Nothing Special   »   [go: up one dir, main page]

WO2015087695A1 - Method for producing electrode material - Google Patents

Method for producing electrode material Download PDF

Info

Publication number
WO2015087695A1
WO2015087695A1 PCT/JP2014/081058 JP2014081058W WO2015087695A1 WO 2015087695 A1 WO2015087695 A1 WO 2015087695A1 JP 2014081058 W JP2014081058 W JP 2014081058W WO 2015087695 A1 WO2015087695 A1 WO 2015087695A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol resin
electrode material
alkali metal
resin precursor
novolac
Prior art date
Application number
PCT/JP2014/081058
Other languages
French (fr)
Japanese (ja)
Inventor
優輝 東村
豊浩 碓氷
貴彦 井戸
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2015552381A priority Critical patent/JP6178431B2/en
Publication of WO2015087695A1 publication Critical patent/WO2015087695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing an electrode material.
  • a lithium ion secondary battery is a secondary battery that performs charging and discharging by moving lithium ions between a positive electrode and a negative electrode.
  • Various electrode materials are used, and lithium cobaltate is often used for the positive electrode and carbon (graphite) is often used for the negative electrode.
  • a positive electrode plate and a negative electrode plate are stacked in layers with a separator in between, and the whole is filled with an organic solvent electrolyte.
  • the cation and anion in the electrolyte form an electric double layer in a region of a small molecular layer on the surface of the two electrodes, and charge is generated. Accumulated and current flows. It is known that the amount of charge that can be stored that affects the storage capacity is determined by the amount of current from the outside, the amount of ions in the electrolyte, and the surface area of the electrode that stores charges by adsorbing ions.
  • Patent Document 1 proposes a process for producing activated carbon, which includes a step of mixing with seeds and heating and firing in a non-oxidizing atmosphere. It is disclosed that activated carbon having a specific surface area of 400 to 2000 m 2 / g or activated carbon having a mesopore volume of 0.16 mL / g or more can be obtained by such a production method.
  • Electric storage devices such as electric double layer capacitors using the carbon materials described above have been developed for various capacities.
  • the lithium ion capacitor uses a carbon-based material capable of occluding lithium ions as a negative electrode material while using the principle of a general electric double layer capacitor, and the energy density is improved by adding lithium ions thereto.
  • the principle of charge and discharge is different between the positive electrode and the negative electrode, and it has a structure in which the negative electrode of the lithium ion secondary battery and the positive electrode of the electric double layer capacitor are combined.
  • the lithium ion capacitor has a large capacity and a high charge / discharge speed.
  • Lithium ion capacitors are highly demanded to have a larger capacity, and the capacity increase of the positive electrode using the principle of the capacitor dominates the storage capacity.
  • the present invention has been made by paying attention to the above circumstances, and its purpose is to provide an electrode material for a capacitor whose pores are controlled so that the storage capacity per volume and the storage capacity per weight can be increased. It is to provide a manufacturing method.
  • Another object is to provide a method for producing an electrode material for a positive electrode having a controlled pore so that the storage capacity per volume and the storage capacity per weight of a lithium ion capacitor can be increased. .
  • the method for producing an electrode material of the present invention for solving the above-described problems is an alkali metal in which an alkali metal hydroxide having a novolac phenol resin precursor dissolved in an amount of 8.0 times or less the weight of the novolac phenol resin precursor is dissolved.
  • a curing step of obtaining a phenol resin cured product by heating the novolac phenol resin precursor After adding an aqueous hydroxide solution and adjusting the novolac phenol resin precursor to basic, a curing step of obtaining a phenol resin cured product by heating the novolac phenol resin precursor; A carbon powder forming step of pulverizing and firing the phenol resin cured product to obtain a carbon powder; The carbon powder is washed with water and dried to obtain an electrode material, and It is characterized by comprising.
  • aqueous solution of alkali metal hydroxide is added to disperse a large amount of alkali metal ions inside.
  • the novolac phenol resin is pulverized and fired and washed. By washing, alkali metal ions contained therein are removed, and pores having a uniform size are formed.
  • the electrode material manufacturing method of the present invention can increase the storage capacity per volume and the storage capacity per weight by the following actions, and can provide an electrode material for a capacitor that can easily control pores. .
  • Alkali metal hydroxide forms hydrated ions of alkali metal, and serves as a template to form pores close to the size of the ions involved in the electric double layer. Further, when the amount of sodium hydroxide is 8.0 times or less of the weight of the novolak phenol resin precursor, the novolac phenol resin precursor is not diluted too much and the condensation reaction is not easily inhibited. A cured product can be obtained.
  • Alkali activation effect Since it contains an alkali metal hydroxide, it has a pore forming action due to an alkali activation effect.
  • the novolac phenol resin precursor is a mixture of aldehydes or ketones and a novolac resin. Furthermore, since a novolak resin having undergone polymerization can be used as a raw material, there are few reaction products, the generation of gas can be reduced, and the amount of bubbles that are difficult to control can be reduced. In addition, since aldehydes or ketones are added to the aromatic ring of the novolak resin by the catalytic action of the base, the novolak resin can be cross-linked and the phenol resin cured product can be obtained efficiently.
  • the novolac resin is in a B-stage state.
  • the reaction product can be further reduced by a curing reaction. For this reason, gas generation can be further reduced, and the amount of bubbles difficult to control can be reduced.
  • the compounding quantity of the said alkali metal hydroxide is 1.0 times or more of the weight of the said novolak-type phenol resin precursor.
  • the blending amount of the alkali metal hydroxide is 1.0 times or more of the weight of the novolac phenol resin precursor, more pores can be formed and the specific surface area can be increased.
  • the blending amount of the alkali metal hydroxide is 1.0 times or more of the weight of the novolak phenol resin precursor, it can act as a catalyst for a sufficient amount of base to cure the novolak phenol resin precursor. it can.
  • the compounding quantity of the said alkali metal hydroxide is 2.0 times or more of the weight of the said novolak-type phenol resin precursor.
  • the blending amount of the alkali metal hydroxide is 2.0 times or more of the weight of the novolac phenol resin precursor, more pores can be formed and the specific surface area can be increased.
  • the blending amount of the alkali metal hydroxide is 2.0 times or more of the weight of the novolak phenol resin precursor, it can act as a catalyst for a sufficient amount of base to cure the novolak phenol resin precursor. it can.
  • the alkali metal hydroxide is sodium hydroxide.
  • Sodium hydroxide can be suitably used without being too strong for alkali activation during firing.
  • the carbon powder forming step includes a pulverizing step of pulverizing the phenol resin cured product to obtain a phenol resin powder, and a pulverizing step of baking the phenol resin powder to obtain a carbon powder. Since the cured phenol resin can be pulverized in advance to increase the surface area and fired, it can be uniformly carbonized and the variation in pores can be reduced.
  • the said electrode material manufactured with the manufacturing method of the electrode material of this invention is an electrode material for positive electrodes of a lithium ion capacitor.
  • ions that are adsorbed and desorbed at a boundary of 3.0 V with respect to the potential of lithium change.
  • the solvation of lithium ions is involved in the adsorption / desorption at 3.0 V or more, and the solvation of lithium ions at less than 3.0 V.
  • the size of the pores of the electrode material obtained by the method for producing an electrode material of the present invention is close to the size of any ion. For this reason, the electrode material for capacitors which can control easily the pore which can enlarge the electrical storage capacity per volume and the electrical storage capacity per weight can be obtained easily.
  • an electrode material for a capacitor that can easily control pores capable of increasing the storage capacity per volume and the storage capacity per weight.
  • an alkali metal hydroxide aqueous solution in which an alkali metal hydroxide of 8.0 times or less the weight of the novolac phenol resin precursor is dissolved in a novolac phenol resin precursor is added, After adjusting the novolac phenol resin precursor to basic, a curing step of obtaining a phenol resin cured product by heating the novolac phenol resin precursor; A carbon powder forming step of pulverizing and firing the phenol resin cured product to obtain a carbon powder; The carbon powder is washed with water and dried to obtain an electrode material, and It is characterized by comprising.
  • an electrode material of the present invention it is possible to increase the storage capacity per volume and the storage capacity per weight by the following actions, and to provide an electrode material for a capacitor in which pores can be easily controlled. Can do.
  • Alkali metal hydroxide forms hydrated ions of alkali metal, and serves as a template to form pores close to the size of the ions involved in the electric double layer. Further, when the amount of sodium hydroxide is 8.0 times or less of the weight of the novolak phenol resin precursor, the novolac phenol resin precursor is not diluted too much and the condensation reaction is not easily inhibited. A cured product can be obtained.
  • the blending amount of the alkali metal hydroxide indicates a ratio of only the solute contained in the aqueous solution of the alkali metal hydroxide, and the amount of water is not limited.
  • Alkali activation effect Since it contains an alkali metal hydroxide, it has a pore forming action due to an alkali activation effect.
  • the method for producing the electrode material of the present invention uses a novolac phenol resin precursor.
  • the novolac phenol resin precursor is not particularly limited as long as it is an uncured novolac phenol resin precursor.
  • the novolak phenol resin is obtained from the monomer through a two-step reaction.
  • an aldehyde or a ketone is added to phenol or a phenol monomer, and condensed using an acid as a catalyst to obtain a novolak resin.
  • a novolac phenol resin is obtained by curing by adding a crosslinking agent such as hexamine and crosslinking the novolak resin.
  • the crosslinking reaction does not proceed at the first stage and is a thermoplastic resin.
  • this novolak resin is further cured by adding a crosslinking agent to form a novolak phenol resin.
  • the phenol (monomethylol body) to which the methylol group is added immediately bonds with the phenol to form a dimer.
  • a methylol group is further added to the dimer aromatic ring obtained by the formula (2) as shown in the formula (1), and a phenol is immediately bonded to form a trimer as shown in the formula (2).
  • the reaction rate of the formula (1) is slower than the reaction rate of the formula (2), the polymerization proceeds linearly as in the formula (3), and a thermoplastic novolak resin is obtained.
  • a resol type phenol resin which is another kind of phenol resin is also obtained from the monomer through a two-step reaction.
  • an aldehyde or a ketone is added to phenol or a phenol monomer, and a methylol group or the like is added to an aromatic ring using a base as a catalyst to obtain a methylol body.
  • the methylol body is cured by a second-stage reaction to form a resol-based phenol resin.
  • the first-stage reaction when a methylol group is added to the monomer, depending on the number of methylol groups added to the monomer, one added is a monomethylol body, two added is a dimethylol body, 3 The added one is called a trimethylol body.
  • a methylol group is added at the o-position or p-position.
  • the addition reaction using a base as a catalyst proceeds, the reaction proceeds from a monomethylol body to a dimethylol body and a trimethylol body.
  • the methylol body can be bonded and cured by adding heat or acid.
  • a novolac phenol resin precursor is used.
  • the novolac phenol resin and the resol phenol resin are synthesized by a two-step reaction. Comparing the molecular weights of the first and second stage intermediate products, the novolac phenolic resin capable of causing the polycondensation reaction in the first stage is larger. For this reason, the amount of by-products generated in the second-stage reaction can be reduced in the novolac phenol resin, and the generation of pores or bubbles that are the basis of pores can be reduced.
  • the size of bubbles generated with the second-stage reaction varies depending on pressure, temperature, the number of moles of by-products contained in one bubble, and the like. For this reason, it is difficult to control the size of the bubbles.
  • the molecular weight of the intermediate product is large, so it is possible to reduce the generation of bubbles whose size is difficult to control. Therefore, the size of the pores or pores of the electrode material obtained by firing the phenol resin It is possible to reduce the influence of bubbles on the surface.
  • the manufacturing method of the electrode material of this invention has the hardening process which performs hardening reaction by adding the aqueous solution of an alkali metal hydroxide to a novolak-type phenol resin precursor, and making it basic.
  • This reaction is shown in Formula (5).
  • a methylol group can be added to a position where an aromatic ring of phenol or phenols contained in the novolak phenol resin precursor is vacant. Further, by applying heat, the methylol groups undergo dehydration condensation and can be cured.
  • the position to which the methylol group is added is the o-position or the p-position, and is added to a vacant position.
  • Alkali metal hydroxide ionizes when dissolved in water and is separated into alkali metal ions and OH ⁇ .
  • Alkali metal ions do not exist alone, but combine with several water molecules to form a hydrated structure. Ions bound to water molecules are called hydrated ions, and are larger than single alkali metal ions.
  • the radius of alkali metal hydrated ions is 0.3 to 0.4 nm, which is close to the size of ions involved in the electric double layer. For this reason, ionized alkali metal hydrate ions serve as a template to form pores, and the surface area involved in the electric double layer can be efficiently increased.
  • an alkali metal hydroxide acts as a basic catalyst for adding a methylol group to a novolac resin and acts as a template by becoming a hydrated ion of an alkali metal. And has two-sided actions.
  • heat is applied to a novolak resin to which a methylol group is added, so that methylol groups are bonded to each other by the catalytic action of a base.
  • This reaction is a cross-linking reaction, and the novolak resin is gelled and becomes a thermosetting resin and is cured.
  • the curing method is not particularly limited, but it is desirable to heat and cure.
  • the heating temperature is not particularly limited, but is 70 to 300 ° C.
  • the heating time is not particularly limited. For example, 3 minutes to 20 hours. The higher the temperature, the faster the curing reaction is completed.
  • the electrode material manufacturing method of the present invention is characterized by using an alkali metal hydroxide.
  • the alkali metal hydroxide is a strong base and has a strong action as a catalyst, and also has higher water solubility than an alkaline earth metal, and more alkali metal ions can be dispersed in an aqueous solution. For this reason, the effect
  • the novolak phenol resin precursor of the present invention is not particularly limited.
  • As the novolac phenol resin precursor a mixture of aldehydes or ketones and phenols can be used. Alternatively, a mixture of aldehydes or ketones and a novolac resin may be used.
  • phenols include, but are not limited to, those having phenolic-OH such as phenol, cresol, xylenol, p-alkylphenol, p-phenylphenol, chlorophenol, bisphenol A, phenolsulfonic acid, resorcin and the like.
  • Aldehydes are organic compounds having a structure in which one hydrogen atom is substituted on the carbonyl carbon in the molecule. Ketones are a compound in which two alkyl groups are substituted on the carbonyl carbon in the molecule. It is an organic compound. Examples of aldehydes include, but are not limited to, formaldehyde, acetaldehyde, propionaldehyde, acrolein, benzaldehyde, cinnamaldehyde, and perylaldehyde.
  • ketones Acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, isophorone etc. are mentioned.
  • Phenols are condensed with aldehydes or ketones in the presence of an acid catalyst to form a novolak resin.
  • Novolak resins are generally condensation products of phenolic compounds with aldehydes or ketones or their derivatives such as ketal or hemiketal functional groups.
  • the novolak-type phenol resin precursor of the manufacturing method of the electrode material of this invention is a mixture of aldehydes or ketones, and a novolak resin. Furthermore, since a novolak resin having undergone polymerization can be used as a raw material, there are few reaction products, the generation of gas can be reduced, and the amount of bubbles that are difficult to control can be reduced. In addition, since aldehydes or ketones are added to the aromatic ring of the novolak resin by the catalytic action of the base, the novolak resin can be cross-linked, and a novolac phenol resin cured product can be obtained efficiently.
  • the novolak resin refers to those having a weight average molecular weight of 1000 or more, and those less than that are, for example, oligomers or monomers.
  • the method for producing an electrode material of the present invention includes a carbon powder forming step of pulverizing and firing a phenol resin cured product.
  • the carbon powder forming step includes a pulverization step and a firing step.
  • the order of the pulverization step and the baking step is not particularly limited, but it is desirable that there is a baking step after the pulverization step.
  • it consists of a pulverizing step of pulverizing the phenol resin cured product to obtain a phenol resin powder, and a pulverizing step of baking the phenol resin powder to obtain a carbon powder.
  • the cured phenol resin can be pulverized in advance and fired after increasing the surface area, so that it can be uniformly carbonized and the variation in pores can be reduced.
  • the average particle diameter (diameter) of the pulverizer used in the pulverization step of the production method of the electrode material of the present invention and the phenol resin powder obtained is not particularly limited.
  • the pulverizer for example, a pin mill, a ball mill, a jet mill, a hammer mill, a bead mill, a roller mill and the like can be used, and the pulverizer is not particularly limited.
  • the firing pattern in the firing step of the method for producing an electrode material of the present invention is not particularly limited.
  • the temperature is raised at a constant rate, and after reaching the maximum temperature, it is allowed to cool gradually.
  • the firing temperature (maximum temperature) is, for example, 600 to 2000 ° C.
  • the heating rate is, for example, 0.1 to 100 ° C./min.
  • a carbide containing alkali metal ions is obtained by firing while containing alkali metal hydrate ions.
  • the hydrated ions of the alkali metal are dehydrated by the action of heat and become hydroxides, carbonates, and the like.
  • the alkali activation reaction follows, for example, the following reaction formula. 2KOH ⁇ K 2 O + H 2 O (6) C n + K 2 O ⁇ C n ⁇ 1 + 2K + CO ⁇ (7) C n + H 2 O ⁇ C n ⁇ 1 + CO ⁇ + H 2 (8) CO + H 2 O ⁇ CO 2 ⁇ + H 2 ⁇ (9) CO 2 + K 2 O ⁇ K 2 CO 3 (10)
  • K 2 O + H 2 O generated by the formula (6) oxidizes carbon as shown by the formula (7) and the formula (8). This reaction occurs in the vicinity of the alkali metal oxide and acts to widen one pore filled with alkali metal ions. Further, CO 2 produced by the formula (9) deactivates K 2 O to prevent the pores from becoming too large, and the expansion of the pore size stops.
  • the average particle diameter (diameter) of the carbon powder is preferably 0.1 to 50 ⁇ m, for example.
  • the average particle diameter can be measured by a laser diffraction particle size distribution diameter.
  • the surface area is increased by finely pulverizing so that the alkali metal hydroxide incorporated in the interior is at or near the surface of the particles.
  • the electrode material is obtained by a washing step in which the carbon powder is washed with water and then dried.
  • the alkali metal ions are removed by washing with water, and pores corresponding to the hydrated ions of the alkali metal can be formed.
  • the novolak resin of the manufacturing method of the electrode material of this invention exists in the state of B stage.
  • the reaction product can be further reduced by a curing reaction. For this reason, gas generation can be further reduced, and the amount of bubbles difficult to control can be reduced.
  • Thermosetting resins are classified into A stage, B stage, and C stage in order from the raw material to complete curing, and the reaction proceeds in the order of A, B, and C.
  • the A stage is an initial state of the thermosetting resin production reaction, and is completely dissolved in a solvent and melts when heated.
  • the B stage is an intermediate state of curing of the thermosetting resin and dissolves in a solvent and softens when heated, but does not completely melt or dissolve. That is, it is a state in which a part is gelled.
  • the C stage is the final state of curing of the thermosetting resin, is insoluble and infusible, and the completely cured thermosetting resin is in this state.
  • the A stage and the B stage are uncured stages, and the novolac phenol resin precursor of the present invention is in any one of these states.
  • the blending amount of the alkali metal hydroxide in the method for producing an electrode material of the present invention is preferably 1.0 times or more the weight of the novolac phenol resin precursor.
  • the blending amount of the alkali metal hydroxide indicates a ratio of only the solute contained in the aqueous solution of the alkali metal hydroxide, and the amount of water is not limited.
  • the blending amount of the alkali metal hydroxide is 1.0 times or more of the weight of the novolac phenol resin precursor, more pores can be formed and the specific surface area can be increased. Moreover, when the blending amount of the alkali metal hydroxide is 1.0 times or more of the weight of the novolak phenol resin precursor, it can act as a catalyst for a sufficient amount of base to cure the novolak phenol resin precursor. it can.
  • the blending amount of the alkali metal hydroxide in the method for producing an electrode material of the present invention is more preferably 2.0 times or more of the weight of the novolac phenol resin precursor.
  • the blending amount of the alkali metal hydroxide is 2.0 times or more of the weight of the novolac phenol resin precursor, more pores can be formed and the specific surface area can be increased.
  • the blending amount of the alkali metal hydroxide is 2.0 times or more of the weight of the novolak phenol resin precursor, it can act as a catalyst for a sufficient amount of base to cure the novolak phenol resin precursor. it can.
  • alkali metal hydroxide in the method for producing an electrode material of the present invention examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Of these, sodium hydroxide is preferable.
  • Sodium hydroxide is not too strong for alkali activation during firing and can be suitably used.
  • the ratio of the novolak phenol resin precursor in the mixed solution of the aqueous solution of sodium hydroxide and the novolak phenol resin precursor in the method for producing the electrode material of the present invention is 4 It is preferably 5% by weight or more.
  • ratio of the novolak phenol resin precursor is 4.5% by weight or more, the novolac phenol resin precursor is not excessively dispersed. If the novolak phenolic resin precursor is too dispersed, the condensation reaction between other molecules is difficult to occur when the novolak resin is cured, and it is difficult to condense between the methylol groups of one molecule and gel. . That is, the molecules of one novolac resin are condensed into a lump and gelation is difficult to proceed.
  • the electrode material is a positive electrode material for a lithium ion capacitor.
  • ions that are adsorbed and desorbed at a boundary of 3.0 V with respect to the potential of lithium change.
  • the solvation of lithium ions is involved in the adsorption / desorption at 3.0 V or more, and the solvation of lithium ions at less than 3.0 V.
  • the size of the pores of the electrode material obtained by the production method of the present invention is close to the size of any ions. For this reason, the electrode material for capacitors which can control easily the pore which can enlarge the electrical storage capacity per volume and the electrical storage capacity per weight can be obtained easily.
  • 3.0 V is used.
  • the anion that adsorbs and desorbs at the above potential is PF 6 ⁇ , and its diameter is 0.51 nm.
  • Lithium ions adsorbed and desorbed at a potential of 3.0 V or less are solvent-bonded to form a solvate and have a diameter of 0.82 nm.
  • the size of the anion is the same in the electricity storage device in which lithium ions are involved.
  • Alkali activation effect is further added to the mold that forms the solvation of alkali metal ions, and when used as a lithium ion capacitor, the size of the anion and lithium solvation is the same as the size of the pores, and the storage capacity per volume is efficiently
  • an electrode material having a large storage capacity per weight can be manufactured.
  • ⁇ Curing process> In advance, an alkali metal hydroxide is dissolved in water to obtain an aqueous solution of the alkali metal hydroxide. Next, an aqueous solution of an alkali metal hydroxide and a novolac phenol resin precursor are mixed. In Comparative Example 1, water was used in place of the alkali metal hydroxide aqueous solution.
  • Tamanol 7509 (registered trademark, Arakawa Chemical Industries, Ltd.) manufactured by Arakawa Chemical Industries was used as the novolac phenol resin precursor.
  • Tamanol 7509 is a bisphenol-A-formaldehyde resin.
  • Tamanol 7509 is a novolak resin in which monomer bisphenol-A is partially polymerized with formaldehyde. The content of formaldehyde in Tamanol 7509 analyzed separately was 62 ⁇ g / g.
  • Tamanool 7509 sodium hydroxide was dissolved in water, Tamanool 7509 was added, and the mixture was stirred for 30 minutes using a stirrer in a 200 ml beaker.
  • the compounding quantity of Tamanol 7509 at this time is 5g, and the quantity of sodium hydroxide and water changes for every Example and a comparative example, and it describes in Table 1.
  • the mixed solution was poured into a fluororesin container and heated in an inert oven in a nitrogen atmosphere.
  • a heating condition a temperature rising pattern was used in which the temperature was raised at a constant rate and the temperature was maintained when the curing temperature was reached.
  • the heating rate was 1 ° C./min
  • the curing temperature was 170 ° C.
  • the holding time was 30 minutes. Excess water is evaporated by this operation, and the phenolic resin cured product is left as a solid.
  • phenolic resin cured product was pulverized by a planetary ball mill.
  • the planetary ball mill was a 500 ml zirconia container, and 10 20 mm zirconia balls were used and pulverized for 6 minutes at 200 rpm three times. By pulverizing, a phenol resin powder was obtained.
  • ⁇ Carbon powder formation process-firing process> The obtained phenol resin powder was fired in a firing furnace in a nitrogen atmosphere to obtain carbon powder.
  • a heating condition a temperature rising pattern was used in which the temperature was raised at a constant rate and the temperature was maintained when the firing temperature was reached.
  • the heating rate was 1 ° C./min
  • the firing temperature was 800 ° C.
  • the holding time was 120 minutes.
  • the obtained carbon powder was pulverized in a mortar, transferred to a beaker containing 100 ml of water, stirred for 1 hour using a stirrer, filtered, and water was removed. Next, 100 ml of water was added, neutralized with hydrochloric acid, stirred for 1 hour using a stirrer, and filtered to remove water. Further, the carbon powder was dried with a dryer at 110 ° C. for 1 hour.
  • Table 1 is a table summarizing the conditions and results regarding the composition, yield, and results of the curing steps of Examples 1 to 5 and Comparative Examples 1 and 2.
  • resin precursor refers to “novolac phenol resin precursor”
  • resin refers to “cured phenol resin”.
  • A blending amount of novolac phenol resin precursor
  • B blending amount of water as solvent
  • C blending amount of sodium hydroxide
  • D sum of blending amounts:
  • D A + B + C
  • E blending amount other than solvent:
  • E A + C
  • F the ratio of the novolak phenol resin precursor in the total blending amount:
  • F A / D
  • G the concentration of sodium hydroxide aqueous solution (wt%):
  • G C / (B + C)
  • Presence / absence of precipitate indicates the presence / absence of precipitation after mixing the novolak phenol resin precursor and the aqueous sodium hydroxide solution. “Curing” is indicated by “O” when cured after the curing process, “X” when not cured, and “ ⁇ ” when cured but not completely cured (partial curing). Yes.
  • Table 2 relates to Examples 1 to 5 and Comparative Examples 1 and 2, pulverizing the phenol resin cured product obtained in the curing step, firing the obtained phenol resin powder, and washing the obtained carbon powder It is the table
  • J is the blending amount of the phenol resin powder.
  • K is a calculated value obtained by removing NaOH from the blending amount of the phenol resin powder:
  • K J ⁇ (1-C / I)
  • L is the weight of the carbon powder after firing
  • M is the weight of the electrode material after cleaning
  • N is the carbonization yield of the cured phenol resin:
  • N M / K It is.
  • Table 3 shows the measurement results of the performance evaluation of Examples 1 to 5, Comparative Examples 1 and 2, and Comparative Example 3.
  • O represents a specific surface area.
  • P to R are pore volumes measured for each range of pore radii.
  • the measurement of the specific surface area was performed in advance by using BELPREP-vacII manufactured by Nippon Bell Co., Ltd. for 2H at 200 ° C. and using BELSORP-miniII manufactured by Nippon Bell Co., Ltd.
  • FIG. 1 shows the results of an adsorption isotherm using nitrogen adsorption.
  • the specific surface area in Table 3 was calculated using the BET method.
  • Measurement method constant volume gas adsorption method
  • Adsorbed gas N 2 Adsorption temperature: 77K (-196.15 ° C)
  • Pressure range 0 to 0.9995 (relative to the saturated vapor pressure of nitrogen at the adsorption temperature)
  • Cell size approx. 1.8 cm 3 It is.
  • FIG. 1 shows the amount of gas adsorption when adsorbed gas molecules (N 2 ) at a certain pressure p are adsorbed on the solid surface, and p / p 0 (relative value: p 0 is the saturated vapor pressure of nitrogen at the adsorption temperature). Showing the relationship.
  • FIG. 2 shows that when the pore diameter is dp and the pore volume is Vp, the horizontal axis is the value of dp, and the vertical axis is dVp / ddp, that is, the pore volume Vp is differentiated by the pore diameter dp. It is a graph which is a value.
  • Example 1 to 4 and Comparative Examples 1 to 2 the amount of the novolak phenol resin precursor and the amount of water were the same, and the test was performed by changing the amount of sodium hydroxide. Comparative Example 1 does not contain sodium hydroxide, and Examples 1 to 5 contain sodium hydroxide. The amount of sodium hydroxide is increased so as to be approximately a geometric series in the order of Examples 1 to 4 and Comparative Example 2.
  • the yield I is higher than the blending amount of the novolac phenol resin resin precursor and sodium hydroxide (I ⁇ E). This is considered to be due to the effects of formaldehyde being added to the novolac resin, the low molecular weight component being taken into the phenolic resin cured product, and the sodium ions forming a hydrate.
  • Example 4 Although the electrode material was obtained, it was in a partially cured state that was not completely cured, and the carbonization yield was low. (In Comparative Example 2, a sufficient sample could not be obtained and measured.) This was because the novolak phenol resin precursor was too diluted with sodium hydroxide and could not form bonds with other molecules. It is presumed that crosslinking did not progress. However, in Example 4, the specific surface area is larger than in Examples 1 to 3, and the pore volume in any region of PQR in Table 3 is at a high level. For this reason, when the amount of sodium hydroxide is increased, the carbonization yield has a maximum value and starts to decrease, but the performance of the obtained electrode material may be at a high level even if the carbonization yield is low. confirmed.
  • Example 5 in which the amount of sodium hydroxide is the same as Example 3 and the amount of water to be diluted is reduced will be described while comparing Example 3 and Example 5.
  • the blending amount of water is 80.89 g, whereas in Example 5, it is 37.9 g.
  • the ratio of the novolak phenol resin precursor to the blending amount is 4.7% in Example 3 and 7.9% in Example 5.
  • Each level has a high specific surface area, and the pore volume in any region of PQR in Table 3 is at a high level.
  • the carbonization yield N is greatly improved in Example 5 in which the blending amount of water during blending is reduced.
  • Example 4 in which the ratio of the novolak phenol resin precursor to the blending amount was 4.0% and in Comparative Example 2 in which 2.8%, complete curing could not be achieved.
  • Comparative Example 3 shows the specific surface area of an electrode material made of general activated carbon activated with alkali.
  • the electrode materials of Examples 1 to 5 had performance equivalent to or higher than that of Comparative Example 3 in specific surface area. According to the method for producing an electrode material of the present invention, it is easy to control the size of the pores, and for a capacitor with controlled pores so that the storage capacity per volume and the storage capacity per weight can be increased. It was confirmed that a method for producing the electrode material can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This method for producing an electrode material is characterized by comprising: a curing step of adding, to a novolac type phenol resin precursor, an aqueous solution of an alkali metal hydroxide in which an alkali metal hydroxide is dissolved at a quantity that is not more than 8.0 times the weight of the novolac type phenol resin precursor, thereby rendering the novolac type phenol resin precursor basic, and then heating the novolac type phenol resin precursor so as to obtain a cured product of a phenol resin; a carbon powder formation step of pulverizing and firing the cured product of a phenol resin so as to obtain a carbon powder; and a washing step of washing the carbon powder with water and then drying the carbon powder so as to obtain an electrode material.

Description

電極材料の製造方法Method for producing electrode material
 本発明は、電極材料の製造方法に関する。 The present invention relates to a method for manufacturing an electrode material.
 大容量の蓄電デバイスとして、リチウムイオン二次電池、電気二重層キャパシタなどが知られている。
 リチウムイオン二次電池は、正極と負極の間をリチウムイオンが移動することで充電や放電を行う二次電池である。電極材料には様々なものが使われるが、正極にコバルト酸リチウム、負極に炭素(グラファイト)を用いることが多い。正極板と負極板を、セパレータを挟んで何層も積み重ね、全体を有機溶媒の電解質で満たした構造になっている。
 一方、電気二重層キャパシタは、外部から電圧が加えられると、電解質中の陽イオンと陰イオンが2つの電極との表面で分子一層分の厚みの狭い領域で電気二重層を構成して電荷が蓄積され、電流が流れる。蓄電能力を左右する蓄積可能な電荷量は、外部からの電流量と電解質中のイオン量、イオンを吸着することで電荷を蓄える電極の表面積で決定されることが知られている。
As large-capacity electricity storage devices, lithium ion secondary batteries, electric double layer capacitors, and the like are known.
A lithium ion secondary battery is a secondary battery that performs charging and discharging by moving lithium ions between a positive electrode and a negative electrode. Various electrode materials are used, and lithium cobaltate is often used for the positive electrode and carbon (graphite) is often used for the negative electrode. A positive electrode plate and a negative electrode plate are stacked in layers with a separator in between, and the whole is filled with an organic solvent electrolyte.
On the other hand, when an external voltage is applied to an electric double layer capacitor, the cation and anion in the electrolyte form an electric double layer in a region of a small molecular layer on the surface of the two electrodes, and charge is generated. Accumulated and current flows. It is known that the amount of charge that can be stored that affects the storage capacity is determined by the amount of current from the outside, the amount of ions in the electrolyte, and the surface area of the electrode that stores charges by adsorbing ions.
 このような大容量の蓄電デバイスとして、炭素材料は多用されている。このような蓄電デバイスに用いられる炭素材料として、「有機質樹脂を、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種と混合し、非酸化性雰囲気で加熱焼成する工程を有することを特徴とする活性炭の製法」が特許文献1に提案されている。このような製造方法により、比表面積が400~2000m/gである活性炭、あるいはメソポア体積が0.16mL/g以上である活性炭が、得られることが開示されている。 As such a large-capacity electricity storage device, a carbon material is frequently used. As a carbon material used for such an electricity storage device, “organic resin is at least one of alkaline earth metal compounds selected from the group consisting of oxides, hydroxides, carbonates, and organic acid salts of alkaline earth metals. Patent Document 1 proposes a process for producing activated carbon, which includes a step of mixing with seeds and heating and firing in a non-oxidizing atmosphere. It is disclosed that activated carbon having a specific surface area of 400 to 2000 m 2 / g or activated carbon having a mesopore volume of 0.16 mL / g or more can be obtained by such a production method.
特開2012-82134号公報JP 2012-82134 A
 上記に記載された炭素材料を用いた電気二重層キャパシタなどの蓄電デバイスは、様々な大容量化のための開発が行われている。電極材料の容量には、重量当たりの蓄電容量、体積当たりの蓄電容量の2つの尺度がある。電極材料の重量当たりの蓄電容量を大きくしても、電極材料のかさ密度が低いと体積当たりの蓄電容量を大きくすることができない。
重量当たりの蓄電容量および体積当たりの蓄電容量を大きくするためには、細孔サイズの制御が重要となる。不必要に大きな細孔または気孔が大量に存在すると炭素材料のかさ密度が低くなるため、体積当たりの蓄電容量が小さくなる。
Electric storage devices such as electric double layer capacitors using the carbon materials described above have been developed for various capacities. There are two measures for the capacity of the electrode material: the storage capacity per weight and the storage capacity per volume. Even if the storage capacity per weight of the electrode material is increased, the storage capacity per volume cannot be increased if the bulk density of the electrode material is low.
In order to increase the power storage capacity per weight and the power storage capacity per volume, it is important to control the pore size. If a large amount of unnecessary large pores or pores are present, the bulk density of the carbon material is lowered, and the storage capacity per volume is reduced.
 細孔が少なくなり比表面積が小さくなると、電気二重層を形成できる表面積が小さくなり、重量当たりの蓄電容量が減少する。このため、蓄電時に吸脱着するイオンに関係する細かな細孔(ミクロポア)がより多く存在することが重要である。 When the pores are reduced and the specific surface area is reduced, the surface area capable of forming the electric double layer is reduced, and the storage capacity per weight is reduced. For this reason, it is important that there are more fine pores (micropores) related to ions adsorbed and desorbed during power storage.
 また、このような課題は、電気二重層キャパシタに限らず、同様の原理を用いた他の蓄電デバイスにもある。
 近年、リチウムイオン二次電池と、電気二重層キャパシタを組み合わせたリチウムイオンキャパシタが注目されている。リチウムイオンキャパシタは一般的な電気二重層キャパシタの原理を使いながら負極材料としてリチウムイオン吸蔵可能な炭素系材料を使い、そこにリチウムイオンを添加することでエネルギー密度を向上させたものである。
正極と負極とで充放電の原理が異なり、リチウムイオン二次電池の負極と電気二重層キャパシタの正極を組み合わせた構造を持っている。
Moreover, such a subject exists not only in an electric double layer capacitor but also in other power storage devices using the same principle.
In recent years, a lithium ion capacitor combining a lithium ion secondary battery and an electric double layer capacitor has attracted attention. The lithium ion capacitor uses a carbon-based material capable of occluding lithium ions as a negative electrode material while using the principle of a general electric double layer capacitor, and the energy density is improved by adding lithium ions thereto.
The principle of charge and discharge is different between the positive electrode and the negative electrode, and it has a structure in which the negative electrode of the lithium ion secondary battery and the positive electrode of the electric double layer capacitor are combined.
 このため、リチウムイオンキャパシタは大容量であって、充放電の速度が速い特徴を持っている。リチウムイオンキャパシタは、さらなる大容量化の要望が高く、特にキャパシタの原理を用いた正極の容量アップが蓄電容量を支配している。 Therefore, the lithium ion capacitor has a large capacity and a high charge / discharge speed. Lithium ion capacitors are highly demanded to have a larger capacity, and the capacity increase of the positive electrode using the principle of the capacitor dominates the storage capacity.
 本発明は、上記の事情に着目してなされたもので、その目的は、体積当たりの蓄電容量および重量当たりの蓄電容量を大きくすることができるよう細孔の制御されたキャパシタ用の電極材料の製造方法を提供することである。 The present invention has been made by paying attention to the above circumstances, and its purpose is to provide an electrode material for a capacitor whose pores are controlled so that the storage capacity per volume and the storage capacity per weight can be increased. It is to provide a manufacturing method.
 また、もう1つの目的はリチウムイオンキャパシタの体積当たりの蓄電容量および重量当たりの蓄電容量を大きくすることができるよう、細孔の制御された正極用の電極材料の製造方法を提供することである。 Another object is to provide a method for producing an electrode material for a positive electrode having a controlled pore so that the storage capacity per volume and the storage capacity per weight of a lithium ion capacitor can be increased. .
 前記課題を解決するための本発明の電極材料の製造方法は、ノボラック系フェノール樹脂前駆体に前記ノボラック系フェノール樹脂前駆体の重量の8.0倍以下のアルカリ金属水酸化物が溶解したアルカリ金属水酸化物水溶液を加え、前記ノボラック系フェノール樹脂前駆体を塩基性に調整した後、前記ノボラック系フェノール樹脂前駆体を加熱することによってフェノール樹脂硬化物を得る硬化工程と、
前記フェノール樹脂硬化物を粉砕および焼成して炭素粉末を得る炭素粉末形成工程と、
前記炭素粉末を水洗した後乾燥させ、電極材料を得る洗浄工程と、
からなることを特徴とする。
The method for producing an electrode material of the present invention for solving the above-described problems is an alkali metal in which an alkali metal hydroxide having a novolac phenol resin precursor dissolved in an amount of 8.0 times or less the weight of the novolac phenol resin precursor is dissolved. After adding an aqueous hydroxide solution and adjusting the novolac phenol resin precursor to basic, a curing step of obtaining a phenol resin cured product by heating the novolac phenol resin precursor;
A carbon powder forming step of pulverizing and firing the phenol resin cured product to obtain a carbon powder;
The carbon powder is washed with water and dried to obtain an electrode material, and
It is characterized by comprising.
 熱硬化性樹脂であるノボラック系フェノール樹脂を製造する過程で、アルカリ金属水酸化物の水溶液を加え内部に大量のアルカリ金属のイオンを分散させる。こののちノボラック系フェノール樹脂を粉砕および焼成し、洗浄する。洗浄されることで内部に含まれていたアルカリ金属イオンが取り除かれ、大きさの均一な細孔が形成される。 In the process of producing a novolak phenol resin that is a thermosetting resin, an aqueous solution of alkali metal hydroxide is added to disperse a large amount of alkali metal ions inside. After that, the novolac phenol resin is pulverized and fired and washed. By washing, alkali metal ions contained therein are removed, and pores having a uniform size are formed.
 本発明の電極材料の製造方法は、以下の作用により体積当たりの蓄電容量および重量当たりの蓄電容量を大きくすることができ、細孔を容易に制御できるキャパシタ用の電極材料を提供することができる。 The electrode material manufacturing method of the present invention can increase the storage capacity per volume and the storage capacity per weight by the following actions, and can provide an electrode material for a capacitor that can easily control pores. .
<鋳型作用>
 アルカリ金属水酸化物がアルカリ金属の水和イオンを形成し、鋳型となって電気二重層に関与するイオンのサイズに近い細孔を形成する。また、水酸化ナトリウムの配合量がノボラック系フェノール樹脂前駆体の重量の8.0倍以下であると、ノボラック系フェノール樹脂前駆体が希釈されすぎず縮合反応を阻害しにくいので、効率良くフェノール樹脂硬化物を得ることができる。
<Molding action>
Alkali metal hydroxide forms hydrated ions of alkali metal, and serves as a template to form pores close to the size of the ions involved in the electric double layer. Further, when the amount of sodium hydroxide is 8.0 times or less of the weight of the novolak phenol resin precursor, the novolac phenol resin precursor is not diluted too much and the condensation reaction is not easily inhibited. A cured product can be obtained.
<アルカリ賦活作用>
 アルカリ金属水酸化物を含有しているので、アルカリ賦活効果による細孔形成作用がある。
<Alkali activation effect>
Since it contains an alkali metal hydroxide, it has a pore forming action due to an alkali activation effect.
<ガス発生の抑止作用>
 重合の進んだノボラック系フェノール樹脂前駆体を原材料として使用できるので、硬化反応での反応生成物が少なく、ガスの発生を少なくすることができ、制御困難な気泡の量を少なくすることができる。また、反応によって生成するアルデヒドなどは、ノボラック系フェノール樹脂の芳香環にメチロール基などとして付加し消費され、ガスの発生を少なくすることができ、制御困難な気泡の量を少なくすることができる。
<Inhibition of gas generation>
Since a novolak phenol resin precursor having undergone polymerization can be used as a raw material, there are few reaction products in the curing reaction, gas generation can be reduced, and the amount of bubbles that are difficult to control can be reduced. In addition, aldehydes produced by the reaction are consumed as methylol groups added to the aromatic ring of the novolak phenol resin, thereby reducing the generation of gas and reducing the amount of bubbles that are difficult to control.
<細孔の分散作用>
 アルカリ金属水酸化物であるので、溶解度が高く、水和イオン化することにより、均一に分散し、制御された細かな細孔を形成することができる。
<Dispersing action of pores>
Since it is an alkali metal hydroxide, it has high solubility and can be dispersed uniformly and fine pores can be formed by hydration ionization.
 さらに、本発明の電極材料の製造方法は、以下の態様が望ましい。 Furthermore, the following aspect is desirable for the method for producing the electrode material of the present invention.
(1)前記ノボラック系フェノール樹脂前駆体は、アルデヒド類またはケトン類と、ノボラック樹脂との混合物である。
 さらに重合の進んだノボラック樹脂を原材料として使用できるので、反応生成物が少なく、ガスの発生を少なくすることができ、制御困難な気泡の量を少なくすることができる。また、アルデヒド類またはケトン類が、塩基の触媒作用によってノボラック樹脂の芳香環に付加されるので、ノボラック樹脂を架橋することができ、効率良くフェノール樹脂硬化物を得ることができる。
(1) The novolac phenol resin precursor is a mixture of aldehydes or ketones and a novolac resin.
Furthermore, since a novolak resin having undergone polymerization can be used as a raw material, there are few reaction products, the generation of gas can be reduced, and the amount of bubbles that are difficult to control can be reduced. In addition, since aldehydes or ketones are added to the aromatic ring of the novolak resin by the catalytic action of the base, the novolak resin can be cross-linked and the phenol resin cured product can be obtained efficiently.
(2)前記ノボラック樹脂は、Bステージの状態にある。
ノボラック樹脂は、一部がゲル化したBステージの状態にあると、さらに硬化反応で反応生成物を少なくすることができる。このためさらにガスの発生を少なくすることができ、制御困難な気泡の量を少なくすることができる。
(2) The novolac resin is in a B-stage state.
When the novolak resin is in a B-stage state in which a part is gelled, the reaction product can be further reduced by a curing reaction. For this reason, gas generation can be further reduced, and the amount of bubbles difficult to control can be reduced.
(3)前記アルカリ金属水酸化物の配合量は、前記ノボラック系フェノール樹脂前駆体の重量の1.0倍以上である。
 アルカリ金属水酸化物の配合量がノボラック系フェノール樹脂前駆体の重量の1.0倍以上であると、より多くの細孔を形成することができ、比表面積を大きくすることができる。また、アルカリ金属水酸化物の配合量がノボラック系フェノール樹脂前駆体の重量の1.0倍以上であると、ノボラック系フェノール樹脂前駆体を硬化させる十分な量の塩基の触媒として作用することができる。
(3) The compounding quantity of the said alkali metal hydroxide is 1.0 times or more of the weight of the said novolak-type phenol resin precursor.
When the blending amount of the alkali metal hydroxide is 1.0 times or more of the weight of the novolac phenol resin precursor, more pores can be formed and the specific surface area can be increased. Moreover, when the blending amount of the alkali metal hydroxide is 1.0 times or more of the weight of the novolak phenol resin precursor, it can act as a catalyst for a sufficient amount of base to cure the novolak phenol resin precursor. it can.
(4)前記アルカリ金属水酸化物の配合量は、前記ノボラック系フェノール樹脂前駆体の重量の2.0倍以上である。
 アルカリ金属水酸化物の配合量がノボラック系フェノール樹脂前駆体の重量の2.0倍以上であると、さらにより多くの細孔を形成することができ、比表面積を大きくすることができる。また、アルカリ金属水酸化物の配合量がノボラック系フェノール樹脂前駆体の重量の2.0倍以上であると、ノボラック系フェノール樹脂前駆体を硬化させる十分な量の塩基の触媒として作用することができる。
(4) The compounding quantity of the said alkali metal hydroxide is 2.0 times or more of the weight of the said novolak-type phenol resin precursor.
When the blending amount of the alkali metal hydroxide is 2.0 times or more of the weight of the novolac phenol resin precursor, more pores can be formed and the specific surface area can be increased. Further, when the blending amount of the alkali metal hydroxide is 2.0 times or more of the weight of the novolak phenol resin precursor, it can act as a catalyst for a sufficient amount of base to cure the novolak phenol resin precursor. it can.
(5)前記アルカリ金属水酸化物は、水酸化ナトリウムである。
水酸化ナトリウムは焼成時のアルカリ賦活作用が強すぎず好適に利用することができる。
(5) The alkali metal hydroxide is sodium hydroxide.
Sodium hydroxide can be suitably used without being too strong for alkali activation during firing.
(6)前記炭素粉末形成工程は、前記フェノール樹脂硬化物を粉砕し、フェノール樹脂粉末を得る粉砕工程と、前記フェノール樹脂粉末を焼成し、炭素粉末を得る粉砕工程と、からなる。
 あらかじめ、フェノール樹脂硬化物を粉砕し、表面積を増やした後に焼成することができるので、均一に炭素化でき、細孔のバラツキを小さくすることができる。
(6) The carbon powder forming step includes a pulverizing step of pulverizing the phenol resin cured product to obtain a phenol resin powder, and a pulverizing step of baking the phenol resin powder to obtain a carbon powder.
Since the cured phenol resin can be pulverized in advance to increase the surface area and fired, it can be uniformly carbonized and the variation in pores can be reduced.
(7)本発明の電極材料の製造方法で製造される前記電極材料は、リチウムイオンキャパシタの正極用電極材料である。
 リチウムイオンキャパシタの正極では、リチウムの電位に対して3.0Vを境に吸脱着するイオンが変化する。3.0V以上ではアニオン、3.0V未満ではリチウムイオンの溶媒和が吸脱着に関与する。本発明の電極材料の製造方法で得られる電極材料の細孔の大きさは、いずれのイオンの大きさにも近い。このため、体積当たりの蓄電容量および重量当たりの蓄電容量を大きくすることができる細孔を容易に制御できるキャパシタ用の電極材料を容易に得ることができる。
(7) The said electrode material manufactured with the manufacturing method of the electrode material of this invention is an electrode material for positive electrodes of a lithium ion capacitor.
In the positive electrode of the lithium ion capacitor, ions that are adsorbed and desorbed at a boundary of 3.0 V with respect to the potential of lithium change. The solvation of lithium ions is involved in the adsorption / desorption at 3.0 V or more, and the solvation of lithium ions at less than 3.0 V. The size of the pores of the electrode material obtained by the method for producing an electrode material of the present invention is close to the size of any ion. For this reason, the electrode material for capacitors which can control easily the pore which can enlarge the electrical storage capacity per volume and the electrical storage capacity per weight can be obtained easily.
 本発明の電極材料の製造方法によれば、体積当たりの蓄電容量および重量当たりの蓄電容量を大きくすることができる細孔を、容易に制御できるキャパシタ用の電極材料を提供することができる。 According to the method for producing an electrode material of the present invention, it is possible to provide an electrode material for a capacitor that can easily control pores capable of increasing the storage capacity per volume and the storage capacity per weight.
実施例および比較例の窒素吸着を用いた吸着等温線の測定結果である。It is a measurement result of the adsorption isotherm using nitrogen adsorption of an example and a comparative example. 吸着等温線の測定結果をHK法により横軸を細孔直径とする細孔径分布に変換したグラフである。It is the graph which converted the measurement result of the adsorption isotherm into the pore diameter distribution which makes a horizontal axis the pore diameter by HK method.
 本発明の電極材料の製造方法は、ノボラック系フェノール樹脂前駆体に前記ノボラック系フェノール樹脂前駆体の重量の8.0倍以下のアルカリ金属水酸化物が溶解したアルカリ金属水酸化物水溶液を加え、前記ノボラック系フェノール樹脂前駆体を塩基性に調整した後、前記ノボラック系フェノール樹脂前駆体を加熱することによってフェノール樹脂硬化物を得る硬化工程と、
前記フェノール樹脂硬化物を粉砕および焼成して炭素粉末を得る炭素粉末形成工程と、
前記炭素粉末を水洗した後乾燥させ、電極材料を得る洗浄工程と、
からなることを特徴とする。
In the method for producing an electrode material of the present invention, an alkali metal hydroxide aqueous solution in which an alkali metal hydroxide of 8.0 times or less the weight of the novolac phenol resin precursor is dissolved in a novolac phenol resin precursor is added, After adjusting the novolac phenol resin precursor to basic, a curing step of obtaining a phenol resin cured product by heating the novolac phenol resin precursor;
A carbon powder forming step of pulverizing and firing the phenol resin cured product to obtain a carbon powder;
The carbon powder is washed with water and dried to obtain an electrode material, and
It is characterized by comprising.
 本発明の電極材料の製造方法によれば、以下の作用により体積当たりの蓄電容量および重量当たりの蓄電容量を大きくすることができ、細孔を容易に制御できるキャパシタ用の電極材料を提供することができる。 According to the method for producing an electrode material of the present invention, it is possible to increase the storage capacity per volume and the storage capacity per weight by the following actions, and to provide an electrode material for a capacitor in which pores can be easily controlled. Can do.
<鋳型作用>
 アルカリ金属水酸化物がアルカリ金属の水和イオンを形成し、鋳型となって電気二重層に関与するイオンのサイズに近い細孔を形成する。また、水酸化ナトリウムの配合量がノボラック系フェノール樹脂前駆体の重量の8.0倍以下であると、ノボラック系フェノール樹脂前駆体が希釈されすぎず縮合反応を阻害しにくいので、効率良くフェノール樹脂硬化物を得ることができる。アルカリ金属水酸化物の配合量とは、アルカリ金属水酸化物の水溶液に含まれる溶質のみの比率を示し、水分の量は問わない。
<Molding action>
Alkali metal hydroxide forms hydrated ions of alkali metal, and serves as a template to form pores close to the size of the ions involved in the electric double layer. Further, when the amount of sodium hydroxide is 8.0 times or less of the weight of the novolak phenol resin precursor, the novolac phenol resin precursor is not diluted too much and the condensation reaction is not easily inhibited. A cured product can be obtained. The blending amount of the alkali metal hydroxide indicates a ratio of only the solute contained in the aqueous solution of the alkali metal hydroxide, and the amount of water is not limited.
<アルカリ賦活作用>
 アルカリ金属水酸化物を含有しているので、アルカリ賦活効果による細孔形成作用がある。
<Alkali activation effect>
Since it contains an alkali metal hydroxide, it has a pore forming action due to an alkali activation effect.
<ガス発生の抑止作用>
 重合の進んだノボラック系フェノール樹脂前駆体を原材料として使用できるので、硬化反応での反応生成物が少なく、ガスの発生を少なくすることができ、制御困難な気泡の量を少なくすることができる。また、反応によって生成したアルデヒドなどは、ノボラック系フェノール樹脂の芳香環にメチロール基として付加し消費され、ガスの発生を少なくすることができ、制御困難な気泡の量を少なくすることができる。
<Inhibition of gas generation>
Since a novolak phenol resin precursor having undergone polymerization can be used as a raw material, there are few reaction products in the curing reaction, gas generation can be reduced, and the amount of bubbles that are difficult to control can be reduced. In addition, aldehyde generated by the reaction is consumed as a methylol group added to the aromatic ring of the novolak phenol resin, thereby reducing gas generation and reducing the amount of bubbles that are difficult to control.
<細孔の分散作用>
 アルカリ金属水酸化物であるので、溶解度が高く、水和イオン化することにより、均一に分散し、制御された細かな細孔を形成することができる。
<Dispersing action of pores>
Since it is an alkali metal hydroxide, it has high solubility and can be dispersed uniformly and fine pores can be formed by hydration ionization.
 本発明の電極材料の製造方法は、ノボラック系フェノール樹脂前駆体を用いる。ノボラック系フェノール樹脂前駆体とは、未硬化のノボラック系フェノール樹脂前駆体であれば特に限定されない。 The method for producing the electrode material of the present invention uses a novolac phenol resin precursor. The novolac phenol resin precursor is not particularly limited as long as it is an uncured novolac phenol resin precursor.
 フェノール樹脂には、ノボラック系フェノール樹脂と、レゾール系フェノール樹脂とがある。 There are novolak phenol resin and resol phenol resin in phenol resin.
 ノボラック系フェノール樹脂は、モノマーから2段階の反応を経て得られる。1段目の反応では、フェノールまたはフェノール類のモノマーに、アルデヒド類またはケトン類を加え、酸を触媒として縮合させノボラック樹脂を得る。次に2段目の反応でヘキサミンなどの架橋剤を加え、ノボラック樹脂を架橋することにより硬化しノボラック系フェノール樹脂が得られる。 The novolak phenol resin is obtained from the monomer through a two-step reaction. In the first-stage reaction, an aldehyde or a ketone is added to phenol or a phenol monomer, and condensed using an acid as a catalyst to obtain a novolak resin. Next, in the second stage reaction, a novolac phenol resin is obtained by curing by adding a crosslinking agent such as hexamine and crosslinking the novolak resin.
 ノボラック樹脂は、メチロール基を大量に有していないので、1段目の段階では架橋反応は進行せず、熱可塑性の樹脂である。一般には、このノボラック樹脂にさらに架橋剤を加えることにより硬化してノボラック系フェノール樹脂となる。 Since the novolac resin does not have a large amount of methylol groups, the crosslinking reaction does not proceed at the first stage and is a thermoplastic resin. In general, this novolak resin is further cured by adding a crosslinking agent to form a novolak phenol resin.
 (1)~(3)式にフェノールとホルムアルデヒドを縮合し、ノボラック樹脂を合成する反応を例示する。この反応は、フェノールに代わりフェノール類であっても同様に進行する。また、この反応は、ホルムアルデヒドに代わりアルデヒド類またはケトン類であっても同様に進行する。(1)式では、酸を触媒としてフェノールにホルムアルデヒドを付加し、メチロール基を導入する。(1)式右辺では具体的にメチロール基の付加する位置が記載されていないが、メチロール基はフェノールのo-位またはp-位に付加する。(2)式に示すように、メチロール基が付加したフェノール(モノメチロール体)はすぐにフェノールと結合し、2量体を形成する。(2)式で得られた2量体の芳香環には、(1)式のようにメチロール基がさらに付加し、(2)式のようにフェノールがすぐに結合し3量体を形成する。(1)式の反応速度は(2)式の反応速度より遅いので、(3)式のように、直鎖状に重合が進行し、熱可塑性のノボラック樹脂が得られる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Examples of the reaction of synthesizing a novolac resin by condensing phenol and formaldehyde in the formulas (1) to (3). This reaction proceeds similarly even if phenols are used instead of phenol. This reaction proceeds in the same manner even when aldehydes or ketones are used instead of formaldehyde. In the formula (1), formaldehyde is added to phenol using an acid as a catalyst to introduce a methylol group. In the right side of the formula (1), the position to which the methylol group is added is not specifically described, but the methylol group is added to the o-position or p-position of the phenol. As shown in the formula (2), the phenol (monomethylol body) to which the methylol group is added immediately bonds with the phenol to form a dimer. A methylol group is further added to the dimer aromatic ring obtained by the formula (2) as shown in the formula (1), and a phenol is immediately bonded to form a trimer as shown in the formula (2). . Since the reaction rate of the formula (1) is slower than the reaction rate of the formula (2), the polymerization proceeds linearly as in the formula (3), and a thermoplastic novolak resin is obtained.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 これに対し、もう一種類のフェノール樹脂であるレゾール系フェノール樹脂も、モノマーから2段階の反応を経て得られる。1段目の反応では、フェノールまたはフェノール類のモノマーに、アルデヒド類またはケトン類を加え、塩基を触媒として用いてメチロール基などを芳香環に付加させ、メチロール体を得る。次に2段目の反応でメチロール体を硬化させ、レゾール系フェノール樹脂となる。一段目の反応において、モノマーにメチロール基が付加される場合には、モノマーに付加したメチロール基の数に応じて、1個付加したものはモノメチロール体、2個付加したものはジメチロール体、3個付加したものはトリメチロール体と呼ばれる。メチロール基は、o-位または、p-位に付加する。塩基を触媒とした付加反応が進行するにつれて、モノメチロール体から、ジメチロール体、トリメチロール体へと反応が進行していく。2段目の反応においてメチロール体に熱または酸を加えることにより結合し硬化することができる。
Figure JPOXMLDOC01-appb-C000004
On the other hand, a resol type phenol resin which is another kind of phenol resin is also obtained from the monomer through a two-step reaction. In the first stage reaction, an aldehyde or a ketone is added to phenol or a phenol monomer, and a methylol group or the like is added to an aromatic ring using a base as a catalyst to obtain a methylol body. Next, the methylol body is cured by a second-stage reaction to form a resol-based phenol resin. In the first-stage reaction, when a methylol group is added to the monomer, depending on the number of methylol groups added to the monomer, one added is a monomethylol body, two added is a dimethylol body, 3 The added one is called a trimethylol body. A methylol group is added at the o-position or p-position. As the addition reaction using a base as a catalyst proceeds, the reaction proceeds from a monomethylol body to a dimethylol body and a trimethylol body. In the second stage reaction, the methylol body can be bonded and cured by adding heat or acid.
Figure JPOXMLDOC01-appb-C000004
 本発明の電極材料の製造方法では、ノボラック系フェノール樹脂前駆体を用いる。上記に記載したように、ノボラック系フェノール樹脂およびレゾール系フェノール樹脂は2段階の反応によって合成される。1段目と2段目の中間生成物の分子量を比較すると、1段目で重縮合反応を起こすことができるノボラック系フェノール樹脂の方が大きい。このため、2段目の反応で発生する副生成物の量は、ノボラック系フェノール樹脂の方が少なくすることができ、細孔または気孔の元となる気泡の発生を少なくすることができる。 In the method for producing an electrode material of the present invention, a novolac phenol resin precursor is used. As described above, the novolac phenol resin and the resol phenol resin are synthesized by a two-step reaction. Comparing the molecular weights of the first and second stage intermediate products, the novolac phenolic resin capable of causing the polycondensation reaction in the first stage is larger. For this reason, the amount of by-products generated in the second-stage reaction can be reduced in the novolac phenol resin, and the generation of pores or bubbles that are the basis of pores can be reduced.
 2段目の反応に伴って発生する気泡の大きさは、圧力、温度、1つの気泡に含まれる副生成物のモル数などに応じて変化する。このため、気泡の大きさを制御することは難しい。ノボラック系フェノール樹脂では、中間生成物の分子量が大きいので、大きさの制御の難しい気泡の発生を少なくすることができるので、フェノール樹脂を焼成して得られる電極材料の細孔または気孔の大きさに対して気泡が与える影響を小さくすることができる。 The size of bubbles generated with the second-stage reaction varies depending on pressure, temperature, the number of moles of by-products contained in one bubble, and the like. For this reason, it is difficult to control the size of the bubbles. In the novolac phenol resin, the molecular weight of the intermediate product is large, so it is possible to reduce the generation of bubbles whose size is difficult to control. Therefore, the size of the pores or pores of the electrode material obtained by firing the phenol resin It is possible to reduce the influence of bubbles on the surface.
 また、本発明の電極材料の製造方法は、ノボラック系フェノール樹脂前駆体に、アルカリ金属水酸化物の水溶液を加え、塩基性にすることによって硬化反応を行う硬化工程を有している。この反応を(5)式に示す。塩基性にすることによって、ノボラック系フェノール樹脂前駆体に含まれるフェノールまたはフェノール類の芳香環の空いた位置にメチロール基を付加することができる。さらに熱を加えることによってメチロール基どうしが脱水縮合を起こし、硬化することができる。メチロール基が付加する位置は、o-位またはp-位であり、空いた位置に付加される。
Figure JPOXMLDOC01-appb-C000005
Moreover, the manufacturing method of the electrode material of this invention has the hardening process which performs hardening reaction by adding the aqueous solution of an alkali metal hydroxide to a novolak-type phenol resin precursor, and making it basic. This reaction is shown in Formula (5). By making it basic, a methylol group can be added to a position where an aromatic ring of phenol or phenols contained in the novolak phenol resin precursor is vacant. Further, by applying heat, the methylol groups undergo dehydration condensation and can be cured. The position to which the methylol group is added is the o-position or the p-position, and is added to a vacant position.
Figure JPOXMLDOC01-appb-C000005
 また、アルカリ金属水酸化物は、水に溶解するとイオン化し、アルカリ金属のイオンと、OHとに分離する。アルカリ金属のイオンは、単独で存在するのではなく、水分子数個と結合し、水和構造をとる。水分子と結合したイオンは、水和イオンといい、単独のアルカリ金属イオンよりも大きい。 Alkali metal hydroxide ionizes when dissolved in water and is separated into alkali metal ions and OH . Alkali metal ions do not exist alone, but combine with several water molecules to form a hydrated structure. Ions bound to water molecules are called hydrated ions, and are larger than single alkali metal ions.
 アルカリ金属の水和イオンの半径は、0.3~0.4nmであり、電気二重層に関与するイオンのサイズに近い。このため、イオン化したアルカリ金属の水和イオンが鋳型となり、細孔を形成することができ、効率良く電気二重層に関与する表面積を大きくすることができる。 The radius of alkali metal hydrated ions is 0.3 to 0.4 nm, which is close to the size of ions involved in the electric double layer. For this reason, ionized alkali metal hydrate ions serve as a template to form pores, and the surface area involved in the electric double layer can be efficiently increased.
 このため、本発明の電極材料の製造方法において、アルカリ金属水酸化物は、ノボラック樹脂にメチロール基を付加する塩基性の触媒としての作用と、アルカリ金属の水和イオンとなって鋳型としての作用と、の二面的な作用を有している。 Therefore, in the method for producing an electrode material of the present invention, an alkali metal hydroxide acts as a basic catalyst for adding a methylol group to a novolac resin and acts as a template by becoming a hydrated ion of an alkali metal. And has two-sided actions.
 本発明の電極材料の製造方法では、メチロール基の付加したノボラック樹脂に熱を加えることにより塩基の触媒作用によってメチロール基どうしが結合する。この反応は架橋反応でありノボラック樹脂がゲル化し、熱硬化性樹脂となり硬化する。硬化の方法は特に限定されないが、加熱して熱硬化させることが望ましい。加熱の温度は特に限定されないが、70~300℃である。加熱時間も特に限定されない。例えば3分~20時間である。なお温度が高ければ高いほど短時間で硬化反応が終了する。 In the method for producing an electrode material of the present invention, heat is applied to a novolak resin to which a methylol group is added, so that methylol groups are bonded to each other by the catalytic action of a base. This reaction is a cross-linking reaction, and the novolak resin is gelled and becomes a thermosetting resin and is cured. The curing method is not particularly limited, but it is desirable to heat and cure. The heating temperature is not particularly limited, but is 70 to 300 ° C. The heating time is not particularly limited. For example, 3 minutes to 20 hours. The higher the temperature, the faster the curing reaction is completed.
 また、本発明の電極材料の製造方法は、アルカリ金属水酸化物を用いることを特徴とする。アルカリ金属水酸化物は、強い塩基であり触媒としての作用が強い上に、アルカリ土類金属に比べ水溶性が高く、より多くのアルカリ金属イオンを水溶液中に分散させることができる。このため、メチロール基を付加する塩基性の触媒としての作用とアルカリ金属の水和イオンが鋳型となる作用をより強くすることができる。 The electrode material manufacturing method of the present invention is characterized by using an alkali metal hydroxide. The alkali metal hydroxide is a strong base and has a strong action as a catalyst, and also has higher water solubility than an alkaline earth metal, and more alkali metal ions can be dispersed in an aqueous solution. For this reason, the effect | action as a basic catalyst which adds a methylol group and the effect | action from which the hydrated ion of an alkali metal becomes a template can be strengthened.
 本発明のノボラック系フェノール樹脂前駆体は、特に限定されない。ノボラック系フェノール樹脂前駆体としては、アルデヒド類またはケトン類と、フェノール類との混合物が利用できる。あるいは、アルデヒド類またはケトン類と、ノボラック樹脂との混合物でもよい。 The novolak phenol resin precursor of the present invention is not particularly limited. As the novolac phenol resin precursor, a mixture of aldehydes or ketones and phenols can be used. Alternatively, a mixture of aldehydes or ketones and a novolac resin may be used.
 フェノール類とは、特に限定されないがフェノール、クレゾール、キシレノール、p-アルキルフェノール、p-フェニルフェノール、クロルフェノール、ビスフェノールA、フェノールスルホン酸、レゾルシン等のフェノール性-OHを有するものなどが挙げられる。 Examples of phenols include, but are not limited to, those having phenolic-OH such as phenol, cresol, xylenol, p-alkylphenol, p-phenylphenol, chlorophenol, bisphenol A, phenolsulfonic acid, resorcin and the like.
 また、アルデヒド類とは、分子内に、カルボニル炭素に水素原子が1つ置換した構造を有する有機化合物であり、ケトン類とは、分子内に、カルボニル炭素にアルキル基が2つ置換した構造を有する有機化合物である。アルデヒド類としては、特に限定されないがホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、ベンズアルデヒド、シンナムアルデヒド、ペリルアルデヒドなどが挙げられる。ケトン類としては、特に限定されないが、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、イソホロンなどが挙げられる。 Aldehydes are organic compounds having a structure in which one hydrogen atom is substituted on the carbonyl carbon in the molecule. Ketones are a compound in which two alkyl groups are substituted on the carbonyl carbon in the molecule. It is an organic compound. Examples of aldehydes include, but are not limited to, formaldehyde, acetaldehyde, propionaldehyde, acrolein, benzaldehyde, cinnamaldehyde, and perylaldehyde. Although it does not specifically limit as ketones, Acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, isophorone etc. are mentioned.
 フェノール類はアルデヒド類またはケトン類によって酸触媒の存在下で縮合し、ノボラック樹脂を形成する。ノボラック樹脂とは、一般的に、フェノール化合物と、アルデヒド若しくはケトン又はそれらの誘導体、例えばケタール又はヘミケタール官能基との縮合生成物である。 Phenols are condensed with aldehydes or ketones in the presence of an acid catalyst to form a novolak resin. Novolak resins are generally condensation products of phenolic compounds with aldehydes or ketones or their derivatives such as ketal or hemiketal functional groups.
 本発明の電極材料の製造方法のノボラック系フェノール樹脂前駆体は、アルデヒド類またはケトン類と、ノボラック樹脂との混合物であることが好ましい。
 さらに重合の進んだノボラック樹脂を原材料として使用できるので、反応生成物が少なく、ガスの発生を少なくすることができ、制御困難な気泡の量を少なくすることができる。また、アルデヒド類またはケトン類が、塩基の触媒作用によってノボラック樹脂の芳香環に付加されるので、ノボラック樹脂を架橋することができ、効率良くノボラック系フェノール樹脂硬化物を得ることができる。
It is preferable that the novolak-type phenol resin precursor of the manufacturing method of the electrode material of this invention is a mixture of aldehydes or ketones, and a novolak resin.
Furthermore, since a novolak resin having undergone polymerization can be used as a raw material, there are few reaction products, the generation of gas can be reduced, and the amount of bubbles that are difficult to control can be reduced. In addition, since aldehydes or ketones are added to the aromatic ring of the novolak resin by the catalytic action of the base, the novolak resin can be cross-linked, and a novolac phenol resin cured product can be obtained efficiently.
 本発明においてノボラック樹脂とは、重量平均分子量が1000以上のものを示し、それ未満のものは、例えば、オリゴマーあるいはモノマーである。 In the present invention, the novolak resin refers to those having a weight average molecular weight of 1000 or more, and those less than that are, for example, oligomers or monomers.
 本発明の電極材料の製造方法は、フェノール樹脂硬化物を粉砕および焼成する炭素粉末形成工程とを有する。 The method for producing an electrode material of the present invention includes a carbon powder forming step of pulverizing and firing a phenol resin cured product.
 炭素粉末形成工程は、粉砕工程および焼成工程とからなる。粉砕工程と焼成工程の順序は特に限定されないが、粉砕工程の後に焼成工程があることが望ましい。この場合、フェノール樹脂硬化物を粉砕し、フェノール樹脂粉末を得る粉砕工程と、フェノール樹脂粉末を焼成し、炭素粉末を得る粉砕工程とからなる。この場合、あらかじめ、フェノール樹脂硬化物を粉砕し、表面積を増やした後に焼成することができるので、均一に炭素化でき、細孔のバラツキを小さくすることができる。 The carbon powder forming step includes a pulverization step and a firing step. The order of the pulverization step and the baking step is not particularly limited, but it is desirable that there is a baking step after the pulverization step. In this case, it consists of a pulverizing step of pulverizing the phenol resin cured product to obtain a phenol resin powder, and a pulverizing step of baking the phenol resin powder to obtain a carbon powder. In this case, the cured phenol resin can be pulverized in advance and fired after increasing the surface area, so that it can be uniformly carbonized and the variation in pores can be reduced.
 本発明の電極材料の製造方法の粉砕工程で使用する粉砕機、得られるフェノール樹脂粉末の平均粒子径(直径)は特に限定されない。粉砕機は例えば、ピンミル、ボールミル、ジェットミル、ハンマーミル、ビーズミル、ローラーミルなどを利用することができ特に限定されない。 The average particle diameter (diameter) of the pulverizer used in the pulverization step of the production method of the electrode material of the present invention and the phenol resin powder obtained is not particularly limited. As the pulverizer, for example, a pin mill, a ball mill, a jet mill, a hammer mill, a bead mill, a roller mill and the like can be used, and the pulverizer is not particularly limited.
 本発明の電極材料の製造方法の焼成工程の焼成パターンは特に限定されない。例えば一定の速度で昇温し、最高温度に達した後、徐々に放冷する。焼成温度(最高温度)は例えば600~2000℃、昇温速度は例えば0.1~100℃/minである。 The firing pattern in the firing step of the method for producing an electrode material of the present invention is not particularly limited. For example, the temperature is raised at a constant rate, and after reaching the maximum temperature, it is allowed to cool gradually. The firing temperature (maximum temperature) is, for example, 600 to 2000 ° C., and the heating rate is, for example, 0.1 to 100 ° C./min.
 焼成工程では、アルカリ金属の水和イオンを含んだまま焼成され、アルカリ金属イオンが含まれた炭化物が得られる。このとき、アルカリ金属の水和イオンは、熱の作用によって水が脱離し、水酸化物、炭酸塩などとなる。 In the firing step, a carbide containing alkali metal ions is obtained by firing while containing alkali metal hydrate ions. At this time, the hydrated ions of the alkali metal are dehydrated by the action of heat and become hydroxides, carbonates, and the like.
 また、このときアルカリ金属水酸化物とともにフェノール樹脂粉末の炭化物が加熱されるので、アルカリ金属水酸化物と炭素との反応により、炭素が消費されるアルカリ賦活反応も同時に発生し、炭素材料の表面積を大きくするよう作用する。 In addition, since the carbide of the phenol resin powder is heated together with the alkali metal hydroxide at this time, an alkali activation reaction in which carbon is consumed by the reaction between the alkali metal hydroxide and carbon also occurs at the same time, and the surface area of the carbon material It works to increase.
 アルカリ賦活反応は、例えば以下の反応式に従う。
 2KOH→KO+HO             (6)
 C+KO→Cn-1+2K+CO↑        (7)
 C+HO→Cn-1+CO↑+H        (8)
 CO+HO→CO↑+H↑          (9)
 CO+KO→KCO             (10)
The alkali activation reaction follows, for example, the following reaction formula.
2KOH → K 2 O + H 2 O (6)
C n + K 2 O → C n−1 + 2K + CO ↑ (7)
C n + H 2 O → C n−1 + CO ↑ + H 2 (8)
CO + H 2 O → CO 2 ↑ + H 2 ↑ (9)
CO 2 + K 2 O → K 2 CO 3 (10)
 (6)式で生成するKO+HOが、(7)式(8)式で示されるように炭素を酸化する。この反応は、アルカリ金属酸化物の近傍で発生し、アルカリ金属イオン充填された1つの細孔を広げるように作用する。また(9)式で生成したCOがKOを失活し、細孔が大きくなりすぎることを防ぎ、細孔のサイズの拡大は停止する。 K 2 O + H 2 O generated by the formula (6) oxidizes carbon as shown by the formula (7) and the formula (8). This reaction occurs in the vicinity of the alkali metal oxide and acts to widen one pore filled with alkali metal ions. Further, CO 2 produced by the formula (9) deactivates K 2 O to prevent the pores from becoming too large, and the expansion of the pore size stops.
 また、炭素粉末の平均粒子径(直径)は、例えば0.1~50μmであることが好ましい。平均粒子径は、レーザー回折式粒度分布径で測定することができる。 The average particle diameter (diameter) of the carbon powder is preferably 0.1 to 50 μm, for example. The average particle diameter can be measured by a laser diffraction particle size distribution diameter.
 粉砕工程では、細かく粉砕することによって、表面積を大きくし、内部にとり込まれたアルカリ金属水酸化物が粒子の表面または、表面近傍になるようにする。 In the pulverization step, the surface area is increased by finely pulverizing so that the alkali metal hydroxide incorporated in the interior is at or near the surface of the particles.
 本発明の電極材料の製造方法では、炭素粉末を水洗した後、乾燥させる洗浄工程によって、電極材料が得られる。
 洗浄工程では、水洗することによりアルカリ金属イオンを除去し、アルカリ金属の水和イオンに相当する細孔を形成することができる。
In the method for producing an electrode material of the present invention, the electrode material is obtained by a washing step in which the carbon powder is washed with water and then dried.
In the washing step, the alkali metal ions are removed by washing with water, and pores corresponding to the hydrated ions of the alkali metal can be formed.
 本発明の電極材料の製造方法のノボラック樹脂は、Bステージの状態にあることが好ましい。
 ノボラック樹脂は、一部がゲル化したBステージの状態にあると、さらに硬化反応で反応生成物を少なくすることができる。このためさらにガスの発生を少なくすることができ、制御困難な気泡の量を少なくすることができる。
It is preferable that the novolak resin of the manufacturing method of the electrode material of this invention exists in the state of B stage.
When the novolak resin is in a B-stage state in which a part is gelled, the reaction product can be further reduced by a curing reaction. For this reason, gas generation can be further reduced, and the amount of bubbles difficult to control can be reduced.
 熱硬化性樹脂は原料から完全硬化に至るまでの間の状態を、順にAステージ、Bステージ、Cステージと分類され、A、B、Cの順に反応が進行している。 Thermosetting resins are classified into A stage, B stage, and C stage in order from the raw material to complete curing, and the reaction proceeds in the order of A, B, and C.
 Aステージとは、熱硬化性樹脂の生成反応の初期の状態であり、溶剤に完全に溶け、加熱すると溶融する。 The A stage is an initial state of the thermosetting resin production reaction, and is completely dissolved in a solvent and melts when heated.
 Bステージとは、熱硬化性樹脂の硬化の中間状態であり、溶剤に溶け、加熱すると軟化するが、完全に溶融あるいは溶解することはない。すなわち、一部分がゲル化した状態である。 The B stage is an intermediate state of curing of the thermosetting resin and dissolves in a solvent and softens when heated, but does not completely melt or dissolve. That is, it is a state in which a part is gelled.
 Cステージとは、熱硬化性樹脂の硬化の最終状態であり、不溶不融性であり、完全に硬化した熱硬化性樹脂はこの状態にある。 The C stage is the final state of curing of the thermosetting resin, is insoluble and infusible, and the completely cured thermosetting resin is in this state.
 AステージおよびBステージは、未硬化の段階であり、本発明のノボラック系フェノール樹脂前駆体は、このいずれかの状態である。 The A stage and the B stage are uncured stages, and the novolac phenol resin precursor of the present invention is in any one of these states.
 本発明の電極材料の製造方法のアルカリ金属水酸化物の配合量は、ノボラック系フェノール樹脂前駆体の重量の1.0倍以上であることが好ましい。 The blending amount of the alkali metal hydroxide in the method for producing an electrode material of the present invention is preferably 1.0 times or more the weight of the novolac phenol resin precursor.
 アルカリ金属水酸化物の配合量とは、アルカリ金属水酸化物の水溶液に含まれる溶質のみの比率を示し、水分の量は問わない。 The blending amount of the alkali metal hydroxide indicates a ratio of only the solute contained in the aqueous solution of the alkali metal hydroxide, and the amount of water is not limited.
 アルカリ金属水酸化物の配合量がノボラック系フェノール樹脂前駆体の重量の1.0倍以上であると、より多くの細孔を形成することができ、比表面積を大きくすることができる。また、アルカリ金属水酸化物の配合量がノボラック系フェノール樹脂前駆体の重量の1.0倍以上であると、ノボラック系フェノール樹脂前駆体を硬化させる十分な量の塩基の触媒として作用することができる。 When the blending amount of the alkali metal hydroxide is 1.0 times or more of the weight of the novolac phenol resin precursor, more pores can be formed and the specific surface area can be increased. Moreover, when the blending amount of the alkali metal hydroxide is 1.0 times or more of the weight of the novolak phenol resin precursor, it can act as a catalyst for a sufficient amount of base to cure the novolak phenol resin precursor. it can.
 本発明の電極材料の製造方法のアルカリ金属水酸化物の配合量は、ノボラック系フェノール樹脂前駆体の重量の2.0倍以上であることがさらに好ましい。
 アルカリ金属水酸化物の配合量がノボラック系フェノール樹脂前駆体の重量の2.0倍以上であると、さらにより多くの細孔を形成することができ、比表面積を大きくすることができる。また、アルカリ金属水酸化物の配合量がノボラック系フェノール樹脂前駆体の重量の2.0倍以上であると、ノボラック系フェノール樹脂前駆体を硬化させる十分な量の塩基の触媒として作用することができる。
The blending amount of the alkali metal hydroxide in the method for producing an electrode material of the present invention is more preferably 2.0 times or more of the weight of the novolac phenol resin precursor.
When the blending amount of the alkali metal hydroxide is 2.0 times or more of the weight of the novolac phenol resin precursor, more pores can be formed and the specific surface area can be increased. Further, when the blending amount of the alkali metal hydroxide is 2.0 times or more of the weight of the novolak phenol resin precursor, it can act as a catalyst for a sufficient amount of base to cure the novolak phenol resin precursor. it can.
 本発明の電極材料の製造方法のアルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムなどが挙げられる。
なかでも、水酸化ナトリウムであることが好ましい。
Examples of the alkali metal hydroxide in the method for producing an electrode material of the present invention include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
Of these, sodium hydroxide is preferable.
 水酸化ナトリウムは焼成時のアルカリ賦活作用が強すぎず、好適に利用することができる。 Sodium hydroxide is not too strong for alkali activation during firing and can be suitably used.
 本発明の電極材料の製造方法の水酸化ナトリウムの水溶液とノボラック系フェノール樹脂前駆体の混合溶液におけるノボラック系フェノール樹脂前駆体の比率(配合量全体におけるノボラック系フェノール樹脂前駆体の比率)は、4.5重量%以上であることが好ましい。ノボラック系フェノール樹脂前駆体の比率が4.5重量%以上であると、ノボラック系フェノール樹脂前駆体が分散しすぎることがない。ノボラック系フェノール樹脂前駆体が分散しすぎると、ノボラック樹脂が硬化する際に他の分子との間で縮合反応が起きにくく、1つの分子が持っているメチロール基どうしで縮合し、ゲル化しにくくなる。つまり、1つのノボラック樹脂の分子が塊状に縮合し、ゲル化が進行しにくくなる。 The ratio of the novolak phenol resin precursor in the mixed solution of the aqueous solution of sodium hydroxide and the novolak phenol resin precursor in the method for producing the electrode material of the present invention (ratio of the novolak phenol resin precursor in the total amount) is 4 It is preferably 5% by weight or more. When the ratio of the novolac phenol resin precursor is 4.5% by weight or more, the novolac phenol resin precursor is not excessively dispersed. If the novolak phenolic resin precursor is too dispersed, the condensation reaction between other molecules is difficult to occur when the novolak resin is cured, and it is difficult to condense between the methylol groups of one molecule and gel. . That is, the molecules of one novolac resin are condensed into a lump and gelation is difficult to proceed.
 前記電極材料は、リチウムイオンキャパシタの正極用電極材料である。
 リチウムイオンキャパシタの正極では、リチウムの電位に対して3.0Vを境に吸脱着するイオンが変化する。3.0V以上ではアニオン、3.0V未満ではリチウムイオンの溶媒和が吸脱着に関与する。本発明の製造方法で得られる電極材料の細孔の大きさは、いずれのイオンの大きさにも近い。このため、体積当たりの蓄電容量および重量当たりの蓄電容量を大きくすることができる細孔を容易に制御できるキャパシタ用の電極材料を容易に得ることができる。たとえば、電解質としてLiPF、非水溶媒としてエチレンカーボネート(EC):プロピレンカーボネート(PC):ジエチルカーボネート(DEC)=3:1:4の濃度1mol/Lの電解液を使用したとき、3.0V以上の電位で吸脱着するアニオンはPF であり、その直径は0.51nmである。3.0V以下の電位で吸脱着するリチウムイオンは溶媒結合し溶媒和を形成しその直径は0.82nmである。また、他の溶媒、水溶媒を用いたときであっても、リチウムイオンの関与する蓄電デバイスでは、アニオンの大きさは、同等である。アルカリ金属イオンの溶媒和の形成する鋳型にさらにアルカリ賦活の効果も加わり、リチウムイオンキャパシタとして使用したときアニオンおよびリチウム溶媒和の大きさと細孔の大きさが同等になり効率良く体積当たりの蓄電容量および重量当たりの蓄電容量の大きな電極材料を製造することができる。
The electrode material is a positive electrode material for a lithium ion capacitor.
In the positive electrode of the lithium ion capacitor, ions that are adsorbed and desorbed at a boundary of 3.0 V with respect to the potential of lithium change. The solvation of lithium ions is involved in the adsorption / desorption at 3.0 V or more, and the solvation of lithium ions at less than 3.0 V. The size of the pores of the electrode material obtained by the production method of the present invention is close to the size of any ions. For this reason, the electrode material for capacitors which can control easily the pore which can enlarge the electrical storage capacity per volume and the electrical storage capacity per weight can be obtained easily. For example, when using LiPF 6 as an electrolyte and an electrolyte solution having a concentration of 1 mol / L of ethylene carbonate (EC): propylene carbonate (PC): diethyl carbonate (DEC) = 3: 1: 4 as a nonaqueous solvent, 3.0 V is used. The anion that adsorbs and desorbs at the above potential is PF 6 , and its diameter is 0.51 nm. Lithium ions adsorbed and desorbed at a potential of 3.0 V or less are solvent-bonded to form a solvate and have a diameter of 0.82 nm. In addition, even when other solvents or water solvents are used, the size of the anion is the same in the electricity storage device in which lithium ions are involved. Alkali activation effect is further added to the mold that forms the solvation of alkali metal ions, and when used as a lithium ion capacitor, the size of the anion and lithium solvation is the same as the size of the pores, and the storage capacity per volume is efficiently In addition, an electrode material having a large storage capacity per weight can be manufactured.
 以下、比較例および本発明の電極材料の製造方法に係る実施例を説明する。
 実施例、比較例は、次のプロセスに従って実施した。
Examples according to the comparative example and the method for producing the electrode material of the present invention will be described below.
Examples and Comparative Examples were carried out according to the following process.
<硬化工程>
 あらかじめ、アルカリ金属水酸化物を水に溶解し、アルカリ金属水酸化物の水溶液を得る。次にアルカリ金属水酸化物の水溶液と、ノボラック系フェノール樹脂前駆体を混合する。なお、比較例1では、アルカリ金属水酸化物の水溶液に代えて水を用いた。
<Curing process>
In advance, an alkali metal hydroxide is dissolved in water to obtain an aqueous solution of the alkali metal hydroxide. Next, an aqueous solution of an alkali metal hydroxide and a novolac phenol resin precursor are mixed. In Comparative Example 1, water was used in place of the alkali metal hydroxide aqueous solution.
 本実施例、比較例では、アルカリ金属水酸化物として水酸化ナトリウム、ノボラック系フェノール樹脂前駆体として荒川化学工業株式会社製タマノル7509(登録商標、荒川化学工業株式会社)を使用した。タマノル7509は、ビスフェノール-A-ホルムアルデヒド樹脂である。タマノル7509は、モノマーであるビスフェノール-Aがホルムアルデヒドによって一部重合しノボラック樹脂となっている。別途分析したタマノル7509中のホルムアルデヒドの含有量は62μg/gであった。 In this example and comparative example, sodium hydroxide was used as the alkali metal hydroxide, and Tamanol 7509 (registered trademark, Arakawa Chemical Industries, Ltd.) manufactured by Arakawa Chemical Industries was used as the novolac phenol resin precursor. Tamanol 7509 is a bisphenol-A-formaldehyde resin. Tamanol 7509 is a novolak resin in which monomer bisphenol-A is partially polymerized with formaldehyde. The content of formaldehyde in Tamanol 7509 analyzed separately was 62 μg / g.
 具体的には、水酸化ナトリウムを水に溶解し、タマノル7509を加え、200mlビーカーでスターラーを用いて30分間撹拌した。なおこのときのタマノル7509の配合量は5gであり、水酸化ナトリウムおよび水の量は、実施例、比較例毎に異なり、表1に記載する。 Specifically, sodium hydroxide was dissolved in water, Tamanool 7509 was added, and the mixture was stirred for 30 minutes using a stirrer in a 200 ml beaker. In addition, the compounding quantity of Tamanol 7509 at this time is 5g, and the quantity of sodium hydroxide and water changes for every Example and a comparative example, and it describes in Table 1.
 次に混合された溶液をフッ素樹脂製の容器に流し込み、窒素雰囲気のイナートオーブンで加熱した。加熱の条件は、一定速度で昇温し、硬化温度に到達すると温度を保持する昇温パターンを用いた。昇温速度は1℃/min、硬化温度は170℃、保持時間は30分であった。この操作によって過剰な水分を蒸発させ、フェノール樹脂硬化物を固形物として残す。 Next, the mixed solution was poured into a fluororesin container and heated in an inert oven in a nitrogen atmosphere. As a heating condition, a temperature rising pattern was used in which the temperature was raised at a constant rate and the temperature was maintained when the curing temperature was reached. The heating rate was 1 ° C./min, the curing temperature was 170 ° C., and the holding time was 30 minutes. Excess water is evaporated by this operation, and the phenolic resin cured product is left as a solid.
<炭素粉末形成工程-粉砕工程>
 次に、得られたフェノール樹脂硬化物を遊星ボールミルで粉砕した。遊星ボールミルは500mlのジルコニア製の容器であり、20mmのジルコニア製ボールを10個用い、200rpmで6分間の粉砕を3回行った。粉砕することにより、フェノール樹脂粉末を得た。
<Carbon powder formation process-grinding process>
Next, the obtained phenolic resin cured product was pulverized by a planetary ball mill. The planetary ball mill was a 500 ml zirconia container, and 10 20 mm zirconia balls were used and pulverized for 6 minutes at 200 rpm three times. By pulverizing, a phenol resin powder was obtained.
<炭素粉末形成工程-焼成工程>
 得られたフェノール樹脂粉末を窒素雰囲気の焼成炉で焼成し、炭素粉末を得た。加熱の条件は、一定速度で昇温し、焼成温度に到達すると温度を保持する昇温パターンを用いた。昇温速度は1℃/min、焼成温度は800℃、保持時間は120分であった。焼成することにより、炭素粉末が得られた。
<Carbon powder formation process-firing process>
The obtained phenol resin powder was fired in a firing furnace in a nitrogen atmosphere to obtain carbon powder. As a heating condition, a temperature rising pattern was used in which the temperature was raised at a constant rate and the temperature was maintained when the firing temperature was reached. The heating rate was 1 ° C./min, the firing temperature was 800 ° C., and the holding time was 120 minutes. By firing, a carbon powder was obtained.
<水洗工程>
 得られた炭素粉末を、乳鉢に入れ解砕し、100mlの水の入ったビーカーに移し1時間スターラーを用い撹拌後、濾過し水を取り除いた。次に100mlの水を加え、塩酸で中和し、1時間スターラーを用い撹拌後、濾過し水を取り除いた。さらに炭素粉末を110℃の乾燥機で1時間乾燥した。
<Washing process>
The obtained carbon powder was pulverized in a mortar, transferred to a beaker containing 100 ml of water, stirred for 1 hour using a stirrer, filtered, and water was removed. Next, 100 ml of water was added, neutralized with hydrochloric acid, stirred for 1 hour using a stirrer, and filtered to remove water. Further, the carbon powder was dried with a dryer at 110 ° C. for 1 hour.
<性能評価>
 性能評価は、得られた実施例、比較例の電極材料の比表面積、細孔容積を測定した。
Figure JPOXMLDOC01-appb-T000006
<Performance evaluation>
For the performance evaluation, the specific surface area and pore volume of the obtained electrode materials of Examples and Comparative Examples were measured.
Figure JPOXMLDOC01-appb-T000006
 表1は、実施例1~5および比較例1~2の硬化工程の配合、収量、結果に関する条件、結果をまとめた表である。 Table 1 is a table summarizing the conditions and results regarding the composition, yield, and results of the curing steps of Examples 1 to 5 and Comparative Examples 1 and 2.
 表1の中で「樹脂前駆体」とは、「ノボラック系フェノール樹脂前駆体」を示し、「樹脂」とは「フェノール樹脂硬化物」を示す。 In Table 1, “resin precursor” refers to “novolac phenol resin precursor”, and “resin” refers to “cured phenol resin”.
 表1の中で、
 Aはノボラック系フェノール樹脂前駆体の配合量
 Bは溶媒としての水の配合量
 Cは水酸化ナトリウムの配合量
 Dは配合量の合計:D=A+B+C
 Eは溶媒以外の配合量:E=A+C
 Fは配合量全体に占めるノボラック系フェノール樹脂前駆体の比率:F=A/D
 Gは水酸化ナトリウム水溶液の濃度(重量%):G=C/(B+C)
 Hはノボラック系フェノール樹脂前駆体に対する水酸化ナトリウムの比率(倍):H=C/A
 Iは得られたフェノール樹脂硬化物の量を示す。
In Table 1,
A is blending amount of novolac phenol resin precursor B is blending amount of water as solvent C is blending amount of sodium hydroxide D is sum of blending amounts: D = A + B + C
E is blending amount other than solvent: E = A + C
F is the ratio of the novolak phenol resin precursor in the total blending amount: F = A / D
G is the concentration of sodium hydroxide aqueous solution (wt%): G = C / (B + C)
H is the ratio of sodium hydroxide to the novolac phenolic resin precursor (times): H = C / A
I shows the quantity of the obtained phenol resin hardened | cured material.
 「沈殿物の有無」は、ノボラック系フェノール樹脂前駆体と水酸化ナトリウム水溶液を混合後に沈殿の有無を示している。
 「硬化」は、硬化工程後に硬化したものを「○」、硬化していなかったものを「×」、硬化はしているものの完全硬化していないもの(部分硬化)を「△」で示している。
“Presence / absence of precipitate” indicates the presence / absence of precipitation after mixing the novolak phenol resin precursor and the aqueous sodium hydroxide solution.
“Curing” is indicated by “O” when cured after the curing process, “X” when not cured, and “△” when cured but not completely cured (partial curing). Yes.
 表1の結果より溶媒以外の配合量Eと、得られたフェノール樹脂硬化物と水酸化ナトリウムの収量のIとの対比、硬化反応の有無を考慮しながら、硬化反応の結果を検討する。
Figure JPOXMLDOC01-appb-T000007
From the results in Table 1, the results of the curing reaction are examined while considering the blending amount E other than the solvent, the obtained phenolic resin cured product and the yield I of sodium hydroxide, and the presence or absence of the curing reaction.
Figure JPOXMLDOC01-appb-T000007
 表2は、実施例1~5および比較例1~2に関し、硬化工程で得られたフェノール樹脂硬化物を粉砕し、得られたフェノール樹脂粉末を焼成する焼成工程および得られた炭素粉末を洗浄する洗浄工程における配合、収量、結果に関する条件、結果をまとめた表である。 Table 2 relates to Examples 1 to 5 and Comparative Examples 1 and 2, pulverizing the phenol resin cured product obtained in the curing step, firing the obtained phenol resin powder, and washing the obtained carbon powder It is the table | surface which put together the conditions regarding a mixing | blending in a washing | cleaning process, a yield, a result, and a result.
 表2の中で、
 Jはフェノール樹脂粉末の配合量
 Kはフェノール樹脂粉末の配合量からNaOHを除いた計算値:
              K=J×(1-C/I)
 Lは焼成後の炭素粉末の重量
 Mは洗浄後の電極材料の重量
 Nはフェノール樹脂硬化物の炭化収率:N=M/K
である。
Figure JPOXMLDOC01-appb-T000008
In Table 2,
J is the blending amount of the phenol resin powder. K is a calculated value obtained by removing NaOH from the blending amount of the phenol resin powder:
K = J × (1-C / I)
L is the weight of the carbon powder after firing M is the weight of the electrode material after cleaning N is the carbonization yield of the cured phenol resin: N = M / K
It is.
Figure JPOXMLDOC01-appb-T000008
 表3は、実施例1~5および比較例1~2、比較例3の性能評価の測定結果を示す。
 Oは、比表面積を示す。
 P~Rは、細孔容積を細孔半径の範囲毎に測定したものである。
Table 3 shows the measurement results of the performance evaluation of Examples 1 to 5, Comparative Examples 1 and 2, and Comparative Example 3.
O represents a specific surface area.
P to R are pore volumes measured for each range of pore radii.
 比表面積の測定は、あらかじめ日本ベル株式会社製BELPREP-vacIIを用いて200℃で2H乾燥し、日本ベル株式会社製BELSORP-miniIIを使用した。図1は窒素吸着を用いた吸着等温線の結果を示す。また、表3の比表面積はBET法を用いて算出した。 The measurement of the specific surface area was performed in advance by using BELPREP-vacII manufactured by Nippon Bell Co., Ltd. for 2H at 200 ° C. and using BELSORP-miniII manufactured by Nippon Bell Co., Ltd. FIG. 1 shows the results of an adsorption isotherm using nitrogen adsorption. The specific surface area in Table 3 was calculated using the BET method.
 具体的には、
測定方式:定容量型ガス吸着法
吸着ガス:N
吸着温度:77K(-196.15℃)
圧力範囲:0~0.9995(吸着温度における窒素の飽和蒸気圧に対する相対値)
セルの大きさ:約1.8cm
 である。
In particular,
Measurement method: constant volume gas adsorption method Adsorbed gas: N 2
Adsorption temperature: 77K (-196.15 ° C)
Pressure range: 0 to 0.9995 (relative to the saturated vapor pressure of nitrogen at the adsorption temperature)
Cell size: approx. 1.8 cm 3
It is.
また、細孔容積は、比表面積の測定結果のデーターからHK法(Horvath、Kawazoe法)を用いて算出した。(図2、表3)
 図1は、ある圧力pにおける吸着する気体分子(N)が固体表面に吸着するときのガス吸着量と、p/p(相対値:pは吸着温度における窒素の飽和蒸気圧)の関係を示している。
The pore volume was calculated from the data of the measurement results of the specific surface area using the HK method (Horvath, Kawazoe method). (Figure 2, Table 3)
FIG. 1 shows the amount of gas adsorption when adsorbed gas molecules (N 2 ) at a certain pressure p are adsorbed on the solid surface, and p / p 0 (relative value: p 0 is the saturated vapor pressure of nitrogen at the adsorption temperature). Showing the relationship.
 図2は、細孔直径をdp、細孔容積をVpとした場合に、横軸がdpの値であり、縦軸がdVp/ddp、すなわち、細孔容積Vpを細孔直径dpで微分した値であるグラフである。 FIG. 2 shows that when the pore diameter is dp and the pore volume is Vp, the horizontal axis is the value of dp, and the vertical axis is dVp / ddp, that is, the pore volume Vp is differentiated by the pore diameter dp. It is a graph which is a value.
 実施例1~4および比較例1~2は、ノボラック系フェノール樹脂前駆体の量、水の量は同一であり、水酸化ナトリウムの量を変えて試験をした。比較例1には水酸化ナトリウムが含まれておらず、実施例1~5には水酸化ナトリウムが含まれている。水酸化ナトリウムの配合量は、実施例1~4、比較例2の順に概ね等比級数となるように増えている。 In Examples 1 to 4 and Comparative Examples 1 to 2, the amount of the novolak phenol resin precursor and the amount of water were the same, and the test was performed by changing the amount of sodium hydroxide. Comparative Example 1 does not contain sodium hydroxide, and Examples 1 to 5 contain sodium hydroxide. The amount of sodium hydroxide is increased so as to be approximately a geometric series in the order of Examples 1 to 4 and Comparative Example 2.
 水酸化ナトリウムの含まれていない比較例1では、収量Iがノボラック系フェノール樹脂樹脂前駆体と水酸化ナトリウムの配合量より大幅に少なくなっており、硬化もしていなかった。これは、ホルムアルデヒドがノボラック樹脂に付加することができずメチロール基による架橋反応が起こらなかったためと考えられる。このため、加熱することによりノボラック系フェノール樹脂樹脂前駆体に含まれるホルムアルデヒドなどの低分子量成分が揮発し、重量が減ってしまったと推定される(I<E)。また、硬化前のノボラック系フェノール樹脂前駆体は水に完全に溶融していなかった。 In Comparative Example 1 containing no sodium hydroxide, the yield I was significantly less than the blended amount of the novolac phenol resin resin precursor and sodium hydroxide, and the product was not cured. This is presumably because formaldehyde could not be added to the novolak resin, and the crosslinking reaction due to the methylol group did not occur. For this reason, it is presumed that low molecular weight components such as formaldehyde contained in the novolac phenol resin resin precursor are volatilized by heating and the weight is reduced (I <E). In addition, the novolak phenol resin precursor before curing was not completely melted in water.
 水酸化ナトリウムの含まれている実施例1~4および比較例2では、収量Iがノボラック系フェノール樹脂樹脂前駆体と水酸化ナトリウムの配合量より増えている(I<E)。
これは、ホルムアルデヒドがノボラック樹脂に付加し、低分子量成分がフェノール樹脂硬化物に取り込まれたこと、ナトリウムイオンが水和物を形成したことなどの影響によるものと考えられる。
In Examples 1 to 4 and Comparative Example 2 containing sodium hydroxide, the yield I is higher than the blending amount of the novolac phenol resin resin precursor and sodium hydroxide (I <E).
This is considered to be due to the effects of formaldehyde being added to the novolac resin, the low molecular weight component being taken into the phenolic resin cured product, and the sodium ions forming a hydrate.
 また、実施例4、比較例2では、電極材料が得られているものの完全硬化していない部分硬化の状態であり、炭化収率も低かった。(比較例2では十分な試料が得られず、測定できなかった。)これは、ノボラック系フェノール樹脂前駆体が水酸化ナトリウムに希釈されすぎ、他の分子との結合を形成できず、充分に架橋が進まなかったと推定される。しかしながら、実施例4では実施例1~3と比較して比表面積が大きく、表3中のPQRいずれの領域の細孔容積も高いレベルにある。このため、水酸化ナトリウムの配合量を増やすと、炭化収率は極大値を有し減少に転ずるが、炭化収率が低い水準であっても得られる電極材料の性能は高いレベルにあることが確認された。 In Example 4 and Comparative Example 2, although the electrode material was obtained, it was in a partially cured state that was not completely cured, and the carbonization yield was low. (In Comparative Example 2, a sufficient sample could not be obtained and measured.) This was because the novolak phenol resin precursor was too diluted with sodium hydroxide and could not form bonds with other molecules. It is presumed that crosslinking did not progress. However, in Example 4, the specific surface area is larger than in Examples 1 to 3, and the pore volume in any region of PQR in Table 3 is at a high level. For this reason, when the amount of sodium hydroxide is increased, the carbonization yield has a maximum value and starts to decrease, but the performance of the obtained electrode material may be at a high level even if the carbonization yield is low. confirmed.
 次に実施例3と同じ水酸化ナトリウムの配合量であって、希釈する水の量を減らした実施例5について、実施例3と実施例5とを対比しながら説明する。実施例3は水の配合量が80.89gであるのに対し、実施例5では37.9gである。このため、配合量に対するノボラック系フェノール樹脂前駆体の比率は、実施例3では4.7%、実施例5では7.9%となる。いずれの水準も比表面積は高く、表3中のPQRいずれの領域の細孔容積も高いレベルにある。炭化収率Nに関しては、配合の際の水の配合量を減らした実施例5で大幅に改善されている。
 また、配合量に対するノボラック系フェノール樹脂前駆体の比率が4.0%の実施例4および2.8%の比較例2では、完全硬化させることができなかった。
Next, Example 5 in which the amount of sodium hydroxide is the same as Example 3 and the amount of water to be diluted is reduced will be described while comparing Example 3 and Example 5. In Example 3, the blending amount of water is 80.89 g, whereas in Example 5, it is 37.9 g. For this reason, the ratio of the novolak phenol resin precursor to the blending amount is 4.7% in Example 3 and 7.9% in Example 5. Each level has a high specific surface area, and the pore volume in any region of PQR in Table 3 is at a high level. The carbonization yield N is greatly improved in Example 5 in which the blending amount of water during blending is reduced.
Further, in Example 4 in which the ratio of the novolak phenol resin precursor to the blending amount was 4.0% and in Comparative Example 2 in which 2.8%, complete curing could not be achieved.
 これらの結果から、配合量に対するノボラック系フェノール樹脂前駆体の比率Fが、4.5%以上であれば、ノボラック系フェノール樹脂前駆体が硬化することができ、十分な炭化収率が得られることが確認された。
 また、比較例3にアルカリ賦活した一般的な活性炭よりなる電極材料の比表面積を示す。実施例1~5の電極材料は、比表面積において比較例3と同等以上の性能を有していた。本発明の電極材料の製造方法によれば、細孔の大きさの制御が容易であり、体積当たりの蓄電容量および重量当たりの蓄電容量を大きくすることができるよう細孔の制御されたキャパシタ用の電極材料の製造方法を提供できることが確認できた。
 
From these results, when the ratio F of the novolak phenol resin precursor to the blending amount is 4.5% or more, the novolac phenol resin precursor can be cured and a sufficient carbonization yield can be obtained. Was confirmed.
Comparative Example 3 shows the specific surface area of an electrode material made of general activated carbon activated with alkali. The electrode materials of Examples 1 to 5 had performance equivalent to or higher than that of Comparative Example 3 in specific surface area. According to the method for producing an electrode material of the present invention, it is easy to control the size of the pores, and for a capacitor with controlled pores so that the storage capacity per volume and the storage capacity per weight can be increased. It was confirmed that a method for producing the electrode material can be provided.

Claims (8)

  1.  ノボラック系フェノール樹脂前駆体に前記ノボラック系フェノール樹脂前駆体の重量の8.0倍以下のアルカリ金属水酸化物が溶解したアルカリ金属水酸化物水溶液を加え、前記ノボラック系フェノール樹脂前駆体を塩基性に調整した後、前記ノボラック系フェノール樹脂前駆体を加熱することによってフェノール樹脂硬化物を得る硬化工程と、
     前記フェノール樹脂硬化物を粉砕および焼成して炭素粉末を得る炭素粉末形成工程と、
     前記炭素粉末を水洗した後乾燥させ、電極材料を得る洗浄工程と、
    からなることを特徴とする電極材料の製造方法。
    An alkali metal hydroxide aqueous solution in which an alkali metal hydroxide of 8.0 times or less the weight of the novolak phenol resin precursor is dissolved is added to the novolak phenol resin precursor, and the novolac phenol resin precursor is made basic. After adjusting to, a curing step of obtaining a phenol resin cured product by heating the novolac phenol resin precursor,
    A carbon powder forming step of pulverizing and firing the phenol resin cured product to obtain a carbon powder;
    The carbon powder is washed with water and dried to obtain an electrode material, and
    A process for producing an electrode material comprising:
  2.  前記ノボラック系フェノール樹脂前駆体は、
     アルデヒド類またはケトン類と、
     ノボラック樹脂と、
     の混合物であることを特徴とする請求項1に記載の電極材料の製造方法。
    The novolac phenolic resin precursor is
    Aldehydes or ketones,
    Novolac resin,
    The method for producing an electrode material according to claim 1, wherein the electrode material is a mixture of
  3.  前記ノボラック樹脂は、Bステージの状態にあることを特徴とする請求項2に記載の電極材料の製造方法。 3. The method for producing an electrode material according to claim 2, wherein the novolac resin is in a B-stage state.
  4.  前記アルカリ金属水酸化物の配合量は、前記ノボラック系フェノール樹脂前駆体の重量の1.0倍以上であることを特徴とする請求項1~3のいずれか一項に記載の電極材料の製造方法。 The electrode material production according to any one of claims 1 to 3, wherein the amount of the alkali metal hydroxide is 1.0 or more times the weight of the novolac phenol resin precursor. Method.
  5.  前記アルカリ金属水酸化物の配合量は、前記ノボラック系フェノール樹脂前駆体の重量の2.0倍以上であることを特徴とする請求項4に記載の電極材料の製造方法。 The method for producing an electrode material according to claim 4, wherein the blending amount of the alkali metal hydroxide is at least 2.0 times the weight of the novolac phenol resin precursor.
  6.  前記アルカリ金属水酸化物は、水酸化ナトリウムであることを特徴とする請求項1~5のいずれか一項に記載の電極材料の製造方法。 The method for producing an electrode material according to any one of claims 1 to 5, wherein the alkali metal hydroxide is sodium hydroxide.
  7.  前記炭素粉末形成工程は、
     前記フェノール樹脂硬化物を粉砕し、フェノール樹脂粉末を得る粉砕工程と、
     前記フェノール樹脂粉末を焼成し、炭素粉末を得る粉砕工程と、
    からなることを特徴とする請求項1~6のいずれか一項に記載の電極材料の製造方法。
    The carbon powder forming step includes
    Crushing the phenol resin cured product to obtain a phenol resin powder; and
    Crushing the phenol resin powder to obtain a carbon powder,
    The method for producing an electrode material according to any one of claims 1 to 6, wherein:
  8.  請求項1~7のいずれか一項に記載の電極材料の製造方法で製造される電極材料は、リチウムイオンキャパシタの正極用電極材料であることを特徴とする電極材料の製造方法。
     
    8. A method for producing an electrode material, wherein the electrode material produced by the method for producing an electrode material according to claim 1 is an electrode material for a positive electrode of a lithium ion capacitor.
PCT/JP2014/081058 2013-12-11 2014-11-25 Method for producing electrode material WO2015087695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015552381A JP6178431B2 (en) 2013-12-11 2014-11-25 Method for producing electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013255541 2013-12-11
JP2013-255541 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015087695A1 true WO2015087695A1 (en) 2015-06-18

Family

ID=53371008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081058 WO2015087695A1 (en) 2013-12-11 2014-11-25 Method for producing electrode material

Country Status (2)

Country Link
JP (1) JP6178431B2 (en)
WO (1) WO2015087695A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11670757B2 (en) * 2018-04-12 2023-06-06 Gs Yuasa International Ltd. Negative electrode plate containing organic expander in negative electrode material and lead-acid battery comprising the negative electrode plate
WO2024168817A1 (en) * 2023-02-17 2024-08-22 宁德时代新能源科技股份有限公司 Polymer, electrode sheet and battery cell related thereto, battery, and electrical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029539B1 (en) * 2017-10-30 2019-10-07 오원춘 Method of manufacturing electrode for water treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030981A (en) * 2006-07-27 2008-02-14 Showa Highpolymer Co Ltd Phenol resin-based activated carbon, polarizable electrode using the same, and electric double layer capacitor
JP2008050543A (en) * 2006-08-28 2008-03-06 Lignyte Co Ltd Polysaccharide-modified phenol resin, method for producing polysaccharide-modified phenol resin, resin coated sand, polysaccharide-modified phenol resin carbonized material, electroconductive resin composition, carbon material for electrode, electrode for secondary battery and electric double layer capacitor polarizable electrode
JP2008098354A (en) * 2006-10-11 2008-04-24 Hitachi Chem Co Ltd Electrode material for electric double layer capacitor, method of manufacturing the same, and electric double layer using electrode material for electric double layer capacitor
WO2009157404A1 (en) * 2008-06-23 2009-12-30 株式会社トクヤマ Porous carbon material and process for production thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091567A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Porous carbon material and its production method
JP2011192926A (en) * 2010-03-16 2011-09-29 Tokuyama Corp Electrode active material for electric double-layer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030981A (en) * 2006-07-27 2008-02-14 Showa Highpolymer Co Ltd Phenol resin-based activated carbon, polarizable electrode using the same, and electric double layer capacitor
JP2008050543A (en) * 2006-08-28 2008-03-06 Lignyte Co Ltd Polysaccharide-modified phenol resin, method for producing polysaccharide-modified phenol resin, resin coated sand, polysaccharide-modified phenol resin carbonized material, electroconductive resin composition, carbon material for electrode, electrode for secondary battery and electric double layer capacitor polarizable electrode
JP2008098354A (en) * 2006-10-11 2008-04-24 Hitachi Chem Co Ltd Electrode material for electric double layer capacitor, method of manufacturing the same, and electric double layer using electrode material for electric double layer capacitor
WO2009157404A1 (en) * 2008-06-23 2009-12-30 株式会社トクヤマ Porous carbon material and process for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11670757B2 (en) * 2018-04-12 2023-06-06 Gs Yuasa International Ltd. Negative electrode plate containing organic expander in negative electrode material and lead-acid battery comprising the negative electrode plate
WO2024168817A1 (en) * 2023-02-17 2024-08-22 宁德时代新能源科技股份有限公司 Polymer, electrode sheet and battery cell related thereto, battery, and electrical device

Also Published As

Publication number Publication date
JPWO2015087695A1 (en) 2017-03-16
JP6178431B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP5947585B2 (en) Method for producing spherical phenol resin granulated product, method for producing carbon material, and method for producing activated carbon material
KR101342773B1 (en) Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
KR20160134731A (en) Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
JP2006264993A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
JP2013062241A (en) Sodium secondary battery
JP6178431B2 (en) Method for producing electrode material
JP2004221332A (en) Active carbon composition for electrode of electric double layer capacitor and its manufacturing method
JP2001278609A (en) Method of producing oxygen-containing carbonaceous material
JP7132258B2 (en) A novel method for solvent-free sol-gel polymerization and fabrication of variable carbon structures derived from sol-gel polymerization
JP2008030981A (en) Phenol resin-based activated carbon, polarizable electrode using the same, and electric double layer capacitor
JP4899396B2 (en) Carbon material, and negative electrode material and non-aqueous electrolyte secondary battery for secondary battery using the same
JP4830574B2 (en) Carbon material for electric double layer capacitor, method for producing the same, and electric double layer capacitor containing the same
TWI433187B (en) High energy density ultracapacitor
JP2014026818A (en) Molten salt battery
JP5050604B2 (en) Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery
JP5136123B2 (en) Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor
JP2006264991A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
JP2013073920A (en) Composition, carbon composite material for lithium ion secondary battery negative electrode material, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6490101B2 (en) Method for producing composite of lithium titanate particles and carbonaceous material
JP2006089349A (en) Method for producing carbon material, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP4511811B2 (en) Lithium ion secondary battery negative electrode active material resin composition, negative electrode active material carbon material, method for producing the same, and lithium ion secondary battery
JP5242666B2 (en) Conductive polymer, conductive polymer composition, and use thereof
JP5135801B2 (en) Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor
JP4402184B2 (en) Carbon material for secondary battery negative electrode material and method for producing the same
JP4254947B2 (en) Carbon material, method for producing the same, and secondary battery using the carbon material as a negative electrode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870600

Country of ref document: EP

Kind code of ref document: A1