WO2015087499A1 - Electronic device - Google Patents
Electronic device Download PDFInfo
- Publication number
- WO2015087499A1 WO2015087499A1 PCT/JP2014/005818 JP2014005818W WO2015087499A1 WO 2015087499 A1 WO2015087499 A1 WO 2015087499A1 JP 2014005818 W JP2014005818 W JP 2014005818W WO 2015087499 A1 WO2015087499 A1 WO 2015087499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- event
- time
- vehicle occupant
- control unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
- B60R21/0136—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
- B60R21/0132—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/015—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
- B60R21/01512—Passenger detection systems
- B60R21/01542—Passenger detection systems detecting passenger motion
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0841—Registering performance data
- G07C5/085—Registering performance data using electronic data carriers
Definitions
- This disclosure relates to an electronic device mounted on a vehicle.
- a drive recorder that stores the traveling state of the vehicle is known to help identify the cause of the accident.
- the drive recorder stores a group of images (or moving images) taken before and after the time when the detected value of the acceleration by the acceleration sensor that detects the acceleration of the vehicle exceeds a threshold value for a certain time. What to do is known. It is also known that a photographing operation is performed for a predetermined time on the condition that the detected acceleration value exceeds a threshold value for a predetermined time, and this photographed image group is stored (for example, see Patent Document 1).
- an appropriate treatment method for a vehicle occupant varies depending on the influence of an impact at the time of an accident on the body of the vehicle occupant. Therefore, if the situation of the vehicle occupant can be photographed and the photographed image can be displayed or analyzed, an appropriate treatment method can be selected.
- the image group around the time when the condition is satisfied is stored.
- the change in acceleration detected by the acceleration sensor is caused by the behavior of the vehicle. In other words, there is a time difference between the time when the detected value of acceleration changes and the time when the vehicle occupant contacts the installation in the vehicle interior.
- the method of recording an image group as in the prior art can only record the image group at the moment when the vehicle collides, and cannot properly record the image at the moment when the vehicle occupant contacts the installation in the vehicle interior.
- the method of performing a photographing operation for a long time after the acceleration detection value becomes equal to or greater than the threshold value not only the amount of data of the image group to be recorded increases, but also the rescue, lifesaving and treatment from the recorded image group. It may take time to find useful images.
- the image at the time of the accident is recorded advantageously for lifesaving and treatment for the vehicle occupant. Cannot be displayed, displayed, or output.
- the airbag when the detected acceleration value exceeds a threshold value, the airbag is activated.
- the airbag cannot be activated at an appropriate timing, and there is a possibility that the vehicle occupant cannot be sufficiently protected.
- the present disclosure has been made in view of these problems, and provides an electronic device suitable for estimating the occurrence time of an event in which a vehicle occupant contacts an installation in a vehicle cabin and an impact is applied to the vehicle occupant. Objective.
- An electronic device is an electronic device mounted on a vehicle, and includes a measurement unit and an estimation unit.
- the measuring unit measures a displacement amount of a vehicle occupant in a passenger compartment caused by a collision of the vehicle based on a detected value of the acceleration by an acceleration sensor that detects an acceleration of the vehicle.
- the estimation unit estimates an occurrence time of an event in which the vehicle occupant contacts an installation in the vehicle interior and an impact is applied to the vehicle occupant based on the displacement amount measured by the measurement unit.
- the electronic device measures the displacement amount of the vehicle occupant using the detection value of the acceleration sensor, and estimates the time based on the displacement amount. In other words, the electronic device can appropriately estimate the time without providing a sensor specialized for detection of the occurrence time of the event or performing complicated image analysis.
- the acceleration sensor is often mounted on the vehicle. Otherwise, the electronic device can be provided with the acceleration sensor at a low cost. Therefore, the electronic device is suitable for estimating the occurrence time of the event in which the vehicle occupant contacts an installation in the vehicle compartment and an impact is applied to the vehicle occupant.
- FIG. 1 is a block diagram illustrating a configuration of an in-vehicle system according to an embodiment of the present disclosure.
- FIG. 2 is a diagram illustrating the configuration of the position table.
- FIG. 3 is a view showing the relative positions of the handle and the front windshield from the standard seating position.
- FIG. 4 is a diagram showing the displacement until the neck bends to the maximum.
- FIG. 5 is a diagram showing the displacement until the neck extends to the maximum.
- FIG. 6 is a flowchart showing the before-and-after estimation process executed by the control unit.
- FIG. 7 is a diagram illustrating correction based on the seating position.
- FIG. 1 is a block diagram illustrating a configuration of an in-vehicle system according to an embodiment of the present disclosure.
- FIG. 2 is a diagram illustrating the configuration of the position table.
- FIG. 3 is a view showing the relative positions of the handle and the front windshield from the standard seating position.
- FIG. 4 is a diagram showing the displacement until the neck
- FIG. 8 is a flowchart showing the front collision estimation process executed by the control unit.
- FIG. 9 is a flowchart showing a rear-end collision estimation process executed by the control unit.
- FIG. 10 is a flowchart showing the left-right estimation process executed by the control unit.
- FIG. 11 is a flowchart showing the left side collision estimation process executed by the control unit.
- FIG. 12 is a flowchart showing a recording control process executed by the control unit.
- FIG. 13 is a graph showing recording timing of image data.
- FIG. 14 is a flowchart showing a transmission control process executed by the control unit.
- FIG. 15 is a flowchart showing an update control process executed by the control unit.
- FIG. 16 is a flowchart showing display control processing executed by the control unit.
- FIG. 17 is a block diagram illustrating a configuration of an in-vehicle system according to a modification.
- FIG. 18 is a flowchart showing an airbag control process executed by a control unit provided
- an in-vehicle system 1 that is an electronic device of the present embodiment is mounted on a vehicle 3 such as a two-wheel / four-wheel vehicle.
- the in-vehicle system 1 includes a control unit 10, a storage unit 20, a first acceleration sensor 31, a second acceleration sensor 33, a vehicle speed sensor 35, a seating position sensor 37, and a biological signal sensor. 39, a GPS receiver 41, a communication unit 43, a camera 45, a speaker 47, and a display 49.
- the control unit 10 includes a CPU 11, a ROM 13, and a RAM 15.
- the ROM 13 stores various programs.
- the CPU 11 executes processing according to various programs.
- the RAM 15 is used as a working memory when the CPU 11 executes processing. In the following, for the sake of simplicity, the processing executed by the CPU 11 (the processing shown in FIGS. 6, 8 to 12, 14 to 17, etc.) will be described with the control unit 10 as the operating subject.
- the storage unit 20 includes a hard disk device or a nonvolatile memory such as a flash memory that can be electrically rewritten.
- the storage unit 20 stores data used in processing executed by the control unit 10 and data generated by the control unit 10.
- the first acceleration sensor 31 is a sensor that detects acceleration generated in the front-rear direction of the vehicle 3.
- the acceleration detected by the first acceleration sensor 31 is represented by Gx
- the forward acceleration of the vehicle 3 is represented by a positive value
- the deceleration (rearward acceleration) is represented by a negative value
- the second acceleration sensor 33 is a sensor that detects acceleration generated in the left-right direction of the vehicle 3.
- the acceleration detected by the second acceleration sensor 33 is represented by a variable Gy
- the acceleration in the left direction of the vehicle 3 is represented by a positive value
- the deceleration (acceleration in the right direction) is represented by a negative value.
- the detected value of the acceleration Gx by the first acceleration sensor 31 and the detected value of the acceleration Gy by the second acceleration sensor 33 are input to the control unit 10.
- the vehicle speed sensor 35 is a sensor that detects the traveling speed V of the vehicle 3.
- the detected value of the traveling speed V by the vehicle speed sensor 35 is input to the control unit 10.
- the seating position sensor 37 is a sensor that is provided in the driver's seat and detects the seating position of the vehicle occupant (driver).
- the seating position sensor 37 detects a deviation Sp of the actual seating position from the seating position when the vehicle occupant is seated at the back of the seat (backrest side).
- the detected deviation Sp is input to the control unit 10.
- the seating position tilt position where the deviation Sp is zero
- the back of the seat is expressed as “standard seating position”.
- the biological signal sensor 39 detects the presence / absence of a vehicle occupant and the pulse rate. Detection values of the presence or absence of breathing and the pulse rate by the biological signal sensor 39 are input to the control unit 10.
- the GPS receiver 41 receives satellite radio waves from GPS satellites, and detects the position coordinates (latitude and longitude) of the vehicle 3 based on the received signals. The detected value of the position coordinates by the GPS receiver 41 is input to the control unit 10.
- the communication unit 43 realizes communication with an external device (external device) through a wide area network (a mobile phone network or an Internet network). Specifically, the communication unit 43 realizes communication with an external device by transmitting and receiving a radio signal to and from a radio base station (not shown) of the wide area network.
- a radio base station not shown
- the external devices with which the communication unit 43 communicates include a center device 100 that distributes position table update data, which will be described later, to the in-vehicle system 1, and an institution 200 for rescue, lifesaving, and treatment of vehicle occupants.
- Examples of the engine 200 include a command center that issues an ambulance dispatch command and a medical institution such as a hospital.
- these organizations 200 are expressed as “related organizations 200”.
- the camera 45 is a camera capable of photographing the entire interior of the passenger compartment where the vehicle occupant including the driver is located, and inputs image data representing the photographed image to the control unit 10.
- the camera 45 is configured to take an image of the passenger compartment at a timing instructed by the control unit 10 and input one piece of image data to the control unit 10.
- the camera 45 may be configured to continuously capture a vehicle interior and input image data representing captured images at each time to the control unit 10.
- a group of image data generated by continuous shooting may be understood as a group of still image data, or may be understood as moving image data composed of a group of still image data.
- the speaker 47 outputs a sound to the vehicle occupant.
- the display 49 is configured as a liquid crystal display, for example, and displays various information to the vehicle occupant.
- the display 49 is provided in the center of the dashboard, for example.
- the display 49 is connected to the control unit 10 through an in-vehicle network and can be shared with other devices such as a navigation device installed in the same in-vehicle network.
- the camera 45, the speaker 47, and the display 49 may be directly connected to the control unit 10 through a dedicated cable, or may be connected through an in-vehicle network.
- the control unit 10 calculates the displacement amounts Lx and Ly of the vehicle occupant in the passenger compartment caused by the collision of the vehicle 3 based on the detected values of the accelerations Gx and Gy by the first acceleration sensor 31 and the second acceleration sensor 33. measure. Then, based on the displacement amounts Lx and Ly, the occurrence time of the event that the vehicle occupant contacts the installation in the passenger compartment and the vehicle occupant is subjected to an impact is estimated, and image data representing the captured image of the camera 45 at the estimated occurrence time Is stored in the storage unit 20.
- the position table shown in FIG. 2 is used to estimate the occurrence time of such an event.
- the position table represents the occurrence positions Pxp, Pxm, Pyp, Pym of the above-mentioned event in the vehicle interior as relative positions (distances) to the standard seating position. That is, the values Pxp, Pxm, Pyp, Pym represented by the position table correspond to the displacement amounts Lx, Ly from the standard seating position of the vehicle occupant from when the vehicle 3 collides until the event occurs.
- the standard seating position with respect to the front-rear direction indicates the position of the vehicle occupant in a state where the vehicle occupant is sitting to the back of the seat as described above.
- the standard seating position with respect to the left-right direction represents the position of the vehicle occupant when the vehicle occupant is seated at the center in the left-right direction of the seat.
- the above relative position takes a positive value in the backward direction from the standard seating position and takes a negative value in the forward direction because the vehicle occupant is displaced rearward in the passenger compartment when the acceleration Gx takes a positive value.
- the acceleration Gy takes a positive value
- the vehicle occupant is displaced in the right direction in the passenger compartment, so that a positive value is taken in the right direction from the standard seating position, and a negative value is taken in the left direction.
- the values Pxp and Pxm described in the position table will be described with reference to FIGS.
- the value Pxm [2] described in the position table represents a position where the vehicle occupant comes into contact with the steering wheel and an impact is applied to the vehicle occupant.
- the value Pxm [2] is set to ⁇ 0.5 m, for example.
- a set of values Pxm [k] (where k is a natural number) is expressed as a value Pxm. The same applies to the values Pxp, Pyp, Pym and positions Dxp, Dxm, Dyp, Dym described later.
- the value Pxm [3] represents a position where the vehicle occupant contacts the front windshield and an impact is applied to the vehicle occupant, and is a distance (displacement amount Lx) from the standard seating position to the front windshield.
- the value Pxm [3] is set to ⁇ 1.5 m, for example.
- the value Pxm [1] indicates that the vehicle occupant is in contact with the seat belt when the vehicle 3 collides, and the vehicle occupant's neck is bent forward to the maximum in a state where the vehicle occupant is restrained by the seat belt. This represents a position where an impact is applied to the occupant's neck and corresponds to the distance (displacement amount Lx) from the standard seating position to the maximum bending position of the neck.
- the value Pxm [1] is set to ⁇ 0.3 m, for example.
- the value Pxp [1] indicates that the vehicle occupant is in contact with the backrest of the seat at the time of the collision of the vehicle 3 and is restrained by the backrest, so that the vehicle occupant's neck extends rearward to the maximum. This represents a position where an impact is applied to the neck of the vehicle occupant, and corresponds to the distance (displacement amount Lx) from the standard seating position to the maximum extension position of the neck.
- the value Pxp [1] is set to 0.2 m, for example.
- the value Pyp [1] represents a position at which the vehicle occupant seated in the right seat contacts the window (including the door) on the right side of the vehicle and an impact is applied to the vehicle occupant. This corresponds to the distance (displacement amount Ly) to the right window.
- the value Pyp [1] is set to 0.3 m, for example.
- the value Pyp [2] represents a position where the vehicle occupant seated in the left seat touches the vehicle right side window and the vehicle occupant is subjected to an impact, and from the standard seating position of the left seat to the vehicle right side window. This corresponds to the distance (displacement amount Ly).
- the value Pyp [2] is set to 1.0 m, for example.
- the value Pym [1] represents a position where the vehicle occupant seated in the left seat contacts the window (including the door) on the left side of the vehicle and an impact is applied to the vehicle occupant, from the standard seating position of the left seat. This corresponds to the distance (displacement amount Ly) to the window on the left side of the vehicle.
- the value Pym [1] is set to ⁇ 0.3 m, for example.
- the value Pym [2] represents a position where the vehicle occupant seated in the right seat touches the left window of the vehicle and the vehicle occupant is impacted, and the distance from the standard seating position of the right seat to the left window of the vehicle ( Corresponds to the displacement amount Ly).
- the value Pym [2] is set to ⁇ 1.0 m, for example.
- the control unit 10 executes the front-rear estimation process shown in FIG.
- the control unit 10 can execute the longitudinal estimation process when the internal combustion engine is started or when a vehicle occupant gets on.
- the occurrence time of an event in which the vehicle occupant contacts the installation object in the front-rear direction in the passenger compartment and the vehicle occupant is impacted is estimated.
- control unit 10 refers to the values Pxp, Pxm indicated by the position table, and calculates the occurrence positions Dxp, Dxm corresponding to the actual seating position of the vehicle occupant (S110).
- Dxm [2] Pxm [2] + Sp is calculated as the occurrence position Dxm [2] of the event that the vehicle occupant comes into contact with the steering wheel and an impact is applied to the vehicle occupant.
- the value Pxm [2] is a negative value and the deviation Sp is a positive value.
- Dxm [3] Pxm [3] + Sp is calculated as the occurrence position Dxm [3] where the vehicle occupant contacts the front windshield and the vehicle occupant is impacted.
- Dxm [1] Pxm [1] is calculated as the event occurrence position Dxm [1] corresponding to the value Pxm [1].
- the control unit 10 determines whether or not a front collision has occurred in which the vehicle 3 collides with a front object (S120). Specifically, the control unit 10 acquires the latest detected value of the acceleration Gx by the first acceleration sensor 31. When the detected value of the acceleration Gx is a negative value and less than a predetermined threshold Thxm, the acceleration Gx is considered to be caused by the sudden deceleration of the vehicle 3 due to the front collision, and the front collision Is determined (YES in S120). On the other hand, when the detected value of acceleration Gx is equal to or greater than threshold value Thxm, it is determined that no frontal collision has occurred (NO in S120).
- control unit 10 determines that a front collision accident has occurred (YES in S120)
- control unit 10 proceeds to S150, executes the front collision estimation process shown in FIG.
- NO in S120 the process proceeds to S130.
- the control unit 10 determines whether or not a rear-end collision in which the vehicle 3 collides with a rear object has occurred. Specifically, when the detected value of the latest acceleration Gx by the first acceleration sensor 31 is a positive value and larger than a predetermined threshold Thxp, the control unit 10 causes the acceleration Gx to suddenly accelerate the vehicle 3 due to a rear-end collision accident. It is determined that the rear-end collision occurred due to the cause (YES in S130). On the other hand, when the detected value of acceleration Gx is equal to or less than threshold value Thxp, it is determined that a rear-end collision has not occurred (NO in S130).
- control unit 10 determines that a rear-end collision has occurred (YES in S130)
- the control unit 10 proceeds to S160 and executes the rear-end collision estimation process shown in FIG.
- the process proceeds to S110, and the occurrence positions Dxm and Dxp of the event are recalculated based on the detected value of the current deviation Sp. Execute the process. Note that the control unit 10 can end the front-rear estimation process when the driving of the vehicle 3 ends even when the front-end collision and rear-end collision do not occur.
- the control unit 10 initializes the displacement amount Lx of the vehicle occupant in the front-rear direction to zero, and initializes the time j to zero (S210). Thereafter, the process proceeds to S220, and 1 is added to the time j.
- the time j takes an integer value of zero or more.
- the control unit 10 obtains the detected value Gx (j) of the acceleration Gx at the current time j from the first acceleration sensor 31, and performs time integration for this detected value Gx (j) twice. By doing so, the displacement amount Lx (j) of the vehicle occupant at the current time j is calculated (S230).
- the detected value of the acceleration Gx at the time j is particularly expressed by Gx (j)
- the displacement amount Lx of the vehicle occupant at the time j is particularly expressed by Lx (j).
- ⁇ t is the time length (seconds) per increment of the value of time j when the unit of acceleration Gx is m / s2.
- the control unit 10 estimates that the current time j is the occurrence time of an event in which an impact is applied to the vehicle occupant due to contact with an installation in the vehicle compartment, and is predetermined.
- the execution of processing is instructed (S250).
- the execution instruction destination is, for example, a task that executes a predetermined process with the occurrence of this event as a trigger. Thereafter, the control unit 10 proceeds to S260.
- the control unit 10 makes a negative determination in S240, it skips S250 and proceeds to S260.
- the control unit 10 determines, based on the displacement Lx (j), the event occurrence position Dxm [K2] where the vehicle occupant is located farthest forward from the seating position (according to the example shown in FIG. 2). It is determined whether or not Dxm [3]) has been reached (S260). The determination here can be made in the same manner as the determination in S240.
- control unit 10 waits until the front collision accident occurs again (YES in S270) or the vehicle 3 stops (YES in S280) by repeatedly executing the processes of S270 and S280.
- the determination as to whether or not a front collision has occurred again in S270 can be made in the same manner as in S120.
- the determination of whether or not the vehicle 3 has stopped in S280 can be realized by acquiring the detected value of the traveling speed V by the vehicle speed sensor 35.
- the control unit 10 determines that the vehicle 3 has stopped when the detected value of the traveling speed V is zero continuously for a predetermined time (YES in S280). In other cases, it can be determined that the vehicle 3 is not stopped (NO in S280).
- control unit 10 determines that a front collision accident has occurred again (YES in S270), it executes the processes after S210 again, and if it is determined that the vehicle 3 has stopped (YES in S280), it ends the front collision estimation process. At the same time, the front-rear estimation process (see FIG. 6) is terminated.
- the control unit 10 initializes the displacement amount Lx of the vehicle occupant in the front-rear direction to zero, and initializes the time j to zero (S310). Thereafter, the process proceeds to S320, and 1 is added to the time j.
- the control unit 10 performs time integration for the detected value Gx (j) of the acceleration Gx acquired from the first acceleration sensor 31 twice, so that the vehicle occupant is similar to the process in S230. Displacement amount Lx (j) is calculated (S330). Further, by determining whether or not the detected value Gx (j) is less than the threshold value Thxm, it is determined whether or not a front-end accident has occurred using the same determination method as in S120 (S335). After the rear-end collision, the front-end collision often occurs in a chain as the vehicle 3 moves forward. In S335, if such a frontal accident occurs, an affirmative determination is made.
- control unit 10 proceeds to S390, instructs the execution of the predetermined process in the same manner as S250, and then proceeds to S440. On the other hand, if it is determined that no frontal accident has occurred (NO in S335), the process proceeds to S340.
- control unit 10 estimates that the current time j is the occurrence time of an event corresponding to the value Dxp [k], and instructs the execution of a predetermined process as in S250 ( S350). Thereafter, the process proceeds to S360. On the other hand, if the control unit 10 makes a negative determination in S340, it skips S350 and proceeds to S360.
- the control unit 10 determines, based on the displacement Lx (j), the event occurrence position Dxp [K1] where the vehicle occupant is located farthest rearward from the seating position (according to the example shown in FIG. 2). It is determined whether or not Dxp [1]) has been reached. When the vehicle occupant determines that the event occurrence position Dxp [K1] has not been reached (NO in S360), the process proceeds to S320. On the other hand, if it is determined that it has been reached (YES in S360), the process proceeds to S370.
- control unit 10 waits until a frontal collision occurs (YES in S370) or until the vehicle 3 stops (YES in S380).
- the determination as to whether or not a front collision accident has occurred in S370 can be made in the same manner as in S120 and S335.
- the determination of whether or not the vehicle 3 has stopped in S380 can be made in the same manner as in S280.
- control unit 10 determines that a front-end collision has occurred (YES in S370), the process proceeds to S420. If the control unit 10 determines that the vehicle 3 has stopped (YES in S380), the rear-end collision estimation process ends and the front-rear estimation is performed. The process (see FIG. 6) ends.
- the control unit 10 After shifting to S420, the control unit 10 adds 1 to the time j, and performs time integration twice with respect to the detected value Gx (j) of the acceleration Gx acquired from the first acceleration sensor 31, thereby performing the same processing as in S230.
- the displacement amount Lx (j) of the vehicle occupant is calculated (S430). By calculating the displacement amount Lx (j) without the displacement amount Lx and time j being initialized to zero after the front collision accident, the displacement amount Lx (j) is calculated as follows: Calculated.
- control unit 10 performs the same processing as S240 to S260 in S440 to S460 using the displacement Lx (j) calculated in S430. If it is determined that the vehicle occupant has not reached the event occurrence position Dxm [K2] farthest forward from the seating position (NO in S460), the process proceeds to S420, and the same processing as S220 to S260 is performed. , S420 to S460.
- the displacement amount Lx is not initialized to zero because the vehicle occupant may be displaced forward from a state where the rear-end collision caused the rear-end collision. is there.
- the displacement amount Lx is initialized to zero in the first front collision accident, in which the vehicle occupant in the state where the vehicle occupant has moved completely forward in the vehicle interior is displaced. This is because they are not monitored. In other words, this is because the displacement monitoring target is limited to the vehicle occupant who has returned to the original seating position before the previous frontal accident, for example, due to wearing a seat belt.
- the control unit 10 executes the left-right estimation process shown in FIG. 10 in addition to the front-rear estimation process when the driving of the vehicle 3 starts.
- the control unit 10 determines whether or not a left side collision has occurred in which the vehicle 3 collides with an object from the left side (S520).
- the control unit 10 determines that a left-side collision has occurred when the latest detected value of the acceleration Gy by the second acceleration sensor 33 is a negative value and less than a predetermined threshold value Thym (YES in S520).
- Thym a predetermined threshold value
- the detected value of the acceleration Gy is equal to or greater than the threshold value Thym, it is determined that no left side crash has occurred (NO in S520).
- the control unit 10 determines whether or not a right side collision has occurred in which the vehicle 3 collides with an object from the right side. Specifically, the control unit 10 determines that a right side crash has occurred when the latest detected value of the acceleration Gy by the second acceleration sensor 33 is a positive value and is greater than a predetermined threshold value Thyp (YES in S530). ). On the other hand, when the detected value of the acceleration Gy is equal to or less than the threshold value Thyp, it is determined that no right side crash has occurred (NO in S530).
- the control unit 10 initializes the displacement amount Ly of the vehicle occupant in the left-right direction to zero, and initializes the time j to zero (S610).
- the time j used here is independent of the time j used in the front-rear estimation process. Thereafter, the process proceeds to S620, and 1 is added to the time j.
- the control unit 10 acquires the detected value Gy (j) of the acceleration Gy at the current time j from the second acceleration sensor 33, and performs time integration for this detected value Gy (j) twice. By doing so, the displacement amount Ly (j) of the vehicle occupant at the current time j is calculated (S630).
- the detected value of the acceleration Gy at the time j is particularly represented by Gy (j)
- the displacement amount Ly of the vehicle occupant at the time j is particularly represented by Ly (j).
- control unit 10 estimates that the current time j is the occurrence time of the event, and instructs execution of a predetermined process in the same manner as S250 (S650). Thereafter, the process proceeds to S660. On the other hand, if the control unit 10 makes a negative determination in S640, it skips S650 and proceeds to S660.
- the control unit 10 determines, based on the displacement amount Ly (j), the event occurrence position Dym [K4] in which the vehicle occupant is farthest leftward from the seating position (according to the example shown in FIG. 2). For example, it is determined whether or not Dym [2]) has been reached.
- control unit 10 finishes the left / right collision estimation processing (S550, S560) of such contents and proceeds to S570, it determines whether or not the vehicle 3 has stopped using the same determination method as in S280. . When it is determined that the vehicle 3 has stopped (YES in S570), the left / right estimation process is terminated. On the other hand, if it is determined that the vehicle 3 has not stopped (NO in S570), it is determined whether another side crash (either a left side crash or a right side crash) has occurred (S580), S520, S530, Judging by the same method.
- another side crash either a left side crash or a right side crash
- control unit 10 repeatedly executes the recording control process shown in FIG. 12 in parallel with the left / right estimation process and the front / rear estimation process.
- the control unit 10 every time a processing execution instruction is issued in S250, S350, S390, S450, and S650 (YES in S710), the image data representing the captured image of the vehicle interior at the current time by the camera 45 and the associated data relating to the current state are associated with each other. And stored in the storage unit 20 (S720).
- step S720 the control unit 10 controls the camera 45 to cause the camera 45 to execute a still image shooting operation only once, thereby storing image data representing a captured image at the current time generated by the camera 45. It is made to memorize in.
- control unit 10 is configured to selectively store, in the storage unit 20, image data representing a photographed image at the current time among image data automatically generated by a camera 45 that continuously photographs a vehicle interior.
- the control unit 10 may be configured to store, in the storage unit 20, several pieces of continuously captured image data instead of one piece of image data as the current time image data.
- the attached data generated by the control unit 10 in S720 includes, for example, the identification information of the vehicle 3, the information indicating the position of the vehicle 3, the information indicating the collision date and time of the vehicle 3, and the photographing time based on the time of the collision of the vehicle 3 ( At least one of information indicating elapsed time), information indicating the maximum acceleration when the vehicle 3 collides, information indicating the accelerations Gx and Gy of the vehicle 3 when the camera 45 captures an image, and output information of the biological signal sensor 39.
- the data may include
- the identification information of the vehicle 3 can be stored in the storage unit 20 in advance.
- This identification information includes information indicating the registration number and vehicle type of the vehicle 3.
- the attached data can include information on the position coordinates of the vehicle 3 at the time of the vehicle collision obtained from the GPS receiver 41 as information indicating the position of the vehicle 3.
- the attached data can include information on the current date and time indicated by an internal clock (not shown) of the control unit 10 as information indicating the date and time of collision of the vehicle 3.
- the attached data includes information on elapsed time based on the first collision time in a series of consecutive collision accidents as information representing the shooting time (elapsed time) based on the time of the collision of the vehicle 3. Can be made.
- the elapsed time information can be stored in the attached data in association with the collision date (day, hour, minute, and second) information corresponding to the origin of the elapsed time.
- the detected values of the accelerations Gx and Gy at each time within a predetermined period are stored in the RAM 15 as history information, and the history information is referred to. Can be generated.
- the attached data can include the output information of the biological signal sensor 39 at the time of image capturing (information indicating the presence / absence of breathing of the vehicle occupant and the pulse rate) as the output information of the biological signal sensor 39.
- FIG. 13 is a graph showing an example of the time at which image data and attached data are stored by executing such a recording control process.
- the horizontal axis of the graph represents time, and the vertical axis represents the displacement Lx and the acceleration Gx.
- the trajectory of acceleration Gx (broken line) shown in FIG. 13 represents an example of the trajectory of acceleration Gx when a front collision accident occurs after the occurrence of a rear collision accident.
- a thick solid line represents an example of a locus of the displacement Lx.
- the time Txp [1] shown in the graph is the time when the displacement Lx matches the value Dxp [1].
- the image data is stored in the storage unit 20 in this way, so that the image data useful for rescue, lifesaving, and treatment of the vehicle occupant is efficiently saved with a reduced data amount.
- the image data stored in the storage unit 20 is transmitted to the center apparatus 100 and the related organization 200 by radio. That is, the control unit 10 transmits the image data to the center apparatus 100 and the related engine 200 via the communication unit 43 by repeatedly executing the transmission control process shown in FIG. 14 in parallel with the recording control process.
- the control unit 10 waits until new image data is stored in the storage unit 20 (S810). Then, when new image data is stored (YES in S810), communication data (output data) in which the image data and the attached data associated with the image data are collected is generated (S820). The communication data is transmitted to the center apparatus 100 and the related organization 200 as a predetermined transmission destination via the communication unit 43 (S830). The control unit 10 executes such transmission processing of communication data every time a collision accident occurs and image data is stored.
- this in-vehicle system 1 it is possible to efficiently provide image data useful for rescue, lifesaving and treatment of a vehicle occupant to the center apparatus 100 and the related organization 200 with a small amount of data. Therefore, even when the communication environment is bad, the image data and the attached data can be quickly provided to the center apparatus 100 and the related organization 200. In other words, it is possible to suppress as much as possible that the opportunity to use the image data for rescue, lifesaving, and treatment of the vehicle occupant is lost due to the poor communication environment.
- the related organization 200 When the related organization 200 receives the communication data from the in-vehicle system 1, the related organization 200 displays image data and attached data included in the communication data. The progress of the accident grasped by the person in charge of the related organization 200 by this display is transmitted to the person who performs rescue, lifesaving and treatment, and is used for the rescue, lifesaving and treatment of the vehicle occupant.
- the center device 100 receives the communication data from each of a plurality of vehicles on which the in-vehicle system 1 is mounted, and analyzes the data to thereby obtain values Pxp, Pxm, Pyp, Pym represented by the position table for each vehicle type. Calculate the appropriate value. In the process of calculating the appropriate value, human judgment can be included. Based on this calculation result, the center device 100 generates update data for updating the position table values Pxp, Pxm, Pyp, Pym for each vehicle type, and transmits this to the vehicle 3 of the corresponding vehicle type. .
- the control unit 10 repeatedly executes the update control process (see FIG. 15) in order to receive this update data.
- the control unit 10 stands by until the update data transmitted from the center device 100 is received via the communication unit 43 (S910).
- the position table stored in the storage unit 20 is updated based on the update data (S920). That is, the values Pxp, Pxm, Pyp, Pym represented by the position table are corrected to appropriate values indicated by the update data.
- control unit 10 repeatedly executes the display control process shown in FIG. 16 so that the person who rescues the vehicle occupant can check the image at the time of the collision.
- the control unit 10 waits until a predetermined display condition is satisfied (S1010).
- the display condition is satisfied (YES in S1010)
- the display 49 is controlled to display an image based on the image data stored in the storage unit 20 on the display 49 (S1020).
- the control unit 10 can display images based on these image data on the display 49 simultaneously or sequentially.
- S1010 if an operation for instructing image display is performed by a rescuer or the like via the operation unit in the vehicle interior, it can be determined that the display condition is satisfied. As another example, in S1010, when the image data is stored in the storage unit 20, it can be immediately determined that the display condition is satisfied.
- the detected values of the accelerations Gx and Gy by the first acceleration sensor 31 and the second acceleration sensor 33 are used.
- the displacement amounts Lx and Ly of the vehicle occupant in the passenger compartment due to the collision are measured.
- the time of occurrence of an event in which the vehicle occupant comes into contact with an installation in the vehicle compartment and an impact is applied to the vehicle occupant is estimated.
- the contact referred to here includes a state in which the vehicle occupant is restrained from moving by being restrained by an installation such as a seat belt or a backrest.
- the acceleration sensor is usually mounted on the vehicle 3 for purposes other than estimating the occurrence time of this event. Therefore, according to the present embodiment, it is not necessary to provide a special sensor for the estimation, and the highly convenient in-vehicle system 1 capable of efficiently storing image data by estimating the occurrence time of the event is provided. Can be built.
- the occurrence time of the event is estimated based on the position table. At this time, the deviation Sp from the standard seating position of the seating position of the vehicle occupant detected by the seating position sensor 37 is determined. In consideration of the above, the above estimation is performed. Therefore, according to the present embodiment, it is possible to appropriately record a captured image at the time of occurrence of the above event. As a result of being able to record the captured image at an appropriate timing, it is not necessary to store a large amount of image data redundantly, and it is not necessary to transmit a large amount of these image data to the center apparatus 100 or the related organization 200. That's it.
- image data useful for rescue, lifesaving, and treatment can be efficiently stored and transmitted (output) to an external device efficiently.
- prompt rescue, lifesaving, and treatment are required at the time of an accident, and it is not preferable that data transmission (output) takes time.
- data transmission can be performed quickly even in a poor communication environment, which is very useful for rescue and lifesaving.
- a person who confirms image data can easily confirm image data useful for rescue, lifesaving, and treatment, and can easily and quickly grasp the situation.
- a captured image at a corresponding time is recorded in accordance with the timing at which the vehicle occupant is displaced at each of the occurrence positions of the above-described events.
- the captured image can be recorded at an appropriate timing in accordance with the front / rear / right / left collision. Therefore, based on the image data recorded and provided by the in-vehicle system 1, a rescuer, a doctor, or the like can grasp in detail the mode of impact on the vehicle occupant.
- the estimation process is executed until the vehicle 3 stops, it is possible to record image data corresponding to a collision accident that occurs in a chain manner.
- the image data stored in the storage unit 20 can be quickly provided to the related organizations 200 related to the above-described rescue, lifesaving, and treatment through wireless communication (wide area communication). It can contribute to quick rescue, lifesaving and treatment.
- the auxiliary data for grasping the situation of the accident in detail is also provided to the related organization 200 together with the image data, which is very useful for rescue, lifesaving and treatment.
- the image taken by the camera 45 can be recorded at a more appropriate timing.
- the vehicle-mounted system 1 of a modification uses the estimation result related to the occurrence time of the event for controlling the airbag 61.
- the basic configuration of the in-vehicle system 1 of the present modification is the same as that in the above embodiment. Therefore, below, the structure of the vehicle-mounted system 1 peculiar to this modification is selectively demonstrated.
- the control unit 10 of the in-vehicle system 1 is connected to the airbag system 60 and configured to be able to control the airbag system 60 as shown in FIG.
- the airbag system 60 includes airbags 61 on the inside of the steering wheel, dashboard, seat (backrest and headrest), and right and left doors, and each of these airbags 61 can be activated individually in accordance with instructions from the control unit 10. Configured.
- the activation of the airbag 61 as used herein refers to an operation of sending gas into the airbag 61 and inflating the airbag 61.
- values Pxp, Pxm, Pyp, and Pym are described.
- values Pxp, Pxm, Pyp, and Pym for recording the captured image at the moment when the vehicle occupant collides with the installation object are stored in the position table.
- values Pxp, Pxm, Pyp, Pym for starting the airbag 61 are described.
- FIG. 18 shows a process execution instruction for instructing to activate the airbag 61 installed at the position where the corresponding event occurs, presuming that it is immediately before the occurrence time of the event to which the impact is applied (time before the predetermined time). Issued for the airbag control process shown.
- control unit 10 repeatedly executes the airbag control process shown in FIG. 18 in parallel with the front-rear estimation process and the left-right estimation process.
- the system waits until the process execution instruction is issued (S1110).
- the process execution instruction is issued (YES in S1110)
- the airbag system 60 is activated so as to activate the airbag 61 according to the instruction. Is controlled (S1120).
- the air bag provided before and after the vehicle occupant in the vehicle 3 based on the estimation result (processing execution instruction) of the occurrence time of the above-described event with respect to the object installed in the front and rear direction of the vehicle occupant
- the activation of the airbag 61 provided on the left and right of the vehicle occupant in the vehicle 3 is controlled based on the estimation result (processing execution instruction) of the occurrence time of the above-described event for the object installed in the left and right direction of the vehicle occupant.
- the airbag 61 performs a function of reducing damage to the vehicle occupant, but it is necessary to activate the airbag 61 at an appropriate timing in order to fully exert the function of the airbag 61. That is, the period during which the airbag 61 can effectively protect the vehicle occupant is limited to a short time after the airbag 61 is deployed.
- each airbag 61 is activated at an appropriate timing based on the displacement of the vehicle occupant and the positional relationship between the vehicle occupant and the installation in the vehicle interior. be able to. Therefore, for example, at the time of a frontal collision, the vehicle occupant can be appropriately protected both when the vehicle occupant is bent maximum and when it collides with the handle.
- the image data representing the image captured by the camera 45 can be stored in the storage unit 20 by the same method as in the above embodiment.
- the in-vehicle system 1 may be configured as follows, for example.
- values Dxp, Dxm, Dyp, and Dym for controlling the recording timing of the captured image are set, and the start timing of the airbag 61 is controlled.
- the values Dxp, Dxm, Dyp, and Dym for this are set.
- the activation timing of the airbag 61 takes into account the deployment time ( ⁇ ) of the airbag 61 and the output value (G) of the acceleration sensor, and the recording timing of the captured image (the occurrence time of an event that causes an impact on the vehicle occupant). ),
- the value Dxp, Dxm, Dyp, Dym corresponding to the value C can be advanced by correcting the value C according to the following equation.
- G and V are acceleration and velocity with respect to the collision direction (front-rear direction or left-right direction).
- this indication is not limited to the above-mentioned embodiment, but can take various modes.
- the storage unit 20 corresponds to an example of a storage device
- the communication unit 43 corresponds to an example of a transmission device and a reception device.
- the displacement amount Lx and Ly calculation processing (S230, S330, S430, and S630) executed by the control unit 10 corresponds to an example of processing realized by the measurement unit.
- S110, S510, S240 to S260, S340 to S360, S440 to S460, and S640 to S660 executed by the control unit 10 correspond to an example of processing realized by the estimation unit.
- the update control process executed by the control unit 10 corresponds to an example of a process realized by the update unit
- S280, S380, S480, and S570 executed by the control unit 10 are processes realized by the determination unit.
- the recording control process and the transmission control process executed by the control unit 10 correspond to an example of the process realized by the output control unit
- the display control process executed by the control unit 10 is realized by the display control unit.
- the airbag control process executed by the control unit 10 corresponds to an example of a process realized by the airbag control unit.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air Bags (AREA)
- Time Recorders, Dirve Recorders, Access Control (AREA)
Abstract
This electronic device (1) is mounted on a vehicle (3) and is equipped with a measurement unit (10, S230, S330, S430, S630) and an estimation unit (10, S110, S510, S240-S260, S340-S360, S440-S460, S640-S660). The measurement unit measures, on the basis of acceleration values detected by acceleration sensors (31, 33) that detect acceleration of the vehicle, an amount of displacement of a vehicle occupant in the cabin caused by a collision of the vehicle. The estimation unit estimates, on the basis of the displacement amount measured by the measurement unit, the occurrence time of an event in which an impact will be exerted on the vehicle occupant as the vehicle occupant comes into contact with an in-cabin object.
Description
本開示は、2013年12月9日に出願された日本出願番号2013-254218号に基づくもので、ここにその記載内容を援用する。
This disclosure is based on Japanese Patent Application No. 2013-254218 filed on December 9, 2013, the contents of which are incorporated herein by reference.
本開示は、車両に搭載される電子機器に関する。
This disclosure relates to an electronic device mounted on a vehicle.
従来、車両に搭載される電子機器としては、事故原因の特定に役立てるために、車両の走行状況を記憶するドライブレコーダが知られている。ドライブレコーダとしては、車両の加速度を検出する加速度センサによる加速度の検出値が一定時間閾値を超えたことを条件に、この条件が満足された時刻前後に撮影された画像群(又は動画)を記憶するものが知られている。加速度の検出値が閾値を一定時間超えたことを条件に、所定時間撮影動作を行い、この撮影画像群を記憶するものも知られている(例えば特許文献1参照)。
Conventionally, as an electronic device mounted on a vehicle, a drive recorder that stores the traveling state of the vehicle is known to help identify the cause of the accident. The drive recorder stores a group of images (or moving images) taken before and after the time when the detected value of the acceleration by the acceleration sensor that detects the acceleration of the vehicle exceeds a threshold value for a certain time. What to do is known. It is also known that a photographing operation is performed for a predetermined time on the condition that the detected acceleration value exceeds a threshold value for a predetermined time, and this photographed image group is stored (for example, see Patent Document 1).
ところで、事故時におけるカメラの撮影画像は、車両乗員の救助、救命や治療に役立てることができる可能性がある。例えば、車両乗員に対する適切な治療方法は、事故時の衝撃が車両乗員の身体に及ぼす影響により異なる。従って、車両乗員の状況を撮影し、この撮影画像を表示又は解析することができれば、適切な治療方法を選択することができる。
By the way, there is a possibility that the image taken by the camera at the time of the accident can be used for rescue, lifesaving and treatment of the vehicle occupant. For example, an appropriate treatment method for a vehicle occupant varies depending on the influence of an impact at the time of an accident on the body of the vehicle occupant. Therefore, if the situation of the vehicle occupant can be photographed and the photographed image can be displayed or analyzed, an appropriate treatment method can be selected.
しかしながら、従来技術によれば、加速度の検出値が閾値を超えたことを条件に、その条件が満足された時刻周辺の画像群を記憶する程度であるので、次のような不都合がある。加速度センサにより検出される加速度の変化は、車両の挙動に起因するものである。換言すれば、加速度の検出値が変化する時期と、車両乗員が車室内の設置物と接触する時期との間には、時間差がある。
However, according to the conventional technique, on the condition that the detected value of acceleration exceeds the threshold value, the image group around the time when the condition is satisfied is stored. The change in acceleration detected by the acceleration sensor is caused by the behavior of the vehicle. In other words, there is a time difference between the time when the detected value of acceleration changes and the time when the vehicle occupant contacts the installation in the vehicle interior.
従って、従来技術のように画像群を記録する方法では、車両が衝突した瞬間の画像群を記録できるだけで、車両乗員が車室内の設置物に接触する瞬間の画像を適切に記録することができない。また、加速度の検出値が閾値以上となってから、長い時間撮影動作を行う方法では、記録すべき画像群のデータ量が増大するだけでなく、記録された画像群から、救助、救命や治療に役立つ画像を探し出すのに時間を要する可能性がある。
Therefore, the method of recording an image group as in the prior art can only record the image group at the moment when the vehicle collides, and cannot properly record the image at the moment when the vehicle occupant contacts the installation in the vehicle interior. . In addition, in the method of performing a photographing operation for a long time after the acceleration detection value becomes equal to or greater than the threshold value, not only the amount of data of the image group to be recorded increases, but also the rescue, lifesaving and treatment from the recorded image group. It may take time to find useful images.
車両乗員の救助及び救命のためには、撮影画像群を長い時間かけて確認又は解析する余裕がないケースがある。従って、冗長な記録は好ましくない。また、記録対象の画像群のデータ量が増加すれば、データの読み出しや転送に必要な処理時間が長くなる。
There are cases where there is no room for checking or analyzing captured images over a long period of time for the rescue and lifesaving of vehicle occupants. Therefore, redundant recording is not preferable. Further, if the data amount of the image group to be recorded increases, the processing time required for reading and transferring data becomes longer.
このように、従来技術によれば、車両乗員が車室内の設置物に接触する瞬間が不明であることが原因で、車両乗員に対する救命及び治療等のために有利に、事故時の画像を記録したり、表示したり、出力したりすることができない。
Thus, according to the prior art, because the moment when the vehicle occupant contacts the installation in the passenger compartment is unknown, the image at the time of the accident is recorded advantageously for lifesaving and treatment for the vehicle occupant. Cannot be displayed, displayed, or output.
この他、従来技術によれば、加速度の検出値が閾値を超えるとエアバッグを起動させることが行われている。しかしながら、この技術では、適切なタイミングでエアバッグを起動させることができない可能性があり、車両乗員を十分に保護できない可能性がある。
In addition, according to the prior art, when the detected acceleration value exceeds a threshold value, the airbag is activated. However, with this technique, there is a possibility that the airbag cannot be activated at an appropriate timing, and there is a possibility that the vehicle occupant cannot be sufficiently protected.
本開示は、こうした問題に鑑みなされたものであり、車両乗員が車室内の設置物に接触して車両乗員に衝撃が加わる事象の発生時刻を推定するのに好適な電子機器を提供することを目的とする。
The present disclosure has been made in view of these problems, and provides an electronic device suitable for estimating the occurrence time of an event in which a vehicle occupant contacts an installation in a vehicle cabin and an impact is applied to the vehicle occupant. Objective.
本開示の一態様に係る電子機器は、車両に搭載される電子機器であって、計測部と、推定部とを備える。前記計測部は、前記車両の加速度を検出する加速度センサによる前記加速度の検出値に基づき、前記車両の衝突に起因する車室内における車両乗員の変位量を計測する。前記推定部は、前記計測部により計測された前記変位量に基づき、前記車両乗員が前記車室内の設置物に接触して前記車両乗員に衝撃が加わる事象の発生時刻を推定する。
An electronic device according to an aspect of the present disclosure is an electronic device mounted on a vehicle, and includes a measurement unit and an estimation unit. The measuring unit measures a displacement amount of a vehicle occupant in a passenger compartment caused by a collision of the vehicle based on a detected value of the acceleration by an acceleration sensor that detects an acceleration of the vehicle. The estimation unit estimates an occurrence time of an event in which the vehicle occupant contacts an installation in the vehicle interior and an impact is applied to the vehicle occupant based on the displacement amount measured by the measurement unit.
前記電子機器は、前記加速度センサの前記検出値を用いて前記車両乗員の前記変位量を計測し、前記変位量に基づき前記時刻を推定する。換言すれば、前記電子機器は、前記事象の発生時刻の検出に特化したセンサを設けたり、複雑な画像解析を行ったりしなくても、前記時刻を適切に推定することができる。前記加速度センサは、前記車両に搭載されていることが多い。そうでなくとも、前記電子機器には、安価に前記加速度センサを設けることができる。従って、前記電子機器は、前記車両乗員が前記車室内の設置物に接触して前記車両乗員に衝撃が加わる前記事象の発生時刻を推定するのに好適である。
The electronic device measures the displacement amount of the vehicle occupant using the detection value of the acceleration sensor, and estimates the time based on the displacement amount. In other words, the electronic device can appropriately estimate the time without providing a sensor specialized for detection of the occurrence time of the event or performing complicated image analysis. The acceleration sensor is often mounted on the vehicle. Otherwise, the electronic device can be provided with the acceleration sensor at a low cost. Therefore, the electronic device is suitable for estimating the occurrence time of the event in which the vehicle occupant contacts an installation in the vehicle compartment and an impact is applied to the vehicle occupant.
本開示における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。図面において、
図1は、本開示の一実施例の車載システムの構成を表すブロック図である。
図2は、位置テーブルの構成を表す図である。
図3は、標準着座位置からのハンドル及びフロントウィンドシールドの相対位置を示した図である。
図4は、首が最大に屈曲するまでの変位を示した図である。
図5は、首が最大に伸展するまでの変位を示した図である。
図6は、制御ユニットが実行する前後推定処理を表すフローチャートである。
図7は、着座位置に基づく補正を説明した図である。
図8は、制御ユニットが実行する前突推定処理を表すフローチャートである。
図9は、制御ユニットが実行する追突推定処理を表すフローチャートである。
図10は、制御ユニットが実行する左右推定処理を表すフローチャートである。
図11は、制御ユニットが実行する左側突推定処理を表すフローチャートである。
図12は、制御ユニットが実行する記録制御処理を表すフローチャートである。
図13は、画像データの記録タイミングを表すグラフである。
図14は、制御ユニットが実行する送信制御処理を表すフローチャートである。
図15は、制御ユニットが実行する更新制御処理を表すフローチャートである。
図16は、制御ユニットが実行する表示制御処理を表すフローチャートである。
図17は、変形例の車載システムの構成を表すブロック図である。
図18は、変形例の車載システムに備えられた制御ユニットが実行するエアバッグ制御処理を表すフローチャートである。
The above and other objects, configurations, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the following drawings. In the drawing
FIG. 1 is a block diagram illustrating a configuration of an in-vehicle system according to an embodiment of the present disclosure. FIG. 2 is a diagram illustrating the configuration of the position table. FIG. 3 is a view showing the relative positions of the handle and the front windshield from the standard seating position. FIG. 4 is a diagram showing the displacement until the neck bends to the maximum. FIG. 5 is a diagram showing the displacement until the neck extends to the maximum. FIG. 6 is a flowchart showing the before-and-after estimation process executed by the control unit. FIG. 7 is a diagram illustrating correction based on the seating position. FIG. 8 is a flowchart showing the front collision estimation process executed by the control unit. FIG. 9 is a flowchart showing a rear-end collision estimation process executed by the control unit. FIG. 10 is a flowchart showing the left-right estimation process executed by the control unit. FIG. 11 is a flowchart showing the left side collision estimation process executed by the control unit. FIG. 12 is a flowchart showing a recording control process executed by the control unit. FIG. 13 is a graph showing recording timing of image data. FIG. 14 is a flowchart showing a transmission control process executed by the control unit. FIG. 15 is a flowchart showing an update control process executed by the control unit. FIG. 16 is a flowchart showing display control processing executed by the control unit. FIG. 17 is a block diagram illustrating a configuration of an in-vehicle system according to a modification. FIG. 18 is a flowchart showing an airbag control process executed by a control unit provided in a vehicle-mounted system according to a modification.
以下に本開示の一実施例について、図面と共に説明する。本実施例の電子機器である車載システム1は、二輪/四輪自動車等の車両3に搭載される。車載システム1は、図1に示すように、制御ユニット10と、記憶ユニット20と、第一加速度センサ31と、第二加速度センサ33と、車速センサ35と、着座位置センサ37と、生体信号センサ39と、GPS受信機41と、通信ユニット43と、カメラ45と、スピーカ47と、ディスプレイ49とを備える。
Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings. An in-vehicle system 1 that is an electronic device of the present embodiment is mounted on a vehicle 3 such as a two-wheel / four-wheel vehicle. As shown in FIG. 1, the in-vehicle system 1 includes a control unit 10, a storage unit 20, a first acceleration sensor 31, a second acceleration sensor 33, a vehicle speed sensor 35, a seating position sensor 37, and a biological signal sensor. 39, a GPS receiver 41, a communication unit 43, a camera 45, a speaker 47, and a display 49.
制御ユニット10は、CPU11と、ROM13と、RAM15とを備える。ROM13は、各種プログラムを記憶する。CPU11は、各種プログラムに従う処理を実行する。RAM15は、CPU11による処理実行時に作業用メモリとして使用される。以下では、説明を簡単にするために、CPU11が実行する処理(図6,8~12,14~17に示す処理等)を、制御ユニット10を動作主体として説明する。
The control unit 10 includes a CPU 11, a ROM 13, and a RAM 15. The ROM 13 stores various programs. The CPU 11 executes processing according to various programs. The RAM 15 is used as a working memory when the CPU 11 executes processing. In the following, for the sake of simplicity, the processing executed by the CPU 11 (the processing shown in FIGS. 6, 8 to 12, 14 to 17, etc.) will be described with the control unit 10 as the operating subject.
記憶ユニット20は、ハードディスク装置、又は、フラッシュメモリ等の電気的にデータ書換可能な不揮発性メモリによって構成される。記憶ユニット20は、制御ユニット10が実行する処理で用いられるデータ、及び、制御ユニット10が生成したデータを記憶する。
The storage unit 20 includes a hard disk device or a nonvolatile memory such as a flash memory that can be electrically rewritten. The storage unit 20 stores data used in processing executed by the control unit 10 and data generated by the control unit 10.
第一加速度センサ31は、車両3の前後方向に生じる加速度を検出するセンサである。本明細書では、第一加速度センサ31により検出される加速度をGxで表し、車両3の前方向の加速度を正値で表し、減速度(後方向の加速度)を負値で表す。一方、第二加速度センサ33は、車両3の左右方向に生じる加速度を検出するセンサである。本明細書では、第二加速度センサ33により検出される加速度を変数Gyで表し、車両3の左方向の加速度を正値で表し、減速度(右方向の加速度)を負値で表す。
The first acceleration sensor 31 is a sensor that detects acceleration generated in the front-rear direction of the vehicle 3. In this specification, the acceleration detected by the first acceleration sensor 31 is represented by Gx, the forward acceleration of the vehicle 3 is represented by a positive value, and the deceleration (rearward acceleration) is represented by a negative value. On the other hand, the second acceleration sensor 33 is a sensor that detects acceleration generated in the left-right direction of the vehicle 3. In the present specification, the acceleration detected by the second acceleration sensor 33 is represented by a variable Gy, the acceleration in the left direction of the vehicle 3 is represented by a positive value, and the deceleration (acceleration in the right direction) is represented by a negative value.
第一加速度センサ31による加速度Gxの検出値及び第二加速度センサ33による加速度Gyの検出値は、制御ユニット10に入力される。車速センサ35は、車両3の走行速度Vを検出するセンサである。車速センサ35による走行速度Vの検出値は、制御ユニット10に入力される。
The detected value of the acceleration Gx by the first acceleration sensor 31 and the detected value of the acceleration Gy by the second acceleration sensor 33 are input to the control unit 10. The vehicle speed sensor 35 is a sensor that detects the traveling speed V of the vehicle 3. The detected value of the traveling speed V by the vehicle speed sensor 35 is input to the control unit 10.
着座位置センサ37は、運転席に設けられて、車両乗員(運転者)の着座位置を検出するセンサである。この着座位置センサ37は、車両乗員が座席の最も奥(背もたれ側)に着座するときの着座位置からの実際の着座位置の偏差Spを検出する。検出された偏差Spは、制御ユニット10に入力される。以下では、車両乗員が座席の最も奥に着座するときの着座位置(偏差Spがゼロである着座位置)のことを「標準着座位置」と表現する。
The seating position sensor 37 is a sensor that is provided in the driver's seat and detects the seating position of the vehicle occupant (driver). The seating position sensor 37 detects a deviation Sp of the actual seating position from the seating position when the vehicle occupant is seated at the back of the seat (backrest side). The detected deviation Sp is input to the control unit 10. Hereinafter, the seating position (sitting position where the deviation Sp is zero) when the vehicle occupant is seated at the back of the seat is expressed as “standard seating position”.
生体信号センサ39は、車両乗員の呼吸の有無及び脈拍数を検出する。生体信号センサ39による呼吸の有無及び脈拍数についての検出値は、制御ユニット10に入力される。この他、GPS受信機41は、GPS衛星からの衛星電波を受信し、この受信信号に基づき、車両3の位置座標(緯度及び経度)を検出する。GPS受信機41による位置座標の検出値は、制御ユニット10に入力される。
The biological signal sensor 39 detects the presence / absence of a vehicle occupant and the pulse rate. Detection values of the presence or absence of breathing and the pulse rate by the biological signal sensor 39 are input to the control unit 10. In addition, the GPS receiver 41 receives satellite radio waves from GPS satellites, and detects the position coordinates (latitude and longitude) of the vehicle 3 based on the received signals. The detected value of the position coordinates by the GPS receiver 41 is input to the control unit 10.
通信ユニット43は、広域ネットワーク(携帯電話網又はインターネット網)を通じた外部装置(車外装置)との通信を実現する。具体的に、通信ユニット43は、広域ネットワークの無線基地局(図示せず)との間で無線信号を送受信することにより、外部装置との通信を実現する。
The communication unit 43 realizes communication with an external device (external device) through a wide area network (a mobile phone network or an Internet network). Specifically, the communication unit 43 realizes communication with an external device by transmitting and receiving a radio signal to and from a radio base station (not shown) of the wide area network.
通信ユニット43が通信する対象の外部装置には、車載システム1に対して後述する位置テーブルの更新用データを配信するセンタ装置100、及び、車両乗員の救助、救命及び治療に関する機関200が含まれる。機関200としては、救急車の出動指令を行う指令センタや、病院等の医療機関を一例に挙げることができる。以下、これらの機関200のことを「関係機関200」と表現する。
The external devices with which the communication unit 43 communicates include a center device 100 that distributes position table update data, which will be described later, to the in-vehicle system 1, and an institution 200 for rescue, lifesaving, and treatment of vehicle occupants. . Examples of the engine 200 include a command center that issues an ambulance dispatch command and a medical institution such as a hospital. Hereinafter, these organizations 200 are expressed as “related organizations 200”.
カメラ45は、運転者を含む車両乗員が位置する車室内の全体を撮影可能なカメラであり、その撮影画像を表す画像データを制御ユニット10に入力する。カメラ45は、例えば、制御ユニット10から指示されたタイミングで車室内を撮影し、一枚の画像データを制御ユニット10に入力する構成にされる。別例として、カメラ45は、車室内を連続撮影して、各時刻の撮影画像を表す画像データを制御ユニット10に入力する構成にされ得る。連続撮影によって生成される画像データの一群は、静止画像データの一群と理解されてもよいし、静止画像データの一群から構成される動画データであると理解されてもよい。
The camera 45 is a camera capable of photographing the entire interior of the passenger compartment where the vehicle occupant including the driver is located, and inputs image data representing the photographed image to the control unit 10. For example, the camera 45 is configured to take an image of the passenger compartment at a timing instructed by the control unit 10 and input one piece of image data to the control unit 10. As another example, the camera 45 may be configured to continuously capture a vehicle interior and input image data representing captured images at each time to the control unit 10. A group of image data generated by continuous shooting may be understood as a group of still image data, or may be understood as moving image data composed of a group of still image data.
この他、スピーカ47は、車両乗員に対して音声を出力する。ディスプレイ49は、例えば液晶ディスプレイとして構成され、車両乗員に対し各種情報を表示する。このディスプレイ49は、例えばダッシュボード中央に設けられる。ディスプレイ49は、制御ユニット10と車内ネットワークを通じて接続されて、同じ車内ネットワークに設置されたナビゲーション装置等の他の装置と共有され得る。
In addition, the speaker 47 outputs a sound to the vehicle occupant. The display 49 is configured as a liquid crystal display, for example, and displays various information to the vehicle occupant. The display 49 is provided in the center of the dashboard, for example. The display 49 is connected to the control unit 10 through an in-vehicle network and can be shared with other devices such as a navigation device installed in the same in-vehicle network.
付言すると、車載システム1内の各構成要素である記憶ユニット20、第一加速度センサ31、第二加速度センサ33、車速センサ35、着座位置センサ37、生体信号センサ39、GPS受信機41、通信ユニット43、カメラ45、スピーカ47及びディスプレイ49は、制御ユニット10に専用ケーブルを通じて直接接続されてもよいし、車内ネットワークを通じて接続されてもよい。
In other words, the storage unit 20, the first acceleration sensor 31, the second acceleration sensor 33, the vehicle speed sensor 35, the seating position sensor 37, the biological signal sensor 39, the GPS receiver 41, and the communication unit, which are each component in the in-vehicle system 1. 43, the camera 45, the speaker 47, and the display 49 may be directly connected to the control unit 10 through a dedicated cable, or may be connected through an in-vehicle network.
続いて、記憶ユニット20が記憶する位置テーブル(位置情報)の詳細を、図2を用いて説明する。本実施例の制御ユニット10は、第一加速度センサ31及び第二加速度センサ33による加速度Gx,Gyの検出値に基づき、車両3の衝突に起因する車室内における車両乗員の変位量Lx,Lyを計測する。そして、変位量Lx,Lyに基づき、車両乗員が車室内の設置物に接触して車両乗員に衝撃が加わる事象の発生時刻を推定し、推定した発生時刻におけるカメラ45の撮影画像を表す画像データを記憶ユニット20に格納する。
Subsequently, details of the position table (position information) stored in the storage unit 20 will be described with reference to FIG. The control unit 10 according to the present embodiment calculates the displacement amounts Lx and Ly of the vehicle occupant in the passenger compartment caused by the collision of the vehicle 3 based on the detected values of the accelerations Gx and Gy by the first acceleration sensor 31 and the second acceleration sensor 33. measure. Then, based on the displacement amounts Lx and Ly, the occurrence time of the event that the vehicle occupant contacts the installation in the passenger compartment and the vehicle occupant is subjected to an impact is estimated, and image data representing the captured image of the camera 45 at the estimated occurrence time Is stored in the storage unit 20.
図2に示す位置テーブルは、このような事象の発生時刻を推定するために用いられる。位置テーブルは、車室内における上記事象の発生位置Pxp,Pxm,Pyp,Pymを、標準着座位置に対する相対位置(距離)で表す。即ち、位置テーブルが表す値Pxp,Pxm,Pyp,Pymは、車両3の衝突が生じてから上記事象が発生するまでの車両乗員の標準着座位置からの変位量Lx,Lyに対応する。
The position table shown in FIG. 2 is used to estimate the occurrence time of such an event. The position table represents the occurrence positions Pxp, Pxm, Pyp, Pym of the above-mentioned event in the vehicle interior as relative positions (distances) to the standard seating position. That is, the values Pxp, Pxm, Pyp, Pym represented by the position table correspond to the displacement amounts Lx, Ly from the standard seating position of the vehicle occupant from when the vehicle 3 collides until the event occurs.
前後方向に対する標準着座位置は、上述したように車両乗員が座席の奥まで座った状態での車両乗員の位置を示す。一方、左右方向に対する標準着座位置は、左右座席の夫々において、車両乗員が座席の左右方向中央に着座したときの車両乗員の位置を表す。換言すると、値Pyp,Pymに対しては、相対位置の基準が二つある。二つの基準とは、左座席の中央位置と右座席の中央位置である。
The standard seating position with respect to the front-rear direction indicates the position of the vehicle occupant in a state where the vehicle occupant is sitting to the back of the seat as described above. On the other hand, the standard seating position with respect to the left-right direction represents the position of the vehicle occupant when the vehicle occupant is seated at the center in the left-right direction of the seat. In other words, there are two relative position references for the values Pyp and Pym. The two criteria are the center position of the left seat and the center position of the right seat.
上記相対位置は、加速度Gxが正値を採るとき車両乗員が車室内において後方に変位することから、標準着座位置より後方向に正値を採り、前方向に負値を採る。同様に、加速度Gyが正値を採るとき車両乗員が車室内において右方向に変位することから、標準着座位置より右方向に正値を採り、左方向に負値を採る。
The above relative position takes a positive value in the backward direction from the standard seating position and takes a negative value in the forward direction because the vehicle occupant is displaced rearward in the passenger compartment when the acceleration Gx takes a positive value. Similarly, when the acceleration Gy takes a positive value, the vehicle occupant is displaced in the right direction in the passenger compartment, so that a positive value is taken in the right direction from the standard seating position, and a negative value is taken in the left direction.
ここで、位置テーブルに記述される値Pxp,Pxmに関して、図3~図5を用いて説明する。位置テーブルに記述される値Pxm[2]は、図3に示すように、車両乗員がハンドルに接触して車両乗員に衝撃が加わる位置を表し、標準着座位置からハンドルまでの距離(変位量Lx)に対応する。値Pxm[2]は、例えば-0.5mに設定される。本明細書では、値Pxm[k]の集合(但し、kは自然数)を、値Pxmと表現する。値Pxp,Pyp,Pym、及び、後述する位置Dxp,Dxm,Dyp,Dymについても同様である。
Here, the values Pxp and Pxm described in the position table will be described with reference to FIGS. As shown in FIG. 3, the value Pxm [2] described in the position table represents a position where the vehicle occupant comes into contact with the steering wheel and an impact is applied to the vehicle occupant. ). The value Pxm [2] is set to −0.5 m, for example. In this specification, a set of values Pxm [k] (where k is a natural number) is expressed as a value Pxm. The same applies to the values Pxp, Pyp, Pym and positions Dxp, Dxm, Dyp, Dym described later.
値Pxm[3]は、図3に示すように、車両乗員がフロントウィンドシールドに接触して車両乗員に衝撃が加わる位置を表し、標準着座位置からフロントウィンドシールドまでの距離(変位量Lx)に対応する。値Pxm[3]は、例えば-1.5mに設定される。
As shown in FIG. 3, the value Pxm [3] represents a position where the vehicle occupant contacts the front windshield and an impact is applied to the vehicle occupant, and is a distance (displacement amount Lx) from the standard seating position to the front windshield. Correspond. The value Pxm [3] is set to −1.5 m, for example.
値Pxm[1]は、図4に示すように、車両3の衝突時に車両乗員がシートベルトに接触し、シートベルトに拘束された状態で、車両乗員の首が前方に最大まで屈曲して車両乗員の首に衝撃が加わる位置を表し、標準着座位置から首の最大屈曲位置までの距離(変位量Lx)に対応する。値Pxm[1]は、例えば-0.3mに設定される。
As shown in FIG. 4, the value Pxm [1] indicates that the vehicle occupant is in contact with the seat belt when the vehicle 3 collides, and the vehicle occupant's neck is bent forward to the maximum in a state where the vehicle occupant is restrained by the seat belt. This represents a position where an impact is applied to the occupant's neck and corresponds to the distance (displacement amount Lx) from the standard seating position to the maximum bending position of the neck. The value Pxm [1] is set to −0.3 m, for example.
この他、値Pxp[1]は、図5に示すように、車両3の衝突時に車両乗員が座席の背もたれに接触し、背もたれに拘束された状態で、車両乗員の首が後方に最大まで伸展して車両乗員の首に衝撃が加わる位置を表し、標準着座位置から首の最大伸展位置までの距離(変位量Lx)に対応する。値Pxp[1]は、例えば0.2mに設定される。
In addition, as shown in FIG. 5, the value Pxp [1] indicates that the vehicle occupant is in contact with the backrest of the seat at the time of the collision of the vehicle 3 and is restrained by the backrest, so that the vehicle occupant's neck extends rearward to the maximum. This represents a position where an impact is applied to the neck of the vehicle occupant, and corresponds to the distance (displacement amount Lx) from the standard seating position to the maximum extension position of the neck. The value Pxp [1] is set to 0.2 m, for example.
また、値Pyp[1]は、右座席に着座していた車両乗員が車両右側の窓(ドアを含む)に接触して車両乗員に衝撃が加わる位置を表し、右座席の標準着座位置から車両右側の窓までの距離(変位量Ly)に対応する。値Pyp[1]は、例えば0.3mに設定される。一方、値Pyp[2]は、左座席に着座していた車両乗員が車両右側の窓に接触して車両乗員に衝撃が加わる位置を表し、左座席の標準着座位置から車両右側の窓までの距離(変位量Ly)に対応する。値Pyp[2]は、例えば1.0mに設定される。
The value Pyp [1] represents a position at which the vehicle occupant seated in the right seat contacts the window (including the door) on the right side of the vehicle and an impact is applied to the vehicle occupant. This corresponds to the distance (displacement amount Ly) to the right window. The value Pyp [1] is set to 0.3 m, for example. On the other hand, the value Pyp [2] represents a position where the vehicle occupant seated in the left seat touches the vehicle right side window and the vehicle occupant is subjected to an impact, and from the standard seating position of the left seat to the vehicle right side window. This corresponds to the distance (displacement amount Ly). The value Pyp [2] is set to 1.0 m, for example.
同様に、値Pym[1]は、左座席に着座していた車両乗員が車両左側の窓(ドアを含む)に接触して車両乗員に衝撃が加わる位置を表し、左座席の標準着座位置から車両左側の窓までの距離(変位量Ly)に対応する。値Pym[1]は、例えば-0.3mに設定される。値Pym[2]は、右座席に着座していた車両乗員が車両左側の窓に接触して車両乗員に衝撃が加わる位置を表し、右座席の標準着座位置から車両左側の窓までの距離(変位量Ly)に対応する。値Pym[2]は、例えば-1.0mに設定される。
Similarly, the value Pym [1] represents a position where the vehicle occupant seated in the left seat contacts the window (including the door) on the left side of the vehicle and an impact is applied to the vehicle occupant, from the standard seating position of the left seat. This corresponds to the distance (displacement amount Ly) to the window on the left side of the vehicle. The value Pym [1] is set to −0.3 m, for example. The value Pym [2] represents a position where the vehicle occupant seated in the right seat touches the left window of the vehicle and the vehicle occupant is impacted, and the distance from the standard seating position of the right seat to the left window of the vehicle ( Corresponds to the displacement amount Ly). The value Pym [2] is set to −1.0 m, for example.
続いて、この位置テーブルに基づいて、制御ユニット10が実行する前後推定処理の詳細を、図6を用いて説明する。制御ユニット10は、図6に示す前後推定処理を車両3の運転開始を契機に実行する。例えば、制御ユニット10は、前後推定処理を、内燃機関の始動を契機に、又は、車両乗員の乗車を契機に実行することができる。この前後推定処理によっては、車両乗員が車室内の前後方向の設置物に接触して車両乗員に衝撃が加わる事象の発生時刻が推定される。
Subsequently, details of the front-rear estimation process executed by the control unit 10 based on the position table will be described with reference to FIG. The control unit 10 executes the front-rear estimation process shown in FIG. For example, the control unit 10 can execute the longitudinal estimation process when the internal combustion engine is started or when a vehicle occupant gets on. By this front-rear estimation process, the occurrence time of an event in which the vehicle occupant contacts the installation object in the front-rear direction in the passenger compartment and the vehicle occupant is impacted is estimated.
前後推定処理を開始すると、制御ユニット10は、位置テーブルが示す値Pxp,Pxmを参照し、車両乗員の実際の着座位置に対応した上記事象の発生位置Dxp,Dxmを算出する(S110)。
When the front-rear estimation process is started, the control unit 10 refers to the values Pxp, Pxm indicated by the position table, and calculates the occurrence positions Dxp, Dxm corresponding to the actual seating position of the vehicle occupant (S110).
具体的には、位置テーブルが示す値Pxp[k]を、着座位置センサ37から得られる偏差Spに基づき補正して、値Pxp[k]に対応する上記事象の発生位置Dxp[k]を算出する(k=1,…,K1)。同様に、位置テーブルが示す値Pxm[k]を、着座位置センサ37から得られる偏差Spに基づき補正して、値Pxm[k]に対応する上記事象の発生位置Dxm[k]を算出する(k=1,…,K2)。値K1及び値K2は、互いに同一値であっても異なる値であってもよく、1以上の自然数を採り得る。図2に示す位置テーブルの例によれば、K1=1であり、K2=3である。
Specifically, the value Pxp [k] indicated by the position table is corrected based on the deviation Sp obtained from the seating position sensor 37, and the occurrence position Dxp [k] of the event corresponding to the value Pxp [k] is calculated. (K = 1,..., K1). Similarly, the value Pxm [k] indicated by the position table is corrected based on the deviation Sp obtained from the seating position sensor 37, and the occurrence position Dxm [k] of the event corresponding to the value Pxm [k] is calculated ( k = 1,..., K2). The value K1 and the value K2 may be the same value or different values, and may take a natural number of 1 or more. According to the example of the position table shown in FIG. 2, K1 = 1 and K2 = 3.
着座位置から首の最大伸展位置までの距離は、車両乗員の着座位置が標準着座位置から前方に偏差Spだけずれている場合、偏差Spだけ増加する。そこで、値Pxp[1]に対応する上記事象の発生位置Dxp[1]としては、Dxp[1]=Pxp[1]+Spを算出する。偏差Spは正値である。
The distance from the seating position to the maximum extension position of the neck increases by the deviation Sp when the seating position of the vehicle occupant is shifted forward from the standard seating position by the deviation Sp. Therefore, Dxp [1] = Pxp [1] + Sp is calculated as the event occurrence position Dxp [1] corresponding to the value Pxp [1]. The deviation Sp is a positive value.
一方、着座位置からハンドルまでの距離は、図7に示すように、車両乗員の着座位置が標準着座位置から前方に偏差Spだけずれている場合、偏差Spだけ減少する。そこで、車両乗員がハンドルに接触して車両乗員に衝撃が加わる事象の発生位置Dxm[2]としては、Dxm[2]=Pxm[2]+Spを算出する。値Pxm[2]は負値、偏差Spは正値であることに注意されたい。同様に、車両乗員がフロントウィンドシールドに接触して車両乗員に衝撃が加わる事象の発生位置Dxm[3]としては、Dxm[3]=Pxm[3]+Spを算出する。
On the other hand, as shown in FIG. 7, the distance from the seating position to the steering wheel decreases by the deviation Sp when the seating position of the vehicle occupant is shifted forward from the standard seating position by the deviation Sp. Therefore, Dxm [2] = Pxm [2] + Sp is calculated as the occurrence position Dxm [2] of the event that the vehicle occupant comes into contact with the steering wheel and an impact is applied to the vehicle occupant. Note that the value Pxm [2] is a negative value and the deviation Sp is a positive value. Similarly, Dxm [3] = Pxm [3] + Sp is calculated as the occurrence position Dxm [3] where the vehicle occupant contacts the front windshield and the vehicle occupant is impacted.
一方、着座位置から首の最大屈曲位置までの距離は、偏差Spにほとんど影響しない。そこで、値Pxm[1]に対応する上記事象の発生位置Dxm[1]としては、Dxm[1]=Pxm[1]を算出する。
On the other hand, the distance from the sitting position to the maximum bending position of the neck hardly affects the deviation Sp. Accordingly, Dxm [1] = Pxm [1] is calculated as the event occurrence position Dxm [1] corresponding to the value Pxm [1].
S110での処理を終えると、制御ユニット10は、車両3が前方物体に衝突する前突事故が発生したか否かを判断する(S120)。具体的に、制御ユニット10は、第一加速度センサ31による最新の加速度Gxの検出値を取得する。そして、この加速度Gxの検出値が、負値で予め定められた閾値Thxm未満であるときには、この加速度Gxが前突事故による車両3の急減速に起因するものと見做して、前突事故が発生したと判断する(S120でYES)。一方、加速度Gxの検出値が閾値Thxm以上であるときには、前突事故が発生していないと判断する(S120でNO)。
When the processing in S110 is completed, the control unit 10 determines whether or not a front collision has occurred in which the vehicle 3 collides with a front object (S120). Specifically, the control unit 10 acquires the latest detected value of the acceleration Gx by the first acceleration sensor 31. When the detected value of the acceleration Gx is a negative value and less than a predetermined threshold Thxm, the acceleration Gx is considered to be caused by the sudden deceleration of the vehicle 3 due to the front collision, and the front collision Is determined (YES in S120). On the other hand, when the detected value of acceleration Gx is equal to or greater than threshold value Thxm, it is determined that no frontal collision has occurred (NO in S120).
制御ユニット10は、前突事故が発生したと判断すると(S120でYES)、S150に移行し、図8に示す前突推定処理を実行した後、前後推定処理を終了する。一方、前突事故が発生していないと判断すると(S120でNO)、S130に移行する。
If the control unit 10 determines that a front collision accident has occurred (YES in S120), the control unit 10 proceeds to S150, executes the front collision estimation process shown in FIG. On the other hand, if it is determined that no frontal accident has occurred (NO in S120), the process proceeds to S130.
S130において、制御ユニット10は、車両3が後方物体に追突される追突事故が発生したか否かを判断する。具体的に、制御ユニット10は、第一加速度センサ31による最新の加速度Gxの検出値が、正値で予め定められた閾値Thxpより大きいときには、この加速度Gxが追突事故による車両3の急加速に起因するものと見做して、追突事故が発生したと判断する(S130でYES)。一方、加速度Gxの検出値が閾値Thxp以下であるときには、追突事故が発生していないと判断する(S130でNO)。
In S130, the control unit 10 determines whether or not a rear-end collision in which the vehicle 3 collides with a rear object has occurred. Specifically, when the detected value of the latest acceleration Gx by the first acceleration sensor 31 is a positive value and larger than a predetermined threshold Thxp, the control unit 10 causes the acceleration Gx to suddenly accelerate the vehicle 3 due to a rear-end collision accident. It is determined that the rear-end collision occurred due to the cause (YES in S130). On the other hand, when the detected value of acceleration Gx is equal to or less than threshold value Thxp, it is determined that a rear-end collision has not occurred (NO in S130).
制御ユニット10は、追突事故が発生したと判断すると(S130でYES)、S160に移行して、図9に示す追突推定処理を実行した後、前後推定処理を終了する。一方、追突事故が発生していないと判断すると(S130でNO)、S110に移行して、現在の偏差Spの検出値に基づき、上記事象の発生位置Dxm,Dxpを再算出し、S120以降の処理を実行する。尚、制御ユニット10は、前突事故及び追突事故が発生しない場合でも、車両3の運転が終了した場合には、前後推定処理を終了することができる。
When the control unit 10 determines that a rear-end collision has occurred (YES in S130), the control unit 10 proceeds to S160 and executes the rear-end collision estimation process shown in FIG. On the other hand, if it is determined that a rear-end collision accident has not occurred (NO in S130), the process proceeds to S110, and the occurrence positions Dxm and Dxp of the event are recalculated based on the detected value of the current deviation Sp. Execute the process. Note that the control unit 10 can end the front-rear estimation process when the driving of the vehicle 3 ends even when the front-end collision and rear-end collision do not occur.
続いて、前突推定処理(S150)の詳細を、図8を用いて説明する。前突推定処理を開始すると、制御ユニット10は、車両乗員の前後方向の変位量Lxをゼロに初期化する一方、時刻jをゼロに初期化する(S210)。その後、S220に移行し、時刻jを1加算する。時刻jは、ゼロ以上の整数値を採る。
Next, details of the front collision estimation process (S150) will be described with reference to FIG. When the front collision estimation process is started, the control unit 10 initializes the displacement amount Lx of the vehicle occupant in the front-rear direction to zero, and initializes the time j to zero (S210). Thereafter, the process proceeds to S220, and 1 is added to the time j. The time j takes an integer value of zero or more.
制御ユニット10は、S220での処理を終えると、現在時刻jにおける加速度Gxの検出値Gx(j)を、第一加速度センサ31から取得し、この検出値Gx(j)に対する時間積分を二回行うことにより、現在時刻jにおける車両乗員の変位量Lx(j)を算出する(S230)。本明細書では、時刻jにおける加速度Gxの検出値を、特にGx(j)で表し、時刻jにおける車両乗員の変位量Lxを、特にLx(j)で表す。
When the control unit 10 finishes the process in S220, the control unit 10 obtains the detected value Gx (j) of the acceleration Gx at the current time j from the first acceleration sensor 31, and performs time integration for this detected value Gx (j) twice. By doing so, the displacement amount Lx (j) of the vehicle occupant at the current time j is calculated (S230). In this specification, the detected value of the acceleration Gx at the time j is particularly expressed by Gx (j), and the displacement amount Lx of the vehicle occupant at the time j is particularly expressed by Lx (j).
例えば、現在時刻j=Nである場合、変位量Lx(j=N)は、次式(1)に従って算出される。Δtは、加速度Gxの単位がm/s2であるときの時刻jの値1増加当たりの時間長(秒)である。
For example, when the current time j = N, the displacement Lx (j = N) is calculated according to the following equation (1). Δt is the time length (seconds) per increment of the value of time j when the unit of acceleration Gx is m / s2.
そして、肯定判断すると(S240でYES)、制御ユニット10は、現在時刻jが、車室内の設置物との接触に起因して車両乗員に衝撃が加わる事象の発生時刻であると推定し、所定処理の実行を指示する(S250)。実行指示先は、例えば、この事象の発生をトリガとして所定処理を実行するタスクである。その後、制御ユニット10は、S260に移行する。一方、制御ユニット10は、S240で否定判断すると、S250をスキップしてS260に移行する。
If an affirmative determination is made (YES in S240), the control unit 10 estimates that the current time j is the occurrence time of an event in which an impact is applied to the vehicle occupant due to contact with an installation in the vehicle compartment, and is predetermined. The execution of processing is instructed (S250). The execution instruction destination is, for example, a task that executes a predetermined process with the occurrence of this event as a trigger. Thereafter, the control unit 10 proceeds to S260. On the other hand, if the control unit 10 makes a negative determination in S240, it skips S250 and proceeds to S260.
S260に移行すると、制御ユニット10は、変位量Lx(j)に基づき、車両乗員が、着座位置から前方において最も遠くに位置する事象の発生位置Dxm[K2](図2に示す例によればDxm[3])に到達したか否かを判断する(S260)。ここでの判断は、S240での判断と同様に行うことができる。
When the process proceeds to S260, the control unit 10 determines, based on the displacement Lx (j), the event occurrence position Dxm [K2] where the vehicle occupant is located farthest forward from the seating position (according to the example shown in FIG. 2). It is determined whether or not Dxm [3]) has been reached (S260). The determination here can be made in the same manner as the determination in S240.
そして、車両乗員が、事象の発生位置Dxm[K2]に到達していないと判断すると(S260でNO)、S220に移行する。一方、到達したと判断すると(S260でYES)、S270に移行する。
When the vehicle occupant determines that the event occurrence position Dxm [K2] has not been reached (NO in S260), the process proceeds to S220. On the other hand, if it is determined that it has been reached (YES in S260), the process proceeds to S270.
このようにして、制御ユニット10は、車両3の衝突(前突)を検知した時点から、車両乗員の着座位置から最も離れた設置物に対する上記事象の発生位置Dxm[K2]に対応した値Dxm[K2]に変位量Lxが到達するまでは、第一加速度センサ31による加速度Gxの検出値に基づき、変位量Lxを更新する。そして、変位量Lxが各事象の発生位置Dxm[k]に対応する値Dxm[k](k=1,…,K2)に変化する毎に、この時の時刻jを、上記事象の発生時刻に推定する(S250)。
In this way, the control unit 10 determines the value Dxm corresponding to the event occurrence position Dxm [K2] for the installation farthest from the seating position of the vehicle occupant from the time when the collision (front collision) of the vehicle 3 is detected. Until the displacement amount Lx reaches [K2], the displacement amount Lx is updated based on the detected value of the acceleration Gx by the first acceleration sensor 31. Each time the displacement amount Lx changes to a value Dxm [k] (k = 1,..., K2) corresponding to the occurrence position Dxm [k] of each event, the time j at this time is changed to the occurrence time of the event. (S250).
その後、制御ユニット10は、S270,S280の処理を繰返し実行することで、再度前突事故が発生するか(S270でYES)、車両3が停止するまで(S280でYES)待機する。S270における再度前突事故が発生したか否かの判断は、S120と同様に行うことができる。S280における車両3が停止したか否かの判断は、車速センサ35による走行速度Vの検出値を取得することにより実現することができる。制御ユニット10は、走行速度Vの検出値が所定時間連続してゼロであるときには車両3が停止したと判断し(S280でYES)。それ以外の場合には、車両3は停止していないと判断する(S280でNO)ことができる。
Thereafter, the control unit 10 waits until the front collision accident occurs again (YES in S270) or the vehicle 3 stops (YES in S280) by repeatedly executing the processes of S270 and S280. The determination as to whether or not a front collision has occurred again in S270 can be made in the same manner as in S120. The determination of whether or not the vehicle 3 has stopped in S280 can be realized by acquiring the detected value of the traveling speed V by the vehicle speed sensor 35. The control unit 10 determines that the vehicle 3 has stopped when the detected value of the traveling speed V is zero continuously for a predetermined time (YES in S280). In other cases, it can be determined that the vehicle 3 is not stopped (NO in S280).
制御ユニット10は、再度前突事故が発生したと判断すると(S270でYES)、S210以降の処理を再度実行し、車両3が停止したと判断すると(S280でYES)、前突推定処理を終了し、併せて前後推定処理(図6参照)を終了する。
If the control unit 10 determines that a front collision accident has occurred again (YES in S270), it executes the processes after S210 again, and if it is determined that the vehicle 3 has stopped (YES in S280), it ends the front collision estimation process. At the same time, the front-rear estimation process (see FIG. 6) is terminated.
続いて、追突推定処理(S160)の詳細を、図9を用いて説明する。追突推定処理を開始すると、制御ユニット10は、車両乗員の前後方向の変位量Lxをゼロに初期化する一方、時刻jをゼロに初期化する(S310)。その後、S320に移行し、時刻jを1加算する。
Subsequently, details of the rear-end collision estimation process (S160) will be described with reference to FIG. When the rear-end collision estimation process is started, the control unit 10 initializes the displacement amount Lx of the vehicle occupant in the front-rear direction to zero, and initializes the time j to zero (S310). Thereafter, the process proceeds to S320, and 1 is added to the time j.
S320での処理を終えると、制御ユニット10は、第一加速度センサ31から取得した加速度Gxの検出値Gx(j)に対する時間積分を二回行うことにより、S230での処理と同様に、車両乗員の変位量Lx(j)を算出する(S330)。更に、検出値Gx(j)が閾値Thxm未満であるか否かを判断することにより、S120と同様の判断手法で、前突事故が発生したか否かを判断する(S335)。追突事故後には、車両3が前進することで、連鎖的に前突事故が発生することが良くある。S335では、このような前突事故が発生すると、肯定判断がなされる。
When the process in S320 is completed, the control unit 10 performs time integration for the detected value Gx (j) of the acceleration Gx acquired from the first acceleration sensor 31 twice, so that the vehicle occupant is similar to the process in S230. Displacement amount Lx (j) is calculated (S330). Further, by determining whether or not the detected value Gx (j) is less than the threshold value Thxm, it is determined whether or not a front-end accident has occurred using the same determination method as in S120 (S335). After the rear-end collision, the front-end collision often occurs in a chain as the vehicle 3 moves forward. In S335, if such a frontal accident occurs, an affirmative determination is made.
S335で前突事故が発生したと判断すると(S335でYES)、制御ユニット10は、S390に移行して、S250と同様に所定処理の実行を指示した後、S440に移行する。一方、前突事故が発生していないと判断すると(S335でNO)、S340に移行する。
If it is determined in S335 that a front-end collision has occurred (YES in S335), the control unit 10 proceeds to S390, instructs the execution of the predetermined process in the same manner as S250, and then proceeds to S440. On the other hand, if it is determined that no frontal accident has occurred (NO in S335), the process proceeds to S340.
S340に移行すると、制御ユニット10は、S110で算出された事象の発生位置Dxp[k](k=1,…,K1)のいずれかに車両乗員が到達したか否かを、S240と同様の手法で判断する(S340)。図2に示す例によれば、K1=1である。この場合、S340では、変位量Lx(j)が、事象の発生位置Dxp[1]に対応する値Dxp[1]に一致すると肯定判断し、それ以外の場合には否定判断することができる。別例として、制御ユニット10は、変位量Lx(j)が、値Dxp[1]を跨ぐように前回値から変化すると肯定判断し、それ以外の場合には否定判断することができる。
After shifting to S340, the control unit 10 determines whether or not the vehicle occupant has reached one of the event occurrence positions Dxp [k] (k = 1,..., K1) calculated in S110, as in S240. The determination is made by the method (S340). According to the example shown in FIG. 2, K1 = 1. In this case, in S340, an affirmative determination can be made that the displacement Lx (j) matches the value Dxp [1] corresponding to the event occurrence position Dxp [1], and a negative determination can be made otherwise. As another example, the control unit 10 can make an affirmative determination that the displacement Lx (j) changes from the previous value so as to straddle the value Dxp [1], and can make a negative determination otherwise.
そして、肯定判断すると(S340でYES)、制御ユニット10は、現在時刻jが値Dxp[k]に対応する事象の発生時刻であると推定し、S250と同様に所定処理の実行を指示する(S350)。その後、S360に移行する。一方、制御ユニット10は、S340で否定判断すると、S350をスキップしてS360に移行する。
If an affirmative determination is made (YES in S340), the control unit 10 estimates that the current time j is the occurrence time of an event corresponding to the value Dxp [k], and instructs the execution of a predetermined process as in S250 ( S350). Thereafter, the process proceeds to S360. On the other hand, if the control unit 10 makes a negative determination in S340, it skips S350 and proceeds to S360.
S360に移行すると、制御ユニット10は、変位量Lx(j)に基づき、車両乗員が、着座位置から後方において最も遠くに位置する事象の発生位置Dxp[K1](図2に示す例によればDxp[1])に到達したか否かを判断する。そして、車両乗員が、事象の発生位置Dxp[K1]に到達していないと判断すると(S360でNO)、S320に移行する。一方、到達したと判断すると(S360でYES)、S370に移行する。
When the process proceeds to S360, the control unit 10 determines, based on the displacement Lx (j), the event occurrence position Dxp [K1] where the vehicle occupant is located farthest rearward from the seating position (according to the example shown in FIG. 2). It is determined whether or not Dxp [1]) has been reached. When the vehicle occupant determines that the event occurrence position Dxp [K1] has not been reached (NO in S360), the process proceeds to S320. On the other hand, if it is determined that it has been reached (YES in S360), the process proceeds to S370.
S370に移行すると、制御ユニット10は、前突事故が発生するか(S370でYES)、車両3が停止するまで(S380でYES)待機する。S370における前突事故が発生したか否かの判断は、S120,S335と同様に行うことができる。S380における車両3が停止したか否かの判断は、S280と同様に行うことができる。
When the process proceeds to S370, the control unit 10 waits until a frontal collision occurs (YES in S370) or until the vehicle 3 stops (YES in S380). The determination as to whether or not a front collision accident has occurred in S370 can be made in the same manner as in S120 and S335. The determination of whether or not the vehicle 3 has stopped in S380 can be made in the same manner as in S280.
制御ユニット10は、前突事故が発生したと判断すると(S370でYES)、S420に移行し、車両3が停止したと判断すると(S380でYES)、追突推定処理を終了し、併せて前後推定処理(図6参照)を終了する。
If the control unit 10 determines that a front-end collision has occurred (YES in S370), the process proceeds to S420. If the control unit 10 determines that the vehicle 3 has stopped (YES in S380), the rear-end collision estimation process ends and the front-rear estimation is performed. The process (see FIG. 6) ends.
S420に移行すると、制御ユニット10は、時刻jを1加算し、第一加速度センサ31から取得した加速度Gxの検出値Gx(j)に対する時間積分を二回行うことにより、S230での処理と同様に、車両乗員の変位量Lx(j)を算出する(S430)。前突事故後に変位量Lx及び時刻jがゼロに初期化されないまま、変位量Lx(j)が算出されることで、変位量Lx(j)としては、追突事故の発生時からの変位量が算出される。
After shifting to S420, the control unit 10 adds 1 to the time j, and performs time integration twice with respect to the detected value Gx (j) of the acceleration Gx acquired from the first acceleration sensor 31, thereby performing the same processing as in S230. Next, the displacement amount Lx (j) of the vehicle occupant is calculated (S430). By calculating the displacement amount Lx (j) without the displacement amount Lx and time j being initialized to zero after the front collision accident, the displacement amount Lx (j) is calculated as follows: Calculated.
その後、制御ユニット10は、S430で算出した変位量Lx(j)を用いて、S240~S260と同一の処理をS440~S460において行う。そして、着座位置から前方において最も遠くに位置する事象の発生位置Dxm[K2]に車両乗員が到達していないと判断すると(S460でNO)、S420に移行し、S220~S260と同一の処理を、S420~S460において実行する。
Thereafter, the control unit 10 performs the same processing as S240 to S260 in S440 to S460 using the displacement Lx (j) calculated in S430. If it is determined that the vehicle occupant has not reached the event occurrence position Dxm [K2] farthest forward from the seating position (NO in S460), the process proceeds to S420, and the same processing as S220 to S260 is performed. , S420 to S460.
そして、上記事象の発生位置Dxm[K2]に車両乗員が到達したと判断すると(S460でYES)、S470に移行する。その後、制御ユニット10は、S270,S280と同様に、S470,S480を繰返し実行することで、再度前突事故が発生するか(S470でYES)、車両3が停止するまで(S480でYES)待機する。
When it is determined that the vehicle occupant has reached the event occurrence position Dxm [K2] (YES in S460), the process proceeds to S470. Thereafter, similarly to S270 and S280, the control unit 10 repeatedly executes S470 and S480, so that a front collision accident occurs again (YES in S470) or until the vehicle 3 stops (YES in S480). To do.
制御ユニット10は、再度前突事故が発生したと判断すると(S470でYES)、S410に移行して、変位量Lxをゼロに初期化し、時刻jをゼロに初期化した後に、S420以降の処理を再度実行する。一方、車両3が停止したと判断すると(S480でYES)、追突推定処理を終了し、併せて前後推定処理(図6参照)を終了する。
When the control unit 10 determines that a front collision has occurred again (YES in S470), the process proceeds to S410, the displacement amount Lx is initialized to zero, the time j is initialized to zero, and the processing after S420 is performed. Run again. On the other hand, if it is determined that the vehicle 3 has stopped (YES in S480), the rear-end collision estimation process is terminated, and the front-rear estimation process (see FIG. 6) is also terminated.
付言すると、追突事故後、最初の前突事故発生時に、変位量Lxをゼロに初期化しないのは、追突事故により車両乗員が後方に変位した状態から、前方に変位することが考えられるためである。一方、再度前突事故が発生したときに、変位量Lxをゼロに初期化するのは、初回の前突事故で、車両乗員が車室内の前方に移動しきった状態の車両乗員を、変位の監視対象としていないためである。換言すると、変位の監視対象を、シートベルトを装着しているなどの理由により、再度の前突事故前に、元の着座位置に戻った車両乗員に限定しているためである。
In addition, after the rear-end collision, when the first front-end collision occurs, the displacement amount Lx is not initialized to zero because the vehicle occupant may be displaced forward from a state where the rear-end collision caused the rear-end collision. is there. On the other hand, when the front collision accident occurs again, the displacement amount Lx is initialized to zero in the first front collision accident, in which the vehicle occupant in the state where the vehicle occupant has moved completely forward in the vehicle interior is displaced. This is because they are not monitored. In other words, this is because the displacement monitoring target is limited to the vehicle occupant who has returned to the original seating position before the previous frontal accident, for example, due to wearing a seat belt.
続いて、制御ユニット10が前後推定処理と並列に実行する左右推定処理の内容を、図10を用いて説明する。制御ユニット10は、車両3の運転開始を契機に、上記前後推定処理に加えて、図10に示す左右推定処理を実行する。
Subsequently, the contents of the left-right estimation process executed in parallel with the front-rear estimation process by the control unit 10 will be described with reference to FIG. The control unit 10 executes the left-right estimation process shown in FIG. 10 in addition to the front-rear estimation process when the driving of the vehicle 3 starts.
左右推定処理を開始すると、制御ユニット10は、S510において、位置テーブルを参照し、位置テーブルが示す値Pyp[k]に対応する事象の発生位置Dyp[k]を算出する(k=1,…,K3)。同様に、位置テーブルが示す値Pym[k]に対応する事象の発生位置Dym[k]を算出する(k=1,…,K4)。
When the left-right estimation process is started, the control unit 10 refers to the position table in S510, and calculates the event occurrence position Dyp [k] corresponding to the value Pyp [k] indicated by the position table (k = 1,...). , K3). Similarly, the event occurrence position Dym [k] corresponding to the value Pym [k] indicated by the position table is calculated (k = 1,..., K4).
具体的には、値Pyp[k]に対応する上記事象の発生位置Dyp[k](k=1,…,K3)を、値Pyp[k]と同一値に設定する(Dyp[k]=Pyp[k])。同様に、値Pym[k]に対応する上記事象の発生位置Dym[k](k=1,…,K4)を、値Pym[k]と同一値に設定する(Dym[k]=Pym[k])。値K3及び値K4は、互いに同一値であっても異なる値であってもよく、1以上の自然数を採り得る。図2に示す位置テーブルの例によれば、K3=K4=2である。
Specifically, the event occurrence position Dyp [k] (k = 1,..., K3) corresponding to the value Pyp [k] is set to the same value as the value Pyp [k] (Dyp [k] = Pyp [k]). Similarly, the event occurrence position Dym [k] (k = 1,..., K4) corresponding to the value Pym [k] is set to the same value as the value Pym [k] (Dym [k] = Pym [ k]). The value K3 and the value K4 may be the same value or different values, and may take a natural number of 1 or more. According to the example of the position table shown in FIG. 2, K3 = K4 = 2.
S510での処理を終えると、制御ユニット10は、車両3が左側から物体に衝突する左側突事故が発生したか否かを判断する(S520)。制御ユニット10は、第二加速度センサ33による最新の加速度Gyの検出値が、負値で予め定められた閾値Thym未満であるとき、左側突事故が発生したと判断する(S520でYES)。一方、加速度Gyの検出値が閾値Thym以上であるときには、左側突事故が発生していないと判断する(S520でNO)。
When the processing in S510 is completed, the control unit 10 determines whether or not a left side collision has occurred in which the vehicle 3 collides with an object from the left side (S520). The control unit 10 determines that a left-side collision has occurred when the latest detected value of the acceleration Gy by the second acceleration sensor 33 is a negative value and less than a predetermined threshold value Thym (YES in S520). On the other hand, when the detected value of the acceleration Gy is equal to or greater than the threshold value Thym, it is determined that no left side crash has occurred (NO in S520).
制御ユニット10は、左側突事故が発生したと判断すると(S520でYES)、S550に移行し、図11に示す左側突推定処理を実行した後、S570に移行する。一方、左側突事故が発生していないと判断すると(S520でNO)、S530に移行する。
When the control unit 10 determines that a left-side crash has occurred (YES in S520), the process proceeds to S550, and after performing the left-side collision estimation process shown in FIG. 11, the process proceeds to S570. On the other hand, if it is determined that a left-side crash has not occurred (NO in S520), the process proceeds to S530.
S530において、制御ユニット10は、車両3が右側から物体に衝突する右側突事故が発生したか否かを判断する。具体的に、制御ユニット10は、第二加速度センサ33による最新の加速度Gyの検出値が、正値で予め定められた閾値Thypより大きいとき、右側突事故が発生したと判断する(S530でYES)。一方、加速度Gyの検出値が閾値Thyp以下であるときには、右側突事故が発生していないと判断する(S530でNO)。
In S530, the control unit 10 determines whether or not a right side collision has occurred in which the vehicle 3 collides with an object from the right side. Specifically, the control unit 10 determines that a right side crash has occurred when the latest detected value of the acceleration Gy by the second acceleration sensor 33 is a positive value and is greater than a predetermined threshold value Thyp (YES in S530). ). On the other hand, when the detected value of the acceleration Gy is equal to or less than the threshold value Thyp, it is determined that no right side crash has occurred (NO in S530).
制御ユニット10は、右側突事故が発生したと判断すると(S530でYES)、S560に移行して、右側突推定処理を実行した後、S570に移行する。一方、右側突事故が発生していないと判断すると(S530でNO)、S520に移行する。
When the control unit 10 determines that a right side crash has occurred (YES in S530), the process proceeds to S560, executes the right side collision estimation process, and then proceeds to S570. On the other hand, if it is determined that a right side crash has not occurred (NO in S530), the process proceeds to S520.
ここで、左側突推定処理(S550)の詳細を、図11を用いて説明する。左側突推定処理を開始すると、制御ユニット10は、車両乗員の左右方向の変位量Lyをゼロに初期化する一方、時刻jをゼロに初期化する(S610)。ここで用いられる時刻jは、前後推定処理で用いられる時刻jとは独立している。その後、S620に移行し、時刻jを1加算する。
Here, details of the left side collision estimation process (S550) will be described with reference to FIG. When the left collision estimation process is started, the control unit 10 initializes the displacement amount Ly of the vehicle occupant in the left-right direction to zero, and initializes the time j to zero (S610). The time j used here is independent of the time j used in the front-rear estimation process. Thereafter, the process proceeds to S620, and 1 is added to the time j.
S620での処理を終えると、制御ユニット10は、現在時刻jにおける加速度Gyの検出値Gy(j)を、第二加速度センサ33から取得し、この検出値Gy(j)に対する時間積分を二回行うことにより、現在時刻jにおける車両乗員の変位量Ly(j)を算出する(S630)。本明細書では、時刻jにおける加速度Gyの検出値を、特にGy(j)で表し、時刻jにおける車両乗員の変位量Lyを、特にLy(j)で表す。
When the processing in S620 is completed, the control unit 10 acquires the detected value Gy (j) of the acceleration Gy at the current time j from the second acceleration sensor 33, and performs time integration for this detected value Gy (j) twice. By doing so, the displacement amount Ly (j) of the vehicle occupant at the current time j is calculated (S630). In this specification, the detected value of the acceleration Gy at the time j is particularly represented by Gy (j), and the displacement amount Ly of the vehicle occupant at the time j is particularly represented by Ly (j).
例えば、現在時刻j=Nである場合、変位量Ly(j=N)は、次式(2)に従って算出される。式(1)と同様に、Δtは、加速度Gyの単位がm/s2であるときの時刻jの値(増分)1当たりの時間長(秒)である。
For example, when the current time j = N, the displacement amount Ly (j = N) is calculated according to the following equation (2). Similar to equation (1), Δt is the time length (seconds) per value (increment) 1 of time j when the unit of acceleration Gy is m / s2.
そして、肯定判断すると(S640でYES)、制御ユニット10は、現在時刻jが上記事象の発生時刻であると推定し、S250と同様に、所定処理の実行を指示する(S650)。その後、S660に移行する。一方、制御ユニット10は、S640で否定判断すると、S650をスキップしてS660に移行する。
If an affirmative determination is made (YES in S640), the control unit 10 estimates that the current time j is the occurrence time of the event, and instructs execution of a predetermined process in the same manner as S250 (S650). Thereafter, the process proceeds to S660. On the other hand, if the control unit 10 makes a negative determination in S640, it skips S650 and proceeds to S660.
S660に移行すると、制御ユニット10は、変位量Ly(j)に基づき、車両乗員が、着座位置から左方向において最も遠くに位置する事象の発生位置Dym[K4](図2に示す例によればDym[2])に到達したか否かを判断する。
When the process proceeds to S660, the control unit 10 determines, based on the displacement amount Ly (j), the event occurrence position Dym [K4] in which the vehicle occupant is farthest leftward from the seating position (according to the example shown in FIG. 2). For example, it is determined whether or not Dym [2]) has been reached.
そして、車両乗員が、事象の発生位置Dym[K4]に到達していないと判断すると(S660でNO)、S620に移行する。一方、到達したと判断すると(S660でYES)、左側突推定処理を終了する。
When the vehicle occupant determines that the event occurrence position Dym [K4] has not been reached (NO in S660), the process proceeds to S620. On the other hand, if it is determined that it has been reached (YES in S660), the left side collision estimation process is terminated.
このようにして、制御ユニット10は、車両3の衝突(左側突)を検知した時点から、値Dym[K4]に変位量Lyが到達するまでは、第二加速度センサ33による加速度Gyの検出値に基づき、変位量Lyを更新する。そして、変位量Lyが各事象の発生位置Dym[k]に対応する値Dym[k](k=1,…,K4)に変化する毎に、この時の時刻jを、上記事象の発生時刻に推定する(S650)。
In this way, the control unit 10 detects the acceleration Gy detected by the second acceleration sensor 33 until the displacement amount Ly reaches the value Dym [K4] from the time when the collision (left side collision) of the vehicle 3 is detected. Based on the above, the displacement amount Ly is updated. Each time the displacement amount Ly changes to a value Dym [k] (k = 1,..., K4) corresponding to the occurrence position Dym [k] of each event, the time j at this time is changed to the occurrence time of the event. (S650).
付言すると、制御ユニット10がS560で実行する右側突推定処理では、図11に示す左側突推定処理と同様の処理が実行される。但し、右側突推定処理におけるS640は、現在の変位量Ly(j)に基づき、車両乗員が事象の発生位置Dyp[k](k=1,…,K3)のいずれかに到達したか否かを判断するステップに対応する。また、右側突推定処理におけるS660は、変位量Ly(j)に基づき、車両乗員が、着座位置から右方向において最も遠くに位置する事象の発生位置Dyp[K3](図2に示す例によればDyp[2])に到達したか否かを判断するステップに対応する。
In other words, in the right side collision estimation process executed by the control unit 10 in S560, the same process as the left side collision estimation process shown in FIG. 11 is executed. However, S640 in the right side collision estimation process is based on the current displacement amount Ly (j), and whether or not the vehicle occupant has reached any of the event occurrence positions Dyp [k] (k = 1,..., K3). Corresponds to the step of determining. Further, S660 in the right-side collision estimation process is based on the displacement amount Ly (j), and the event occurrence position Dyp [K3] where the vehicle occupant is located farthest in the right direction from the seating position (according to the example shown in FIG. 2). Corresponds to the step of determining whether or not Dyp [2]) has been reached.
制御ユニット10は、このような内容の左/右側突推定処理(S550,S560)を終了して、S570に移行すると、S280と同様の判断手法で、車両3が停止したか否かを判断する。そして、車両3が停止したと判断すると(S570でYES)、左右推定処理を終了する。一方、車両3が停止していないと判断すると(S570でNO)、再度の側突事故(左側突事故及び右側突事故のいずれか)が発生したか否かを(S580)、S520,S530と同様の手法で判断する。
When the control unit 10 finishes the left / right collision estimation processing (S550, S560) of such contents and proceeds to S570, it determines whether or not the vehicle 3 has stopped using the same determination method as in S280. . When it is determined that the vehicle 3 has stopped (YES in S570), the left / right estimation process is terminated. On the other hand, if it is determined that the vehicle 3 has not stopped (NO in S570), it is determined whether another side crash (either a left side crash or a right side crash) has occurred (S580), S520, S530, Judging by the same method.
そして、再度の側突事故が発生していないと判断すると(S580でNO)、S570に移行し、再度の側突事故が発生したと判断すると(S580でYES)、発生した側突事故に対応する左/右側突推定処理を実行した後(S590)、S570に移行する。
Then, if it is determined that the side impact accident has not occurred again (NO in S580), the process proceeds to S570, and if it is determined that the side impact accident has occurred again (YES in S580), it corresponds to the side impact accident that has occurred. After executing the left / right collision estimation processing (S590), the process proceeds to S570.
この他、制御ユニット10は、上記左右推定処理及び前後推定処理と並列に、図12に示す記録制御処理を繰返し実行する。これによって、S250,S350,S390,S450,S650によって処理実行指示が発せられる度に(S710でYES)、カメラ45による現時刻の車室内の撮影画像を表す画像データ及び現状に関する付属データを互いに関連付けて、記憶ユニット20に格納する(S720)。
In addition, the control unit 10 repeatedly executes the recording control process shown in FIG. 12 in parallel with the left / right estimation process and the front / rear estimation process. As a result, every time a processing execution instruction is issued in S250, S350, S390, S450, and S650 (YES in S710), the image data representing the captured image of the vehicle interior at the current time by the camera 45 and the associated data relating to the current state are associated with each other. And stored in the storage unit 20 (S720).
制御ユニット10は、S720において、カメラ45を制御し、カメラ45に静止画像の撮影動作を一度のみ実行させ、これによってカメラ45により生成された現時刻の撮影画像を表す画像データを、記憶ユニット20に記憶させる構成にされる。
In step S720, the control unit 10 controls the camera 45 to cause the camera 45 to execute a still image shooting operation only once, thereby storing image data representing a captured image at the current time generated by the camera 45. It is made to memorize in.
別例として、制御ユニット10は、車室内を連続撮影するカメラ45により自動生成される画像データの内、現時刻の撮影画像を表す画像データを選択的に、記憶ユニット20に記憶させる構成にされる。制御ユニット10は、現時刻の画像データとして、一枚の画像データではなく、連続撮影された数枚の画像データを、記憶ユニット20に記憶させる構成にされてもよい。
As another example, the control unit 10 is configured to selectively store, in the storage unit 20, image data representing a photographed image at the current time among image data automatically generated by a camera 45 that continuously photographs a vehicle interior. The The control unit 10 may be configured to store, in the storage unit 20, several pieces of continuously captured image data instead of one piece of image data as the current time image data.
S720において制御ユニット10が生成する上記付属データは、例えば、車両3の識別情報、車両3の位置を表す情報、車両3の衝突日時を表す情報、車両3の衝突時を基準とした撮影時刻(経過時間)を表す情報、車両3の衝突時の最大加速度を表す情報、カメラ45による画像撮影時の車両3の加速度Gx,Gyを表す情報、及び、生体信号センサ39の出力情報の少なくとも一つを含むデータであり得る。
The attached data generated by the control unit 10 in S720 includes, for example, the identification information of the vehicle 3, the information indicating the position of the vehicle 3, the information indicating the collision date and time of the vehicle 3, and the photographing time based on the time of the collision of the vehicle 3 ( At least one of information indicating elapsed time), information indicating the maximum acceleration when the vehicle 3 collides, information indicating the accelerations Gx and Gy of the vehicle 3 when the camera 45 captures an image, and output information of the biological signal sensor 39. The data may include
上記車両3の識別情報については、記憶ユニット20に予め記憶させておくことができる。この識別情報には、車両3の登録番号や車種を表す情報が含まれる。この他、付属データには、上記車両3の位置を表す情報として、GPS受信機41から得られた車両衝突時における車両3の位置座標の情報を含ませることができる。更に、付属データには、上記車両3の衝突日時を表す情報として、制御ユニット10の内部時計(図示せず)が示す現在日時の情報を含ませることができる。
The identification information of the vehicle 3 can be stored in the storage unit 20 in advance. This identification information includes information indicating the registration number and vehicle type of the vehicle 3. In addition, the attached data can include information on the position coordinates of the vehicle 3 at the time of the vehicle collision obtained from the GPS receiver 41 as information indicating the position of the vehicle 3. Furthermore, the attached data can include information on the current date and time indicated by an internal clock (not shown) of the control unit 10 as information indicating the date and time of collision of the vehicle 3.
また、付属データには、上記車両3の衝突時を基準とした撮影時刻(経過時間)を表す情報として、連続発生する一連の衝突事故における最初の衝突時刻を基準とした経過時間の情報を含ませることができる。経過時間の情報は、経過時間の起点に対応する衝突日時(日、時、分及び秒)の情報と関連付けられて付属データに格納され得る。
In addition, the attached data includes information on elapsed time based on the first collision time in a series of consecutive collision accidents as information representing the shooting time (elapsed time) based on the time of the collision of the vehicle 3. Can be made. The elapsed time information can be stored in the attached data in association with the collision date (day, hour, minute, and second) information corresponding to the origin of the elapsed time.
この他、付属データに格納される加速度Gx,Gyの情報に関しては、一定期間内の各時刻の加速度Gx,Gyの検出値を履歴情報としてRAM15に記憶しておき、この履歴情報を参照することにより生成することができる。
In addition, with respect to the acceleration Gx and Gy information stored in the attached data, the detected values of the accelerations Gx and Gy at each time within a predetermined period are stored in the RAM 15 as history information, and the history information is referred to. Can be generated.
また、付属データには、上記生体信号センサ39の出力情報として、画像撮影時における生体信号センサ39の出力情報(車両乗員の呼吸の有無及び脈拍数を表す情報)を含ませることができる。
Also, the attached data can include the output information of the biological signal sensor 39 at the time of image capturing (information indicating the presence / absence of breathing of the vehicle occupant and the pulse rate) as the output information of the biological signal sensor 39.
図13は、このような記録制御処理の実行により画像データ及び付属データが格納される時刻の例を示したグラフである。グラフの横軸は、時間を表し、縦軸は、変位量Lx及び加速度Gxを表す。図13が示す加速度Gxの軌跡(破線)は、追突事故の発生後、前突事故が発生したときの加速度Gxの軌跡の一例を表す。太実線は、変位量Lxの軌跡の一例を表す。グラフに示す時刻Txp[1]は、変位量Lxが値Dxp[1]に一致する時刻である。時刻Txm[k](k=1,2,3)は、変位量Lxが値Dxm[k]に一致する時刻である。画像データ及び付属データは、少なくとも時刻Txp[1]及び時刻Txm[k](k=1,2,3)の夫々で記憶ユニット20に格納される。
FIG. 13 is a graph showing an example of the time at which image data and attached data are stored by executing such a recording control process. The horizontal axis of the graph represents time, and the vertical axis represents the displacement Lx and the acceleration Gx. The trajectory of acceleration Gx (broken line) shown in FIG. 13 represents an example of the trajectory of acceleration Gx when a front collision accident occurs after the occurrence of a rear collision accident. A thick solid line represents an example of a locus of the displacement Lx. The time Txp [1] shown in the graph is the time when the displacement Lx matches the value Dxp [1]. Time Txm [k] (k = 1, 2, 3) is a time at which the displacement Lx matches the value Dxm [k]. The image data and the attached data are stored in the storage unit 20 at each of the times Txp [1] and Txm [k] (k = 1, 2, 3).
本実施例によれば、このように画像データが記憶ユニット20に格納されることで、車両乗員の救助、救命及び治療に役立つ画像データが効率的にデータ量を抑えて保存される。この記憶ユニット20に格納された画像データは、センタ装置100及び関係機関200に無線によって送信される。即ち、制御ユニット10は、記録制御処理とは並列に、図14に示す送信制御処理を繰返し実行することにより、画像データをセンタ装置100及び関係機関200に、通信ユニット43を介して送信する。
According to the present embodiment, the image data is stored in the storage unit 20 in this way, so that the image data useful for rescue, lifesaving, and treatment of the vehicle occupant is efficiently saved with a reduced data amount. The image data stored in the storage unit 20 is transmitted to the center apparatus 100 and the related organization 200 by radio. That is, the control unit 10 transmits the image data to the center apparatus 100 and the related engine 200 via the communication unit 43 by repeatedly executing the transmission control process shown in FIG. 14 in parallel with the recording control process.
制御ユニット10は、送信制御処理を開始すると、新規の画像データが記憶ユニット20に格納されるまで待機する(S810)。そして、新規の画像データが格納されると(S810でYES)、この画像データと、この画像データに関連付けられた上記付属データをまとめた通信データ(出力用データ)を生成して(S820)、当該通信データを、予め定められた送信先としてのセンタ装置100及び関係機関200に、通信ユニット43を介して送信する(S830)。制御ユニット10は、衝突事故が発生し、画像データが格納される度に、このような通信データの送信処理を実行する。
When the transmission control process is started, the control unit 10 waits until new image data is stored in the storage unit 20 (S810). Then, when new image data is stored (YES in S810), communication data (output data) in which the image data and the attached data associated with the image data are collected is generated (S820). The communication data is transmitted to the center apparatus 100 and the related organization 200 as a predetermined transmission destination via the communication unit 43 (S830). The control unit 10 executes such transmission processing of communication data every time a collision accident occurs and image data is stored.
この車載システム1によれば、車両乗員の救助、救命及び治療に役立つ画像データを、少ないデータ量で効率的に、センタ装置100及び関係機関200に提供することができる。従って、通信環境が悪い場合でも、迅速に画像データ及び付属データをセンタ装置100及び関係機関200に提供することができる。換言すれば、通信環境が悪いことで、上記画像データを車両乗員の救助、救命及び治療に役立てる機会が失われるのを極力抑えることができる。
According to this in-vehicle system 1, it is possible to efficiently provide image data useful for rescue, lifesaving and treatment of a vehicle occupant to the center apparatus 100 and the related organization 200 with a small amount of data. Therefore, even when the communication environment is bad, the image data and the attached data can be quickly provided to the center apparatus 100 and the related organization 200. In other words, it is possible to suppress as much as possible that the opportunity to use the image data for rescue, lifesaving, and treatment of the vehicle occupant is lost due to the poor communication environment.
関係機関200は、車載システム1から上記通信データを受信すると、この通信データに含まれる画像データ及び付属データを表示する。この表示によって関係機関200の担当者に把握される事故の経過は、救助、救命及び治療を施す者に伝えられて、車両乗員の救助、救命及び治療に役立てられる。
When the related organization 200 receives the communication data from the in-vehicle system 1, the related organization 200 displays image data and attached data included in the communication data. The progress of the accident grasped by the person in charge of the related organization 200 by this display is transmitted to the person who performs rescue, lifesaving and treatment, and is used for the rescue, lifesaving and treatment of the vehicle occupant.
一方、センタ装置100は、車載システム1を搭載する複数車両の夫々から、上記通信データを受信し、これを解析することにより、車種毎に、位置テーブルが表す値Pxp,Pxm,Pyp,Pymの適値を算出する。適値の算出過程においては、人間の判断が含まれ得る。センタ装置100は、この算出結果に基づき、上記車種毎に位置テーブルの値Pxp,Pxm,Pyp,Pymを更新するための更新用データを生成し、これを、対応する車種の車両3に送信する。
On the other hand, the center device 100 receives the communication data from each of a plurality of vehicles on which the in-vehicle system 1 is mounted, and analyzes the data to thereby obtain values Pxp, Pxm, Pyp, Pym represented by the position table for each vehicle type. Calculate the appropriate value. In the process of calculating the appropriate value, human judgment can be included. Based on this calculation result, the center device 100 generates update data for updating the position table values Pxp, Pxm, Pyp, Pym for each vehicle type, and transmits this to the vehicle 3 of the corresponding vehicle type. .
制御ユニット10は、この更新用データを受け付けるために、更新制御処理(図15参照)を繰返し実行する。更新制御処理において、制御ユニット10は、センタ装置100から送信されてくる上記更新用データを、通信ユニット43を介して受信するまで待機する(S910)。そして、上記更新用データを受信すると(S910でYES)、この更新用データに基づいて、記憶ユニット20が記憶する位置テーブルを更新する(S920)。即ち、位置テーブルが表す値Pxp,Pxm,Pyp,Pymを、更新用データが示す適値に修正する。
The control unit 10 repeatedly executes the update control process (see FIG. 15) in order to receive this update data. In the update control process, the control unit 10 stands by until the update data transmitted from the center device 100 is received via the communication unit 43 (S910). When the update data is received (YES in S910), the position table stored in the storage unit 20 is updated based on the update data (S920). That is, the values Pxp, Pxm, Pyp, Pym represented by the position table are corrected to appropriate values indicated by the update data.
この他、制御ユニット10は、車両乗員を救助する者が衝突時の画像を確認することができるようにするために、図16に示す表示制御処理を繰返し実行する。この表示制御処理において、制御ユニット10は、予め定められた表示条件が満足されるまで待機する(S1010)。そして、表示条件が満足されると(S1010でYES)、ディスプレイ49を制御し、記憶ユニット20に格納されている画像データに基づく画像をディスプレイ49に表示させる(S1020)。ここでは、スピーカ47を通じて周囲に通知音を出力する処理を実行することにより、上記画像を表示していることを周囲に通知することができる。画像データが複数存在する場合、制御ユニット10は、これらの画像データに基づく画像を同時又は順にディスプレイ49に表示させることができる。
In addition, the control unit 10 repeatedly executes the display control process shown in FIG. 16 so that the person who rescues the vehicle occupant can check the image at the time of the collision. In this display control process, the control unit 10 waits until a predetermined display condition is satisfied (S1010). When the display condition is satisfied (YES in S1010), the display 49 is controlled to display an image based on the image data stored in the storage unit 20 on the display 49 (S1020). Here, by performing a process of outputting a notification sound to the surroundings through the speaker 47, it is possible to notify the surroundings that the image is displayed. When there are a plurality of image data, the control unit 10 can display images based on these image data on the display 49 simultaneously or sequentially.
付言すると、S1010では、画像表示を指示する操作が車室内の操作部を介して救助者等からなされると、上記表示条件が満足されたと判断することができる。別例として、S1010では、記憶ユニット20に画像データが格納されると、直ちに表示条件が満足されたと判断し得る。
In addition, in S1010, if an operation for instructing image display is performed by a rescuer or the like via the operation unit in the vehicle interior, it can be determined that the display condition is satisfied. As another example, in S1010, when the image data is stored in the storage unit 20, it can be immediately determined that the display condition is satisfied.
このように車室内のディスプレイ49を通じて事故時の状況を表示することで、車両乗員に救命及び治療のための適切な処置がなされることが期待される。
It is expected that the vehicle occupant will be treated appropriately for lifesaving and treatment by displaying the situation at the time of the accident through the display 49 in the passenger compartment.
以上、本実施例の車載システム1の構成について説明したが、この車載システム1によれば、第一加速度センサ31及び第二加速度センサ33による加速度Gx,Gyの検出値を用いて、車両3の衝突に起因する車室内における車両乗員の変位量Lx,Lyを計測する。そして、この変位量Lx,Lに基づき、車両乗員が車室内の設置物に接触して車両乗員に衝撃が加わる事象の発生時刻を推定する。ここで言う接触は、車両乗員がシートベルトや背もたれ等の設置物に拘束されて、移動を規制される状態をも含む。
Although the configuration of the in-vehicle system 1 according to the present embodiment has been described above, according to the in-vehicle system 1, the detected values of the accelerations Gx and Gy by the first acceleration sensor 31 and the second acceleration sensor 33 are used. The displacement amounts Lx and Ly of the vehicle occupant in the passenger compartment due to the collision are measured. Based on the displacements Lx and L, the time of occurrence of an event in which the vehicle occupant comes into contact with an installation in the vehicle compartment and an impact is applied to the vehicle occupant is estimated. The contact referred to here includes a state in which the vehicle occupant is restrained from moving by being restrained by an installation such as a seat belt or a backrest.
加速度センサは、この事象の発生時刻の推定以外の目的でも、車両3に通常搭載される。従って、本実施例によれば、上記推定のために特別にセンサを設けなくて済み、上記事象の発生時刻を推定して、効率的に画像データを記憶可能な利便性の高い車載システム1を構築することができる。
The acceleration sensor is usually mounted on the vehicle 3 for purposes other than estimating the occurrence time of this event. Therefore, according to the present embodiment, it is not necessary to provide a special sensor for the estimation, and the highly convenient in-vehicle system 1 capable of efficiently storing image data by estimating the occurrence time of the event is provided. Can be built.
また、本実施例によれば、位置テーブルに基づいて上記事象の発生時刻を推定するが、この際には、着座位置センサ37によって検出された車両乗員の着座位置の標準着座位置からの偏差Spを加味して、上記推定を行う。従って、本実施例によれば、上記事象の発生時点での撮影画像を適切に記録することができる。そして、適切なタイミングで撮影画像の記録を行うことができる結果、冗長に画像データを多く保存する必要がなく、また、これらの画像データを大量にセンタ装置100や関係機関200に送信しなくて済む。
Further, according to the present embodiment, the occurrence time of the event is estimated based on the position table. At this time, the deviation Sp from the standard seating position of the seating position of the vehicle occupant detected by the seating position sensor 37 is determined. In consideration of the above, the above estimation is performed. Therefore, according to the present embodiment, it is possible to appropriately record a captured image at the time of occurrence of the above event. As a result of being able to record the captured image at an appropriate timing, it is not necessary to store a large amount of image data redundantly, and it is not necessary to transmit a large amount of these image data to the center apparatus 100 or the related organization 200. That's it.
従って、本実施例によれば、救助、救命及び治療に役立つ画像データを効率的に保存して、これを効率的に外部装置に送信(出力)することができる。事故時には迅速な救助、救命及び治療が要求されるケースが多いため、データ送信(出力)に時間を要していては好ましくない。この点、本実施例によれば、データ送信を、通信環境が悪い場合でも迅速に行うことができ、救助及び救命に大変役立つ。この他、画像データを確認する者も、救助、救命及び治療に役立つ画像データを容易に確認して、状況把握を容易且つ迅速に行うことができる。
Therefore, according to the present embodiment, image data useful for rescue, lifesaving, and treatment can be efficiently stored and transmitted (output) to an external device efficiently. In many cases, prompt rescue, lifesaving, and treatment are required at the time of an accident, and it is not preferable that data transmission (output) takes time. In this regard, according to the present embodiment, data transmission can be performed quickly even in a poor communication environment, which is very useful for rescue and lifesaving. In addition, a person who confirms image data can easily confirm image data useful for rescue, lifesaving, and treatment, and can easily and quickly grasp the situation.
また、本実施例によれば、複数存在し得る上記事象の発生位置の夫々に車両乗員が変位したタイミングに合わせて、対応する時刻の撮影画像を記録する。また、前後左右の衝突に合わせて、適切なタイミングで撮影画像の記録を行うことができる。従って、この車載システム1にて記録及び提供された画像データに基づけば、車両乗員に対する衝撃の態様を救助者や医者等が詳細に把握することができる。本実施例によれば、車両3が停止するまでは推定処理を実行するので、連鎖的に生じる衝突事故に対しても、適切に対応して画像データを記録することができる。
In addition, according to the present embodiment, a captured image at a corresponding time is recorded in accordance with the timing at which the vehicle occupant is displaced at each of the occurrence positions of the above-described events. In addition, the captured image can be recorded at an appropriate timing in accordance with the front / rear / right / left collision. Therefore, based on the image data recorded and provided by the in-vehicle system 1, a rescuer, a doctor, or the like can grasp in detail the mode of impact on the vehicle occupant. According to the present embodiment, since the estimation process is executed until the vehicle 3 stops, it is possible to record image data corresponding to a collision accident that occurs in a chain manner.
更に、本実施例の車載システム1によれば、記憶ユニット20に格納した画像データを上述した救助、救命及び治療に関わる関係機関200に、無線通信(広域通信)を通じて、迅速に提供することができるので、迅速な救助、救命及び治療に貢献することができる。特に、本実施例の車載システム1によれば、事故の状況を詳細に把握するための付属データも画像データと併せて関係機関200に提供するため、救助、救命及び治療に大変役立つ。
Furthermore, according to the in-vehicle system 1 of the present embodiment, the image data stored in the storage unit 20 can be quickly provided to the related organizations 200 related to the above-described rescue, lifesaving, and treatment through wireless communication (wide area communication). It can contribute to quick rescue, lifesaving and treatment. In particular, according to the in-vehicle system 1 of the present embodiment, the auxiliary data for grasping the situation of the accident in detail is also provided to the related organization 200 together with the image data, which is very useful for rescue, lifesaving and treatment.
この他、本実施例によれば、位置テーブルを更新する機能が設けられているので、カメラ45の撮影画像を一層適切なタイミングで記録することができる。
In addition, according to the present embodiment, since the function of updating the position table is provided, the image taken by the camera 45 can be recorded at a more appropriate timing.
[変形例]
続いて、変形例の車載システム1について説明する。本変形例の車載システム1は、上記事象の発生時刻に関する推定結果を、エアバッグ61の制御に役立てるものである。本変形例の車載システム1の基本構成は、上記実施例と同様である。従って、以下では、本変形例に特有な車載システム1の構成を、選択的に説明する。 [Modification]
Then, the vehicle-mountedsystem 1 of a modification is demonstrated. The in-vehicle system 1 of the present modification uses the estimation result related to the occurrence time of the event for controlling the airbag 61. The basic configuration of the in-vehicle system 1 of the present modification is the same as that in the above embodiment. Therefore, below, the structure of the vehicle-mounted system 1 peculiar to this modification is selectively demonstrated.
続いて、変形例の車載システム1について説明する。本変形例の車載システム1は、上記事象の発生時刻に関する推定結果を、エアバッグ61の制御に役立てるものである。本変形例の車載システム1の基本構成は、上記実施例と同様である。従って、以下では、本変形例に特有な車載システム1の構成を、選択的に説明する。 [Modification]
Then, the vehicle-mounted
本変形例によれば、車載システム1の制御ユニット10は、図17に示すように、エアバッグシステム60と接続され、エアバッグシステム60を制御可能に構成される。エアバッグシステム60は、ハンドル、ダッシュボード、座席(背もたれやヘッドレスト)、及び、左右ドア内側の夫々にエアバッグ61を備え、これらエアバッグ61の夫々を制御ユニット10からの指示に従って個別に起動可能に構成される。ここで言うエアバッグ61の起動とは、エアバッグ61に気体を送り込み、エアバッグ61を膨らませる動作のことを言う。
According to this modification, the control unit 10 of the in-vehicle system 1 is connected to the airbag system 60 and configured to be able to control the airbag system 60 as shown in FIG. The airbag system 60 includes airbags 61 on the inside of the steering wheel, dashboard, seat (backrest and headrest), and right and left doors, and each of these airbags 61 can be activated individually in accordance with instructions from the control unit 10. Configured. The activation of the airbag 61 as used herein refers to an operation of sending gas into the airbag 61 and inflating the airbag 61.
記憶ユニット20が記憶する位置テーブルには、車室内の設置物に車両乗員が接触して車両乗員に衝撃が加わる前に、これらの設置物に設けられたエアバッグ61を起動可能な値Pxp,Pxm,Pyp,Pymが記述される。上記実施例では、車両乗員が設置物に衝突する瞬間の撮影画像を記録するための値Pxp,Pxm,Pyp,Pymが位置テーブルに格納されるが、本変形例では、車両乗員が設置物に衝突する直前に、エアバッグ61を起動するための値Pxp,Pxm,Pyp,Pymが記述される。
In the position table stored in the storage unit 20, before the vehicle occupant comes into contact with the installation in the vehicle interior and an impact is applied to the vehicle occupant, the values Pxp, Pxm, Pyp, and Pym are described. In the above-described embodiment, values Pxp, Pxm, Pyp, and Pym for recording the captured image at the moment when the vehicle occupant collides with the installation object are stored in the position table. Immediately before the collision, values Pxp, Pxm, Pyp, Pym for starting the airbag 61 are described.
制御ユニット10は、これらの値Pxp,Pxm,Pyp,Pymを参照することにより、S250,S350,S450,S650では、現在時刻jが、車室内の設置物との接触に起因して車両乗員に衝撃が加わる事象の発生時刻の直前(所定時間前の時刻)であると推定し、対応する事象の発生位置に設置されたエアバッグ61を起動するように指示する処理実行指示を、図18に示すエアバッグ制御処理に対して発行する。
By referring to these values Pxp, Pxm, Pyp, and Pym, the control unit 10 determines that the current time j is informed to the vehicle occupant in S250, S350, S450, and S650 due to the contact with the installation in the vehicle interior. FIG. 18 shows a process execution instruction for instructing to activate the airbag 61 installed at the position where the corresponding event occurs, presuming that it is immediately before the occurrence time of the event to which the impact is applied (time before the predetermined time). Issued for the airbag control process shown.
一方、制御ユニット10は、前後推定処理及び左右推定処理と並列に、図18に示すエアバッグ制御処理を繰返し実行する。そして、エアバッグ制御処理では、上記処理実行指示が発せられるまで待機し(S1110)、処理実行指示が発せられると(S1110でYES)、指示に従うエアバッグ61を起動させるように、エアバッグシステム60を制御する(S1120)。
Meanwhile, the control unit 10 repeatedly executes the airbag control process shown in FIG. 18 in parallel with the front-rear estimation process and the left-right estimation process. In the airbag control process, the system waits until the process execution instruction is issued (S1110). When the process execution instruction is issued (YES in S1110), the airbag system 60 is activated so as to activate the airbag 61 according to the instruction. Is controlled (S1120).
このようにして、本変形例では、車両乗員の前後方向に設置された物体に対する上記事象の発生時刻の推定結果(処理実行指示)に基づき、車両3における車両乗員の前後に設けられたエアバッグ61の起動を制御し、車両乗員の左右方向に設置された物体に対する上記事象の発生時刻の推定結果(処理実行指示)に基づき、車両3における車両乗員の左右に設けられたエアバッグ61の起動を制御する。
In this way, in the present modification, the air bag provided before and after the vehicle occupant in the vehicle 3 based on the estimation result (processing execution instruction) of the occurrence time of the above-described event with respect to the object installed in the front and rear direction of the vehicle occupant The activation of the airbag 61 provided on the left and right of the vehicle occupant in the vehicle 3 is controlled based on the estimation result (processing execution instruction) of the occurrence time of the above-described event for the object installed in the left and right direction of the vehicle occupant. To control.
エアバッグ61は、車両乗員に及ぶダメージを低減する機能を果たすものであるが、エアバッグ61の機能を十分に発揮させるためには、適切なタイミングでエアバッグ61を起動する必要がある。即ち、エアバッグ61が車両乗員を有効に保護できる期間は、エアバッグ61が展開してからの短い時間に限られる。
The airbag 61 performs a function of reducing damage to the vehicle occupant, but it is necessary to activate the airbag 61 at an appropriate timing in order to fully exert the function of the airbag 61. That is, the period during which the airbag 61 can effectively protect the vehicle occupant is limited to a short time after the airbag 61 is deployed.
そのため、従来技術のように、加速度センサの閾値より求めたタイミングでエアバッグを起動するのでは、その起動タイミングが早すぎて、車両乗員を有効に保護することができない可能性がある。一方、本変形例のようにエアバッグ61を起動すれば、車両乗員の変位、及び、車両乗員と車室内の設置物との位置関係に基づいて、適切なタイミングで各エアバッグ61を起動することができる。従って、例えば前突時には、車両乗員の最大屈曲時とハンドルへの衝突時との両方において適切に車両乗員を保護することができる。
Therefore, if the airbag is activated at the timing obtained from the threshold value of the acceleration sensor as in the prior art, the activation timing may be too early to effectively protect the vehicle occupant. On the other hand, when the airbag 61 is activated as in the present modification, each airbag 61 is activated at an appropriate timing based on the displacement of the vehicle occupant and the positional relationship between the vehicle occupant and the installation in the vehicle interior. be able to. Therefore, for example, at the time of a frontal collision, the vehicle occupant can be appropriately protected both when the vehicle occupant is bent maximum and when it collides with the handle.
尚、変形例においても、カメラ45の撮影画像を表す画像データを、上記実施例と同様の手法で記憶ユニット20に記憶させることができる。撮影画像の記録タイミングとエアバッグ61の起動タイミングとの両者を制御する場合には、例えば次のように車載システム1を構成すればよい。
Note that also in the modified example, the image data representing the image captured by the camera 45 can be stored in the storage unit 20 by the same method as in the above embodiment. When controlling both the recording timing of the captured image and the activation timing of the airbag 61, the in-vehicle system 1 may be configured as follows, for example.
即ち、位置テーブルが示す値Pxp,Pxm,Pyp,Pymに基づいて、撮影画像の記録タイミングを制御するための値Dxp,Dxm,Dyp,Dymを設定する一方、エアバッグ61の起動タイミングを制御するための値Dxp,Dxm,Dyp,Dymを設定する。そして、変位量Lx,Lyが、撮影画像の記録タイミング制御用の値Dxp,Dxm,Dyp,Dymに到達した場合には、記録制御処理に対して処理実行指示を発し、変位量Lx,Lyが、エアバッグ61の起動タイミングに対応する値Dxp,Dxm,Dyp,Dymに到達した場合には、エアバッグ制御処理に対して処理実行指示を発する。
That is, based on the values Pxp, Pxm, Pyp, and Pym indicated by the position table, values Dxp, Dxm, Dyp, and Dym for controlling the recording timing of the captured image are set, and the start timing of the airbag 61 is controlled. The values Dxp, Dxm, Dyp, and Dym for this are set. When the displacement amounts Lx, Ly reach the values Dxp, Dxm, Dyp, Dym for recording timing control of the captured image, a processing execution instruction is issued to the recording control processing, and the displacement amounts Lx, Ly are When the values Dxp, Dxm, Dyp, and Dym corresponding to the activation timing of the airbag 61 are reached, a process execution instruction is issued to the airbag control process.
このような構成を採用することによって、エアバッグ61の起動制御と画像データの記録制御を適切に行うことができる。尚、エアバッグ61の起動タイミングは、エアバッグ61の展開時間(τ)と加速度センサの出力値(G)とを考慮し、撮影画像の記録タイミング(車両乗員に衝撃が発生する事象の発生時刻)に対応する値Dxp,Dxm,Dyp,Dymに対し、次式に従う値C分の補正を行うことによって、値Cに対応する時間だけ前倒しすることができる。
By adopting such a configuration, the start-up control of the airbag 61 and the image data recording control can be appropriately performed. The activation timing of the airbag 61 takes into account the deployment time (τ) of the airbag 61 and the output value (G) of the acceleration sensor, and the recording timing of the captured image (the occurrence time of an event that causes an impact on the vehicle occupant). ), The value Dxp, Dxm, Dyp, Dym corresponding to the value C can be advanced by correcting the value C according to the following equation.
C=V・τ+G・τ2/2
ここで、G及びVは、衝突方向(前後方向又は左右方向)に対する加速度及び速度である。 C = V · τ + G · τ2 / 2
Here, G and V are acceleration and velocity with respect to the collision direction (front-rear direction or left-right direction).
ここで、G及びVは、衝突方向(前後方向又は左右方向)に対する加速度及び速度である。 C = V · τ + G · τ2 / 2
Here, G and V are acceleration and velocity with respect to the collision direction (front-rear direction or left-right direction).
以上、変形例を含む本開示の実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、種々の態様を採ることができる。
As mentioned above, although embodiment of this indication including a modification was described, this indication is not limited to the above-mentioned embodiment, but can take various modes.
[対応関係]
最後に、用語間の対応関係について説明する。記憶ユニット20は、記憶装置の一例に対応し、通信ユニット43は、送信装置及び受信装置の一例に対応する。制御ユニット10が実行する変位量Lx,Lyの算出処理(S230,S330,S430,S630)は、計測部にて実現される処理の一例に対応する。また、制御ユニット10が実行するS110,S510,S240~S260,S340~S360,S440~S460,S640~S660は、推定部にて実現される処理の一例に対応する。 [Correspondence]
Finally, the correspondence between terms will be described. Thestorage unit 20 corresponds to an example of a storage device, and the communication unit 43 corresponds to an example of a transmission device and a reception device. The displacement amount Lx and Ly calculation processing (S230, S330, S430, and S630) executed by the control unit 10 corresponds to an example of processing realized by the measurement unit. Further, S110, S510, S240 to S260, S340 to S360, S440 to S460, and S640 to S660 executed by the control unit 10 correspond to an example of processing realized by the estimation unit.
最後に、用語間の対応関係について説明する。記憶ユニット20は、記憶装置の一例に対応し、通信ユニット43は、送信装置及び受信装置の一例に対応する。制御ユニット10が実行する変位量Lx,Lyの算出処理(S230,S330,S430,S630)は、計測部にて実現される処理の一例に対応する。また、制御ユニット10が実行するS110,S510,S240~S260,S340~S360,S440~S460,S640~S660は、推定部にて実現される処理の一例に対応する。 [Correspondence]
Finally, the correspondence between terms will be described. The
この他、制御ユニット10が実行する更新制御処理は、更新部にて実現される処理の一例に対応し、制御ユニット10が実行するS280,S380,S480,S570は、判定部によって実現される処理の一例に対応する。また、制御ユニット10が実行する記録制御処理及び送信制御処理は、出力制御部にて実現される処理の一例に対応し、制御ユニット10が実行する表示制御処理は、表示制御部にて実現される処理の一例に対応し、制御ユニット10が実行するエアバッグ制御処理は、エアバッグ制御部にて実現される処理の一例に対応する。
In addition, the update control process executed by the control unit 10 corresponds to an example of a process realized by the update unit, and S280, S380, S480, and S570 executed by the control unit 10 are processes realized by the determination unit. Corresponds to an example. The recording control process and the transmission control process executed by the control unit 10 correspond to an example of the process realized by the output control unit, and the display control process executed by the control unit 10 is realized by the display control unit. The airbag control process executed by the control unit 10 corresponds to an example of a process realized by the airbag control unit.
Claims (15)
- 車両(3)に搭載される電子機器(1)であって、
前記車両の加速度を検出する加速度センサ(31,33)による前記加速度の検出値に基づき、前記車両の衝突に起因する車室内における車両乗員の変位量を計測する計測部(10,S230,S330,S430,S630)と、
前記計測部により計測された前記変位量に基づき、前記車両乗員が前記車室内の設置物に接触して前記車両乗員に衝撃が加わる事象の発生時刻を推定する推定部(10,S110,S510,S240~S260,S340~S360,S440~S460,S640~S660)と、を備える電子機器。 An electronic device (1) mounted on a vehicle (3),
Measurement units (10, S230, S330,) that measure the displacement amount of the vehicle occupant in the passenger compartment due to the collision of the vehicle based on the detected acceleration value by the acceleration sensor (31, 33) that detects the acceleration of the vehicle. S430, S630),
Based on the amount of displacement measured by the measurement unit, an estimation unit (10, S110, S510, which estimates an occurrence time of an event in which the vehicle occupant comes into contact with an installation in the vehicle interior and an impact is applied to the vehicle occupant. S240 to S260, S340 to S360, S440 to S460, S640 to S660). - 前記推定部は、記憶装置(20)が記憶する前記車室内における前記事象の発生位置を表す位置情報に基づき、前記事象の発生時刻を推定する請求項1に記載の電子機器。 The electronic device according to claim 1, wherein the estimation unit estimates the occurrence time of the event based on position information indicating the occurrence position of the event in the vehicle compartment stored in the storage device (20).
- 前記位置情報は、前記事象の発生位置を、前記車両乗員の標準着座位置からの相対位置で表し、
前記推定部は、前記変位量と、前記車両が備える着座位置センサ(37)によって検出された前記車両乗員の着座位置の前記標準着座位置からの偏差と、前記位置情報とに基づき、前記事象の発生時刻を推定する請求項2に記載の電子機器。 The position information represents the occurrence position of the event as a relative position from a standard seating position of the vehicle occupant,
Based on the displacement, the deviation of the sitting position of the vehicle occupant detected by the sitting position sensor (37) included in the vehicle from the standard sitting position, and the position information, the event The electronic device according to claim 2, wherein the occurrence time is estimated. - 前記推定部は、前記車両乗員の着座位置から前記事象の発生位置までの距離に対応する値に前記変位量が変化したことを契機に、この変化時点を基準とする特定の時刻を、前記事象の発生時刻に推定する請求項2又は請求項3に記載の電子機器。 The estimator uses a change in the amount of displacement to a value corresponding to the distance from the seating position of the vehicle occupant to the event occurrence position as a trigger, and sets a specific time based on this change time as a reference. The electronic device according to claim 2, wherein the electronic device is estimated at an occurrence time of the event.
- 前記位置情報は、前記車室内における複数の設置物の夫々に対する前記事象の発生位置を表し、
前記推定部は、前記車両の衝突時点から、前記車両乗員の着座位置から最も離れた前記事象の発生位置までの距離に対応した値に前記変位量が到達するまで、前記車両乗員の着座位置から前記事象の夫々の前記発生位置までの距離に対応する値に前記変位量が変化する毎に、この変化時点を基準とする特定の時刻を、前記事象の発生時刻に推定する請求項4に記載の電子機器。 The position information represents an occurrence position of the event for each of a plurality of installation objects in the vehicle interior,
The estimation unit is configured such that the seating position of the vehicle occupant until the displacement amount reaches a value corresponding to the distance from the vehicle collision time to the occurrence position of the event farthest from the seating position of the vehicle occupant. Each time the amount of displacement changes to a value corresponding to the distance from the event to each occurrence position of the event, a specific time based on this change time is estimated as the occurrence time of the event. 4. The electronic device according to 4. - 受信装置(43)を介して車外装置(100)から前記事象の発生位置を表す無線信号を受信し、前記無線信号に基づき、前記記憶装置が記憶する前記位置情報を更新する更新部(10,S910,S920)をさらに備える請求項2~請求項5のいずれか一項に記載の電子機器。 An update unit (10) that receives a radio signal indicating the occurrence position of the event from the external device (100) via the receiving device (43), and updates the position information stored in the storage device based on the radio signal. 6. The electronic device according to claim 2, further comprising: S910, S920).
- 前記車両が停止したか否かを判定する判定部(10,S280,S380,S480,S570)をさらに備え、
前記推定部は、前記判定部により前記車両が停止したと判定されたことを条件に、前記事象の発生時刻についての推定動作を終了する請求項1~請求項6のいずれか一項に記載の電子機器。 A determination unit (10, S280, S380, S480, S570) for determining whether or not the vehicle has stopped;
7. The estimation unit according to claim 1, wherein the estimation unit ends the estimation operation for the occurrence time of the event on condition that the determination unit determines that the vehicle has stopped. Electronic equipment. - 前記車室内を撮影するカメラ(45)により生成される画像データの内、前記推定部により推定された前記事象の発生時刻の撮影画像を表す画像データを選択的に、外部装置(100,200)に出力する又は記憶装置(20)に記憶させる出力制御部(10,S710,S720,S810~S830)をさらに備える請求項1~請求項7のいずれか一項に記載の電子機器。 Of the image data generated by the camera (45) that captures the interior of the vehicle, image data representing a captured image at the occurrence time of the event estimated by the estimation unit is selectively selected from the external device (100, 200). The electronic device according to any one of claims 1 to 7, further comprising an output control unit (10, S710, S720, S810 to S830) for outputting to the storage device (20).
- 前記車室内を撮影するカメラ(45)を、前記推定部により推定された前記事象の発生時刻に対応するタイミングで動作させることによって、前記カメラにより生成された前記事象の発生時刻の撮影画像を表す画像データを選択的に、外部装置(100,200)に出力する又は記憶装置(20)に記憶させる出力制御部(10,S710,S720,S810~S830)をさらに備える請求項1~請求項7のいずれか一項に記載の電子機器。 A photographed image of the event occurrence time generated by the camera by operating the camera (45) for photographing the vehicle interior at a timing corresponding to the event occurrence time estimated by the estimation unit. An output control unit (10, S710, S720, S810 to S830) for selectively outputting image data representing the information to the external device (100, 200) or storing it in the storage device (20) is further provided. Item 8. The electronic device according to any one of Items 7.
- 前記出力制御部は、出力対象の前記画像データに付属データを付した出力用データを生成し、前記出力用データを、前記外部装置に出力するよう構成され、
前記付属データは、前記車両の識別情報、前記車両の位置を表す情報、前記車両の衝突日時を表す情報、前記車両の衝突時を基準とした撮影時刻を表す情報、前記車両の衝突時の最大加速度を表す情報、撮影時の前記車両の加速度を表す情報、及び、前記車両に搭載された前記車両乗員の生体信号を検出するセンサ(39)の出力情報の少なくとも一つを含むデータである請求項8又は請求項9に記載の電子機器。 The output control unit is configured to generate output data with attached data to the image data to be output, and to output the output data to the external device,
The attached data includes identification information of the vehicle, information representing the position of the vehicle, information representing the date and time of the collision of the vehicle, information representing a photographing time based on the time of the collision of the vehicle, and the maximum at the time of the collision of the vehicle Data including at least one of information representing acceleration, information representing acceleration of the vehicle at the time of photographing, and output information of a sensor (39) for detecting a biological signal of the vehicle occupant mounted on the vehicle. Item 10. The electronic device according to Item 8 or Item 9. - 前記出力制御部は、前記出力用データを、送信装置(43)を用いて前記外部装置に、無線信号の形態で送信することにより、前記出力用データを前記外部装置に出力する請求項10に記載の電子機器。 The output control unit outputs the output data to the external device by transmitting the output data to the external device using a transmission device (43) in the form of a radio signal. The electronic device described.
- 前記出力制御部の動作により前記記憶装置に記憶された前記画像データに基づく画像を、前記車両が備えるディスプレイ(49)に表示する表示制御部(10,S1010,S1020)をさらに備える請求項8又は請求項9に記載の電子機器。 The display control part (10, S1010, S1020) which further displays the image based on the image data memorized by the operation of the output control part on the display (49) with which the vehicle is provided. The electronic device according to claim 9.
- 前記加速度センサは、前記車両の前後方向及び左右方向の加速度を検出し、
前記計測部は、前記前後方向及び前記左右方向の前記加速度の検出値に基づき、前記変位量として、前記車両乗員の前記前後方向及び前記左右方向の変位量を計測し、
前記推定部は、前記設置物としての前記車両乗員の前記前後方向及び前記左右方向に設置された物体の夫々に関して、この物体に対する前記事象の発生時刻を推定する請求項1~請求項12のいずれか一項に記載の電子機器。 The acceleration sensor detects acceleration in the front-rear direction and the left-right direction of the vehicle,
The measurement unit measures the front-rear direction and the left-right direction displacement amount of the vehicle occupant as the displacement amount based on the detected values of the acceleration in the front-rear direction and the left-right direction,
The estimation unit estimates an occurrence time of the event with respect to each of the objects installed in the front-rear direction and the left-right direction of the vehicle occupant as the installation object. The electronic device as described in any one. - 前記推定部による前記事象の発生時刻の推定結果に基づき、エアバッグ(61)の起動を制御するエアバッグ制御部(10,S1110,S1120)をさらに備える請求項1~請求項13のいずれか一項に記載の電子機器。 The airbag control unit (10, S1110, S1120) for controlling activation of the airbag (61) based on the estimation result of the occurrence time of the event by the estimation unit. The electronic device according to one item.
- 前記推定部による前記事象の発生時刻の推定結果であって、前記前後方向に設置された前記物体に対する前記事象の発生時刻の推定結果に基づき、前記車両における前記車両乗員の前後に設けられたエアバッグ(61)の起動を制御し、前記左右方向に設置された前記物体に対する前記事象の発生時刻の推定結果に基づき、前記車両における前記車両乗員の左右に設けられたエアバッグ(61)の起動を制御するエアバッグ制御部(10,S1110,S1120)をさらに備える請求項13に記載の電子機器。 An estimation result of the occurrence time of the event by the estimation unit, which is provided before and after the vehicle occupant in the vehicle based on the estimation result of the occurrence time of the event for the object installed in the front-rear direction. The airbags (61) that are provided on the left and right sides of the vehicle occupant in the vehicle are controlled based on the estimation result of the occurrence time of the event for the object installed in the left-right direction. The electronic device according to claim 13, further comprising an airbag control unit (10, S 1110, S 1120) that controls the activation of.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-254218 | 2013-12-09 | ||
JP2013254218A JP2015112911A (en) | 2013-12-09 | 2013-12-09 | Electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087499A1 true WO2015087499A1 (en) | 2015-06-18 |
Family
ID=53370830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005818 WO2015087499A1 (en) | 2013-12-09 | 2014-11-19 | Electronic device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015112911A (en) |
WO (1) | WO2015087499A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6757356B2 (en) * | 2018-03-30 | 2020-09-16 | 株式会社Subaru | Crew protection device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0848208A (en) * | 1994-08-08 | 1996-02-20 | Sensor Technol Kk | Collision sensor |
JP2000211557A (en) * | 1999-01-27 | 2000-08-02 | Suzuki Motor Corp | Storage unit of vehicle driving information |
JP2002347568A (en) * | 2001-05-28 | 2002-12-04 | Nissan Motor Co Ltd | Occupant restraint device for vehicle |
JP2007293536A (en) * | 2006-04-24 | 2007-11-08 | Denso Corp | Accident information collecting system and accident information recording device |
JP2009116576A (en) * | 2007-11-06 | 2009-05-28 | Toyota Motor Corp | Vehicle information recording device, vehicle information collecting device, and vehicle information recording and collection system |
JP2012063835A (en) * | 2010-09-14 | 2012-03-29 | Yupiteru Corp | Data processing system for display |
JP2013164869A (en) * | 2013-05-17 | 2013-08-22 | Kayaba Ind Co Ltd | Drive recorder |
-
2013
- 2013-12-09 JP JP2013254218A patent/JP2015112911A/en active Pending
-
2014
- 2014-11-19 WO PCT/JP2014/005818 patent/WO2015087499A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0848208A (en) * | 1994-08-08 | 1996-02-20 | Sensor Technol Kk | Collision sensor |
JP2000211557A (en) * | 1999-01-27 | 2000-08-02 | Suzuki Motor Corp | Storage unit of vehicle driving information |
JP2002347568A (en) * | 2001-05-28 | 2002-12-04 | Nissan Motor Co Ltd | Occupant restraint device for vehicle |
JP2007293536A (en) * | 2006-04-24 | 2007-11-08 | Denso Corp | Accident information collecting system and accident information recording device |
JP2009116576A (en) * | 2007-11-06 | 2009-05-28 | Toyota Motor Corp | Vehicle information recording device, vehicle information collecting device, and vehicle information recording and collection system |
JP2012063835A (en) * | 2010-09-14 | 2012-03-29 | Yupiteru Corp | Data processing system for display |
JP2013164869A (en) * | 2013-05-17 | 2013-08-22 | Kayaba Ind Co Ltd | Drive recorder |
Also Published As
Publication number | Publication date |
---|---|
JP2015112911A (en) | 2015-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180050659A1 (en) | Electric seatbelt notification systems and methods | |
US20160096499A1 (en) | Passenger state estimation system and in-vehicle apparatus | |
CN110895738A (en) | Driving evaluation device, driving evaluation system, driving evaluation method, and storage medium | |
US20110292209A1 (en) | Device and process for recognizing correct use of an alcohol-measuring device by a driver in a vehcle | |
JP5029255B2 (en) | Vehicle rear monitoring device | |
US20180096403A1 (en) | Facility satisfaction rate calculating apparatus | |
CN111204302A (en) | Automobile collision accident handling method and electronic equipment | |
JP4164865B2 (en) | Car navigation system | |
JP2007334574A (en) | Emergency call unit, emergency call system, and emergency vehicle guide system | |
US11079756B2 (en) | Monitoring of steering wheel engagement for autonomous vehicles | |
CN104658183A (en) | Method for placing an emergency call in a vehicle | |
JP2015207049A (en) | Vehicle accident situation prediction device, vehicle accident situation prediction system and vehicle accident notification device | |
JP2017021745A (en) | Information collection device, information collection server, and information collection system | |
CN110072726A (en) | Autonomous vehicle computer | |
US10399592B2 (en) | Drive assist device | |
JP4247738B2 (en) | Automotive control device | |
WO2016030934A1 (en) | Information-processing device, control method, program, and storage medium | |
US20140012499A1 (en) | Guiding device, sensor unit, portable terminal device, guiding method and guiding program | |
JP2009166612A (en) | Parking support device | |
WO2015087499A1 (en) | Electronic device | |
JP6156699B2 (en) | Emergency call device for vehicles | |
JP2023145578A (en) | Information collection device, information collection server and information collection system | |
US11220181B2 (en) | Operation control device, operation control method, and storage medium | |
JP6597524B2 (en) | Biological information recording device | |
CN111267864B (en) | Information processing system, program, and control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14870311 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14870311 Country of ref document: EP Kind code of ref document: A1 |