WO2015087795A1 - Organic electroluminescence element, lighting device, and display device - Google Patents
Organic electroluminescence element, lighting device, and display device Download PDFInfo
- Publication number
- WO2015087795A1 WO2015087795A1 PCT/JP2014/082210 JP2014082210W WO2015087795A1 WO 2015087795 A1 WO2015087795 A1 WO 2015087795A1 JP 2014082210 W JP2014082210 W JP 2014082210W WO 2015087795 A1 WO2015087795 A1 WO 2015087795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ring
- organic
- layer
- compound
- light emitting
- Prior art date
Links
- 0 CC(C(C)c(c1c2C(C)=C(C)C(C)C1C)c1[n]2-c(c(-[n]2c(C(C)=C(C)C(C)C3C)c3c3c2C(C)=C(C)C(C)C3C)c(c(-[n]2c(C=CCC3)c3c3c2cccc3)c2C#N)C#N)c2-[n]2c(C(C)=C(C)C(C)C3C)c3c3c2C(C)=C(C)C(C)C3C)*=C1I Chemical compound CC(C(C)c(c1c2C(C)=C(C)C(C)C1C)c1[n]2-c(c(-[n]2c(C(C)=C(C)C(C)C3C)c3c3c2C(C)=C(C)C(C)C3C)c(c(-[n]2c(C=CCC3)c3c3c2cccc3)c2C#N)C#N)c2-[n]2c(C(C)=C(C)C(C)C3C)c3c3c2C(C)=C(C)C(C)C3C)*=C1I 0.000 description 2
- YKZFSTRRZKRLHS-UHFFFAOYSA-N C(Cc(cc1)c-2[n]1-c1ccc(-c3ncc[o]3)[n]1-c1ccccc1)C[n]1c-2ncc1 Chemical compound C(Cc(cc1)c-2[n]1-c1ccc(-c3ncc[o]3)[n]1-c1ccccc1)C[n]1c-2ncc1 YKZFSTRRZKRLHS-UHFFFAOYSA-N 0.000 description 1
- JPIFZDFPQLKVPT-UHFFFAOYSA-N Cc1cccc(c2c3C(C)=CCC2)c1[n]3-c(c(-[n]1c(C(C)=CCC2)c2c2c1C(C)=CCC2)c(c(C#N)c1-[n]2c3c(C)cccc3c3c2c(C)ccc3)-[n]2c3c(C)cccc3c3c2C(C)=CCC3)c1C#N Chemical compound Cc1cccc(c2c3C(C)=CCC2)c1[n]3-c(c(-[n]1c(C(C)=CCC2)c2c2c1C(C)=CCC2)c(c(C#N)c1-[n]2c3c(C)cccc3c3c2c(C)ccc3)-[n]2c3c(C)cccc3c3c2C(C)=CCC3)c1C#N JPIFZDFPQLKVPT-UHFFFAOYSA-N 0.000 description 1
- CYVPWRZCUOTVIT-UHFFFAOYSA-N N#CC(C1)C(C#N)=Cc([n](c2c3)-c(c(C#N)c(c(-[n]4c(C=CCC5)c5c5c4cccc5)c4-[n]5c(C=CCC6)c6c6c5C=CCC6)-[n]5c(C=CCC6)c6c6c5C=CCC6)c4C#N)c1c2cc(C#N)c3C#N Chemical compound N#CC(C1)C(C#N)=Cc([n](c2c3)-c(c(C#N)c(c(-[n]4c(C=CCC5)c5c5c4cccc5)c4-[n]5c(C=CCC6)c6c6c5C=CCC6)-[n]5c(C=CCC6)c6c6c5C=CCC6)c4C#N)c1c2cc(C#N)c3C#N CYVPWRZCUOTVIT-UHFFFAOYSA-N 0.000 description 1
- LVNNUIHEFNHFLE-UHFFFAOYSA-N N#Cc(c(-[n]1c2c3c4c1cccc4CCC3CC=C2)c(c(-[n]1c2c3c4c1C=CCC4C=CC3CC=C2)c1C#N)-[n]2c3c4c5c2C=CCC5C=CC4CC=C3)c1-[n]1c2c3c4c1C=CCC4CCC3CC=C2 Chemical compound N#Cc(c(-[n]1c2c3c4c1cccc4CCC3CC=C2)c(c(-[n]1c2c3c4c1C=CCC4C=CC3CC=C2)c1C#N)-[n]2c3c4c5c2C=CCC5C=CC4CC=C3)c1-[n]1c2c3c4c1C=CCC4CCC3CC=C2 LVNNUIHEFNHFLE-UHFFFAOYSA-N 0.000 description 1
- AMQDZIGJUATMJZ-ARONKKADSA-N N=C/C=C\Nc1ccc(-c2cccc(-c3ccc(-c4ncc[n]4-c4ccccc4)[o]3)c2)[o]1 Chemical compound N=C/C=C\Nc1ccc(-c2cccc(-c3ccc(-c4ncc[n]4-c4ccccc4)[o]3)c2)[o]1 AMQDZIGJUATMJZ-ARONKKADSA-N 0.000 description 1
- PJCLJAUYSRUVNA-UHFFFAOYSA-N c(c(c1ccc2)c2-[n]2nccc2-c2c[o]nc2)c[n]1-c1ccccc1 Chemical compound c(c(c1ccc2)c2-[n]2nccc2-c2c[o]nc2)c[n]1-c1ccccc1 PJCLJAUYSRUVNA-UHFFFAOYSA-N 0.000 description 1
- QADTUUJWRUBYAW-UHFFFAOYSA-N c(cc1-[n]2nccc2)c[n]1-c(cc1)cc2c1nc[o]2 Chemical compound c(cc1-[n]2nccc2)c[n]1-c(cc1)cc2c1nc[o]2 QADTUUJWRUBYAW-UHFFFAOYSA-N 0.000 description 1
- NMTHDERTCKUNGF-UHFFFAOYSA-N c(cc1-[n]2nccc2)c[n]1-c1nc(-[n]2c(-[n]3nccc3)ccc2)nc(-c2ccccc2)n1 Chemical compound c(cc1-[n]2nccc2)c[n]1-c1nc(-[n]2c(-[n]3nccc3)ccc2)nc(-c2ccccc2)n1 NMTHDERTCKUNGF-UHFFFAOYSA-N 0.000 description 1
- KTRCIDYEYDTAPJ-UHFFFAOYSA-N c(cc1-c2ccccc2)c[n]1-c1nnc(-[n](c(cccc2)c2c2c3)c2ccc3-c2ccccc2)[o]1 Chemical compound c(cc1-c2ccccc2)c[n]1-c1nnc(-[n](c(cccc2)c2c2c3)c2ccc3-c2ccccc2)[o]1 KTRCIDYEYDTAPJ-UHFFFAOYSA-N 0.000 description 1
- XYXGDZGHDRBBPA-UHFFFAOYSA-N c(cc1-c2nnc(-c3ccc[n]3-c3ncc[o]3)[s]2)c[n]1-c1ncc[o]1 Chemical compound c(cc1-c2nnc(-c3ccc[n]3-c3ncc[o]3)[s]2)c[n]1-c1ncc[o]1 XYXGDZGHDRBBPA-UHFFFAOYSA-N 0.000 description 1
- MZPDNCRUPJCKJP-UHFFFAOYSA-N c1c(-[n](c2c3cccc2)c2c3c3ccccc3[o]2)[s]c(-[n]2c(-c3ccccc3)nnc2-c2ccccc2)c1 Chemical compound c1c(-[n](c2c3cccc2)c2c3c3ccccc3[o]2)[s]c(-[n]2c(-c3ccccc3)nnc2-c2ccccc2)c1 MZPDNCRUPJCKJP-UHFFFAOYSA-N 0.000 description 1
- GSMDCYNPMDFTJF-UHFFFAOYSA-N c1c(-[n]2cnnc2)[s]c(-[n]2nnc(cc3)c2cc3-[n]2c(cccc3)c3c3c2cccc3)c1 Chemical compound c1c(-[n]2cnnc2)[s]c(-[n]2nnc(cc3)c2cc3-[n]2c(cccc3)c3c3c2cccc3)c1 GSMDCYNPMDFTJF-UHFFFAOYSA-N 0.000 description 1
- WJWABQWGRMRMLV-UHFFFAOYSA-N c1c(-c2nnc(-c3ccccc3)[o]2)[n](-c2cc(-c3ccccc3)cc(-c3ccccc3)c2)nc1 Chemical compound c1c(-c2nnc(-c3ccccc3)[o]2)[n](-c2cc(-c3ccccc3)cc(-c3ccccc3)c2)nc1 WJWABQWGRMRMLV-UHFFFAOYSA-N 0.000 description 1
- SYEKAISBSIHRCP-UHFFFAOYSA-O c1c[n](-c2c[n](-c3cccc([SH+](c4ccccc4)(c4ccccc4)c4cc(-c5ccccc5)cc([Si](c5ccccc5)(c5ccccc5)c5ccccc5)c4)c3)nc2)nc1 Chemical compound c1c[n](-c2c[n](-c3cccc([SH+](c4ccccc4)(c4ccccc4)c4cc(-c5ccccc5)cc([Si](c5ccccc5)(c5ccccc5)c5ccccc5)c4)c3)nc2)nc1 SYEKAISBSIHRCP-UHFFFAOYSA-O 0.000 description 1
- QYPVCVMYKLYRPF-UHFFFAOYSA-N c1c[n](C(c2ccccc2)(c2ccccc2)c2ccccc2)cc1-c1nc(-c2ccccc2)c[o]1 Chemical compound c1c[n](C(c2ccccc2)(c2ccccc2)c2ccccc2)cc1-c1nc(-c2ccccc2)c[o]1 QYPVCVMYKLYRPF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
- C09K2211/1051—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1074—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1096—Heterocyclic compounds characterised by ligands containing other heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/188—Metal complexes of other metals not provided for in one of the previous groups
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/20—Delayed fluorescence emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
Definitions
- the present invention relates to an organic electroluminescence element, a display device, and a lighting device. More specifically, the present invention relates to an organic electroluminescence element having a small change in resistance value of a light emitting layer over time, and a lighting device and a display device including the organic electroluminescence element.
- An organic electroluminescence (EL) element has a configuration in which a light-emitting layer containing an organic compound that emits light is sandwiched between a cathode and an anode, and by applying an electric field, the holes injected from the anode and the cathode.
- This is a light emitting device utilizing excitons (excitons) generated by recombining injected electrons in the light emitting layer, and light emission (fluorescence / phosphorescence) when the excitons are deactivated.
- the organic EL element is an all-solid-state element composed of an organic material film having a thickness of only a submicron between the electrodes, and can emit light at a voltage of several volts to several tens of volts. It is expected to be used for flat displays and lighting.
- Non-Patent Document 1 As development of an organic EL element for practical use, Princeton University has reported an organic EL element using phosphorescence emission from an excited triplet (for example, see Non-Patent Document 1). Research on materials that exhibit light has become active (see, for example, Patent Document 1 and Non-Patent Document 2). In addition, organic EL elements that utilize phosphorescence emission can in principle achieve light emission efficiency that is approximately four times that of elements that utilize previous fluorescence emission. Research and development of electrode layers and electrodes are conducted all over the world.
- the inventors of the present invention have focused on elucidating the phenomenon in the organic EL element, and analyzed the time-dependent change of the host compound existing in the light emitting layer. As a result, the fundamental factor of various technical problems of the organic EL element is the light emission. It has been found that this is a change in the resistance of the film over time when the layer was energized (emission) and during non-emission storage.
- the present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is to provide an organic electroluminescence element having a small change in resistance value of a light-emitting layer over time, and an illumination device and a display device including the organic electroluminescence element. It is to be.
- an organic electroluminescence element having a small voltage increase, a good chromaticity of an emission spectrum and a small change rate of chromaticity, and an illumination device and a display device including the same Is to provide.
- the present inventor in the 31 P-NMR spectrum when dissolved in toluene together with triethylphosphine oxide in at least one of the organic functional layers. It has been found that an organic electroluminescence device having a small change in resistance value of the light emitting layer over time can be provided by containing a compound having a chemical shift value within a specific range, and the present invention has been achieved.
- An organic electroluminescence device in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, At least one layer of the organic functional layer contains a compound having a chemical shift value in the range of 40 to 48 ppm in 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene.
- Organic electroluminescence device in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, At least one layer of the organic functional layer contains a compound having a chemical shift value in the range of 40 to 48 ppm in 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene.
- the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum has an excited triplet state (T 1 ) energy of 3.00 eV or more and a nitrogen content of 3.0 to 2.
- T 1 excited triplet state
- the light emitting layer contains a complex of iridium or platinum, 3.
- the light emitting layer contains a fluorescent compound
- the organic electroluminescence device according to any one of items 1 to 3, wherein an internal quantum efficiency in electrical excitation of the fluorescent compound is 50% or more.
- ring ⁇ and ring ⁇ are each independently a pyrrole ring, furan ring, thiophene ring, imidazole ring, pyrazole ring, 1,2,3-triazole ring, 1,2,4-triazole.
- R is linked at an arbitrary position of ring ⁇ or ring ⁇ .
- n represents an integer of 1 to 8.
- ring ⁇ , ring ⁇ and R have the same meaning as ring ⁇ , ring ⁇ and R in general formula (1).
- M represents an integer of 1 to 6.
- L represents 2) Represents a valent linking group.
- An illumination device comprising the organic electroluminescence element according to any one of items 1 to 7.
- a display device comprising the organic electroluminescence element according to any one of items 1 to 7.
- an organic electroluminescence element having a small change in resistance value of the light emitting layer over time, and an illuminating device and a display device including the organic electroluminescence element.
- an organic electroluminescence element with little increase in voltage, good emission spectrum chromaticity, and low chromaticity change rate, and an illumination device and a display device including the organic electroluminescence element.
- the inventors have found that the smaller the resistance value change, the less the voltage rise of the light emitting element, the better the chromaticity of the emission spectrum, and the smaller the rate of change. .
- host compounds that reduce the change in resistance as described above were extracted from a number of newly designed host compounds including existing host compounds, and their common physical properties were examined.
- a low number of acceptors of the host compound is a condition for the host compound that reduces the change in resistance value by impedance spectroscopy.
- the chromaticity of the emission spectrum was improved, and the change with time could be reduced.
- the host compound has a structure in which a 5-membered ring and a 5-membered ring are linked, such as a compound having a structure represented by the general formula (1) or (2).
- this is a universal technical idea for reducing the change in resistance value of the light emitting layer, and the present invention has been completed.
- a compound having a low chemical shift value in a 31 P-NMR (Nuclear Magnetic Resonance) spectrum within a certain range is used as the host compound as the organic EL device material. That is, as described above, since the host compound having a lower acceptor number is used, the relationship between the number of acceptors / the number of donors between the host compound and the light-emitting dopant is improved, and as a result, the host in the light-emitting layer is obtained. It is considered that the interaction between the compounds and the interaction between the host compound and the light-emitting dopant fall within an appropriate range.
- the film quality of the light emitting layer is improved, the resistance value change of the light emitting layer with the passage of time is reduced, voltage rise is suppressed, and further, dopant aggregation is also suppressed, so that chromaticity is improved and light emission is improved. It is inferred that changes in the shape of the spectrum can be suppressed.
- Schematic diagram showing energy diagrams of fluorescent compound and TADF compound Schematic of lighting device Cross section of the lighting device Graph showing an example of M-plot with different thickness of electron transport layer Graph showing an example of the relationship between layer thickness and resistance
- Schematic diagram showing an example of an equivalent circuit model of an organic EL element A graph showing an example of the analysis result of the resistance-voltage relationship of each layer Graph showing an example of analysis results after deterioration
- Schematic configuration diagram showing the manufacturing process of organic EL full-color display device Schematic configuration diagram showing the manufacturing process of organic EL full-color display device Schematic configuration diagram showing the manufacturing process of organic EL full-color display device Schematic configuration diagram showing the manufacturing process of organic EL full-color display device Schematic configuration diagram showing the manufacturing process of organic EL full-color display device Schematic configuration diagram showing the manufacturing process of organic EL full-color display device Schematic configuration diagram showing the manufacturing process of organic EL full-color display device
- an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and 31 P- when dissolved in toluene together with triethylphosphine oxide in at least one layer of the organic functional layer.
- a compound having a chemical shift value in the range of 40 to 48 ppm in the NMR spectrum is contained.
- the nitrogen content of the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is in the range of 3.0 to 15.0%, When the content is within this range, the balance of carrier (hole / electron) transportability is maintained while appropriately maintaining the interaction between the host compounds.
- the energy of the excited triplet state (T 1 ) of the compound is preferably 3.00 eV or more, whereby an energy difference is generated between the light emitting material and the host compound, and the excited triplet of the light emitting material is produced.
- the probability of undesired reverse energy transfer from the state (T 1 ) to the host compound is reduced, and sufficient luminous efficiency can be obtained.
- the light emitting layer preferably contains a phosphorescent compound (phosphorescent dopant) having a nitrogen content in the range of 10.0 to 30.0%, which increases the luminous efficiency. Become. Further, by using a phosphorescent compound having a nitrogen content in the range of 10.0 to 30.0%, a compound having a chemical shift value in the 31 P-NMR spectrum of 40 to 48 ppm is obtained. Since the relationship between the number of acceptors / donors between the host / dopant when used as a host compound is further improved, the interaction between the host compound and the light-emitting dopant is within an appropriate range, and the film quality of the light-emitting layer is improved.
- a phosphorescent compound phosphorescent dopant having a nitrogen content in the range of 10.0 to 30.0%
- the resistance value change of the light emitting layer during energization decreases, voltage increase is suppressed, and further, dopant aggregation is also suppressed, so that chromaticity can be improved and shape change of the emission spectrum can be suppressed. .
- the light emitting layer preferably contains a fluorescent compound, and the internal quantum efficiency in electrical excitation of the fluorescent compound is preferably 50% or more from the viewpoint of luminous efficiency.
- the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is a compound having a structure represented by the general formula (1), and the energy of the high excited triplet state (T 1 ) Carrier adjustment in the organic EL device can be performed by adjusting the energy level of the highest occupied orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). It is preferable because both high luminous efficiency and durability can be realized.
- the compound having the structure represented by the general formula (1) since the compound having the structure represented by the general formula (1) has a mode of being connected by a single bond, the stability and the compound as compared with a monocyclic 5-membered aromatic heterocycle The safety is improved, and it is estimated that the improvement in stability of such a compound itself contributes to the improvement in the durability of the organic EL device.
- the compound which has a structure represented by General formula (1) is a compound which has a structure represented by General formula (2).
- T 1 excited triplet state
- the organic EL device of the present invention preferably emits white light.
- the organic EL element of this invention can be comprised suitably for an illuminating device and a display apparatus.
- ⁇ representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
- an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and 31 P when dissolved together with triethylphosphine oxide in toluene in at least one layer of the organic functional layer.
- -Characterized in that it contains compounds whose chemical shift values in the NMR spectrum are in the range from 40 to 48 ppm.
- the chemical shift value in the 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene is the interaction value between the triethylphosphine oxide dissolved in toluene and the compound as the measurement object. In the present invention, it is considered as one index representing the number of acceptors of the host compound.
- the number of acceptors is a solvent parameter proposed by Gutmann and is understood as a measure of acidity and an electron accepting parameter.
- the chemical shift value in 31 P-NMR spectrum of triethylphosphine oxide ((C 2 H 5 ) 3 PO) dissolved in various solvents is measured.
- 0,1,2-dichloroethane (SbCl 5 ) is a value normalized to 100, but cannot be used when it is desired to know the number of individual acceptors.
- the compound to be measured in toluene is triethyl.
- the chemical shift value in the 31 P-NMR spectrum when dissolved with phosphine oxide was defined as an electron accepting parameter.
- a compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene is contained.
- a host compound having a chemical shift value of 40 to 48 ppm which is slightly lower, within a certain range, the interaction between the host compounds in the light emitting layer and the interaction between the host compound and the light emitting dopant are appropriate. Since the film quality of the light-emitting layer is improved, the change in resistance value of the light-emitting layer over time is reduced, voltage increase is suppressed, and further, dopant aggregation is suppressed, thereby improving chromaticity and light emission.
- the chemical shift value of the 31 P-NMR spectrum is determined by adding a solution obtained by dissolving triethylphosphine oxide and a compound to be measured (measuring object) in toluene at a molar ratio of 1: 7 into a sample tube.
- the measurement was performed by JNM-AL400 (400 MHz), manufactured by JEOL.
- the nitrogen content of the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is preferably in the range of 3.0 to 15.0%.
- the energy of the excited triplet state (T 1 ) of the compound is preferably 3.00 eV or more, and more preferably 3.10 eV or more. Furthermore, when used simultaneously with the phosphorescent compound described later, it is preferable that the excited triplet state (T 1 ) energy is higher than that of the phosphorescent compound.
- the energy value of the excited triplet state (T 1 ) is a value calculated using Gaussian 09, which is molecular orbital calculation software manufactured by Gaussian, USA, and B3LYP / 6-31G * is used as a keyword. After the optimization of the molecular structure, the energy of the excited triplet state (T 1 ) is defined as a calculated value. The background for using this method is that the correlation between the calculated value obtained by this method and the experimental value is high.
- the light emitting layer according to the present invention preferably contains a phosphorescent compound (phosphorescent dopant) having a nitrogen content in the range of 10.0 to 30.0%.
- a phosphorescent compound having a high luminous efficiency and a nitrogen content in the range of 10.0 to 30.0% the chemical shift value in the 31 P-NMR spectrum is 40 to 40%.
- the relationship between the number of acceptors / the number of donors between the host compound / the light-emitting dopant is further improved, and the interaction between the host compound and the light-emitting dopant is within the appropriate range. .
- the film quality of the light emitting layer becomes good, the resistance value change of the light emitting layer during energization is reduced, the voltage increase is suppressed, and further, the aggregation of the dopant is also suppressed, thereby improving the chromaticity, It is predicted that changes in the shape of the emission spectrum can be suppressed.
- the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is preferably a compound having a structure represented by the following general formula (1).
- ring ⁇ and ring ⁇ are each independently a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, a 1,2,3-triazole ring, or a 1,2,4-triazole ring.
- Tetrazole ring, oxazole ring, isoxazole ring, oxadiazole ring, thiazole ring, isothiazole ring or thiadiazole ring which are linked at an arbitrary position.
- R represents a substituent substituted at any position of ring ⁇ or ring ⁇ .
- n represents an integer of 1 to 8.
- the ring ⁇ and the ring ⁇ are both 5-membered aromatic heterocycles, and the ring ⁇ and the ring ⁇ are connected by a single bond. It is a feature.
- T 1 high excited triplet state
- R represents a substituent substituted at any position of ring ⁇ or ring ⁇ .
- the substituent is not particularly limited as long as it does not inhibit the effect of the present invention.
- an alkyl group, an alkenyl group, an alkoxy group, an alkynyl group, a carbonyl group, an amino group, a silyl group, a phosphine oxide group examples thereof include an arylalkyl group, an aryl group, a heteroaryl group, a non-aromatic hydrocarbon ring group, and a non-aromatic heterocyclic group.
- the substituent is preferably an aryl group, a heteroaryl group, a silyl group, or an alkyl group, more preferably a phenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a triphenylsilyl group, a methyl group, An isopropyl group, more preferably a phenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a triphenylsilyl group.
- These substituents may further have a substituent. Further, the substituents may be connected to each other to form a ring.
- N represents an integer of 1 to 8, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and still more preferably 1 to 3.
- ring ⁇ and ring ⁇ are not particularly limited, but at least one of them is preferably a nitrogen-containing aromatic heterocycle, and more preferably both are nitrogen-containing aromatic heterocycles.
- the ring ⁇ and the ring ⁇ may be further linked to each other to form a ring to form a condensed ring structure.
- the condensed ring structure formed at this time may be a saturated ring, an unsaturated ring or an aromatic ring, but is preferably a saturated ring or an aromatic ring.
- Ring ⁇ and ring ⁇ may be monocyclic or have a condensed ring structure, but at least one of them is preferably monocyclic, and more preferably monocyclic.
- the compound having a structure represented by the general formula (1) is preferably a compound having a structure represented by the following general formula (2).
- ring ⁇ , ring ⁇ , and R have the same meanings as ring ⁇ , ring ⁇ , and R in general formula (1).
- m represents an integer of 1 to 6.
- L represents a divalent linking group.
- L represents a divalent linking group, and connects ring ⁇ and ring ⁇ , and forms a new ring with ring ⁇ and part of ring ⁇ and linking group L.
- the linking group is not particularly limited as long as the effects of the present invention are not impaired.
- an alkylene group, an alkenylene group, an ether group, an ester group, a carbonyl group, an amino group, an amide group, a silyl group, and a phosphine examples thereof include an oxide group, an arylalkylene group, a non-aromatic heterocyclic group, —O—, —S—, or a linking group in which these are arbitrarily combined.
- an alkylene group, an ether group, an ester group, a carbonyl group, an amino group, an amide group, a silyl group, and a phosphine oxide group preferred are an alkylene group, an ether group, an ester group, an amino group, a silyl group, and a phosphine.
- the compound having the structure represented by the general formula (2) according to the present invention has a second connection by the linking group L in addition to the connection between the ring ⁇ and the ring ⁇ by a single bond. And a condensed ring is formed by the ring including the ring ⁇ , the ring ⁇ , and the linking group L.
- T 1 excited triplet state
- the number of rings newly formed by the linking group L is not particularly limited, but is preferably a 5- to 10-membered ring, more preferably a 6- to 8-membered ring, and further preferably a 7-membered ring. preferable.
- the reason why such a number is preferable is that the mobility of the ring ⁇ and the ring ⁇ can be adjusted to an appropriate range.
- the ring newly formed by the linking group L is not particularly limited to either an unsaturated ring or an aromatic ring, but is more preferably an unsaturated ring.
- M represents an integer of 1 to 6, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1 or 2.
- the compound having the structure represented by the general formulas (1) and (2) according to the present invention is preferably used as a hole blocking material, an electron blocking material, or a host compound, more preferably used as a host compound. It is. Moreover, the well-known host compound mentioned later can also be used together as a host compound.
- Anode / light emitting layer / cathode ii) Anode / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / cathode (iv) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (v) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (vi) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( vii) Anode / hole injection layer / hole transport layer / (electron blocking layer /) luminescent layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode
- the configuration (vii) is preferably used, but is not limited thereto.
- a hole blocking layer also referred to as a hole blocking layer
- an electron injection layer also referred to as a cathode buffer layer
- An electron blocking layer also referred to as an electron barrier layer
- a hole injection layer also referred to as an anode buffer layer
- the electron transport layer is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Further, the electron transport layer may be composed of a plurality of layers.
- the hole transport layer is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
- the hole transport layer may be composed of a plurality of layers.
- the layer excluding the anode and the cathode is also referred to as “organic functional layer”.
- the organic EL element of the present invention may be a so-called tandem structure element in which a plurality of light emitting units (organic functional layers) including at least one light emitting layer are stacked.
- Examples of typical element configurations of the tandem structure include the following configurations.
- the first light emitting unit, the second light emitting unit, and the third light emitting unit may all be the same or different. Further, the two light emitting units may be the same, and the remaining one may be different.
- the plurality of light emitting units may be directly stacked or may be stacked via an intermediate layer.
- the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer. It has electrons in the adjacent layer on the anode side and holes in the adjacent layer on the cathode side.
- a known material structure can be used as long as the layer has a function of supplying.
- Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , conductivity such as oligothiophene Examples include organic layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyr
- Examples of a preferable configuration in the light emitting unit include those obtained by removing the anode and the cathode from the configurations (i) to (vii) mentioned in the above representative device configurations. It is not limited to.
- tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No.
- the light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer.
- the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
- the total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color against the drive current.
- each light emitting layer of the present invention is preferably adjusted within the range of 2 nm to 1 ⁇ m, more preferably adjusted within the range of 2 to 200 nm, and further preferably within the range of 3 to 150 nm.
- the light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host).
- a light emitting dopant a light emitting dopant compound, a dopant compound, also simply referred to as a dopant
- a host compound a matrix material, a light emitting host compound, also simply referred to as a host.
- a fluorescent luminescent dopant also referred to as a fluorescent dopant or a fluorescent compound
- a phosphorescent dopant also referred to as a phosphorescent dopant or a phosphorescent compound
- at least one light emitting layer contains a phosphorescent light emitting dopant.
- concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the thickness direction of the luminescent layer. It may also have an arbitrary concentration distribution.
- a plurality of kinds of light emitting dopants may be used in combination, or a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant may be used.
- arbitrary luminescent colors can be obtained.
- the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
- the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different emission colors and emits white light.
- the combination of the light-emitting dopants that exhibit white and examples include blue and orange, and a combination of blue, green, and red.
- fluorescent dopant (1.1) Fluorescent Luminescent Dopant
- the fluorescent dopant is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
- Examples of the fluorescent dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, pyran derivatives, Examples include cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, and rare earth complex compounds.
- the organic EL device of the present invention preferably contains a fluorescent compound having an internal quantum efficiency of 50% or more by electrical excitation.
- a fluorescent compound having an internal quantum efficiency of 50% or more by electrical excitation.
- holes and electrons are injected from the anode and the cathode, respectively, and recombine in the light emitting layer to generate excitons.
- fluorescence emission can only have an efficiency of up to 25% (for example, “for illumination” Development of Phosphorescent Organic EL Technology for Applied Physics, Vol. 80, No. 4, 2011).
- Triplet-Triple Annihilation a phenomenon in which singlet excitons are generated by collision of two triplet excitons. Focusing on Triplet-Triplet Fusion (also referred to as “TTF”), a technology that efficiently raises TTA to increase the efficiency of fluorescent elements has been developed. It is improved to 2 to 3 times that of conventional fluorescent materials.
- ⁇ Est a material having a small difference ( ⁇ Est) between the energy of the excited singlet state (S 1 ) and the excited triplet state (T 1 ) (in FIG. 1, ⁇ Est (TADF) is smaller than ⁇ Est (F). Is small).
- Thermally activated delayed fluorescence also called “thermally excited delayed fluorescence” using a light-emitting mechanism that utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs.
- TADF Thermally Activated Delayed Fluorescence
- the use of a fluorescent compound having an internal quantum efficiency of 50% or more by electrical excitation is to use a fluorescent dopant using such TTA or TADF.
- the use of fluorescent emission-type dopants improves the efficiency.
- collision of two triplet excitons in these phenomena collision of two triplet excitons in these phenomena.
- reverse intersystem crossing from triplet excitons to singlet excitons is more likely to occur.
- Specific examples of the luminescent dopant using delayed fluorescence include, for example, compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.
- fluorescent light emitting compounds fluorescent light emitting dopants
- the phosphorescence-emitting compound (phosphorescence-emitting dopant) suitably used in the present invention will be described.
- the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed.
- the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
- the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
- the phosphorescent dopant There are two types of emission principles of the phosphorescent dopant. One is that the recombination of the carrier occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant to obtain light emission from the phosphorescent dopant. It is mobile.
- the other is a carrier trap type in which the phosphorescent dopant becomes a carrier trap, and recombination of carriers occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
- the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
- Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents. For example, Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No.
- a preferable phosphorescent dopant includes an organometallic complex having iridium (Ir) as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
- the phosphorescent dopant preferably used in the present invention has a structure represented by the following general formula (DP).
- M represents Ir, Pt, Rh, Ru, Ag, Cu, or Os.
- a 1 , A 2 , B 1 and B 2 each independently represent a carbon atom or a nitrogen atom.
- Ring Z 1 represents a 6-membered aromatic hydrocarbon ring formed together with A 1 and A 2 or a 5-membered or 6-membered aromatic heterocycle.
- Ring Z 2 represents a 5-membered or 6-membered aromatic heterocycle formed together with B 1 and B 2 .
- L ′ represents a monoanionic bidentate ligand coordinated to M.
- m ′ represents an integer of 0 to 2
- n ′ represents an integer of 1 to 3
- m ′ + n ′ is 2 or 3.
- the ligands or L ′ represented by ring Z 1 or ring Z 2 may be the same or different.
- M represents Ir, Pt, Rh, Ru, Ag, Cu, or Os, preferably Ir, Pt, Rh, Ru, or Os, and more preferably Ir, Pt, or Os.
- Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
- Ring Z 1 and ring Z 2 may have a substituent, and examples of the substituent include the same substituents as the substituents that the ring ⁇ and ring ⁇ in the general formula (1) may have. . Moreover, the substituents in the ring Z 1 and the ring Z 2 may further be bonded to each other to form a condensed ring structure. Moreover, the substituent of each ligand may mutually couple
- the phosphorescent dopant having a structure represented by the above general formula (DP) is preferably a phosphorescent dopant having a structure represented by the following general formula (DP-1) or (DP-2).
- M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′ are M, A 1 , A 2 in general formula (DP).
- B 3 to B 5 are an atomic group that forms an aromatic heterocyclic ring together with B 1 and B 2 , and each represents an optionally substituted carbon atom, nitrogen atom, oxygen atom, or sulfur atom.
- Examples of the substituent that B 3 to B 5 may have include the same substituents as the substituents that the ring Z 1 and ring Z 2 in the general formula (DP) may have.
- the aromatic heterocycle formed by B 1 to B 5 in the general formula (DP-1) is represented by any of the following general formulas (DP-1a), (DP-1b), or (DP-1c) And is more preferably represented by the general formula (DP-1c).
- * 1 represents a binding site with A 2 and * 2 represents a binding site with M.
- Rb 3 to Rb 5 represent a hydrogen atom or a substituent.
- B 4 and B 5 in the general formula (DP-1a) each independently represent a carbon atom or a nitrogen atom.
- B 3 and B 4 in the general formula (DP-1c) each independently represent a carbon atom or a nitrogen atom.
- Examples of the substituent represented by Rb 3 to Rb 5 include the same substituents as the substituents that the ring Z 1 and the ring Z 2 in the general formula (DP) may have.
- B 4 and B 5 in the general formula (DP-1a) each independently represent a carbon atom or a nitrogen atom, but preferably at least one is a carbon atom.
- B 3 and B 4 in the general formula (DP-1c) each independently represent a carbon atom or a nitrogen atom, but at least one is a carbon atom, and a substituent represented by Rb 3 and Rb 4 is further It is preferable that they are bonded to each other to form a condensed ring structure.
- the newly formed condensed ring structure is preferably an aromatic ring, and more preferably any one of a benzimidazole ring, an imidazopyridine ring, an imidazopyrazine ring, and a purine ring.
- Rb 5 is preferably an alkyl group or an aryl group, and more preferably a phenyl group.
- M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′ are M, A 1 , A 2 in general formula (DP).
- Ring Z 2 represents a 5-membered aromatic heterocycle formed together with B 1 to B 3 .
- a 3 and B 3 each independently represents a carbon atom or a nitrogen atom.
- L ′′ represents a divalent linking group.
- Examples of the divalent linking group represented by L ′′ include an alkylene group, an alkenylene group, an arylene group, a heteroarylene group, a divalent heterocyclic group, —O—, —S—, or any combination thereof. Linking groups and the like.
- the phosphorescent dopant having a structure represented by the general formula (DP-2) is preferably a phosphorescent dopant having a structure represented by the following general formula (DP-2a).
- M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , ring Z 2 , L ′, m ′ and n ′ are M in general formula (DP-2).
- L ′′ 1 and L ′′ 2 each independently represent C—Rb 6 or a nitrogen atom.
- Rb 6 represents a hydrogen atom or a substituent.
- Examples of the substituent represented by Rb 6 include the same substituents as the substituents that the ring Z 1 and the ring Z 2 in the general formula (DP) may have.
- Rb 6 may be bonded to each other to form a ring.
- a 2 is preferably a carbon atom, and more preferably A 1 is a carbon atom. More preferably, the ring Z 1 is a substituted or unsubstituted benzene ring or pyridine ring, and particularly preferably a benzene ring.
- the host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and light emission of itself is not substantially observed in the organic EL device.
- it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01.
- the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
- the excited state energy of the host compound is preferably higher than the excited state energy of the light-emitting dopant contained in the same layer.
- a host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
- the compound conventionally used with an organic EL element can be used, It is a compound which has a structure represented by General formula (1) or (2). Preferably there is. Further, it may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
- a known host compound while having a hole transporting ability or an electron transporting ability, it is possible to prevent the emission of light from being long-wavelength, and furthermore, the organic EL element is stable against heat generation during driving at a high temperature or during driving of the element.
- Tg glass transition temperature
- Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
- the glass transition point (Tg) is a value obtained by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
- the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
- the total thickness of the electron transport layer of the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
- the organic EL element when light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to cause. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between several nanometers and several micrometers. On the other hand, since the voltage tends to increase when the thickness of the electron transport layer is increased, the electron mobility of the electron transport layer is 1 ⁇ 10 ⁇ 5 cm 2 / Vs or more, particularly when the layer thickness is large. Is preferred.
- the material used for the electron transport layer may have any of an electron injecting property, a transporting property, and a hole blocking property. Any one can be selected and used.
- nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene
- a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
- a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
- metal-free or metal phthalocyanine or those in which the terminal thereof is substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
- a distyrylpyrazine derivative used as a material for the light-emitting layer can also be used as an electron transport material, and an inorganic material such as n-type-Si, n-type-SiC, etc., like the hole injection layer and the hole transport layer.
- a semiconductor can also be used as an electron transport material.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- a high n-type (electron rich) electron transport layer may be formed by doping a dopant into the electron transport layer as a guest material.
- the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
- Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
- More preferable electron transport materials in the present invention include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
- the electron transport material may be used alone or in combination of two or more.
- the hole blocking layer is a layer having the function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer as needed.
- the hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
- the thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
- the material used for a hole-blocking layer the material used for the above-mentioned electron carrying layer is used preferably, and the material used as the above-mentioned host compound is also preferably used for a hole-blocking layer.
- An electron injection layer (also referred to as a “cathode buffer layer”) is a layer provided between a cathode and a light emitting layer to reduce driving voltage or improve light emission luminance. (November 30, 1998, issued by NTS Corporation) ”, Volume 2, Chapter 2,“ Electrode Materials ”(pages 123-166).
- the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
- the electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm, depending on the material.
- membrane in which a constituent material exists intermittently may be sufficient.
- the electron injection layer Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used. Moreover, the material used for said electron injection layer may be used independently, and may be used in combination of multiple types.
- the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
- the total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
- any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
- triarylamine derivatives examples include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
- hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
- a hole transport layer having a high p property doped with impurities can also be used.
- Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like. JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as a central metal as typified by Ir (ppy) 3 are also preferably used.
- the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
- the polymer materials or oligomers used are preferably used.
- the hole transport material may be used alone or in combination of two or more.
- the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned above can be used as an electron blocking layer according to the present invention, if necessary.
- the electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
- the thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
- the material used for the electron blocking layer the material used for the above-described hole transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the electron blocking layer.
- the hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light-emitting layer in order to lower the drive voltage and improve the light emission luminance. It is described in detail in Chapter 2 “Electrode Materials” (pages 123 to 166) of Volume 2 of “Front Line (published by NTT Corporation on November 30, 1998)”.
- the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above. The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
- Examples of materials used for the hole injection layer include: And materials used for the hole transport layer described above. Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, etc., metal oxides typified by vanadium oxide, amorphous Conductive polymers such as carbon, polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives are preferred.
- the materials used for the hole injection layer may be used alone or in combination of two or more.
- the organic functional layer according to the present invention may further contain other inclusions.
- the inclusion include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals such as Pd, Ca, and Na, alkaline earth metals, transition metal compounds, complexes, and salts.
- the content of the inclusions can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less with respect to the total mass% of the contained layer. . However, it is not within this range depending on the purpose of improving the transportability of electrons and holes or the purpose of favoring the exciton energy transfer.
- a conventionally well-known formation method can be used, For example, a vacuum evaporation method, a wet method (it is also called a wet process) etc. are mentioned.
- the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method).
- a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
- liquid medium for dissolving or dispersing the organic EL material examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, cyclohexylbenzene and the like.
- Aromatic hydrocarbons, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
- a dispersion method it can disperse
- vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa, and the vapor deposition rate. It is desirable to select appropriately within a range of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the organic functional layer it is preferable to consistently produce from the hole injection layer to the cathode by one evacuation, but it may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
- anode in the organic EL element those having a work function (4 eV or more, preferably 4.5 V or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are preferably used.
- electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
- a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when the pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
- the transmittance be greater than 10%
- the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
- the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
- Electrode a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
- electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
- a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable.
- the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected within the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
- a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm.
- the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate.
- CAP cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, Polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or abortion (trade name, manufactured by Mitsui Chemicals) Resin etc. are mentioned.
- the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. , And a relative humidity (90 ⁇ 2)% RH) of 0.01 g / (m 2 ⁇ 24 h) or less is preferable. Further, the film was measured by a method according to JIS K 7126-1987.
- any material may be used as long as it has a function of suppressing entry of elements that cause deterioration of elements such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
- stacking order of an inorganic layer and an organic layer It is preferable to laminate
- the method for forming the gas barrier film is not particularly limited.
- the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
- the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
- the external extraction efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
- external extraction quantum efficiency (%) (number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element) ⁇ 100.
- a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
- Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
- a sealing member it should just be arrange
- transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- polymer plate examples include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
- metal plate examples include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
- a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
- the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992.
- the measured water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably that of 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
- sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
- adhesives include photo-curing and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. Can be mentioned. Moreover, heat
- an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature (25 degreeC) to 80 degreeC is preferable. Further, a desiccant may be dispersed in the adhesive. Application
- coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
- the electrode and the organic functional layer are coated on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
- the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause element degradation such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
- a laminated structure of these inorganic layers and layers made of organic materials it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
- the method of forming these films There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
- an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
- a vacuum can also be used.
- a hygroscopic compound can also be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
- metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
- perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
- anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
- a protective film or a protective plate may be provided outside the sealing film or sealing film on the side facing the support substrate with the organic functional layer interposed therebetween.
- the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
- the same glass plate, polymer plate / film, metal plate / film, etc. used for sealing can be used. It is preferable to use it.
- An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the element, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light, the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the side surface direction of the element.
- a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Application Laid-Open No. 62-172691), lower than the substrate between the substrate and the light emitter.
- a method of introducing a flat layer having a refractive index for example, Japanese Patent Application Laid-Open No. 2001-202827, and forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside).
- Method JP No. 11-283751 Publication, and the like.
- these methods can be used in combination with the organic EL device of the present invention.
- a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate A method of forming a diffraction grating between any one of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
- by combining these means it is possible to obtain an element having higher luminance or durability.
- the light extracted from the transparent electrode has a lower efficiency of extraction to the outside as the refractive index of the medium is lower.
- the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, preferably 1.35 or less. Is more preferable.
- the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
- the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
- This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
- the light that cannot be emitted outside due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode) It tries to take out light.
- the introduced diffraction grating desirably has a two-dimensional periodic refractive index.
- the position where the diffraction grating is introduced may be in any interlayer or medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the light emitting layer where light is generated.
- the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
- the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
- the organic EL device of the present invention can be processed, for example, by providing a structure on a microlens array on the light extraction side of the support substrate (substrate), or combined with a so-called condensing sheet, for example, in a specific direction, By condensing in the front direction with respect to the element light emitting surface, the luminance in a specific direction can be increased.
- the microlens array quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
- the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
- a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
- BEF brightness enhancement film
- the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
- a light diffusing plate / film may be used in combination with the light collecting sheet.
- a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
- the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
- lighting devices home lighting, interior lighting
- clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include, but are not limited to, a light source of a sensor.
- the light source can be effectively used for a backlight of a liquid crystal display device and a light source for illumination.
- patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
- patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned, and a conventionally known method is used in the fabrication of the element. be able to.
- One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
- the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX Track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, as shown in FIGS. Can be formed.
- LX Track LC0629B epoxy photocurable adhesive
- FIG. 2 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is to bring the organic EL element 101 into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
- 3 shows a cross-sectional view of the lighting device.
- reference numeral 105 denotes a cathode
- reference numeral 106 denotes an organic EL layer
- reference numeral 107 denotes a glass substrate with a transparent electrode.
- the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
- the display of the obtained impedance (Z) on the complex plane with the frequency of the applied voltage signal as a parameter is called a Cole-Cole plot.
- the basic transfer functions such as modulus (M), admittance (Y), and dielectric constant ( ⁇ ), can be obtained from this impedance (see “Thin Film Evaluation Handbook”, published by Techno Systems, Inc., pages 423-425).
- the modulus is obtained by the following equation.
- M j ⁇ Z
- a transfer function suitable for the purpose of analysis can be selected as appropriate.
- M plots in which the modulus is plotted on a complex plane are often used.
- an M plot in which the reciprocal of the capacitance component is known is employed.
- M-plot since the diameter of the arc portion is approximately the reciprocal of the capacitance of the corresponding layer, it is proportional to the layer thickness, so that the deviation of the layer thickness can also be detected.
- an equivalent circuit of the organic electroluminescence element is estimated from the locus of the Cole-Cole plot, and the equivalent circuit is determined by matching the locus of the Cole-Cole plot calculated from the equivalent circuit with the measurement data. It is common.
- the IS measurement can be performed, for example, using a Solartron 1260 type impedance analyzer and a 1296 type dielectric constant measurement interface, with 30 to 100 mVrms alternating current (frequency range 0.1 mHz to 10 MHz) superimposed on the direct current voltage. .
- a Solartron 1260 type impedance analyzer and a 1296 type dielectric constant measurement interface, with 30 to 100 mVrms alternating current (frequency range 0.1 mHz to 10 MHz) superimposed on the direct current voltage.
- ZView manufactured by Scribner Associates can be used.
- FIG. 4 is an example of an M-plot with a different thickness of the electron transport layer.
- the vertical axis represents the imaginary part M ′′ (1 / nF), and the horizontal axis represents the real part M ′ (1 / nF).
- FIG. 5 shows the resistance value (R) obtained from this plot plotted against the ETL layer thickness. Since the relationship between the ETL layer thickness and the resistance value (Resistance) lies on a substantially straight line, the resistance value at each layer thickness can be determined.
- FIG. 7 shows the result of analyzing each layer using an organic EL element having an element configuration “ITO / HIL / HTL / EML / ETL / Al” as an equivalent circuit model (FIG. 6).
- FIG. 7 is an example showing the resistance-voltage relationship of each layer.
- FIG. 8 is an example showing an analysis result of the organic EL element after deterioration.
- Example 1 ⁇ Measurement of chemical shift value of 31 P-NMR spectrum >> The chemical shift values of 31 P-NMR spectra of Exemplified compounds HP-5, HP-6 and H1-17 according to the present invention and Comparative compounds 1 to 3 were measured. Specifically, the chemical shift value of the 31 P-NMR spectrum of each compound was determined by adding a solution obtained by dissolving triethylphosphine oxide and each compound in toluene at a molar ratio of 1: 7 into a sample tube, and adding JEOL JNM-AL400 ( 400 MHz), measured by JEOL. The measurement results are shown in Table 2.
- polystyrene sulfonate PEDOT / PSS, Bayer, Baytron P Al 4083
- a thin film was formed by spin coating under conditions of 30 seconds, and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a layer thickness of 20 nm.
- This transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus. Meanwhile, 200 mg of ⁇ -NPD was put in a molybdenum resistance heating boat, and 200 mg of Comparative Compound A was put in another resistance heating boat made of molybdenum. 200 mg of dopant D-63 was placed in a molybdenum resistance heating boat, and 200 mg of BCP was placed in another molybdenum resistance heating boat, and attached to a vacuum deposition apparatus.
- the pressure in the vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and the heating boat containing ⁇ -NPD was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second.
- a hole transport layer having a thickness of 30 nm was provided.
- the heating boat containing the comparative compound A and the heating boat containing the dopant D-63 were energized and heated, and the vapor deposition rates were 0.1 nm / second and 0.010 nm / second, respectively. Evaporation was performed to provide a light emitting layer having a layer thickness of 40 nm.
- the heating boat containing BCP was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a layer thickness of 30 nm.
- lithium fluoride was vapor-deposited as an electron injection layer with a thickness of 0.5 nm, and aluminum was vapor-deposited with a thickness of 110 nm to form a cathode, whereby an organic EL element 1-1 was produced.
- Organic EL elements were prepared in the same manner as in the preparation of organic EL elements 1-1 except that the dopant materials and host materials were changed to the compounds shown in Table 3. 1-2 to 1-14 were produced.
- Evaluation results are shown in Table 3.
- the change rate of the resistance value of each organic EL element is shown as a relative value when the change rate of the resistance value of the organic EL element 1-2 is 100.
- Rate of change in chromaticity before and after driving
- a value closer to 0 indicates a smaller rate of change before and after driving.
- Evaluation results are shown in Table 3.
- the rate of change in chromaticity of each organic EL element is shown as a relative value when the rate of change in chromaticity of the organic EL element 1-2 is 100.
- the organic EL elements 1-3 to 1-14 of the present invention have a resistance value of the light emitting layer and the organic EL elements 1-1 and 1-2 of the comparative example. It was shown that the rate of change in the half-value width of chromaticity was small, and an organic EL device in which the change in physical properties of the thin film of the light emitting layer was small could be obtained. Further, the organic EL elements 1-1 and 1-2 of the comparative example have a high Y value and poor color purity, whereas the organic EL elements 1-3 to 1-14 of the present invention have excellent chromaticity. I understand that.
- polystyrene sulfonate PEDOT / PSS, Bayer, Baytron P Al 4083
- a thin film was formed by spin coating under conditions of 30 seconds and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a layer thickness of 20 nm.
- This substrate was transferred to a nitrogen atmosphere, and spin was performed at 2500 rpm for 30 seconds on a first hole transport layer using a solution of 50 mg of ADS254BE (American Dye Source, Inc.) dissolved in 10 ml of monochlorobenzene.
- a thin film was formed by a coating method. Furthermore, it vacuum-dried at 130 degreeC for 1 hour, and the 2nd positive hole transport layer was formed.
- a thin film is formed on this second hole transport layer by spin coating using a solution of 100 mg of Comparative Compound A and 13 mg of dopant D-63 dissolved in 10 ml of butyl acetate at 1000 rpm for 30 seconds. did. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the light emitting layer with a layer thickness of about 45 nm.
- a thin film was formed on the light emitting layer by spin coating under a condition of 1000 rpm and 30 seconds using a solution of 50 mg of BCP dissolved in 10 ml of hexafluoroisopropanol (HFIP). Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer with a layer thickness of about 25 nm.
- HFIP hexafluoroisopropanol
- this substrate was fixed to a substrate holder of a vacuum evaporation apparatus, and after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, potassium fluoride was evaporated as an electron injection layer to a thickness of 0.4 nm, and aluminum was further added.
- a cathode was formed by vapor deposition at a thickness of 110 nm, and an organic EL element 2-1 was produced.
- the organic EL elements 2-3 to 2-14 of the present invention are half the resistance value and chromaticity of the light emitting layer compared to the organic EL elements 2-1 and 2-2 of the comparative example. It was shown that the rate of change of the value range was small, and an organic EL device having a small change in physical properties of the light emitting layer thin film could be obtained. Furthermore, the organic EL elements 2-1 and 2-2 of the comparative example have high Y values and poor color purity, whereas the organic EL elements 2-3 to 2-14 of the present invention have excellent chromaticity. I understand that.
- This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, 200 mg of TPD is put into a molybdenum resistance heating boat, 200 mg of Comparative Compound A is put into another molybdenum resistance heating boat, and the other resistance heating boat made of molybdenum is put into another molybdenum resistance heating boat.
- the vacuum chamber is then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing a heating boat containing TPD, deposited on a transparent support substrate at a deposition rate of 0.1 nm / second, and transporting holes with a layer thickness of 10 nm. A layer was provided.
- the heating boat containing the comparative compound A as the host compound, the compound D-73 as the dopant, the compound D-15, and the compound D-1 was energized and heated, and the deposition rate was 0.1 nm / second, 0 Co-deposited on the hole transport layer at 0.025 nm / second, 0.0007 nm / second, and 0.0002 nm / second to provide a light emitting layer having a layer thickness of 60 nm.
- the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a layer thickness of 20 nm.
- potassium fluoride was vapor-deposited as an electron injection layer with a layer thickness of 0.5 nm, and aluminum was further vapor-deposited with a thickness of 110 nm to form a cathode, thereby producing an organic EL element 3-1.
- the organic EL elements 3-2 to 3-9 of the present invention have a smaller change rate of the resistance value of the light emitting layer than the organic EL element 3-1 of the comparative example. As a result, an organic EL device having a small change in physical properties of the thin film of the light emitting layer was obtained.
- a hole injection layer composition having the following composition is ejected and injected on the ITO electrode 202 between the partition walls 203 using an inkjet head (manufactured by Epson Corporation: MJ800C), and irradiated with ultraviolet light for 200 seconds.
- a hole injection layer 204 having a layer thickness of 40 nm was provided by drying at 60 ° C. for 10 minutes (see FIG. 9C).
- a blue light-emitting layer composition, a green light-emitting layer composition, and a red light-emitting layer composition having the following compositions are similarly ejected and injected onto the hole injection layer 204 using an inkjet head, and dried at 60 ° C. for 10 minutes.
- the light emitting layers 205B, 205G, and 205R for each color were provided (see FIG. 9D).
- an electron transport material is deposited so as to cover each of the light emitting layers 205B, 205G, and 205R to provide an electron transport layer (not shown) having a thickness of 20 nm, and lithium fluoride is further deposited to form a layer having a thickness of 0.6 nm.
- An electron injection layer (not shown) was provided, Al was evaporated, and a cathode 206 having a thickness of 130 nm was provided to produce an organic EL element (see FIG. 9E).
- the present invention can be particularly suitably used to provide an organic EL element having a small change in resistance value of the light emitting layer over time, and a lighting device and a display device including the organic EL element.
- Organic EL element 101
- Glass cover 105
- Organic EL layer 107
- Glass substrate with transparent electrode 108
- Nitrogen gas 109
- Water trapping agent 201
- Glass substrate 202
- ITO transparent electrode 203
- Hole injection layer 205B, 205G, 205R
- Light emitting layer 206
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Abstract
The present invention addresses the problem of providing an organic EL element in which the change in the resistance value of a light-emitting layer at the time that electric current passes therethrough is small. This organic EL element is characterized by: an organic functional layer that comprises a light-emitting layer being sandwiched between an anode and a cathode; and by at least one layer of the organic functional layer comprising a compound of which the chemical shift value in a 31P-NMR spectrum is within the range of 40-48 ppm when dissolved with triethylphosphine oxide in toluene.
Description
本発明は、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。より詳しくは、通電経時における発光層の抵抗値変化が小さい有機エレクトロルミネッセンス素子、並びにそれを具備した照明装置及び表示装置に関する。
The present invention relates to an organic electroluminescence element, a display device, and a lighting device. More specifically, the present invention relates to an organic electroluminescence element having a small change in resistance value of a light emitting layer over time, and a lighting device and a display device including the organic electroluminescence element.
有機エレクトロルミネッセンス(electroluminescence:EL)素子は、発光する有機化合物を含有する発光層を陰極と陽極とで挟んだ構成を有し、電界を印加することにより、陽極から注入された正孔と陰極から注入された電子とを発光層内で再結合させることで励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用した発光素子である。また、有機EL素子は、電極間を厚さわずかサブミクロン程度の有機材料の膜で構成する全固体素子であり、数V~数十V程度の電圧で発光が可能であることから、次世代の平面ディスプレイや照明への利用が期待されている。
An organic electroluminescence (EL) element has a configuration in which a light-emitting layer containing an organic compound that emits light is sandwiched between a cathode and an anode, and by applying an electric field, the holes injected from the anode and the cathode This is a light emitting device utilizing excitons (excitons) generated by recombining injected electrons in the light emitting layer, and light emission (fluorescence / phosphorescence) when the excitons are deactivated. The organic EL element is an all-solid-state element composed of an organic material film having a thickness of only a submicron between the electrodes, and can emit light at a voltage of several volts to several tens of volts. It is expected to be used for flat displays and lighting.
実用化に向けた有機EL素子の開発としては、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされ(例えば、非特許文献1参照。)、以来、室温でリン光を示す材料の研究が活発になってきている(例えば、特許文献1及び非特許文献2参照。)。さらに、リン光発光を利用する有機EL素子は、以前の蛍光発光を利用する素子に比べ、原理的に約4倍の発光効率が実現可能であることから、その材料開発を始めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
As development of an organic EL element for practical use, Princeton University has reported an organic EL element using phosphorescence emission from an excited triplet (for example, see Non-Patent Document 1). Research on materials that exhibit light has become active (see, for example, Patent Document 1 and Non-Patent Document 2). In addition, organic EL elements that utilize phosphorescence emission can in principle achieve light emission efficiency that is approximately four times that of elements that utilize previous fluorescence emission. Research and development of electrode layers and electrodes are conducted all over the world.
その研究開発過程で最も問題となっているのは、発光材料及びその周辺材料が有機化合物であるが故の耐久性の低さであり、耐久性を向上させるべく数多くの発光物質が開発されてきたが、同時に発光物質に電子や正孔(総称して電荷と呼ぶ。)を受け渡すホスト化合物の重要性も明らかになり、その開発も盛んに行われている(例えば、特許文献2及び3参照。)。
The biggest problem in the research and development process is the low durability because the light emitting material and its surrounding materials are organic compounds, and many light emitting materials have been developed to improve the durability. At the same time, however, the importance of host compounds that deliver electrons and holes (collectively referred to as electric charges) to a light-emitting substance has become clear, and its development has been actively conducted (for example, Patent Documents 2 and 3). reference.).
本発明者らは、有機EL素子内の現象解明に注力し、特に発光層内に存在するホスト化合物の経時変化について解析したところ、有機EL素子の様々な技術課題の根本的な要因が、発光層の通電(発光)経時及び非発光保存経時における膜の抵抗変化であることを究明するに至った。
The inventors of the present invention have focused on elucidating the phenomenon in the organic EL element, and analyzed the time-dependent change of the host compound existing in the light emitting layer. As a result, the fundamental factor of various technical problems of the organic EL element is the light emission. It has been found that this is a change in the resistance of the film over time when the layer was energized (emission) and during non-emission storage.
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、通電経時における発光層の抵抗値変化が小さい有機エレクトロルミネッセンス素子、並びにそれを具備した照明装置及び表示装置を提供することである。
The present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is to provide an organic electroluminescence element having a small change in resistance value of a light-emitting layer over time, and an illumination device and a display device including the organic electroluminescence element. It is to be.
さらには、その副次的効果として、電圧上昇が少なく、また、発光スペクトルの色度が良好で、かつ色度の変化率も小さい有機エレクトロルミネッセンス素子、並びにそれを具備した照明装置及び表示装置を提供することである。
Further, as a secondary effect, an organic electroluminescence element having a small voltage increase, a good chromaticity of an emission spectrum and a small change rate of chromaticity, and an illumination device and a display device including the same Is to provide.
本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、有機機能層の少なくとも1層に、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値が特定範囲内である化合物が含有されていることにより、通電経時における発光層の抵抗値変化が小さい有機エレクトロルミネッセンス素子を提供できることを見出し、本発明に至った。
In the process of studying the cause of the above-mentioned problem in order to solve the above-mentioned problems, the present inventor in the 31 P-NMR spectrum when dissolved in toluene together with triethylphosphine oxide in at least one of the organic functional layers. It has been found that an organic electroluminescence device having a small change in resistance value of the light emitting layer over time can be provided by containing a compound having a chemical shift value within a specific range, and the present invention has been achieved.
すなわち、本発明に係る上記課題は、以下の手段により解決される。
That is, the above-mentioned problem according to the present invention is solved by the following means.
1.陽極と陰極との間に発光層を含む有機機能層が挟持された有機エレクトロルミネッセンス素子であって、
前記有機機能層の少なくとも1層に、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が含有されていることを特徴とする有機エレクトロルミネッセンス素子。 1. An organic electroluminescence device in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode,
At least one layer of the organic functional layer contains a compound having a chemical shift value in the range of 40 to 48 ppm in 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene. Organic electroluminescence device.
前記有機機能層の少なくとも1層に、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が含有されていることを特徴とする有機エレクトロルミネッセンス素子。 1. An organic electroluminescence device in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode,
At least one layer of the organic functional layer contains a compound having a chemical shift value in the range of 40 to 48 ppm in 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene. Organic electroluminescence device.
2.前記31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物の励起三重項状態(T1)のエネルギーが3.00eV以上であって、かつ、窒素含有率が3.0~15.0%の範囲内であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
2. The compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum has an excited triplet state (T 1 ) energy of 3.00 eV or more and a nitrogen content of 3.0 to 2. The organic electroluminescence device according to item 1, wherein the content is in the range of 15.0%.
3.前記発光層には、イリジウム又は白金の錯体が含有され、
前記錯体が、窒素含有率が10.0~30.0%の範囲内であり、かつ、通電によりリン光を発することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. The light emitting layer contains a complex of iridium or platinum,
3. The organic electroluminescence device according to item 1 or 2, wherein the complex has a nitrogen content of 10.0 to 30.0% and emits phosphorescence when energized.
前記錯体が、窒素含有率が10.0~30.0%の範囲内であり、かつ、通電によりリン光を発することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. The light emitting layer contains a complex of iridium or platinum,
3. The organic electroluminescence device according to
4.前記発光層には、蛍光発光性化合物が含有され、
前記蛍光発光性化合物の電気的励起における内部量子効率が、50%以上であることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4). The light emitting layer contains a fluorescent compound,
The organic electroluminescence device according to any one ofitems 1 to 3, wherein an internal quantum efficiency in electrical excitation of the fluorescent compound is 50% or more.
前記蛍光発光性化合物の電気的励起における内部量子効率が、50%以上であることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4). The light emitting layer contains a fluorescent compound,
The organic electroluminescence device according to any one of
5.前記31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が、下記一般式(1)で表される構造を有する化合物であることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
5. Items 1 to 4, wherein the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is a compound having a structure represented by the following general formula (1): The organic electroluminescent element as described in any one of the above.
(一般式(1)中、環α及び環βは、それぞれ独立に、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、オキサジアゾール環、チアゾール環、イソチアゾール環又はチアジアゾール環を表し、任意の位置で連結している。Rは、環α又は環βの任意の位置に置換した置換基を表す。nは、1~8の整数を表す。)
(In general formula (1), ring α and ring β are each independently a pyrrole ring, furan ring, thiophene ring, imidazole ring, pyrazole ring, 1,2,3-triazole ring, 1,2,4-triazole. Represents a ring, a tetrazole ring, an oxazole ring, an isoxazole ring, an oxadiazole ring, a thiazole ring, an isothiazole ring or a thiadiazole ring, and R is linked at an arbitrary position of ring α or ring β. And n represents an integer of 1 to 8.)
6.前記一般式(1)で表される構造を有する化合物が、下記一般式(2)で表される構造を有する化合物であることを特徴とする第5項に記載の有機エレクトロルミネッセンス素子。
6. 6. The organic electroluminescence device according to item 5, wherein the compound having a structure represented by the general formula (1) is a compound having a structure represented by the following general formula (2).
(一般式(2)中、環α、環β及びRは、一般式(1)における環α、環β及びRと同義である。mは、1~6の整数を表す。Lは、2価の連結基を表す。)
(In general formula (2), ring α, ring β and R have the same meaning as ring α, ring β and R in general formula (1). M represents an integer of 1 to 6. L represents 2) Represents a valent linking group.)
7.白色に発光することを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
7. The organic electroluminescence device according to any one of items 1 to 6, which emits white light.
8.第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする照明装置。
8. An illumination device comprising the organic electroluminescence element according to any one of items 1 to 7.
9.第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする表示装置。
9. A display device comprising the organic electroluminescence element according to any one of items 1 to 7.
本発明の上記手段により、通電経時における発光層の抵抗値変化が小さい有機エレクトロルミネッセンス素子、並びにそれを具備した照明装置及び表示装置を提供することができる。
By the above means of the present invention, it is possible to provide an organic electroluminescence element having a small change in resistance value of the light emitting layer over time, and an illuminating device and a display device including the organic electroluminescence element.
さらには、電圧上昇が少なく、また、発光スペクトルの色度が良好で、かつ色度の変化率も小さい有機エレクトロルミネッセンス素子、並びにそれを具備した照明装置及び表示装置を提供することができる。
Furthermore, it is possible to provide an organic electroluminescence element with little increase in voltage, good emission spectrum chromaticity, and low chromaticity change rate, and an illumination device and a display device including the organic electroluminescence element.
本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。
The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
通常、発光素子の中に存在する層厚数十nm程度の発光層の抵抗を非破壊で計測することは困難であったが、最近、インピーダンス分光法を用いることにより、比較的容易に計測することができるようになってきた。これにより、有機EL素子を作製した直後の状態での発光層の抵抗値と、通電経時及び/又は非発光保存経時の発光層の抵抗値を計測することが可能となる。
Usually, it has been difficult to measure the resistance of a light emitting layer having a thickness of several tens of nanometers in a light emitting element in a non-destructive manner, but recently it is relatively easy to measure by using impedance spectroscopy. It has become possible to Thereby, it becomes possible to measure the resistance value of the light emitting layer in the state immediately after producing the organic EL element and the resistance value of the light emitting layer during energization and / or non-emission storage time.
本発明者らは、鋭意検討の結果、その抵抗値変化が小さいものほど、発光素子の電圧上昇が少なく、また、発光スペクトルの色度も良好で、更にはその変化率が小さいことがわかった。
本発明を達成するために、既存のホスト化合物を含め、新たに設計した数多くの新規なホスト化合物の中から前述のような抵抗値変化を小さくするホスト化合物を抽出し、その共通物性を検討したところ、ホスト化合物のアクセプター数が低いことが、インピーダンス分光法による抵抗値変化を小さくするホスト化合物の条件であることを見出した。また、アクセプター数を低くすることで発光スペクトルの色度が改善し、その経時変化も小さくすることが可能となった。さらに効果が大きいのは、ホスト化合物が、一般式(1)又は(2)で表される構造を有する化合物のように、5員環と5員環とを連結した構造を有していることが、発光層の抵抗値変化を小さくする普遍的な技術思想であることがわかり、本発明を完成するに至った。 As a result of intensive studies, the inventors have found that the smaller the resistance value change, the less the voltage rise of the light emitting element, the better the chromaticity of the emission spectrum, and the smaller the rate of change. .
In order to achieve the present invention, host compounds that reduce the change in resistance as described above were extracted from a number of newly designed host compounds including existing host compounds, and their common physical properties were examined. However, it has been found that a low number of acceptors of the host compound is a condition for the host compound that reduces the change in resistance value by impedance spectroscopy. In addition, by reducing the number of acceptors, the chromaticity of the emission spectrum was improved, and the change with time could be reduced. The greater effect is that the host compound has a structure in which a 5-membered ring and a 5-membered ring are linked, such as a compound having a structure represented by the general formula (1) or (2). However, it has been found that this is a universal technical idea for reducing the change in resistance value of the light emitting layer, and the present invention has been completed.
本発明を達成するために、既存のホスト化合物を含め、新たに設計した数多くの新規なホスト化合物の中から前述のような抵抗値変化を小さくするホスト化合物を抽出し、その共通物性を検討したところ、ホスト化合物のアクセプター数が低いことが、インピーダンス分光法による抵抗値変化を小さくするホスト化合物の条件であることを見出した。また、アクセプター数を低くすることで発光スペクトルの色度が改善し、その経時変化も小さくすることが可能となった。さらに効果が大きいのは、ホスト化合物が、一般式(1)又は(2)で表される構造を有する化合物のように、5員環と5員環とを連結した構造を有していることが、発光層の抵抗値変化を小さくする普遍的な技術思想であることがわかり、本発明を完成するに至った。 As a result of intensive studies, the inventors have found that the smaller the resistance value change, the less the voltage rise of the light emitting element, the better the chromaticity of the emission spectrum, and the smaller the rate of change. .
In order to achieve the present invention, host compounds that reduce the change in resistance as described above were extracted from a number of newly designed host compounds including existing host compounds, and their common physical properties were examined. However, it has been found that a low number of acceptors of the host compound is a condition for the host compound that reduces the change in resistance value by impedance spectroscopy. In addition, by reducing the number of acceptors, the chromaticity of the emission spectrum was improved, and the change with time could be reduced. The greater effect is that the host compound has a structure in which a 5-membered ring and a 5-membered ring are linked, such as a compound having a structure represented by the general formula (1) or (2). However, it has been found that this is a universal technical idea for reducing the change in resistance value of the light emitting layer, and the present invention has been completed.
その理由として、本発明においては、有機EL素子材料として31P-NMR(Nuclear Magnetic Resonance)スペクトルにおける化学シフト値が低めの一定範囲内の値を有する化合物をホスト化合物として用いている。すなわち、上述したようにアクセプター数が低めの一定値を有するホスト化合物を使用するため、ホスト化合物と発光ドーパントとのアクセプター数/ドナー数の関係が良好になり、結果的として、発光層内のホスト化合物同士の相互作用、及びホスト化合物と発光ドーパント間の相互作用が適切範囲内となると考えられる。これにより、発光層の膜質が良好となり、通電経時での発光層の抵抗値変化が少なくなり、電圧上昇が抑えられ、更には、ドーパント凝集も抑制されることで、色度も向上し、発光スペクトルの形状変化が抑制可能となったと推察される。
For this reason, in the present invention, a compound having a low chemical shift value in a 31 P-NMR (Nuclear Magnetic Resonance) spectrum within a certain range is used as the host compound as the organic EL device material. That is, as described above, since the host compound having a lower acceptor number is used, the relationship between the number of acceptors / the number of donors between the host compound and the light-emitting dopant is improved, and as a result, the host in the light-emitting layer is obtained. It is considered that the interaction between the compounds and the interaction between the host compound and the light-emitting dopant fall within an appropriate range. As a result, the film quality of the light emitting layer is improved, the resistance value change of the light emitting layer with the passage of time is reduced, voltage rise is suppressed, and further, dopant aggregation is also suppressed, so that chromaticity is improved and light emission is improved. It is inferred that changes in the shape of the spectrum can be suppressed.
本発明の有機EL素子は、陽極と陰極との間に発光層を含む有機機能層が挟持され、有機機能層の少なくとも1層に、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が含有されていることを特徴とする。この特徴は、請求項1から請求項9までの請求項に係る発明に共通する技術的特徴である。
In the organic EL device of the present invention, an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and 31 P- when dissolved in toluene together with triethylphosphine oxide in at least one layer of the organic functional layer. A compound having a chemical shift value in the range of 40 to 48 ppm in the NMR spectrum is contained. This feature is a technical feature common to the inventions according to claims 1 to 9.
本発明の実施態様としては、31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物の窒素含有率が3.0~15.0%の範囲内であることが好ましく、窒素含有率がこの範囲内にあることで、ホスト化合物同士の相互作用を適切に保ちながら、キャリア(正孔/電子)輸送性のバランスが保たれる。
As an embodiment of the present invention, it is preferable that the nitrogen content of the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is in the range of 3.0 to 15.0%, When the content is within this range, the balance of carrier (hole / electron) transportability is maintained while appropriately maintaining the interaction between the host compounds.
また、該化合物の励起三重項状態(T1)のエネルギーは、3.00eV以上であることが好ましく、これにより、発光材料とホスト化合物との間にエネルギー差が生まれ、発光材料の励起三重項状態(T1)からホスト化合物への好ましくない逆エネルギー移動を起こす確率が減り、十分な発光効率が得ることが可能となる。
In addition, the energy of the excited triplet state (T 1 ) of the compound is preferably 3.00 eV or more, whereby an energy difference is generated between the light emitting material and the host compound, and the excited triplet of the light emitting material is produced. The probability of undesired reverse energy transfer from the state (T 1 ) to the host compound is reduced, and sufficient luminous efficiency can be obtained.
発光層には、窒素含有率が10.0~30.0%の範囲内であるリン光発光性化合物(リン光発光性ドーパント)が含有されていることが好ましく、これにより、発光効率が高くなる。さらには、窒素含有率が10.0~30.0%の範囲内であるリン光発光性化合物を用いることで、31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物をホスト化合物として用いたときのホスト/ドーパント間のアクセプター数/ドナー数の関係が更に良好になり、ホスト化合物と発光ドーパント間の相互作用が適切範囲内となり、発光層の膜質が良好となるため、通電経時における発光層の抵抗値変化が少なくなり、電圧上昇が抑えられ、更には、ドーパント凝集も抑制されることで、色度も向上し、発光スペクトルの形状変化を抑制可能とすることができる。
The light emitting layer preferably contains a phosphorescent compound (phosphorescent dopant) having a nitrogen content in the range of 10.0 to 30.0%, which increases the luminous efficiency. Become. Further, by using a phosphorescent compound having a nitrogen content in the range of 10.0 to 30.0%, a compound having a chemical shift value in the 31 P-NMR spectrum of 40 to 48 ppm is obtained. Since the relationship between the number of acceptors / donors between the host / dopant when used as a host compound is further improved, the interaction between the host compound and the light-emitting dopant is within an appropriate range, and the film quality of the light-emitting layer is improved. The resistance value change of the light emitting layer during energization decreases, voltage increase is suppressed, and further, dopant aggregation is also suppressed, so that chromaticity can be improved and shape change of the emission spectrum can be suppressed. .
また、発光層には、蛍光発光性化合物が含有され、当該蛍光性化合物の電気的励起における内部量子効率が50%以上であることが、発光効率の点から好ましい。
In addition, the light emitting layer preferably contains a fluorescent compound, and the internal quantum efficiency in electrical excitation of the fluorescent compound is preferably 50% or more from the viewpoint of luminous efficiency.
31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物は、一般式(1)で表される構造を有する化合物であることが、高い励起三重項状態(T1)のエネルギーを有することができるとともに、最高被占軌道(Highest Occupied Molecular Orbital:HOMO)及び最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)のエネルギー準位の調整によって有機EL素子内のキャリア輸送調整が可能となり、高い発光効率と耐久性との両立が実現できることから好ましい。また、一般式(1)で表される構造を有する化合物は、単結合によって連結した様式を有しているため、単環の5員芳香族複素環と比較して、化合物としての安定性及び安全性が向上しており、このような化合物自身の安定性向上が有機EL素子の耐久性向上にも寄与しているものと推測される。
The compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is a compound having a structure represented by the general formula (1), and the energy of the high excited triplet state (T 1 ) Carrier adjustment in the organic EL device can be performed by adjusting the energy level of the highest occupied orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). It is preferable because both high luminous efficiency and durability can be realized. In addition, since the compound having the structure represented by the general formula (1) has a mode of being connected by a single bond, the stability and the compound as compared with a monocyclic 5-membered aromatic heterocycle The safety is improved, and it is estimated that the improvement in stability of such a compound itself contributes to the improvement in the durability of the organic EL device.
さらには、一般式(1)で表される構造を有する化合物が一般式(2)で表される構造を有する化合物であることが、一般式(1)で表される構造を有する化合物と比較して、更に高い励起三重項状態(T1)のエネルギーを有するとともに、化合物としての安定性を向上させることが可能であり、有機EL素子に用いた際、高い発光効率と耐久性の両立が可能となることから好ましい。
Furthermore, it is compared with the compound which has a structure represented by General formula (1) that the compound which has a structure represented by General formula (1) is a compound which has a structure represented by General formula (2). In addition, it has higher excited triplet state (T 1 ) energy and can improve the stability as a compound. When used in an organic EL device, both high luminous efficiency and durability can be achieved. It is preferable because it becomes possible.
本発明の有機EL素子は、白色に発光することが好ましい。
また、本発明の有機EL素子は、照明装置及び表示装置に好適に具備され得る。 The organic EL device of the present invention preferably emits white light.
Moreover, the organic EL element of this invention can be comprised suitably for an illuminating device and a display apparatus.
また、本発明の有機EL素子は、照明装置及び表示装置に好適に具備され得る。 The organic EL device of the present invention preferably emits white light.
Moreover, the organic EL element of this invention can be comprised suitably for an illuminating device and a display apparatus.
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。
Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
≪31P-NMRスペクトル≫
本発明の有機EL素子は、陽極と陰極との間に発光層を含む有機機能層が挟持され、該有機機能層の少なくとも1層に、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が含有されていることを特徴とする。
本発明において、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値とは、トルエン中に溶解させたトリエチルホスフィンオキシドと測定対象物である化合物との相互作用値を表す値であり、本発明においてはホスト化合物のアクセプター数を表す一つの指標として考えている。 ≪ 31 P-NMR spectrum≫
In the organic EL device of the present invention, an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and 31 P when dissolved together with triethylphosphine oxide in toluene in at least one layer of the organic functional layer. -Characterized in that it contains compounds whose chemical shift values in the NMR spectrum are in the range from 40 to 48 ppm.
In the present invention, the chemical shift value in the 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene is the interaction value between the triethylphosphine oxide dissolved in toluene and the compound as the measurement object. In the present invention, it is considered as one index representing the number of acceptors of the host compound.
本発明の有機EL素子は、陽極と陰極との間に発光層を含む有機機能層が挟持され、該有機機能層の少なくとも1層に、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が含有されていることを特徴とする。
本発明において、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値とは、トルエン中に溶解させたトリエチルホスフィンオキシドと測定対象物である化合物との相互作用値を表す値であり、本発明においてはホスト化合物のアクセプター数を表す一つの指標として考えている。 ≪ 31 P-NMR spectrum≫
In the organic EL device of the present invention, an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode, and 31 P when dissolved together with triethylphosphine oxide in toluene in at least one layer of the organic functional layer. -Characterized in that it contains compounds whose chemical shift values in the NMR spectrum are in the range from 40 to 48 ppm.
In the present invention, the chemical shift value in the 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene is the interaction value between the triethylphosphine oxide dissolved in toluene and the compound as the measurement object. In the present invention, it is considered as one index representing the number of acceptors of the host compound.
アクセプター数とは、Gutmannにより提唱された溶媒パラメーターのことであり、酸性度の尺度や電子受容性のパラメータとして理解される。
ある溶媒のアクセプター数を測定する場合、種々の溶媒中に溶解させたトリエチルホスフィンオキシド((C2H5)3PO)の31P-NMRスペクトルにおける化学シフト値を測定し、n-ヘキサン中を0、1,2-ジクロロエタン(SbCl5)中を100として規格化した値であるが、個体のアクセプター数を知りたい場合には使用できないため、本発明においては、トルエン中に測定したい化合物をトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値を電子受容性のパラメータとして定義した。 The number of acceptors is a solvent parameter proposed by Gutmann and is understood as a measure of acidity and an electron accepting parameter.
When measuring the number of acceptors of a solvent, the chemical shift value in 31 P-NMR spectrum of triethylphosphine oxide ((C 2 H 5 ) 3 PO) dissolved in various solvents is measured. 0,1,2-dichloroethane (SbCl 5 ) is a value normalized to 100, but cannot be used when it is desired to know the number of individual acceptors. In the present invention, the compound to be measured in toluene is triethyl. The chemical shift value in the 31 P-NMR spectrum when dissolved with phosphine oxide was defined as an electron accepting parameter.
ある溶媒のアクセプター数を測定する場合、種々の溶媒中に溶解させたトリエチルホスフィンオキシド((C2H5)3PO)の31P-NMRスペクトルにおける化学シフト値を測定し、n-ヘキサン中を0、1,2-ジクロロエタン(SbCl5)中を100として規格化した値であるが、個体のアクセプター数を知りたい場合には使用できないため、本発明においては、トルエン中に測定したい化合物をトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値を電子受容性のパラメータとして定義した。 The number of acceptors is a solvent parameter proposed by Gutmann and is understood as a measure of acidity and an electron accepting parameter.
When measuring the number of acceptors of a solvent, the chemical shift value in 31 P-NMR spectrum of triethylphosphine oxide ((C 2 H 5 ) 3 PO) dissolved in various solvents is measured. 0,1,2-dichloroethane (SbCl 5 ) is a value normalized to 100, but cannot be used when it is desired to know the number of individual acceptors. In the present invention, the compound to be measured in toluene is triethyl. The chemical shift value in the 31 P-NMR spectrum when dissolved with phosphine oxide was defined as an electron accepting parameter.
本発明においては、このトルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物を含有させることが必須条件である。化学シフト値が40~48ppmという、やや低めの一定範囲内の値を有するホスト化合物を使用することで、発光層内のホスト化合物同士の相互作用、及びホスト化合物と発光ドーパント間の相互作用が適切となり、発光層の膜質が良好となるため、通電経時における発光層の抵抗値変化が小さくなり、電圧上昇が抑えられ、更には、ドーパント凝集も抑制されることで、色度も向上し、発光スペクトルの形状の変化が抑制可能になったと予測される。
なお、本発明において、31P-NMRスペクトルの化学シフト値は、トリエチルホスフィンオキシドと測定したい化合物(測定対象物)とをモル比1:7でトルエンに溶解させた溶液をサンプルチューブに入れ、JEOL JNM-AL400(400MHz)、日本電子社製にて測定した。 In the present invention, it is an essential condition that a compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene is contained. By using a host compound having a chemical shift value of 40 to 48 ppm, which is slightly lower, within a certain range, the interaction between the host compounds in the light emitting layer and the interaction between the host compound and the light emitting dopant are appropriate. Since the film quality of the light-emitting layer is improved, the change in resistance value of the light-emitting layer over time is reduced, voltage increase is suppressed, and further, dopant aggregation is suppressed, thereby improving chromaticity and light emission. It is predicted that changes in the shape of the spectrum can be suppressed.
In the present invention, the chemical shift value of the 31 P-NMR spectrum is determined by adding a solution obtained by dissolving triethylphosphine oxide and a compound to be measured (measuring object) in toluene at a molar ratio of 1: 7 into a sample tube. The measurement was performed by JNM-AL400 (400 MHz), manufactured by JEOL.
なお、本発明において、31P-NMRスペクトルの化学シフト値は、トリエチルホスフィンオキシドと測定したい化合物(測定対象物)とをモル比1:7でトルエンに溶解させた溶液をサンプルチューブに入れ、JEOL JNM-AL400(400MHz)、日本電子社製にて測定した。 In the present invention, it is an essential condition that a compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene is contained. By using a host compound having a chemical shift value of 40 to 48 ppm, which is slightly lower, within a certain range, the interaction between the host compounds in the light emitting layer and the interaction between the host compound and the light emitting dopant are appropriate. Since the film quality of the light-emitting layer is improved, the change in resistance value of the light-emitting layer over time is reduced, voltage increase is suppressed, and further, dopant aggregation is suppressed, thereby improving chromaticity and light emission. It is predicted that changes in the shape of the spectrum can be suppressed.
In the present invention, the chemical shift value of the 31 P-NMR spectrum is determined by adding a solution obtained by dissolving triethylphosphine oxide and a compound to be measured (measuring object) in toluene at a molar ratio of 1: 7 into a sample tube. The measurement was performed by JNM-AL400 (400 MHz), manufactured by JEOL.
また、31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物の窒素含有率は、3.0~15.0%の範囲内であることが好ましい。
Further, the nitrogen content of the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is preferably in the range of 3.0 to 15.0%.
また、当該化合物の励起三重項状態(T1)のエネルギーは、3.00eV以上であることが好ましく、3.10eV以上であることがより好ましい。さらには、後述するリン光発光性化合物と同時に用いられる場合には、リン光発光性化合物よりも高い励起三重項状態(T1)のエネルギーを有していることが好ましい。
なお、励起三重項状態(T1)のエネルギーの値は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian09を用いて計算した際の値であり、キーワードとしてB3LYP/6-31G*を用い、分子構造最適化を実施した後、励起三重項状態(T1)のエネルギーを算出した値と定義する。本手法を用いる背景には、本手法で求めた計算値と実験値の相関が高いことが挙げられる。 In addition, the energy of the excited triplet state (T 1 ) of the compound is preferably 3.00 eV or more, and more preferably 3.10 eV or more. Furthermore, when used simultaneously with the phosphorescent compound described later, it is preferable that the excited triplet state (T 1 ) energy is higher than that of the phosphorescent compound.
The energy value of the excited triplet state (T 1 ) is a value calculated usingGaussian 09, which is molecular orbital calculation software manufactured by Gaussian, USA, and B3LYP / 6-31G * is used as a keyword. After the optimization of the molecular structure, the energy of the excited triplet state (T 1 ) is defined as a calculated value. The background for using this method is that the correlation between the calculated value obtained by this method and the experimental value is high.
なお、励起三重項状態(T1)のエネルギーの値は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian09を用いて計算した際の値であり、キーワードとしてB3LYP/6-31G*を用い、分子構造最適化を実施した後、励起三重項状態(T1)のエネルギーを算出した値と定義する。本手法を用いる背景には、本手法で求めた計算値と実験値の相関が高いことが挙げられる。 In addition, the energy of the excited triplet state (T 1 ) of the compound is preferably 3.00 eV or more, and more preferably 3.10 eV or more. Furthermore, when used simultaneously with the phosphorescent compound described later, it is preferable that the excited triplet state (T 1 ) energy is higher than that of the phosphorescent compound.
The energy value of the excited triplet state (T 1 ) is a value calculated using
また、本発明に係る発光層には、窒素含有率が10.0~30.0%の範囲内であるリン光発光性化合物(リン光発光性ドーパント)が含有されていることが好ましく、これにより、発光効率が高くなり、更には、窒素含有率が10.0~30.0%の範囲内であるリン光発光性化合物を用いることで、31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物をホスト化合物として用いたときのホスト化合物/発光ドーパント間のアクセプター数/ドナー数の関係が更に良好になり、ホスト化合物と発光ドーパント間の相互作用が適切範囲内となる。これにより、発光層の膜質が良好となるため、通電経時における発光層の抵抗値変化が小さくなり、電圧上昇が抑えられ、更には、ドーパント凝集も抑制されることで、色度も向上し、発光スペクトルの形状の変化が抑制可能となったと予測される。
The light emitting layer according to the present invention preferably contains a phosphorescent compound (phosphorescent dopant) having a nitrogen content in the range of 10.0 to 30.0%. By using a phosphorescent compound having a high luminous efficiency and a nitrogen content in the range of 10.0 to 30.0%, the chemical shift value in the 31 P-NMR spectrum is 40 to 40%. When a compound within the range of 48 ppm is used as the host compound, the relationship between the number of acceptors / the number of donors between the host compound / the light-emitting dopant is further improved, and the interaction between the host compound and the light-emitting dopant is within the appropriate range. . Thereby, since the film quality of the light emitting layer becomes good, the resistance value change of the light emitting layer during energization is reduced, the voltage increase is suppressed, and further, the aggregation of the dopant is also suppressed, thereby improving the chromaticity, It is predicted that changes in the shape of the emission spectrum can be suppressed.
≪一般式(1)で表される構造を有する化合物≫
本発明においては、31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が、下記一般式(1)で表される構造を有する化合物であることが好ましい。 << Compound having structure represented by general formula (1) >>
In the present invention, the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is preferably a compound having a structure represented by the following general formula (1).
本発明においては、31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が、下記一般式(1)で表される構造を有する化合物であることが好ましい。 << Compound having structure represented by general formula (1) >>
In the present invention, the compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum is preferably a compound having a structure represented by the following general formula (1).
一般式(1)中、環α及び環βは、それぞれ独立に、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、オキサジアゾール環、チアゾール環、イソチアゾール環又はチアジアゾール環を表し、任意の位置で連結している。Rは、環α又は環βの任意の位置に置換した置換基を表す。nは、1~8の整数を表す。
In general formula (1), ring α and ring β are each independently a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, a 1,2,3-triazole ring, or a 1,2,4-triazole ring. , Tetrazole ring, oxazole ring, isoxazole ring, oxadiazole ring, thiazole ring, isothiazole ring or thiadiazole ring, which are linked at an arbitrary position. R represents a substituent substituted at any position of ring α or ring β. n represents an integer of 1 to 8.
上記一般式(1)で表される構造を有する化合物は、環α及び環βがともに5員芳香族複素環であり、かつ、環αと環βとが単結合によって連結していることが特徴である。このような構造式を有することによって、高い励起三重項状態(T1)のエネルギーを有することができるとともに、HOMOのエネルギー準位及びLUMOのエネルギー準位の調整によって有機EL素子内のキャリア輸送調整が可能となり、高い発光効率と耐久性との両立が実現できる。
In the compound having the structure represented by the general formula (1), the ring α and the ring β are both 5-membered aromatic heterocycles, and the ring α and the ring β are connected by a single bond. It is a feature. By having such a structural formula, it is possible to have high excited triplet state (T 1 ) energy, and to adjust carrier transport in the organic EL element by adjusting the energy level of HOMO and the energy level of LUMO. This makes it possible to achieve both high luminous efficiency and durability.
Rは、環α又は環βの任意の位置に置換した置換基を表す。置換基としては、本発明の効果を阻害しない限りにおいて特に制限されるものではないが、例えば、アルキル基、アルケニル基、アルコキシ基、アルキニル基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基、非芳香族複素環基等を挙げることができる。中でも、置換基として好ましくは、アリール基、ヘテロアリール基、シリル基、アルキル基であり、より好ましくはフェニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、トリフェニルシリル基、メチル基、イソプロピル基であり、更に好ましくはフェニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、トリフェニルシリル基である。
これら置換基は、更に置換基を有していてもよい。また、置換基同士が互いに連結して環を形成していてもよい。 R represents a substituent substituted at any position of ring α or ring β. The substituent is not particularly limited as long as it does not inhibit the effect of the present invention. For example, an alkyl group, an alkenyl group, an alkoxy group, an alkynyl group, a carbonyl group, an amino group, a silyl group, a phosphine oxide group, Examples thereof include an arylalkyl group, an aryl group, a heteroaryl group, a non-aromatic hydrocarbon ring group, and a non-aromatic heterocyclic group. Among them, the substituent is preferably an aryl group, a heteroaryl group, a silyl group, or an alkyl group, more preferably a phenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a triphenylsilyl group, a methyl group, An isopropyl group, more preferably a phenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a triphenylsilyl group.
These substituents may further have a substituent. Further, the substituents may be connected to each other to form a ring.
これら置換基は、更に置換基を有していてもよい。また、置換基同士が互いに連結して環を形成していてもよい。 R represents a substituent substituted at any position of ring α or ring β. The substituent is not particularly limited as long as it does not inhibit the effect of the present invention. For example, an alkyl group, an alkenyl group, an alkoxy group, an alkynyl group, a carbonyl group, an amino group, a silyl group, a phosphine oxide group, Examples thereof include an arylalkyl group, an aryl group, a heteroaryl group, a non-aromatic hydrocarbon ring group, and a non-aromatic heterocyclic group. Among them, the substituent is preferably an aryl group, a heteroaryl group, a silyl group, or an alkyl group, more preferably a phenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a triphenylsilyl group, a methyl group, An isopropyl group, more preferably a phenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a triphenylsilyl group.
These substituents may further have a substituent. Further, the substituents may be connected to each other to form a ring.
nは、1~8の整数を表すが、1~6の整数であることが好ましく、1~4の整数であることがより好ましく、1~3であることが更に好ましい。
N represents an integer of 1 to 8, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and still more preferably 1 to 3.
環αと環βとの組み合わせについては特に限定されないが、少なくとも一方が含窒素芳香族複素環であることが好ましく、ともに含窒素芳香族複素環であることがより好ましい。
また、環αと環βとは、それぞれの置換基同士が更に連結して環を形成し縮環構造を形成していてもよい。このとき形成される縮環構造は、飽和環、不飽和環又は芳香族環のいずれであってもよいが、飽和環又は芳香族環であることが好ましい。
環αと環βとは、単環であっても縮環構造を有していてもよいが、少なくとも一方は単環であることが好ましく、ともに単環であることがより好ましい。 The combination of ring α and ring β is not particularly limited, but at least one of them is preferably a nitrogen-containing aromatic heterocycle, and more preferably both are nitrogen-containing aromatic heterocycles.
In addition, the ring α and the ring β may be further linked to each other to form a ring to form a condensed ring structure. The condensed ring structure formed at this time may be a saturated ring, an unsaturated ring or an aromatic ring, but is preferably a saturated ring or an aromatic ring.
Ring α and ring β may be monocyclic or have a condensed ring structure, but at least one of them is preferably monocyclic, and more preferably monocyclic.
また、環αと環βとは、それぞれの置換基同士が更に連結して環を形成し縮環構造を形成していてもよい。このとき形成される縮環構造は、飽和環、不飽和環又は芳香族環のいずれであってもよいが、飽和環又は芳香族環であることが好ましい。
環αと環βとは、単環であっても縮環構造を有していてもよいが、少なくとも一方は単環であることが好ましく、ともに単環であることがより好ましい。 The combination of ring α and ring β is not particularly limited, but at least one of them is preferably a nitrogen-containing aromatic heterocycle, and more preferably both are nitrogen-containing aromatic heterocycles.
In addition, the ring α and the ring β may be further linked to each other to form a ring to form a condensed ring structure. The condensed ring structure formed at this time may be a saturated ring, an unsaturated ring or an aromatic ring, but is preferably a saturated ring or an aromatic ring.
Ring α and ring β may be monocyclic or have a condensed ring structure, but at least one of them is preferably monocyclic, and more preferably monocyclic.
≪一般式(2)で表される構造を有する化合物≫
上記一般式(1)で表される構造を有する化合物は、下記一般式(2)で表される構造を有する化合物であることが好ましい。 << Compound having structure represented by formula (2) >>
The compound having a structure represented by the general formula (1) is preferably a compound having a structure represented by the following general formula (2).
上記一般式(1)で表される構造を有する化合物は、下記一般式(2)で表される構造を有する化合物であることが好ましい。 << Compound having structure represented by formula (2) >>
The compound having a structure represented by the general formula (1) is preferably a compound having a structure represented by the following general formula (2).
一般式(2)中、環α、環β及びRは、一般式(1)における環α、環β及びRと同義である。mは、1~6の整数を表す。Lは、2価の連結基を表す。
In general formula (2), ring α, ring β, and R have the same meanings as ring α, ring β, and R in general formula (1). m represents an integer of 1 to 6. L represents a divalent linking group.
Lは、2価の連結基を表し、環αと環βとを連結するとともに、環α及び環βの一部と連結基Lで新たに環を形成する。
連結基としては、本発明の効果を阻害しない限りにおいて特に制限されるものではないが、例えば、アルキレン基、アルケニレン基、エーテル基、エステル基、カルボニル基、アミノ基、アミド基、シリル基、ホスフィンオキシド基、アリールアルキレン基、非芳香族複素環基、-O-、-S-、又はこれらを任意に組み合わせた連結基等が挙げられる。中でも、好ましくはアルキレン基、エーテル基、エステル基、カルボニル基、アミノ基、アミド基、シリル基、ホスフィンオキシド基であり、より好ましくはアルキレン基、エーテル基、エステル基、アミノ基、シリル基、ホスフィンオキシド基であり、更に好ましくはアルキレン基、エーテル基である。 L represents a divalent linking group, and connects ring α and ring β, and forms a new ring with ring α and part of ring β and linking group L.
The linking group is not particularly limited as long as the effects of the present invention are not impaired. For example, an alkylene group, an alkenylene group, an ether group, an ester group, a carbonyl group, an amino group, an amide group, a silyl group, and a phosphine Examples thereof include an oxide group, an arylalkylene group, a non-aromatic heterocyclic group, —O—, —S—, or a linking group in which these are arbitrarily combined. Among them, preferred are an alkylene group, an ether group, an ester group, a carbonyl group, an amino group, an amide group, a silyl group, and a phosphine oxide group, and more preferred are an alkylene group, an ether group, an ester group, an amino group, a silyl group, and a phosphine. An oxide group, more preferably an alkylene group or an ether group.
連結基としては、本発明の効果を阻害しない限りにおいて特に制限されるものではないが、例えば、アルキレン基、アルケニレン基、エーテル基、エステル基、カルボニル基、アミノ基、アミド基、シリル基、ホスフィンオキシド基、アリールアルキレン基、非芳香族複素環基、-O-、-S-、又はこれらを任意に組み合わせた連結基等が挙げられる。中でも、好ましくはアルキレン基、エーテル基、エステル基、カルボニル基、アミノ基、アミド基、シリル基、ホスフィンオキシド基であり、より好ましくはアルキレン基、エーテル基、エステル基、アミノ基、シリル基、ホスフィンオキシド基であり、更に好ましくはアルキレン基、エーテル基である。 L represents a divalent linking group, and connects ring α and ring β, and forms a new ring with ring α and part of ring β and linking group L.
The linking group is not particularly limited as long as the effects of the present invention are not impaired. For example, an alkylene group, an alkenylene group, an ether group, an ester group, a carbonyl group, an amino group, an amide group, a silyl group, and a phosphine Examples thereof include an oxide group, an arylalkylene group, a non-aromatic heterocyclic group, —O—, —S—, or a linking group in which these are arbitrarily combined. Among them, preferred are an alkylene group, an ether group, an ester group, a carbonyl group, an amino group, an amide group, a silyl group, and a phosphine oxide group, and more preferred are an alkylene group, an ether group, an ester group, an amino group, a silyl group, and a phosphine. An oxide group, more preferably an alkylene group or an ether group.
本発明に係る一般式(2)で表される構造を有する化合物の特徴は、前述のとおり、単結合による環αと環βとの連結に加え、連結基Lによる二つ目の連結を有し、環α、環β及び連結基Lを含む環で縮合環を形成することにある。このような構造式とすることで、一般式(1)で表される構造を有する化合物と比較して、更に高い励起三重項状態(T1)のエネルギーを有するとともに、化合物としての安定性を向上させることが可能であり、これにより、有機EL素子に用いた際、高い発光効率と耐久性との両立が可能となったものと考えている。
As described above, the compound having the structure represented by the general formula (2) according to the present invention has a second connection by the linking group L in addition to the connection between the ring α and the ring β by a single bond. And a condensed ring is formed by the ring including the ring α, the ring β, and the linking group L. By adopting such a structural formula, the compound has a higher excited triplet state (T 1 ) energy and stability as a compound as compared with the compound having the structure represented by the general formula (1). Thus, it is considered that, when used in an organic EL element, it is possible to achieve both high luminous efficiency and durability.
連結基Lにより新たに形成される環の員数については特に限定されないが、5~10員環であることが好ましく、6~8員環であることがより好ましく、7員環であることが更に好ましい。このような員数が好ましい理由は、環αと環βとの運動性を適度な範囲に調節することが可能となるためである。
また、連結基Lにより新たに形成される環は、不飽和環又は芳香族環のどちらでも特に限定されないが、不飽和環であることがより好ましい。 The number of rings newly formed by the linking group L is not particularly limited, but is preferably a 5- to 10-membered ring, more preferably a 6- to 8-membered ring, and further preferably a 7-membered ring. preferable. The reason why such a number is preferable is that the mobility of the ring α and the ring β can be adjusted to an appropriate range.
Further, the ring newly formed by the linking group L is not particularly limited to either an unsaturated ring or an aromatic ring, but is more preferably an unsaturated ring.
また、連結基Lにより新たに形成される環は、不飽和環又は芳香族環のどちらでも特に限定されないが、不飽和環であることがより好ましい。 The number of rings newly formed by the linking group L is not particularly limited, but is preferably a 5- to 10-membered ring, more preferably a 6- to 8-membered ring, and further preferably a 7-membered ring. preferable. The reason why such a number is preferable is that the mobility of the ring α and the ring β can be adjusted to an appropriate range.
Further, the ring newly formed by the linking group L is not particularly limited to either an unsaturated ring or an aromatic ring, but is more preferably an unsaturated ring.
mは、1~6の整数を表すが、1~4の整数であることが好ましく、1~3の整数であることがより好ましく、1又は2であることが更に好ましい。
M represents an integer of 1 to 6, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1 or 2.
以下に、31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物(例示化合物HP-1~HP-6)、及び一般式(1)又は(2)で表される構造を有する化合物の具体例(例示化合物H1-1~H1-35及びH2-1~H2-40)を挙げるが、本発明はこれらに限定されるものではない。
In the following, compounds having chemical shift values in the range of 40 to 48 ppm in 31 P-NMR spectrum (Exemplary Compounds HP-1 to HP-6) and structures represented by the general formula (1) or (2) are shown below. Specific examples of the compounds (Exemplary compounds H1-1 to H1-35 and H2-1 to H2-40) are given, but the present invention is not limited thereto.
本発明に係る一般式(1)及び(2)で表される構造を有する化合物は、特開2007-23101号公報、国際公開第2012/051667号、特許第5076891号公報、国際公開第2011/134013号等を参考にして合成することができる。
The compounds having the structure represented by the general formulas (1) and (2) according to the present invention are disclosed in JP2007-23101A, International Publication No. 2012/051667, Japanese Patent No. 50768891, International Publication No. 20111 /. It can be synthesized with reference to No. 134013 and the like.
本発明に係る一般式(1)及び(2)で表される構造を有する化合物は、正孔阻止材料、電子阻止材料、ホスト化合物として用いられることが好ましく、より好ましくはホスト化合物として用いられることである。
また、ホスト化合物として後述する公知のホスト化合物を併用することもできる。 The compound having the structure represented by the general formulas (1) and (2) according to the present invention is preferably used as a hole blocking material, an electron blocking material, or a host compound, more preferably used as a host compound. It is.
Moreover, the well-known host compound mentioned later can also be used together as a host compound.
また、ホスト化合物として後述する公知のホスト化合物を併用することもできる。 The compound having the structure represented by the general formulas (1) and (2) according to the present invention is preferably used as a hole blocking material, an electron blocking material, or a host compound, more preferably used as a host compound. It is.
Moreover, the well-known host compound mentioned later can also be used together as a host compound.
≪有機EL素子の構成層≫
本発明の有機EL素子の構成層について説明する。
本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。 ≪Component layer of organic EL element≫
The constituent layers of the organic EL element of the present invention will be described.
As typical element structures in the organic EL element of the present invention, the following structures can be exemplified, but the invention is not limited thereto.
本発明の有機EL素子の構成層について説明する。
本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。 ≪Component layer of organic EL element≫
The constituent layers of the organic EL element of the present invention will be described.
As typical element structures in the organic EL element of the present invention, the following structures can be exemplified, but the invention is not limited thereto.
(i)陽極/発光層/陰極
(ii)陽極/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/陰極
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極
(v)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(vi)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(vii)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極 (I) Anode / light emitting layer / cathode (ii) Anode / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / cathode (iv) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (v) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (vi) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( vii) Anode / hole injection layer / hole transport layer / (electron blocking layer /) luminescent layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode
(ii)陽極/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/陰極
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極
(v)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(vi)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(vii)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極 (I) Anode / light emitting layer / cathode (ii) Anode / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / cathode (iv) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (v) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (vi) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( vii) Anode / hole injection layer / hole transport layer / (electron blocking layer /) luminescent layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode
上記の中でも(vii)の構成が好ましく用いられるが、これに限定されるものではない。必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう。)や電子注入層(陰極バッファー層ともいう。)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう。)や正孔注入層(陽極バッファー層ともいう。)を設けてもよい。
電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、電子輸送層は、複数層で構成されていてもよい。
正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、正孔輸送層は、複数層で構成されていてもよい。
上記の代表的な素子構成において、陽極と陰極とを除いた層を「有機機能層」ともいう。 Among these, the configuration (vii) is preferably used, but is not limited thereto. If necessary, a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. An electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided therebetween.
The electron transport layer is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Further, the electron transport layer may be composed of a plurality of layers.
The hole transport layer is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer may be composed of a plurality of layers.
In the above-described typical element configuration, the layer excluding the anode and the cathode is also referred to as “organic functional layer”.
電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、電子輸送層は、複数層で構成されていてもよい。
正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、正孔輸送層は、複数層で構成されていてもよい。
上記の代表的な素子構成において、陽極と陰極とを除いた層を「有機機能層」ともいう。 Among these, the configuration (vii) is preferably used, but is not limited thereto. If necessary, a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. An electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided therebetween.
The electron transport layer is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Further, the electron transport layer may be composed of a plurality of layers.
The hole transport layer is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer may be composed of a plurality of layers.
In the above-described typical element configuration, the layer excluding the anode and the cathode is also referred to as “organic functional layer”.
≪タンデム構造≫
また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニット(有機機能層)を複数積層した、いわゆるタンデム構造の素子であってもよい。
タンデム構造の代表的な素子構成としては、例えば、以下の構成を挙げることができる。 ≪Tandem structure≫
The organic EL element of the present invention may be a so-called tandem structure element in which a plurality of light emitting units (organic functional layers) including at least one light emitting layer are stacked.
Examples of typical element configurations of the tandem structure include the following configurations.
また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニット(有機機能層)を複数積層した、いわゆるタンデム構造の素子であってもよい。
タンデム構造の代表的な素子構成としては、例えば、以下の構成を挙げることができる。 ≪Tandem structure≫
The organic EL element of the present invention may be a so-called tandem structure element in which a plurality of light emitting units (organic functional layers) including at least one light emitting layer are stacked.
Examples of typical element configurations of the tandem structure include the following configurations.
陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
Anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode
ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは、全て同じであっても、異なっていてもよい。また、二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
Here, the first light emitting unit, the second light emitting unit, and the third light emitting unit may all be the same or different. Further, the two light emitting units may be the same, and the remaining one may be different.
複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよい。
中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
中間層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO2、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO2、CuGaO2、SrCu2O2、LaB6、RuO2、Al等の導電性無機化合物層や、Au/Bi2O3等の2層膜や、SnO2/Ag/SnO2、ZnO/Ag/ZnO、Bi2O3/Au/Bi2O3、TiO2/TiN/TiO2、TiO2/ZrN/TiO2等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。 The plurality of light emitting units may be directly stacked or may be stacked via an intermediate layer.
The intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer. It has electrons in the adjacent layer on the anode side and holes in the adjacent layer on the cathode side. A known material structure can be used as long as the layer has a function of supplying.
Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , conductivity such as oligothiophene Examples include organic layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins and metal-free porphyrins. The present invention is not limited thereto.
中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
中間層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO2、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO2、CuGaO2、SrCu2O2、LaB6、RuO2、Al等の導電性無機化合物層や、Au/Bi2O3等の2層膜や、SnO2/Ag/SnO2、ZnO/Ag/ZnO、Bi2O3/Au/Bi2O3、TiO2/TiN/TiO2、TiO2/ZrN/TiO2等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。 The plurality of light emitting units may be directly stacked or may be stacked via an intermediate layer.
The intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer. It has electrons in the adjacent layer on the anode side and holes in the adjacent layer on the cathode side. A known material structure can be used as long as the layer has a function of supplying.
Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , conductivity such as oligothiophene Examples include organic layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins and metal-free porphyrins. The present invention is not limited thereto.
発光ユニット内の好ましい構成としては、例えば、上記の代表的な素子構成で挙げた(i)~(vii)の構成から、陽極と陰極とを除いたもの等が挙げられるが、本発明はこれらに限定されない。
Examples of a preferable configuration in the light emitting unit include those obtained by removing the anode and the cathode from the configurations (i) to (vii) mentioned in the above representative device configurations. It is not limited to.
タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A-2006-228712, JP-A-2006-24791, JP-A-2006-49393, JP-A-2006-49394 JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-3496868, JP-A-3848564, JP-A-4421169, No. 2010-192719, Special Elements described in JP2009-076929, JP2008-078414, JP2007-059848, JP2003-272860, JP2003-045676, International Publication No. 2005/094130, etc. Although a structure, a constituent material, etc. are mentioned, this invention is not limited to these.
以下、本発明の有機EL素子を構成する各層について説明する。
Hereinafter, each layer constituting the organic EL element of the present invention will be described.
≪発光層≫
本発明に係る発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲内に調整することが好ましく、より好ましくは2~500nmの範囲内に調整され、更に好ましくは5~200nmの範囲内に調整される。
また、本発明の個々の発光層の層厚としては、2nm~1μmの範囲内に調整することが好ましく、より好ましくは2~200nmの範囲内に調整され、更に好ましくは3~150nmの範囲内に調整される。
発光層には、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう)とを含有することが好ましい。 ≪Luminescent layer≫
The light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer. The structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
The total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color against the drive current. From the viewpoint, it is preferable to adjust within the range of 2 nm to 5 μm, more preferably within the range of 2 to 500 nm, and even more preferably within the range of 5 to 200 nm.
In addition, the thickness of each light emitting layer of the present invention is preferably adjusted within the range of 2 nm to 1 μm, more preferably adjusted within the range of 2 to 200 nm, and further preferably within the range of 3 to 150 nm. Adjusted to
The light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host).
本発明に係る発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲内に調整することが好ましく、より好ましくは2~500nmの範囲内に調整され、更に好ましくは5~200nmの範囲内に調整される。
また、本発明の個々の発光層の層厚としては、2nm~1μmの範囲内に調整することが好ましく、より好ましくは2~200nmの範囲内に調整され、更に好ましくは3~150nmの範囲内に調整される。
発光層には、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう)とを含有することが好ましい。 ≪Luminescent layer≫
The light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer. The structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
The total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color against the drive current. From the viewpoint, it is preferable to adjust within the range of 2 nm to 5 μm, more preferably within the range of 2 to 500 nm, and even more preferably within the range of 5 to 200 nm.
In addition, the thickness of each light emitting layer of the present invention is preferably adjusted within the range of 2 nm to 1 μm, more preferably adjusted within the range of 2 to 200 nm, and further preferably within the range of 3 to 150 nm. Adjusted to
The light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host).
≪発光性ドーパント≫
発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう。)と、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう。)が好ましく用いられる。本発明においては、少なくとも1層の発光層がリン光発光ドーパントを含有することが好ましい。
発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
また、発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 ≪Luminescent dopant≫
As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent dopant or a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound) are preferably used. In the present invention, it is preferable that at least one light emitting layer contains a phosphorescent light emitting dopant.
The concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the thickness direction of the luminescent layer. It may also have an arbitrary concentration distribution.
In addition, a plurality of kinds of light emitting dopants may be used in combination, or a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant may be used. Thereby, arbitrary luminescent colors can be obtained.
The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 onpage 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう。)と、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう。)が好ましく用いられる。本発明においては、少なくとも1層の発光層がリン光発光ドーパントを含有することが好ましい。
発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
また、発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 ≪Luminescent dopant≫
As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent dopant or a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound) are preferably used. In the present invention, it is preferable that at least one light emitting layer contains a phosphorescent light emitting dopant.
The concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the thickness direction of the luminescent layer. It may also have an arbitrary concentration distribution.
In addition, a plurality of kinds of light emitting dopants may be used in combination, or a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant may be used. Thereby, arbitrary luminescent colors can be obtained.
The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on
本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば、青と橙や、青と緑と赤の組み合わせ等が挙げられる。
本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/m2でのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。 In the present invention, it is also preferable that the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different emission colors and emits white light.
There are no particular limitations on the combination of the light-emitting dopants that exhibit white, and examples include blue and orange, and a combination of blue, green, and red.
The white color in the organic EL device of the present invention means that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is x = 0.39 ± 0.09 when the 2 ° viewing angle front luminance is measured by the method described above. Y = 0.38 ± 0.08.
白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば、青と橙や、青と緑と赤の組み合わせ等が挙げられる。
本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/m2でのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。 In the present invention, it is also preferable that the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different emission colors and emits white light.
There are no particular limitations on the combination of the light-emitting dopants that exhibit white, and examples include blue and orange, and a combination of blue, green, and red.
The white color in the organic EL device of the present invention means that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is x = 0.39 ± 0.09 when the 2 ° viewing angle front luminance is measured by the method described above. Y = 0.38 ± 0.08.
(1.1)蛍光発光性ドーパント
本発明に係る蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう。)について説明する。
蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。 (1.1) Fluorescent Luminescent Dopant The fluorescent luminescent dopant according to the present invention (hereinafter also referred to as “fluorescent dopant”) will be described.
The fluorescent dopant is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
Examples of the fluorescent dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, pyran derivatives, Examples include cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, and rare earth complex compounds.
本発明に係る蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう。)について説明する。
蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。 (1.1) Fluorescent Luminescent Dopant The fluorescent luminescent dopant according to the present invention (hereinafter also referred to as “fluorescent dopant”) will be described.
The fluorescent dopant is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
Examples of the fluorescent dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, pyran derivatives, Examples include cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, and rare earth complex compounds.
また、本発明の有機EL素子においては、電気的励起での内部量子効率が50%以上である蛍光発光性化合物を含有することも好ましい。
通常、有機EL素子に電界をかけると、陽極と陰極からそれぞれ正孔と電子とが注入され、発光層において再結合し励起子を生じる。このとき、一重項励起子と三重項励起子とが25%:75%の割合で生成するため、蛍光発光は最高25%の効率しか得られないことが知られている(例えば、「照明に向けた燐光有機EL技術の開発」応用物理 第80巻、第4号、2011年)。 In addition, the organic EL device of the present invention preferably contains a fluorescent compound having an internal quantum efficiency of 50% or more by electrical excitation.
Normally, when an electric field is applied to the organic EL element, holes and electrons are injected from the anode and the cathode, respectively, and recombine in the light emitting layer to generate excitons. At this time, since singlet excitons and triplet excitons are generated at a ratio of 25%: 75%, it is known that fluorescence emission can only have an efficiency of up to 25% (for example, “for illumination” Development of Phosphorescent Organic EL Technology for Applied Physics, Vol. 80, No. 4, 2011).
通常、有機EL素子に電界をかけると、陽極と陰極からそれぞれ正孔と電子とが注入され、発光層において再結合し励起子を生じる。このとき、一重項励起子と三重項励起子とが25%:75%の割合で生成するため、蛍光発光は最高25%の効率しか得られないことが知られている(例えば、「照明に向けた燐光有機EL技術の開発」応用物理 第80巻、第4号、2011年)。 In addition, the organic EL device of the present invention preferably contains a fluorescent compound having an internal quantum efficiency of 50% or more by electrical excitation.
Normally, when an electric field is applied to the organic EL element, holes and electrons are injected from the anode and the cathode, respectively, and recombine in the light emitting layer to generate excitons. At this time, since singlet excitons and triplet excitons are generated at a ratio of 25%: 75%, it is known that fluorescence emission can only have an efficiency of up to 25% (for example, “for illumination” Development of Phosphorescent Organic EL Technology for Applied Physics, Vol. 80, No. 4, 2011).
しかし、蛍光発光型においても発光効率を向上させるために様々な開発がなされており、二つの三重項励起子の衝突により一重項励起子が生成する現象(以下、Triplet-Triplet Annihilation:以下、適宜「TTA」と略記する。また、Triplet-Triplet Fusion:「TTF」ともいう。)に着目し、TTAを効率的に起こして蛍光素子の高効率化を図る技術などが開発され、その電力効率は従来の蛍光発光材料の2~3倍まで向上している。
However, various developments have been made to improve the light emission efficiency even in the fluorescence emission type, and a phenomenon in which singlet excitons are generated by collision of two triplet excitons (hereinafter referred to as Triplet-Triple Annihilation: hereinafter, as appropriate). Focusing on Triplet-Triplet Fusion (also referred to as “TTF”), a technology that efficiently raises TTA to increase the efficiency of fluorescent elements has been developed. It is improved to 2 to 3 times that of conventional fluorescent materials.
さらに、近年では、励起一重項状態(S1)のエネルギーと励起三重項状態(T1)のエネルギーの差(ΔEst)が小さい材料(図1では、ΔEst(TADF)がΔEst(F)よりも小さい。)を用いた場合に、三重項励起子から一重項励起子への逆項間交差が生じる現象を利用した発光機構を利用した熱活性化型遅延蛍光(「熱励起型遅延蛍光」ともいう:Thermally Activated Delayed Fluorescence:以下、適宜「TADF」と略記する。)の、有機EL素子への利用の可能性が報告されており(例えば、有機EL討論会 第10回例会予稿集 p11-12,2010)、このTADF機構による遅延蛍光を利用すると、蛍光発光においても、理論的には100%の内部量子効率が可能となると考えられている。
Further, in recent years, a material having a small difference (ΔEst) between the energy of the excited singlet state (S 1 ) and the excited triplet state (T 1 ) (in FIG. 1, ΔEst (TADF) is smaller than ΔEst (F). Is small). Thermally activated delayed fluorescence (also called “thermally excited delayed fluorescence”) using a light-emitting mechanism that utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs. Say: Thermally Activated Delayed Fluorescence (hereinafter abbreviated as “TADF” where appropriate) has been reported for use in organic EL devices (for example, Proceedings of the 10th Annual Meeting of the Organic EL Discussion P11-12) , 2010), the use of delayed fluorescence by this TADF mechanism enables theoretically 100% internal quantum efficiency even in fluorescence emission. It is believed that.
電気的励起での内部量子効率が50%以上である蛍光発光性化合物を用いるとは、このようなTTAやTADFを利用した蛍光発光型のドーパントを用いることである。蛍光発光型のドーパントを用いることで、効率が向上することはもちろんであるが、これらのドーパントと、本発明中のホスト化合物とを組み合わせることで、これらの現象における二つの三重項励起子の衝突や、三重項励起子から一重項励起子への逆項間交差が更に生じやすくなると考えられる。遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
The use of a fluorescent compound having an internal quantum efficiency of 50% or more by electrical excitation is to use a fluorescent dopant using such TTA or TADF. Of course, the use of fluorescent emission-type dopants improves the efficiency. By combining these dopants with the host compound in the present invention, collision of two triplet excitons in these phenomena. In addition, it is considered that reverse intersystem crossing from triplet excitons to singlet excitons is more likely to occur. Specific examples of the luminescent dopant using delayed fluorescence include, for example, compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.
以下に、本発明において好適に用いられる蛍光光発光性化合物(蛍光光発光性ドーパント)の具体例(F-1~F-20)を示す。
Specific examples (F-1 to F-20) of fluorescent light emitting compounds (fluorescent light emitting dopants) preferably used in the present invention are shown below.
(1.2)リン光発光性ドーパント
本発明において好適に用いられるリン光発光性化合物(リン光発光性ドーパント)について説明する。
本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 (1.2) Phosphorescence-emitting dopant The phosphorescence-emitting compound (phosphorescence-emitting dopant) suitably used in the present invention will be described.
The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
本発明において好適に用いられるリン光発光性化合物(リン光発光性ドーパント)について説明する。
本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 (1.2) Phosphorescence-emitting dopant The phosphorescence-emitting compound (phosphorescence-emitting dopant) suitably used in the present invention will be described.
The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
リン光ドーパントの発光原理としては、2種挙げられる。
一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。
もう一つは、リン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。
いずれの場合においても、リン光ドーパントの励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of emission principles of the phosphorescent dopant.
One is that the recombination of the carrier occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant to obtain light emission from the phosphorescent dopant. It is mobile.
The other is a carrier trap type in which the phosphorescent dopant becomes a carrier trap, and recombination of carriers occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained.
In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。
もう一つは、リン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。
いずれの場合においても、リン光ドーパントの励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of emission principles of the phosphorescent dopant.
One is that the recombination of the carrier occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant to obtain light emission from the phosphorescent dopant. It is mobile.
The other is a carrier trap type in which the phosphorescent dopant becomes a carrier trap, and recombination of carriers occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained.
In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
例えば、Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg. Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、特開2012-069737号公報、特願2011-181303号、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
For example, Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Application Publication No. 2009/0108737, US Patent Application Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Application Publication No. 2007/0190359. Specification, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. No. 7396598 , U.S. Patent Application Publication No. 2006/0263635, U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. Description, US Pat. No. 7,534,505, US Pat. No. 7,445,855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Pat. No. 7,338,722 , US special Published Patent Application No. 2002/0134984, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/098120, U.S. Patent Application Publication No. 2006/103874, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, Japanese Patent Application Laid-Open No. 2012-069737, Japanese Patent Application No. 2011 -18 303 No., a JP 2009-114086, JP 2003-81988, JP 2002-302671, JP 2002-363552 Patent Publication.
本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
例えば、Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg. Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、特開2012-069737号公報、特願2011-181303号、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
For example, Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Application Publication No. 2009/0108737, US Patent Application Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Application Publication No. 2007/0190359. Specification, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. No. 7396598 , U.S. Patent Application Publication No. 2006/0263635, U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. Description, US Pat. No. 7,534,505, US Pat. No. 7,445,855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Pat. No. 7,338,722 , US special Published Patent Application No. 2002/0134984, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/098120, U.S. Patent Application Publication No. 2006/103874, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, Japanese Patent Application Laid-Open No. 2012-069737, Japanese Patent Application No. 2011 -18 303 No., a JP 2009-114086, JP 2003-81988, JP 2002-302671, JP 2002-363552 Patent Publication.
中でも、好ましいリン光ドーパントとしては、イリジウム(Ir)を中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
Among them, a preferable phosphorescent dopant includes an organometallic complex having iridium (Ir) as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
特に、本発明において好適に用いられるリン光ドーパントは、下記一般式(DP)で表される構造を有する。
Particularly, the phosphorescent dopant preferably used in the present invention has a structure represented by the following general formula (DP).
一般式(DP)中、Mは、Ir、Pt、Rh、Ru、Ag、Cu又はOsを表す。A1、A2、B1及びB2は、それぞれ独立に、炭素原子又は窒素原子を表す。環Z1は、A1及びA2とともに形成される6員の芳香族炭化水素環、又は5員若しくは6員の芳香族複素環を表す。環Z2は、B1及びB2とともに形成される5員又は6員の芳香族複素環を表す。L′は、Mに配位したモノアニオン性の二座配位子を表す。m′は、0~2の整数を表し、n′は1~3の整数を表すが、m′+n′は2又は3である。m′又はn′が2以上のとき、環Z1若しくは環Z2で表される配位子又はL′は、各々同じでも異なっていてもよい。
In General Formula (DP), M represents Ir, Pt, Rh, Ru, Ag, Cu, or Os. A 1 , A 2 , B 1 and B 2 each independently represent a carbon atom or a nitrogen atom. Ring Z 1 represents a 6-membered aromatic hydrocarbon ring formed together with A 1 and A 2 or a 5-membered or 6-membered aromatic heterocycle. Ring Z 2 represents a 5-membered or 6-membered aromatic heterocycle formed together with B 1 and B 2 . L ′ represents a monoanionic bidentate ligand coordinated to M. m ′ represents an integer of 0 to 2, n ′ represents an integer of 1 to 3, and m ′ + n ′ is 2 or 3. When m ′ or n ′ is 2 or more, the ligands or L ′ represented by ring Z 1 or ring Z 2 may be the same or different.
Mは、Ir、Pt、Rh、Ru、Ag、Cu又はOsを表すが、Ir、Pt、Rh、Ru又はOsであることが好ましく、Ir、Pt又はOsであることがより好ましい。
M represents Ir, Pt, Rh, Ru, Ag, Cu, or Os, preferably Ir, Pt, Rh, Ru, or Os, and more preferably Ir, Pt, or Os.
環Z2は、5員の芳香族複素環であることが好ましく、B1及びB2の少なくとも一方が窒素原子であることが好ましい。
Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
環Z1及び環Z2は置換基を有していてもよく、置換基としては、一般式(1)における環α、環βが有してもよい置換基と同様の置換基が挙げられる。また、環Z1及び環Z2における置換基は、更にそれら置換基同士が結合して縮環構造を形成していてもよい。
また、各々の配位子の置換基が互いに結合して、配位子同士が連結していてもよい。 Ring Z 1 and ring Z 2 may have a substituent, and examples of the substituent include the same substituents as the substituents that the ring α and ring β in the general formula (1) may have. . Moreover, the substituents in the ring Z 1 and the ring Z 2 may further be bonded to each other to form a condensed ring structure.
Moreover, the substituent of each ligand may mutually couple | bond together and the ligands may connect.
また、各々の配位子の置換基が互いに結合して、配位子同士が連結していてもよい。 Ring Z 1 and ring Z 2 may have a substituent, and examples of the substituent include the same substituents as the substituents that the ring α and ring β in the general formula (1) may have. . Moreover, the substituents in the ring Z 1 and the ring Z 2 may further be bonded to each other to form a condensed ring structure.
Moreover, the substituent of each ligand may mutually couple | bond together and the ligands may connect.
上記一般式(DP)で表される構造を有するリン光ドーパントは、下記一般式(DP-1)又は(DP-2)で表される構造を有するリン光ドーパントであることが好ましい。
The phosphorescent dopant having a structure represented by the above general formula (DP) is preferably a phosphorescent dopant having a structure represented by the following general formula (DP-1) or (DP-2).
一般式(DP-1)中、M、A1、A2、B1、B2、環Z1、L′、m′及びn′は、一般式(DP)におけるM、A1、A2、B1、B2、環Z1、L′、m′及びn′と同義である。B3~B5は、B1及びB2とともに芳香族複素環を形成する原子群であり、置換基を有していてもよい炭素原子、窒素原子、酸素原子又は硫黄原子を表す。
In general formula (DP-1), M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′ are M, A 1 , A 2 in general formula (DP). , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′. B 3 to B 5 are an atomic group that forms an aromatic heterocyclic ring together with B 1 and B 2 , and each represents an optionally substituted carbon atom, nitrogen atom, oxygen atom, or sulfur atom.
B3~B5が有してもよい置換基としては、一般式(DP)における環Z1及び環Z2が有してもよい置換基と同様の置換基が挙げられる。
Examples of the substituent that B 3 to B 5 may have include the same substituents as the substituents that the ring Z 1 and ring Z 2 in the general formula (DP) may have.
一般式(DP-1)におけるB1~B5で形成される芳香族複素環は、下記一般式(DP-1a)、(DP-1b)又は(DP-1c)のいずれかで表されることが好ましく、一般式(DP-1c)で表されることがより好ましい。
The aromatic heterocycle formed by B 1 to B 5 in the general formula (DP-1) is represented by any of the following general formulas (DP-1a), (DP-1b), or (DP-1c) And is more preferably represented by the general formula (DP-1c).
一般式(DP-1a)、(DP-1b)及び(DP-1c)中、*1はA2との結合部位を表し、*2はMとの結合部位を表す。Rb3~Rb5は、水素原子又は置換基を表す。一般式(DP-1a)におけるB4及びB5は、それぞれ独立に、炭素原子又は窒素原子を表す。一般式(DP-1c)におけるB3及びB4は、それぞれ独立に、炭素原子又は窒素原子を表す。
In the general formulas (DP-1a), (DP-1b), and (DP-1c), * 1 represents a binding site with A 2 and * 2 represents a binding site with M. Rb 3 to Rb 5 represent a hydrogen atom or a substituent. B 4 and B 5 in the general formula (DP-1a) each independently represent a carbon atom or a nitrogen atom. B 3 and B 4 in the general formula (DP-1c) each independently represent a carbon atom or a nitrogen atom.
Rb3~Rb5で表される置換基としては、一般式(DP)における環Z1及び環Z2が有してもよい置換基と同様の置換基が挙げられる。
Examples of the substituent represented by Rb 3 to Rb 5 include the same substituents as the substituents that the ring Z 1 and the ring Z 2 in the general formula (DP) may have.
一般式(DP-1a)におけるB4及びB5は、それぞれ独立に、炭素原子又は窒素原子を表すが、少なくとも一つが炭素原子であることが好ましい。
B 4 and B 5 in the general formula (DP-1a) each independently represent a carbon atom or a nitrogen atom, but preferably at least one is a carbon atom.
一般式(DP-1c)におけるB3及びB4は、それぞれ独立に、炭素原子又は窒素原子を表すが、少なくとも一つが炭素原子であり、Rb3とRb4とで表される置換基が更に互いに結合して縮環構造を形成していることが好ましい。このとき、新たに形成される縮環構造は、芳香族環であることが好ましく、ベンゾイミダゾール環、イミダゾピリジン環、イミダゾピラジン環又はプリン環のいずれかであることがより好ましい。
B 3 and B 4 in the general formula (DP-1c) each independently represent a carbon atom or a nitrogen atom, but at least one is a carbon atom, and a substituent represented by Rb 3 and Rb 4 is further It is preferable that they are bonded to each other to form a condensed ring structure. In this case, the newly formed condensed ring structure is preferably an aromatic ring, and more preferably any one of a benzimidazole ring, an imidazopyridine ring, an imidazopyrazine ring, and a purine ring.
Rb5は、アルキル基又はアリール基であることが好ましく、フェニル基であることがより好ましい。
Rb 5 is preferably an alkyl group or an aryl group, and more preferably a phenyl group.
一般式(DP-2)中、M、A1、A2、B1、B2、環Z1、L′、m′及びn′は、一般式(DP)におけるM、A1、A2、B1、B2、環Z1、L′、m′及びn′と同義である。環Z2は、B1~B3とともに形成される5員の芳香族複素環を表す。A3及びB3は、それぞれ独立に、炭素原子又は窒素原子を表す。L″は、2価の連結基を表す。
In general formula (DP-2), M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′ are M, A 1 , A 2 in general formula (DP). , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′. Ring Z 2 represents a 5-membered aromatic heterocycle formed together with B 1 to B 3 . A 3 and B 3 each independently represents a carbon atom or a nitrogen atom. L ″ represents a divalent linking group.
L″で表される2価の連結基としては、例えば、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、2価の複素環基、-O-、-S-、又はこれらを任意に組み合わせた連結基等が挙げられる。
Examples of the divalent linking group represented by L ″ include an alkylene group, an alkenylene group, an arylene group, a heteroarylene group, a divalent heterocyclic group, —O—, —S—, or any combination thereof. Linking groups and the like.
上記一般式(DP-2)で表される構造を有するリン光ドーパントは、下記一般式(DP-2a)で表される構造を有するリン光ドーパントであることが好ましい。
The phosphorescent dopant having a structure represented by the general formula (DP-2) is preferably a phosphorescent dopant having a structure represented by the following general formula (DP-2a).
一般式(DP-2a)中、M、A1、A2、B1、B2、環Z1、環Z2、L′、m′及びn′は、一般式(DP-2)におけるM、A1、A2、B1、B2、環Z1、環Z2、L′、m′及びn′と同義である。L″1及びL″2は、それぞれ独立に、C-Rb6又は窒素原子を表す。Rb6は、水素原子又は置換基を表す。
In general formula (DP-2a), M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , ring Z 2 , L ′, m ′ and n ′ are M in general formula (DP-2). , A 1 , A 2 , B 1 , B 2 , ring Z 1 , ring Z 2 , L ′, m ′ and n ′. L ″ 1 and L ″ 2 each independently represent C—Rb 6 or a nitrogen atom. Rb 6 represents a hydrogen atom or a substituent.
Rb6で表される置換基としては、一般式(DP)における環Z1及び環Z2が有してもよい置換基と同様の置換基が挙げられる。
Examples of the substituent represented by Rb 6 include the same substituents as the substituents that the ring Z 1 and the ring Z 2 in the general formula (DP) may have.
L″1及びL″2がともにC-Rb6を表す場合、Rb6同士が互いに結合して環を形成してもよい。
When L ″ 1 and L ″ 2 both represent C—Rb 6 , Rb 6 may be bonded to each other to form a ring.
一般式(DP)、(DP-1)、(DP-2)及び(DP-2a)において、A2が炭素原子であることが好ましく、更にA1が炭素原子であることがより好ましい。更に好ましくは環Z1が、置換又は無置換のベンゼン環又はピリジン環であり、特に好ましくはベンゼン環である。
In the general formulas (DP), (DP-1), (DP-2), and (DP-2a), A 2 is preferably a carbon atom, and more preferably A 1 is a carbon atom. More preferably, the ring Z 1 is a substituted or unsubstituted benzene ring or pyridine ring, and particularly preferably a benzene ring.
ここで、本発明に使用できるリン光ドーパントの具体例(D-1~D-82)を挙げるが、本発明はこれらに限定されない。
Here, specific examples (D-1 to D-82) of phosphorescent dopants that can be used in the present invention are listed, but the present invention is not limited thereto.
(2)ホスト化合物
本発明に係るホスト化合物は、発光層において、主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、更に好ましくはリン光量子収率が0.01未満の化合物である。
また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
また、ホスト化合物の励起状態のエネルギーは、同一層内に含有される発光ドーパントの励起状態のエネルギーよりも高いことが好ましい。
ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。 (2) Host Compound The host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and light emission of itself is not substantially observed in the organic EL device.
Preferably, it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01.
Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
The excited state energy of the host compound is preferably higher than the excited state energy of the light-emitting dopant contained in the same layer.
A host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
本発明に係るホスト化合物は、発光層において、主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、更に好ましくはリン光量子収率が0.01未満の化合物である。
また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
また、ホスト化合物の励起状態のエネルギーは、同一層内に含有される発光ドーパントの励起状態のエネルギーよりも高いことが好ましい。
ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。 (2) Host Compound The host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and light emission of itself is not substantially observed in the organic EL device.
Preferably, it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01.
Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
The excited state energy of the host compound is preferably higher than the excited state energy of the light-emitting dopant contained in the same layer.
A host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
本発明で用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができるが、一般式(1)又は(2)で表される構造を有する化合物であることが好ましい。また、低分子化合物でも繰り返し単位を有する高分子化合物でもよいし、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、更に、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS K 7121に準拠した方法により求められる値である。 There is no restriction | limiting in particular as a host compound which can be used by this invention, Although the compound conventionally used with an organic EL element can be used, It is a compound which has a structure represented by General formula (1) or (2). Preferably there is. Further, it may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
As a known host compound, while having a hole transporting ability or an electron transporting ability, it is possible to prevent the emission of light from being long-wavelength, and furthermore, the organic EL element is stable against heat generation during driving at a high temperature or during driving of the element. From the viewpoint of operating, it is preferable to have a high glass transition temperature (Tg). Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
Here, the glass transition point (Tg) is a value obtained by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、更に、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS K 7121に準拠した方法により求められる値である。 There is no restriction | limiting in particular as a host compound which can be used by this invention, Although the compound conventionally used with an organic EL element can be used, It is a compound which has a structure represented by General formula (1) or (2). Preferably there is. Further, it may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
As a known host compound, while having a hole transporting ability or an electron transporting ability, it is possible to prevent the emission of light from being long-wavelength, and furthermore, the organic EL element is stable against heat generation during driving at a high temperature or during driving of the element. From the viewpoint of operating, it is preferable to have a high glass transition temperature (Tg). Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
Here, the glass transition point (Tg) is a value obtained by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
本発明の有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等である。 Specific examples of known host compounds used in the organic EL device of the present invention include compounds described in the following documents, but the present invention is not limited thereto.
For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, No. 2003/0175553, No. 2006/0280965. US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0017330, US Patent Application Publication No. 2009/0030202, US Patent Application Publication No. 2005/0238919 ,Country Public Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/063796, International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898, International Publication No. 2012/0038 / No. 023947, Japanese Patent Application Laid-Open No. 2008-0749939, Japanese Patent Application Laid-Open No. 2007-254297, European Patent No. 2034538, and the like.
例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等である。 Specific examples of known host compounds used in the organic EL device of the present invention include compounds described in the following documents, but the present invention is not limited thereto.
For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, No. 2003/0175553, No. 2006/0280965. US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0017330, US Patent Application Publication No. 2009/0030202, US Patent Application Publication No. 2005/0238919 ,Country Public Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/063796, International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898, International Publication No. 2012/0038 / No. 023947, Japanese Patent Application Laid-Open No. 2008-0749939, Japanese Patent Application Laid-Open No. 2007-254297, European Patent No. 2034538, and the like.
≪電子輸送層≫
本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
本発明の電子輸送層の総層厚については特に制限はないが、通常は2nm~5μmの範囲内であり、より好ましくは2~500nmであり、更に好ましくは5~200nmである。 ≪Electron transport layer≫
In the present invention, the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
The total thickness of the electron transport layer of the present invention is not particularly limited, but is usually in the range of 2 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
本発明の電子輸送層の総層厚については特に制限はないが、通常は2nm~5μmの範囲内であり、より好ましくは2~500nmであり、更に好ましくは5~200nmである。 ≪Electron transport layer≫
In the present invention, the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
The total thickness of the electron transport layer of the present invention is not particularly limited, but is usually in the range of 2 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
また、有機EL素子においては、発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は1×10-5cm2/Vs以上であることが好ましい。 Also, in the organic EL element, when light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to cause. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between several nanometers and several micrometers.
On the other hand, since the voltage tends to increase when the thickness of the electron transport layer is increased, the electron mobility of the electron transport layer is 1 × 10 −5 cm 2 / Vs or more, particularly when the layer thickness is large. Is preferred.
一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は1×10-5cm2/Vs以上であることが好ましい。 Also, in the organic EL element, when light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to cause. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between several nanometers and several micrometers.
On the other hand, since the voltage tends to increase when the thickness of the electron transport layer is increased, the electron mobility of the electron transport layer is 1 × 10 −5 cm 2 / Vs or more, particularly when the layer thickness is large. Is preferred.
電子輸送層に用いられる材料(以下、電子輸送材料という。)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。 The material used for the electron transport layer (hereinafter referred to as an electron transport material) may have any of an electron injecting property, a transporting property, and a hole blocking property. Any one can be selected and used.
For example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.).
例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。 The material used for the electron transport layer (hereinafter referred to as an electron transport material) may have any of an electron injecting property, a transporting property, and a hole blocking property. Any one can be selected and used.
For example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.).
また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
In addition, a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand, such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and their metal complexes A metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料としても用いられるジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In addition, metal-free or metal phthalocyanine, or those in which the terminal thereof is substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. Further, a distyrylpyrazine derivative used as a material for the light-emitting layer can also be used as an electron transport material, and an inorganic material such as n-type-Si, n-type-SiC, etc., like the hole injection layer and the hole transport layer. A semiconductor can also be used as an electron transport material.
Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In addition, metal-free or metal phthalocyanine, or those in which the terminal thereof is substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. Further, a distyrylpyrazine derivative used as a material for the light-emitting layer can also be used as an electron transport material, and an inorganic material such as n-type-Si, n-type-SiC, etc., like the hole injection layer and the hole transport layer. A semiconductor can also be used as an electron transport material.
Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
本発明における電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
In the electron transport layer in the present invention, a high n-type (electron rich) electron transport layer may be formed by doping a dopant into the electron transport layer as a guest material. Examples of the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
例えば、米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。 Specific examples of known preferable electron transport materials used in the organic EL device of the present invention include compounds described in the following documents, but the present invention is not limited thereto.
For example, US Pat. No. 6,528,187, US Pat. No. 7,230,107, US Patent Application Publication No. 2005/0025993, US Patent Application Publication No. 2004/0036077, US Patent Application Publication No. 2009/0115316. No., U.S. Patent Application Publication No. 2009/0101870, U.S. Patent Application Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/132805, Appl. Phys. Lett. 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), U.S. Patent No. 7964293, U.S. Patent Application Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387. , International Publication No. 2006/067931, International Publication No. 2007/085652, International Publication No. 2008/114690, International Publication No. 2009/066942, International Publication No. 2009/066779, International Publication No. 2009/054253, International Publication No. Japanese Patent Publication No. 2011-086935, International Publication No. 2010/150593, International Publication No. 2010/047707, European Patent No. 2311826, Japanese Unexamined Patent Publication No. 2010-251675, Japanese Unexamined Patent Publication No. 2009-209133, Japanese Unexamined Patent Publication No. 2009. -1241 No. 4, JP 2008-277810 A, JP 2006-156445 A, JP 2005-340122 A, JP 2003-45662 A, JP 2003-31367 A, JP 2003-282270 A. Gazette, International Publication No. 2012/115034, and the like.
例えば、米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。 Specific examples of known preferable electron transport materials used in the organic EL device of the present invention include compounds described in the following documents, but the present invention is not limited thereto.
For example, US Pat. No. 6,528,187, US Pat. No. 7,230,107, US Patent Application Publication No. 2005/0025993, US Patent Application Publication No. 2004/0036077, US Patent Application Publication No. 2009/0115316. No., U.S. Patent Application Publication No. 2009/0101870, U.S. Patent Application Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/132805, Appl. Phys. Lett. 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), U.S. Patent No. 7964293, U.S. Patent Application Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387. , International Publication No. 2006/067931, International Publication No. 2007/085652, International Publication No. 2008/114690, International Publication No. 2009/066942, International Publication No. 2009/066779, International Publication No. 2009/054253, International Publication No. Japanese Patent Publication No. 2011-086935, International Publication No. 2010/150593, International Publication No. 2010/047707, European Patent No. 2311826, Japanese Unexamined Patent Publication No. 2010-251675, Japanese Unexamined Patent Publication No. 2009-209133, Japanese Unexamined Patent Publication No. 2009. -1241 No. 4, JP 2008-277810 A, JP 2006-156445 A, JP 2005-340122 A, JP 2003-45662 A, JP 2003-31367 A, JP 2003-282270 A. Gazette, International Publication No. 2012/115034, and the like.
本発明におけるより好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
More preferable electron transport materials in the present invention include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
The electron transport material may be used alone or in combination of two or more.
≪正孔阻止層≫
正孔阻止層とは、広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述の電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、より好ましくは5~30nmの範囲内である。
正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。 ≪Hole blocking layer≫
The hole blocking layer is a layer having the function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
Moreover, the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer as needed.
The hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
The thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
As a material used for a hole-blocking layer, the material used for the above-mentioned electron carrying layer is used preferably, and the material used as the above-mentioned host compound is also preferably used for a hole-blocking layer.
正孔阻止層とは、広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述の電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、より好ましくは5~30nmの範囲内である。
正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。 ≪Hole blocking layer≫
The hole blocking layer is a layer having the function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
Moreover, the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer as needed.
The hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
The thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
As a material used for a hole-blocking layer, the material used for the above-mentioned electron carrying layer is used preferably, and the material used as the above-mentioned host compound is also preferably used for a hole-blocking layer.
≪電子注入層≫
電子注入層(「陰極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
本発明において、電子注入層は必要に応じて設け、上記のように陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
電子注入層は、ごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1~5nmの範囲内が好ましい。また、構成材料が断続的に存在する不均一な膜であってもよい。
電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
また、上記の電子注入層に用いられる材料は、単独で用いてもよく、複数種を併用して用いてもよい。 ≪Electron injection layer≫
An electron injection layer (also referred to as a “cathode buffer layer”) is a layer provided between a cathode and a light emitting layer to reduce driving voltage or improve light emission luminance. (November 30, 1998, issued by NTS Corporation) ”,Volume 2, Chapter 2,“ Electrode Materials ”(pages 123-166).
In the present invention, the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
The electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm, depending on the material. Moreover, the nonuniform film | membrane in which a constituent material exists intermittently may be sufficient.
Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used.
Moreover, the material used for said electron injection layer may be used independently, and may be used in combination of multiple types.
電子注入層(「陰極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
本発明において、電子注入層は必要に応じて設け、上記のように陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
電子注入層は、ごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1~5nmの範囲内が好ましい。また、構成材料が断続的に存在する不均一な膜であってもよい。
電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
また、上記の電子注入層に用いられる材料は、単独で用いてもよく、複数種を併用して用いてもよい。 ≪Electron injection layer≫
An electron injection layer (also referred to as a “cathode buffer layer”) is a layer provided between a cathode and a light emitting layer to reduce driving voltage or improve light emission luminance. (November 30, 1998, issued by NTS Corporation) ”,
In the present invention, the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
The electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm, depending on the material. Moreover, the nonuniform film | membrane in which a constituent material exists intermittently may be sufficient.
Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used.
Moreover, the material used for said electron injection layer may be used independently, and may be used in combination of multiple types.
≪正孔輸送層≫
本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
本発明の正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲内であり、より好ましくは2~500nmであり、更に好ましくは5~200nmである。 ≪Hole transport layer≫
In the present invention, the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
The total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
本発明の正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲内であり、より好ましくは2~500nmであり、更に好ましくは5~200nmである。 ≪Hole transport layer≫
In the present invention, the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
The total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 As a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.).
Examples of the triarylamine derivative include a benzidine type typified by α-NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 As a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.).
Examples of the triarylamine derivative include a benzidine type typified by α-NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
さらに、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらに、Ir(ppy)3に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。 Furthermore, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like.
JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as a central metal as typified by Ir (ppy) 3 are also preferably used.
また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらに、Ir(ppy)3に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。 Furthermore, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like.
JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as a central metal as typified by Ir (ppy) 3 are also preferably used.
正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
Although the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain. The polymer materials or oligomers used are preferably used.
本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願公開第2013/585981号明細書等である。 Specific examples of known preferred hole transport materials used in the organic EL device of the present invention include the compounds described in the following documents in addition to the documents listed above, but the present invention is not limited thereto. Not.
For example, Appl. Phys. Lett. 69, 2160 (1996), J. MoI. Lumin. 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater. Chem. 3,319 (1993), Adv. Mater. 6, 677 (1994), Chem. Mater. 15, 3148 (2003), U.S. Patent Application Publication No. 2003/0162053, U.S. Patent Application Publication No. 2002/0158242, U.S. Patent Application Publication No. 2006/0240279, U.S. Patent Application Publication No. 2008/2008. No. 0220265, US Pat. No. 5,061,569, WO 2007/002683, WO 2009/018009, EP 650955, US Patent Application Publication No. 2008/0124572, US Japanese Patent Application Publication No. 2007/0278938, US Patent Application Publication No. 2008/0106190, US Patent Application Publication No. 2008/0018221, International Publication No. 2012/115034, and Japanese Translation of PCT International Publication No. 2003-519432. , JP 2006- 35145 JP is US Patent Application Publication No. 2013/585981 Pat like.
例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願公開第2013/585981号明細書等である。 Specific examples of known preferred hole transport materials used in the organic EL device of the present invention include the compounds described in the following documents in addition to the documents listed above, but the present invention is not limited thereto. Not.
For example, Appl. Phys. Lett. 69, 2160 (1996), J. MoI. Lumin. 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater. Chem. 3,319 (1993), Adv. Mater. 6, 677 (1994), Chem. Mater. 15, 3148 (2003), U.S. Patent Application Publication No. 2003/0162053, U.S. Patent Application Publication No. 2002/0158242, U.S. Patent Application Publication No. 2006/0240279, U.S. Patent Application Publication No. 2008/2008. No. 0220265, US Pat. No. 5,061,569, WO 2007/002683, WO 2009/018009, EP 650955, US Patent Application Publication No. 2008/0124572, US Japanese Patent Application Publication No. 2007/0278938, US Patent Application Publication No. 2008/0106190, US Patent Application Publication No. 2008/0018221, International Publication No. 2012/115034, and Japanese Translation of PCT International Publication No. 2003-519432. , JP 2006- 35145 JP is US Patent Application Publication No. 2013/585981 Pat like.
正孔輸送材料は、単独で用いてもよく、また複数種を併用して用いてもよい。
The hole transport material may be used alone or in combination of two or more.
≪電子阻止層≫
電子阻止層とは、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
本発明に係る電子阻止層の膜厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。 ≪Electron blocking layer≫
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved.
Moreover, the structure of the positive hole transport layer mentioned above can be used as an electron blocking layer according to the present invention, if necessary.
The electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
The thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
As the material used for the electron blocking layer, the material used for the above-described hole transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the electron blocking layer.
電子阻止層とは、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
本発明に係る電子阻止層の膜厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。 ≪Electron blocking layer≫
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved.
Moreover, the structure of the positive hole transport layer mentioned above can be used as an electron blocking layer according to the present invention, if necessary.
The electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
The thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
As the material used for the electron blocking layer, the material used for the above-described hole transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the electron blocking layer.
≪正孔注入層≫
正孔注入層(「陽極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
本発明において正孔注入層は必要に応じて設け、上記のように陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、前述の正孔輸送層に用いられる材料等が挙げられる。
中でも、銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
正孔注入層に用いられる材料は、単独で用いてもよく、また複数種を併用して用いてもよい。 ≪Hole injection layer≫
The hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light-emitting layer in order to lower the drive voltage and improve the light emission luminance. It is described in detail inChapter 2 “Electrode Materials” (pages 123 to 166) of Volume 2 of “Front Line (published by NTT Corporation on November 30, 1998)”.
In the present invention, the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: And materials used for the hole transport layer described above.
Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, etc., metal oxides typified by vanadium oxide, amorphous Conductive polymers such as carbon, polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives are preferred.
The materials used for the hole injection layer may be used alone or in combination of two or more.
正孔注入層(「陽極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
本発明において正孔注入層は必要に応じて設け、上記のように陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、前述の正孔輸送層に用いられる材料等が挙げられる。
中でも、銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
正孔注入層に用いられる材料は、単独で用いてもよく、また複数種を併用して用いてもよい。 ≪Hole injection layer≫
The hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light-emitting layer in order to lower the drive voltage and improve the light emission luminance. It is described in detail in
In the present invention, the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: And materials used for the hole transport layer described above.
Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, etc., metal oxides typified by vanadium oxide, amorphous Conductive polymers such as carbon, polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives are preferred.
The materials used for the hole injection layer may be used alone or in combination of two or more.
≪含有物≫
本発明に係る有機機能層は、更に他の含有物が含まれていてもよい。
含有物としては、例えば、臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、更に好ましくは50ppm以下である。
ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。 ≪Contents≫
The organic functional layer according to the present invention may further contain other inclusions.
Examples of the inclusion include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals such as Pd, Ca, and Na, alkaline earth metals, transition metal compounds, complexes, and salts.
The content of the inclusions can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less with respect to the total mass% of the contained layer. .
However, it is not within this range depending on the purpose of improving the transportability of electrons and holes or the purpose of favoring the exciton energy transfer.
本発明に係る有機機能層は、更に他の含有物が含まれていてもよい。
含有物としては、例えば、臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、更に好ましくは50ppm以下である。
ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。 ≪Contents≫
The organic functional layer according to the present invention may further contain other inclusions.
Examples of the inclusion include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals such as Pd, Ca, and Na, alkaline earth metals, transition metal compounds, complexes, and salts.
The content of the inclusions can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less with respect to the total mass% of the contained layer. .
However, it is not within this range depending on the purpose of improving the transportability of electrons and holes or the purpose of favoring the exciton energy transfer.
≪有機層の形成方法≫
本発明に係る有機機能層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。 ≪Method of forming organic layer≫
A method for forming an organic functional layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) according to the present invention will be described.
本発明に係る有機機能層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。 ≪Method of forming organic layer≫
A method for forming an organic functional layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) according to the present invention will be described.
有機機能層の形成方法は、特に制限はなく、従来公知の形成方法を用いることができ、例えば、真空蒸着法、湿式法(ウェットプロセスともいう。)等が挙げられる。
湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。 There is no restriction | limiting in particular in the formation method of an organic functional layer, A conventionally well-known formation method can be used, For example, a vacuum evaporation method, a wet method (it is also called a wet process) etc. are mentioned.
Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。 There is no restriction | limiting in particular in the formation method of an organic functional layer, A conventionally well-known formation method can be used, For example, a vacuum evaporation method, a wet method (it is also called a wet process) etc. are mentioned.
Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, cyclohexylbenzene and the like. Aromatic hydrocarbons, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, cyclohexylbenzene and the like. Aromatic hydrocarbons, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
さらに、層ごとに異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1nm~5μm、好ましくは5~200nmの範囲内で適宜選ぶことが望ましい。
Further, different film formation methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 1 × 10 −6 to 1 × 10 −2 Pa, and the vapor deposition rate. It is desirable to select appropriately within a range of 0.01 to 50 nm / second, a substrate temperature of −50 to 300 ° C., and a layer thickness of 0.1 nm to 5 μm, preferably 5 to 200 nm.
本発明に係る有機機能層の形成は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
In the formation of the organic functional layer according to the present invention, it is preferable to consistently produce from the hole injection layer to the cathode by one evacuation, but it may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
≪陽極≫
有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。 ≪Anode≫
As the anode in the organic EL element, those having a work function (4 eV or more, preferably 4.5 V or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。 ≪Anode≫
As the anode in the organic EL element, those having a work function (4 eV or more, preferably 4.5 V or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。 For the anode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when the pattern accuracy is not so high (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used.
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。 For the anode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when the pattern accuracy is not so high (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used.
この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。 When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.
Although the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。 When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.
Although the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
≪陰極≫
陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物やアルミニウム等が好適である。 ≪Cathode≫
As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable.
陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物やアルミニウム等が好適である。 ≪Cathode≫
As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, or the like is preferable.
陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲内で選ばれる。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected within the range of 10 nm to 5 μm, preferably 50 to 200 nm.
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲内で選ばれる。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected within the range of 10 nm to 5 μm, preferably 50 to 200 nm.
なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.
In addition, a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm. By applying the above, it is possible to manufacture a device in which both the anode and the cathode are transparent.
また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.
In addition, a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm. By applying the above, it is possible to manufacture a device in which both the anode and the cathode are transparent.
≪支持基板≫
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。 ≪Support substrate≫
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。 ≪Support substrate≫
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
樹脂フィルム材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
Examples of the resin film material include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate. (CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, Polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or appel (trade name, manufactured by Mitsui Chemicals) Resin etc. are mentioned.
樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のガスバリアー性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m2・24h・atm)以下、水蒸気透過度が、1×10-5g/(m2・24h)以下の高ガスバリアー性フィルムであることが好ましい。
The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , And a relative humidity (90 ± 2)% RH) of 0.01 g / (m 2 · 24 h) or less is preferable. Further, the film was measured by a method according to JIS K 7126-1987. It is a high gas barrier film having an oxygen permeability of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 1 × 10 −5 g / (m 2 · 24 h) or less. Is preferred.
ガスバリアー膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層との積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
ガスバリアー膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 As a material for forming the gas barrier film, any material may be used as long as it has a function of suppressing entry of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
The method for forming the gas barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
ガスバリアー膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 As a material for forming the gas barrier film, any material may be used as long as it has a function of suppressing entry of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
The method for forming the gas barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
本発明の有機EL素子の発光の室温(25℃)における外部取り出し効率は、1%以上であることが好ましく、5%以上であることがより好ましい。
ここで、外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数/有機EL素子に流した電子数)×100である。 The external extraction efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
Here, external extraction quantum efficiency (%) = (number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element) × 100.
ここで、外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数/有機EL素子に流した電子数)×100である。 The external extraction efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
Here, external extraction quantum efficiency (%) = (number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element) × 100.
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
Also, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
≪封止≫
本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。 ≪Sealing≫
Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive. As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and it may be concave plate shape or flat plate shape. Moreover, transparency and electrical insulation are not particularly limited.
Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。 ≪Sealing≫
Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive. As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and it may be concave plate shape or flat plate shape. Moreover, transparency and electrical insulation are not particularly limited.
Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m2/24h)以下のものであることが好ましい。
In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned. Further, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS K 7129-1992. the measured water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably that of 1 × 10 -3 g / (m 2 / 24h) or less.
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
接着剤として、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
Specific examples of adhesives include photo-curing and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. Can be mentioned. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
なお、有機EL素子が熱処理により劣化する場合があるので、室温(25℃)から80℃までに接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
In addition, since an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature (25 degreeC) to 80 degreeC is preferable. Further, a desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
また、有機機能層を挟み支持基板と対向する側の電極の外側に、該電極と有機機能層を被覆し、支持基板と接する形で無機物、有機物の層を形成し、封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等の素子劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
In addition, the electrode and the organic functional layer are coated on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. Can also be suitably used. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause element degradation such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
Furthermore, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
≪保護膜、保護板≫
有機機能層を挟み支持基板と対向する側の封止膜あるいは封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 ≪Protective film, protective plate≫
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside the sealing film or sealing film on the side facing the support substrate with the organic functional layer interposed therebetween. In particular, when sealing is performed with a sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for sealing can be used. It is preferable to use it.
有機機能層を挟み支持基板と対向する側の封止膜あるいは封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 ≪Protective film, protective plate≫
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside the sealing film or sealing film on the side facing the support substrate with the organic functional layer interposed therebetween. In particular, when sealing is performed with a sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for sealing can be used. It is preferable to use it.
≪光取り出し≫
有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極又は発光層と透明基板との間で光が全反射を起こし、光が透明電極又は発光層を導波し、結果として、光が素子側面方向に逃げるためである。 ≪Light extraction≫
An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the element, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light, the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the side surface direction of the element.
有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極又は発光層と透明基板との間で光が全反射を起こし、光が透明電極又は発光層を導波し、結果として、光が素子側面方向に逃げるためである。 ≪Light extraction≫
An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the element, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light, the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the side surface direction of the element.
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体との間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。
As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Application Laid-Open No. 62-172691), lower than the substrate between the substrate and the light emitter. A method of introducing a flat layer having a refractive index (for example, Japanese Patent Application Laid-Open No. 2001-202827), and forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside). Method (JP No. 11-283751 Publication), and the like.
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体との間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法を好適に用いることができる。
本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, A method of forming a diffraction grating between any one of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, A method of forming a diffraction grating between any one of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
透明電極と透明基板との間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は、一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましく、1.35以下であることがより好ましい。 If a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a lower efficiency of extraction to the outside as the refractive index of the medium is lower. Get higher.
Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, preferably 1.35 or less. Is more preferable.
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は、一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましく、1.35以下であることがより好ましい。 If a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a lower efficiency of extraction to the outside as the refractive index of the medium is lower. Get higher.
Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, preferably 1.35 or less. Is more preferable.
また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
全反射を起こす界面又はいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
回折格子を導入する位置としては、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction. The light that cannot be emitted outside due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode) It tries to take out light.
The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
The position where the diffraction grating is introduced may be in any interlayer or medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
回折格子を導入する位置としては、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction. The light that cannot be emitted outside due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode) It tries to take out light.
The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
The position where the diffraction grating is introduced may be in any interlayer or medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
≪集光シート≫
本発明の有機EL素子は、支持基板(基板)の光取出し側に、例えば、マイクロレンズアレイ上の構造を設けるように加工したり、あるいは、いわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。 ≪Condenser sheet≫
The organic EL device of the present invention can be processed, for example, by providing a structure on a microlens array on the light extraction side of the support substrate (substrate), or combined with a so-called condensing sheet, for example, in a specific direction, By condensing in the front direction with respect to the element light emitting surface, the luminance in a specific direction can be increased.
As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
本発明の有機EL素子は、支持基板(基板)の光取出し側に、例えば、マイクロレンズアレイ上の構造を設けるように加工したり、あるいは、いわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。 ≪Condenser sheet≫
The organic EL device of the present invention can be processed, for example, by providing a structure on a microlens array on the light extraction side of the support substrate (substrate), or combined with a so-called condensing sheet, for example, in a specific direction, By condensing in the front direction with respect to the element light emitting surface, the luminance in a specific direction can be increased.
As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
また、有機EL素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。
Further, in order to control the light emission angle from the organic EL element, a light diffusing plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
≪用途≫
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられ、これに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 ≪Usage≫
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include, but are not limited to, a light source of a sensor. In particular, the light source can be effectively used for a backlight of a liquid crystal display device and a light source for illumination.
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられ、これに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 ≪Usage≫
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include, but are not limited to, a light source of a sensor. In particular, the light source can be effectively used for a backlight of a liquid crystal display device and a light source for illumination.
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層とをパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned, and a conventionally known method is used in the fabrication of the element. be able to.
≪照明装置の一態様≫
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図2及び3に示すような照明装置を形成することができる。 ≪One aspect of lighting device≫
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX Track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, as shown in FIGS. Can be formed.
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図2及び3に示すような照明装置を形成することができる。 ≪One aspect of lighting device≫
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX Track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, as shown in FIGS. Can be formed.
図2は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
図3は、照明装置の断面図を示し、図3において、符号105は陰極、符号106は有機EL層、符号107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 2 shows a schematic diagram of a lighting device, and theorganic EL element 101 of the present invention is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is to bring the organic EL element 101 into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
3 shows a cross-sectional view of the lighting device. In FIG. 3,reference numeral 105 denotes a cathode, reference numeral 106 denotes an organic EL layer, and reference numeral 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
図3は、照明装置の断面図を示し、図3において、符号105は陰極、符号106は有機EL層、符号107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 2 shows a schematic diagram of a lighting device, and the
3 shows a cross-sectional view of the lighting device. In FIG. 3,
≪インピーダンス分光測定よる薄膜抵抗値の測定例≫
インピーダンス分光(Impedance Spectroscopy:IS)法は、微小正弦波電圧信号を有機EL素子に印加し、その応答電流信号の振幅と位相からインピーダンスを算出し、印加電圧信号の周波数の関数として得られるインピーダンススペクトルから、有機EL素子の微妙な物性変化を解析できる手法である。有機EL素子を破壊することなく高感度の抵抗値(R)及び静電容量(C)を計測できることが特徴である。 ≪Example of thin film resistance measurement by impedance spectroscopy≫
In the impedance spectroscopy (IS) method, a small sine wave voltage signal is applied to an organic EL element, impedance is calculated from the amplitude and phase of the response current signal, and an impedance spectrum obtained as a function of the frequency of the applied voltage signal. Therefore, it is a technique that can analyze subtle changes in physical properties of organic EL elements. It is characterized in that a highly sensitive resistance value (R) and capacitance (C) can be measured without destroying the organic EL element.
インピーダンス分光(Impedance Spectroscopy:IS)法は、微小正弦波電圧信号を有機EL素子に印加し、その応答電流信号の振幅と位相からインピーダンスを算出し、印加電圧信号の周波数の関数として得られるインピーダンススペクトルから、有機EL素子の微妙な物性変化を解析できる手法である。有機EL素子を破壊することなく高感度の抵抗値(R)及び静電容量(C)を計測できることが特徴である。 ≪Example of thin film resistance measurement by impedance spectroscopy≫
In the impedance spectroscopy (IS) method, a small sine wave voltage signal is applied to an organic EL element, impedance is calculated from the amplitude and phase of the response current signal, and an impedance spectrum obtained as a function of the frequency of the applied voltage signal. Therefore, it is a technique that can analyze subtle changes in physical properties of organic EL elements. It is characterized in that a highly sensitive resistance value (R) and capacitance (C) can be measured without destroying the organic EL element.
印加電圧信号の周波数をパラメータとし、得られたインピーダンス(Z)を複素平面上に表示したものをCole-Coleプロットと呼ぶ。さらに、このインピーダンスから、基本的な伝達関数であるモジュラス(M)、アドミタンス(Y)、誘電率(ε)を得ることができる(『薄膜の評価ハンドブック』テクノシステム社刊423~425ページ参照)。例えば、モジュラスは、次式により求められる。
The display of the obtained impedance (Z) on the complex plane with the frequency of the applied voltage signal as a parameter is called a Cole-Cole plot. Furthermore, the basic transfer functions, such as modulus (M), admittance (Y), and dielectric constant (ε), can be obtained from this impedance (see “Thin Film Evaluation Handbook”, published by Techno Systems, Inc., pages 423-425). . For example, the modulus is obtained by the following equation.
M=jωZ
式中、jは虚数単位、ω=2πf(fは周波数)を表している。 M = jωZ
In the formula, j represents an imaginary unit and ω = 2πf (f is a frequency).
式中、jは虚数単位、ω=2πf(fは周波数)を表している。 M = jωZ
In the formula, j represents an imaginary unit and ω = 2πf (f is a frequency).
これら4つの伝達関数から、解析目的に適した伝達関数を適宜選択することができるが、有機EL素子の評価においては、モジュラスを複素平面上にプロットしたMプロットが多く用いられている。
From these four transfer functions, a transfer function suitable for the purpose of analysis can be selected as appropriate. In the evaluation of organic EL elements, M plots in which the modulus is plotted on a complex plane are often used.
本発明においては、静電容量成分の逆数がわかるMプロット(M-plot)を採用した。このM-plotでは、ほぼ円弧部の直径はその対応する層の静電容量の逆数であるから、層厚に比例するので、層厚のズレも検出可能となる。
In the present invention, an M plot (M-plot) in which the reciprocal of the capacitance component is known is employed. In this M-plot, since the diameter of the arc portion is approximately the reciprocal of the capacitance of the corresponding layer, it is proportional to the layer thickness, so that the deviation of the layer thickness can also be detected.
また、IS法の解析ではCole-Coleプロットの軌跡から有機電界発光素子の等価回路を推定し、その等価回路から計算したCole-Coleプロットの軌跡と測定データとを一致させ、等価回路を決定することが一般的である。
In the IS analysis, an equivalent circuit of the organic electroluminescence element is estimated from the locus of the Cole-Cole plot, and the equivalent circuit is determined by matching the locus of the Cole-Cole plot calculated from the equivalent circuit with the measurement data. It is common.
IS測定は、例えば、Solartron社製ソーラトロン1260型インピーダンスアナライザ及び1296型誘電率測定インターフェースを用い、直流電圧に30~100mVrmsの交流(周波数範囲は0.1mHz~10MHz)を重畳して行うことができる。
等価回路解析には、Scribner Associates社製のZViewを用いることができる。 The IS measurement can be performed, for example, using a Solartron 1260 type impedance analyzer and a 1296 type dielectric constant measurement interface, with 30 to 100 mVrms alternating current (frequency range 0.1 mHz to 10 MHz) superimposed on the direct current voltage. .
For the equivalent circuit analysis, ZView manufactured by Scribner Associates can be used.
等価回路解析には、Scribner Associates社製のZViewを用いることができる。 The IS measurement can be performed, for example, using a Solartron 1260 type impedance analyzer and a 1296 type dielectric constant measurement interface, with 30 to 100 mVrms alternating current (frequency range 0.1 mHz to 10 MHz) superimposed on the direct current voltage. .
For the equivalent circuit analysis, ZView manufactured by Scribner Associates can be used.
有機EL素子(素子構成「ITO/HIL(正孔注入層)/HTL(正孔輸送層)/EML(発光層)/ETL(電子輸送層)/EIL(電子注入層)/Al」)に対してインピーダンス分光法を適用し、特定の層の抵抗値を求める手法を説明する。
例えば、電子輸送層(ETL)の抵抗値を計測する場合、ETLの厚さだけを変更した素子を作製し、それぞれのM-plotを比較することで、該プロットにより描き出される曲線のどの部分がETLに相当するかを確定することができる。 For organic EL elements (element configuration “ITO / HIL (hole injection layer) / HTL (hole transport layer) / EML (light emitting layer) / ETL (electron transport layer) / EIL (electron injection layer) / Al”) A method for obtaining the resistance value of a specific layer by applying impedance spectroscopy will be described.
For example, when measuring the resistance value of the electron transport layer (ETL), a device in which only the thickness of the ETL is changed is manufactured, and each portion of the curve drawn by the plot is determined by comparing each M-plot. Whether it corresponds to ETL can be determined.
例えば、電子輸送層(ETL)の抵抗値を計測する場合、ETLの厚さだけを変更した素子を作製し、それぞれのM-plotを比較することで、該プロットにより描き出される曲線のどの部分がETLに相当するかを確定することができる。 For organic EL elements (element configuration “ITO / HIL (hole injection layer) / HTL (hole transport layer) / EML (light emitting layer) / ETL (electron transport layer) / EIL (electron injection layer) / Al”) A method for obtaining the resistance value of a specific layer by applying impedance spectroscopy will be described.
For example, when measuring the resistance value of the electron transport layer (ETL), a device in which only the thickness of the ETL is changed is manufactured, and each portion of the curve drawn by the plot is determined by comparing each M-plot. Whether it corresponds to ETL can be determined.
図4は電子輸送層の層厚違いのM-plotの一例である。層厚が各々30nm、45nm及び60nmの場合の例を示す。なお、縦軸は虚数部M”(1/nF)を、横軸は実数部M’(1/nF)をそれぞれ表している。
FIG. 4 is an example of an M-plot with a different thickness of the electron transport layer. An example in which the layer thickness is 30 nm, 45 nm, and 60 nm, respectively, is shown. The vertical axis represents the imaginary part M ″ (1 / nF), and the horizontal axis represents the real part M ′ (1 / nF).
このプロットから求めた抵抗値(R)をETLの層厚に対してプロットしたのが図5である。ETLの層厚と抵抗値(Resistance)との関係が、ほぼ直線上に乗ることから、各層厚での抵抗値を決定することができる。
FIG. 5 shows the resistance value (R) obtained from this plot plotted against the ETL layer thickness. Since the relationship between the ETL layer thickness and the resistance value (Resistance) lies on a substantially straight line, the resistance value at each layer thickness can be determined.
素子構成「ITO/HIL/HTL/EML/ETL/Al」の有機EL素子を等価回路モデル(図6)として各層を解析した結果が図7である。図7は、各層の抵抗-電圧の関係を示す一例である。
FIG. 7 shows the result of analyzing each layer using an organic EL element having an element configuration “ITO / HIL / HTL / EML / ETL / Al” as an equivalent circuit model (FIG. 6). FIG. 7 is an example showing the resistance-voltage relationship of each layer.
これに対し、同じ有機EL素子を長時間発光させて劣化させた後に、同じ条件で測定し、それらを重ね合わせたのが図8であり、電圧1Vにおけるそれぞれの値を表1にまとめた。図8は、劣化後の有機EL素子の解析結果を示す一例である。
On the other hand, after the same organic EL element was deteriorated by emitting light for a long time, it was measured under the same conditions, and they were superimposed on each other, and FIG. 8 shows the respective values at a voltage of 1V. FIG. 8 is an example showing an analysis result of the organic EL element after deterioration.
劣化後の有機EL素子においては、ETLのみが劣化により抵抗値が大きく上昇し、DC電圧1Vにおいて、約30倍の抵抗値になっていることがわかる。
In the organic EL element after deterioration, it can be seen that only the ETL has a resistance value greatly increased due to the deterioration, and the resistance value is about 30 times at a DC voltage of 1V.
以上の手法を用いることで、本発明の実施例に記載した通電前後での抵抗変化の計測が可能となる。
By using the above method, it is possible to measure the resistance change before and after energization described in the embodiment of the present invention.
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
以下に、実施例で用いられる化合物の構造を示す。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
The structures of the compounds used in the examples are shown below.
以下に、実施例で用いられる化合物の構造を示す。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
The structures of the compounds used in the examples are shown below.
[実施例1]
≪31P-NMRスペクトルの化学シフト値の測定≫
本発明に係る例示化合物HP-5、HP-6及びH1-17、並びに比較化合物1~3の31P-NMRスペクトルの化学シフト値を測定した。
具体的には、各化合物の31P-NMRスペクトルの化学シフト値は、トリエチルホスフィンオキシドと各化合物とをモル比1:7でトルエンに溶解させた溶液をサンプルチューブに入れ、JEOL JNM-AL400(400MHz)、日本電子社製にて測定した。
測定結果を表2に示す。 [Example 1]
<< Measurement of chemical shift value of 31 P-NMR spectrum >>
The chemical shift values of 31 P-NMR spectra of Exemplified compounds HP-5, HP-6 and H1-17 according to the present invention andComparative compounds 1 to 3 were measured.
Specifically, the chemical shift value of the 31 P-NMR spectrum of each compound was determined by adding a solution obtained by dissolving triethylphosphine oxide and each compound in toluene at a molar ratio of 1: 7 into a sample tube, and adding JEOL JNM-AL400 ( 400 MHz), measured by JEOL.
The measurement results are shown in Table 2.
≪31P-NMRスペクトルの化学シフト値の測定≫
本発明に係る例示化合物HP-5、HP-6及びH1-17、並びに比較化合物1~3の31P-NMRスペクトルの化学シフト値を測定した。
具体的には、各化合物の31P-NMRスペクトルの化学シフト値は、トリエチルホスフィンオキシドと各化合物とをモル比1:7でトルエンに溶解させた溶液をサンプルチューブに入れ、JEOL JNM-AL400(400MHz)、日本電子社製にて測定した。
測定結果を表2に示す。 [Example 1]
<< Measurement of chemical shift value of 31 P-NMR spectrum >>
The chemical shift values of 31 P-NMR spectra of Exemplified compounds HP-5, HP-6 and H1-17 according to the present invention and
Specifically, the chemical shift value of the 31 P-NMR spectrum of each compound was determined by adding a solution obtained by dissolving triethylphosphine oxide and each compound in toluene at a molar ratio of 1: 7 into a sample tube, and adding JEOL JNM-AL400 ( 400 MHz), measured by JEOL.
The measurement results are shown in Table 2.
[実施例2]
≪有機EL素子の作製≫
(1)有機EL素子1-1の作製
陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 2]
<< Production of organic EL elements >>
(1) Production of Organic EL Element 1-1 As an anode, patterning was performed on a substrate (NA45 manufactured by NH Techno Glass) on which a 100 nm × 100 mm × 1.1 mm glass substrate of ITO (indium tin oxide) was formed to a thickness of 100 nm. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
≪有機EL素子の作製≫
(1)有機EL素子1-1の作製
陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 2]
<< Production of organic EL elements >>
(1) Production of Organic EL Element 1-1 As an anode, patterning was performed on a substrate (NA45 manufactured by NH Techno Glass) on which a 100 nm × 100 mm × 1.1 mm glass substrate of ITO (indium tin oxide) was formed to a thickness of 100 nm. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚20nmの正孔注入層を設けた。
On this transparent support substrate, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) diluted to 70% with pure water at 3000 rpm, A thin film was formed by spin coating under conditions of 30 seconds, and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a layer thickness of 20 nm.
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方で、モリブデン製抵抗加熱ボートにα-NPDを200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物Aを200mg入れ、別のモリブデン製抵抗加熱ボートにドーパントD-63を200mg入れ、別のモリブデン製抵抗加熱ボートにBCPを200mg入れ真空蒸着装置に取り付けた。
This transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus. Meanwhile, 200 mg of α-NPD was put in a molybdenum resistance heating boat, and 200 mg of Comparative Compound A was put in another resistance heating boat made of molybdenum. 200 mg of dopant D-63 was placed in a molybdenum resistance heating boat, and 200 mg of BCP was placed in another molybdenum resistance heating boat, and attached to a vacuum deposition apparatus.
次いで、真空槽を4×10-4Paまで減圧した後、α-NPDの入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、正孔注入層上に蒸着し、層厚30nmの正孔輸送層を設けた。
Next, the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, and the heating boat containing α-NPD was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second. A hole transport layer having a thickness of 30 nm was provided.
さらに、比較化合物Aの入った加熱ボートとドーパントD-63の入った加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で、正孔輸送層上に共蒸着し、層厚40nmの発光層を設けた。
Further, the heating boat containing the comparative compound A and the heating boat containing the dopant D-63 were energized and heated, and the vapor deposition rates were 0.1 nm / second and 0.010 nm / second, respectively. Evaporation was performed to provide a light emitting layer having a layer thickness of 40 nm.
さらに、BCPの入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、発光層上に蒸着し、層厚30nmの電子輸送層を設けた。
Furthermore, the heating boat containing BCP was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a layer thickness of 30 nm.
引き続き、電子注入層としてフッ化リチウムを層厚0.5nmで蒸着し、更に、アルミニウムを厚さ110nmで蒸着して陰極を形成し、有機EL素子1-1を作製した。
Subsequently, lithium fluoride was vapor-deposited as an electron injection layer with a thickness of 0.5 nm, and aluminum was vapor-deposited with a thickness of 110 nm to form a cathode, whereby an organic EL element 1-1 was produced.
(2)有機EL素子1-2~1-14の作製
有機EL素子1-1の作製において、ドーパント材料とホスト材料とを表3に記載の化合物に変更した以外は同様にして、有機EL素子1-2~1-14を作製した。 (2) Preparation of organic EL elements 1-2 to 1-14 Organic EL elements were prepared in the same manner as in the preparation of organic EL elements 1-1 except that the dopant materials and host materials were changed to the compounds shown in Table 3. 1-2 to 1-14 were produced.
有機EL素子1-1の作製において、ドーパント材料とホスト材料とを表3に記載の化合物に変更した以外は同様にして、有機EL素子1-2~1-14を作製した。 (2) Preparation of organic EL elements 1-2 to 1-14 Organic EL elements were prepared in the same manner as in the preparation of organic EL elements 1-1 except that the dopant materials and host materials were changed to the compounds shown in Table 3. 1-2 to 1-14 were produced.
≪有機EL素子の評価≫
作製した各有機EL素子を評価するに際しては、作製後の各有機EL素子の非発光面をガラスカバーで覆い、ガラスカバーと有機EL素子が作製されたガラス基板とが接触するガラスカバー側の周囲にシール剤としてエポキシ系光硬化型接着剤(東亞合成社製ラクストラックLC0629B)を適用し、これを上記陰極側に重ねて透明支持基板と密着させ、ガラス基板側から有機EL素子を除いた部分にUV光を照射して硬化させ、封止して、図2及び3に示すような照明装置を作製し、インピーダンス分光測定装置よる発光層の抵抗値の測定及び有機EL素子の発光スペクトルの半値幅の変化率の測定を実施した。
このようにして作製した各サンプルについて以下の評価を行った。 << Evaluation of organic EL elements >>
When evaluating each produced organic EL element, the non-light emitting surface of each produced organic EL element is covered with a glass cover, and the glass cover side surroundings where the glass cover and the glass substrate on which the organic EL element is produced are in contact with each other An epoxy photo-curing adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing agent to the cathode side, and this is placed in close contact with the transparent support substrate, and the organic EL element is removed from theglass substrate side 2 is cured by sealing with UV light, and the illumination device as shown in FIGS. 2 and 3 is manufactured. The resistance value of the light emitting layer is measured by the impedance spectrometer and half of the emission spectrum of the organic EL element. The change rate of the value range was measured.
The following evaluation was performed for each sample thus produced.
作製した各有機EL素子を評価するに際しては、作製後の各有機EL素子の非発光面をガラスカバーで覆い、ガラスカバーと有機EL素子が作製されたガラス基板とが接触するガラスカバー側の周囲にシール剤としてエポキシ系光硬化型接着剤(東亞合成社製ラクストラックLC0629B)を適用し、これを上記陰極側に重ねて透明支持基板と密着させ、ガラス基板側から有機EL素子を除いた部分にUV光を照射して硬化させ、封止して、図2及び3に示すような照明装置を作製し、インピーダンス分光測定装置よる発光層の抵抗値の測定及び有機EL素子の発光スペクトルの半値幅の変化率の測定を実施した。
このようにして作製した各サンプルについて以下の評価を行った。 << Evaluation of organic EL elements >>
When evaluating each produced organic EL element, the non-light emitting surface of each produced organic EL element is covered with a glass cover, and the glass cover side surroundings where the glass cover and the glass substrate on which the organic EL element is produced are in contact with each other An epoxy photo-curing adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing agent to the cathode side, and this is placed in close contact with the transparent support substrate, and the organic EL element is removed from the
The following evaluation was performed for each sample thus produced.
(1)有機EL素子駆動前後の抵抗値の変化率
『薄膜の評価ハンドブック』テクノシステム社刊423~425ページに記載の測定方法を参考にして、Solartron社製1260型インピーダンスアナライザ及び1296型誘電体インターフェイスを使って、作製した各有機EL素子の発光層のバイアス電圧1Vにおける抵抗値の測定を行った。
有機EL素子を室温(25℃)、2.5mA/cm2の定電流条件下により1000時間駆動した後の駆動前後の発光層の抵抗値を各々測定し、測定結果を下記に示した計算式により計算し抵抗値の変化率を求めた。 (1) Change rate of resistance value before and after driving of organic EL element Refer to the measurement method described in pages 423 to 425 of “Thin Film Evaluation Handbook” published by Technosystem, Inc. Solartron 1260 type impedance analyzer and 1296 type dielectric Using the interface, the resistance value of the light emitting layer of each manufactured organic EL element was measured at a bias voltage of 1 V.
The organic EL element was measured for the resistance value of the light emitting layer before and after driving for 1000 hours under room temperature (25 ° C.) and constant current conditions of 2.5 mA / cm 2 , and the calculation results are shown below. The change rate of the resistance value was obtained by calculation.
『薄膜の評価ハンドブック』テクノシステム社刊423~425ページに記載の測定方法を参考にして、Solartron社製1260型インピーダンスアナライザ及び1296型誘電体インターフェイスを使って、作製した各有機EL素子の発光層のバイアス電圧1Vにおける抵抗値の測定を行った。
有機EL素子を室温(25℃)、2.5mA/cm2の定電流条件下により1000時間駆動した後の駆動前後の発光層の抵抗値を各々測定し、測定結果を下記に示した計算式により計算し抵抗値の変化率を求めた。 (1) Change rate of resistance value before and after driving of organic EL element Refer to the measurement method described in pages 423 to 425 of “Thin Film Evaluation Handbook” published by Technosystem, Inc. Solartron 1260 type impedance analyzer and 1296 type dielectric Using the interface, the resistance value of the light emitting layer of each manufactured organic EL element was measured at a bias voltage of 1 V.
The organic EL element was measured for the resistance value of the light emitting layer before and after driving for 1000 hours under room temperature (25 ° C.) and constant current conditions of 2.5 mA / cm 2 , and the calculation results are shown below. The change rate of the resistance value was obtained by calculation.
駆動前後の抵抗値の変化率=|(駆動後の抵抗値/駆動前の抵抗値)-1|×100
値が0に近い方が駆動前後の変化率が小さいことを示す。 Change rate of resistance value before and after driving = | (resistance value after driving / resistance value before driving) −1 | × 100
A value closer to 0 indicates a smaller rate of change before and after driving.
値が0に近い方が駆動前後の変化率が小さいことを示す。 Change rate of resistance value before and after driving = | (resistance value after driving / resistance value before driving) −1 | × 100
A value closer to 0 indicates a smaller rate of change before and after driving.
評価結果を表3に示す。なお、各有機EL素子の抵抗値の変化率は、有機EL素子1-2の抵抗値の変化率を100としたときの相対値で示している。
Evaluation results are shown in Table 3. The change rate of the resistance value of each organic EL element is shown as a relative value when the change rate of the resistance value of the organic EL element 1-2 is 100.
(2)色度
作製した各有機EL素子について、その発光色を分光放射輝度計CS-1000(コニカミノルタ(株)製)を用い、2度視野角正面輝度を測定し、Y値をその指標とした。
測定結果を表3に示す。 (2) Chromaticity For each of the produced organic EL elements, the emission color was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and the front luminance was measured twice, and the Y value was used as an index. It was.
Table 3 shows the measurement results.
作製した各有機EL素子について、その発光色を分光放射輝度計CS-1000(コニカミノルタ(株)製)を用い、2度視野角正面輝度を測定し、Y値をその指標とした。
測定結果を表3に示す。 (2) Chromaticity For each of the produced organic EL elements, the emission color was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and the front luminance was measured twice, and the Y value was used as an index. It was.
Table 3 shows the measurement results.
(3)有機EL素子駆動前後の発光スペクトルの変化率
有機EL素子を室温(25℃)、2.5mA/cm2の定電流条件下により1000時間駆動した後の駆動前後の発光スペクトルをCS-1000(コニカミノルタ(株)製)を用いて測定し、測定結果を下記に示した計算式により計算し色度の変化率を求めた。 (3) Rate of change in emission spectrum before and after driving organic EL element The emission spectrum before and after driving the organic EL element after driving for 1000 hours at room temperature (25 ° C.) under a constant current condition of 2.5 mA / cm 2 is CS−. 1000 (manufactured by Konica Minolta Co., Ltd.) was used, and the measurement result was calculated by the following formula to obtain the rate of change in chromaticity.
有機EL素子を室温(25℃)、2.5mA/cm2の定電流条件下により1000時間駆動した後の駆動前後の発光スペクトルをCS-1000(コニカミノルタ(株)製)を用いて測定し、測定結果を下記に示した計算式により計算し色度の変化率を求めた。 (3) Rate of change in emission spectrum before and after driving organic EL element The emission spectrum before and after driving the organic EL element after driving for 1000 hours at room temperature (25 ° C.) under a constant current condition of 2.5 mA / cm 2 is CS−. 1000 (manufactured by Konica Minolta Co., Ltd.) was used, and the measurement result was calculated by the following formula to obtain the rate of change in chromaticity.
駆動前後の色度の変化率=|(駆動後のY値/駆動前のY値)-1|×100
値が0に近い方が駆動前後の変化率が小さいことを示す。 Rate of change in chromaticity before and after driving = | (Y value after driving / Y value before driving) −1 | × 100
A value closer to 0 indicates a smaller rate of change before and after driving.
値が0に近い方が駆動前後の変化率が小さいことを示す。 Rate of change in chromaticity before and after driving = | (Y value after driving / Y value before driving) −1 | × 100
A value closer to 0 indicates a smaller rate of change before and after driving.
評価結果を表3に示す。なお、各有機EL素子の色度の変化率は、有機EL素子1-2の色度の変化率を100としたときの相対値で示している。
Evaluation results are shown in Table 3. The rate of change in chromaticity of each organic EL element is shown as a relative value when the rate of change in chromaticity of the organic EL element 1-2 is 100.
(4)まとめ
表3から明らかなように、本発明の有機EL素子1-3~1-14は、比較例の有機EL素子1-1及び1-2に対して、発光層の抵抗値及び色度の半値幅の変化率が小さいことが示され、発光層の薄膜の物性の変化が小さい有機EL素子を得ることができた。
さらには、比較例の有機EL素子1-1及び1-2はY値が高く色純度が悪いのに対して、本発明の有機EL素子1-3~1-14は色度にも優れていることが分かる。 (4) Summary As is apparent from Table 3, the organic EL elements 1-3 to 1-14 of the present invention have a resistance value of the light emitting layer and the organic EL elements 1-1 and 1-2 of the comparative example. It was shown that the rate of change in the half-value width of chromaticity was small, and an organic EL device in which the change in physical properties of the thin film of the light emitting layer was small could be obtained.
Further, the organic EL elements 1-1 and 1-2 of the comparative example have a high Y value and poor color purity, whereas the organic EL elements 1-3 to 1-14 of the present invention have excellent chromaticity. I understand that.
表3から明らかなように、本発明の有機EL素子1-3~1-14は、比較例の有機EL素子1-1及び1-2に対して、発光層の抵抗値及び色度の半値幅の変化率が小さいことが示され、発光層の薄膜の物性の変化が小さい有機EL素子を得ることができた。
さらには、比較例の有機EL素子1-1及び1-2はY値が高く色純度が悪いのに対して、本発明の有機EL素子1-3~1-14は色度にも優れていることが分かる。 (4) Summary As is apparent from Table 3, the organic EL elements 1-3 to 1-14 of the present invention have a resistance value of the light emitting layer and the organic EL elements 1-1 and 1-2 of the comparative example. It was shown that the rate of change in the half-value width of chromaticity was small, and an organic EL device in which the change in physical properties of the thin film of the light emitting layer was small could be obtained.
Further, the organic EL elements 1-1 and 1-2 of the comparative example have a high Y value and poor color purity, whereas the organic EL elements 1-3 to 1-14 of the present invention have excellent chromaticity. I understand that.
[実施例3]
≪有機EL素子の作製≫
(1)有機EL素子2-1の作製
陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 3]
<< Production of organic EL elements >>
(1) Fabrication of organic EL element 2-1 As an anode, patterning was performed on a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate was formed with ITO (indium tin oxide). Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
≪有機EL素子の作製≫
(1)有機EL素子2-1の作製
陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 3]
<< Production of organic EL elements >>
(1) Fabrication of organic EL element 2-1 As an anode, patterning was performed on a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate was formed with ITO (indium tin oxide). Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚20nmの第1正孔輸送層を設けた。
On this transparent support substrate, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) diluted to 70% with pure water at 3000 rpm, A thin film was formed by spin coating under conditions of 30 seconds and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a layer thickness of 20 nm.
この基板を窒素雰囲気下に移し、第1正孔輸送層上に、50mgのADS254BE(American Dye Source,Inc製)を10mlのモノクロロベンゼンに溶解した溶液を用いて2500rpm、30秒の条件下、スピンコート法により薄膜を形成した。さらに、130℃で1時間真空乾燥し、第2正孔輸送層を形成した。
This substrate was transferred to a nitrogen atmosphere, and spin was performed at 2500 rpm for 30 seconds on a first hole transport layer using a solution of 50 mg of ADS254BE (American Dye Source, Inc.) dissolved in 10 ml of monochlorobenzene. A thin film was formed by a coating method. Furthermore, it vacuum-dried at 130 degreeC for 1 hour, and the 2nd positive hole transport layer was formed.
この第2正孔輸送層上に、100mgの比較化合物Aと13mgのドーパントD-63とを10mlの酢酸ブチルに溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。さらに、60℃で1時間真空乾燥し、層厚約45nmの発光層とした。
A thin film is formed on this second hole transport layer by spin coating using a solution of 100 mg of Comparative Compound A and 13 mg of dopant D-63 dissolved in 10 ml of butyl acetate at 1000 rpm for 30 seconds. did. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the light emitting layer with a layer thickness of about 45 nm.
次に、この発光層上に、50mgのBCPを10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。さらに、60℃で1時間真空乾燥し、層厚約25nmの電子輸送層とした。
Next, a thin film was formed on the light emitting layer by spin coating under a condition of 1000 rpm and 30 seconds using a solution of 50 mg of BCP dissolved in 10 ml of hexafluoroisopropanol (HFIP). Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer with a layer thickness of about 25 nm.
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、電子注入層としてフッ化カリウムを層厚0.4nmで蒸着し、更にアルミニウムを厚さ110nmで蒸着して陰極を形成し、有機EL素子2-1を作製した。
Subsequently, this substrate was fixed to a substrate holder of a vacuum evaporation apparatus, and after the vacuum chamber was depressurized to 4 × 10 −4 Pa, potassium fluoride was evaporated as an electron injection layer to a thickness of 0.4 nm, and aluminum was further added. A cathode was formed by vapor deposition at a thickness of 110 nm, and an organic EL element 2-1 was produced.
(2)有機EL素子2-2~2-14の作製
有機EL素子2-1の作製において、ドーパント材料とホスト材料とを表4に記載の化合物に変更した以外は同様にして、有機EL素子2-2~2-14を作製した。 (2) Preparation of organic EL element 2-2 to 2-14 In the preparation of organic EL element 2-1, the same procedure was performed except that the dopant material and the host material were changed to the compounds shown in Table 4. 2-2 to 2-14 were produced.
有機EL素子2-1の作製において、ドーパント材料とホスト材料とを表4に記載の化合物に変更した以外は同様にして、有機EL素子2-2~2-14を作製した。 (2) Preparation of organic EL element 2-2 to 2-14 In the preparation of organic EL element 2-1, the same procedure was performed except that the dopant material and the host material were changed to the compounds shown in Table 4. 2-2 to 2-14 were produced.
≪有機EL素子の評価≫
作製した各有機EL素子を評価するに際しては、実施例1の有機EL素子1-1と同様に封止し、図2及び3に示すような照明装置を形成して評価した。
このようにして作製した各サンプルに対し、実施例1と同様に発光層の抵抗値の変化率、色度及びその変化率について評価を行った。
評価結果を表4に示す。なお、各有機EL素子の抵抗値及び色度の変化率は、有機EL素子2-2の抵抗値及び色度の変化率を100としたときの相対値で示している。 << Evaluation of organic EL elements >>
When evaluating each produced organic EL element, it was sealed in the same manner as the organic EL element 1-1 of Example 1, and an illumination device as shown in FIGS. 2 and 3 was formed and evaluated.
Each sample thus produced was evaluated for the rate of change in resistance value, chromaticity, and rate of change of the light emitting layer in the same manner as in Example 1.
The evaluation results are shown in Table 4. The resistance value and chromaticity change rate of each organic EL element are shown as relative values when the resistance value and chromaticity change rate of the organic EL element 2-2 are set to 100.
作製した各有機EL素子を評価するに際しては、実施例1の有機EL素子1-1と同様に封止し、図2及び3に示すような照明装置を形成して評価した。
このようにして作製した各サンプルに対し、実施例1と同様に発光層の抵抗値の変化率、色度及びその変化率について評価を行った。
評価結果を表4に示す。なお、各有機EL素子の抵抗値及び色度の変化率は、有機EL素子2-2の抵抗値及び色度の変化率を100としたときの相対値で示している。 << Evaluation of organic EL elements >>
When evaluating each produced organic EL element, it was sealed in the same manner as the organic EL element 1-1 of Example 1, and an illumination device as shown in FIGS. 2 and 3 was formed and evaluated.
Each sample thus produced was evaluated for the rate of change in resistance value, chromaticity, and rate of change of the light emitting layer in the same manner as in Example 1.
The evaluation results are shown in Table 4. The resistance value and chromaticity change rate of each organic EL element are shown as relative values when the resistance value and chromaticity change rate of the organic EL element 2-2 are set to 100.
表4から明らかなように、本発明の有機EL素子2-3~2-14は、比較例の有機EL素子2-1及び2-2に対して、発光層の抵抗値及び色度の半値幅の変化率が小さいことが示され、発光層の薄膜の物性の変化が小さい有機EL素子を得ることができた。
さらには、比較例の有機EL素子2-1及び2-2はY値が高く色純度が悪いのに対して、本発明の有機EL素子2-3~2-14は色度にも優れていることが分かる。 As is apparent from Table 4, the organic EL elements 2-3 to 2-14 of the present invention are half the resistance value and chromaticity of the light emitting layer compared to the organic EL elements 2-1 and 2-2 of the comparative example. It was shown that the rate of change of the value range was small, and an organic EL device having a small change in physical properties of the light emitting layer thin film could be obtained.
Furthermore, the organic EL elements 2-1 and 2-2 of the comparative example have high Y values and poor color purity, whereas the organic EL elements 2-3 to 2-14 of the present invention have excellent chromaticity. I understand that.
さらには、比較例の有機EL素子2-1及び2-2はY値が高く色純度が悪いのに対して、本発明の有機EL素子2-3~2-14は色度にも優れていることが分かる。 As is apparent from Table 4, the organic EL elements 2-3 to 2-14 of the present invention are half the resistance value and chromaticity of the light emitting layer compared to the organic EL elements 2-1 and 2-2 of the comparative example. It was shown that the rate of change of the value range was small, and an organic EL device having a small change in physical properties of the light emitting layer thin film could be obtained.
Furthermore, the organic EL elements 2-1 and 2-2 of the comparative example have high Y values and poor color purity, whereas the organic EL elements 2-3 to 2-14 of the present invention have excellent chromaticity. I understand that.
[実施例4]
≪有機EL素子の作製≫
(1)有機EL素子3-1の作製
陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 4]
<< Production of organic EL elements >>
(1) Fabrication of organic EL element 3-1 As an anode, patterning was performed on a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
≪有機EL素子の作製≫
(1)有機EL素子3-1の作製
陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 4]
<< Production of organic EL elements >>
(1) Fabrication of organic EL element 3-1 As an anode, patterning was performed on a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、モリブデン抵抗加熱ボートにTPDを200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物Aを200mg入れ、別のモリブデン製抵抗加熱ボートに化合物D-73を200mg入れ、別のモリブデン製抵抗加熱ボートに化合物D-15を200mg入れ、別のモリブデン製抵抗加熱ボートに化合物D-1を200mg入れ、別のモリブデン製抵抗加熱ボートにBCPを200mg入れ、真空蒸着装置に取り付けた。
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, 200 mg of TPD is put into a molybdenum resistance heating boat, 200 mg of Comparative Compound A is put into another molybdenum resistance heating boat, and the other resistance heating boat made of molybdenum is put into another molybdenum resistance heating boat. Add 200 mg of compound D-73, put 200 mg of compound D-15 in another molybdenum resistance heating boat, put 200 mg of compound D-1 in another molybdenum resistance heating boat, and put BCP in another molybdenum resistance heating boat. 200 mg was placed and attached to a vacuum deposition apparatus.
次いで真空槽を4×10-4Paまで減圧した後、TPDの入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、層厚10nmの正孔輸送層を設けた。
The vacuum chamber is then depressurized to 4 × 10 −4 Pa, heated by energizing a heating boat containing TPD, deposited on a transparent support substrate at a deposition rate of 0.1 nm / second, and transporting holes with a layer thickness of 10 nm. A layer was provided.
さらに、ホスト化合物としての比較化合物Aとドーパントとしての化合物D-73と化合物D-15と化合物D-1との入った加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.025nm/秒、0.0007nm/秒、0.0002nm/秒で、正孔輸送層上に共蒸着し、層厚60nmの発光層を設けた。
Further, the heating boat containing the comparative compound A as the host compound, the compound D-73 as the dopant, the compound D-15, and the compound D-1 was energized and heated, and the deposition rate was 0.1 nm / second, 0 Co-deposited on the hole transport layer at 0.025 nm / second, 0.0007 nm / second, and 0.0002 nm / second to provide a light emitting layer having a layer thickness of 60 nm.
さらに、BCPの入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、発光層上に蒸着し、層厚20nmの電子輸送層を設けた。
Furthermore, the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a layer thickness of 20 nm.
引き続き、電子注入層としてフッ化カリウムを層厚0.5nmで蒸着し、更にアルミニウムを厚さ110nmで蒸着して陰極を形成し、有機EL素子3-1を作製した。
Subsequently, potassium fluoride was vapor-deposited as an electron injection layer with a layer thickness of 0.5 nm, and aluminum was further vapor-deposited with a thickness of 110 nm to form a cathode, thereby producing an organic EL element 3-1.
(2)有機EL素子3-2~3-9の作製
有機EL素子3-1の作製において、ドーパント材料とホスト材料とを表5に記載の化合物に変更した以外は同様にして、有機EL素子3-2~3-9を作製した。 (2) Preparation of organic EL elements 3-2 to 3-9 In the preparation of organic EL element 3-1, the same procedure was performed except that the dopant material and the host material were changed to the compounds shown in Table 5. 3-2 to 3-9 were produced.
有機EL素子3-1の作製において、ドーパント材料とホスト材料とを表5に記載の化合物に変更した以外は同様にして、有機EL素子3-2~3-9を作製した。 (2) Preparation of organic EL elements 3-2 to 3-9 In the preparation of organic EL element 3-1, the same procedure was performed except that the dopant material and the host material were changed to the compounds shown in Table 5. 3-2 to 3-9 were produced.
作製した各有機EL素子に通電したところ、ほぼ白色の光が得られ、照明装置として使用できることが分かった。また、他の本発明に係る例示化合物に置き換えた場合でも、同様に白色の発光が得られることが分かった。
When the produced organic EL elements were energized, almost white light was obtained, and it was found that they could be used as a lighting device. Moreover, even when it replaced with the other exemplary compound concerning this invention, it turned out that white light emission is obtained similarly.
≪有機EL素子の評価≫
作製した各有機EL素子を評価するに際しては、実施例1の有機EL素子1-1と同様に封止し、図2及び3に示すような照明装置を形成して評価した。 << Evaluation of organic EL elements >>
When evaluating each produced organic EL element, it was sealed in the same manner as the organic EL element 1-1 of Example 1, and an illumination device as shown in FIGS. 2 and 3 was formed and evaluated.
作製した各有機EL素子を評価するに際しては、実施例1の有機EL素子1-1と同様に封止し、図2及び3に示すような照明装置を形成して評価した。 << Evaluation of organic EL elements >>
When evaluating each produced organic EL element, it was sealed in the same manner as the organic EL element 1-1 of Example 1, and an illumination device as shown in FIGS. 2 and 3 was formed and evaluated.
(1)色度の測定
作製した各有機EL素子について、その発光色を分光放射輝度計CS-1000(コニカミノルタ(株)製)を用い、2度視野角正面輝度を測定したところ、1000cd/m2でのCIE1931表色系における色度がx=0.33±0.07、y=0.33±0.1の領域内にあり、白色光であることを確認した。 (1) Measurement of chromaticity For each of the produced organic EL elements, the luminance of the emitted light was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and the front luminance at a viewing angle of 2 degrees was measured to be 1000 cd / It was confirmed that the chromaticity in the CIE 1931 color system at m 2 was in the region of x = 0.33 ± 0.07, y = 0.33 ± 0.1, and was white light.
作製した各有機EL素子について、その発光色を分光放射輝度計CS-1000(コニカミノルタ(株)製)を用い、2度視野角正面輝度を測定したところ、1000cd/m2でのCIE1931表色系における色度がx=0.33±0.07、y=0.33±0.1の領域内にあり、白色光であることを確認した。 (1) Measurement of chromaticity For each of the produced organic EL elements, the luminance of the emitted light was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.), and the front luminance at a viewing angle of 2 degrees was measured to be 1000 cd / It was confirmed that the chromaticity in the CIE 1931 color system at m 2 was in the region of x = 0.33 ± 0.07, y = 0.33 ± 0.1, and was white light.
(2)有機EL素子駆動前後の抵抗値の変化率
作製した各有機EL素子について、実施例1と同様にして、発光層の抵抗値の変化率について評価を行った。
評価結果を表5に示す。なお、各有機EL素子の抵抗値の変化率は、有機EL素子3-1の抵抗値の変化率を100としたときの相対値で示している。 (2) Change rate of resistance value before and after organic EL element driving For each of the produced organic EL elements, the change rate of the resistance value of the light emitting layer was evaluated in the same manner as in Example 1.
The evaluation results are shown in Table 5. The change rate of the resistance value of each organic EL element is shown as a relative value when the change rate of the resistance value of the organic EL element 3-1 is 100.
作製した各有機EL素子について、実施例1と同様にして、発光層の抵抗値の変化率について評価を行った。
評価結果を表5に示す。なお、各有機EL素子の抵抗値の変化率は、有機EL素子3-1の抵抗値の変化率を100としたときの相対値で示している。 (2) Change rate of resistance value before and after organic EL element driving For each of the produced organic EL elements, the change rate of the resistance value of the light emitting layer was evaluated in the same manner as in Example 1.
The evaluation results are shown in Table 5. The change rate of the resistance value of each organic EL element is shown as a relative value when the change rate of the resistance value of the organic EL element 3-1 is 100.
(3)まとめ
表5から明らかなように、本発明の有機EL素子3-2~3-9は、比較例の有機EL素子3-1に対して、発光層の抵抗値の変化率が小さいことが示され、発光層の薄膜の物性の変化が小さい有機EL素子を得ることができた。 (3) Summary As is apparent from Table 5, the organic EL elements 3-2 to 3-9 of the present invention have a smaller change rate of the resistance value of the light emitting layer than the organic EL element 3-1 of the comparative example. As a result, an organic EL device having a small change in physical properties of the thin film of the light emitting layer was obtained.
表5から明らかなように、本発明の有機EL素子3-2~3-9は、比較例の有機EL素子3-1に対して、発光層の抵抗値の変化率が小さいことが示され、発光層の薄膜の物性の変化が小さい有機EL素子を得ることができた。 (3) Summary As is apparent from Table 5, the organic EL elements 3-2 to 3-9 of the present invention have a smaller change rate of the resistance value of the light emitting layer than the organic EL element 3-1 of the comparative example. As a result, an organic EL device having a small change in physical properties of the thin film of the light emitting layer was obtained.
[実施例5]
≪有機ELフルカラー表示装置の作製≫
以下、図9A~9Eを参照して、有機ELフルカラー表示装置の作製手順を説明する。 [Example 5]
≪Manufacture of organic EL full-color display device≫
Hereinafter, a manufacturing procedure of the organic EL full-color display device will be described with reference to FIGS. 9A to 9E.
≪有機ELフルカラー表示装置の作製≫
以下、図9A~9Eを参照して、有機ELフルカラー表示装置の作製手順を説明する。 [Example 5]
≪Manufacture of organic EL full-color display device≫
Hereinafter, a manufacturing procedure of the organic EL full-color display device will be described with reference to FIGS. 9A to 9E.
まず、ガラス基板201上に、陽極としてITO透明電極202を100nm成膜した基板(NH テクノグラス社製 NA45)に100μmのピッチでパターニングを行った後(図9A参照)、このガラス基板201上であってITO透明電極202間に非感光性ポリイミドの隔壁203(幅20μm、厚さ2.0μm)をフォトリソグラフィーで形成した(図9B参照)。
First, after patterning at a pitch of 100 μm on a substrate (NH 45 manufactured by NH Techno Glass Co., Ltd.) on which an ITO transparent electrode 202 was formed as a positive electrode on a glass substrate 201 (see FIG. 9A), on this glass substrate 201 A non-photosensitive polyimide partition wall 203 (width 20 μm, thickness 2.0 μm) was formed between the ITO transparent electrodes 202 by photolithography (see FIG. 9B).
次に、ITO電極202上であって隔壁203同士の間に下記組成の正孔注入層組成物を、インクジェットヘッド(エプソン社製:MJ800C)を用いて吐出注入し、紫外光を200秒照射し、60℃、10分間の乾燥処理により、層厚40nmの正孔注入層204を設けた(図9C参照)。
Next, a hole injection layer composition having the following composition is ejected and injected on the ITO electrode 202 between the partition walls 203 using an inkjet head (manufactured by Epson Corporation: MJ800C), and irradiated with ultraviolet light for 200 seconds. A hole injection layer 204 having a layer thickness of 40 nm was provided by drying at 60 ° C. for 10 minutes (see FIG. 9C).
この正孔注入層204上に、各々下記組成の青色発光層組成物、緑色発光層組成物、赤色発光層組成物を同様にインクジェットヘッドを使用して吐出注入し、60℃、10分間の乾燥処理し、各色の発光層205B、205G、205Rを設けた(図9D参照)。
A blue light-emitting layer composition, a green light-emitting layer composition, and a red light-emitting layer composition having the following compositions are similarly ejected and injected onto the hole injection layer 204 using an inkjet head, and dried at 60 ° C. for 10 minutes. The light emitting layers 205B, 205G, and 205R for each color were provided (see FIG. 9D).
次に、各発光層205B、205G、205Rを覆うように電子輸送材料を蒸着して層厚20nmの電子輸送層(図示略)を設け、更にフッ化リチウムを蒸着して層厚0.6nmの電子注入層(図示略)を設け、Alを蒸着して膜厚130nmの陰極206を設けて有機EL素子を作製した(図9E参照)。
Next, an electron transport material is deposited so as to cover each of the light emitting layers 205B, 205G, and 205R to provide an electron transport layer (not shown) having a thickness of 20 nm, and lithium fluoride is further deposited to form a layer having a thickness of 0.6 nm. An electron injection layer (not shown) was provided, Al was evaporated, and a cathode 206 having a thickness of 130 nm was provided to produce an organic EL element (see FIG. 9E).
(正孔注入層組成物)
HT-44 20質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部 (Hole injection layer composition)
HT-44 20 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
HT-44 20質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部 (Hole injection layer composition)
HT-44 20 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
(青色発光層組成物)
例示化合物H2-30 0.70質量部
化合物D-73 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(緑色発光層組成物)
例示化合物H2-30 0.70質量部
化合物D-15 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(赤色発光層組成物)
例示化合物H2-30 0.70質量部
化合物D-1 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部 (Blue light emitting layer composition)
Exemplified Compound H2-30 0.70 parts by mass Compound D-73 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropyl biphenyl 50 parts by mass (green light emitting layer composition)
Exemplified Compound H2-30 0.70 parts by mass Compound D-15 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass (red light emitting layer composition)
Illustrative Compound H2-30 0.70 parts by mass Compound D-1 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
例示化合物H2-30 0.70質量部
化合物D-73 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(緑色発光層組成物)
例示化合物H2-30 0.70質量部
化合物D-15 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(赤色発光層組成物)
例示化合物H2-30 0.70質量部
化合物D-1 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部 (Blue light emitting layer composition)
Exemplified Compound H2-30 0.70 parts by mass Compound D-73 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropyl biphenyl 50 parts by mass (green light emitting layer composition)
Exemplified Compound H2-30 0.70 parts by mass Compound D-15 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass (red light emitting layer composition)
Illustrative Compound H2-30 0.70 parts by mass Compound D-1 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
作製した有機ELフルカラー表示装置は、それぞれ電極に電圧を印加することにより、青色、緑色及び赤色の発色を示し、高耐久性を有し、かつ、鮮明なフルカラー表示装置として利用できることが分かった。
It was found that the produced organic EL full-color display device exhibited blue, green and red color by applying a voltage to each electrode, had high durability, and could be used as a clear full-color display device.
本発明は、通電経時における発光層の抵抗値変化が小さい有機EL素子、並びにそれを具備した照明装置及び表示装置を提供することに、特に好適に利用することができる。
The present invention can be particularly suitably used to provide an organic EL element having a small change in resistance value of the light emitting layer over time, and a lighting device and a display device including the organic EL element.
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
201 ガラス基板
202 ITO透明電極
203 隔壁
204 正孔注入層
205B,205G,205R 発光層
206 陰極 101Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with transparent electrode 108 Nitrogen gas 109 Water trapping agent 201 Glass substrate 202 ITO transparent electrode 203 Partition wall 204 Hole injection layer 205B, 205G, 205R Light emitting layer 206 Cathode
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
201 ガラス基板
202 ITO透明電極
203 隔壁
204 正孔注入層
205B,205G,205R 発光層
206 陰極 101
Claims (9)
- 陽極と陰極との間に発光層を含む有機機能層が挟持された有機エレクトロルミネッセンス素子であって、
前記有機機能層の少なくとも1層に、トルエン中にトリエチルホスフィンオキシドとともに溶解させたときの31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が含有されていることを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device in which an organic functional layer including a light emitting layer is sandwiched between an anode and a cathode,
At least one layer of the organic functional layer contains a compound having a chemical shift value in the range of 40 to 48 ppm in 31 P-NMR spectrum when dissolved together with triethylphosphine oxide in toluene. Organic electroluminescence device. - 前記31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物の励起三重項状態(T1)のエネルギーが3.00eV以上であって、かつ、窒素含有率が3.0~15.0%の範囲内であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 The compound having a chemical shift value in the range of 40 to 48 ppm in the 31 P-NMR spectrum has an excited triplet state (T 1 ) energy of 3.00 eV or more and a nitrogen content of 3.0 to 2. The organic electroluminescence device according to claim 1, wherein the content is in the range of 15.0%.
- 前記発光層には、イリジウム又は白金の錯体が含有され、
前記錯体が、窒素含有率が10.0~30.0%の範囲内であり、かつ、通電によりリン光を発することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 The light emitting layer contains a complex of iridium or platinum,
3. The organic electroluminescence device according to claim 1, wherein the complex has a nitrogen content of 10.0 to 30.0% and emits phosphorescence when energized. - 前記発光層には、蛍光発光性化合物が含有され、
前記蛍光発光性化合物の電気的励起における内部量子効率が、50%以上であることを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The light emitting layer contains a fluorescent compound,
The organic electroluminescence device according to any one of claims 1 to 3, wherein an internal quantum efficiency in electrical excitation of the fluorescent compound is 50% or more. - 前記31P-NMRスペクトルにおける化学シフト値が40~48ppmの範囲内である化合物が、下記一般式(1)で表される構造を有する化合物であることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記一般式(1)で表される構造を有する化合物が、下記一般式(2)で表される構造を有する化合物であることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。
- 白色に発光することを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence element according to any one of claims 1 to 6, wherein the organic electroluminescence element emits white light.
- 請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする照明装置。 A lighting device comprising the organic electroluminescence element according to any one of claims 1 to 7.
- 請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015552417A JPWO2015087795A1 (en) | 2013-12-10 | 2014-12-05 | Organic electroluminescence element, lighting device and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013254823 | 2013-12-10 | ||
JP2013-254823 | 2013-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087795A1 true WO2015087795A1 (en) | 2015-06-18 |
Family
ID=53371100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082210 WO2015087795A1 (en) | 2013-12-10 | 2014-12-05 | Organic electroluminescence element, lighting device, and display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015087795A1 (en) |
WO (1) | WO2015087795A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017104325A1 (en) * | 2015-12-15 | 2017-06-22 | コニカミノルタ株式会社 | Organic electroluminescent element, method for manufacturing organic electroluminescent element, display device, lighting device and organic electroluminescent element material |
WO2017115835A1 (en) * | 2015-12-28 | 2017-07-06 | 株式会社Kyulux | Compound, light-emitting material, and organic light-emitting device |
JP2017119664A (en) * | 2015-12-28 | 2017-07-06 | 株式会社Kyulux | Compound, light-emitting material, and organic light-emitting device |
CN110551086A (en) * | 2018-06-01 | 2019-12-10 | 乐金显示有限公司 | organic compound, and organic light emitting diode and organic light emitting display device including the same |
US12022731B2 (en) | 2018-06-12 | 2024-06-25 | Lg Display Co., Ltd. | Space-through charge transfer compound, and organic light emitting diode and organic light emitting display device including the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003501437A (en) * | 1999-06-07 | 2003-01-14 | ザ ダウ ケミカル カンパニー | +3 oxidation state dimer group 4 metallocene |
WO2013168534A1 (en) * | 2012-05-09 | 2013-11-14 | コニカミノルタ株式会社 | Organic electroluminescence element, production method for organic electroluminescence element, display device, and illumination device |
WO2014157610A1 (en) * | 2013-03-29 | 2014-10-02 | コニカミノルタ株式会社 | Organic electroluminescent element, lighting device, display device, light-emitting thin film and composition for organic electroluminescent element, and light-emitting method |
-
2014
- 2014-12-05 WO PCT/JP2014/082210 patent/WO2015087795A1/en active Application Filing
- 2014-12-05 JP JP2015552417A patent/JPWO2015087795A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003501437A (en) * | 1999-06-07 | 2003-01-14 | ザ ダウ ケミカル カンパニー | +3 oxidation state dimer group 4 metallocene |
WO2013168534A1 (en) * | 2012-05-09 | 2013-11-14 | コニカミノルタ株式会社 | Organic electroluminescence element, production method for organic electroluminescence element, display device, and illumination device |
WO2014157610A1 (en) * | 2013-03-29 | 2014-10-02 | コニカミノルタ株式会社 | Organic electroluminescent element, lighting device, display device, light-emitting thin film and composition for organic electroluminescent element, and light-emitting method |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102081011B1 (en) * | 2015-12-15 | 2020-02-24 | 코니카 미놀타 가부시키가이샤 | Organic electroluminescent device, manufacturing method of organic electroluminescent device, display device, lighting device and organic electroluminescent device material |
WO2017104325A1 (en) * | 2015-12-15 | 2017-06-22 | コニカミノルタ株式会社 | Organic electroluminescent element, method for manufacturing organic electroluminescent element, display device, lighting device and organic electroluminescent element material |
CN108369995B (en) * | 2015-12-15 | 2020-06-02 | 柯尼卡美能达株式会社 | Organic electroluminescent element, method for manufacturing organic electroluminescent element, display device, lighting device, and organic electroluminescent element material |
KR20180069860A (en) * | 2015-12-15 | 2018-06-25 | 코니카 미놀타 가부시키가이샤 | Organic electroluminescence device, method of manufacturing organic electroluminescence device, display device, lighting device and organic electroluminescence device material |
CN108369995A (en) * | 2015-12-15 | 2018-08-03 | 柯尼卡美能达株式会社 | Organic electroluminescent device, the manufacturing method of organic electroluminescent device, display device, lighting device and organic electroluminescent device material |
CN108473425B (en) * | 2015-12-28 | 2021-09-28 | 九州有机光材股份有限公司 | Compound, light-emitting material, and organic light-emitting element |
US20190016704A1 (en) * | 2015-12-28 | 2019-01-17 | Kyulux, Inc. | Compound, light-emitting material, and organic light-emitting device |
US10510977B2 (en) | 2015-12-28 | 2019-12-17 | Kyulux, Inc. | Compound, light-emitting material, and organic light-emitting device |
CN108473425A (en) * | 2015-12-28 | 2018-08-31 | 九州有机光材股份有限公司 | Compound, luminescent material and organic illuminating element |
JP2017119664A (en) * | 2015-12-28 | 2017-07-06 | 株式会社Kyulux | Compound, light-emitting material, and organic light-emitting device |
WO2017115835A1 (en) * | 2015-12-28 | 2017-07-06 | 株式会社Kyulux | Compound, light-emitting material, and organic light-emitting device |
CN110551086A (en) * | 2018-06-01 | 2019-12-10 | 乐金显示有限公司 | organic compound, and organic light emitting diode and organic light emitting display device including the same |
KR20190137436A (en) * | 2018-06-01 | 2019-12-11 | 엘지디스플레이 주식회사 | Organic compounds, organic light emitting diode and orgnic light emitting display device including the compounds |
KR102571401B1 (en) * | 2018-06-01 | 2023-08-31 | 엘지디스플레이 주식회사 | Organic compounds, organic light emitting diode and orgnic light emitting display device including the compounds |
CN110551086B (en) * | 2018-06-01 | 2023-12-08 | 乐金显示有限公司 | Organic compound, organic light emitting diode and organic light emitting display device including the same |
US12022731B2 (en) | 2018-06-12 | 2024-06-25 | Lg Display Co., Ltd. | Space-through charge transfer compound, and organic light emitting diode and organic light emitting display device including the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015087795A1 (en) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017195669A1 (en) | Organic electroluminescence element material, organic electroluminescence element, display apparatus and illumination apparatus | |
JP5978843B2 (en) | Iridium complex compound, organic electroluminescence device material, organic electroluminescence device, lighting device and display device | |
JP6307993B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE | |
JP6941115B2 (en) | Method for manufacturing luminescent film, organic electroluminescence element, organic material composition and organic electroluminescence element | |
WO2017018326A1 (en) | Organic electroluminescent element, display device, and illumination device | |
WO2016017757A1 (en) | Organic electroluminescent element, display device, lighting device, π-conjugated compound, and light-emitting thin film | |
WO2016017684A1 (en) | Organic electroluminescent element material, organic electroluminescent element, light-emitting thin film, display device and illumination device | |
JP6319319B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP6350518B2 (en) | ORGANIC ELECTROLUMINESCENCE ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE SAME | |
JP6146415B2 (en) | Organic electroluminescence element, lighting device and display device | |
JP6011542B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP2016036022A (en) | Organic electroluminescent device material, organic electroluminescent device, charge-transferable thin film, display and illuminating apparatus | |
JPWO2016181844A1 (en) | π-conjugated compound, delayed phosphor, light-emitting thin film, organic electroluminescence element, display device, and illumination device | |
WO2016181772A1 (en) | Π-conjugated compound, organic electroluminescence element material, light-emitting thin film, organic electroluminescence element, display device, and illumination device | |
JP2014140066A (en) | Organic electroluminescent element material | |
WO2015087795A1 (en) | Organic electroluminescence element, lighting device, and display device | |
JP2016225498A (en) | Organic electroluminescent element | |
JP2016210728A (en) | π-CONJUGATED TYPE COMPOUND, ORGANIC ELECTROLUMINESCENCE ELEMENT MATERIAL, LUMINESCENT THIN FILM, ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE, AND ILLUMINATION DEVICE | |
WO2016181773A1 (en) | Π-conjugated compound, organic electroluminescence element material, light-emitting material, light-emitting thin film, organic electroluminescence element, display device, and illumination device | |
JP6417821B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE | |
WO2015151684A1 (en) | Organic electroluminescent element and electronic device | |
JP5998989B2 (en) | Organic electroluminescence element, display device and lighting device | |
JPWO2013114966A1 (en) | Iridium complex compound, organic electroluminescence device material, organic electroluminescence device, lighting device and display device | |
WO2018186101A1 (en) | Organic electroluminescence element and method for manufacturing organic electroluminescence element | |
JP6755261B2 (en) | Organic electroluminescence element material, organic electroluminescence element, display device and lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14869012 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015552417 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14869012 Country of ref document: EP Kind code of ref document: A1 |