WO2015004742A1 - 熱負荷予測装置、配信システム、熱負荷予測方法及びプログラム - Google Patents
熱負荷予測装置、配信システム、熱負荷予測方法及びプログラム Download PDFInfo
- Publication number
- WO2015004742A1 WO2015004742A1 PCT/JP2013/068835 JP2013068835W WO2015004742A1 WO 2015004742 A1 WO2015004742 A1 WO 2015004742A1 JP 2013068835 W JP2013068835 W JP 2013068835W WO 2015004742 A1 WO2015004742 A1 WO 2015004742A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal load
- value
- space
- model
- data
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/50—Load
Definitions
- the present invention relates to a thermal load prediction device, a distribution system, a thermal load prediction method, and a program.
- the energy consumption of the air conditioning equipment can be reduced by controlling the air conditioning equipment installed in the facility according to the heat load of the space to be air-conditioned.
- a heat storage air-conditioning system that performs air conditioning during the day using heat stored at night when the electricity rate is low is known.
- Patent Document 1 uses the neural network to predict the heat load of the next day from the predicted value of the outside air temperature. Further, this system corrects the parameters of the neural network based on an error when comparing the predicted value of the heat load predicted on the previous day with the actual value of the heat load on the current day. Thereby, prediction suitable for the characteristic of a building can be performed.
- the predicted value of the thermal load predicted by the system described in Patent Document 1 includes both an error caused by a prediction error such as an outside air temperature and an error caused by a parameter value of the neural network. For this reason, there is a possibility that the parameters of the neural network cannot be appropriately corrected depending on the value of the prediction error such as the outside air temperature. As a result, it may be difficult to accurately predict the heat load.
- the present invention has been made in view of the above circumstances, and an object thereof is to accurately predict a heat load.
- the thermal load prediction apparatus of the present invention is: A thermal load calculating means for calculating a value of the thermal load of the space from an actual measurement value of the environmental condition, using a model that defines a relationship between an environmental condition related to a space to be air-conditioned and a thermal load of the space; A thermal load measuring means for measuring a thermal load of the space, based on an operation state of an air conditioner that adjusts an air state in the space; Model correction means for correcting the model by comparing the value of the heat load calculated by the heat load calculation means with the value of the heat load measured by the heat load measurement means; Using the model corrected by the model correcting means, a thermal load predicting means for predicting the value of the thermal load of the space from the predicted value of the environmental condition; Is provided.
- the model can be corrected regardless of the prediction error included in the predicted value of the environmental condition. Therefore, the heat load can be accurately predicted.
- FIG. 1 is a diagram illustrating a configuration of a distribution system according to Embodiment 1.
- FIG. It is a block diagram which shows the structure of the function of a thermal load prediction apparatus. It is a flowchart which shows a series of processes performed by a processor. It is a flowchart which shows the calculation process of a heat load estimated value. It is a figure which shows transition of a weather forecast data, operation data, and a heat load forecast value. It is a flowchart which shows the measurement process of a thermal load performance value. It is a flowchart which shows the calculation process of a heat load recalculation value. It is a figure which shows transition of meteorological measurement data, operation performance data, operation data, and a heat load recalculation value.
- FIG. It is a figure which shows transition of the value of a model error and environmental conditions. It is a figure which shows the structure of the delivery system which concerns on Embodiment 2.
- FIG. It is a block diagram which shows the structure of the function of a thermal load prediction apparatus. It is a flowchart which shows a series of processes performed by a processor. It is a flowchart which shows a weather data process. It is a figure which shows the structure of the delivery system which concerns on other embodiment. It is a figure which shows the thermal load prediction apparatus which concerns on other embodiment.
- FIG. FIG. 1 shows the configuration of distribution system 100 according to the present embodiment.
- the distribution system 100 is a system that predicts and distributes the heat load on the next day of each of the spaces 43 and 46 in the buildings B1 and B2 every day.
- the buildings B1 and B2 are simply referred to as buildings B1 and B2.
- the distribution system 100 includes a thermal load prediction device 10, a weather information server 20, a building information server 30, a BEMS (Building Energy Management System) 41 and an air conditioning system 42 installed in a building B1, and a BEMS 44 and an air conditioner installed in a building B2.
- a system 45 is included. Both BEMS 41 and 44 are connected to the thermal load prediction device 10 via the network NW.
- the thermal load prediction device 10 is mounted on a center server of a facility management company that centrally manages the facilities of the buildings B1 and B2.
- the thermal load prediction device 10 includes a processor 11, a main storage unit 12, an auxiliary storage unit 13, an input unit 14, an output unit 15, and an interface unit 16.
- the main storage unit 12, auxiliary storage unit 13, input unit 14, output unit 15, and interface unit 16 are all connected to the processor 11 via the internal bus 17.
- the processor 11 includes, for example, a CPU (Central Processing Unit).
- the processor 11 executes processing described later by executing the program 18 stored in the auxiliary storage unit 13. Note that the processing executed by the processor 11 includes prediction of heat load.
- the main storage unit 12 is composed of, for example, a RAM (Random Access Memory).
- the main storage unit 12 loads the program 18 from the auxiliary storage unit 13.
- the main storage unit 12 is used as a work area for the processor 11.
- the auxiliary storage unit 13 includes a nonvolatile memory such as a flash memory. In addition to the program 18, the auxiliary storage unit 13 stores various data used for the processing of the processor 11. Then, the auxiliary storage unit 13 supplies data used by the processor 11 to the processor 11 in accordance with instructions from the processor 11 and stores the data supplied from the processor 11.
- the input unit 14 includes a keyboard and a pointing device for the user of the thermal load prediction device 10 to input information.
- the input unit 14 acquires information input by the user and notifies the processor 11 of the information.
- the output unit 15 includes an LCD (Liquid Crystal Display) for presenting information to the user, a speaker, and the like.
- the output unit 15 displays predetermined characters and graphics to the user according to instructions from the processor 11.
- the interface unit 16 includes a communication interface for performing packet communication, for example.
- the interface unit 16 is connected to the weather information server 20, the building information server 30, and the network NW.
- the interface unit 16 acquires information necessary for predicting the heat load from the weather information server 20 and the building information server 30 and notifies the processor 11 of the information. Then, the interface unit 16 distributes the thermal load value predicted by the processor 11 to the BEMS 41 and 44 via the network NW.
- the value of the heat load delivered to each of the BEMSs 41 and 44 is referred to as a heat load predicted value D1.
- the predicted thermal load value D1 distributed to the BEMS 41 is different from the predicted thermal load value D1 distributed to the BEMS 44.
- the interface unit 16 obtains a record regarding the operation status of the air conditioning systems 42 and 45 on that day from the BEMS 41 and 44 every night, and notifies the processor 11 of the records.
- the record which the interface part 16 acquires from BEMS41 and 44 is called driving
- the weather information server 20 is, for example, a server operated by a company that operates a service that provides weather information.
- the weather information server 20 stores weather measurement data D21 and weather prediction data D22.
- the meteorological measurement data D21 indicates the transition of the measured value of the meteorological conditions measured at a predetermined observation point. Further, the weather forecast data D22 indicates the transition of the predicted value (forecast value) of the next day regarding the weather conditions at a predetermined observation point.
- the predetermined observation point is, for example, a point representing an area including the locations of both buildings B1 and B2.
- the weather conditions are conditions including, for example, the outside air temperature, the amount of solar radiation, the wind direction and the wind speed, and the weather (sunny weather, cloudy weather, rainy weather, etc.).
- the building information server 30 is, for example, a server operated by the facility management company together with the thermal load prediction device 10.
- the building information server 30 stores structure data D31 and operation data D32.
- Structure data D31 indicates conditions regarding the structures of buildings B1 and B2.
- the conditions regarding the structure of the buildings B1 and B2 include, for example, information indicating the heat insulation structure around the spaces 43 and 46 (for example, heat transfer coefficients of members forming the ceiling, walls, and floor of the spaces 43 and 46), and the space 43. , 46 includes the area of the window installed.
- the operation data D32 is time-series data indicating conditions regarding the operation of the spaces 43 and 46.
- the operation data D32 includes, for example, the transition of the number of people in the spaces 43 and 46 (hereinafter referred to as the number of people in the room) and the room temperature (hereinafter referred to as the set temperature) of the spaces 43 and 46 set as target values. Transition, transition of lighting equipment turned on / off in the spaces 43, 46, and transition of operation modes of other equipment installed in the spaces 43, 46 are included.
- the operation data D32 is appropriately changed by the facility management company. For example, the facility management company reviews the operation data D32 once a year and changes the contents to match the actual situation.
- Each BEMS 41, 44 is a computer that controls each of the air conditioning systems 42, 45 based on the predicted heat load value D1 to operate efficiently.
- the BEMS 41 and 44 controls the air conditioning systems 42 and 45 every day in a predetermined operation time zone.
- the operation time zone is a time zone in which the spaces 43 and 46 are operated, and is, for example, from 8:00 to 18:00. Further, the BEMSs 41 and 44 generate operation result data D2 and output it to the thermal load prediction device 10.
- Each of the air conditioning systems 42 and 45 includes air conditioning equipment such as outdoor units and indoor units installed in the buildings B1 and B2. Each of the air conditioning systems 42 and 45 adjusts the air state in each of the spaces 43 and 46 in accordance with instructions from the BEMS 41 and 44. This air condition includes temperature and humidity.
- FIG. 2 shows a functional configuration of the thermal load prediction device 10.
- the thermal load prediction device 10 includes a meteorological measurement data processing unit 110, an input information processing unit 120, a thermal load calculation unit 130, an operation performance data processing unit 140, and a model correction module 150. Yes.
- the BEMS 44 and the like are omitted, and the function of the thermal load prediction device 10 relating to the prediction of the thermal load in the space 43 is shown.
- the meteorological measurement data processing unit 110, the input information processing unit 120, the heat load calculation unit 130, and the operation performance data processing unit 140 are each realized mainly by the processor 11 and the interface unit 16.
- the meteorological measurement data processing unit 110 acquires meteorological measurement data D21 from the meteorological information server 20. In addition, the meteorological measurement data processing unit 110 converts the format of the acquired meteorological measurement data D21 into a format suitable for processing by the input information processing unit 120. Then, the meteorological measurement data processing unit 110 outputs the meteorological measurement data D21 whose format has been converted to the input information processing unit 120.
- the input information processing unit 120 acquires the weather measurement data D21 from the weather measurement data processing unit 110. Further, the input information processing unit 120 acquires the weather prediction data D22 from the weather information server 20, and acquires the structure data D31 and the operation data D32 from the building information server 30. Further, the input information processing unit 120 acquires the operation result data D5 from the operation result data processing unit 140.
- the input information processing unit 120 converts the format of the acquired data into a format suitable for the heat load calculation by the heat load calculation unit 130. Then, the input information processing unit 120 outputs any one of the weather measurement data D21 and the weather prediction data D22, the structure data D31, the operation data D32, and the operation result data D5 to the heat load calculation unit 130.
- the input information processing unit 120 converts the format of the acquired data into a format suitable for processing by the model evaluation unit 153 of the model correction module 150. Then, the input information processing unit 120 outputs the acquired data to the error data storage unit 152 of the model correction module 150.
- the heat load calculation unit 130 has a heat load model 131.
- the thermal load model 131 is a model that defines the relationship between the environmental conditions of the space 43 and the thermal load of the space 43 using parameters.
- the environmental conditions of the space 43 include weather conditions, conditions regarding the structure of the building B1, and conditions regarding the operation of the space 43.
- the value of the environmental condition is included in the data output from the input information processing unit 120.
- the thermal load model 131 according to the present embodiment is a mathematical model for calculating the average value of the thermal load per unit time from this data.
- the unit time is, for example, 30 minutes, and the thermal load model 131 is expressed by the following equation (1).
- Q (t) indicates the heat load of the space 43
- Qex (t) indicates the component of the heat load determined by the outside air temperature and the set temperature
- Qin (t) is the heat determined by the situation in the space 43. Indicates the component of the load.
- t in Formula (1) represents the start time of unit time
- Q (t), Qex (t), and Qin (t) each represent average values, such as a heat load in unit time.
- C in the equation (1) is a correction parameter (offset value) set according to the installation conditions of the air conditioning equipment and the location of the building B1.
- the value of Qex (t) + Qin (t) may deviate from the value of the thermal load in the space 43 in either the positive or negative direction depending on the installation conditions of the air conditioning equipment and the location of the building B1. For example, it is considered that this deviation increases as the location of the building B1 moves away from the observation point for obtaining the weather measurement data D21 and the weather prediction data D22.
- the correction parameter C is used for adjusting such a deviation.
- Qex (t) in the formula (1) is represented by the following formula (2), for example.
- Ka, Kb, Kc, and R1 in Equation (2) correspond to parameters of the thermal load model 131.
- Ka is an adjustment coefficient corresponding to the space 43, for example, and is set based on the operation result data D5.
- Kb and Kc is a coefficient applied according to weather conditions such as weather and wind direction / wind speed, for example, and is set based on meteorological measurement data D21 and weather prediction data D22.
- To in the formula (2) means the outside air temperature (° C.) at time t.
- the value of To is included in the weather measurement data D21 and the weather prediction data D22.
- Tr means a set temperature (° C.) of the space 43.
- the value of Tr is included in the operation data D32 and the operation result data D5.
- Qin (t) in the formula (1) is represented by the following formula (3), for example.
- QP (t) means a heat load due to heat generation of the human body.
- QL (t) means a thermal load due to heat generation of the lighting device, and
- QK (t) means a heat load due to heat generation of another device.
- Each of QP (t), QL (t), and QK (t) is calculated based on the operation data D32 using predetermined parameters. Note that QP (t), QL (t), and QK (t) all represent an average value in a unit time with a start time t, similarly to Q (t).
- the thermal load calculation unit 130 calculates the thermal load predicted value D1 and outputs it to the BEMS 41 when data including the weather prediction data D22 is acquired from the input information processing unit 120. In addition, when the data including the weather measurement data D21 is acquired, the thermal load calculation unit 130 calculates the value of the thermal load in the space 43 anew using the thermal load model 131. The thermal load calculation unit 130 outputs this newly calculated value to the model correction module 150 as the thermal load recalculation value D3.
- the operation result data processing unit 140 acquires the operation result data D2 from the BEMS 41.
- the operation result data D2 includes, for example, the power consumption of the air conditioning system 42, the operation capacity (kW) of the air conditioning system 42, the operation mode (cooling / heating, etc.) of the air conditioning system 42, and the set temperature of the space 43 set as a target value.
- the temperature of the air sucked by the indoor unit, the rotational frequency of the compressor constituting the outdoor unit, and the temperature of the air blown out by the outdoor unit are included.
- the operation result data processing unit 140 measures the actual value of the thermal load in the space 43 by calculation based on the operation result data D2, and outputs it to the model correction module 150 as the actual heat load value D4. In addition, the operation result data processing unit 140 outputs data including the set temperature to the input information processing unit 120 as operation result data D5.
- the model correction module 150 is a module for correcting the heat load model 131.
- the model correction module 150 includes an error calculation unit 151, an error data storage unit 152, and a model evaluation unit 153.
- the error calculation unit 151 is mainly realized by the processor 11.
- the error calculation unit 151 compares the thermal load recalculated value D3 and the actual thermal load value D4, and calculates a difference between these values as a model error of the thermal load model 131. Then, the error calculation unit 151 outputs error data D6 indicating the model error to the error data storage unit 152.
- the model error is an error included in the value of the thermal load calculated using the thermal load model 131, and means an error caused by the parameter value of the thermal load model 131.
- the error data storage unit 152 is mainly realized by the auxiliary storage unit 13.
- the error data storage unit 152 acquires the error data D6 from the error calculation unit 151 and stores it. Further, the error data storage unit 152 acquires and stores data indicating the value of the environmental condition from the input information processing unit 120.
- the model evaluation unit 153 is mainly realized by the processor 11.
- the model evaluation unit 153 evaluates the thermal load model 131 by analyzing the error data D6 stored in the error data storage unit 152 at a predetermined timing. Then, the model evaluation unit 153 identifies the environmental condition that has caused the model error, and updates the parameters of the thermal load model 131.
- FIG. 3 A series of processes shown in FIG. 3 starts when the heat load prediction apparatus 10 is turned on.
- the processor 11 first executes a calculation process of the thermal load predicted value D1 (step S1).
- the calculation process of the predicted heat load value D1 will be described in detail with reference to FIG.
- the input information processing unit 120 acquires data indicating the predicted value of the environmental condition (step S11). Specifically, the input information processing unit 120 acquires the weather forecast data D22, the structure data D31, the operation data D32, and the operation performance data D5 as data indicating predicted values of environmental conditions.
- the input information processing unit 120 processes the acquired data (step S12).
- the data format is converted into one suitable for calculating the heat load. For example, the transition of the predicted value in the operation time zone is cut out from the weather predicted data D22 indicating the predicted value from 0:00 to 24:00 on the next day.
- the thermal load calculation unit 130 calculates the thermal load predicted value D1 using the thermal load model 131 (step S13). Thereby, the thermal load prediction value D1 in the operation time zone is calculated for each unit time.
- FIG. 5 shows an example of the time series data of the weather forecast data D22 and the operation data D32 and the transition of the thermal load forecast value D1 calculated from these time series data.
- the value corresponding to each time shows the average value in the unit time which makes this time the start time. For example, the predicted value of the outside air temperature for 30 minutes from 8:30 to 9:00 is “30 ° C.”. Further, data indicating weather such as cloudy or clear is converted to a value of zero or 1, for example.
- the thermal load calculation unit 130 outputs the calculated transition of the predicted thermal load value D1 to the BEMS 41 (step S14). Thereafter, the processor 11 ends the calculation process of the thermal load predicted value D1.
- the processor 11 determines whether or not the date has been changed (step S2) following the calculation process (step S1) of the predicted heat load value D1. When it is determined that the date has not been changed (step S2; NO), the processor 11 repeats the determination in step S2.
- step S3 determines whether or not the end time of operation of the space 43 has elapsed. Specifically, the processor 11 determines whether or not 18:00 has elapsed. When it is determined that the end time has not elapsed (step S3; NO), the processor 11 waits until the end time by repeating the determination of step S3.
- the BEMSs 41 and 44 control the air conditioning systems 42 and 45 based on the predicted heat load value D1. Thereby, the air-conditioning systems 42 and 45 will adjust the state of the air in the space 43 and 46 appropriately in an operation time zone.
- step S4 when it is determined that the end time has passed (step S3; YES), the processor 11 performs a measurement process of the actual heat load value D4 (step S4).
- the measurement process of the actual heat load value D4 will be described in detail with reference to FIG.
- the operation result data processing unit 140 acquires the operation result data D2 (step S41).
- the operation result data processing unit 140 calculates the heat load result value D4 from the information included in the operation result data D2 (step S42). Specifically, the operation result data processing unit 140 determines the value of the thermal load of the space 43 in the operation time period based on the power consumption of the air conditioning systems 42 and 45, the operation mode of the air conditioning systems 42 and 45, the set temperature, and the like. Is estimated every unit time. Thereby, the heat load actually processed by the air conditioning systems 42 and 45 is measured.
- the operation result data processing unit 140 outputs the measured heat load result value D4 to the error calculation unit 151 (step S43). Thereafter, the operation record data processing unit 140 ends the calculation process of the heat load record value D4.
- the processor 11 executes the calculation process of the thermal load recalculation value D3 following the calculation process (step S4) of the actual heat load value D4 (step S5).
- the calculation process of the thermal load recalculation value D3 will be described in detail with reference to FIG.
- the input information processing unit 120 acquires data indicating the actual measurement value of the environmental condition (step S51). Specifically, the input information processing unit 120 acquires the meteorological measurement data D21, the structure data D31, the operation data D32, and the operation performance data D5 as data indicating the measured values of the environmental conditions.
- the input information processing unit 120 processes the acquired data (step S52).
- the data format is converted into one suitable for calculating the heat load. For example, the transition of the actual measurement value in the operation time zone is cut out from the actual weather measurement data D21 indicating the value actually measured after 0:00 on that day.
- the input information processing unit 120 appropriately combines the data that can be acquired when the data necessary for calculating the heat load is insufficient.
- the value of the set temperature included in the operation result data D5 is used as the measured value of the set temperature for calculating the heat load recalculated value D3.
- part of the transition of the set temperature may not be included in the operation result data D5 due to a communication error or the like.
- the input information processing unit 120 merges the transition of the set temperature included in the operation data D32 with the operation result data D5. Thereby, the actual measured value of the environmental condition necessary for calculating the heat load is supplemented.
- the thermal load calculation unit 130 calculates the thermal load recalculation value D3 using the thermal load model 131 (step S53). Thereby, the heat load recalculation value D3 in the operation time zone is calculated for each unit time.
- FIG. 8 shows time series data of the “measured temperature” of the weather measurement data D21, the operation result data D5 and the “occupied number of people” of the operation data D32, and the heat load recalculated value D3 calculated from these time series data. The transition of is illustrated. Note that values different from those shown in FIG. 5 are underlined.
- the thermal load calculation unit 130 outputs the transition of the calculated thermal load recalculation value D3 to the error calculation unit 151 (step S54). Thereafter, the processor 11 ends the calculation process of the thermal load recalculation value D3.
- the error calculation unit 151 compares the actual thermal load value D4 and the thermal load recalculation value D3 to calculate a model error. (Step S6). Specifically, the processor 11 calculates the transition of the model error by subtracting the actual heat load value D4 for each unit time from the recalculated heat load value D3 shown in FIG.
- the error data storage unit 152 sequentially stores the error data D6 calculated for each unit time from the error calculation unit 151 (step S7).
- the error data D6 accumulated in the error data accumulation unit 152 is a data group that represents the model error of the thermal load model 131 in time series.
- the processor 11 determines whether or not the current date corresponds to the model correction date (step S8).
- the model correction date is, for example, a predetermined day of the week (for example, Sunday) once a week.
- the model correction date is set in advance as a date for correcting the heat load model 131.
- the processor 11 repeats the processes after step S1.
- the model evaluation unit 153 analyzes the accumulated error data D6 (step S9). Specifically, the model evaluation unit 153 performs statistical analysis including correlation analysis between time series data of model errors accumulated over a predetermined period and time series data of environmental conditions. This predetermined period is, for example, one day.
- the model evaluation unit 153 performs statistical analysis using the actual measurement value with priority.
- the error data storage unit 152 stores both actual measured values and predicted values of outside air temperature. Therefore, the model evaluation unit 153 performs statistical analysis using the actual measurement value without using the predicted value of the outside air temperature.
- FIG. 9 shows time series data of model errors in an operation time zone on a certain day and time series data of each environmental condition.
- a line L1 in FIG. 9 indicates the transition of the model error.
- the line L2 indicates the transition of the actual measured value of the outside air temperature
- the line L3 indicates the transition of the number of people in the room
- the line L4 indicates the transition of the actual measured value of the wind speed
- the line L5 indicates the transition of the set temperature set on that day. Indicates.
- line L6 shows the change in solar radiation.
- a time zone with a low amount of solar radiation corresponds to a rainy day
- a time zone with a high amount of solar radiation corresponds to a sunny day
- a time zone with a moderate amount of solar radiation corresponds to a cloudy day.
- the vertical axis in FIG. 9 is scaled so that the lines L1 to L6 can be easily compared in the following description.
- the model evaluation unit 153 calculates the correlation value between the model error and each environmental condition, the correlation value with respect to the actual measured value of the outside air temperature becomes maximum. Therefore, the model evaluation unit 153 identifies the outside air temperature as an environmental condition that causes a model error.
- the model evaluation unit 153 updates the parameters of the thermal load model 131 with a predetermined step width so as to reduce the model error (step S10).
- the model evaluation unit 153 updates parameters Ka, Kb, Kc, R1, and C for defining the relationship between the outside air temperature and the heat load.
- the parameter values are sequentially updated by a numerical analysis method such as an iterative method including the Newton method.
- step S1 the calculation process (step S1) of the predicted thermal load value D1 is executed using the thermal load model 131 corrected by the model correction module 150.
- the thermal load prediction device 10 calculates a model error from the thermal load recalculated value D3 and the thermal load actual value D4, and corrects the thermal load model 131 based on the model error. .
- the prediction error included in the predicted value of the environmental condition can be eliminated and the parameters of the thermal load model 131 can be updated.
- the heat load can be accurately predicted.
- the parameter values of the thermal load model 131 can be made suitable for the space 43.
- a model suitable for the space 46 can be generated.
- the model which can predict the thermal load of the space in various miscellaneous environments with high prediction accuracy can be obtained.
- the prediction accuracy is high, for example, by limiting the operating capacity of the air conditioning equipment installed in an office building according to the predicted heat load value D1, it is possible to operate the air conditioning equipment efficiently with low power consumption. It becomes.
- the model evaluation unit 153 calculates a correlation value between the model error and each environmental condition, and identifies an environmental condition having a large correlation value as a factor causing the model error. And the model evaluation part 153 updated the parameter which prescribes
- Embodiment 2 FIG. Next, the second embodiment will be described focusing on the differences from the first embodiment.
- the description is abbreviate
- the distribution system 100 according to the present embodiment is different from that according to the first embodiment in that sensors 61 and 62 are provided as shown in FIG.
- Each of the sensors 61 and 62 includes, for example, a temperature sensor, a humidity sensor, an illuminance sensor, a rainfall sensor, a wind direction sensor, and a wind speed sensor.
- Each of the sensors 61 and 62 measures the value of the weather condition at the location of each of the buildings B1 and B2, and outputs the measurement result to each of the BEMSs 41 and 44.
- FIG. 11 shows a functional configuration of the thermal load prediction device 10.
- the thermal load prediction apparatus 10 includes a weather measurement data collection unit 160, a weather data storage unit 170, and a weather data evaluation unit 180.
- the meteorological measurement data collection unit 160 is realized mainly by the auxiliary storage unit 13 and the interface unit 16.
- the meteorological measurement data collection unit 160 collects the results of measurement by the sensors 61 and 62 via the BEMS 41 and 44 and manages them as meteorological measurement data D23. Then, the meteorological measurement data collection unit 160 outputs the meteorological measurement data D23 to the meteorological data storage unit 170.
- the meteorological data storage unit 170 is realized mainly by the auxiliary storage unit 13 and the interface unit 16.
- the meteorological data storage unit 170 acquires and stores the actual weather measurement data D21 and the weather prediction data D22 from the weather information server 20.
- the weather data storage unit 170 acquires the weather measurement data D23 from the weather measurement data collection unit 160 and stores it.
- the weather data evaluation unit 180 is realized mainly by the processor 11.
- the weather data evaluation unit 180 evaluates these data by comparing the weather measurement data D21, the weather prediction data D22, and the weather measurement data D23 with each other and analyzing them. Then, the weather data evaluation unit 180 corrects the weather prediction data D22 based on the analysis result, and outputs it to the input information processing unit 120.
- the weather data evaluation unit 180 corrects the heat load model 131 based on the analysis result.
- the meteorological measurement data processing unit 110 acquires meteorological measurement data D21 from the meteorological data storage unit 170. Further, the input information processing unit 120 according to the present embodiment acquires the weather prediction data D22 from the weather data evaluation unit 180.
- the processor 11 first executes weather data processing (step S20). This weather data processing will be described in detail with reference to FIG.
- the meteorological data evaluation unit 180 acquires meteorological measurement data D21, meteorological prediction data D22, and meteorological measurement data D23 (step S201).
- the meteorological data evaluation unit 180 compares and analyzes the meteorological measurement data D21 and the meteorological measurement data D23 (step S202). Specifically, the meteorological data evaluation unit 180 compares the meteorological measurement data D21 indicating the value of the meteorological conditions actually measured at the observation point with the meteorological measurement data D23 indicating the measurement result of the sensor 61 for each unit time. .
- the meteorological data evaluation unit 180 can obtain, for example, the frequency at which the temperature at the location of the building B1 is relatively higher than the temperature at the observation point. Similarly, the meteorological data evaluation unit 180 can obtain the frequency of less solar radiation at the location of the building B1 than the solar radiation at the observation point.
- the meteorological data evaluation unit 180 compares and analyzes the actually measured weather data D21 and the weather forecast data D22 (step S203). Specifically, the meteorological data evaluation unit 180 obtains the accuracy of the weather and the outside temperature, the magnitude of the prediction error (error variance), and the like of the weather prediction data D22 over a predetermined period. This predetermined period is, for example, one month.
- the weather data evaluation unit 180 corrects the weather forecast data D22 from the results of steps S202 and S203 (step S204).
- the weather data evaluation unit 180 corrects the predicted value of the outside air temperature included in the weather prediction data D22 to a value lower by 1 ° C.
- the weather data evaluation unit 180 is included in the weather prediction data D22.
- the predicted value of the outside temperature is corrected to a value lower by 1 ° C.
- the weather data evaluation unit 180 corrects the thermal load model 131 from the result of step S203 (step S205). Specifically, the meteorological data evaluation unit 180 sets a margin (allowable amount) for the output of the predicted thermal load value D1 from the result of step S203. For example, the weather data evaluation unit 180 increases the offset value C of the thermal load model 131 when the prediction error included in the weather prediction data D22 is large. Thereby, the power saving of an air conditioner can be ensured.
- the weather data evaluation unit 180 outputs the weather prediction data D22 whose value is corrected to the input information processing unit 120 (step S206). Thereafter, the weather data evaluation unit 180 ends the weather data processing.
- the processor 11 executes the same processing as the processing after step S1 according to the first embodiment following the weather data processing (step S20).
- the thermal load prediction device 10 compares and analyzes the weather measurement data D21 and the weather measurement data D23. And the thermal load prediction apparatus 10 correct
- the thermal load prediction apparatus 10 compared and analyzed the weather measurement data D21 and the weather prediction data D22. And the thermal load prediction apparatus 10 correct
- a series of processing executed in the above embodiment was repeated with one day as a cycle, as shown in FIGS.
- this period is arbitrary.
- the operation program update cycle of the air conditioning systems 42 and 45 or the cycle in which the BEMS 41 and 44 are managed may be set as a cycle for repeating a series of processes.
- each sample value of the time series data is treated as equivalent, but the present invention is not limited to this.
- the statistical analysis may be performed for each time zone by dividing the time zone in one day.
- statistical analysis may be performed after extracting data at that weather.
- the parameter value is updated with a predetermined step width, but the present invention is not limited to this.
- the parameter value may be updated so that the model error value is minimized.
- the parameter value may be estimated by a statistical method such as maximum likelihood estimation so that the expected value of the model error is minimized.
- the thermal load prediction apparatus 10 is connected to the BEMS 41 and 44, the present invention is not limited to this.
- the thermal load prediction device 10 may be connected to an EMS (Energy Management System) that controls the air conditioning systems 42 and 45.
- the heat load prediction device D1 may be directly connected to the air conditioning system 42 as shown in FIG.
- the predicted thermal load value D ⁇ b> 1 predicted by the thermal load prediction device 10 is included in the air conditioning system 42 and is distributed to the air conditioning control device that controls the indoor units, the outdoor units, and the like. .
- the thermal load prediction apparatus 10 configures the distribution system 100
- the present invention is not limited to this.
- it may be installed in a building B1.
- the thermal load prediction device 10 installed in the building B1 predicts the thermal load of the space 43 in the building B1.
- the thermal load prediction apparatus 10 corrects the thermal load model 131 at a frequency of once a week
- the present invention is not limited to this.
- the thermal load model 131 may be corrected when the average value of model errors in the operation time period is larger than a threshold value.
- the error data storage unit 152 stores the error data D6 and the data output from the input information processing unit 120, the present invention is not limited to this.
- the error data storage unit 152 may further store the thermal load predicted value D1, the thermal load recalculation value D3, and the thermal load actual value D4. When accumulating the heat load recalculated value D3 and the heat load actual value D4, it is possible to analyze after normalizing the magnitude of the model error.
- R1 in Formula (2) which concerns on the said embodiment was set based on the calculation using the structure data D31, you may set based on the driving performance data D5.
- the operation data D32 includes data corresponding to the predicted value of the set temperature
- the operation result data D5 includes data corresponding to the actual value of the set temperature.
- the operation data D32 and the operation performance data D5 did not contain the same kind of data. However, it is not limited to this.
- the operation data D32 may include predicted values of a plurality of environmental conditions other than weather conditions
- the operation result data D5 may include measured values of a plurality of environmental conditions other than weather conditions.
- the heat load model 131 can be corrected more accurately.
- the function of the thermal load prediction device 10 according to the above-described embodiment can be realized by dedicated hardware or by a normal computer system.
- the program 18 stored in the auxiliary storage unit 13 can be read by a computer such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk).
- a computer such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk).
- a computer such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk).
- the program 18 may be stored in a disk device or the like of a predetermined server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
- the above-described processing can also be achieved by starting and executing the program 18 while transferring it via a network such as the Internet.
- processing can also be achieved by executing all or part of the program 18 on the server device and executing the program 18 while the computer transmits and receives information on the processing via the communication network. .
- the means for realizing the function of the thermal load prediction device 10 is not limited to software, and a part or all of the means may be realized by dedicated hardware (circuit or the like).
- the thermal load prediction device, distribution system, thermal load prediction method and program of the present invention are suitable for predicting the thermal load of a space to be air-conditioned.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
熱負荷予測装置(10)は、熱負荷算出部(130)と、運転実績データ処理部(140)と、モデル補正モジュール(150)とを有している。熱負荷算出部(130)は、空調対象の空間に関する環境条件と、この空間の熱負荷との関係を規定する熱負荷モデル(131)を用いて、環境条件の実測値から熱負荷の値を算出する。また、運転実績データ処理部(140)は、空調システム(42)の運転の状況に基づいて、熱負荷を測定する。また、モデル補正モジュール(150)は、熱負荷算出部(130)によって算出された熱負荷の値と、運転実績データ処理部(140)によって測定された熱負荷の値とを比較することにより、熱負荷モデル(131)を補正する。そして、熱負荷算出部(130)は、モデル補正モジュール(150)によって補正された熱負荷モデル(131)を用いて、環境条件の予測値から熱負荷の値を予測する。
Description
本発明は、熱負荷予測装置、配信システム、熱負荷予測方法及びプログラムに関する。
近年、ビルディング等の施設において空調にかかるコストを節約するための技術が注目されている。例えば、施設に設置された空調設備を、空調対象となる空間の熱負荷に応じて制御することで、空調設備の消費エネルギーを削減することができる。また、電気料金が安い夜間等に蓄えた熱を利用して、日中に空調を行う蓄熱空調方式が知られている。
空調対象となる空間の熱負荷は、外気温等の影響により変動する。このため、蓄熱空調方式を用いる場合には、空調対象となる空間の熱負荷を予測して、予測した熱負荷に応じた熱量を蓄える必要があった。そこで、外気温の予測値等に基づいて熱負荷を予測する技術が提案されている(例えば、特許文献1を参照)。
特許文献1に記載のシステムは、ニューラルネットワークを用いて、外気温の予測値等から翌日の熱負荷を予測する。また、このシステムは、前日に予測された熱負荷の予測値と、当日の熱負荷の実績値とを比較したときの誤差に基づいて、ニューラルネットワークのパラメータを修正する。これにより、建築物の特性に適した予測をすることができる。
しかしながら、特許文献1に記載のシステムによって予測された熱負荷の予測値には、外気温等の予測誤差に起因する誤差と、ニューラルネットワークのパラメータの値に起因する誤差との双方が含まれる。このため、外気温等の予測誤差の値によっては、ニューラルネットワークのパラメータを適切に修正することができないおそれがあった。ひいては、熱負荷を正確に予測することが困難となるおそれがあった。
本発明は、上記の事情に鑑みてなされたもので、熱負荷を正確に予測することを目的とする。
上記目的を達成するため、本発明の熱負荷予測装置は、
空調対象の空間に関する環境条件と前記空間の熱負荷との関係を規定するモデルを用いて、前記環境条件の実測値から前記空間の熱負荷の値を算出する熱負荷算出手段と、
前記空間における空気の状態を調節する空調設備の運転の状況に基づいて、前記空間の熱負荷を測定する熱負荷測定手段と、
前記熱負荷算出手段によって算出された熱負荷の値と、前記熱負荷測定手段によって測定された熱負荷の値とを比較することにより、前記モデルを補正するモデル補正手段と、
前記モデル補正手段によって補正された前記モデルを用いて、前記環境条件の予測値から前記空間の熱負荷の値を予測する熱負荷予測手段と、
を備える。
空調対象の空間に関する環境条件と前記空間の熱負荷との関係を規定するモデルを用いて、前記環境条件の実測値から前記空間の熱負荷の値を算出する熱負荷算出手段と、
前記空間における空気の状態を調節する空調設備の運転の状況に基づいて、前記空間の熱負荷を測定する熱負荷測定手段と、
前記熱負荷算出手段によって算出された熱負荷の値と、前記熱負荷測定手段によって測定された熱負荷の値とを比較することにより、前記モデルを補正するモデル補正手段と、
前記モデル補正手段によって補正された前記モデルを用いて、前記環境条件の予測値から前記空間の熱負荷の値を予測する熱負荷予測手段と、
を備える。
本発明によれば、環境条件の予測値に含まれる予測誤差に関わらず、モデルを補正することができる。これにより、熱負荷を正確に予測することができる。
以下、本発明の実施形態を、図面を参照しつつ詳細に説明する。
実施の形態1.
図1には、本実施の形態に係る配信システム100の構成が示されている。配信システム100は、毎日、ビルディングB1、B2内の空間43、46各々の翌日における熱負荷を予測して配信するシステムである。以下では、ビルディングB1、B2を単にビルB1、B2という。
図1には、本実施の形態に係る配信システム100の構成が示されている。配信システム100は、毎日、ビルディングB1、B2内の空間43、46各々の翌日における熱負荷を予測して配信するシステムである。以下では、ビルディングB1、B2を単にビルB1、B2という。
配信システム100は、熱負荷予測装置10、気象情報サーバ20、ビル情報サーバ30、ビルB1に設置されたBEMS(Building Energy Management System)41及び空調システム42、並びにビルB2に設置されたBEMS44及び空調システム45を有している。BEMS41、44はいずれも、ネットワークNWを介して熱負荷予測装置10に接続されている。
熱負荷予測装置10は、ビルB1、B2の設備を集中管理する設備管理会社のセンターサーバに搭載される。熱負荷予測装置10は、プロセッサ11、主記憶部12、補助記憶部13、入力部14、出力部15、及びインタフェース部16を有している。主記憶部12、補助記憶部13、入力部14、出力部15、及びインタフェース部16はいずれも、内部バス17を介してプロセッサ11に接続されている。
プロセッサ11は、例えばCPU(Central Processing Unit)等から構成される。プロセッサ11は、補助記憶部13に記憶されるプログラム18を実行することにより、後述の処理を実行する。なお、プロセッサ11によって実行される処理には、熱負荷の予測が含まれる。
主記憶部12は、例えばRAM(Random Access Memory)等から構成される。主記憶部12は、補助記憶部13からプログラム18をロードする。そして、主記憶部12は、プロセッサ11の作業領域として用いられる。
補助記憶部13は、例えばフラッシュメモリ等の不揮発性メモリを含んで構成される。補助記憶部13は、プログラム18の他に、プロセッサ11の処理に用いられる種々のデータを記憶している。そして、補助記憶部13は、プロセッサ11の指示に従って、プロセッサ11が利用するデータをプロセッサ11へ供給し、プロセッサ11から供給されたデータを記憶する。
入力部14は、熱負荷予測装置10のユーザが情報を入力するためのキーボード及びポインティングデバイス等から構成される。入力部14は、ユーザによって入力された情報を取得して、プロセッサ11に通知する。また、出力部15は、ユーザに対して情報を提示するためのLCD(Liquid Crystal Display)及びスピーカ等から構成される。出力部15は、プロセッサ11の指示に従って、所定の文字や図形をユーザに対して表示する。
インタフェース部16は、例えばパケット通信を行うための通信インタフェース等から構成される。インタフェース部16は、気象情報サーバ20、ビル情報サーバ30、及びネットワークNWに接続されている。
インタフェース部16は、熱負荷の予測に必要な情報を気象情報サーバ20及びビル情報サーバ30から取得して、プロセッサ11へ通知する。そして、インタフェース部16は、プロセッサ11によって予測された熱負荷の値を、ネットワークNWを介してBEMS41、44へ配信する。
以下では、BEMS41、44各々へ配信される熱負荷の値を、熱負荷予測値D1という。なお、BEMS41へ配信される熱負荷予測値D1は、BEMS44へ配信される熱負荷予測値D1と異なる値となる。
また、インタフェース部16は、毎晩、その日における空調システム42、45の運転の状況に関する記録を、BEMS41、44から取得して、プロセッサ11へ通知する。以下では、インタフェース部16がBEMS41、44から取得する記録を、運転実績データD2という。
気象情報サーバ20は、例えば、気象情報を提供するサービスを事業とする会社によって運営されるサーバである。気象情報サーバ20は、気象実測データD21及び気象予測データD22を記憶する。
気象実測データD21は、所定の観測点において実測された気象条件の実測値の推移を示す。また、気象予測データD22は、所定の観測点における気象条件について、翌日の予測値(予報値)の推移を示す。所定の観測点は、例えば、ビルB1、B2双方の所在地を含む地域を代表する地点である。また、気象条件は、例えば、外気温、日射量、風向及び風速、並びに天候(晴天、曇天又は雨天等)を含む条件である。
ビル情報サーバ30は、例えば、設備管理会社が熱負荷予測装置10とともに運営するサーバである。ビル情報サーバ30は、構造データD31及び運用データD32を記憶する。
構造データD31は、ビルB1、B2の構造に関する条件を示す。ビルB1、B2の構造に関する条件には、例えば、空間43、46の周囲の断熱構造を示す情報(例えば空間43、46の天井、壁及び床を形成する部材の熱伝達率)、及び空間43、46に設置された窓の面積が含まれる。
運用データD32は、空間43、46の運用に関する条件を示す時系列データである。運用データD32には、例えば、空間43、46に在室する人の数(以下、在室人数という)の推移、目標値として設定される空間43、46の室温(以下、設定温度という)の推移、空間43、46に設置されている照明機器の点灯/消灯の推移、及び空間43、46に設置されているその他の機器の運転モードの推移が含まれる。運用データD32は、設備管理会社によって適宜変更される。例えば、設備管理会社は、年に一度、運用データD32を見直して、実態に即した内容に変更する。
BEMS41、44各々は、熱負荷予測値D1に基づいて、空調システム42、45各々を制御して、効率的に動作させるコンピュータである。BEMS41、44は、毎日、所定の運用時間帯において空調システム42、45を制御する。運用時間帯は、空間43、46が運用される時間帯であって、例えば、8時から18時までである。また、BEMS41、44は、運転実績データD2を生成して、熱負荷予測装置10へ出力する。
空調システム42、45各々は、ビルB1、B2に設置された室外機及び室内機等の空調設備を含んで構成される。空調システム42、45各々は、BEMS41、44の指示に従って、空間43、46各々における空気の状態を調節する。この空気の状態には、温度及び湿度が含まれる。
図2には、熱負荷予測装置10の機能の構成が示されている。図2に示されるように、熱負荷予測装置10は、気象実測データ処理部110、入力情報処理部120、熱負荷算出部130、運転実績データ処理部140、及びモデル補正モジュール150を有している。なお、図2ではBEMS44等が省略され、空間43の熱負荷の予測に関する熱負荷予測装置10の機能が示されている。
気象実測データ処理部110、入力情報処理部120、熱負荷算出部130、及び運転実績データ処理部140各々は、主としてプロセッサ11及びインタフェース部16によって実現される。
気象実測データ処理部110は、気象情報サーバ20から気象実測データD21を取得する。また、気象実測データ処理部110は、取得した気象実測データD21の形式を、入力情報処理部120による処理に適した形式に変換する。そして、気象実測データ処理部110は、形式が変換された気象実測データD21を、入力情報処理部120へ出力する。
入力情報処理部120は、気象実測データ処理部110から気象実測データD21を取得する。また、入力情報処理部120は、気象情報サーバ20から気象予測データD22を取得し、ビル情報サーバ30から構造データD31及び運用データD32を取得する。また、入力情報処理部120は、運転実績データ処理部140から運転実績データD5を取得する。
入力情報処理部120は、取得したデータの形式を、熱負荷算出部130による熱負荷の算出に適した形式に変換する。そして、入力情報処理部120は、気象実測データD21及び気象予測データD22のいずれか一方と、構造データD31と、運用データD32と、運転実績データD5とを、熱負荷算出部130へ出力する。
また、入力情報処理部120は、取得したデータの形式を、モデル補正モジュール150のモデル評価部153による処理に適した形式に変換する。そして、入力情報処理部120は、取得したデータをモデル補正モジュール150の誤差データ蓄積部152へ出力する。
熱負荷算出部130は、熱負荷モデル131を有している。熱負荷モデル131は、空間43の環境条件と空間43の熱負荷との関係を、パラメータを用いて規定するモデルである。空間43の環境条件には、気象条件、ビルB1の構造に関する条件、及び空間43の運用に関する条件が含まれる。
環境条件の値は、入力情報処理部120から出力されるデータに含まれている。本実施の形態に係る熱負荷モデル131は、このデータから、単位時間あたりの熱負荷の平均値を算出するための数理モデルである。単位時間は、例えば30分間であって、熱負荷モデル131は次式(1)で示される。
Q(t)=Qex(t)+Qin(t)+C ・・・(1)
ただし、Q(t)は、空間43の熱負荷を示し、Qex(t)は、外気温及び設定温度により定まる熱負荷の成分を示し、Qin(t)は、空間43内の状況により定まる熱負荷の成分を示す。また、式(1)中のtは単位時間の開始時刻を表し、Q(t)、Qex(t)及びQin(t)各々は、単位時間における熱負荷等の平均値を表す。
例えば、13時00分から13時30分までの30分間における熱負荷の平均値は、Q(13:00)=Qex(13:00)+Qin(13:00)+Cと表される。また、Q(9:00)=10[kW]という等式は、9時00分から9時30分までの30分間における空間43の熱負荷の平均値が10kWであることを意味する。
また、式(1)中のCは、空調設備の設置条件及びビルB1の所在地に応じて設定される補正パラメータ(オフセット値)である。Qex(t)+Qin(t)の値は、空調設備の設置条件及びビルB1の所在地に応じて、空間43の熱負荷の値から正・負いずれかの方向へずれてしまう場合がある。このずれは、例えば、ビルB1の所在地が、気象実測データD21及び気象予測データD22を得るための観測点から離れるほど大きくなると考えられる。補正パラメータCは、このようなずれを調整するために用いられる。
また、式(1)中のQex(t)は、例えば、次式(2)で示される。
Qex(t)=Ka・Kb・Kc・R1・(To-Tr) ・・・(2)
式(2)中のKa、Kb、Kc及びR1は、熱負荷モデル131のパラメータに相当する。Kaは、例えば、空間43に対応する調整係数であって、運転実績データD5に基づいて設定される。また、Kb、Kc各々は、例えば、天候及び風向・風速等の気象条件各々に応じて適用される係数であって、気象実測データD21及び気象予測データD22に基づいて設定される。また、R1は、例えば、ビルB1の断熱構造や窓面積等の構造条件に応じて設定される熱負荷の基準値(To-Tr=1[℃]あたりの熱負荷相当値)であって、構造データD31を用いた演算に基づいて設定される。
また、式(2)中のToは、時刻tにおける外気温(℃)を意味する。Toの値は、気象実測データD21及び気象予測データD22に含まれる。また、Trは、空間43の設定温度(℃)を意味する。Trの値は、運用データD32及び運転実績データD5に含まれる。
また、式(1)中のQin(t)は、例えば次式(3)で示される。
Qin(t)=QP(t)+QL(t)+QK(t) ・・・(3)
ここで、QP(t)は、人体の発熱による熱負荷を意味する。また、QL(t)は、照明機器の発熱による熱負荷を意味し、QK(t)は、他の機器の発熱による熱負荷を意味する。QP(t)、QL(t)及びQK(t)各々は、所定のパラメータを用いて、運用データD32に基づいて算出される。なお、QP(t)、QL(t)及びQK(t)はいずれも、Q(t)と同様に、開始時刻をtとする単位時間における平均値を表す。
熱負荷算出部130は、気象予測データD22を含むデータを入力情報処理部120から取得した場合に、熱負荷予測値D1を算出してBEMS41へ出力する。また、熱負荷算出部130は、気象実測データD21を含むデータを取得した場合には、熱負荷モデル131を用いて空間43の熱負荷の値を改めて算出することとなる。熱負荷算出部130は、改めて算出したこの値を、熱負荷再計算値D3としてモデル補正モジュール150へ出力する。
運転実績データ処理部140は、運転実績データD2をBEMS41から取得する。運転実績データD2には、例えば、空調システム42の消費電力、空調システム42の運転能力(kW)、空調システム42の運転モード(冷房・暖房等)、目標値として設定された空間43の設定温度、室内機が吸い込んだ空気の温度、室外機を構成する圧縮機の回転周波数、及び室外機が吹き出した空気の温度が含まれる。
運転実績データ処理部140は、運転実績データD2に基づく演算により、空間43の熱負荷の実績値を測定して、熱負荷実績値D4としてモデル補正モジュール150へ出力する。また、運転実績データ処理部140は、設定温度を含むデータを、運転実績データD5として入力情報処理部120へ出力する。
モデル補正モジュール150は、熱負荷モデル131を補正するためのモジュールである。モデル補正モジュール150は、誤差算出部151、誤差データ蓄積部152、及びモデル評価部153を有している。
誤差算出部151は、主としてプロセッサ11によって実現される。誤差算出部151は、熱負荷再計算値D3と熱負荷実績値D4とを比較して、これらの値の差を、熱負荷モデル131のモデル誤差として算出する。そして、誤差算出部151は、このモデル誤差を示す誤差データD6を、誤差データ蓄積部152へ出力する。なお、モデル誤差は、熱負荷モデル131を用いて算出される熱負荷の値に含まれる誤差であって、熱負荷モデル131のパラメータの値に起因する誤差を意味する。
誤差データ蓄積部152は、主として補助記憶部13によって実現される。誤差データ蓄積部152は、誤差算出部151から誤差データD6を取得して蓄積する。また、誤差データ蓄積部152は、入力情報処理部120から、環境条件の値を示すデータを取得して蓄積する。
モデル評価部153は、主としてプロセッサ11によって実現される。モデル評価部153は、所定のタイミングで、誤差データ蓄積部152に蓄積された誤差データD6を分析することにより、熱負荷モデル131を評価する。そして、モデル評価部153は、モデル誤差を生じさせる要因となった環境条件を特定して、熱負荷モデル131のパラメータを更新する。
続いて、熱負荷予測装置10によって実行される一連の処理について、図3~9を用いて説明する。図3に示される一連の処理は、熱負荷予測装置10の電源が投入されることで開始する。
図3に示されるように、プロセッサ11は、まず、熱負荷予測値D1の算出処理を実行する(ステップS1)。この熱負荷予測値D1の算出処理について、図4を用いて詳細に説明する。
図4に示されるように、熱負荷予測値D1の算出処理において、まず、入力情報処理部120は、環境条件の予測値を示すデータを取得する(ステップS11)。具体的には、入力情報処理部120は、気象予測データD22、構造データD31、運用データD32及び運転実績データD5を、環境条件の予測値を示すデータとして取得する。
次に、入力情報処理部120は、取得したデータを処理する(ステップS12)。これにより、データの形式が、熱負荷の算出に適したものに変換される。例えば、翌日の0時から24時までの予測値を示す気象予測データD22から、運用時間帯における予測値の推移が切り出される。
次に、熱負荷算出部130は、熱負荷モデル131を用いて熱負荷予測値D1を算出する(ステップS13)。これにより、運用時間帯における熱負荷予測値D1が単位時間毎に算出される。
図5には、気象予測データD22及び運用データD32の時系列データと、これらの時系列データから算出される熱負荷予測値D1の推移の例が示されている。なお、各時刻に対応する値は、この時刻を開始時刻とする単位時間における平均値を示す。例えば、8時30分から9時00分までの30分間における外気温の予測値は、「30℃」である。また、曇り又は晴れ等の天候を示すデータは、例えばゼロ又は1等の値に変換されている。
次に、熱負荷算出部130は、算出した熱負荷予測値D1の推移を、BEMS41へ出力する(ステップS14)。その後、プロセッサ11は、熱負荷予測値D1の算出処理を終了する。
図3に戻り、プロセッサ11は、熱負荷予測値D1の算出処理(ステップS1)に続いて、日付が変更されたか否かを判定する(ステップS2)。日付が変更されていないと判定された場合(ステップS2;NO)、プロセッサ11は、ステップS2の判定を繰り返す。
一方、日付が変更されたと判定された場合(ステップS2;YES)、プロセッサ11は、空間43の運用の終了時刻を経過したか否かを判定する(ステップS3)。具体的には、プロセッサ11は、18時を経過したか否かを判定する。終了時刻を経過していないと判定された場合(ステップS3;NO)、プロセッサ11は、ステップS3の判定を繰り返すことにより、終了時刻まで待機することとなる。
プロセッサ11が待機している間に、BEMS41、44は、熱負荷予測値D1に基づいて空調システム42、45を制御する。これにより、空調システム42、45が、運用時間帯に空間43、46内の空気の状態を適切に調節することとなる。
一方、終了時刻を経過したと判定された場合(ステップS3;YES)、プロセッサ11は、熱負荷実績値D4の測定処理を実行する(ステップS4)。この熱負荷実績値D4の測定処理について、図6を用いて詳細に説明する。
図6に示されるように、熱負荷実績値D4の測定処理において、まず、運転実績データ処理部140は、運転実績データD2を取得する(ステップS41)。
次に、運転実績データ処理部140は、運転実績データD2に含まれる情報から、熱負荷実績値D4を算出する(ステップS42)。具体的には、運転実績データ処理部140は、空調システム42、45の消費電力、空調システム42、45の運転モード、及び設定温度等に基づいて、運用時間帯における空間43の熱負荷の値を単位時間毎に推定する。これにより、空調システム42、45によって実際に処理された熱負荷が測定されることとなる。
次に、運転実績データ処理部140は、測定した熱負荷実績値D4を誤差算出部151へ出力する(ステップS43)。その後、運転実績データ処理部140は、熱負荷実績値D4の算出処理を終了する。
図3に戻り、プロセッサ11は、熱負荷実績値D4の算出処理(ステップS4)に続いて、熱負荷再計算値D3の算出処理を実行する(ステップS5)。この熱負荷再計算値D3の算出処理について、図7を用いて詳細に説明する。
図7に示されるように、熱負荷再計算値D3の算出処理において、まず、入力情報処理部120は、環境条件の実測値を示すデータを取得する(ステップS51)。具体的には、入力情報処理部120は、気象実測データD21、構造データD31、運用データD32、及び運転実績データD5を、環境条件の実測値を示すデータとして取得する。
次に、入力情報処理部120は、取得したデータを処理する(ステップS52)。これにより、データの形式が、熱負荷の算出に適したものに変換される。例えば、当日の0時以降に実測された値を示す気象実測データD21から、運用時間帯における実測値の推移が切り出される。
ただし、入力情報処理部120は、熱負荷の算出に必要なデータが不足しているときに、取得可能なデータを適宜組み合わせる。例えば、熱負荷再計算値D3を算出するための設定温度の実測値として、運転実績データD5に含まれる設定温度の値が用いられる。しかしながら、通信エラー等により、設定温度の推移の一部が、運転実績データD5に含まれていない場合がある。この場合に、入力情報処理部120は、運用データD32に含まれる設定温度の推移を運転実績データD5にマージする。これにより、熱負荷の算出に必要な環境条件の実測値が補完される。
次に、熱負荷算出部130は、熱負荷モデル131を用いて熱負荷再計算値D3を算出する(ステップS53)。これにより、運用時間帯における熱負荷再計算値D3が単位時間毎に算出される。
図8には、気象実測データD21、運転実績データD5の「設定温度」及び運用データD32の「在室人数」の時系列データと、これらの時系列データから算出される熱負荷再計算値D3の推移が例示されている。なお、図5に示された値と異なる値には、下線が付されている。
次に、熱負荷算出部130は、算出した熱負荷再計算値D3の推移を、誤差算出部151へ出力する(ステップS54)。その後、プロセッサ11は、熱負荷再計算値D3の算出処理を終了する。
図3に戻り、熱負荷再計算値D3の算出処理(ステップS5)に続いて、誤差算出部151は、熱負荷実績値D4と熱負荷再計算値D3とを比較して、モデル誤差を算出する(ステップS6)。具体的には、プロセッサ11は、図8に示される熱負荷再計算値D3から、熱負荷実績値D4を単位時間毎に減算することにより、モデル誤差の推移を算出する。
次に、誤差データ蓄積部152は、誤差算出部151から単位時間毎に算出された誤差データD6を順次蓄積する(ステップS7)。誤差データ蓄積部152に蓄積された誤差データD6は、熱負荷モデル131のモデル誤差を時系列で表すデータ群となる。
次に、プロセッサ11は、現在の日付がモデル補正日に該当するか否かを判定する(ステップS8)。モデル補正日は、例えば週に一度の所定の曜日(例えば日曜日)である。モデル補正日は、熱負荷モデル131を補正する日としてあらかじめ設定される。モデル補正日に該当しないと判定された場合(ステップS8;NO)、プロセッサ11は、ステップS1以降の処理を繰り返す。
一方、モデル補正日に該当すると判定された場合(ステップS8;YES)、モデル評価部153は、蓄積された誤差データD6を分析する(ステップS9)。具体的には、モデル評価部153は、所定の期間に渡って蓄積されたモデル誤差の時系列データと環境条件の時系列データとの相関分析を含む統計解析を行う。この所定の期間は、例えば1日間である。
なお、環境条件の実測値及び予測値の双方が利用可能であるときには、モデル評価部153は、実測値を優先的に用いて統計解析を行う。例えば、誤差データ蓄積部152は、外気温の実測値及び予測値の双方を記憶している。そこで、モデル評価部153は、外気温の予測値を用いることなく、実測値を用いて統計解析を行う。
図9には、ある日の運用時間帯におけるモデル誤差の時系列データ、及び各環境条件の時系列データが示されている。図9中の線L1は、モデル誤差の推移を示す。また、線L2は外気温の実測値の推移を示し、線L3は在室人数の推移を示し、線L4は風速の実測値の推移を示し、線L5は当日に設定された設定温度の推移を示す。
また、線L6は日射量の推移を示す。日射量が少ない時間帯は雨天時に対応し、日射量が多い時間帯は晴天時に対応し、日射量が中程度の時間帯は曇天時に対応する。また、図9の縦軸は、以下の説明において線L1~L6を容易に比較可能となるように、スケーリングされている。
図9に示されるように、モデル誤差の値(線L1)と、外気温の実測値(線L2)との間には、強い相関関係がある。このため、モデル評価部153がモデル誤差と各環境条件との相関値を算出すると、外気温の実測値についての相関値が最大となる。そこで、モデル評価部153は、外気温を、モデル誤差が生じる要因となった環境条件として特定する。
また、図9に示される例において、外気温の実測値以外の環境条件(線L3~L6)はいずれも、モデル誤差との相関値が低いため、モデル誤差を生じさせた要因として特定されることはない。
次に、モデル評価部153は、モデル誤差が小さくなるように、熱負荷モデル131のパラメータを、あらかじめ定められたステップ幅で更新する(ステップS10)。図9に示される例では、モデル評価部153は、外気温と熱負荷との関係を規定するためのパラメータKa、Kb、Kc、R1、Cを更新する。パラメータの値は、例えばニュートン法を含む反復法等の数値解析手法によって、逐次的に更新されることとなる。
その後、プロセッサ11は、ステップS1以降の処理を繰り返す。これにより、モデル補正モジュール150によって補正された熱負荷モデル131を用いて、熱負荷予測値D1の算出処理(ステップS1)が実行されることとなる。
以上説明したように、本実施形態に係る熱負荷予測装置10は、熱負荷再計算値D3と熱負荷実績値D4からモデル誤差を算出し、このモデル誤差に基づいて熱負荷モデル131を補正する。これにより、環境条件の予測値に含まれる予測誤差を排除して熱負荷モデル131のパラメータを更新することができる。ひいては、熱負荷を正確に予測することができる。
また、熱負荷モデル131を補正することで、熱負荷モデル131のパラメータの値を空間43に適したものとすることができる。同様に、空間46に適したモデルを生成することもできる。これにより、種々雑多な環境にある空間の熱負荷を、高い予測精度で予測可能なモデルを得ることができる。さらに、予測精度が高くなるため、例えばオフィスビルに設置された空調設備の運転能力を、熱負荷予測値D1に応じて制限することで、空調設備を省電力で効率的に運転することが可能となる。
また、モデル評価部153は、モデル誤差と各環境条件との相関値を算出し、相関値が大きい環境条件を、モデル誤差が生じる要因として特定した。そして、モデル評価部153は、特定した環境条件と熱負荷との関係を規定するパラメータを更新した。これにより、モデル誤差が生じる要因となった環境条件を明確にして、熱負荷モデル131を効率よく補正することができる。
実施の形態2.
続いて、実施の形態2について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
続いて、実施の形態2について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
本実施の形態に係る配信システム100は、図10に示されるように、センサ61、62を備える点で、実施の形態1に係るものと異なっている。
センサ61、62各々は、例えば、温度センサ、湿度センサ、照度センサ、雨量センサ、風向センサ及び風速センサを含んで構成される。センサ61、62各々は、ビルB1、B2各々の所在地における気象条件の値を計測して、計測の結果をBEMS41、44各々へ出力する。
図11には、熱負荷予測装置10の機能の構成が示されている。熱負荷予測装置10は、図11に示されるように、気象計測データ収集部160、気象データ蓄積部170、及び気象データ評価部180を有している。
気象計測データ収集部160は、主として補助記憶部13及びインタフェース部16によって実現される。気象計測データ収集部160は、センサ61、62による計測の結果を、BEMS41、44を介して収集し、気象計測データD23として管理する。そして、気象計測データ収集部160は、気象計測データD23を気象データ蓄積部170へ出力する。
気象データ蓄積部170は、主として補助記憶部13及びインタフェース部16によって実現される。気象データ蓄積部170は、気象情報サーバ20から気象実測データD21及び気象予測データD22を取得して蓄積する。また、気象データ蓄積部170は、気象計測データ収集部160から気象計測データD23を取得して蓄積する。
気象データ評価部180は、主としてプロセッサ11によって実現される。気象データ評価部180は、気象実測データD21、気象予測データD22、及び気象計測データD23を互いに比較して分析することにより、これらのデータを評価する。そして、気象データ評価部180は、分析の結果に基づいて、気象予測データD22を補正して、入力情報処理部120へ出力する。また、気象データ評価部180は、分析の結果に基づいて、熱負荷モデル131を補正する。
本実施の形態に係る気象実測データ処理部110は、気象データ蓄積部170から気象実測データD21を取得する。また、本実施の形態に係る入力情報処理部120は、気象データ評価部180から気象予測データD22を取得する。
続いて、熱負荷予測装置10によって実行される一連の処理について、図12、13を用いて説明する。
図12に示されるように、プロセッサ11は、まず、気象データ処理を実行する(ステップS20)。この気象データ処理について、図13を用いて詳細に説明する。
図13に示されるように、気象データ処理において、まず、気象データ評価部180は、気象実測データD21、気象予測データD22及び気象計測データD23を取得する(ステップS201)。
次に、気象データ評価部180は、気象実測データD21と気象計測データD23とを比較して分析する(ステップS202)。具体的には、気象データ評価部180は、観測点において実測された気象条件の値を示す気象実測データD21と、センサ61の計測結果を示す気象計測データD23とを、単位時間毎に比較する。
これにより、気象データ評価部180は、例えば、観測点における気温より、ビルB1の所在地における気温の方が、相対的に高くなる頻度を求めることができる。同様に、気象データ評価部180は、観測点における日射量より、ビルB1の所在地における日射量が少ない頻度等を求めることができる。
次に、気象データ評価部180は、気象実測データD21と気象予測データD22とを比較して分析する(ステップS203)。具体的には、気象データ評価部180は、所定の期間に渡って、気象予測データD22の天候及び外気温の的中率及び予測誤差の大きさ(誤差分散)等を求める。この所定の期間は、例えば1ヶ月間である。
次に、気象データ評価部180は、ステップS202、S203の結果から、気象予測データD22を補正する(ステップS204)。
例えば、気象計測データD23に含まれる外気温の計測値が、気象実測データD21に含まれる実測値より1℃だけ高くなる傾向が強い場合には、気象実測データD21の観測点よりもビルB1の所在地の方が、外気温が高くなる傾向があると考えられる。この場合に、気象データ評価部180は、気象予測データD22に含まれる外気温の予測値を、1℃だけ低い値に補正する。
また、気象予測データD22に含まれる外気温の予測値が、気象実測データD21に含まれる値より1℃だけ高くなる傾向が強い場合に、気象データ評価部180は、気象予測データD22に含まれる外気温の予測値を、1℃だけ低い値に補正する。
次に、気象データ評価部180は、ステップS203の結果から、熱負荷モデル131を補正する(ステップS205)。具体的には、気象データ評価部180は、ステップS203の結果から、熱負荷予測値D1の出力に対するマージン(許容量)を設定する。例えば、気象データ評価部180は、気象予測データD22に含まれる予測誤差が大きい場合に、熱負荷モデル131のオフセット値Cを大きくする。これにより、空調設備の省電力化を担保することができる。
次に、気象データ評価部180は、値が補正された気象予測データD22を、入力情報処理部120へ出力する(ステップS206)。その後、気象データ評価部180は、気象データ処理を終了する。
図12に戻り、プロセッサ11は、気象データ処理(ステップS20)に続いて、実施の形態1に係るステップS1以降の処理と同様の処理を実行する。
以上説明したように、本実施の形態に係る熱負荷予測装置10は、気象実測データD21と気象計測データD23とを比較して分析した。そして、熱負荷予測装置10は、分析の結果に基づいて、気象予測データD22を補正した。これにより、観測点における気象条件とビルB1の所在地における気象条件との差異を明らかにして、ビルB1の所在地における気象条件の正確な予測値を得ることができる。
また、熱負荷予測装置10は、気象実測データD21と気象予測データD22とを比較して分析した。そして、熱負荷予測装置10は、分析の結果に基づいて、気象予測データD22を補正した。これにより、ビルB1の所在地における気象条件の正確な予測値を得ることができる。また、熱負荷予測装置10は、分析の結果に基づいて熱負荷モデル131を補正した。これにより、気象条件の予測の的中率に応じて、空調設備を省電力で運転するための熱負荷モデル131を得ることができる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態によって限定されるものではない。
例えば、上記実施の形態において実行される一連の処理は、図3、12に示されるように、1日を周期として繰り返された。しかしながら、この周期は任意である。例えば、空調システム42、45の運転プログラムの更新周期、又は、BEMS41、44が管理される周期を、一連の処理を繰り返すための周期としてもよい。
また、ステップS9(図3、12参照)において、時系列データの各サンプル値を等価なものとして扱ったが、これには限定されない。例えば、1日のうちの時間帯を区切って、時間帯毎に統計分析を行ってもよい。また、天候(雨天、曇天、晴天)毎に、その天候のときのデータを抽出した上で統計解析を行ってもよい。
また、ステップS9では、所定のステップ幅でパラメータの値が更新されたが、これには限定されない。例えば、モデル誤差の値が最小となるようにパラメータの値を更新してもよい。具体的には、モデル誤差の期待値が最小となるように、パラメータの値を最尤推定等の統計的手法により推定してもよい。
また、上記実施の形態に係る熱負荷予測装置10は、BEMS41、44に接続されたが、これには限定されない。例えば、熱負荷予測装置10は、空調システム42、45を制御するEMS(Energy Management System)と接続されてもよい。また、熱負荷予測装置D1は、図14に示されるように、空調システム42と直接接続されてもよい。図14に示される例では、熱負荷予測装置10によって予測された熱負荷予測値D1は、空調システム42に含まれ、室内機及び室外機等を制御する空調制御装置へ配信されることとなる。
また、上記実施の形態に係る熱負荷予測装置10は、配信システム100を構成したが、これには限定されない。例えば、図15に示されるように、ビルB1に設置されていてもよい。ビルB1に設置された熱負荷予測装置10は、ビルB1内の空間43の熱負荷を予測することとなる。
また、上記実施の形態1に係る熱負荷予測装置10は、週に一度の頻度で熱負荷モデル131を補正したが、これには限定されない。例えば、運用時間帯におけるモデル誤差の平均値が閾値より大きくなった場合に、熱負荷モデル131を補正してもよい。
また、上記実施の形態に係る誤差データ蓄積部152は、誤差データD6及び入力情報処理部120から出力されたデータを蓄積したが、これには限定されない。例えば、誤差データ蓄積部152は、さらに熱負荷予測値D1、熱負荷再計算値D3、及び熱負荷実績値D4を蓄積してもよい。熱負荷再計算値D3及び熱負荷実績値D4を蓄積する場合には、モデル誤差の大きさを正規化した上で分析することが可能になる。
また、上記実施の形態に係る式(2)中のR1は、構造データD31を用いた演算に基づいて設定されたが、運転実績データD5に基づいて設定されてもよい。
また、上記実施の形態に係る運用データD32は、設定温度の予測値に相当するデータを含み、運転実績データD5は、設定温度の実測値に相当するデータを含んでいた。そして、設定温度以外のデータについては、運用データD32及び運転実績データD5は、同種のデータを含んでいなかった。しかしながら、これには限定されない。
例えば、運用データD32は、気象条件以外の複数の環境条件の予測値を含み、運転実績データD5は、気象条件以外の複数の環境条件の実測値を含んでもよい。この場合には、熱負荷モデル131を、より正確に補正することが可能となる。
上述の実施形態に係る熱負荷予測装置10の機能は、専用のハードウェアによっても、また、通常のコンピュータシステムによっても実現することができる。
例えば、補助記憶部13に記憶されているプログラム18を、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical disk)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラム18をコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。
また、プログラム18をインターネット等の通信ネットワーク上の所定のサーバ装置が有するディスク装置等に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロード等するようにしてもよい。
また、インターネット等のネットワークを介してプログラム18を転送しながら起動実行することによっても、上述の処理を達成することができる。
更に、プログラム18の全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラム18を実行することによっても、上述の処理を達成することができる。
なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロード等してもよい。
また、熱負荷予測装置10の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を専用のハードウェア(回路等)によって実現してもよい。
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
本発明の熱負荷予測装置、配信システム、熱負荷予測方法及びプログラムは、空調対象となる空間の熱負荷の予測に適している。
100 配信システム、 10 熱負荷予測装置、 11 プロセッサ、 12 主記憶部、 13 補助記憶部、 14 入力部、 15 出力部、 16 インタフェース部、 17 内部バス、 18 プログラム、 110 気象実測データ処理部、 120 入力情報処理部、 130 熱負荷算出部、 131 熱負荷モデル、 140 運転実績データ処理部、 150 モデル補正モジュール、 151 誤差算出部、 152 誤差データ蓄積部、 153 モデル評価部、 160 気象計測データ収集部、 170 気象データ蓄積部、 180 気象データ評価部、 20 気象情報サーバ、 30 ビル情報サーバ、 41、44 BEMS、 42、45 空調システム、 43、46 空間、 61、62 センサ、 B1、B2 ビル、 D1 熱負荷予測値、 D2、D5 運転実績データ、 D3 熱負荷再計算値、 D4 熱負荷実績値、 D6 誤差データ、 D21 気象実測データ、 D22 気象予測データ、 D23 気象計測データ、 D31 構造データ、 D32 運用データ、 L1~L6 線、 NW ネットワーク。
Claims (10)
- 空調対象の空間に関する環境条件と前記空間の熱負荷との関係を規定するモデルを用いて、前記環境条件の実測値から前記空間の熱負荷の値を算出する熱負荷算出手段と、
前記空間における空気の状態を調節する空調設備の運転の状況に基づいて、前記空間の熱負荷を測定する熱負荷測定手段と、
前記熱負荷算出手段によって算出された熱負荷の値と、前記熱負荷測定手段によって測定された熱負荷の値とを比較することにより、前記モデルを補正するモデル補正手段と、
前記モデル補正手段によって補正された前記モデルを用いて、前記環境条件の予測値から前記空間の熱負荷の値を予測する熱負荷予測手段と、
を備える熱負荷予測装置。 - 前記モデル補正手段は、
前記熱負荷算出手段によって算出された熱負荷の値と、前記熱負荷測定手段によって測定された熱負荷の値との差を、前記モデルにより生じた誤差として順次記憶する記憶手段、を有し、
前記記憶手段に記憶された誤差についての統計解析に基づいて、前記モデルを補正する、
請求項1に記載の熱負荷予測装置。 - 前記モデルは、複数の前記環境条件と前記空間の熱負荷との関係を、パラメータを用いて規定し、
前記モデル補正手段は、
前記記憶手段に記憶された誤差との相関値が最も大きい前記環境条件と、前記空間の熱負荷との関係を規定するためのパラメータを、前記モデルにより生じる誤差が小さくなるように更新する、
請求項2に記載の熱負荷予測装置。 - 複数の前記環境条件は、
気象条件及び前記空間の運用に関する条件の少なくとも一方を含む、
請求項3に記載の熱負荷予測装置。 - 前記環境条件の実測値及び予測値を蓄積する蓄積手段と、
前記蓄積手段に蓄積された実測値と予測値とを比較することにより、前記環境条件の予測値を補正する第1予測値補正手段と、
を備え、
前記熱負荷予測手段は、
前記第1予測値補正手段によって補正された予測値から、前記空間の熱負荷の値を予測する、
請求項1乃至4のいずれか一項に記載の熱負荷予測装置。 - 前記空間の所在地を含む地域において実測された気象条件の実測値を、前記環境条件の実測値として取得する実測値取得手段と、
前記地域における気象条件の予測値を、前記環境条件の予測値として取得する予測値取得手段と、
前記空間の所在地において計測された気象条件の計測値を取得する計測値取得手段と、
前記実測値取得手段によって取得された実測値と、前記計測値取得手段によって取得された計測値とを比較することにより、前記予測値取得手段によって取得された予測値を補正する第2予測値補正手段と、
を備え、
前記熱負荷予測手段は、
前記第2予測値補正手段によって補正された予測値から、熱負荷の値を予測する、
請求項1乃至5のいずれか一項に記載の熱負荷予測装置。 - 前記熱負荷算出手段は、
熱負荷の値を算出するための前記環境条件の実測値が不足している場合に、前記環境条件の予測値を用いて前記環境条件の実測値を補完する、
請求項1乃至6のいずれか一項に記載の熱負荷予測装置。 - 請求項1乃至7のいずれか一項に記載の熱負荷予測装置と、
前記熱負荷予測装置によって予測された熱負荷の値を、熱負荷の値が予測された空間における空気の状態を調節する空調設備を制御する制御装置へ配信する配信手段と、
を備える配信システム。 - 空調対象の空間に関する環境条件と前記空間の熱負荷との関係を規定するモデルを用いて、前記環境条件の実測値から前記空間の熱負荷の値を算出する熱負荷算出ステップと、
前記空間における空気の状態を調節する空調設備の運転の状況に基づいて、前記空間の熱負荷を測定する熱負荷測定ステップと、
前記熱負荷算出ステップにおいて算出された熱負荷の値と、前記熱負荷測定ステップにおいて測定された熱負荷の値とを比較することにより、前記モデルを補正する補正ステップと、
前記補正ステップにおいて補正された前記モデルを用いて、前記環境条件の予測値から前記空間の熱負荷の値を予測する熱負荷予測ステップと、
を含む熱負荷予測方法。 - コンピュータを、
空調対象の空間に関する環境条件と前記空間の熱負荷との関係を規定するモデルを用いて、前記環境条件の実測値から前記空間の熱負荷の値を算出する熱負荷算出手段、
前記空間における空気の状態を調節する空調設備の運転の状況に基づいて、前記空間の熱負荷を測定する熱負荷測定手段、
前記熱負荷算出手段によって算出された熱負荷の値と、前記熱負荷測定手段によって測定された熱負荷の値とを比較することにより、前記モデルを補正する補正手段、
前記補正手段によって補正された前記モデルを用いて、前記環境条件の予測値から前記空間の熱負荷の値を予測する熱負荷予測手段、
として機能させるためのプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015526054A JP6012868B2 (ja) | 2013-07-10 | 2013-07-10 | 熱負荷予測装置、配信システム、熱負荷予測方法及びプログラム |
PCT/JP2013/068835 WO2015004742A1 (ja) | 2013-07-10 | 2013-07-10 | 熱負荷予測装置、配信システム、熱負荷予測方法及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/068835 WO2015004742A1 (ja) | 2013-07-10 | 2013-07-10 | 熱負荷予測装置、配信システム、熱負荷予測方法及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015004742A1 true WO2015004742A1 (ja) | 2015-01-15 |
Family
ID=52279468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/068835 WO2015004742A1 (ja) | 2013-07-10 | 2013-07-10 | 熱負荷予測装置、配信システム、熱負荷予測方法及びプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6012868B2 (ja) |
WO (1) | WO2015004742A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016177675A (ja) * | 2015-03-20 | 2016-10-06 | 株式会社東芝 | 推定装置、推定方法およびコンピュータプログラム |
WO2017029755A1 (ja) * | 2015-08-20 | 2017-02-23 | 三菱電機株式会社 | 空調運転解析装置およびプログラム |
JP2017531155A (ja) * | 2015-03-06 | 2017-10-19 | 三菱電機株式会社 | 空調システム並びに空調システムの動作を制御するためのシステム及び方法 |
CN110068110A (zh) * | 2019-04-02 | 2019-07-30 | 深圳市海源节能科技有限公司 | 一种中央空调负荷预测方法、智能终端及存储介质 |
JP2019144970A (ja) * | 2018-02-22 | 2019-08-29 | 株式会社日立製作所 | 分析装置、分析方法、および分析プログラム |
CN111121150A (zh) * | 2020-01-03 | 2020-05-08 | 西咸新区玄武信息科技有限公司 | 一种智能热负荷预测调控方法、系统及存储介质 |
WO2020233899A1 (en) * | 2019-05-20 | 2020-11-26 | Belimo Holding Ag | A method and a computer system for monitoring and controlling an hvac system |
CN113112094A (zh) * | 2021-05-10 | 2021-07-13 | 瑞纳智能设备股份有限公司 | 量化风况影响的热负荷预测方法、系统、装置及存储介质 |
CN113283774A (zh) * | 2021-06-07 | 2021-08-20 | 润电能源科学技术有限公司 | 采暖供热机组深度调峰方法、装置、电子设备及存储介质 |
GB2601901A (en) * | 2020-10-29 | 2022-06-15 | Nvidia Corp | Intelligent radiator-assisted power and coolant distribution unit for datacenter cooling systems |
CN117669839A (zh) * | 2024-02-01 | 2024-03-08 | 山东赛马力发电设备有限公司 | 一种综合能源系统分布式负荷预测方法及系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110177980B (zh) * | 2017-03-10 | 2021-08-27 | 株式会社日立制作所 | 空调机的性能诊断装置以及性能诊断方法 |
CN112747413B (zh) * | 2019-10-31 | 2022-06-21 | 北京国双科技有限公司 | 空调系统负荷预测方法及装置 |
CN113835344B (zh) * | 2021-11-25 | 2022-04-12 | 阿里云计算有限公司 | 设备的控制优化方法、展示平台、云服务器及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06131323A (ja) * | 1992-09-01 | 1994-05-13 | Yamatake Honeywell Co Ltd | 状態予測装置 |
JPH08240335A (ja) * | 1995-03-03 | 1996-09-17 | Toshiba Corp | ビル空調熱負荷予測装置 |
JPH09273795A (ja) * | 1996-04-01 | 1997-10-21 | Tokyo Electric Power Co Inc:The | 熱負荷予測装置 |
JP2008082642A (ja) * | 2006-09-28 | 2008-04-10 | Shimizu Corp | 蓄熱槽熱源システムの制御装置及び制御方法 |
JP2011012839A (ja) * | 2009-06-30 | 2011-01-20 | Taikisha Ltd | 熱源システム又は空調システムの性能評価方法及び性能評価装置 |
-
2013
- 2013-07-10 JP JP2015526054A patent/JP6012868B2/ja active Active
- 2013-07-10 WO PCT/JP2013/068835 patent/WO2015004742A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06131323A (ja) * | 1992-09-01 | 1994-05-13 | Yamatake Honeywell Co Ltd | 状態予測装置 |
JPH08240335A (ja) * | 1995-03-03 | 1996-09-17 | Toshiba Corp | ビル空調熱負荷予測装置 |
JPH09273795A (ja) * | 1996-04-01 | 1997-10-21 | Tokyo Electric Power Co Inc:The | 熱負荷予測装置 |
JP2008082642A (ja) * | 2006-09-28 | 2008-04-10 | Shimizu Corp | 蓄熱槽熱源システムの制御装置及び制御方法 |
JP2011012839A (ja) * | 2009-06-30 | 2011-01-20 | Taikisha Ltd | 熱源システム又は空調システムの性能評価方法及び性能評価装置 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017531155A (ja) * | 2015-03-06 | 2017-10-19 | 三菱電機株式会社 | 空調システム並びに空調システムの動作を制御するためのシステム及び方法 |
JP2016177675A (ja) * | 2015-03-20 | 2016-10-06 | 株式会社東芝 | 推定装置、推定方法およびコンピュータプログラム |
US10289763B2 (en) | 2015-03-20 | 2019-05-14 | Kabushiki Kaisha Toshiba | Estimation device, estimation method, and non-transitory computer readable medium |
WO2017029755A1 (ja) * | 2015-08-20 | 2017-02-23 | 三菱電機株式会社 | 空調運転解析装置およびプログラム |
JPWO2017029755A1 (ja) * | 2015-08-20 | 2018-03-29 | 三菱電機株式会社 | 空調運転解析装置およびプログラム |
CN107923645A (zh) * | 2015-08-20 | 2018-04-17 | 三菱电机株式会社 | 空气调节运行分析装置以及程序 |
CN107923645B (zh) * | 2015-08-20 | 2021-04-09 | 三菱电机株式会社 | 空气调节运行分析装置以及记录有程序的非临时性计算机可读取记录介质 |
US10731890B2 (en) | 2015-08-20 | 2020-08-04 | Mitsubishi Electric Corporation | Air conditioning operation analysis device and non-transitory computer-readable recording medium storing program |
US11507881B2 (en) | 2018-02-22 | 2022-11-22 | Hitachi, Ltd. | Analysis apparatus, analysis method, and analysis program for calculating prediction error and extracting error factor |
JP2019144970A (ja) * | 2018-02-22 | 2019-08-29 | 株式会社日立製作所 | 分析装置、分析方法、および分析プログラム |
WO2019163160A1 (ja) * | 2018-02-22 | 2019-08-29 | 株式会社日立製作所 | 分析装置、分析方法、および分析プログラム |
CN110068110B (zh) * | 2019-04-02 | 2020-12-04 | 深圳市海源节能科技有限公司 | 一种中央空调负荷预测方法、智能终端及存储介质 |
CN110068110A (zh) * | 2019-04-02 | 2019-07-30 | 深圳市海源节能科技有限公司 | 一种中央空调负荷预测方法、智能终端及存储介质 |
WO2020233899A1 (en) * | 2019-05-20 | 2020-11-26 | Belimo Holding Ag | A method and a computer system for monitoring and controlling an hvac system |
US11913657B2 (en) | 2019-05-20 | 2024-02-27 | Belimo Holding Ag | Method and a computer system for monitoring and controlling an HVAC system |
CN111121150A (zh) * | 2020-01-03 | 2020-05-08 | 西咸新区玄武信息科技有限公司 | 一种智能热负荷预测调控方法、系统及存储介质 |
GB2601901A (en) * | 2020-10-29 | 2022-06-15 | Nvidia Corp | Intelligent radiator-assisted power and coolant distribution unit for datacenter cooling systems |
GB2601901B (en) * | 2020-10-29 | 2023-03-01 | Nvidia Corp | Intelligent radiator-assisted power and coolant distribution unit for datacenter cooling systems |
US11997830B2 (en) | 2020-10-29 | 2024-05-28 | Nvidia Corporation | Intelligent radiator-assisted power and coolant distribution unit for datacenter cooling systems |
CN113112094A (zh) * | 2021-05-10 | 2021-07-13 | 瑞纳智能设备股份有限公司 | 量化风况影响的热负荷预测方法、系统、装置及存储介质 |
CN113112094B (zh) * | 2021-05-10 | 2024-02-13 | 瑞纳智能设备股份有限公司 | 量化风况影响的热负荷预测方法、系统、装置及存储介质 |
CN113283774A (zh) * | 2021-06-07 | 2021-08-20 | 润电能源科学技术有限公司 | 采暖供热机组深度调峰方法、装置、电子设备及存储介质 |
CN117669839A (zh) * | 2024-02-01 | 2024-03-08 | 山东赛马力发电设备有限公司 | 一种综合能源系统分布式负荷预测方法及系统 |
CN117669839B (zh) * | 2024-02-01 | 2024-04-30 | 山东赛马力发电设备有限公司 | 一种综合能源系统分布式负荷预测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015004742A1 (ja) | 2017-02-23 |
JP6012868B2 (ja) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6012868B2 (ja) | 熱負荷予測装置、配信システム、熱負荷予測方法及びプログラム | |
US10180672B2 (en) | Demand control device and computer readable medium | |
US9568519B2 (en) | Building energy consumption forecasting procedure using ambient temperature, enthalpy, bias corrected weather forecast and outlier corrected sensor data | |
EP2251614B1 (en) | Air conditioning system and device for predicting building air conditioning facility power consumption amount | |
JP5572799B2 (ja) | 空調システム制御装置 | |
EP2990734B1 (en) | Air-conditioning control system and method | |
CN108292860B (zh) | 电力控制装置、运转计划制定方法以及记录介质 | |
JP2014021555A (ja) | 自然エネルギー量予測装置 | |
CN104303125A (zh) | 优化和控制建筑的能耗 | |
US10333306B2 (en) | Data-driven demand charge management solution | |
CN111043685B (zh) | 储冰量调整系统与储冰量调整方法 | |
JP6605181B2 (ja) | 運転制御装置、空気調和システム、運転制御方法および運転制御プログラム | |
US11578889B2 (en) | Information processing apparatus and air-conditioning system provided with the same | |
JP6405210B2 (ja) | 気象補正装置、空調管理システム及び気象補正方法 | |
KR20130074043A (ko) | 오차 보정 알고리즘을 이용한 수용가 수요전력 예측 방법 및 시스템 | |
AU2019292449B2 (en) | Power consumption estimation device | |
JP6198953B2 (ja) | 管理装置、管理システム、管理方法、及び、プログラム | |
CN114450531B (zh) | 信息处理方法、信息处理装置、以及程序 | |
JP5061169B2 (ja) | 需要閾値を判断する方法及び需要コントロール方法 | |
JP7101265B2 (ja) | 異常要因診断装置及びその方法、並びに異常要因診断システム | |
KR101894541B1 (ko) | 인공지능 기반의 특성인자 예측방법 및 이를 이용한 빌딩 에너지 소모량 예측방법 | |
JP7206963B2 (ja) | 予測システム、予測方法 | |
JP7277254B2 (ja) | 消費電力予測装置 | |
CN115455797A (zh) | 温度预测模型训练和温度决策方法及装置、电子设备 | |
JP5100723B2 (ja) | 消費電力量監視装置および消費電力量監視方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13889092 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015526054 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13889092 Country of ref document: EP Kind code of ref document: A1 |