickling step of neutral salt electrolytic pickling and sulfuric acid electrolytic pickling of the high chromium ferritic stainless steel cold rolled steel sheet and a cold rolled steel sheet subjected to the electrolytic pickling. To include a mixed acid immersion step immersed in a mixed acid solution containing sulfuric acid and hydrofluoric acid, the amount of applied current is adjusted according to the annealing temperature during the electrolytic pickling step, free hydrofluoric acid contained in the mixed acid solution according to the steel species component during the mixed acid immersion step It is characterized by adjusting the content of (Free HF) and the redox potential (ORP).
본 발명의 산세 방법에 있어서, 상기 고크롬 페라이트계 스테인리스 냉연강판은 전해 산세 과정으로, 중성염 전해 산세 및 황산 전해 산세를 순차적으로 수행할 수 있다. In the pickling method of the present invention, the high chromium ferritic stainless steel cold rolled steel sheet may be subjected to a neutral salt electrolytic pickling and sulfuric acid electrolytic pickling in an electrolytic pickling process.
이때, 상기 중성염 전해 산세는 100~250g/L 농도의 황산 나트륨을 전해질로 포함하는 전해액을 사용하며 수행될 수 있고, 구체적으로는 온도가 50~90℃인 상기 전해액에 냉연강판을 침지한 후, 강판표면의 전위가 +, -, + 의 순서로 최소 1번 이상 대전될 수 있도록 8~30A/dm2 밀도의 전류를 24~100초 동안 가하여 수행할 수 있다. At this time, the neutral salt electrolytic pickling may be performed using an electrolyte solution containing sodium sulfate of 100 ~ 250g / L concentration as an electrolyte, specifically after immersing the cold rolled steel sheet in the electrolyte solution having a temperature of 50 ~ 90 ℃ In order that the potential of the surface of the steel sheet can be charged at least once in the order of +,-, +, a current of 8 to 30 A / dm 2 may be applied for 24 to 100 seconds.
또한, 상기 황산 전해 산세는 50~150g/l의 황산 또는, 상기 농도의 황산에 철, 크롬, 니켈, 구리, 망간 및 티타늄으로 이루어진 그룹으로부터 선택된 하나 이상의 금속이 전기화학적으로 용해되어 형성된 메탈 황산염을 전해질로 포함하는 전해액을 사용하며 수행될 수 있고, 구체적으로는 온도가 30~60℃인 상기 전해액에 상기 냉연강판을 침지한 후, 강판표면의 전위가 +, -, + 의 순서로 최소 1번 이상 대전될 수 있도록 0~30A/dm2 밀도의 전류를 10~50초 동안 가하여 수행할 수 있다.In addition, the sulfuric acid electrolytic pickling is a sulfuric acid of 50 ~ 150g / l or a metal sulfate formed by the electrochemical dissolution of at least one metal selected from the group consisting of iron, chromium, nickel, copper, manganese and titanium in the sulfuric acid of the concentration. It can be carried out using an electrolyte containing an electrolyte, specifically, after immersing the cold rolled steel sheet in the electrolyte having a temperature of 30 ~ 60 ℃, the potential of the steel plate surface at least once in the order of +,-, + It can be carried out by applying a current of 0 ~ 30A / dm 2 density for 10 to 50 seconds to be charged over.
한편, 고크롬 페라이트계 스테인리스 강의 경우, 소둔 시 생성되는 스케일에 크롬의 함량이 높은데, 특히 소둔 온도가 높을수록 그 크롬 함량이 더욱 높게 된다. 이때, 소둔 스케일에 포함된 크롬 함량이 높을수록 중성염 전해 산세 시 산화물의 용해가 용이하고, 예를 들어, 소둔 온도가 1030℃ 이상일 경우, 크롬 함량의 농축이 심하게 되어, 중성염 및 황산 전해 산세 시 높은 인가 전류 조건에서는 표면 용해에 의한 과산세가 발생할 우려가 있다. On the other hand, in the case of high chromium ferritic stainless steel, the content of chromium is high in the scale generated during annealing, in particular, the higher the annealing temperature, the higher the chromium content. At this time, the higher the chromium content contained in the annealing scale, the easier the dissolution of the oxide during neutral salt electrolytic pickling. For example, when the annealing temperature is 1030 ° C. or higher, the concentration of the chromium is severely concentrated, and the neutral salt and sulfuric acid electrolytic pickling is performed. Under high application current conditions, there is a risk of overacid washing due to surface melting.
따라서, 본 발명의 일 구현 예에 따르면, 1030℃ 이상 1050℃ 이하의 상대적으로 높은 온도에서 소둔된 냉연강판을 전해 산세하는 경우, 중성염 전해 산세의 인가 전류량과 황산 전해 산세의 인가 전류량의 합이 12A/dm2 미만인 경우, 미산세가 발생할 수 있고, 20A/dm2 초과하는 경우 과산세에 의한 표면 침식이 발생할 수 있으므로, 효과적인 산세를 위해서는 중성염 전해 산세의 인가 전류량과 황산 전해 산세의 인가 전류량의 합은 12A/dm2 이상 20A/dm2 이하가 되도록 조절하는 것이 바람직하다. Therefore, according to one embodiment of the present invention, when electrolytic pickling the cold-rolled steel sheet annealed at a relatively high temperature of 1030 ℃ or more, 1050 ℃ or less, the sum of the applied current amount of neutral salt electrolytic pickling and the applied current amount of sulfuric acid electrolytic pickling If less than 12A / dm 2 , fine pickling may occur, and if it exceeds 20A / dm 2 , surface erosion may occur due to over pickling. Therefore, for effective pickling, the amount of applied current of neutral salt electrolytic pickling and sulfuric acid electrolytic pickling the sum is preferably adjusted to 20A / dm 2 or less than 12A / dm 2.
한편, 본 발명의 다른 구현 예에 따르면, 930℃ 이상 1030℃ 미만의 상대적으로 낮은 온도에서 소둔된 냉연강판을 전해 산세하는 경우, 중성염 전해 산세의 인가 전류량과 황산 전해 산세의 인가 전류량의 합이 30A/dm2 미만인 경우, 미산세가 발생할 수 있고, 50A/dm2 초과하는 경우 과산세에 의한 표면 침식이 발생할 수 있으므로, 효과적인 전해 산세를 위해서는 중성염 전해 산세의 인가 전류량과 황산 전해 산세의 인가 전류량의 합은 30A/dm2 이상 50A/dm2 이하가 되도록 조절하는 것이 바람직하다.On the other hand, according to another embodiment of the present invention, 930 ℃ When electrolytic pickling of the cold rolled steel sheet annealed at a relatively low temperature of less than 1030 ℃, if the sum of the applied current amount of neutral salt electrolytic pickling and the applied current amount of sulfuric acid electrolytic pickling is less than 30A / dm 2 , fine pickling may occur, If it exceeds 50A / dm 2 , surface erosion may occur due to over pickling. Therefore, for effective electrolytic pickling, the sum of the applied current of neutral salt electrolytic pickling and the applied current of sulfuric acid electrolytic pickling is 30 A / dm 2 or more and 50 A / dm 2 or less It is preferable to adjust so that.
단, 본 발명에 있어서, 상기 전해 산세 시 소둔 온도와는 무관하게 중성염 전해 산세의 인가 전류량은 8A/dm2 이상이고, 황산 전해 산세의 인가 전류량은 0 또는 8A/dm2 이상인 것이 바람직하다. However, in the present invention, the amount of applied current of neutral salt electrolytic pickling is 8 A / dm 2 or more, and the amount of applied current of sulfuric acid electrolytic pickling is 0 or 8 A / dm 2 or more regardless of the annealing temperature during electrolytic pickling.
구체적으로, 중성염 전해 산세 시 인가 전류량이 8A/dm2 미만인 경우, 소둔 스케일을 용해시킬 수 있는 표면 전위가 형성되지 않아, 중성염 전해 산세의 효과가 미비할 수 있으므로, 충분한 스케일의 용해를 위해서는 인가 전류량이 8A/dm2 이상인 것이 바람직하다. Specifically, when the amount of applied current during neutral salt electrolytic pickling is less than 8 A / dm 2 , the surface potential for dissolving the annealing scale is not formed, and the effect of the neutral salt electrolytic pickling may be insignificant. It is preferable that the amount of applied current is 8 A / dm 2 or more.
또한, 황산 전해 산세 시 인가 전류량이 0 초과 8A/dm2 미만인 경우, 산세 후 표면이 불균일하고 거칠게 되는 문제점이 발생할 수 있으므로, 강판 표면에 균일한 산세를 위하여는 황산 전해 산세의 인가 전류량이 0 A/dm2이거나, 8A/dm2 이상이 바람직하다.In addition, when the amount of applied current is greater than 0 and less than 8 A / dm 2 during electrolytic pickling of sulfuric acid, a problem may occur in that the surface is uneven and rough after pickling. / dm 2 or 8A / dm 2 or more is preferable.
단, 황산 전해 산세의 인가 전류량이 0A/dm2 이라는 것은, 황산 전해 산세의 전 단계인 중성염 전해 산세에서 소둔 스케일의 용해가 클 경우, 모재의 손상을 방지하기 위해 전류의 인가 없이 침적으로 진행되는 것을 의미한다.However, when the applied current amount of sulfuric acid electrolytic pickling is 0A / dm 2 , when the annealing scale dissolves largely in neutral salt electrolytic pickling, which is a preliminary step of sulfuric acid electrolytic pickling, deposition proceeds without application of current to prevent damage to the base metal. It means to be.
또한, 본 발명에서 상기 중성염 전해 산세 및 황산 전해 산세의 인가 전류량의 상한과 관련하여, 그 값은 상기 두 전해 산세의 인가 전류량 합에 의해 정해질 뿐, 특별히 한정하지는 않으나, 운전 비용 등의 경제적인 점을 고려할 때, 예를 들어 인가 전류량의 상한은 30 A/dm2 이하가 바람직하다. In addition, in the present invention, with respect to the upper limit of the applied current amount of the neutral salt electrolytic pickling and sulfuric acid electrolytic pickling, the value is determined by the sum of the applied current amounts of the two electrolytic pickling, but is not particularly limited, but it is economical such as operating cost In consideration of the fact that, for example, the upper limit of the amount of applied current is preferably 30 A / dm 2 or less.
도 2는 본 발명에서 소둔 온도에 따라 전해 산세 가능한 중성염 전해조 및 황산 전해조의 인가 전류 영역을 그림으로 나타낸 것으로, 도 2의 영역 I은 17~26중량% 크롬 함유 페라이트계 스테인리스 강의 소둔 온도가 1030~1050℃ 영역에서 산세 가능한 중성염 전해조와 황산 전해조의 인가 전류 범위를 나타낸 것이고, 영역 Ⅱ는 소둔 온도가 930℃ 이상 1030℃ 미만에서 산세 가능한 중성염 전해조와 황산 전해조의 인가 전류 범위를 나타낸 것이다. FIG. 2 is a diagram illustrating an applied current region of a neutral salt electrolytic cell and a sulfuric acid electrolytic cell that are electrolytic pickled according to an annealing temperature in the present invention. In FIG. 2, an annealing temperature of a ferritic stainless steel containing 17 to 26% by weight of chromium is 1030. The applied current range of the neutral salt electrolytic cell and sulfuric acid electrolytic cell which can be pickled in the region of -1050 ° C is shown, and the area II shows the applied current range of the neutral salt electrolytic cell and sulfuric acid electrolytic cell which can be pickled at annealing temperature of 930 ° C or more and less than 1030 ° C.
본 발명에서 상기 전해 산세를 수행하는 동안 고크롬 페라이트계 냉연강판의 표면에 존재하는 크롬 및 철의 산화물 층은 제거되지만, 규소 산화물 층은 남게 될 수 있다. 따라서, 본 발명의 산세 방법은 상기한 전해 산세 단계에 후속적으로 전해 산세를 수행한 냉연강판을 황산 및 불산을 포함하는 혼산 용액에 침지하는 혼산 침지 단계를 수행함으로써, 강판 상에 잔류하는 규소 산화물의 층을 제거할 수 있다. While the oxide layer of chromium and iron present on the surface of the high chromium ferritic cold rolled steel sheet is removed during the electrolytic pickling in the present invention, the silicon oxide layer may remain. Therefore, in the pickling method of the present invention, the silicon oxide remaining on the steel sheet by performing the mixed acid immersion step of immersing the cold rolled steel sheet subjected to the electrolytic pickling in the electrolytic pickling step in a mixed acid solution containing sulfuric acid and hydrofluoric acid. The layer of can be removed.
상기한 혼산 침지 단계 시 사용되는 혼산 용액에 포함된 불산(HF)은 하기 식(1)과 같이 용액 내에서 해리되고, 하기 식(2)에서와 같이 황산이 해리되어 제공하는 수소 이온(H+)의 농도, 즉 산도(acidity)에 의해 평형상태가 변하게 된다. Hydrofluoric acid (HF) contained in the mixed acid solution used in the mixed acid immersion step is dissociated in the solution as shown in the following formula (1), and hydrogen ions (H +) provided by dissociating sulfuric acid as shown in the following formula (2) The equilibrium state is changed by the concentration of c, i.e. acidity.
HF ↔ H+ + F- (1) HF ↔ H + + F - ( 1)
H2SO4 ↔ HSO4
- + H+ ↔ SO4
2- + 2H+ (2) H 2 SO 4 ↔ HSO 4 - + H + ↔ SO 4 2- + 2H + (2)
그런데, 불산의 경우 해리되어 있지 않은 자유 불산(Free HF) 상태에서 산세력을 가지며, 이러한 자유 불산은 규소 산화물 및 모재의 계면에 침투하여 규소 산화물 및 철(Fe)을 용해시킨 뒤, 용해된 규소 이온 및 철 이온과 FeFx
(3-x), H2SiF6 등의 형태로 결합하여 이들을 강판 표면으로부터 제거하게 된다. However, in the case of hydrofluoric acid, it has a pickling force in a free hydrofluoric acid (Free HF) state, and the free hydrofluoric acid penetrates the interface between the silicon oxide and the base material to dissolve silicon oxide and iron (Fe), and then dissolves silicon. Ions and iron ions are combined in the form of FeF x (3-x) , H 2 SiF 6 and the like to remove them from the steel sheet surface.
따라서, 본 발명은 상기 혼산 침지 단계 시, 자유 불산이 5~30g/L의 농도를 갖는 혼산 용액을 사용하는 것이 바람직하다. 자유 불산의 농도가 5g/L 미만인 경우, 자유 불산으로 존재하는 농도가 적어, 규소 산화물 층에 대한 용해력이 부족해 강판 표면에 미산세의 문제가 발생할 수 있고, 농도가 30g/L를 초과하는 경우, 모재의 침식 속도가 빨라져 산세 후 강판 표면이 거칠어 질 수 있다. Therefore, in the present invention, in the mixed acid immersion step, it is preferable to use a mixed acid solution having a concentration of 5 to 30 g / L of free hydrofluoric acid. When the concentration of free hydrofluoric acid is less than 5 g / L, the concentration of free hydrofluoric acid is small, so that there is a lack of solubility in the silicon oxide layer may cause the problem of fine pickling on the surface of the steel sheet, when the concentration exceeds 30 g / L, The rate of erosion of the base material may increase, resulting in a rough surface of the steel sheet after pickling.
상기한 바와 같이, 혼산 용액에 포함된 불산은 강판 표면의 규소 산화물 층을 제거할 수 있는 산세력을 제공하지만, 상기 혼산 용액 내에는 일정한 산도 이상으로 유효 자유 불산 농도를 유지할 필요가 있다. 따라서, 본 발명은 혼산 용액에 포함된 불산이 해리되지 않도록 하기 위하여, 혼산 용액에 상기 불산과 함께 일정 농도 이상의 황산을 포함하는 것이 바람직하다. As described above, the hydrofluoric acid contained in the mixed acid solution provides pickling force capable of removing the silicon oxide layer on the surface of the steel sheet, but it is necessary to maintain the effective free hydrofluoric acid concentration in the mixed acid solution above a certain acidity. Therefore, in the present invention, in order not to dissociate the hydrofluoric acid contained in the mixed acid solution, it is preferable that the mixed acid solution contains sulfuric acid at a predetermined concentration or more together with the hydrofluoric acid.
이때, 적합한 황산 농도로는 80~150g/ℓ가 바람직하고, 황산의 농도가 80g/ℓ 미만인 경우, 유효 자유 불산 농도가 유지되지 않아 불산의 해리가 발생해 산세력이 약화되므로, 미산세의 문제가 생길 수 있고, 농도가 150g/ℓ를 초과하는 경우에는 황산 희석 조업 중에 발열이 발생하여 조업이 곤란하게 되는 등의 문제가 발생할 수 있다. At this time, a suitable sulfuric acid concentration is preferably 80 to 150 g / l, and when the concentration of sulfuric acid is less than 80 g / l, the effective free hydrofluoric acid concentration is not maintained, so that dissociation of hydrofluoric acid occurs and the pickling force is weakened. If the concentration is more than 150g / L may cause problems such as heat generation during the sulfuric acid dilution operation is difficult to operate.
한편, 페라이트계 스테인리스 강의 산화 스케일 중, 규소 산화물은 페라이트계 결정의 그레인 표면 및 그레인과 그레인 간의 결정립계에 모두 존재하며, 결정립계의 규소 산화물은 모재 내부의 더 깊은 위치에 까지 존재한다. 오스테나이트계 스테인리스 강의 경우에는 결정의 내식성이 높아 결정립계부터 우선적으로 침식되는 것과 달리, 페라이트계 스테인리스 강은 결정의 내식성이 낮기 때문에 결정 내부와 결정립 사이의 침식 속도에 차이가 없어, 그레인 표면과 결정립계가 선택성 없이 전적으로 용해된다. 따라서, 규소 산화물을 모두 제거하기 위해서는 상당 부분의 모재가 용해될 필요가 있다. On the other hand, in the oxidation scale of ferritic stainless steel, silicon oxide exists in both the grain surface of the ferritic crystal and the grain boundary between grain and grain, and the silicon oxide of the grain boundary exists in a deeper position inside the base material. In the case of austenitic stainless steels, the corrosion resistance of crystals is high and erosion is preferentially from the grain boundaries, whereas ferritic stainless steels have low corrosion resistance, so there is no difference in the erosion rate between the grains and the grains. It is completely dissolved without selectivity. Therefore, in order to remove all the silicon oxide, a considerable part of base metal needs to be dissolved.
이때, 모재로부터 Fe2+가 용출되며, 용출된 Fe2+는 과산화수소와 같은 산화제와 반응하면 Fe3+로 산화되고, 그 후 자유 불산과 결합하여 FeFx
(3-x) 형태의 착화합물이 생성되어 강판 표면에서부터 제거될 수 있다. 상기 반응은 하기 식(3) 내지 (6)과 같이 표현할 수 있으며, 이와 같은 과정이 원활하게 진행되어야 산세 속도를 높일 수 있다. At this time, Fe 2+ is eluted from the base material, and the eluted Fe 2+ is oxidized to Fe 3+ when reacted with an oxidizing agent such as hydrogen peroxide, and then combined with free hydrofluoric acid to form a FeF x (3-x) complex. Can be removed from the steel plate surface. The reaction may be expressed as in the following formulas (3) to (6), it is possible to increase the pickling rate only when such a process proceeds smoothly.
Fe0 → Fe2+ + 2e- (3) Fe 0 → Fe 2+ + 2e - (3)
Fe2+ + H2O2 → Fe3+ + ?OH + OH- (4) Fe 2+ + H 2 O 2 → Fe 3+ + OH + OH -? (4)
Fe3+ + 3HF → FeF3 + 3H+ (5)Fe 3+ + 3HF → FeF 3 + 3H + (5)
Cu2+ + 2e- → Cu0 (6) Cu 2+ + 2e - → Cu 0 (6)
이때, 상기 혼산 산세액 내에 과산화수소의 농도가 부족할 경우, 식 (4)의 반응이 이루어지지 않아 강판 표면의 Fe2+ 농도가 국부적으로 증가하여 식 (3)의 왼쪽 방향의 반응이 우세하게 된다. 이 경우 식 (6)과 같이 Fe 및 스테인리스 강에 첨가물 혹은 불순물로 존재하는 Cu 등이 강판 표면에 재석출되어, 강판 표면이 검게 변하는 흑변 현상이 발생한다. 따라서 과산화수소의 함량을 항상 일정한 수준으로 유지하여 식(4)의 반응이 충분히 이루어질 수 있도록 하는 것이 바람직하다. At this time, when the concentration of hydrogen peroxide in the mixed acid pickling solution is insufficient, the reaction of Formula (4) does not occur, the Fe 2+ concentration on the surface of the steel sheet is locally increased, the reaction in the left direction of the formula (3) is predominant. In this case, as shown in Equation (6), Cu, which is present as an additive or an impurity in Fe and stainless steel, is reprecipitated on the surface of the steel sheet, and a blackening phenomenon occurs in which the steel sheet surface turns black. Therefore, it is desirable to maintain the content of hydrogen peroxide at a constant level at all times so that the reaction of Formula (4) can be sufficiently made.
한편, 상기한 바와 같이 냉연강판을 혼산 용액에 침지하며 산세를 수행하는 경우, 모재를 일부 용해하며 잔류하는 규소 산화물 층까지 제거할 수 있는 것인데, 강종 내 몰리브덴(Mo)의 함량이 높을수록 내식성이 높아 산세 시 용해 속도를 느리게 할 수 있고, 규소(Si)의 함량이 높을수록, 규소 산화물의 층이 두껍게 형성되어 혼산 용액이 모재를 용해하기 어려울 수 있다. On the other hand, when pickling is performed by immersing the cold rolled steel sheet in a mixed acid solution as described above, it is possible to remove some residual silicon oxide layer by dissolving the base material, the higher the content of molybdenum (Mo) in the steel species It can be high to slow the dissolution rate during pickling, and the higher the content of silicon (Si), the thicker the layer of silicon oxide is formed, it is difficult for the mixed acid solution to dissolve the base material.
따라서, 본 발명의 산세 방법은, 상기한 혼산 침지 단계 시, 냉연강판에 포함된 규소(Si) 및 몰리브덴(Mo)의 함량에 따라 혼산 용액에 포함된 자유 불산(Free HF)의 함량 및 산화환원전위(ORP)를 조절하여 수행함으로써 효과적으로 산세를 수행할 수 있다. Therefore, in the pickling method of the present invention, the content and redox of the free hydrofluoric acid (Free HF) contained in the mixed acid solution according to the content of silicon (Si) and molybdenum (Mo) contained in the cold rolled steel sheet, Pickling can be effectively performed by adjusting the potential ORP.
즉, 고크롬 페라이트계 스테인리스 강의 경우, 규소(Si) 함량이 0.3중량% 이하이거나 몰리브덴(Mo) 함량이 0.5중량% 이하인 경우, 소둔 스케일의 대부분이 전해 산세 단계에서 제거되고, 미량으로 잔류하는 규소 산화물만 제거하면 되므로, 자유 불산의 농도를 낮게 하여 모재 침식을 최소화하는 것이 바람직하다. That is, in the case of high chromium ferritic stainless steel, when the silicon (Si) content is 0.3% by weight or less or the molybdenum (Mo) content is 0.5% by weight or less, most of the annealing scale is removed in the electrolytic pickling step, and the silicon remaining in a trace amount Since only the oxides need to be removed, it is desirable to minimize the erosion of the base material by lowering the concentration of free hydrofluoric acid.
따라서, 본 발명에서는 규소 함량이 0.3중량% 이하이거나 몰리브덴 함량이 0.5중량% 이하인 경우, 혼산 용액은 80~150g/L 농도의 황산 및 5~12g/L 농도의 자유 불산을 포함하는 것이 바람직하며, 흑변 현상을 방지하기 위하여 혼산 용액의 산화환원전위(ORP)가 550mV이상 유지되도록 과산화수소를 추가하는 것이 바람직하다. Therefore, in the present invention, when the silicon content is 0.3% by weight or less or the molybdenum content is 0.5% by weight or less, the mixed acid solution preferably includes 80-150 g / L sulfuric acid and 5-12 g / L free hydrofluoric acid. In order to prevent blackening, it is preferable to add hydrogen peroxide such that the redox potential (ORP) of the mixed acid solution is maintained at 550 mV or more.
반면, 고크롬 페라이트계 스테인리스 강에서 규소(Si) 함량이 0.3중량%를 초과하는 경우, 전해 산세 후 혼산 용액에 침지 단계 전, 강판 표면에 규소 산화물이 다량 존재할 수 있으므로, 이를 효과적으로 제거하기 위하여는 고농도의 자유 불산을 사용하는 것이 바람직하다. On the other hand, if the silicon (Si) content in the high chromium ferritic stainless steel exceeds 0.3% by weight, a large amount of silicon oxide may be present on the surface of the steel sheet before the immersion step in the mixed acid solution after electrolytic pickling, in order to effectively remove Preference is given to using high concentrations of free hydrofluoric acid.
또한, 고크롬 페라이트계 스테인리스 강에서 몰리브덴(Mo)의 함량이 0.5중량% 를 초과하는 경우, 강판에 포함된 몰리브덴의 높은 함량에 기인하여 내식성이 높아짐에 따라 혼산 용액에 의한 모재의 용해 속도가 현저히 저하될 수 있으므로, 혼산 용액으로 자유 불산을 고농도로 포함하는 것을 사용하는 것이 바람직하다. In addition, when the content of molybdenum (Mo) in the high chromium ferritic stainless steel exceeds 0.5% by weight, the rate of dissolution of the base material by the mixed acid solution is significantly increased due to the high corrosion resistance due to the high content of molybdenum contained in the steel sheet Since it may fall, it is preferable to use what contains a high concentration of free hydrofluoric acid as a mixed acid solution.
따라서, 본 발명에서는 규소 함량이 0.3 중량%를 초과하거나, 몰리브덴 함량 이 0.5중량%를 초과하는 경우, 혼산 용액은 80~150g/L 농도의 황산 및 20~30g/L 농도의 자유 불산을 포함하는 것이 바람직하며, 흑변 현상을 방지하기 위하여 혼산 용액의 산화환원전위(ORP)가 320mV이상 유지되도록 과산화수소를 추가하는 것이 바람직하다.Therefore, in the present invention, when the silicon content is more than 0.3% by weight or the molybdenum content is more than 0.5% by weight, the mixed acid solution includes sulfuric acid at a concentration of 80 to 150 g / L and free hydrofluoric acid at a concentration of 20 to 30 g / L. In order to prevent blackening, it is preferable to add hydrogen peroxide such that the redox potential (ORP) of the mixed acid solution is maintained at 320 mV or more.
단, 본 발명의 산세방법에 있어서, 상기한 혼산 용액의 산화환원전위 범위는 스테인리스 강에 포함된 규소 및 몰리브덴 함량과 관계없이 그 상한을 특별히 한정할 필요가 없으나, 일반적으로 고불산 조업 시 용액 내 메탈의 함량이 매우 높게 되며, 이러한 상황에서 산화환원전위를 높게 유지하려면 과수 투입량이 과다하게 되어 경제적인 점에서 문제가 될 수 있으므로, 예를 들어 그 상한은 600mV 이하로 유지되는 것이 바람직하다. However, in the pickling method of the present invention, the redox potential range of the mixed acid solution does not have to be particularly limited in its upper limit regardless of the silicon and molybdenum content contained in the stainless steel, The metal content is very high, and in such a situation, if the redox potential is kept high, the excessive amount of fruit may be excessive, which may be an economical problem. For example, the upper limit is preferably maintained at 600 mV or less.
도 3은 본 발명에서 냉연강판에 포함된 규소 및 몰리브덴의 함량에 따라 혼산 침지 단계에서 사용하는 혼산 용액 내 포함된 자유 불산의 농도 및 혼산 용액의 산화환원전위 영역을 그림으로 나타낸 것이다.Figure 3 shows the concentration of free hydrofluoric acid contained in the mixed acid solution used in the mixed acid immersion step and the redox potential region of the mixed acid solution according to the content of silicon and molybdenum contained in the cold rolled steel sheet in the present invention.
구체적으로, 도 3 의 영역 Ⅲ은 고크롬 페라이트계 스테인리스 강에서 Si 함량이 0.3중량% 이하이거나, Mo 함량이 0.5중량% 이하인 스테인리스 강 성분계로 전해 산세 후 혼산 용액에 침지 시, 산세 가능한 자유 불산 농도는 5~12g/L이고, 용액의 산화환원 전위 범위는 550mV 이상을 나타낸 것이다. Specifically, region III of FIG. 3 shows free hydrofluoric acid concentration which can be pickled when immersed in a mixed acid solution after electrolytic pickling in a stainless steel component having a Si content of 0.3 wt% or less or a Mo content of 0.5 wt% or less in a high chromium ferritic stainless steel. Is 5-12 g / L, and the redox potential range of the solution is 550 mV or more.
또한, 도 3의 영역 Ⅳ는 고크롬 페라이트계 스테인리스 강에서, Si 함량이 0.3중량%를 초과하거나, Mo 함량이 0.5중량%를 초과하는 스테인리스 강 성분계로 전해 산세 후 혼산 용액에 침지 시, 산세 가능한 자유 불산 농도는 20~30g/L이고, 용액의 산화환원 전위 범위는 320mV 이상을 나타낸 것이다.In addition, the region IV of FIG. 3 is capable of pickling when immersed in a mixed acid solution after electrolytic pickling with a stainless steel component system having a Si content of more than 0.3 wt% or a Mo content of more than 0.5 wt% in a high chromium ferritic stainless steel. Free hydrofluoric acid concentration is 20 ~ 30g / L, the redox potential range of the solution is more than 320mV.
또한, 본 발명에서 상기 혼산 침지 단계 시 냉연강판의 표면 전위는 -0.2 내지 0V 범위로 유지하는 것이 바람직하다. 스테인리스 강은 표면 전위에 따라서 용해되는 속도 및 패턴이 정해지는 바, 표면 전위가 -0.2V 미만의 낮은 값에서는 모재가 Fe2+로 주로 용해되고 SO4
2-와 반응하여 표면에 FeSO4 화합물을 형성해 표면에 흑변 현상이 발생할 수 있는데, 그 경우 표면에서 모재가 용해될 때 그레인의 특정 방위가 심하게 용해되어 표면이 매우 거칠게 되며, 또한, 표면 전위가 높아야만 제거될 수 있는 Fe3+가 제거되지 않아, 과산세 및 미산세가 혼재하게 될 수 있다. 반면, 표면 전위가 0V를 초과하게 되면 표면이 용해되기 전에 전위가 너무 높아져, 용해시켜 제거해야 할 일부 바람직하지 못한 부분이 그대로 남게 되므로 산세 속도 또한 매우 느려질 수 있고, 황산-불산-과수 시스템에서 강판의 표면 전위를 높게 유지 하려면 과수 소모량이 매우 크기 때문에 경제적으로도 문제될 있다.In addition, in the present invention, the surface potential of the cold rolled steel sheet during the mixed acid immersion step is preferably maintained in the range of -0.2 to 0V. In case of stainless steel, the dissolution rate and pattern are determined according to the surface potential. At a low surface potential of less than -0.2 V, the base metal is mainly dissolved as Fe 2+ and reacts with SO 4 2- to form FeSO 4 compound on the surface. Black phenomena may form on the surface, in which case the specific orientation of the grains dissolves severely when the base material is dissolved on the surface, and the surface becomes very rough, and Fe 3+ , which can be removed only at a high surface potential, is not removed. As a result, the tax and tax may be mixed. On the other hand, if the surface potential exceeds 0 V, the potential becomes too high before the surface dissolves, leaving some undesirable portions to be dissolved and removed, and thus the pickling rate can be very slow. In order to maintain the surface potential of, the overconsumption is very high, which can be economically problematic.
본 발명에서 상기 혼산 침지 단계의 수행 시간은 특별히 한정하지 않으며 조업 조건에 따라 변동될 수 있는 것이나, 본 발명의 산세 방법에 의할 경우, 25 내지 90초의 짧은 시간 내에서도 수행할 수 있다.In the present invention, the execution time of the mixed acid immersion step is not particularly limited and may vary depending on operating conditions. However, according to the pickling method of the present invention, it may be performed within a short time of 25 to 90 seconds.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples. The following examples are merely examples to help understanding of the present invention, but the scope of the present invention is not limited thereto.
본 발명에 있어서 이하의 실시예에서는 441강과 439강을 사용하였으며, 상기 441강과 439강의 표현은 소둔 스케일내 Cr/Fe 성분의 함량비를 나타내는 것으로, 441강은 1050℃, 439강은 970℃ 열처리 한 것이며, 소둔 스케일 내 Cr/Fe 함량의 성분 비가 441강은 8.5, 439강은 4.3 수준이다. In the following examples, 441 steel and 439 steel were used in the following examples, and the expression of the 441 steel and 439 steel indicates the content ratio of Cr / Fe component in the annealing scale, and the 441 steel was 1050 ° C. and the 439 steel was 970 ° C. heat-treated. The composition ratio of Cr / Fe content in the annealing scale is 8.5 in 441 steel and 4.3 in 439 steel.
두 강종 모두 크롬 함량은 총 중량에 대하여 17 중량% 정도 포함된 수준이지만, 강종 특성 상 소둔 온도 차이에 의해 소둔 스케일 내 Cr/Fe 비가 차이가 발생한다. In both steel grades, the chromium content is about 17 wt% based on the total weight, but the Cr / Fe ratio in the annealing scale is different due to the difference in annealing temperature due to the characteristics of the steel grade.
한편, 중성염 전해는 Cr3+ 산화물인 Cr2O3를 Cr6+(Cr2O4
2-) 이온으로 산화 용해시키지만, Fe 계열의 산화물은 용해하기 어려운 특성이 있어, 스케일 내 크롬의 함량이 높을수록 스케일 제거에 유리하다. 따라서, 상기 439강 및 441강 모두 소둔 스케일 내 크롬 함량이 높아 중성염 전해 산세에는 유리한 강종이나, Cr/Fe 비가 높은 441강이 더욱 유리하다고 볼 수 있다.On the other hand, neutral salt electrolysis dissolves Cr 2 O 3 Cr 3+ oxide with Cr 6+ (Cr 2 O 4 2- ) ions, but Fe-based oxides are difficult to dissolve, resulting in the content of chromium in the scale. The higher the value, the better the scale removal. Therefore, both the 439 and 441 steels have high chromium content in the annealing scale, which is advantageous for neutral salt electrolytic pickling, but the 441 steel having a high Cr / Fe ratio may be more advantageous.
나아가, 도 1은 439강 및 441강의 소둔 스케일의 Cr/Fe비를 그래프로 도시한 것으로, 439강 및 441강 모두 스케일 외층에서 내층으로 갈수록 크롬 함량이 높아져 Cr/Fe가 증가하는 경향을 보이며, 모재쪽으로 완전히 들어가면 모재의 Cr/Fe 함량 비로 수렴하는 것을 볼 수 있다.Furthermore, FIG. 1 is a graph showing the Cr / Fe ratios of the annealing scales of the 439 steel and the 441 steel, and the 439 steel and the 441 steel have a tendency to increase Cr / Fe due to the increase in the chromium content from the outer layer to the inner layer. Once fully entered into the base material, it can be seen that it converges to the Cr / Fe content ratio of the base material.
[실시예 1 내지 5 및 비교예 1 내지 15][Examples 1 to 5 and Comparative Examples 1 to 15]
소둔 온도가 1050℃인 441강을 황산 나트륨을 전해질로 포함하는 중산염 전해조에 하기 표 1과 같은 전류 밀도를 가하고, 황산을 전해질로 포함하는 황산 전해조에 하기 표 1과 같은 전류 밀도를 가하여 전해 산세를 수행하였으며, 그 후, 80g/L 황산 및 8g/L 자유 불산을 포함하는 40℃의 혼산 용액에 30초간 침지하였다. 단, 상기 용액의 산화환원전위를 550mV 이상으로 유지되도록 잔류 과산화수소 농도를 3g/L로 추가하였다. Electrolytic pickling was carried out by adding a current density as shown in Table 1 below to a salt acid electrolyzer containing sodium sulfate as an electrolyte for 441 steel having an annealing temperature of 1050 ° C, and adding a current density as shown in Table 1 below to a sulfuric acid bath containing sulfuric acid as an electrolyte. Was then immersed in a mixed acid solution at 40 ° C. containing 80 g / L sulfuric acid and 8 g / L free hydrofluoric acid for 30 seconds. However, the residual hydrogen peroxide concentration was added to 3g / L to maintain the redox potential of the solution above 550mV.
산세 후 결과를 하기 표 1에 함께 나타내었으며, 강판의 표면에 스케일이 잔류하지 않는 경우에는 ○로 표시하고, 스케일이 잔류하는 경우에는 미산세로 평가하여 ×로 표시하였다. 또한 과산세에 의한 표면 침식이 발생한 경우도 ×로 표시하였다.After the pickling, the results are shown in Table 1 below, and when the scale does not remain on the surface of the steel sheet, it is expressed as ○, and when the scale remains, it is evaluated as unpickled and represented by ×. In addition, the case where the surface erosion by the superacid wash is represented by x.
또한, 비교예 1, 실시예 1, 비교예 8 및 비교예 9에서 산세 후 스테인리스강의 표면을 사진을 도 4의 (a) 내지 (d)에 나타내었다.In addition, the photograph of the surface of the stainless steel after pickling in Comparative Example 1, Example 1, Comparative Example 8, and Comparative Example 9 is shown to (a)-(d) of FIG.
표 1 구분 | 중성염전해조 전류밀도(A/dm2) | 황산전해조전류밀도(A/dm2) | 합 | 산세성 | 비고 |
비교예 1 | 6 | 0 | 6 | x | 미산세 |
비교예 2 | 6 | 4 | 10 | x | 미산세 |
비교예 3 | 6 | 8 | 14 | x | 미산세 |
비교예 4 | 6 | 10 | 16 | x | 미산세 |
비교예 5 | 6 | 20 | 26 | x | 미산세 |
비교예 6 | 8 | 0 | 8 | x | 미산세 |
비교예 7 | 8 | 4 | 12 | x | 불균일산세 |
실시예 1 | 8 | 8 | 16 | O | 정상 |
실시예 2 | 8 | 10 | 18 | O | 정상 |
비교예 8 | 8 | 20 | 28 | x | 과산세 |
실시예 3 | 12 | 0 | 12 | O | 정상 |
비교예 9 | 12 | 4 | 16 | x | 불균일산세 |
실시예 4 | 12 | 8 | 20 | O | 정상 |
비교예 10 | 12 | 10 | 22 | x | 과산세 |
비교예 11 | 16 | 20 | 36 | x | 과산세 |
실시예 5 | 16 | 0 | 16 | O | 정상 |
비교예 12 | 16 | 4 | 20 | x | 불균일산세 |
비교예 13 | 16 | 8 | 24 | x | 과산세 |
비교예 14 | 16 | 10 | 26 | x | 과산세 |
비교예 15 | 16 | 20 | 36 | x | 과산세 |
Table 1 division | Neutral Salt Cell Current Density (A / dm 2 ) | Sulfuric acid electrolytic cell current density (A / dm 2 ) | synthesis | Pickling | Remarks |
Comparative Example 1 | 6 | 0 | 6 | x | Misan tax |
Comparative Example 2 | 6 | 4 | 10 | x | Misan tax |
Comparative Example 3 | 6 | 8 | 14 | x | Misan tax |
Comparative Example 4 | 6 | 10 | 16 | x | Misan tax |
Comparative Example 5 | 6 | 20 | 26 | x | Misan tax |
Comparative Example 6 | 8 | 0 | 8 | x | Misan tax |
Comparative Example 7 | 8 | 4 | 12 | x | Heterogeneous acid tax |
Example 1 | 8 | 8 | 16 | O | normal |
Example 2 | 8 | 10 | 18 | O | normal |
Comparative Example 8 | 8 | 20 | 28 | x | Taxation |
Example 3 | 12 | 0 | 12 | O | normal |
Comparative Example 9 | 12 | 4 | 16 | x | Heterogeneous acid tax |
Example 4 | 12 | 8 | 20 | O | normal |
Comparative Example 10 | 12 | 10 | 22 | x | Taxation |
Comparative Example 11 | 16 | 20 | 36 | x | Taxation |
Example 5 | 16 | 0 | 16 | O | normal |
Comparative Example 12 | 16 | 4 | 20 | x | Uneven pickling |
Comparative Example 13 | 16 | 8 | 24 | x | Taxation |
Comparative Example 14 | 16 | 10 | 26 | x | Taxation |
Comparative Example 15 | 16 | 20 | 36 | x | Taxation |
(* 상기 표 1에서 '합'이란 중성염 전해 산세의 전류 밀도와 황산 전해 산세의 전류 밀도의 합을 의미하는 것이다)(* 'Sum' in Table 1 means the sum of the current density of neutral salt electrolytic pickling and the current density of sulfuric acid electrolytic pickling)
상기 표 1로부터 알 수 있듯이, 실시예 1 내지 5에서처럼 중성염 전해조 전류가 8A/dm2 이상이고, 황산 전해조 전류가 0 혹은 8A/dm2 이상이며, 두 전해조 인가 전류량의 합이 12 A/dm2 이상 20 A/dm2 이하인 경우는 정상 산세면을 볼 수 있다.As can be seen from Table 1, the neutral salt electrolytic cell current is 8A / dm 2 or more, sulfuric acid electrolytic cell current is 0 or 8A / dm 2 or more, as in Examples 1 to 5, the sum of the two electrolytic cell applied current amount is 12 A / dm 2. If more than 20 a / dm 2 or less can be seen a normal acid washing.
그러나, 비교예 1 내지 5에서처럼 중성염 전해조 전류가 8A/dm2 미만일 경우 중성염 전해조에서 스케일 용해량이 부족하여 미산세가 발생하며, 비교예 7, 9 및 12에서처럼 중성염 전해조 전류가 8A/dm2 이상이라도 황산 전해 산세의 전류값이 0초과 8 A/dm2 미만일 경우 불균일 산세가 발생한 것을 볼 수 있다. However, when the neutral salt electrolyzer current is less than 8 A / dm 2 as in Comparative Examples 1 to 5, the scale dissolution amount is insufficient in the neutral salt electrolyzer, and the acid pickling occurs as in Comparative Examples 7, 9 and 12, and the neutral salt electrolyzer current is 8 A / dm 2. Even if the current value of sulfuric acid electrolytic pickling is more than 0 and less than 8 A / dm 2 it can be seen that non-uniform pickling occurred.
또한, 비교예 8, 10, 11, 13, 14 및 15에서처럼 중성염 전해조 전류와 황산 전해조 전류의 합이 20A/dm2 를 초과하는 경우, 과산세가 발생한 것을 볼 수 있다. In addition, as in Comparative Examples 8, 10, 11, 13, 14, and 15, when the sum of the neutral salt electrolytic cell current and the sulfuric acid electrolytic cell current exceeds 20 A / dm 2 , it can be seen that over-acidity occurs.
도 4의 (a) 내지 (d)는 비교예 1, 실시예 1, 비교예 8 및 비교예 9에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것으로, (a)는 인가 전류량이 부족하여 미산세에 따라 잔류 스케일이 존재하는 것을 볼 수 있고, (b)는 실시예 1에 따른 정상 산세면을 볼 수 있다. 또한, (c)는 과산세에 따라 표면 침식이 발생하여 표면이 좋지 못한 것을 볼 수 있고, (d)는 불균일 산세에 따라 역시 표면이 좋지 못한 것을 볼 수 있다.Figure 4 (a) to (d) is a photograph showing the surface of the stainless steel after pickling in Comparative Example 1, Example 1, Comparative Example 8 and Comparative Example 9, (a) is not pickled because the amount of applied current is insufficient It can be seen that there is a residual scale, and (b) can see the normal pickling surface according to Example 1. In addition, (c) it can be seen that the surface is not good due to the surface erosion occurs due to the pickling, (d) can also be seen that the surface is not good due to uneven pickling.
상기 실시예를 통하여 스케일 성분내 크롬 성분비가 높은 경우는 전해 산세 시 중성염 전해조와 황산 전해조의 두 전해조 인가 전류량의 합이 12A/dm2 이상 20A/dm2 이하의 비교적 낮은 전해조 전류량에도 산세가 가능한 것을 알 수 있다.If the embodiment of the scale components in the chromium component ratio is high through the electrolytic pickling during pickling it is possible in a relatively low electrolytic current of 12A / dm 2 or more 20A / dm 2 or less the sum of the applied two electrolytic cell of the neutral salt electrolytic bath and the sulfuric acid electrolytic cell amperage It can be seen that.
[실시예 6 내지 12 및 비교예 16 내지 28][Examples 6 to 12 and Comparative Examples 16 to 28]
소둔 온도가 970℃인 439강을 황산 나트륨을 전해질로 포함하는 중산염 전해조에 하기 표2와 같은 전류 밀도를 가하고, 황산을 전해질로 포함하는 황산 전해조에 하기 표 1과 같은 전류 밀도를 가하여 전해 산세를 수행하였으며, 그 후, 80g/L 황산 및 8g/L 자유 불산을 포함하는 40℃의 혼산 용액에 30초간 침지하였다. 단, 상기 용액의 산화환원전위를 550mV 이상으로 유지되도록 잔류 과산화수소 농도를 3g/L로 추가하였다. Electrolytic pickling was carried out by adding a current density as shown in Table 2 to the acidic salt bath containing sodium sulfate as an electrolyte in 439 steel having an annealing temperature of 970 ° C, and adding a current density as shown in Table 1 below to a sulfuric acid bath containing sulfuric acid as an electrolyte. Was then immersed in a mixed acid solution at 40 ° C. containing 80 g / L sulfuric acid and 8 g / L free hydrofluoric acid for 30 seconds. However, the residual hydrogen peroxide concentration was added to 3g / L to maintain the redox potential of the solution above 550mV.
산세 후 결과를 하기 표 2에 함께 나타내었으며, 강판의 표면에 스케일이 잔류하지 않는 경우에는 ○로 표시하고, 스케일이 잔류하는 경우에는 미산세로 평가하여 ×로 표시하였다. 또한 과산세에 의한 표면 침식이 발생한 경우도 ×로 표시하였다.After the pickling, the results are shown in Table 2 below. If no scale remained on the surface of the steel sheet, the result was expressed as ○. In addition, the case where the surface erosion by the superacid wash is represented by x.
또한, 비교예 16, 실시예 6 및 비교예 28에서 산세 후 스테인리스강의 표면을 사진을 도 5의 (a) 내지 (c)에 나타내었다.In addition, photographs of the surface of the stainless steel after pickling in Comparative Example 16, Example 6, and Comparative Example 28 are shown in Figs.
표 2 구분 | 중성염전해조 전류밀도(A/dm2) | 황산전해조전류밀도(A/dm2) | 합 | 산세성 | 비고 |
비교예 16 | 6 | 0 | 6 | x | 미산세 |
비교예 17 | 6 | 8 | 14 | x | 미산세 |
비교예 18 | 6 | 12 | 18 | x | 미산세 |
비교예 19 | 6 | 16 | 22 | x | 미산세 |
실시예 6 | 6 | 24 | 30 | O | 정상 |
비교예 20 | 8 | 0 | 8 | x | 미산세 |
비교예 21 | 8 | 8 | 16 | x | 미산세 |
비교예 22 | 8 | 12 | 20 | x | 미산세 |
비교예 23 | 8 | 16 | 24 | x | 미산세 |
실시예 7 | 8 | 24 | 32 | O | 정상 |
비교예 24 | 16 | 0 | 16 | x | 미산세 |
비교예 25 | 16 | 8 | 24 | x | 미산세 |
비교예 26 | 16 | 12 | 28 | x | 미산세 |
실시예 8 | 16 | 16 | 32 | O | 정상 |
실시예 9 | 16 | 24 | 40 | O | 정상 |
비교예 27 | 24 | 0 | 24 | x | 미산세 |
실시예 10 | 24 | 12 | 36 | O | 정상 |
실시예 11 | 24 | 20 | 44 | O | 정상 |
실시예 12 | 24 | 26 | 50 | O | 정상 |
비교예 28 | 24 | 30 | 54 | x | 과산세 |
TABLE 2 division | Neutral Salt Cell Current Density (A / dm 2 ) | Sulfuric acid electrolytic cell current density (A / dm 2 ) | synthesis | Pickling | Remarks |
Comparative Example 16 | 6 | 0 | 6 | x | Misan tax |
Comparative Example 17 | 6 | 8 | 14 | x | Misan tax |
Comparative Example 18 | 6 | 12 | 18 | x | Misan tax |
Comparative Example 19 | 6 | 16 | 22 | x | Misan tax |
Example 6 | 6 | 24 | 30 | O | normal |
Comparative Example 20 | 8 | 0 | 8 | x | Misan tax |
Comparative Example 21 | 8 | 8 | 16 | x | Misan tax |
Comparative Example 22 | 8 | 12 | 20 | x | Misan tax |
Comparative Example 23 | 8 | 16 | 24 | x | Misan tax |
Example 7 | 8 | 24 | 32 | O | normal |
Comparative Example 24 | 16 | 0 | 16 | x | Misan tax |
Comparative Example 25 | 16 | 8 | 24 | x | Misan tax |
Comparative Example 26 | 16 | 12 | 28 | x | Misan tax |
Example 8 | 16 | 16 | 32 | O | normal |
Example 9 | 16 | 24 | 40 | O | normal |
Comparative Example 27 | 24 | 0 | 24 | x | Misan tax |
Example 10 | 24 | 12 | 36 | O | normal |
Example 11 | 24 | 20 | 44 | O | normal |
Example 12 | 24 | 26 | 50 | O | normal |
Comparative Example 28 | 24 | 30 | 54 | x | Taxation |
(* 상기 표 2에서 '합'이란 중성염 전해 산세의 전류 밀도와 황산 전해 산세의 전류 밀도의 합을 의미하는 것이다)(* 'Sum' in Table 2 means the sum of the current density of neutral salt electrolytic pickling and the current density of sulfuric acid electrolytic pickling)
상기 표 2로부터 알 수 있듯이, 실시예 6 내지 12에서처럼 중성염전해조 전류가 8A/dm2 이상이고, 중성염 전해조와 황산 전해조의 두 전해조 인가 전류량의 합이 30A/dm2 이상 50A/dm2 이하인 경우는 정상 산세면을 볼 수 있다. As can be seen from Table 2, as in Examples 6 to 12, the neutral salt electrolyzer current is 8 A / dm 2 or more, and the sum of the two electrolytic cell applied currents of the neutral salt electrolyzer and the sulfuric acid electrolyzer is 30 A / dm 2 or more and 50 A / dm 2 or less The case can be seen from the normal pickling surface.
그러나, 비교예 16 내지 19에서처럼 중성염 전해조 전류가 8A/dm2 미만일 경우 중성염 전해조에서 스케일 용해량이 부족하여 미산세가 발생하며, 비교예 20 내지 27에서처럼 중성염 전해조 전류가 8A/dm2 이상이라 하더라도 중성염 전해조 전류와 황산전해조 전류의 합이 30A/dm2 미만일 경우 미산세가 발생한 것을 볼 수 있다. 또한, 비교예 28에서와 같이 중성염 전해조와 황산전해조의 두 전해조 인가 전류량의 합이 50A/dm2을 초과하는 경우는 과산세가 발생하는 것을 볼 수 있다. However, when the neutral salt electrolyser current is less than 8 A / dm 2 as in Comparative Examples 16 to 19, the scale dissolution amount is insufficient in the neutral salt electrolyzer, and the neutral salt electrolyzer current is 8 A / dm 2 or more as in Comparative Examples 20 to 27. Even if the sum of the neutral salt electrolytic cell current and the sulfate electrolytic cell current is less than 30A / dm 2 it can be seen that the pickling occurs. In addition, as in Comparative Example 28, it can be seen that when the sum of the applied amounts of the two electrolyzers of the neutral salt electrolyzer and the sulfuric acid electrolyzer exceeds 50 A / dm 2 , peracid washing occurs.
도 5의 (a) 내지 (c)는 비교예 16, 실시예 6 및 비교예 28에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것으로, (a)는 비교예 16에서 인가 전류량이 부족하여 미산세에 따라 잔류 스케일이 존재하는 것을 볼 수 있고, (b)는 실시예 6에 따른 정상 산세면을 볼 수 있으며, (c)는 비교예 28에서 과산세에 따라 표면 침식이 발생하여 표면이 좋지 못한 것을 볼 수 있다.5 (a) to (c) is a photograph showing the surface of the stainless steel after pickling in Comparative Example 16, Example 6 and Comparative Example 28, (a) is a small amount of the applied current in Comparative Example 16 It can be seen that there is a residual scale, (b) can see the normal pickling surface according to Example 6, (c) is the surface erosion occurs due to the surface pickling in Comparative Example 28, the surface is not good You can see that.
본 실시예에서는 보여주지 않았지만, 중성염 전해조와 황산 전해조의 인가전류의 합이 정산 산세의 범위에 있다고 하더라도 황산 전해조의 인가 전류가 8A/dm2 미만인 경우는 도 4 의 (d)처럼 불균일 산세면을 나타내어 바람직하지 못하다.Although not shown in this embodiment, even if the sum of the applied currents of the neutral salt electrolyzer and the sulfuric acid electrolyzer is within the range of the pickling, the case where the applied current of the sulfuric acid electrolyzer is less than 8 A / dm 2 is a nonuniform pickling surface as shown in FIG. It is not preferable to represent.
상기 실시예를 통하여 스케일 성분내 크롬 성분비가 상대적으로 낮은 경우는 전해 산세 시 중성염 전해조와 황산전해조의 두 전해조 인가 전류량의 합이 30A/dm2이상 50 A/dm2이하의 매우 높은 인가 전류량이 필요함을 볼 수 있다.If the chromium component ratio scale components through the above-described embodiment is relatively low is the electrolytic pickling hour neutral salt electrolytic bath, and two electrolytic cell applied current sum is 30A / dm 2 or more very high applied current of 50 A / dm 2 or less for the sulfuric acid electrolytic bath It can be seen that it is necessary.
[실시예 13 내지 21 및 비교예 29 내지 33][Examples 13 to 21 and Comparative Examples 29 to 33]
하기 표 3에 기재된 강종을 소둔 온도에 따라 도 3에서의 영역 Ⅲ과 영역 Ⅳ를 적용하여 전해 산세를 실시한 뒤, 80g/L의 농도의 황산 및 하기 표 3에 기재된 농도의 자유 불산을 포함하는 40℃의 혼산 용액에 30초간 침지하였다. 단, 혼산 용액에 과산화수소를 첨가하여 산화환원전위(ORP)는 하기 표 3에 기재된 값 이상을 유지하도록 하였다. After the electrolytic pickling was carried out by applying the zone III and the zone IV in FIG. 3 according to the annealing temperature, the steel grades listed in Table 3 were used, and then 40% containing sulfuric acid at a concentration of 80 g / L and free hydrofluoric acid at the concentrations shown in Table 3 below. It was immersed for 30 second in the mixed acid solution of ° C. However, hydrogen peroxide was added to the mixed acid solution to maintain the redox potential (ORP) above the value shown in Table 3 below.
산세 후 결과를 하기 표 3에 함께 나타내었으며, 강판의 표면에 스케일이 잔류하지 않는 경우에는 ○로 표시하고, 스케일이 잔류하는 경우에는 미산세로 평가하여 ×로 표시하였다. 또한 과산세에 의한 표면 침식이 발생한 경우도 ×로 표시하였다.After the pickling, the results are shown in Table 3 below. If no scale remains on the surface of the steel sheet, the result is indicated by o. In addition, the case where the surface erosion by the superacid wash is represented by x.
또한, 비교예 29 및 비교예 31에서 산세 후 스테인리스 강의 표면 사진을 도 6의 (a) 및 (b)에 나타내었고, 비교예 32 및 실시예 16에서 산세 후 스테인리스강의 표면 사진을 도 7의 (a) 및 (b)에 나타내었으며, 비교예 33 및 실시예 19에서 산세 후 스테인리스강의 표면 사진을 도 8의 (a) 및 (b)에 나타내었다.In addition, the surface pictures of the stainless steel after pickling in Comparative Examples 29 and 31 are shown in FIGS. 6A and 6B, and the surface pictures of the stainless steel after pickling in Comparative Examples 32 and 16 are shown in FIG. A) and (b) are shown, and the surface photographs of the stainless steel after pickling in Comparative Examples 33 and 19 are shown in FIGS. 8A and 8B.
표 3 구분 | 강종 | 성분계 | 전해산세영역 | HF함량(g/L) | ORP(mV) | 산세성 | 비고 |
비교예 29 | 439 | Cr-17중량% | 영역 Ⅲ | 5 | 400 | X | 미산세 |
실시예 13 | 439 | Cr-17중량% | 영역 Ⅲ | 5 | 550 | O | 정상 |
비교예 30 | 439 | Cr-17중량% | 영역 Ⅲ | 8 | 500 | X | 미산세 |
실시예 14 | 439 | Cr-17중량% | 영역 Ⅲ | 8 | 550 | O | 정상 |
실시예 15 | 439 | Cr-17중량% | 영역 Ⅲ | 12 | 600 | O | 정상 |
비교예 31 | 439 | Cr-17중량% | 영역 Ⅲ | 25 | 550 | X | 과산세 |
비교예 32 | 430J1L | Cr-19중량%Si-0.5중량% | 영역 Ⅳ | 12 | 550 | X | 미산세 |
실시예 16 | 430J1L | Cr-19중량%Si-0.5중량% | 영역 Ⅳ | 20 | 320 | O | 정상 |
실시예 17 | 430J1L | Cr-19중량%Si-0.5중량% | 영역 Ⅳ | 25 | 340 | O | 정상 |
실시예 18 | 430J1L | Cr-19중량%Si-0.5중량% | 영역 Ⅳ | 30 | 370 | O | 정상 |
비교예 33 | 436L | Cr-17중량%Mo-1.0중량% | 영역 Ⅳ | 12 | 550 | X | 미산세 |
실시예 19 | 436L | Cr-17중량%Mo-1.0중량% | 영역 Ⅳ | 20 | 320 | O | 정상 |
실시예 20 | 436L | Cr-17중량%Mo-1.0중량% | 영역 Ⅳ | 25 | 340 | O | 정상 |
실시예 21 | 436L | Cr-17중량%Mo-1.0중량% | 영역 Ⅳ | 30 | 370 | O | 정상 |
TABLE 3 division | Steel grade | Ingredient | Electrolytic pickling area | HF content (g / L) | ORP (mV) | Pickling | Remarks |
Comparative Example 29 | 439 | Cr-17 wt% | Area Ⅲ | 5 | 400 | X | Misan tax |
Example 13 | 439 | Cr-17 wt% | Area Ⅲ | 5 | 550 | O | normal |
Comparative Example 30 | 439 | Cr-17 wt% | Area Ⅲ | 8 | 500 | X | Misan tax |
Example 14 | 439 | Cr-17 wt% | Area Ⅲ | 8 | 550 | O | normal |
Example 15 | 439 | Cr-17 wt% | Area Ⅲ | 12 | 600 | O | normal |
Comparative Example 31 | 439 | Cr-17 wt% | Area Ⅲ | 25 | 550 | X | Taxation |
Comparative Example 32 | 430J1L | Cr-19 wt% Si-0.5 wt% | Area IV | 12 | 550 | X | Misan tax |
Example 16 | 430J1L | Cr-19 wt% Si-0.5 wt% | Area IV | 20 | 320 | O | normal |
Example 17 | 430J1L | Cr-19 wt% Si-0.5 wt% | Area IV | 25 | 340 | O | normal |
Example 18 | 430J1L | Cr-19 wt% Si-0.5 wt% | Area IV | 30 | 370 | O | normal |
Comparative Example 33 | 436L | Cr-17 wt% Mo-1.0 wt% | Area IV | 12 | 550 | X | Misan tax |
Example 19 | 436L | Cr-17 wt% Mo-1.0 wt% | Area IV | 20 | 320 | O | normal |
Example 20 | 436L | Cr-17 wt% Mo-1.0 wt% | Area IV | 25 | 340 | O | normal |
Example 21 | 436L | Cr-17 wt% Mo-1.0 wt% | Area IV | 30 | 370 | O | normal |
(단, 상기 표 3에서 439 강종으로는 몰리브덴(Mo)은 포함하지 않으며, 규소(Si)의 함량이 0.3중량% 이하인 것을 사용하였다.)(However, in Table 3, the 439 steel grade does not include molybdenum (Mo), and a silicon (Si) content of 0.3 wt% or less was used.)
상기 표 3으로부터 알 수 있는 바와 같이, 17중량% 크롬을 포함하는 439강을 산세하는 경우(비교예 29 내지 31 및 실시예 13 내지 15) 산화환원전위가 550mV 이상, 자유 불산(HF) 농도가 5~12g/L 범위에서 정상 산세됨을 알 수 있다. 그러나, 비교예 29에서와 같이 산화환원전위가 550mV 미만인 경우 미산세가 발생하는 것을 볼 수 있고, 비교예 31에서와 같이 자유 불산 농도가 12g/L를 초과하는 경우 과산세가 발생하는 것을 알 수 있다. 산화환원전위가 550mV 이상의 의미는 산세 시 잔류하는 과산화수소의 농도를 일정 이상 유지하여야 한다는 뜻으로, 용액 내 과산화수소가 잔류하는 경우 산화환원전위는 통상 550~600mV로 측정된다. As can be seen from Table 3, when pickling 439 steel containing 17 wt% chromium (Comparative Examples 29 to 31 and Examples 13 to 15), the redox potential was 550 mV or more, and the free hydrofluoric acid (HF) concentration was It can be seen that it is pickled normally in the range of 5 to 12 g / L. However, when the redox potential is less than 550 mV as in Comparative Example 29, it can be seen that the acid pickling occurs, and as in Comparative Example 31, when the free hydrofluoric acid concentration exceeds 12 g / L, it can be seen that the superacid is generated. . Redox potential of more than 550mV means that the concentration of hydrogen peroxide remaining during pickling should be maintained above a certain level. If hydrogen peroxide remains in solution, the redox potential is usually measured at 550 ~ 600mV.
한편, 크롬을 17중량%로 함유하는 강이라 하더라도, 강종 성분계에 Si 함량이 중량비로 0.3% 초과하거나, Mo 함량이 중량비로 0.5% 초과하는 경우인 430J1L, 436L강은 자유 불산(HF) 농도가 20~30g/L에서 산세가 가능하지만, 비교예 32 및 33에서와 같이 저농도의 불산을 포함하는 혼산 용액을 사용하는 경우 미산세가 발생하는 것을 볼 수 있다. 이때 산화환원전위는 320mV 이상이면 산세가 가능하며, 이는 잔류 과산화수소가 없어도, 용액 내 금속이온 중 Fe3+ 이온과 Fe2+ 이온의 비(Fe3+/Fe2+)가 1 이상이면 가능하나, 일반적으로 산화환원전위를 320mV 이상으로 계속 유지하려면 과산화수소를 일정량 계속 주입해 주어야 한다. On the other hand, even in steels containing 17% by weight of chromium, 430J1L and 436L steels in which Si content exceeds 0.3% by weight in the steel grade component system or Mo content exceeds 0.5% by weight, have free hydrofluoric acid (HF) concentration. Although pickling is possible at 20 to 30 g / L, as in Comparative Examples 32 and 33, when using a mixed acid solution containing a low concentration of hydrofluoric acid, it can be seen that pickling occurs. At this time, the redox potential can be pickled if it is 320 mV or more, and even if there is no residual hydrogen peroxide, it is possible if the ratio of Fe 3+ ions and Fe 2+ ions (Fe 3+ / Fe 2+ ) in the metal ions in the solution is 1 or more. In general, a constant amount of hydrogen peroxide must be injected to maintain the redox potential above 320 mV.
도 6의 (a) 및 (b)는 비교예 29 및 비교예 31에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것으로, (a)는 비교예 29에서 자유 불산 농도 및 혼산 용액의 산화환원전위가 모두 낮음에 따라 표면에 미산세가 발생한 것을 볼 수 있고, (b)는 비교예 31에서 자유 불산의 농도가 본 발명의 범위를 초과하여 적용한 경우 과산세가 발생하여, 표면 침식이 발생한 것을 볼 수 있다.Figure 6 (a) and (b) is a photograph showing the surface of the stainless steel after pickling in Comparative Examples 29 and 31, (a) is the free hydrofluoric acid concentration and redox potential of the mixed acid solution in Comparative Example 29 It can be seen that the pickling occurs on the surface according to the low all, (b) can be seen that in the case of applying the concentration of free hydrofluoric acid in Comparative Example 31 exceeds the range of the present invention, the super-acid is generated, the surface erosion occurred .
또한, 도 7의 (a) 및 (b)는 비교예 32 및 실시예 16에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것으로, (a)는 비교예 32에서 자유 불산 농도가 낮아 표면에 미산세가 발생한 것을 볼 수 있고, (b)는 실시예 16에 따라 정상 산세면의 형상을 볼 수 있다.In addition, (a) and (b) of Figure 7 shows a photograph of the surface of the stainless steel after pickling in Comparative Example 32 and Example 16, (a) has a low free hydrofluoric acid concentration in Comparative Example 32, so that It can be seen that, and (b) can see the shape of the normal pickling surface according to Example 16.
또한, 도 8의 (a) 및 (b)는 비교예 33 및 실시예 19에서 산세 후 스테인리스강의 표면을 사진으로 도시한 것으로, (a)는 비교예 33에서 자유 불산 농도가 낮아 표면에 미산세가 발생한 것을 볼 수 있고, (b)는 실시예 19에 따라 정상 산세면의 형상을 볼 수 있다.In addition, (a) and (b) of Figure 8 shows a photograph of the surface of the stainless steel after pickling in Comparative Example 33 and Example 19, (a) has a low free hydrofluoric acid concentration in Comparative Example 33, so that It can be seen that, and (b) can see the shape of the normal pickling surface according to Example 19.
상기와 같은 실시예를 통하여 강종에 포함된 원소에 따라 산세성에 있어서 차이가 나고, 이에 따라 산세 가능한 자유 불산 농도 및 용액 산화환원전위에도 영향을 미치는 것을 알 수 있다.Through the above examples, it can be seen that the pickling properties are different depending on the elements included in the steel grade, thereby affecting the free hydrofluoric acid concentration and the redox potential of the solution.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and changes can be made without departing from the technical spirit of the present invention described in the claims. It will be obvious to those of ordinary skill in the field.