WO2015002426A1 - Organic solvent leak detection apparatus - Google Patents
Organic solvent leak detection apparatus Download PDFInfo
- Publication number
- WO2015002426A1 WO2015002426A1 PCT/KR2014/005834 KR2014005834W WO2015002426A1 WO 2015002426 A1 WO2015002426 A1 WO 2015002426A1 KR 2014005834 W KR2014005834 W KR 2014005834W WO 2015002426 A1 WO2015002426 A1 WO 2015002426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic solvent
- resistance value
- conductive line
- film layer
- base film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/16—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
- G01M3/165—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means by means of cables or similar elongated devices, e.g. tapes
Definitions
- the present invention relates to an organic solvent leak detection device, in particular, the organic solvent leakage detection for detecting the leakage state of the organic solvent as well as the type of leaked organic solvent by changing the resistance value in response to various organic solvents leaking Relates to a device.
- Applicant has already proposed a tape-type leak detection sensor in a number of registered patents (10-0909242, 10-0827385, etc.) in the form of a tape and installed in a position where water is likely to leak. have.
- the leak detection sensor 100 is formed by sequentially laminating a lower adhesive layer 120, a base film layer 110, and an upper protective film layer 130 upward from the bottom.
- the lower adhesive layer 120 is to be attached to where the leakage occurs, it is configured in the form of an adhesive tape, the base film layer 110 is a layer for forming the conductive lines (111, 112) on the upper, of the conductive lines (111, 112)
- the pattern is formed of PET, PE, PTFE, PVC, or other Teflon-based films to form the pattern in a printing method.
- the conductive lines 111 and 112 are spaced apart from each other on the upper surface of the base film layer 110 and are disposed in a strip shape in parallel in the longitudinal direction, and are printed with a conductive ink or a silver compound.
- the upper protective film layer 130 is stacked on top of the base film layer 110 to protect the conductive lines 111 and 112 from external stimuli.
- PET, PE, PTFE, and PVC Alternatively, it is formed of other Teflon-based materials, and configured to penetrate the sensing holes 131 at predetermined intervals at positions corresponding to the conductive lines 111 and 112.
- the conventional film type leak detection sensor 100 has conductivity and can detect leakage of the conductive solution, various oils such as lubricating oil, hydraulic oil, insulating oil, gasoline, diesel oil, kerosene, aviation oil, normal nucleic acid, dichloroethylene (Acetylene dichloride), dichloroethane (ethylene dichloride), methanol, carbon tetrachloride, acetone, ortho-dichlorobenzene, carbon disulfide, methyl acetate, xylene, chlorobenzene, chloroform, tetrachloroethane (acetylene tetrachloride), tetrachloroethylene ( There is a problem in that only organic solvents such as pa-chloroethylene), toluene, trichloroethylene, and other petrochemical compounds cannot be selectively detected.
- the present invention for solving this problem, various oils, normal nucleic acid, dichloroethylene (acetylene dichloride), dichloroethane (ethylene dichloride), methanol, carbon tetrachloride, acetone, ortho-dichlorobenzene, carbon disulfide, methyl acetate, xylene Oils by reacting rapidly with contact with organic solvents such as chlorobenzene, chloroform, tetrachloroethane (acetylene tetrachloride), tetrachloroethylene (pa-chloroethylene), toluene, trichloroethylene and other petrochemical compounds. And it is an object to provide an organic solvent leak detection device for detecting the leakage of the organic solvent.
- organic solvents such as chlorobenzene, chloroform, tetrachloroethane (acetylene tetrachloride), tetrachloroethylene (pa-chloroethylene), toluen
- Another object of the present invention is to set the upper and lower limit resistance value from the basic resistance value of the sensing line to measure the time the resistance value is changed within the limit resistance value to determine the type of organic solvent leaking It is to provide a leak detection device.
- a base film layer made of a film material
- a conductive line formed in a longitudinal direction on an upper surface of the base film layer
- a coating layer applied to an upper surface of the base film layer so that the conductive line is not exposed to the outside by a material whose resistance value changes in response to an organic solvent.
- a base film layer made of a film material
- a conductive line formed in a longitudinal direction on an upper surface of the base film layer
- a material that is dissolved or eroded by the organic solvent, the coating layer covering the conductive line; an organic solvent leakage detection device is configured
- a controller is connected to the organic solvent leak detection device to supply sensing power to the conductive line and to generate an alarm according to a change in resistance value over time.
- the present invention can quickly detect the organic solvent leakage state by reacting quickly to the leaking organic solvent, it is possible to quickly check the fire, soil or water pollution due to leakage and to appropriately cope with this.
- 1 is an exploded structure of a known leak detection apparatus.
- FIG. 2 is a cross sectional view of FIG.
- FIG 3 is a view showing the structure of an organic solvent leak detection apparatus according to a first embodiment of the present invention.
- FIG. 4 is a view showing a circuit structure and a state in which a controller is connected to the first embodiment of the present invention
- FIG. 5 is a view showing the structure of an organic solvent leak detection apparatus according to a second embodiment of the present invention.
- FIG. 6 is a view for explaining a change in resistance value of a conductive line due to leakage of an organic solvent.
- FIG. 7 is a view showing a state in which a controller is connected and a circuit structure in a second embodiment of the present invention.
- FIG. 8 is a graph showing an operating state of a controller for generating an alarm due to a change in resistance value according to the type of leaked organic solvent.
- Figure 3 is a view showing the structure of the organic solvent leak detection sensor 200 applied in the first embodiment of the present invention, the base film layer 210 of PET, PE, PTFE, PI, PVC or other Teflon-based film material ), And the upper protective film layer 230 stacked on the base film layer 210, the coating layer 240 stacked between the base film layer 210 and the upper protective film layer 230.
- a pair of conductive lines 211 and 212 are spaced apart from each other and arranged in a strip shape in parallel in the longitudinal direction, and the conductive lines 211 and 212 may be formed of a silver compound, a conductive ink, and a metal. It is formed by various conductors such as thin plates or sheets.
- the upper surface of the conductive line (211,212) is formed with a coating layer 240 to cover the entire conductive line (211,212) or the base film layer 210, the coating layer 240 is a lubricant, operating oil, insulating oil, gasoline, diesel, Various oils such as kerosene and aviation oil, normal nucleic acid, dichloroethylene (acetylene dichloride), dichloroethane (ethylene dichloride), methanol, carbon tetrachloride, acetone, ortho-dichlorobenzene, carbon disulfide, methyl acetate, xylene, chlorobenzene, chloroform , Which is dissolved or eroded by reacting with organic solvents (hereinafter referred to as organic solvents) such as tetrachloroethane (acetylene tetrachloride), tetrachloroethylene (pa-chloroethylene), toluene, trichloroethylene, and other petro
- the composition constituting the coating layer 240 is composed of a mixture of 45 to 55% by weight of non-ionic surfactant to 45 to 55% by weight of aqueous polystyrene (Polystyrene), to reduce the surface tension of the conductive line in the mixture
- a wetting agent, ethanol for volatilizing the solvent during printing, and grayene, which are carbon nanotubes, are added in an amount of 1 to 2% by weight.
- Aqueous polystyrene is a material that is weakly soluble in acid, and a nonionic surfactant is a material that reacts with an organic solvent, and is a composition that easily dissolves when the organic solvent contacts the coating layer 240.
- the wetting agent is to lower the surface tension when the coating layer 240 is formed by the printing method using the composition of the present invention. If the surface tension is high, the base film layer 210 may be aggregated without spreading during the printing of the coating layer 240. ) Or the adhesion force to the conductive lines 211 and 212 falls.
- the mixture is applied to the entire upper surface of the base film layer 210 on which the conductive lines 211 and 212 are formed by the printing method to form the coating layer 220 or the coating layer 240 to be limited to the conductive lines 211 and 212 only. Done.
- the thickness of the coating layer 240 has a thickness of 2 ⁇ 20 ⁇ m.
- the upper protective film layer 230 is formed of a PET, PE, PTFE, PI, PVC or other Teflon-based film material, the sensing hole 231 at regular intervals in the longitudinal direction at the position corresponding to the conductive lines (211,212) Has a formed structure.
- the organic solvent is introduced through the sensing hole 231 of the upper protective film layer 230, thereby causing a change in the resistance value while the coating layer 240 is dissolved or eroded.
- the resistance value between the conductive lines 211 and 212 is changed by the change of the resistance value, it is possible to detect the leakage of the organic solvent.
- the start connector 400 and the end connector 500 are connected to both ends of the organic solvent leakage detection sensor 200, the start connector 400 ) Is connected to the controller 300, the end connector 500 is a connector for connecting the conductive lines (211,212) at the end of the organic solvent leakage detection sensor 200.
- the conductive lines 211 and 212 formed on the base film layer 210 are formed of a material whose resistance value changes in response to an organic solvent.
- the conductive lines 211 and 212 are made of 50 to 99% of conductive carbon having conductivity such as active carbon or carbon nano tube or graphene or carbon black, and polyurethane as a binder. PU) 1 to 50% by weight of the conductive carbon ink is mixed, and the conductive carbon ink is printed on the base film layer 210 by various printing methods such as gravure printing, silk screen printing, inkjet printing, and the like. Conductive lines 211 and 212 are formed.
- PMMA polymethyl methacrylate
- PC polycarbonate
- PF phenol resin
- the upper protective film layer 230 is formed of a synthetic resin material, such as PC, PP, PE, PI, PET, and Teflon, which is resistant to a strong acid solution, and is formed to have a thickness of 50 to 300 ⁇ m, and has a sensing hole at a position where conductive lines 211 and 212 are formed. 231 is formed.
- a synthetic resin material such as PC, PP, PE, PI, PET, and Teflon
- the alkaline solution flows through the sensing hole 231 at the location where the leakage occurs, and as shown in FIG. 6, the binder constituting the conductive lines 211 and 212 reacts with the organic solvent for a time. As this elapses, the arrangement of the conductive carbon particles collapses as it swells.
- the resistance values of the conductive lines 211 and 212 are increased, and the remote controller is provided with a change in the resistance values of the conductive lines 211 and 212 to check whether the organic solvent is leaked.
- the conductive lines 211 and 212 may be variously configured as shown in Table 1 below.
- Second conductive line 212 One Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder 2 Silver compound Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder 3 Metal sheet Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder 4 Other conductors Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder
- both the first conductive line 211 and the second conductive line 212 are mixed with active carbon or carbon black or carbon nanotubes (CNT) or graphene, the first conductive line 211 and the first conductive line 211
- the sensing hole 231 is formed at a position corresponding to the second conductive line 212.
- the first conductive line 211 is composed of a conductor such as a silver compound, a metal thin plate, a conductive ink, and only the second conductive line 212 is formed on the active carbon, carbon black, carbon nanotube (CNT), or graphene (Graphene). If the binder is mixed, the sensing hole 231 should be formed only at a position corresponding to the second conductive line 212.
- a conductor such as a silver compound, a metal thin plate, a conductive ink
- the second conductive line 212 is formed on the active carbon, carbon black, carbon nanotube (CNT), or graphene (Graphene). If the binder is mixed, the sensing hole 231 should be formed only at a position corresponding to the second conductive line 212.
- FIG. 7 is a view showing the entire system for checking whether the organic solvent is leaked.
- the start connector 400 and the end connector (at both ends of the strong acid solution leakage detection sensor 200) are shown. 500 is connected, the start connector 400 is connected to the controller 300, the end connector 500 is a connector for connecting the conductive lines (211,212) at the end of the organic solvent leakage sensor 200.
- FIG. 7B is a circuit diagram illustrating an example in which the second conductive line 212 is formed of a material whose resistance value changes in response to an organic solvent, and the first conductive line 211 is formed of a conductor.
- the second conductive line 212 is formed of a material whose resistance value changes in response to an organic solvent
- the first conductive line 211 is formed of a conductor.
- organic solvents have various types, but in the structure in which the conductive lines 211 and 212 described above are energized to cause a change in resistance value, only the leakage state can be known by simply changing the resistance value due to leakage of the organic solvent. The type of organic solvent that leaks is very difficult to identify.
- the controller 300 receives a change in the resistance value of the conductive line 212 or a change in the resistance value generated by energizing the conductive lines 211 and 212 in the first and second embodiments, and the resistance value according to the passage of time. The change of and the kind of the organic solvent is determined accordingly.
- FIG. 8 illustrates an operation state of the controller 300 for determining the type of the organic solvent according to the resistance value change between the two conductive lines 211 and 212 when the coating layer 240 is formed as in the first embodiment.
- a reference resistance value according to the sensor length of the organic solvent leakage detection sensor 200 is set in the controller 300.
- the external environment such as external temperature, humidity, electrical noise, and physical contact is based on the reference resistance value.
- '+' Offset value and '-' offset value are set to absorb the change in self-resistance value.
- This offset value is adjusted according to the environment in which the organic solvent leak detection sensor 200 is installed.
- the controller 300 is set to the high limit value, that is, the upper limit resistance value in the '+' direction of the reference resistance value, and the alarm set value (Low Limit) or the lower limit resistance value is set in the '-' direction.
- the sensing sensitivity can be adjusted.
- the organic solvent is leaked and the resistance value between the conductive lines 211 and 212 gradually decreases, so that the type of the organic solvent can be determined by measuring the time that falls within the range of the alarm set value.
- the coating layer 240 when leaked and contacted with the coating layer 240, the coating layer 240 is dissolved or eroded, and a change in resistance occurs, and an alarm is set from the time when the change in the resistance occurs. It is possible to determine the type of the organic solvent according to the measurement time by measuring the time when the resistance value changes within the range of the value coming in the controller 300.
- the controller 300 measures such a time, The type of solvent can be determined.
- the controller 300 when the resistance change value of each chemical solution matches the alarm set value (High Limit), the controller 300 generates an alarm at the position, and then detects the change in the resistance value continuously. Like chemical solution D, a change in resistance value may occur so as to deviate from an alarm set value (Low Limit), and the controller 300 generates an alarm at a position at which the alarm set value (Low Limit) deviates.
- the controller 300 stores data on the change of the resistance value according to the time-lapse of the various organic solvents, so that the time at which the change in the resistance value enters the range of the alarm set value from the time when the initial resistance value changes occurs.
- an alarm may be generated for the type of chemical solution, ie, the organic solvent, corresponding to the corresponding time.
- the resistance value of the conductive line 212 when the resistance value of the conductive line 212 is increased by the organic solvent, the resistance value will increase as time passes.
- the type of organic solvent that leaks by judging the degree of change in the resistance value as time passes. can be determined.
- the tape type organic solvent leak detection sensor can be replaced with the cable type sensor and can be applied to the strong acid solution leakage detection device of the present invention.
- the cable sensor 600 has two conductive wires ( 610, 620 is configured to coat the coating layer 630 with a material dissolved by an organic solvent on the outside in a state spaced apart side by side.
- the coating layer 630 may be formed of a material coated with the same material as the coating layer 240 of the present invention or dissolved or eroded by an organic solvent.
- the coating layer 630 is dissolved and a change in resistance occurs, and the resistance value between the conductive lines 610 and 620 is changed by the change in the resistance value.
- the conductive lines 211 and 212 are formed of active carbon, carbon nanotubes (CNT), or graphene (Graphene), they are formed by a printing method or as shown in FIG. 10. Attaching the double-sided tape to the position where the conductive lines 211 and 212 are to be formed on the upper surface or applying the adhesive to form the adhesive 211-1 and 212-1, then activated carbon or carbon in powder form It can be formed by spraying nanotubes (CNT) or graphene (Graphene).
- CNT carbon nanotubes
- Graphene graphene
- the conductive powder is sprayed onto the adhesive 211-1 and 212-1 to form the conductive lines 211 and 212.
- conductive lines may be formed by attaching conductive active carbon, carbon nanotubes (CNT), or graphene (Graphene) only at the positions where the adhesives 211-1 and 212-1 are formed.
- CNT carbon nanotubes
- Graphene graphene
- the conductive lines 211 and 212 may be formed by a sputtering process.
- the sputtering process places the conductive metal and the base film layer 210 of the present invention in a vacuum chamber.
- the film layer 210 is covered with a protective film 213 as shown in Figure 11 except for the position where the conductive line is to be formed.
- the protective film 213 may be a tape made of a synthetic resin material.
- conductive lines 211 and 212 are formed.
- the reason for using the sputtering process is that when the conductive lines 211 and 212 are formed of a conductive material such as a conductive ink, a silver compound, a metal sheet or a thin plate, and have a high resistance value, the upper portion thereof has a high resistance value.
- the coating layer 240 is applied to the conductive lines 211 and 212 and the thickness of the coating layer 240 is thickened to 30 ⁇ 50 ⁇ m, the coating layer 240 by the thickness of the conductive lines (211,212) stably the base It may not be attached to the film layer 210.
- the thickness of the conductive lines 211 and 212 may have a thickness of 0.1 to 1 ⁇ m, the thickness becomes thinner, and the coating layer 240 is stably formed on the base film layer 240 by the thin thickness. It can be attached.
- the conductive lines 211 and 212 are made of a material in which active carbon or carbon black or carbon nanotubes (CNT) or graphene are mixed with a binder instead of two, and only one conductive line is formed on the upper portion of the base film layer 210. It may be formed on the surface, and both ends of the one conductive line may be connected to the controller by a conductive cable.
- CNT active carbon or carbon black or carbon nanotubes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
The present invention relates to an organic solvent leak detection apparatus and particularly to an organic solvent leak detection apparatus, the resistance value of which changes in response to various leaking organic solvents, thereby detecting not only the leakage of an organic solvent but also the type of the leaking organic solvent. To this end, the apparatus according to the present invention comprises: a base film layer made of a film material; conductive lines formed lengthwise on the upper surface of the base film layer; and a coating layer applied on the upper surface of the base film layer by means of a substance, the resistance value of which changes in response to organic solvents, in a manner that the conductive lines are not exposed to the outside.
Description
본 발명은 유기 용제 누설 감지 장치에 관한 것으로, 특히 누설되는 각종 유기 용제에 반응하여 저항값이 변화됨으로써 유기 용제의 누설 상태를 감지함은 물론 누설된 유기 용제의 종류까지 감지하기 위한 유기 용제 누설 감지 장치에 관한 것이다.The present invention relates to an organic solvent leak detection device, in particular, the organic solvent leakage detection for detecting the leakage state of the organic solvent as well as the type of leaked organic solvent by changing the resistance value in response to various organic solvents leaking Relates to a device.
본 출원인은 이미 여러 건의 등록 특허(10-0909242, 10-0827385 등)에서 테이프 형태로 되어 누수가 발생하기 쉬운 위치에 설치함으로써 누수 발생을 쉽게 감지할 수 있도록 하는 테이프 형태의 누수감지센서를 제안한 바 있다.Applicant has already proposed a tape-type leak detection sensor in a number of registered patents (10-0909242, 10-0827385, etc.) in the form of a tape and installed in a position where water is likely to leak. have.
도1 및 도2에 도시한 바와 같이 이러한 누수감지센서(100)는 하부접착층(120), 베이스필름층(110), 상부보호필름층(130)이 저면에서 상방으로 순차적으로 적층되어 이루어진다.As shown in FIGS. 1 and 2, the leak detection sensor 100 is formed by sequentially laminating a lower adhesive layer 120, a base film layer 110, and an upper protective film layer 130 upward from the bottom.
하부접착층(120)은 누수가 발생되는 곳에 부착하기 위한 것으로, 접착 테이프 형태로 구성되고, 베이스필름층(110)은 도전라인(111,112)이 상부에 형성되기 위한 층으로서, 도전라인(111,112)의 패턴을 인쇄 방식에 형성하기 위해 PET, PE, PTFE, PVC 또는 기타 테프론 계열의 재질의 필름으로 형성된다.The lower adhesive layer 120 is to be attached to where the leakage occurs, it is configured in the form of an adhesive tape, the base film layer 110 is a layer for forming the conductive lines (111, 112) on the upper, of the conductive lines (111, 112) The pattern is formed of PET, PE, PTFE, PVC, or other Teflon-based films to form the pattern in a printing method.
그리고, 도전라인(111,112)은 베이스필름층(110)의 상부표면에서 서로 이격되어 길이방향으로 평행하게 스트립 형태로 배치되며, 도전성 잉크 또는 은(Silver) 화합물로 인쇄된다.The conductive lines 111 and 112 are spaced apart from each other on the upper surface of the base film layer 110 and are disposed in a strip shape in parallel in the longitudinal direction, and are printed with a conductive ink or a silver compound.
상부보호필름층(130)은 베이스필름층(110)의 상부에 적층되어 도전라인(111,112)을 외부의 자극으로부터 보호하기 위한 층으로서, 베이스필름층(110)과 같이 PET, PE, PTFE, PVC 또는 기타 테프론 계열의 재질로 형성되며, 도전라인(111,112)에 해당하는 위치에 일정간격마다 센싱홀(131)이 관통되어 형성되도록 구성된다.The upper protective film layer 130 is stacked on top of the base film layer 110 to protect the conductive lines 111 and 112 from external stimuli. Like the base film layer 110, PET, PE, PTFE, and PVC Alternatively, it is formed of other Teflon-based materials, and configured to penetrate the sensing holes 131 at predetermined intervals at positions corresponding to the conductive lines 111 and 112.
따라서, 누수가 발생하면, 누수가 발생된 위치의 센싱홀(131)을 통해 수분이 유입되어 두 도전라인(111,112)이 수분에 의해 통전되며, 원격의 제어기가 그 통전상태 즉 폐회로가 형성되는 상태를 파악하여 누수여부를 감지하고, 그에 따른 경보를 발생할 수 있게 된다.Therefore, when a leak occurs, water is introduced through the sensing hole 131 at the location where the leak occurs, so that the two conductive lines 111 and 112 are energized by the moisture, and the remote controller is in the energized state, that is, the closed circuit is formed. By detecting the leak can be detected and the alarm accordingly.
그런데, 이러한 종래의 필름형 누수감지센서(100)는 도전성을 가져서 도전성 용액의 누설을 검출할 수 있지만, 윤활유, 작동유, 절연유, 휘발유, 경유, 등유, 항공유 등의 각종 오일류, 노말핵산, 디클로로에틸렌(이염화아세틸렌), 디클로로에탄(이염화에틸렌), 메타놀, 사염화탄소, 아세톤, 오르토-디클로로벤젠, 이황화탄소, 초산메틸, 크실렌, 클로로벤젠, 클로로포름, 테트라클로로에탄(사염화아세틸렌), 테트라클로로에틸렌(파-클로로에틸렌), 톨루엔, 트리클로로에틸렌, 기타 석유화학 합성물 등의 유기 용제만을 선택적으로 검출할 수 없는 문제점이 있다.By the way, although the conventional film type leak detection sensor 100 has conductivity and can detect leakage of the conductive solution, various oils such as lubricating oil, hydraulic oil, insulating oil, gasoline, diesel oil, kerosene, aviation oil, normal nucleic acid, dichloroethylene (Acetylene dichloride), dichloroethane (ethylene dichloride), methanol, carbon tetrachloride, acetone, ortho-dichlorobenzene, carbon disulfide, methyl acetate, xylene, chlorobenzene, chloroform, tetrachloroethane (acetylene tetrachloride), tetrachloroethylene ( There is a problem in that only organic solvents such as pa-chloroethylene), toluene, trichloroethylene, and other petrochemical compounds cannot be selectively detected.
이러한 문제점을 해결하기 위한 본 발명은, 각종 오일류, 노말핵산, 디클로로에틸렌(이염화아세틸렌), 디클로로에탄(이염화에틸렌), 메타놀, 사염화탄소, 아세톤, 오르토-디클로로벤젠, 이황화탄소, 초산메틸, 크실렌, 클로로벤젠, 클로로포름, 테트라클로로에탄(사염화아세틸렌), 테트라클로로에틸렌(파-클로로에틸렌), 톨루엔, 트리클로로에틸렌, 기타 석유화학 합성물 등의 유기 용제와 접촉시 빠르게 반응하여 저항값을 변화시킴으로써 유류 및 유기 용제의 누설을 감지하도록 한 유기 용제 누설 감지 장치를 제공하는데 목적이 있다.The present invention for solving this problem, various oils, normal nucleic acid, dichloroethylene (acetylene dichloride), dichloroethane (ethylene dichloride), methanol, carbon tetrachloride, acetone, ortho-dichlorobenzene, carbon disulfide, methyl acetate, xylene Oils by reacting rapidly with contact with organic solvents such as chlorobenzene, chloroform, tetrachloroethane (acetylene tetrachloride), tetrachloroethylene (pa-chloroethylene), toluene, trichloroethylene and other petrochemical compounds. And it is an object to provide an organic solvent leak detection device for detecting the leakage of the organic solvent.
본 발명의 또 다른 목적은 감지라인의 기본 저항값으로부터 상하방향 리미트 저항값을 설정하여 리미트 저항값의 범위내로 저항값이 변화되는 시간을 측정하여 누설되는 유기 용제의 종류까지 판별할 수 있도록 유기 용제 누설 감지 장치를 제공하는데 있다.Another object of the present invention is to set the upper and lower limit resistance value from the basic resistance value of the sensing line to measure the time the resistance value is changed within the limit resistance value to determine the type of organic solvent leaking It is to provide a leak detection device.
이를 위해 본 발명의 유기 용제 누설 감지 장치는To this end, the organic solvent leakage detection apparatus of the present invention
필름재질로 된 베이스필름층;A base film layer made of a film material;
상기 베이스필름층의 상부면에 길이방향으로 형성된 도전라인;A conductive line formed in a longitudinal direction on an upper surface of the base film layer;
유기 용제에 반응하여 저항값이 변화되는 물질에 의해 상기 도전라인이 외부로 노출되지 않도록 베이스필름층의 상부면에 도포되는 코팅층;으로 구성된 것을 특징으로 한다.And a coating layer applied to an upper surface of the base film layer so that the conductive line is not exposed to the outside by a material whose resistance value changes in response to an organic solvent.
그리고, 본 발명은And, the present invention
필름재질로 된 베이스필름층;A base film layer made of a film material;
상기 베이스필름층의 상부면에 길이방향으로 형성된 도전라인;A conductive line formed in a longitudinal direction on an upper surface of the base film layer;
유기 용제에 의해 용해 또는 침식되는 재질로서, 상기 도전라인을 덮는 코팅층;으로 유기 용제 누설 감지 장치가 구성되고,A material that is dissolved or eroded by the organic solvent, the coating layer covering the conductive line; an organic solvent leakage detection device is configured,
상기 유기 용제 누설 감지 장치에는 제어기가 연결되어 상기 도전라인에 센싱 전원을 공급함과 아울러 시간의 경과에 따른 저항값의 변화에 따라 경보를 발생하도록 구성된다.A controller is connected to the organic solvent leak detection device to supply sensing power to the conductive line and to generate an alarm according to a change in resistance value over time.
이와같은 본 발명은 누설되는 유기 용제에 빠르게 반응하여 즉각적인 유기 용제 누설 상태를 감지할 수 있어서 누설에 의한 화재, 토양 또는 수질 오염 등을 신속히 확인하여 이에 대한 적절한 대처가 가능하도록 하는 효과가 있다.The present invention can quickly detect the organic solvent leakage state by reacting quickly to the leaking organic solvent, it is possible to quickly check the fire, soil or water pollution due to leakage and to appropriately cope with this.
또한, 누설되는 유기 용제의 종류에 따른 경보를 발생함으로써 누설에 대하여 빠르고 올바른 조치가 이루어질 수 있다.In addition, by generating an alarm according to the type of organic solvent leaking, a quick and corrective action can be taken for leakage.
도1은 공지의 누수감지장치의 분해 구조를 보인 도.1 is an exploded structure of a known leak detection apparatus.
도2는 도1의 결합 단면도.2 is a cross sectional view of FIG.
도3은 본 발명의 제1실시예에 따른 유기 용제 누설 감지 장치의 구조를 보인 도.3 is a view showing the structure of an organic solvent leak detection apparatus according to a first embodiment of the present invention.
도4는 본 발명의 제1실시예에 제어기가 연결된 상태 및 회로 구조를 보인 도.4 is a view showing a circuit structure and a state in which a controller is connected to the first embodiment of the present invention;
도5는 본 발명의 제2실시예에 따른 유기 용제 누설 감지 장치의 구조를 보인 도.5 is a view showing the structure of an organic solvent leak detection apparatus according to a second embodiment of the present invention.
도6은 유기 용제의 누설에 의해 도전라인의 저항값 변화를 설명하기 위한 도.6 is a view for explaining a change in resistance value of a conductive line due to leakage of an organic solvent.
도7은 본 발명의 제2실시예에 제어기가 연결된 상태 및 회로 구조를 보인 도.7 is a view showing a state in which a controller is connected and a circuit structure in a second embodiment of the present invention;
도8은 누설된 유기 용제의 종류에 따른 저항값의 변화에 의해 경보를 발생하기 위한 제어기의 동작 상태를 보인 그래프.8 is a graph showing an operating state of a controller for generating an alarm due to a change in resistance value according to the type of leaked organic solvent.
도9는 유기 용제 감지 센서의 다른 형태를 보인 도.9 illustrates another form of organic solvent detection sensor.
도10 및 도11은 도전라인을 형성하기 위한 예를 보인 도.10 and 11 show examples for forming a conductive line.
본 발명을 첨부한 도면을 참조하여 상세히 설명한다.The present invention will be described in detail with reference to the accompanying drawings.
도3은 본 발명의 제1실시예에서 적용된 유기용제 누설 감지 센서(200)의 구조를 보인 도로서, PET, PE, PTFE, PI, PVC 또는 기타 테프론 계열의 필름 재질로 된 베이스필름층(210)과, 상기 베이스필름층(210)의 상측에 적층되는 상부보호필름층(230), 베이스필름층(210)과 상부보호필름층(230) 사이에 적층되는 코팅층(240)으로 구성된다.Figure 3 is a view showing the structure of the organic solvent leak detection sensor 200 applied in the first embodiment of the present invention, the base film layer 210 of PET, PE, PTFE, PI, PVC or other Teflon-based film material ), And the upper protective film layer 230 stacked on the base film layer 210, the coating layer 240 stacked between the base film layer 210 and the upper protective film layer 230.
베이스필름층(210)의 상부면에는 한 쌍의 도전라인(211,212)이 서로 이격되어 길이방향으로 평행하게 스트립 형태로 배치되며, 이러한 도전라인(211,212)은 은(silver) 화합물, 도전성 잉크, 금속 박판 또는 시트 등 다양한 도전체에 의해 형성된다.On the upper surface of the base film layer 210, a pair of conductive lines 211 and 212 are spaced apart from each other and arranged in a strip shape in parallel in the longitudinal direction, and the conductive lines 211 and 212 may be formed of a silver compound, a conductive ink, and a metal. It is formed by various conductors such as thin plates or sheets.
도전라인(211,212)의 상부면으로는 도전라인(211,212) 또는 베이스필름층(210) 전체를 덮도록 코팅층(240)이 형성되는데, 이러한 코팅층(240)은 윤활유, 작동유, 절연유, 휘발유, 경유, 등유, 항공유 등의 각종 오일류, 노말핵산, 디클로로에틸렌(이염화아세틸렌), 디클로로에탄(이염화에틸렌), 메타놀, 사염화탄소, 아세톤, 오르토-디클로로벤젠, 이황화탄소, 초산메틸, 크실렌, 클로로벤젠, 클로로포름, 테트라클로로에탄(사염화아세틸렌), 테트라클로로에틸렌(파-클로로에틸렌), 톨루엔, 트리클로로에틸렌, 기타 석유화학 합성물 등의 유기 용제(이하, 유기 용제라 한다)에 반응하여 용해 또는 침식되는 물질로 형성된다.The upper surface of the conductive line (211,212) is formed with a coating layer 240 to cover the entire conductive line (211,212) or the base film layer 210, the coating layer 240 is a lubricant, operating oil, insulating oil, gasoline, diesel, Various oils such as kerosene and aviation oil, normal nucleic acid, dichloroethylene (acetylene dichloride), dichloroethane (ethylene dichloride), methanol, carbon tetrachloride, acetone, ortho-dichlorobenzene, carbon disulfide, methyl acetate, xylene, chlorobenzene, chloroform , Which is dissolved or eroded by reacting with organic solvents (hereinafter referred to as organic solvents) such as tetrachloroethane (acetylene tetrachloride), tetrachloroethylene (pa-chloroethylene), toluene, trichloroethylene, and other petrochemical compounds. Is formed.
한편, 상기 코팅층(240)을 구성하는 조성물은 수성 폴리스타이렌(Polystyrene) 45~55 중량%에 비이온계면활성제 45~55 중량%가 혼합된 혼합물로 구성되며, 상기 혼합물에는 도전 라인의 표면 장력을 낮추기 위해 웨팅 에이전트(Wetting agent)와, 인쇄시 용제를 휘발시키기 위한 에탄올(ethanol), 그리고 카본 나노 튜브인 그레이핀(graphene)이 1~2 중량% 더 첨가되어 혼합된다.On the other hand, the composition constituting the coating layer 240 is composed of a mixture of 45 to 55% by weight of non-ionic surfactant to 45 to 55% by weight of aqueous polystyrene (Polystyrene), to reduce the surface tension of the conductive line in the mixture For this purpose, a wetting agent, ethanol for volatilizing the solvent during printing, and grayene, which are carbon nanotubes, are added in an amount of 1 to 2% by weight.
수성 폴리스타이렌은 산에 약해서 쉽게 용해되는 물질이고, 그리고 비이온계면활성제는 유기용제와 반응하는 물질로서, 코팅층(240)에 유기용제가 접촉되면 쉽게 용해되는 조성물이다.Aqueous polystyrene is a material that is weakly soluble in acid, and a nonionic surfactant is a material that reacts with an organic solvent, and is a composition that easily dissolves when the organic solvent contacts the coating layer 240.
웨팅 에이전트는 본 발명의 조성물을 이용하여 인쇄방식에 의해 코팅층(240)을 형성할 때 표면장력을 낮추기 위한 것으로, 표면장력이 높으면 코팅층(240)의 인쇄시에 퍼지지 않고 뭉쳐지게 베이스필름층(210) 또는 도전라인(211,212)에 부착력이 떨어지게 된다.The wetting agent is to lower the surface tension when the coating layer 240 is formed by the printing method using the composition of the present invention. If the surface tension is high, the base film layer 210 may be aggregated without spreading during the printing of the coating layer 240. ) Or the adhesion force to the conductive lines 211 and 212 falls.
따라서 웨팅 에이전트의 첨가에 의해 표면장력을 낮추어 이러한 문제점을 해결한다.Therefore, this problem is solved by lowering the surface tension by the addition of the wetting agent.
또한, 휘발성을 갖는 에탄올과 그레이핀을 1~2 중량% 더 첨가하게 되는데, 이는 코팅층(120)의 인쇄시에 수성 폴리스타이렌의 용제를 휘발시켜 부착력을 높이도록 하는 것이다.In addition, 1 to 2% by weight of volatile ethanol and gray pin are added, which is to increase the adhesion by volatilizing the solvent of the aqueous polystyrene at the time of printing the coating layer (120).
따라서 이러한 혼합물을 도전라인(211,212)이 형성된 베이스필름층(210)의 상부면 전체에 인쇄방식에 의해 도포하여 코팅층(220)을 형성하거나 또는 도전라인(211,212)에만 한정하여 코팅층(240)을 형성하게 된다.Therefore, the mixture is applied to the entire upper surface of the base film layer 210 on which the conductive lines 211 and 212 are formed by the printing method to form the coating layer 220 or the coating layer 240 to be limited to the conductive lines 211 and 212 only. Done.
이때 코팅층(240)의 두께는 2~20㎛의 두께를 갖는다.At this time, the thickness of the coating layer 240 has a thickness of 2 ~ 20㎛.
상부보호필름층(230)은 PET, PE, PTFE, PI, PVC 또는 기타 테프론 계열의 필름 재질로 형성되고, 도전라인(211,212)에 해당하는 위치에서 길이방향으로 일정간격마다 센싱홀(231)이 형성된 구조를 갖는다.The upper protective film layer 230 is formed of a PET, PE, PTFE, PI, PVC or other Teflon-based film material, the sensing hole 231 at regular intervals in the longitudinal direction at the position corresponding to the conductive lines (211,212) Has a formed structure.
따라서, 유기 용제의 유류의 누설이 발생하면, 상부보호필름층(230)의 센싱홀(231)을 통해 유기 용제가 유입되고, 이로 인해 코팅층(240)이 용해 또는 침식되면서 저항값의 변화를 가져오고, 이러한 저항값의 변화에 의해 도전라인(211,212) 사이의 저항값이 변화되므로 유기 용제의 누설여부를 감지할 수 있는 것이다.Therefore, when the oil leakage of the organic solvent occurs, the organic solvent is introduced through the sensing hole 231 of the upper protective film layer 230, thereby causing a change in the resistance value while the coating layer 240 is dissolved or eroded. In addition, since the resistance value between the conductive lines 211 and 212 is changed by the change of the resistance value, it is possible to detect the leakage of the organic solvent.
도4는 이러한 유기 용제의 누설 여부를 확인하기 위한 전체 시스템을 보인 도로서, 유기 용제 누설 감지 센서(200)의 양단에 스타트 커넥터(400)와 엔드 커넥터(500)가 연결되는데, 스타트 커넥터(400)는 제어기(300)와 연결되고, 엔드 커넥터(500)는 유기 용제 누설 감지 센서(200)의 끝단에서 도전라인(211,212)을 연결하는 커넥터이다.4 is a diagram showing the entire system for checking the leakage of the organic solvent, the start connector 400 and the end connector 500 are connected to both ends of the organic solvent leakage detection sensor 200, the start connector 400 ) Is connected to the controller 300, the end connector 500 is a connector for connecting the conductive lines (211,212) at the end of the organic solvent leakage detection sensor 200.
따라서, 유기 용제의 누설이 발생하여 센싱홀(231)을 통해 유입되어 제1도전라인(211)과 제2도전라인(212)이 통전되면, 저항값 변화가 발생하며, 이로 인해 원격의 제어기(300)는 유기용제의 누설을 확인할 수 있는 것이다.Therefore, when leakage of the organic solvent occurs and flows through the sensing hole 231 and the first conductive line 211 and the second conductive line 212 are energized, a resistance value change occurs, thereby causing a remote controller ( 300) can check the leakage of the organic solvent.
본 발명의 제2 실시 예로서, 도5에서와 같이 베이스필름층(210)상에 형성된 도전라인(211,212)이 유기 용제에 반응하여 저항값이 변화되는 물질로 형성된다.As a second embodiment of the present invention, as shown in FIG. 5, the conductive lines 211 and 212 formed on the base film layer 210 are formed of a material whose resistance value changes in response to an organic solvent.
이를 위해 도전라인(211,212)은 액티브 카본 또는 탄소 나노 튜브(Carbon Nano Tube) 또는 그래핀(Graphene) 또는 카본 블랙(Carbon black) 등의 도전성을 갖는 전도성 카본 50~99%와, 바인더로서 폴리우레탄(PU) 1~50 중량%가 혼합되어 전도성 카본 잉크가 조성되고, 그 전도성 카본 잉크로 그라비아 인쇄방식, 실크 스크린 인쇄방식, 잉크젯 인쇄방식 등의 다양한 인쇄방식에 의해 베이스필름층(210)에 인쇄하여 도전라인(211,212)을 형성하게 된다. To this end, the conductive lines 211 and 212 are made of 50 to 99% of conductive carbon having conductivity such as active carbon or carbon nano tube or graphene or carbon black, and polyurethane as a binder. PU) 1 to 50% by weight of the conductive carbon ink is mixed, and the conductive carbon ink is printed on the base film layer 210 by various printing methods such as gravure printing, silk screen printing, inkjet printing, and the like. Conductive lines 211 and 212 are formed.
또한, 바인더로서 폴리우레탄 대신에 폴리메틸메타크릴레이트(PMMA), 폴리카보네이트(PC), 페놀수지(PF) 중 어느 하나를 1~50 중량% 사용할 수 있다.In addition, 1 to 50% by weight of any one of polymethyl methacrylate (PMMA), polycarbonate (PC), and phenol resin (PF) may be used as the binder.
상부보호필름층(230)은 강산성 용액에 강한 PC, PP, PE, PI, PET, 테프론 재질 등의 합성수지재로 50~300㎛ 두께로 형성되며, 도전라인(211,212)이 형성된 위치에 센싱홀(231)이 형성된다.The upper protective film layer 230 is formed of a synthetic resin material, such as PC, PP, PE, PI, PET, and Teflon, which is resistant to a strong acid solution, and is formed to have a thickness of 50 to 300 μm, and has a sensing hole at a position where conductive lines 211 and 212 are formed. 231 is formed.
따라서, 유기 용제의 누설이 발생하면, 누설이 발생된 위치의 센싱홀(231)을 통해 알칼리 용액이 유입되고, 도6에서와 같이 도전라인(211,212)을 구성하는 바인더가 유기 용제와 반응하여 시간이 경과함에 따라 부풀어 오르면서 전도성 카본 입자의 배열이 무너지게 된다.Therefore, when leakage of the organic solvent occurs, the alkaline solution flows through the sensing hole 231 at the location where the leakage occurs, and as shown in FIG. 6, the binder constituting the conductive lines 211 and 212 reacts with the organic solvent for a time. As this elapses, the arrangement of the conductive carbon particles collapses as it swells.
이로 인해, 도전라인(211,212)의 저항값이 증가하게 되며, 원격의 제어기가 그 도전라인(211,212)의 저항값 변화를 제공받아 유기 용제의 누설 여부를 확인할 수 있는 것이다.As a result, the resistance values of the conductive lines 211 and 212 are increased, and the remote controller is provided with a change in the resistance values of the conductive lines 211 and 212 to check whether the organic solvent is leaked.
이때, 상기 도전라인(211,212)은 아래 표1에서와 같이 다양하게 구성할 수 있다.In this case, the conductive lines 211 and 212 may be variously configured as shown in Table 1 below.
표 1
Table 1
제1도전라인(211) | 제2도전라인(212) | |
1 | 액티브 카본 또는 카본 블랙 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene) + 바인더 | 액티브 카본 또는 카본 블랙 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene) + 바인더 |
2 | 은 화합물 | 액티브 카본 또는 카본 블랙 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene) + 바인더 |
3 | 금속박판 | 액티브 카본 또는 카본 블랙 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene) + 바인더 |
4 | 기타 도전체 | 액티브 카본 또는 카본 블랙 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene) + 바인더 |
First | Second | |
One | Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder | Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + |
2 | Silver compound | Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder |
3 | Metal sheet | Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder |
4 | Other conductors | Active Carbon or Carbon Black or Carbon Nanotubes (CNT) or Graphene + Binder |
제1도전라인(211)과 제2도전라인(212)이 모두 액티브 카본 또는 카본 블랙 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene)에 바인더가 혼합된 경우에는 제1도전라인(211)과 제2도전라인(212)에 해당하는 위치에 센싱홀(231)이 형성된다.When both the first conductive line 211 and the second conductive line 212 are mixed with active carbon or carbon black or carbon nanotubes (CNT) or graphene, the first conductive line 211 and the first conductive line 211 The sensing hole 231 is formed at a position corresponding to the second conductive line 212.
그러나 제1도전라인(211)이 은 화합물, 금속박판, 도전성 잉크 등 도전체로 구성되고, 제2도전라인(212)만 액티브 카본 또는 카본 블랙 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene)에 바인더가 혼합된 형태로 구성된다면, 제2도전라인(212)에 해당되는 위치에만 센싱홀(231)이 형성되어야 한다.However, the first conductive line 211 is composed of a conductor such as a silver compound, a metal thin plate, a conductive ink, and only the second conductive line 212 is formed on the active carbon, carbon black, carbon nanotube (CNT), or graphene (Graphene). If the binder is mixed, the sensing hole 231 should be formed only at a position corresponding to the second conductive line 212.
도7는 이러한 유기용제의 누설 여부를 확인하기 위한 전체 시스템을 보인 도로서, 도7(a)에 도시한 바와 같이 강산성 용액 누설 감지 센서(200)의 양단에 스타트 커넥터(400)와 엔드 커넥터(500)가 연결되는데, 스타트 커넥터(400)는 제어기(300)와 연결되고, 엔드 커넥터(500)는 유기용제 누설 감지 센서(200)의 끝단에서 도전라인(211,212)을 연결하는 커넥터이다.FIG. 7 is a view showing the entire system for checking whether the organic solvent is leaked. As shown in FIG. 7 (a), the start connector 400 and the end connector (at both ends of the strong acid solution leakage detection sensor 200) are shown. 500 is connected, the start connector 400 is connected to the controller 300, the end connector 500 is a connector for connecting the conductive lines (211,212) at the end of the organic solvent leakage sensor 200.
도7(b)는 제2도전라인(212)이 유기 용제에 반응하여 저항값이 변화되는 물질로 형성되고, 제1도전라인(211)은 도전체로 형성된 경우를 예로 든 회로도로서, 유기 용제의 누설이 발생하여 센싱홀(231)을 통해 유입되어 제2도전라인(212)과 접촉되면, 제2도전라인(212)의 저항값 변화가 발생하며, 이로 인해 원격의 제어기(300)는 유기 용제의 누설을 확인할 수 있는 것이다.FIG. 7B is a circuit diagram illustrating an example in which the second conductive line 212 is formed of a material whose resistance value changes in response to an organic solvent, and the first conductive line 211 is formed of a conductor. When leakage occurs and flows through the sensing hole 231 and comes in contact with the second conductive line 212, a change in resistance value of the second conductive line 212 occurs, which causes the remote controller 300 to have an organic solvent. The leak can be confirmed.
한편, 유기 용제는 다양한 종류를 가지지만, 상기에서 설명한 도전라인(211,212)이 통전되어 저항값의 변화가 발생하는 구조에서는 단순히 유기 용제의 누설에 따른 저항값의 변화로 누설 상태만 알 수 있을 뿐 누설되는 유기 용제의 종류는 확인하기가 매우 힘들다.On the other hand, organic solvents have various types, but in the structure in which the conductive lines 211 and 212 described above are energized to cause a change in resistance value, only the leakage state can be known by simply changing the resistance value due to leakage of the organic solvent. The type of organic solvent that leaks is very difficult to identify.
따라서, 본 발명에서는 시간의 경과에 따른 저항값의 변화에 따라 그 누설되는 유기 용제의 종류를 확인할 수 있도록 한다.Therefore, in the present invention, it is possible to confirm the kind of the leaking organic solvent as the resistance value changes over time.
이를 위해서 제1 및 제2실시예에서와 도전라인(212)의 저항값 변화 또는 도전라인(211,212)이 서로 통전되어 발생하는 저항값 변화를 제어기(300)에서 입력받아 시간의 경과에 따른 저항값의 변화를 확인하고, 이에 따른 유기 용제의 종류를 판별하게 된다.To this end, the controller 300 receives a change in the resistance value of the conductive line 212 or a change in the resistance value generated by energizing the conductive lines 211 and 212 in the first and second embodiments, and the resistance value according to the passage of time. The change of and the kind of the organic solvent is determined accordingly.
도8은 제1실시예에서와 같이 코팅층(240)이 형성된 상태에서의 두 도전라인(211,212) 사이의 저항값 변화에 따른 유기 용제의 종류를 판별하는 제어기(300)의 동작 상태를 설명하기 위한 그래프로서, 제어기(300)에는 유기 용제 누설 감지 센서(200)의 센서 길이에 따른 기준 저항값이 설정되어 있는데, 이러한 기준 저항값을 기준으로 외부 온도, 습도, 전기적 잡음, 물리적 접촉 등의 외부 환경에 따라 발생하는 자체 저항값의 변화를 흡수하도록 '+' 오프셋(offset) 값과 '-' 오프셋 값이 설정된다.FIG. 8 illustrates an operation state of the controller 300 for determining the type of the organic solvent according to the resistance value change between the two conductive lines 211 and 212 when the coating layer 240 is formed as in the first embodiment. As a graph, a reference resistance value according to the sensor length of the organic solvent leakage detection sensor 200 is set in the controller 300. The external environment such as external temperature, humidity, electrical noise, and physical contact is based on the reference resistance value. '+' Offset value and '-' offset value are set to absorb the change in self-resistance value.
이러한 오프셋 값은 유기 용제 누설 감지 센서(200)가 설치되는 환경에 따라 조절된다.This offset value is adjusted according to the environment in which the organic solvent leak detection sensor 200 is installed.
또한, 제어기(300)에는 기준 저항값의 '+'방향으로 알람 설정값(High Limit) 즉 상한 저항값이 설정되어 있고, '-'방향으로 알람 설정값(Low Limit) 즉 하한 저항값이 설정되어 있으며, 이러한 알람 설정값의 범위를 조절함으로써 센싱 감도를 조절할 수 있게 된다.In addition, the controller 300 is set to the high limit value, that is, the upper limit resistance value in the '+' direction of the reference resistance value, and the alarm set value (Low Limit) or the lower limit resistance value is set in the '-' direction. By adjusting the range of the alarm setting value, the sensing sensitivity can be adjusted.
따라서, 유기 용제가 누설되어 도전라인(211,212) 사이의 저항값이 점차적으로 낮아지면서 알람 설정값의 범위내에 들어오는 시간을 측정하여 유기 용제의 종류를 판별할 수 있는 것이다.Therefore, the organic solvent is leaked and the resistance value between the conductive lines 211 and 212 gradually decreases, so that the type of the organic solvent can be determined by measuring the time that falls within the range of the alarm set value.
예를 들면, 화학용액A의 경우에는 누설되어 코팅층(240)과 접촉하게 되면, 코팅층(240)이 용해 또는 침식되면서 저항값의 변화가 발생하고, 그 저항값의 변화가 발생하는 시점부터 알람 설정값의 범위내로 저항값이 변화하여 들어오는 시간을 제어기(300)에서 측정하여 그 측정 시간에 따라 유기 용제의 종류를 판별할 수 있게 된다.For example, in the case of chemical solution A, when leaked and contacted with the coating layer 240, the coating layer 240 is dissolved or eroded, and a change in resistance occurs, and an alarm is set from the time when the change in the resistance occurs. It is possible to determine the type of the organic solvent according to the measurement time by measuring the time when the resistance value changes within the range of the value coming in the controller 300.
화학용액B와 화학용액C, 화학용액D의 경우에는 화학용액A보다 비교적 짧은 시간내에 알람 설정값의 범위내로 저항값이 변화하여 들어오므로, 제어기(300)는 이러한 시간을 측정하여 누설되는 유기 용제의 종류를 판별할 수 있는 것이다.In the case of chemical solution B, chemical solution C, and chemical solution D, since the resistance value changes within the range of the alarm set value within a relatively short time than the chemical solution A, the controller 300 measures such a time, The type of solvent can be determined.
따라서 제어기(300)는 각 화학용액의 저항 변화값이 알람 설정값(High Limit)과 일치하면 그 위치에서 경보를 발생하게 되고, 이후 지속적인 저항값의 변화를 감지하게 되는데, 어느 특정 화학용액의 경우 화학용액D와 같이 알람 설정값(Low Limit)를 벗어나도록 저항값의 변화가 발생할 수 있게 되며, 제어기(300)에서는 알람 설정값(Low Limit)이 벗어나는 위치에서 경보를 발생하게 된다.Therefore, when the resistance change value of each chemical solution matches the alarm set value (High Limit), the controller 300 generates an alarm at the position, and then detects the change in the resistance value continuously. Like chemical solution D, a change in resistance value may occur so as to deviate from an alarm set value (Low Limit), and the controller 300 generates an alarm at a position at which the alarm set value (Low Limit) deviates.
제어기(300)에는 이러한 각종 유기 용제의 시간경과에 따른 저항값의 변화에 대한 데이터를 저장하고 있어서, 초기 저항값의 변화가 발생한 시점부터 알람 설정값의 범위내로 저항값의 변화가 진입하는 시간을 특정하여 해당 시간에 해당하는 화학용액 즉 유기 용제의 종류에 대한 경보도 발생할 수 있는 것이다.The controller 300 stores data on the change of the resistance value according to the time-lapse of the various organic solvents, so that the time at which the change in the resistance value enters the range of the alarm set value from the time when the initial resistance value changes occurs. In particular, an alarm may be generated for the type of chemical solution, ie, the organic solvent, corresponding to the corresponding time.
또한, 제2실시예의 경우를 적용하면, 유기 용제에 의해 도전라인(212)의 저항값이 증가하는 경우에는 시간이 경과 할수록 저항값이 증가하는 그래프 형태를 보일 것이다.In addition, if the second embodiment is applied, when the resistance value of the conductive line 212 is increased by the organic solvent, the resistance value will increase as time passes.
즉, 본 발명의 제1실시예와 제2실시예에 의해 도전라인(211,212)의 저항값이 감소하거나 증가하는 경우에 시간의 경과에 따라 저항값의 변화 정도를 판단하여 누설되는 유기 용제의 종류를 판별할 수 있는 것이다.That is, according to the first and second embodiments of the present invention, when the resistance value of the conductive lines 211 and 212 decreases or increases, the type of organic solvent that leaks by judging the degree of change in the resistance value as time passes. Can be determined.
또한, 이러한 테이프 타입의 유기 용제 누설 감지 센서를 케이블 타입의 센서로 대체하여 본 발명의 강산성 용액 누설 감지 장치에 적용할 수 있는데, 도9에서와 같이 케이블 센서(600)는 2가닥의 도전선(610,620)이 나란히 이격되어 위치한 상태에서 그 외측에 유기 용제에 의해 용해되는 재질로 피복층(630)을 코팅하도록 구성된다.In addition, the tape type organic solvent leak detection sensor can be replaced with the cable type sensor and can be applied to the strong acid solution leakage detection device of the present invention. As shown in FIG. 9, the cable sensor 600 has two conductive wires ( 610, 620 is configured to coat the coating layer 630 with a material dissolved by an organic solvent on the outside in a state spaced apart side by side.
이러한 피복층(630)은 본 발명의 코팅층(240)과 같은 재질로 피복되거나 또는 유기 용제에 의해 용해 또는 침식되는 재질로 형성될 수 있다.The coating layer 630 may be formed of a material coated with the same material as the coating layer 240 of the present invention or dissolved or eroded by an organic solvent.
따라서, 유류가 피복층(630)에 접촉하게 되면, 피복층(630)이 용해되면서 저항값의 변화가 발생하고, 이러한 저항값의 변화에 의해 도전선(610,620) 사이의 저항값이 변화되는 구조이다.Therefore, when oil comes into contact with the coating layer 630, the coating layer 630 is dissolved and a change in resistance occurs, and the resistance value between the conductive lines 610 and 620 is changed by the change in the resistance value.
이와의 동작은 이미 위에서 설명한 바와 같다.This operation has already been described above.
또한, 도전라인(211)(212)을 액티브 카본 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene)을 형성하는 경우에는 인쇄방식에 의해 형성되거나 또는 도10에서와 같이 베이스필름층(210)의 상부면에서 도전라인(211)(212)이 형성될 위치에 양면테이프를 부착시키거나 또는 접착제를 도포시켜 부착제(211-1)(212-1)를 형성한 다음 분말 형태의 액티브 카본 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene)을 뿌려서 형성할 수 있을 것이다.In addition, when the conductive lines 211 and 212 are formed of active carbon, carbon nanotubes (CNT), or graphene (Graphene), they are formed by a printing method or as shown in FIG. 10. Attaching the double-sided tape to the position where the conductive lines 211 and 212 are to be formed on the upper surface or applying the adhesive to form the adhesive 211-1 and 212-1, then activated carbon or carbon in powder form It can be formed by spraying nanotubes (CNT) or graphene (Graphene).
즉 도전성 분말을 부착제(211-1)(212-1)에 뿌려서 도전라인(211)(212)을 형성하는 것이다.That is, the conductive powder is sprayed onto the adhesive 211-1 and 212-1 to form the conductive lines 211 and 212.
따라서, 부착제(211-1)(212-1)가 형성된 위치에서만 도전성의 액티브 카본 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene)이 부착되어 도전라인이 형성될 수 있는 것이다.Accordingly, conductive lines may be formed by attaching conductive active carbon, carbon nanotubes (CNT), or graphene (Graphene) only at the positions where the adhesives 211-1 and 212-1 are formed.
또다른 방안으로, 스퍼터링(sputtering) 공정에 의해 도전라인(211,212)을 형성시킬 수 있는데, 스퍼터링 공정은 진공 챔버에서 도전성을 가지는 금속과 본 발명의 베이스필름층(210)을 위치시키게 되는데, 이때 베이스필름층(210)에는 도전라인 형성될 위치를 제외한 부위에 도11에서와 같이 보호막(213)을 씌우게 된다.Alternatively, the conductive lines 211 and 212 may be formed by a sputtering process. The sputtering process places the conductive metal and the base film layer 210 of the present invention in a vacuum chamber. The film layer 210 is covered with a protective film 213 as shown in Figure 11 except for the position where the conductive line is to be formed.
이러한 보호막(213)은 합성수지재로 된 테이프가 될 수 있다.The protective film 213 may be a tape made of a synthetic resin material.
도전성을 가지는 금속에는 (-)전압을 걸고, 베이스필름층(210)에는 (+)전압을 건 다음 진공 챔버내에 아르곤 가스를 투입하게 되면, 이온화된 아르곤 가스가 도전성을 가지는 금속과 충돌하여 튀어나온 금속 입자는 베이스필름층(210)에 증착된다.Applying a negative voltage to the conductive metal, applying a positive voltage to the base film layer 210, and then argon gas into the vacuum chamber, the ionized argon gas collides with the conductive metal and protrudes. Metal particles are deposited on the base film layer 210.
증착 공정이 완료된 후 보호막(213)을 제거하면, 도전라인(211,212)이 형성되는 것이다.When the protective film 213 is removed after the deposition process is completed, conductive lines 211 and 212 are formed.
이러한 스퍼터링 공정을 이용하는 이유는 도전성 잉크, 은 화합물, 금속 시트 또는 박판 등의 도전성 재질로 도전라인(211,212)이 형성되는 경우에 5~10㎛의 두께를 가지므로 높은 저항값을 가지며, 아울러 그 상부에 코팅층(240)이 도포되는 경우에 도전라인(211,212)과 코팅층(240)의 두께가 30~50㎛까지 두꺼워지게 되고, 또한 도전라인(211,212)의 두께에 의하여 코팅층(240)이 안정적으로 베이스필름층(210)에 부착되지 못하게 된다.The reason for using the sputtering process is that when the conductive lines 211 and 212 are formed of a conductive material such as a conductive ink, a silver compound, a metal sheet or a thin plate, and have a high resistance value, the upper portion thereof has a high resistance value. When the coating layer 240 is applied to the conductive lines 211 and 212 and the thickness of the coating layer 240 is thickened to 30 ~ 50㎛, the coating layer 240 by the thickness of the conductive lines (211,212) stably the base It may not be attached to the film layer 210.
그러나, 이러한 스퍼터링 방식을 이용하는 경우에는 도전라인(211,212)의 두게가 0.1~1㎛를 가질 수 있으므로, 두께도 얇아지게 되고, 얇은 두께에 의하여 코팅층(240)이 베이스필름층(240)에 안정적으로 부착될 수 있는 것이다.However, in the case of using such a sputtering method, since the thickness of the conductive lines 211 and 212 may have a thickness of 0.1 to 1 μm, the thickness becomes thinner, and the coating layer 240 is stably formed on the base film layer 240 by the thin thickness. It can be attached.
한편, 도전라인(211,212)은 굳이 2개가 아닌 액티브 카본 또는 카본 블랙 또는 탄소나노튜브(CNT) 또는 그래핀(Graphene)이 바인더와 혼합된 물질로 하나의 도전라인만 베이스필름층(210)의 상부면에 형성시키고, 그 하나의 도전라인의 양단을 도전성 케이블에 의해 제어기로 접속시킬 수 있을 것이다.Meanwhile, the conductive lines 211 and 212 are made of a material in which active carbon or carbon black or carbon nanotubes (CNT) or graphene are mixed with a binder instead of two, and only one conductive line is formed on the upper portion of the base film layer 210. It may be formed on the surface, and both ends of the one conductive line may be connected to the controller by a conductive cable.
Claims (13)
- 필름재질로 된 베이스필름층;A base film layer made of a film material;상기 베이스필름층의 상부면에 길이방향으로 형성된 도전라인;A conductive line formed in a longitudinal direction on an upper surface of the base film layer;유기 용제에 반응하여 저항값이 변화되는 물질에 의해 상기 도전라인이 외부로 노출되지 않도록 베이스필름층의 상부면에 도포되는 코팅층;으로 구성된 것을 특징으로 하는 유기 용제 누설 감지 장치.And a coating layer applied to an upper surface of the base film layer so that the conductive line is not exposed to the outside by a material whose resistance value changes in response to the organic solvent.
- 제1항에 있어서, 수성 폴리스타이렌(Polystyrene) 45~55 중량%에 비이온계면활성제 45~55 중량%가 혼합된 혼합물로 구성된 것을 특징으로 하는 유기 용제 누설 감지 장치.The organic solvent leak detection apparatus according to claim 1, wherein the organic solvent leakage detection device comprises a mixture of 45 to 55 wt% of non-ionic surfactant and 45 to 55 wt% of aqueous polystyrene.
- 제2항에 있어서, 상기 혼합물에는 도전 라인의 표면 장력을 낮추기 위해 웨팅 에이전트(Wetting agent)와, 인쇄시 용제를 휘발시키기 위한 에탄올(ethanol), 그리고 카본 나노 튜브인 그레이핀(graphene)이 1~2 중량% 더 첨가되어 혼합된 것을 특징으로 하는 유기 용제 누설 감지 장치.3. The mixture of claim 2, wherein the mixture includes a wetting agent to lower the surface tension of the conductive line, ethanol for volatilizing the solvent during printing, and grayene (graphene), which is a carbon nanotube. The organic solvent leakage detection apparatus, characterized in that the mixture is added by 2% by weight.
- 테이프 형태로 된 베이스 필름층; 상기 베이스 필름층의 상부면에 길이방향으로 인쇄된 도전 라인;으로 형성된 누유 감지 장치에 있어서,A base film layer in tape form; In the leakage oil detection device formed of a conductive line printed in the longitudinal direction on the upper surface of the base film layer,상기 도전라인은 유기 용제에 반응하여 저항값이 변화되는 물질로 형성된 것을 특징으로 하는 유기 용제 누설 감지 장치.And the conductive line is formed of a material whose resistance value is changed in response to the organic solvent.
- 제4항에 있어서, 도전라인은 전도성 카본 50~99 중량%에 폴리우레탄, 폴리메틸메타크릴레이트(PMMA), 폴리카보네이트(PC), 페놀수지(PF) 중 어느 하나가 1~50 중량%으로 혼합된 혼합물로 형성된 것을 특징으로 하는 유기 용제 누설 감지 장치.According to claim 4, The conductive line is 50 to 99% by weight of the conductive carbon of any one of polyurethane, polymethyl methacrylate (PMMA), polycarbonate (PC), phenol resin (PF) 1 to 50% by weight Organic solvent leakage detection device characterized in that formed of a mixed mixture.
- 제5항에 있어서, 전도성 카본은 액티브 카본, 탄소 나노 튜브(CNT), 그래핀(Graphene), 카본 블랙 중 어느 하나인 것을 특징으로 하는 유기 용제 누설 감지 장치.The organic solvent leakage detecting apparatus of claim 5, wherein the conductive carbon is any one of active carbon, carbon nanotubes (CNT), graphene, and carbon black.
- 필름재질로 된 베이스필름층;A base film layer made of a film material;상기 베이스필름층의 상부면에 길이방향으로 형성된 도전라인;A conductive line formed in a longitudinal direction on an upper surface of the base film layer;유기 용제에 의해 용해 또는 침식되는 재질로서, 상기 도전라인을 덮는 코팅층;으로 유기 용제 누설 감지 장치가 구성되고,As the material dissolved or eroded by the organic solvent, a coating layer covering the conductive line; an organic solvent leakage detection device is configured,상기 유기 용제 누설 감지 장치에는 제어기가 연결되어 상기 도전라인에 센싱 전원을 공급함과 아울러 시간의 경과에 따른 저항값의 변화에 따라 경보를 발생하도록 구성된 것을 특징으로 하는 유기 용제 누설 감지 장치.And a controller connected to the organic solvent leak detection device to supply sensing power to the conductive line and to generate an alarm according to a change in resistance value over time.
- 필름재질로 된 베이스필름층;A base film layer made of a film material;유기 용제에 반응하여 저항값이 변화되는 재질로 상기 베이스필름층의 상부면에 길이방향으로 형성된 도전라인;으로 유기 용제 누설 감지 장치가 구성되고,The organic solvent leakage detection device is composed of a conductive line formed in the longitudinal direction on the upper surface of the base film layer made of a material whose resistance value changes in response to the organic solvent,상기 유기 용제 누설 감지 장치에는 제어기가 연결되어 상기 도전라인에 센싱 전원을 공급함과 아울러 시간의 경과에 따른 저항값의 변화에 따라 경보를 발생하도록 구성된 것을 특징으로 하는 유기 용제 누설 감지 장치.And a controller connected to the organic solvent leak detection device to supply sensing power to the conductive line and to generate an alarm according to a change in resistance value over time.
- 나란히 이격되어 위치하는 2가닥의 도전선;Two strands of conductive wire spaced apart from each other;유기 용제에 의해 용해 또는 침식되는 재질로서, 상기 도전선의 외측으로 피복되는 피복층;으로 구성된 유기 용제 누설 감지 장치가 구성되며,The organic solvent leakage detection device is composed of a material that is dissolved or eroded by the organic solvent, the coating layer coated to the outside of the conductive wire,상기 유기 용제 누설 감지 장치에는 제어기가 연결되어 상기 도전선에 센싱 전원을 공급함과 아울러 시간의 경과에 따른 저항값의 변화에 따라 경보를 발생하도록 구성된 것을 특징으로 하는 유기 용제 누설 감지 장치.And a controller connected to the organic solvent leak detection device to supply sensing power to the conductive wire and to generate an alarm according to a change in resistance value over time.
- 제7항 또는 제8항 또는 제9항 중 어느 한 항에 있어서, 상기 제어기는 상기 유기 용제 누설 감지 장치의 기준 저항값이 설정되고, 상기 기준 저항값의 '+'방향과 '-'방향으로 알람 설정값의 상한 저항값과 하한 저항값이 설정된 것을 특징으로 하는 유기 용제 누설 감지 장치.10. The controller of claim 7, 8, or 9, wherein the controller sets a reference resistance value of the organic solvent leak detection device, and in the '+' direction and the '-' direction of the reference resistance value. The organic solvent leakage detection device, characterized in that the upper limit resistance value and the lower limit resistance value of the alarm set value is set.
- 제4항 또는 제7항 또는 제8항 중 어느 한 항에 있어서, 상기 도전라인은 한 쌍으로 나란히 형성되고, 각 도전라인은 표1과 같이 구성될 수 있는 것을 특징으로 하는 유기 용제 누설 감지 장치.The organic solvent leakage sensing apparatus of claim 4, 7, or 8, wherein the conductive lines are formed in pairs, and each conductive line may be configured as shown in Table 1. 10. .
- 제4항 또는 제7항 또는 제8항 중 어느 한 항에 있어서, 상기 도전라인은 베이스필름층의 상부면에 부착제가 형성되고, 상기 부착제에 도전성 분말을 뿌려서 형성되는 것을 특징으로 하는 유기 용제 누설 감지 장치.The organic solvent according to any one of claims 4, 7, or 8, wherein the conductive line is formed by forming an adhesive on an upper surface of the base film layer, and spraying conductive powder on the adhesive. Leak detection device.
- 제1항 또는 제7항 또는 제8항 중 어느 한 항에 있어서, 상기 도전라인은 스퍼터링(sputterin) 공정에 의해 형성되는 것을 특징으로 하는 유기 용제 누설 감지 장치.The organic solvent leakage sensing apparatus of claim 1, wherein the conductive line is formed by a sputtering process.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0077157 | 2013-07-02 | ||
KR20130077157 | 2013-07-02 | ||
KR10-2014-0078932 | 2014-06-26 | ||
KR20140078932A KR20150004273A (en) | 2013-07-02 | 2014-06-26 | Organic solvent leak detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015002426A1 true WO2015002426A1 (en) | 2015-01-08 |
Family
ID=52143960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/005834 WO2015002426A1 (en) | 2013-07-02 | 2014-07-01 | Organic solvent leak detection apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015002426A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015528915A (en) * | 2013-07-02 | 2015-10-01 | ユミン システム テクノロジー カンパニー,リミテッド | Oil leakage detection composition and oil leakage detection sensor using the same |
WO2020043574A1 (en) * | 2018-08-28 | 2020-03-05 | Karl Wörwag Lack- Und Farbenfabrik Gmbh & Co. Kg | Leak testing for motor vehicle bodies |
WO2020249793A1 (en) * | 2019-06-12 | 2020-12-17 | M3S Industry Ltd | Device for monitoring the condition of a substrate and associated systems and methods |
CN114654855A (en) * | 2022-01-11 | 2022-06-24 | 上海豫宏(金湖)防水科技有限公司 | Take seepage positioning alarm function's waterproofing membrane |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001318020A (en) * | 2000-05-09 | 2001-11-16 | Iwatani Internatl Corp | Tool for detecting leakage of organic solvent |
KR20110007501A (en) * | 2009-07-16 | 2011-01-24 | 유홍근 | Apparatus for detecting leakage of oil base liquid |
KR20110035232A (en) * | 2009-09-30 | 2011-04-06 | (주)유민에쓰티 | Oil leakage sensing apparatus of oil tank |
KR20110053883A (en) * | 2009-11-16 | 2011-05-24 | (주)유민에쓰티 | Leak sensing apparatus having heating function |
KR20120131383A (en) * | 2011-05-25 | 2012-12-05 | (주)유민에쓰티 | Plat type leakage detection apparatus |
-
2014
- 2014-07-01 WO PCT/KR2014/005834 patent/WO2015002426A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001318020A (en) * | 2000-05-09 | 2001-11-16 | Iwatani Internatl Corp | Tool for detecting leakage of organic solvent |
KR20110007501A (en) * | 2009-07-16 | 2011-01-24 | 유홍근 | Apparatus for detecting leakage of oil base liquid |
KR20110035232A (en) * | 2009-09-30 | 2011-04-06 | (주)유민에쓰티 | Oil leakage sensing apparatus of oil tank |
KR20110053883A (en) * | 2009-11-16 | 2011-05-24 | (주)유민에쓰티 | Leak sensing apparatus having heating function |
KR20120131383A (en) * | 2011-05-25 | 2012-12-05 | (주)유민에쓰티 | Plat type leakage detection apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015528915A (en) * | 2013-07-02 | 2015-10-01 | ユミン システム テクノロジー カンパニー,リミテッド | Oil leakage detection composition and oil leakage detection sensor using the same |
WO2020043574A1 (en) * | 2018-08-28 | 2020-03-05 | Karl Wörwag Lack- Und Farbenfabrik Gmbh & Co. Kg | Leak testing for motor vehicle bodies |
CN112585442A (en) * | 2018-08-28 | 2021-03-30 | 卡尔·沃瓦格漆料和颜料制造有限责任两合公司 | Tightness test of a motor vehicle body |
WO2020249793A1 (en) * | 2019-06-12 | 2020-12-17 | M3S Industry Ltd | Device for monitoring the condition of a substrate and associated systems and methods |
FR3097324A1 (en) * | 2019-06-12 | 2020-12-18 | M3S Industry | Device for monitoring the condition of a support and associated systems and processes |
CN114654855A (en) * | 2022-01-11 | 2022-06-24 | 上海豫宏(金湖)防水科技有限公司 | Take seepage positioning alarm function's waterproofing membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015002426A1 (en) | Organic solvent leak detection apparatus | |
WO2014119974A1 (en) | Device for detecting leakage of acidic solution | |
KR101935841B1 (en) | Leak liquid sensing device | |
US11106321B2 (en) | Touch panel and manufacturing method therefor | |
WO2013022165A1 (en) | Device for detecting an oil leak | |
WO2013062246A1 (en) | Gas barrier film including graphene layer, flexible substrate including same, and manufacturing method thereof | |
KR20150004273A (en) | Organic solvent leak detection device | |
WO2017213381A1 (en) | Leakage detection cable and method for manufacturing same | |
WO2012057409A1 (en) | Touch panel sensor | |
WO2012008759A2 (en) | Touch panel and method for manufacturing the same | |
WO2015186853A1 (en) | Underwater detection device and underwater detection method | |
WO2020045739A1 (en) | Hybrid large-area pressure sensor including capacitive sensor and resistive sensor integrated with each other | |
WO2015037837A1 (en) | Tactile sensor using fine droplets of liquid metal | |
KR20150033516A (en) | Strong acidic solution leak detection sensor | |
WO2012138054A9 (en) | Humidity sensor, humidity-sensing method, and transistor for the humidity sensor | |
KR20150140007A (en) | Liquid leak detect sensor and liquid leak detect system comprising the same | |
KR20150041564A (en) | Alkali solution leak detection apparatus | |
JP2013140174A (en) | Sensor for detecting organic liquids | |
KR101702360B1 (en) | Weak acidic solution leak detection apparatus | |
WO2021075698A1 (en) | Multifunctional corrosion probe system | |
WO2016076469A1 (en) | Method for manufacturing angle and curvature detection sensor, and sensor | |
WO2016148500A1 (en) | Hydrogen detection sensor for detecting hydrogen of wide concentration range | |
WO2021221425A1 (en) | Electrode structure and ph sensor including same | |
Sun et al. | Time‐Resolved and Self‐Adjusting Hybrid Functional Fabric Sensor for Decoupling Multiple Stimuli from Bending | |
WO2022177295A1 (en) | Large-area pressure sensing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14819762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14819762 Country of ref document: EP Kind code of ref document: A1 |