Nothing Special   »   [go: up one dir, main page]

WO2015080291A1 - 二軸延伸多孔質膜 - Google Patents

二軸延伸多孔質膜 Download PDF

Info

Publication number
WO2015080291A1
WO2015080291A1 PCT/JP2014/081777 JP2014081777W WO2015080291A1 WO 2015080291 A1 WO2015080291 A1 WO 2015080291A1 JP 2014081777 W JP2014081777 W JP 2014081777W WO 2015080291 A1 WO2015080291 A1 WO 2015080291A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptfe
biaxially stretched
porous membrane
stretched porous
polytetrafluoroethylene
Prior art date
Application number
PCT/JP2014/081777
Other languages
English (en)
French (fr)
Inventor
茶圓 伸一
拓 山中
幸平 安田
山田 雅彦
伸樹 浦岡
小西 智久
乾 邦彦
渋谷 吉之
真誠 小野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP14866220.8A priority Critical patent/EP3075768A4/en
Priority to CN201480065029.6A priority patent/CN105793336B/zh
Priority to US15/100,013 priority patent/US20170002156A1/en
Publication of WO2015080291A1 publication Critical patent/WO2015080291A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1079Inducing porosity into non porous precursors membranes, e.g. leaching, pore stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a biaxially stretched porous membrane.
  • a porous body having a high porosity can be obtained by stretching a molded body obtained by paste extrusion molding of polytetrafluoroethylene fine powder.
  • This polytetrafluoroethylene porous body is formed of nodes (nodules) and fibrils (fibers), and allows gas such as water vapor to pass through.
  • This porous stretched body is used as a sealing material as it is unfired, or fired to form a tough continuous stretched sheet or tube, which is applied to clothing and separation membranes.
  • biaxially stretched porous membranes biaxially stretched porous membranes (biaxially stretched membranes) have been used in a wide range of fields such as gas / liquid (including chemical) microfiltration filters, wire coating materials, and respiratory valves.
  • the polytetrafluoroethylene biaxially stretched film is thin (generally 100 ⁇ m or less), and the film is liable to break in the course of the stretching process, in the winding process after stretching, and in subsequent processes such as lamination. Furthermore, it is easy to break when used as clothing or a separation membrane, and there are problems with the durability and reliability of the biaxially stretched membrane.
  • Patent Document 1 discloses a method for producing a porous film, in which a PTFE semi-fired body is biaxially stretched in the order of the longitudinal direction and the transverse direction, and then heat-set at a temperature equal to or higher than the melting point of the PTFE fired body.
  • Patent Documents 4 to 5 describe a high molecular weight tetrafluoroethylene homopolymer having a specific breaking strength.
  • Patent Documents 6 to 8 describe polytetrafluoroethylene aqueous dispersions obtained by polymerization in the presence of specific emulsifiers.
  • Patent Documents 9 to 11 describe tetrafluoroethylene copolymers modified with perfluoroalkylethylene (PFAE).
  • Patent Document 12 describes a non-melt-processable polytetrafluoroethylene fine powder for forming a stretched body obtained by polymerizing tetrafluoroethylene and perfluoro (methyl vinyl ether).
  • Patent Documents 4 to 8 describe a high molecular weight tetrafluoroethylene homopolymer having a specific breaking strength. However, the strength of a stretched product obtained by stretching such a homopolymer is not sufficient. I could't.
  • An object of the present invention is to provide a biaxially stretched porous membrane having high strength, small pore diameter and excellent uniformity.
  • the present invention is a biaxially stretched porous membrane comprising polytetrafluoroethylene obtained by copolymerizing tetrafluoroethylene and perfluoro (methyl vinyl ether).
  • the polytetrafluoroethylene preferably contains 0.011 mol% or more of polymer units derived from perfluoro (methyl vinyl ether) with respect to the total monomer units.
  • the polytetrafluoroethylene preferably contains 0.025 mol% or more of polymer units derived from perfluoro (methyl vinyl ether) with respect to all monomer units.
  • the polytetrafluoroethylene preferably has a standard specific gravity of 2.160 or less.
  • Polytetrafluoroethylene preferably has an extrusion pressure of 20.0 MPa or less and a breaking strength of 28 N or more.
  • the present invention is also a filter medium for a filter including the biaxially stretched porous membrane.
  • This invention is also a filter unit provided with the said filter material for filters, and the frame body which hold
  • the present invention is also a polymer electrolyte membrane including the biaxially stretched porous membrane.
  • the biaxially stretched porous membrane of the present invention is excellent in high strength, small pore diameter and homogeneity.
  • the biaxially stretched porous membrane of the present invention comprises polytetrafluoroethylene (PTFE) obtained by copolymerizing tetrafluoroethylene (TFE) and perfluoro (methyl vinyl ether) (PMVE).
  • PTFE polytetrafluoroethylene
  • TFE tetrafluoroethylene
  • PMVE perfluoro (methyl vinyl ether)
  • the PTFE is obtained by copolymerizing tetrafluoroethylene and perfluoro (methyl vinyl ether).
  • the PTFE usually has stretchability, fibrillation characteristics, and non-melt secondary workability.
  • the non-melting secondary workability means the property that the melt flow rate cannot be measured at a temperature higher than the crystallization melting point in accordance with ASTM D-1238 and D-2116, that is, the property that does not easily flow even in the melting temperature region. To do.
  • the PTFE contains a polymer unit derived from 0.011 mol% or more of PMVE with respect to the total monomer units because a biaxially stretched porous membrane having higher strength and excellent homogeneity can be obtained.
  • the content of the polymerization unit derived from PMVE is more preferably 0.015 mol% or more, and further preferably 0.025 mol% or more.
  • the content of the polymerization unit derived from PMVE is preferably 0.250 mol% or less, more preferably 0.150 mol% or less, and 0.100 mol%. The following is more preferable. 0.050 mol% or less is most preferable.
  • the PTFE may include a polymer unit derived from a monomer other than TFE and PMVE, or may be composed only of a polymer derived from TFE and PMVE, but is derived from TFE and PMVE. Those consisting only of the polymer to be used are preferred.
  • monomers other than TFE and PMVE include fluorine-containing olefins such as hexafluoropropylene [HFP] and chlorotrifluoroethylene [CTFE]; alkyl having 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms.
  • Fluoro (alkyl vinyl ether) having a group Cyclic fluorinated monomer such as fluorodioxole; Perfluoroalkylethylene; ⁇ -hydroperfluoroolefin and the like.
  • the content of the polymer derived from monomers other than TFE and PMVE is preferably 0.0001 to 0.300 mol%, and more preferably 0.010 to 0.100 mol%.
  • the PTFE is preferably PTFE having no history of heating at a temperature equal to or higher than the primary melting point.
  • the PTFE may be unsintered PTFE or semi-sintered PTFE. From the viewpoint of a simple process or easy control of the thickness and pore diameter, unsintered PTFE is preferable. From the viewpoint of increasing the strength of the biaxially stretched film or reducing the pore diameter, semi-fired PTFE is preferred. Examples of unsintered PTFE include polymerized PTFE.
  • the unsintered PTFE is a PTFE having no history of heating to a temperature equal to or higher than the secondary melting point
  • the semi-sintered PTFE is a PTFE having a history of being heated at a temperature equal to or higher than the primary melting point, which has a primary melting point.
  • the primary melting point means the maximum peak temperature of the endothermic curve that appears on the crystal melting curve when unsintered PTFE is measured with a differential scanning calorimeter.
  • the secondary melting point means the maximum peak temperature of the endothermic curve that appears on the crystal melting curve when PTFE heated to a temperature higher than the primary melting point (for example, 360 ° C.) is measured with a differential scanning calorimeter.
  • the endothermic curve is obtained by using a differential scanning calorimeter and raising the temperature at a rate of temperature rise of 10 ° C./min.
  • the PTFE preferably has an average primary particle diameter of 150 nm or more because a porous body having higher strength and excellent homogeneity can be obtained. More preferably, it is 180 nm or more, More preferably, it is 210 nm or more, Especially preferably, it is 220 nm or more.
  • the upper limit is not particularly limited, but may be 500 nm. From the viewpoint of productivity in the polymerization step, 350 nm is preferable.
  • the average primary particle diameter is determined by using a PTFE aqueous dispersion obtained by polymerization and a transmittance of 550 nm projection light with respect to the unit length of the aqueous dispersion in which the polymer concentration is adjusted to 0.22% by mass. Create a calibration curve with the average primary particle size determined by measuring the unidirectional diameter in the electron micrograph, measure the transmittance for the aqueous dispersion that is the measurement target, and determine based on the calibration curve it can.
  • the PTFE may have a core-shell structure.
  • the polytetrafluoroethylene having a core-shell structure include a modified polytetrafluoroethylene having a high molecular weight polytetrafluoroethylene core and a lower molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene shell in the particle. Fluoroethylene is mentioned. Examples of such modified polytetrafluoroethylene include polytetrafluoroethylene described in JP-T-2005-527652.
  • the PTFE preferably has a standard specific gravity [SSG] of 2.160 or less because a biaxially stretched porous membrane having higher strength and excellent homogeneity can be obtained.
  • Polytetrafluoroethylene having an SSG of 2.160 or less has a stretch ratio of the extruded product exceeding 3 times and is suitable for stretch molding.
  • SSG is more preferably 2.155 or less, even more preferably 2.150 or less, and particularly preferably 2.145 or less because more excellent stretchability can be obtained.
  • the standard specific gravity is preferably 2.130 or more from the viewpoint of suppressing an increase in paste extrusion pressure and excellent moldability.
  • the SSG is an SSG defined in ASTM D4895-89 as an index of the molecular weight of polytetrafluoroethylene having no melt moldability.
  • the PTFE has a biaxially stretched porous membrane with higher strength and excellent homogeneity, so that the extrusion pressure is preferably 22.0 MPa or less, more preferably 20.0 MPa or less, 19 More preferably, it is 0.0 MPa or less, and particularly preferably 18.0 MPa or less.
  • the extrusion pressure is too high, the extruded product becomes hard and is difficult to be crushed during rolling, which will be described later, and the homogeneity of the biaxially stretched porous film tends to be lowered.
  • PTFE having a low extrusion pressure is used, the strength of the biaxially stretched porous membrane tends to be reduced, but the biaxially stretched porous membrane of the present invention surprisingly has an extrusion pressure in the above range.
  • extrusion pressure is not specifically limited, For example, it is 12.0 MPa.
  • the extrusion pressure is a value obtained by the following method according to the description in JP-A-2002-201217. First, 21.7 g of a lubricant (trade name “Isopar H (registered trademark), manufactured by Exxon)” was added to 100 g of PTFE fine powder left at room temperature for 2 hours or more and mixed for 3 minutes to obtain a PTFE fine powder mixture. obtain. Thereafter, the obtained PTFE fine powder mixture was allowed to stand in a thermostatic bath at 25 ° C.
  • Paste extrusion is performed at 25 ° C. through an orifice (diameter 2.5 mm, land length 1.1 cmm, introduction angle 30 °) to obtain a bead.
  • the extrusion pressure is a value obtained by measuring the load when the extrusion load is in an equilibrium state in paste extrusion and dividing by the cross-sectional area of the cylinder used for paste extrusion.
  • the PTFE preferably has a breaking strength of 20 N or more because a biaxially stretched porous membrane having higher strength and excellent homogeneity can be obtained. More preferably, it is 28N or more, More preferably, it is 30N or more, Especially preferably, it is 32N or more, Most preferably, it is 36N or more.
  • the breaking strength is preferably in the above range.
  • the upper limit of breaking strength is not specifically limited, For example, it is 70N.
  • the breaking strength is a value obtained by the following method according to the description in JP-A-2002-201217. First, an extrusion bead stretching test is performed by the following method to prepare a sample for measuring the breaking strength.
  • the bead obtained by the paste extrusion is dried at 230 ° C. for 30 minutes to remove the lubricant.
  • the dried bead is cut to an appropriate length, each end is fixed so that the distance between the clamps is 5.1 cm, and heated to 300 ° C. in an air circulation furnace.
  • the clamp is then released at a stretch rate of 100% / sec until the total stretch is a separation distance corresponding to 2400% and a stretch test is performed.
  • Total stretch is an increase in length due to stretching relative to the bead length (100%) before the stretching test.
  • the stretched bead created under the above stretching conditions is cut to an appropriate length, sandwiched and fixed by a movable jaw having a gauge length of 5.0 cm, and the movable jaw is driven at a speed of 300 mm / min.
  • the minimum tensile breaking load (force) is taken as the breaking strength.
  • the extrusion pressure is 20.0 MPa or less and the breaking strength is 28 N or more. Most preferably, it is 0 MPa or less and the breaking strength is 30 N or more.
  • the biaxially stretched porous membrane of the present invention can be formed from PTFE fine powder made of PTFE.
  • the average particle diameter of the PTFE fine powder is usually 100 to 1000 ⁇ m.
  • the average particle size is preferably 300 to 800 ⁇ m, more preferably 400 to 700 ⁇ m, since a biaxially stretched porous membrane with better homogeneity can be obtained.
  • the average particle diameter of the PTFE fine powder is a value measured according to JIS K6891.
  • the apparent density of the PTFE fine powder is usually 0.35 to 0.60 g / ml.
  • the apparent density is preferably 0.40 to 0.55 g / ml because a biaxially stretched porous membrane with better homogeneity can be obtained.
  • the apparent density is a value measured according to JIS K6892.
  • the PTFE includes a surfactant, an aqueous medium, tetrafluoroethylene, PMVE, and a step of adding a monomer other than TFE and PMVE to the polymerization tank as necessary, and a polymerization initiator in the polymerization tank. And a step of starting emulsion copolymerization with monomers other than TFE and PMVE and, if necessary, monomers other than TFE and PMVE.
  • Supply of monomers other than TFE, PMVE, and TFE and PMVE used as necessary may be added all at once before the start of polymerization, or may be added continuously or intermittently. From the viewpoint of easy stretching at a high magnification, it is preferable to add all at once before polymerization.
  • the method for producing PTFE may include a step of aggregating PTFE in an aqueous PTFE dispersion obtained by emulsion copolymerization. By aggregating PTFE, a PTFE fine powder can be obtained.
  • the method for producing PTFE usually includes a step of recovering PTFE obtained by agglomeration and a drying step of drying the recovered PTFE.
  • emulsion copolymerization will be described with a more specific example.
  • an aqueous medium and the above surfactant are charged into a pressure-resistant reaction vessel equipped with a stirrer, and after deoxidation, TFE, PMVE, monomers other than TFE and PMVE used as necessary are charged at a predetermined temperature
  • TFE, PMVE as needed, used as needed to maintain the initial pressure because the polymerization initiator is added to start the emulsion polymerization and the pressure decreases as the reaction proceeds
  • Monomers other than TFE and PMVE are additionally supplied continuously or intermittently. Stop supplying when a predetermined amount of TFE and PMVE, and monomers other than TFE and PMVE used as necessary, are supplied, purge the TFE in the reaction vessel, return the temperature to room temperature, and terminate the reaction. To do.
  • a fluorinated surfactant having a Log POW of 3.4 or less is more preferable because a biaxially stretched porous membrane having higher strength and excellent homogeneity can be obtained.
  • a compound with a large Log POW is concerned about the burden on the environment, and considering this, it is preferable to use a compound with a Log POW of 3.4 or less.
  • ammonium perfluorooctanoate [PFOA] has been mainly used as a surfactant. Since PFOA has a Log POW of 3.5, the Log POW is 3.4 or less. It is preferable to switch to the fluorine-containing surfactant.
  • a fluorine-containing surfactant having a Log POW of 3.4 or less has a problem of poor emulsifying ability.
  • the stability of the aqueous dispersion during polymerization is important. If a fluorine-containing surfactant that is actually inferior in emulsifying ability is used, sufficient breakage is achieved. Strength cannot be obtained. Therefore, International Publication No. 2009/001894 describes a method of using a large amount of a fluorine-containing surfactant having a small Log POW in order to improve the stability of an aqueous dispersion.
  • the polytetrafluoroethylene obtained by this method is not sufficient in breaking strength.
  • PTFE obtained by emulsion copolymerization of tetrafluoroethylene and perfluoro (methyl vinyl ether) (PMVE) in the presence of a fluorine-containing surfactant having a Log POW of 3.4 or less
  • a fluorine-containing surfactant having a Log POW of 3.4 or less high strength and excellent homogeneity are obtained.
  • An axially stretched porous membrane can be formed. That is, the PTFE is preferably obtained by emulsion copolymerization of tetrafluoroethylene and at least perfluoro (methyl vinyl ether) in the presence of a fluorine-containing surfactant having a Log POW of 3.4 or less.
  • the surfactant may be a fluorine-containing surfactant having a Log POW of 2.5 or more, or may be a fluorine-containing surfactant of 3.0 or more.
  • Log POW is the partition coefficient between 1-octanol and water, and Log P [wherein P is the octanol / water (1: 1) mixture containing the fluorine-containing surfactant in the octanol when the phase separation occurs. Represents the fluorine-containing surfactant concentration / fluorine-containing surfactant concentration ratio in water].
  • a fluorine-containing anionic surfactant is preferable.
  • fluorine-containing surfactant having a Log POW of 3.4 or less a general formula: CF 3- (CF 2 ) 4 -COOX (Wherein X represents a hydrogen atom, NH 4 or an alkali metal atom), general formula: CF 3 CF 2 CF 2 OCF (CF 3 ) COOX (Wherein X represents a hydrogen atom, NH 4 or an alkali metal atom), general formula: CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOX (Wherein X represents a hydrogen atom, NH 4 or an alkali metal atom), and a general formula: CF 3 CF 2 OCF 2 CF 2 OCF 2 COOX (In the formula, X represents a hydrogen atom, NH 4 or an alkali metal atom.) It is preferably at least one fluorine-containing surfactant selected from the group consisting of
  • fluorine-containing surfactant having a Log POW of 3.4 or less a general formula: CF 3 OCF 2 CF 2 OCF 2 CF 2 COOX (Wherein X represents a hydrogen atom, NH 4 or an alkali metal atom), general formula: CF 3 OCF 2 CF 2 CF 2 OCHFCF 2 COOX (In the formula, X represents a hydrogen atom, NH 4 or an alkali metal atom.) Etc. can also be mentioned.
  • examples of the counter ion forming the salt include an alkali metal ion or NH 4+ , and examples of the alkali metal ion include Na + and K +. .
  • fluorine-containing surfactant having a Log POW of 3.4 or less examples include CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOH, CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 OCF 2 CF 2 OCF 2 COOH, CF 3 CF 2 OCF 2 CF 2 OCF 2 COONH 4, CF 3 OCF 2 CF 2 CF 2 OCHFCF 2 COOH, CF 3 OCF 2 CF 2 CF 2 OCHFCF 2 COONH 4, CF 3 -(CF 2 ) 4 -COOH, CF 3- (CF 2 ) 4 -COONH 4 , CF 3 CF 2 CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 OCF (CF 3 ) COOH, etc. It is done.
  • the above surfactant is preferably added in a total addition amount of 0.0001 to 10% by mass with respect to the aqueous medium.
  • a more preferred lower limit is 0.1% by mass
  • a more preferred upper limit is 2% by mass
  • a still more preferred upper limit is 1% by mass. If the amount is too small, the stability of the emulsified particles is not good, and the yield may not be increased, and the system becomes unstable, such as agglomerates during the reaction and after the reaction, and a large amount of deposits on the reaction vessel. The phenomenon may occur. If the amount is too large, the effect of stability corresponding to the amount added cannot be obtained, and there is a possibility that the system becomes unstable, and the polymerization rate may be lowered or the reaction may be stopped.
  • the surfactant may be added to the tank all at once before the polymerization reaction is started, or may be added continuously or intermittently after the polymerization reaction is started.
  • the addition amount of the surfactant is appropriately determined depending on the stability of the emulsified particles, the primary particle diameter of the target PTFE, and the like.
  • the polymerization initiator in the emulsion copolymerization those conventionally used in the polymerization of TFE can be used.
  • a polymerization initiator in the emulsion copolymerization a radical polymerization initiator, a redox polymerization initiator, or the like can be used.
  • the smaller the amount of the polymerization initiator the more preferable in that PTFE with low SSG can be obtained.
  • the amount is too small, the polymerization rate tends to be too low, and when too large, PTFE with high SSG tends to be produced. There is.
  • the radical polymerization initiator examples include water-soluble peroxides, and persulfates such as ammonium persulfate and potassium persulfate, and water-soluble organic peroxides such as disuccinic acid peroxide are preferable. Disuccinic acid peroxide is more preferred. These may be used alone or in combination of two or more.
  • the amount of the radical polymerization initiator used can be appropriately selected according to the polymerization temperature and the target SSG, and is preferably an amount corresponding to 1 to 100 ppm of the mass of the aqueous medium generally used. An amount corresponding to ⁇ 20 ppm is more preferred, and an amount corresponding to 1 ⁇ 6 ppm is even more preferred.
  • the radical concentration in the system can be adjusted by adding a peroxide decomposing agent such as ammonium sulfite during the polymerization.
  • PTFE having a low SSG can be easily obtained by adding a radical scavenger during the polymerization.
  • the radical scavenger include unsubstituted phenols, polyhydric phenols, aromatic hydroxy compounds, aromatic amines, quinone compounds, etc. Among them, hydroquinone is preferable.
  • the radical scavenger is preferably added before 50% by mass of the total TFE consumed in the polymerization reaction is polymerized in that PTFE having a low SSG is obtained. More preferably, it is more preferable to add 40% by mass of TFE, more preferably 30% by mass before polymerization.
  • the radical scavenger is preferably in an amount corresponding to 0.1 to 20 ppm of the mass of the aqueous medium used, and more preferably in an amount corresponding to 3 to 10 ppm.
  • Examples of the redox polymerization initiator include permanganates such as potassium permanganate, persulfates, bromates, chlorates, hydrogen peroxide and other oxidizing agents, sulfites, bisulfites, oxalic acids or Examples include combinations with organic acids such as succinic acid, and reducing agents such as thiosulfate, ferrous chloride, diimine. Any of the above oxidizing agents and reducing agents may be used alone or in combination of two or more. Among these, a combination of potassium permanganate and oxalic acid is preferable.
  • the amount of the redox polymerization initiator used can be appropriately selected according to the type of redox polymerization initiator used, the polymerization temperature, and the target SSG, but corresponds to 1 to 100 ppm of the mass of the aqueous medium used. The amount to be preferred is preferred.
  • the redox polymerization initiator may start the polymerization reaction by simultaneously adding the oxidizing agent or the reducing agent, or either one of the oxidizing agent or the reducing agent is previously added to the tank and remains. The polymerization reaction may be started by adding one.
  • the redox polymerization initiator is added either in advance to the oxidizer or reducing agent in advance, and when the remaining one is added to start the polymerization, the remaining one is added continuously or intermittently.
  • the addition stop timing is preferably before 80% by mass of the total TFE consumed for the polymerization reaction is polymerized. More preferably, 65% by mass of TFE is polymerized, more preferably before 50% by mass of TFE is polymerized, and particularly preferably before 30% by mass of polymerized.
  • a pH buffering agent When using a redox polymerization initiator, it is desirable to use a pH buffering agent in order to adjust the pH in the aqueous medium to a range that does not impair the redox reactivity.
  • a pH buffering agent inorganic salts such as disodium hydrogen phosphate, sodium dihydrogen phosphate and sodium carbonate can be used, and disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate include preferable.
  • various metals having a plurality of ionic valences can be used as metal ions that undergo redox reaction.
  • transition metals such as iron, copper, manganese, and chromium are preferable, and iron is particularly preferable.
  • the aqueous medium is a medium for performing polymerization and means a liquid containing water.
  • the aqueous medium is not particularly limited as long as it contains only water or contains water, and water and, for example, a fluorine-free organic solvent such as alcohol, ether, and ketone, and / or a boiling point of 40. It may contain a fluorine-containing organic solvent having a temperature not higher than ° C.
  • the polymerization can be performed under a pressure of 0.05 to 5.0 MPa.
  • a preferable pressure range is 0.5 to 3.0 MPa.
  • the polymerization can be carried out at a temperature of 10 to 100 ° C.
  • a preferred temperature range is 50-90 ° C.
  • a known stabilizer, chain transfer agent or the like may be further added depending on the purpose.
  • the stabilizer examples include saturated hydrocarbons having 12 or more carbon atoms that are substantially inert to the reaction and become liquid under the reaction conditions, and paraffin wax is preferred.
  • the paraffin wax may be liquid, semi-solid or solid at room temperature, but is preferably a saturated hydrocarbon having 12 or more carbon atoms.
  • the melting point of paraffin wax is usually preferably 40 to 65 ° C, more preferably 50 to 65 ° C.
  • dispersion stabilizers other than saturated hydrocarbons include fluorinated oils, fluorinated solvents, and silicone oils. You may use these individually or in combination of 2 or more types.
  • the stabilizer can be used at 1 to 10 parts by mass with respect to 100 parts by mass of the aqueous medium.
  • chain transfer agent known ones can be used, for example, saturated hydrocarbons such as methane, ethane, propane and butane, halogenated hydrocarbons such as chloromethane, dichloromethane and difluoroethane, and alcohols such as methanol and ethanol. , Hydrogen and the like.
  • saturated hydrocarbons such as methane, ethane, propane and butane
  • halogenated hydrocarbons such as chloromethane, dichloromethane and difluoroethane
  • alcohols such as methanol and ethanol.
  • Hydrogen and the like Hydrogen and the like.
  • the amount of the chain transfer agent used is usually 1 to 1000 ppm, preferably 1 to 500 ppm, based on the total amount of TFE supplied.
  • a pH buffer inorganic salts such as disodium hydrogen phosphate, sodium dihydrogen phosphate and sodium carbonate can be used, and disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate include preferable.
  • various metals having a plurality of ionic valences can be used as metal ions that undergo redox reaction.
  • transition metals such as iron, copper, manganese, and chromium are preferable, and iron is particularly preferable.
  • the polymerization may be carried out in the presence of 5 to 500 ppm of dicarboxylic acid relative to the aqueous medium in order to reduce the amount of coagulum produced during the polymerization, in which case the presence of 10 to 200 ppm of dicarboxylic acid. Preferably it is done. If the amount of the dicarboxylic acid is too small relative to the aqueous medium, a sufficient effect may not be obtained. If the amount is too large, a chain transfer reaction may occur and the resulting polymer may have a low molecular weight.
  • the dicarboxylic acid is more preferably 150 ppm or less. The dicarboxylic acid may be added before the start of the polymerization reaction or may be added during the polymerization.
  • dicarboxylic acid examples include those represented by the general formula: HOOCRCOOH (wherein R represents an alkylene group having 1 to 5 carbon atoms). Succinic acid, malonic acid, glutaric acid, adipic acid, Pimelic acid is more preferred, and succinic acid is even more preferred.
  • an aqueous dispersion having a solid content of 10 to 50% by mass can be obtained.
  • the aqueous dispersion contains the fluorine-containing surfactant and polytetrafluoroethylene.
  • the average primary particle diameter of polytetrafluoroethylene is 150 to 500 nm.
  • the production method preferably includes a step of aggregating PTFE in the obtained PTFE aqueous dispersion, a step of recovering PTFE obtained by agglomeration, and a drying step of drying the recovered PTFE.
  • a PTFE fine powder can be obtained by aggregating the polytetrafluoroethylene contained in the aqueous dispersion.
  • the polytetrafluoroethylene aqueous dispersion can be recovered as fine powder through aggregation, washing, and drying, and used for the production of a biaxially stretched porous membrane.
  • the aqueous dispersion obtained by polymerization of polymer latex or the like is usually diluted with water to a polymer concentration of 10 to 20% by mass.
  • the temperature is adjusted to 5 to 50 ° C., and in some cases, the pH is adjusted to neutral or alkaline, and then the mixture is stirred more vigorously than stirring during the reaction in a vessel equipped with a stirrer.
  • the agglomeration temperature can be appropriately selected according to the shape and size of the stirring blade used, the polymer concentration, and the average particle size of the target fine powder.
  • the agglomeration may be carried out while adding a water-soluble organic compound such as methanol or acetone, an inorganic salt such as potassium nitrate or ammonium carbonate, an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid as a coagulant.
  • a water-soluble organic compound such as methanol or acetone
  • an inorganic salt such as potassium nitrate or ammonium carbonate
  • an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid
  • the agglomeration may be continuously performed using an in-line mixer or the like.
  • the wet powder obtained by agglomerating the PTFE is usually dried by means of vacuum, high frequency, hot air or the like while keeping the wet powder not flowing so much, preferably in a stationary state. Friction between powders, particularly at high temperatures, generally has an undesirable effect on polytetrafluoroethylene fine powder. This is because particles of this type of polytetrafluoroethylene have the property of easily fibrillating even with a small shearing force and losing the original stable particle structure.
  • the drying can be performed at a drying temperature of 10 to 250 ° C., preferably 120 to 230 ° C.
  • the biaxially stretched porous membrane of the present invention is composed of the above-mentioned specific PTFE, even if paste extrusion is performed at a relatively low extrusion pressure using a general molding / stretching equipment, it has high strength. And excellent in homogeneity.
  • the biaxially stretched porous membrane of the present invention preferably has a product of longitudinal and lateral matrix tensile strengths of 2.20 ⁇ 10 4 MPa 2 or more. More preferably, it is not 3.00 ⁇ 10 4 MPa 2 or more, still more preferably 5.00 ⁇ 10 4 MPa 2 or more.
  • the vertical and horizontal matrix tensile strengths are values determined by the following method. (Vertical matrix tensile strength) Five samples were cut from the biaxially stretched porous membrane. Each sample has a dimension of 15.0 cm in the longitudinal direction (longitudinal direction, that is, the paste extrusion direction) and 2.0 cm in the lateral direction (width direction, that is, a direction perpendicular to the paste extrusion direction).
  • the vertical matrix tensile strength is determined from the vertical average maximum load, the sample width (2.0 cm), the film thickness (unit: cm), and the porosity using the following formula.
  • Longitudinal matrix tensile strength ⁇ longitudinal average maximum load / (2.0 ⁇ membrane thickness) ⁇ / (1 ⁇ porosity) (Horizontal matrix tensile strength) Five samples were cut from the biaxially stretched porous membrane.
  • Each sample has a dimension of 2.0 cm in the longitudinal direction (longitudinal direction, that is, the paste extrusion direction) and 15.0 cm in the lateral direction (width direction, that is, a direction perpendicular to the paste extrusion direction).
  • the tensile strength of the horizontal direction was measured and the maximum load which each of five samples showed was calculated
  • the transverse average maximum load is obtained in the same manner as in the longitudinal direction, and the transverse matrix tensile strength is obtained using the following formula.
  • Horizontal matrix tensile strength ⁇ horizontal average maximum load / (2.0 ⁇ membrane thickness) ⁇ / (1 ⁇ porosity)
  • the tensile strength is measured using a tensile tester equipped with a 50N load cell, a chuck length of 5.0 cm, and a crosshead speed of 300 mm / min.
  • the said porosity is a value calculated
  • Porosity 1- (Membrane density / PTFE true density)
  • the PTFE true density is 2.2 g / cm 3 .
  • the film thickness and film density are determined by the method described later.
  • the biaxially stretched porous membrane of the present invention preferably has a membrane density of 1.40 g / cm 3 or less because it is desirable to increase the permeation amount or flow rate of gas or liquid. More preferably, it is 1.00 g / cm 3 or less, and still more preferably 0.80 g / cm 3 or less.
  • the film density is a value determined by the following method. The mass of a sample obtained by cutting a biaxially stretched porous membrane into a 4.0 cm ⁇ 12.0 cm rectangle is measured with a precision balance, and the density of the sample is calculated from the measured mass and membrane thickness according to the following formula.
  • the biaxially stretched porous membrane of the present invention preferably has an average pore size of 0.05 to 2.0 ⁇ m, more preferably 0.2 to 1.5 ⁇ m.
  • the average pore diameter is in the above range, it can be suitably used for applications such as liquid (including chemical) microfiltration filters.
  • the average pore diameter is preferably 0.4 to 2.0 ⁇ m from the viewpoint of maintaining a low pressure loss.
  • the average pore diameter is a mean flow pore size (MFP) measured according to ASTM F-316-86.
  • the biaxially stretched porous membrane of the present invention preferably has an average pore size of 2.00 ⁇ m or less, and more preferably 1.00 ⁇ m or less. Furthermore, when high film strength is required, the average pore diameter is preferably small, so that it is more preferably 0.60 ⁇ m or less, and particularly preferably 0.40 ⁇ m or less. The average pore diameter is preferably 0.05 ⁇ m or more, more preferably 0.10 ⁇ m or more, and still more preferably 0.20 ⁇ m or more.
  • the thickness of the biaxially stretched porous membrane of the present invention is preferably 0.5 ⁇ m or more. More preferably, it is 1 micrometer or more, More preferably, it is 3 micrometers or more. If the film thickness is too thin, the mechanical strength may decrease.
  • the upper limit of a film thickness is not specifically limited, For example, it is 100 micrometers. For example, when used as an air filter, a preferable upper limit is 100 ⁇ m from the viewpoint of suppressing an increase in pressure loss.
  • the film thickness is measured by using a film thickness meter, measuring the total film thickness by stacking five biaxially stretched porous films, and dividing the value by 5 is one film thickness.
  • the biaxially stretched porous membrane of the present invention may contain known additives in addition to the PTFE.
  • it is also preferable to contain carbon materials such as carbon nanotubes and carbon black, pigments, photocatalysts, activated carbon, antibacterial agents, adsorbents, deodorants and the like.
  • the above-mentioned known additives and the like can be used in an amount that does not hinder the effects of the present invention.
  • the above-mentioned known additives and the like are preferably 40% by mass or less in total, and more preferably 30% by mass or less.
  • the PTFE is preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the biaxially stretched porous membrane of the present invention includes, for example, a paste extrusion step for obtaining a paste extrudate by extruding the PTFE fine powder made of the PTFE, a rolling step for obtaining a PTFE green body by rolling the paste extrudate, and PTFE.
  • a biaxial stretching step in which the obtained uniaxially stretched body is stretched in the transverse direction (TD). can be manufactured.
  • the said longitudinal direction (MD) is the same direction as the direction which paste-extruded at the paste extrusion process.
  • the horizontal direction (TD) is a direction perpendicular to the vertical direction.
  • the film is stretched in the longitudinal direction to obtain a uniaxially stretched body, and then stretched in the transverse direction to obtain a biaxially stretched body.
  • the film may be stretched in the transverse direction to obtain a uniaxially stretched body, and then stretched in the longitudinal direction to obtain a biaxially stretched body.
  • both the stretching in the longitudinal direction (uniaxial stretching step) and the stretching in the lateral direction (biaxial stretching step) may be performed multiple times ( So-called multistage stretching).
  • the biaxially stretched porous membrane of the present invention does not require special equipment design for production, and can be produced using a very general molding / stretching equipment.
  • the production method preferably includes a step of obtaining a PTFE fine powder mixed with a liquid lubricant by adding a liquid lubricant such as solvent naphtha or white oil to the PTFE fine powder before the paste extrusion step.
  • a liquid lubricant such as solvent naphtha or white oil
  • the amount of the liquid lubricant added is preferably 17 to 34 parts by mass with respect to 100 parts by mass of the PTFE fine powder, although it depends on paste extrusion conditions described later.
  • the paste extrusion step is to obtain a rod-like or sheet-like paste extrudate using an extruder equipped with a die having a specific diameter or a die capable of obtaining a sheet-like extrudate.
  • the extrusion pressure may be appropriately set according to the extruder used, the extrusion speed, and the like.
  • the extrusion temperature is preferably 5 to 100 ° C. More preferably, it is 30 to 80 ° C.
  • a PTFE fine powder is preformed to obtain a preform, and the preform is placed in an extruder and extruded to obtain a rod-like paste extrudate.
  • the rolling temperature is preferably 5 to 100 ° C, more preferably 30 to 80 ° C.
  • the thickness of the unsintered PTFE after rolling is usually 20 to 500 ⁇ m, preferably 50 to 400 ⁇ m.
  • the drying step may be performed at room temperature or may be performed by heating.
  • the liquid lubricant can be removed by drying.
  • the drying temperature is preferably from 70 to 280 ° C., more preferably from 100 to 250 ° C., depending on the type of liquid lubricant.
  • the rolling can be performed by a method using a rolling roll or the like, a belt press or the like.
  • the manufacturing method includes a step of obtaining a PTFE semi-fired body by semi-firing the PTFE green body as necessary.
  • the semi-firing is performed at a temperature not higher than the primary melting point of PTFE and not lower than the secondary melting point.
  • the primary melting point means the maximum peak temperature of the endothermic curve that appears on the crystal melting curve when unsintered PTFE is measured with a differential scanning calorimeter.
  • the secondary melting point means the maximum peak temperature of the endothermic curve that appears on the crystal melting curve when PTFE heated to a temperature higher than the primary melting point (for example, 360 ° C.) is measured with a differential scanning calorimeter.
  • the endothermic curve is obtained by using a differential scanning calorimeter and raising the temperature at a rate of temperature rise of 10 ° C./min.
  • the stretching ratio is preferably 2 to 50 times, and more preferably 5 to 30 times.
  • the stretching temperature is preferably from room temperature to less than the primary melting point, and more preferably from 200 to 330 ° C. 250 to 300 ° C. is more preferable.
  • the stretching speed is preferably 5 to 2000% / second, and 7 to 1000% / second. Is more preferably 10 to 700% / second.
  • the method for performing uniaxial stretching is not particularly limited. Industrially, roll stretching, hot plate stretching and the like can be mentioned.
  • the stretching ratio is preferably 2 to 100 times, and more preferably 10 to 50 times.
  • the stretching temperature is preferably from room temperature to 400 ° C., more preferably from 150 to 390 ° C. 200 to 380 ° C. is more preferable.
  • the stretching speed is preferably 5 to 1000% / second, and 7 to 700% / second. More preferred is 10 to 600% / second.
  • the above production method preferably includes a step of heat setting after the biaxial stretching step because a biaxially stretched porous membrane having high strength and excellent homogeneity can be obtained.
  • the temperature for heat setting is preferably 300 to 420 ° C, more preferably 350 to 400 ° C.
  • the biaxially stretched porous membrane of the present invention has high strength and good homogeneity while maintaining a high porosity, it is a filter medium for various microfiltration filters such as air filters and chemical filters, and polymer electrolyte membranes. It can be suitably used as a support material for the above. It is also useful as a material for products used in the textile field, medical field, electrochemical field, sealing material field, air filtration field, ventilation / internal pressure adjustment field, liquid filtration field, general consumer material field, and the like. Below, a specific use is illustrated.
  • Electrochemical field Dielectric material prepreg EMI shielding material, heat transfer material, etc. More specifically, printed circuit boards, electromagnetic shielding materials, insulating heat transfer materials, insulating materials, etc.
  • Sealing materials gaskets, packing, pump diaphragms, pump tubes, aircraft sealing materials, etc.
  • Air filtration field ULPA filter for semiconductor manufacturing
  • HEPA filter for hospital and semiconductor manufacturing
  • cylindrical cartridge filter for industrial use
  • bag filter for industrial use
  • heat resistant bag filter for exhaust gas treatment
  • heat resistant pleated filter For exhaust gas treatment, SINBRAN filter (for industrial use), catalytic filter (for exhaust gas treatment), filter with adsorbent (HDD built-in), vent filter with adsorbent (for HDD built-in), vent filter (for HDD built-in, etc.), cleaning Filters for machines (for vacuum cleaners), general-purpose multilayered felt materials, cartridge filters for GT (for compatible products for GT), cooling filters (for electronic equipment housings), etc.
  • Ventilation / internal pressure adjustment field Freeze-drying materials such as freeze-drying containers, automotive ventilation materials for electronic circuits and lamps, container applications such as container caps, protective ventilation applications for electronic devices, medical ventilation applications, etc. .
  • Liquid filtration field Semiconductor liquid filtration filter (for semiconductor production), hydrophilic PTFE filter (for semiconductor production), chemical filter (for chemical treatment), pure water production line filter (for pure water production), backwash liquid Filtration filter (for industrial wastewater treatment) etc.
  • Textile field PTFE fiber fiber material
  • sewing thread textile
  • woven thread textile
  • rope etc.
  • Implants in the medical field are implants in the medical field (stretched products), artificial blood vessels, catheters, general surgery (tissue reinforcement materials), head and neck products (dura substitute), oral health (tissue regeneration medicine), orthopedics (bandages), etc.
  • the biaxially stretched porous membrane of the present invention since the biaxially stretched porous membrane of the present invention has low pressure loss, it is particularly useful as a filter medium for ULPA filters, HEPA filters, and various medium performance air filters.
  • the biaxially stretched porous membrane of the present invention has high strength and excellent homogeneity, it can be suitably used as various filters such as a chemical solution filter and an air filter. That is, a filter medium for a filter comprising the biaxially stretched porous membrane is also one aspect of the present invention.
  • the filter material for a filter may be composed only of the porous body, or may be a laminate of the porous body and another material.
  • the breathable support material supports the porous membrane, and is preferably bonded to the porous membrane.
  • the support material is not particularly limited as long as it has air permeability and can support the porous membrane, but a nonwoven fabric is preferable.
  • nonwoven fabric examples include a polyethylene terephthalate (PET) fiber nonwoven fabric, a polybutylene terephthalate (PBT) fiber nonwoven fabric, a core-sheath nonwoven fabric (PET / PE core) in which the core component is PET and the sheath component is polyethylene (PE). / Sheath non-woven fabric), a core-sheath non-woven fabric (PET / PBT core / sheath non-woven fabric) with a core component of PET and a sheath component of PBT, a core-sheath structure with a core component of high-melting PET and a sheath component of low-melting PET.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • Non-woven fabric high-melting point PET / low-melting point PET core / sheathed nonwoven fabric
  • non-woven fabric composed of composite fibers of PET fibers and PBT fibers
  • non-woven fabric composed of composite fibers of high-melting point PET fibers and low-melting point PET fibers, and the like.
  • the support material preferably has high air permeability and low pressure loss so as not to hinder the effects of the present invention.
  • the performance of the filter medium is mainly derived from the performance of the porous membrane made of polytetrafluoroethylene, and a sufficiently large dust holding amount (without using a support material having a prefilter function as the support material ( (Dust collection amount) can be obtained, but a melt blown nonwoven fabric or the like may be used as a support material for the purpose of further increasing the dust retention amount.
  • the pore size of the support material is preferably larger than the pore size of the biaxially stretched porous membrane of the present invention.
  • the basis weight of the nonwoven fabric used for the support material is usually 10 to 600 g / m 2 , preferably 15 to 300 g / m 2 , more preferably 15 to 100 g / m 2 .
  • the film thickness of the nonwoven fabric used for the support material is preferably 0.10 to 0.52 mm.
  • a breathable support material having a large dust holding amount on the upstream side of the air flow for example, JP 2000-300921 A, JP 2008-525692 A, US Pat. No. 6,808,553. Means that can ensure a known amount of dust, such as those described, may be used.
  • the present invention is also a filter unit including the filter medium for a filter and a frame body that holds the filter medium for the filter.
  • the polymer electrolyte membrane of the present invention includes a biaxially stretched porous membrane.
  • the biaxially stretched porous membrane When used for a polymer electrolyte membrane, preferably has an average pore size of 2.00 ⁇ m or less, and more preferably 1.00 ⁇ m or less.
  • the average pore diameter is preferably small, so that it is more preferably 0.60 ⁇ m or less, and particularly preferably 0.40 ⁇ m or less.
  • the average pore diameter is preferably 0.05 ⁇ m or more, more preferably 0.10 ⁇ m or more, and still more preferably 0.20 ⁇ m or more.
  • polymer electrolyte a known polymer used as a polymer solid electrolyte of a solid polymer fuel cell can be used.
  • the polymer electrolyte is not particularly limited. For example, it is ionized to a perfluorocarbon polymer compound having an ion exchange group or a partially fluorinated hydrocarbon polymer compound having an aromatic ring in the molecule.
  • a compound into which an exchange group is introduced is preferred.
  • a perfluorocarbon polymer compound having an ion exchange group is more preferable from the viewpoint of chemical stability.
  • the polymer electrolyte preferably has an equivalent weight (EW), that is, a dry weight per equivalent of ion exchange groups of 250 or more and 1500 or less.
  • EW equivalent weight
  • the upper limit of EW is more preferably 900, still more preferably 700, particularly preferably 600, and even more preferably 500.
  • the lower limit of EW is more preferably 300, even more preferably 350, and even more preferably 400. The smaller the EW, the higher the conductivity and the better. On the other hand, the solubility in hot water may be increased. Therefore, the appropriate range as described above is desirable.
  • the polymer electrolyte membrane of the present invention is provided with the biaxially stretched porous membrane, so that even if a polymer electrolyte with a low EW is used, the dimensional change is small, and the durability and reliability are excellent. .
  • the polymer electrolyte preferably has a proton conductivity at 110 ° C. and a relative humidity of 80% RH of 0.10 S / cm or more. More preferably, the proton conductivity at 60% RH is 0.05 S / cm or more, more preferably the proton conductivity at 40% RH is 0.02 S / cm or more, and still more preferably the proton conductivity at 30% RH. 0.01 S / cm or more. The higher the proton conductivity of the polymer electrolyte, the better. For example, the proton conductivity at 110 ° C. and 50% relative humidity may be 1.0 S / cm or less.
  • the distance between ion clusters at 25 ° C. and 50% RH is preferably 0.1 nm to 2.6 nm.
  • the upper limit of the distance between ion clusters is more preferably 2.5 nm.
  • the lower limit of the distance between ion clusters is more preferably 0.5 nm, still more preferably 1.0 nm, and particularly preferably 2.0 nm.
  • a fluorine-based polymer electrolyte having a distance between ion clusters in the above range has a special ion cluster structure. The fluorine-based polymer electrolyte will be described later.
  • An ion cluster is an ion channel formed by aggregating a plurality of proton exchange groups, and a perfluoro proton exchange membrane represented by Nafion is also considered to have such an ion cluster structure (for example, Gierke).
  • the fluorine-based polymer electrolyte will be described later, the terminal group represented by COOZ group or SO 3 Z group is treated to become COOH or SO 3 H.
  • the sample film is held in an atmosphere of 25 ° C. and 50% RH for 30 minutes or more before measurement, and then measurement is performed. Since the above-mentioned fluorine-based polymer electrolyte has a short distance between ion clusters, it is presumed that protons easily move between ion clusters, and has high conductivity even under low humidity.
  • the polymer electrolyte is preferably a fluorine polymer electrolyte, and the fluorine polymer electrolyte is a COOZ group or SO 3 Z group (Z is an alkali metal, an alkaline earth metal, hydrogen, or NR 1 R). 2 R 3 R 4 , wherein R 1 , R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 3 carbon atoms or hydrogen.
  • the COOZ group or SO 3 Z group-containing monomer unit is preferably 10 to 95 mol% of the total monomer units.
  • the COOZ group or SO 3 Z group-containing monomer unit is generally represented by the following general formula (I): CF 2 ⁇ CF (CF 2 ) k —O 1 — (CF 2 CFY 1 —O) n — (CFY 2 ) m —A 1 (I) Wherein Y 1 represents F (fluorine atom), Cl (chlorine atom) or a perfluoroalkyl group, k is an integer of 0 to 2, l is 0 or 1, and n is an integer of 0 to 8.
  • R 1, R 2, R 3 and R 4 are those derived from COOZ group or SO 3 Z group-containing monomer represented by each independently represent an alkyl group or hydrogen having 1 to 3 carbon atoms.) It is.
  • Y 1 is preferably F or —CF 3 , and more preferably F.
  • a 1 is preferably —SO 3 Z, more preferably —SO 3 H.
  • m is preferably an integer of 0 to 6.
  • k is more preferably 0, l is more preferably 1, and n is more preferably 0 or 1 from the viewpoint of the synthesis surface and operability.
  • N is more preferably 0.
  • Y 2 is an F, m is more preferably an integer of 2 ⁇ 6, Y 2 is an F, more preferably m is 2 or 4, Y 2 is an F, m Is particularly preferably 2.
  • the COOZ group or SO 3 Z group-containing monomer can be used alone or in combination of two or more.
  • the fluorine-based polymer electrolyte is a repeating unit ( ⁇ ) derived from the COOZ group or SO 3 Z group-containing monomer, and a repeating unit derived from an ethylenic fluoromonomer copolymerizable with the COOZ group or SO 3 Z group-containing monomer. It is preferable that it is a copolymer containing a unit ((beta)).
  • the ethylenic fluoromonomer that constitutes the repeating unit ( ⁇ ) does not have etheric oxygen [—O—] and has a vinyl group.
  • the vinyl group is a hydrogen atom by a fluorine atom. Part or all may be substituted.
  • etheric oxygen means an —O— structure constituting a monomer molecule.
  • ethylenic fluoromonomer examples include tetrafluoroethylene [TFE], hexafluoropropylene [HFP], chlorotrifluoroethylene [CTFE], vinyl fluoride, vinylidene fluoride [VDF], trifluoroethylene, hexafluoroisobutylene.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • VDF chlorotrifluoroethylene
  • VDF chlorotrifluoroethylene
  • VDF chlorotrifluoroethylene
  • VDF chlorotrifluoroethylene
  • VDF chlorotrifluoroethylene
  • VDF chlorotrifluoroethylene
  • VDF chlorotrifluoroethylene
  • VDF chlorotrifluoroethylene
  • VDF vinyl fluoride
  • VDF vinylidene fluoride
  • VDF vinyl fluoride
  • VDF vinylidene fluoride
  • TFE he
  • the fluoropolymer electrolyte has a repeating unit ( ⁇ ) derived from a COOZ group or SO 3 Z group-containing monomer of 10 to 95 mol%, and a repeating unit ( ⁇ ) derived from an ethylenic fluoromonomer of 5 to 90 mol%.
  • the copolymer is preferably a copolymer in which the sum of the repeating unit ( ⁇ ) and the repeating unit ( ⁇ ) is 95 to 100 mol%.
  • the repeating unit ( ⁇ ) derived from the COOZ group or SO 3 Z group-containing monomer has a more preferred lower limit of 15 mol%, a still more preferred lower limit of 20 mol%, a more preferred upper limit of 60 mol%, and a still more preferred upper limit of 50 mol. %.
  • the repeating unit ( ⁇ ) derived from the ethylenic fluoromonomer has a more preferable lower limit of 35 mol%, a further preferable lower limit of 45 mol%, a more preferable upper limit of 85 mol%, and a further preferable upper limit of 80 mol%.
  • the fluoropolymer electrolyte is a copolymer containing a repeating unit derived from a COOZ group- or SO 3 Z group-containing monomer represented by the general formula (I) and a repeating unit derived from TFE. It is preferable.
  • the fluorine-based polymer electrolyte preferably has a repeating unit ( ⁇ ) derived from a vinyl ether other than the COOZ group or SO 3 Z group-containing monomer as a repeating unit derived from a third component monomer other than those described above, preferably 0 to 5 mol. %, More preferably 4 mol% or less, still more preferably 3 mol% or less.
  • the polymer composition of the fluorine-based polymer electrolyte can be calculated from, for example, measured values of melt NMR at 300 ° C.
  • the vinyl ether other than the COOZ group or SO 3 Z group-containing monomer constituting the repeating unit ( ⁇ ) is not particularly limited as long as it does not contain a COOZ group or SO 3 Z group.
  • the hydrogen-containing vinyl ether etc. which are represented by these are mentioned.
  • 1 type (s) or 2 or more types can be used.
  • the polymer electrolyte can be produced using a conventionally known method. For example, it can be produced by the method described in International Publication No. 2009/116446.
  • the polymer electrolyte membrane of the present invention preferably has a thickness of 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, and still more preferably 5 ⁇ m to 50 ⁇ m. If the film thickness is thin, the direct current resistance during power generation can be reduced, while the gas permeation amount may be increased. Therefore, the appropriate range as described above is desirable. Moreover, the polymer electrolyte membrane of the present invention can be made thin while maintaining excellent durability by using the above-mentioned biaxially stretched porous membrane.
  • the polymer electrolyte membrane of the present invention can be obtained, for example, by impregnating the biaxially stretched porous membrane into a polymer electrolyte solution described later or by applying the polymer electrolyte solution to the porous membrane. Drying is preferably performed after the impregnation or coating.
  • Examples of the impregnation method include a dip coating method.
  • Examples of the coating method include slot die methods and coating techniques such as forward roll coating, reverse roll coating, gravure coating, knife coating, kiss coating, and spray coating disclosed in JP-A-11-501964. These methods can be appropriately selected in consideration of the thickness of the coating liquid layer to be produced, the material properties such as the coating liquid, and the coating conditions.
  • the solvent constituting the polymer electrolyte solution is removed. Drying may be performed at room temperature or under heating. The drying is preferably performed under heating, for example, heating at 50 to 350 ° C. is preferable.
  • a film of a polymer electrolyte solution is formed on an elongated casting substrate (sheet) that is moving or stationary.
  • An incomplete composite structure is produced by bringing an elongated porous membrane into contact with the solution, producing an incomplete composite structure, drying the incomplete composite structure in a hot air circulation tank, etc., and then drying the composite structure.
  • a method of forming a polymer electrolyte membrane by further forming a film of a polymer electrolyte solution on the substrate.
  • one or more layers containing the polymer electrolyte are laminated on at least one main surface of the polymer electrolyte membrane thus produced. May be. Moreover, you may bridge
  • the polymer electrolyte solution can be obtained by dissolving or suspending the polymer electrolyte in an appropriate solvent (a solvent having good affinity with the resin).
  • suitable solvents include, for example, protic organic solvents such as water, ethanol, methanol, n-propanol, isopropyl alcohol, butanol, glycerin, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone.
  • aprotic solvents such as These can be used alone or in combination of two or more. In particular, when one solvent is used, water alone is preferable. Moreover, when using 2 or more types together, the mixed solvent of water and a protic organic solvent is especially preferable.
  • the method of dissolving or suspending is not particularly limited.
  • the polymer electrolyte is added to, for example, a mixed solvent of water and a protic organic solvent under a condition that the total solid content concentration is 1 to 50% by mass.
  • the composition is placed in an autoclave having a glass inner cylinder as necessary, and the air inside is replaced with an inert gas such as nitrogen. Heat and stir for ⁇ 12 hours. Thereby, a solution or suspension is obtained.
  • the higher the total solid content concentration the better from the viewpoint of yield.
  • the concentration is increased, undissolved substances may be generated, so 1 to 50% by mass is preferable, more preferably 3 to 40% by mass, Preferably, it is 5 to 30% by mass.
  • the mixing ratio of water and the protic organic solvent can be appropriately selected according to the dissolution method, dissolution conditions, type of polymer electrolyte, total solid content concentration, dissolution temperature, stirring speed, and the like.
  • the ratio of the mass of the protic organic solvent to water is preferably from 0.1 to 10 protic organic solvents relative to water 1, and more preferably from 0.1 to 5 organic solvents relative to water 1.
  • Such solutions or suspensions include emulsions (in which liquid particles are dispersed as colloidal particles or coarser particles to form a milky state), suspensions (solid particles in liquids). Colloidal particles or particles that can be seen with a microscope), colloidal liquid (macromolecules dispersed), micellar liquid (many colloid dispersions formed by association of many small molecules by intermolecular force) 1 type) or 2 or more types.
  • Such a solution or suspension can also be concentrated.
  • the concentration method is not particularly limited. For example, there are a method of heating and evaporating the solvent, a method of concentrating under reduced pressure, and the like. If the resulting coating solution has a solid content ratio that is too high, the viscosity may increase and it may be difficult to handle, and if it is too low, the productivity may decrease.
  • the fraction is preferably 0.5 to 50% by mass.
  • the solution or suspension obtained as described above is more preferably filtered from the viewpoint of removing coarse particle components.
  • the filtration method is not particularly limited, and a general method conventionally performed can be applied.
  • a method of pressure filtration using a filter obtained by processing a filter medium having a normally used rated filtration accuracy is typically mentioned.
  • the filter it is preferable to use a filter medium having a 90% collection particle size of 10 to 100 times the average particle size of the particles.
  • the filter medium may be filter paper or a filter medium such as a sintered metal filter.
  • the 90% collection particle size is preferably 10 to 50 times the average particle size of the particles.
  • the 90% collection particle size is preferably 50 to 100 times the average particle size of the particles. Setting the 90% collection particle size to 10 times or more of the average particle size suppresses that the pressure required for liquid feeding becomes too high, or that the filter closes in a short period of time. Can be suppressed. On the other hand, setting it to 100 times or less of the average particle diameter is preferable from the viewpoint of satisfactorily removing particle agglomerates and resin undissolved materials that cause foreign matters in the film.
  • This invention is also a membrane electrode assembly provided with the said polymer electrolyte membrane.
  • a unit in which two types of electrode catalyst layers of an anode and a cathode are bonded to both surfaces of an electrolyte membrane is called a membrane electrode assembly (hereinafter sometimes abbreviated as “MEA”).
  • MEA membrane electrode assembly
  • a material in which a pair of gas diffusion layers are bonded to the outer side of the electrode catalyst layer so as to face each other is sometimes referred to as MEA.
  • the electrode catalyst layer is composed of fine particles of a catalytic metal and a conductive agent supporting the catalyst metal, and a water repellent is included as necessary.
  • the catalyst used for the electrode may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen. Platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium, tungsten , Manganese, vanadium, and alloys thereof, among which platinum is mainly used.
  • the supported amount of the electrode catalyst with respect to the electrode area is preferably 0.001 to 10 mg / cm 2 , more preferably 0.01 to 5 mg / cm 2 , and most preferably 0.1 to 10 mg / cm 2 in a state where the electrode catalyst layer is formed. 1 mg / cm 2 .
  • the present invention is also a polymer electrolyte fuel cell including the membrane electrode assembly.
  • the bipolar plate means a composite material of graphite and resin having a groove for flowing a gas such as fuel or oxidant on its surface, or a metal plate.
  • the bipolar plate has a function of a flow path for supplying fuel and oxidant to the vicinity of the electrode catalyst.
  • a fuel cell is manufactured by inserting and stacking a plurality of MEAs between such bipolar plates.
  • a PTFE biaxially stretched film has a fine fibril “fluff” at the time of stretching, and therefore has a poor surface slipperiness and feels stickiness. Since these “fluffs” are entangled with each other, the PTFE biaxially stretched films are likely to be in a state of being bonded to each other. When a long roll is produced, blocking occurs at the core portion where the winding pressure becomes strong, and during lamination processing, etc. It was difficult to pay out stably. On the other hand, in the biaxially stretched porous membrane of the present invention, generation of “fluff” can be suppressed. Since the surface is smooth and slippery, both the dynamic friction coefficient and the static friction coefficient are lower than those of conventional PTFE biaxially stretched films, it is easy to handle in the processing process.
  • each physical property was measured by the following method.
  • Polymer concentration 1 g of an aqueous polytetrafluoroethylene dispersion is dried in an air dryer at 150 ° C. for 30 minutes, and the ratio of the mass of the heating residue to the mass of the aqueous dispersion (1 g) is expressed as a percentage.
  • the represented numerical value is defined as a polymer solid content concentration (polymer concentration).
  • the average primary particle size polytetrafluoroethylene aqueous dispersion is diluted with water until the solid content concentration becomes 0.15% by mass, and the transmittance of projection light of 550 nm with respect to the unit length of the obtained diluted latex; Then, a calibration curve is created by measuring the number reference length average particle diameter determined by measuring the diameter in a fixed direction with a transmission electron micrograph. Using this calibration curve, the number average particle diameter is determined from the measured transmittance of projection light of 550 nm of each sample.
  • Standard specific gravity [SSG] A sample is prepared according to ASTM D-4895-89, and the specific gravity of the obtained sample is measured by a water displacement method.
  • Extrusion pressure According to the description in Japanese Patent Application Laid-Open No. 2002-201277, first, 21.7 g of a lubricant (trade name “Isopar H (registered trademark)”, manufactured by Exxon) was added to 100 g of PTFE fine powder left at room temperature for 2 hours or more. Mix for 3 minutes to obtain a PTFE fine powder mixture. Thereafter, the obtained PTFE fine powder mixture was allowed to stand in a thermostatic bath at 25 ° C. for 2 hours, and then the reduction ratio (ratio of the cross-sectional area of the die entrance to the cross-sectional area of the die) was 100 and the extrusion speed was 51 cm / min. Paste extrusion is performed at 25 ° C.
  • a lubricant trade name “Isopar H (registered trademark)”, manufactured by Exxon
  • the extrusion pressure is a value obtained by measuring the load when the extrusion load is in an equilibrium state in paste extrusion and dividing by the cross-sectional area of the cylinder used for paste extrusion.
  • an extrusion bead stretching test is first performed by the following method to prepare a sample for measuring the breaking strength.
  • the bead obtained by the paste extrusion is dried at 230 ° C. for 30 minutes to remove the lubricant.
  • the dried bead is cut to an appropriate length, each end is fixed so that the distance between the clamps is 5.1 cm, and heated to 300 ° C. in an air circulation furnace.
  • the clamp is then released at a stretch rate of 100% / sec until the total stretch is a separation distance corresponding to 2400% and a stretch test is performed.
  • “Total stretch” is an increase in length due to stretching relative to the bead length (100%) before the stretching test.
  • the stretched bead created under the above stretching conditions is cut to an appropriate length, sandwiched and fixed by a movable jaw having a gauge length of 5.0 cm, and the movable jaw is driven at a speed of 300 mm / min. Measured at room temperature using Shimadzu (manufactured by Shimadzu Corporation), three samples obtained from the stretch bead, one from each end of the stretch bead (excluding any neck-down in the clamp range), and One minimum tensile breaking load (force) from the center is defined as the breaking strength.
  • Weight per unit area (weight per unit area) The mass (g) measured with a precision balance of a sample cut into a 4.0 cm ⁇ 12.0 cm rectangle is divided by the area (0.0048 m 2 ).
  • (10) Film thickness The film thickness is measured by using a film thickness meter, measuring the total film thickness by stacking five biaxially stretched porous films, and dividing the value by 5 as one film thickness. To do.
  • Matrix tensile strength (longitudinal and lateral) From the product of the vertical matrix tensile strength and the horizontal matrix tensile strength determined by the following method, the “product of the vertical and horizontal matrix tensile strengths” is determined. (Vertical matrix tensile strength) First, five samples were cut out from the biaxially stretched porous membrane. Each sample has a dimension of 15.0 cm in the longitudinal direction (longitudinal direction, that is, the paste extrusion direction) and 2.0 cm in the lateral direction (width direction, that is, a direction perpendicular to the paste extrusion direction). About five samples, the tensile strength measurement of the vertical direction was performed and the maximum load which each of five samples showed was calculated
  • the vertical matrix tensile strength is determined from the vertical average maximum load, the sample width (2.0 cm), the film thickness (unit: cm), and the porosity using the following formula.
  • Longitudinal matrix tensile strength ⁇ longitudinal average maximum load / (2.0 ⁇ membrane thickness) ⁇ / (1 ⁇ porosity) (Horizontal matrix tensile strength) Five samples were cut from the biaxially stretched porous membrane.
  • Each sample has a dimension of 2.0 cm in the longitudinal direction (longitudinal direction, that is, the paste extrusion direction) and 15.0 cm in the lateral direction (width direction, that is, a direction perpendicular to the paste extrusion direction).
  • the tensile strength of the horizontal direction was measured and the maximum load which each of five samples showed was calculated
  • the transverse average maximum load is obtained in the same manner as in the longitudinal direction, and the transverse matrix tensile strength is obtained using the following formula.
  • Horizontal matrix tensile strength ⁇ horizontal average maximum load / (2.0 ⁇ membrane thickness) ⁇ / (1 ⁇ porosity) The tensile strength is measured using a tensile tester equipped with a 50N load cell, a chuck length of 5.0 cm, and a crosshead speed of 300 mm / min.
  • Friction coefficient measurement method Using a friction element (64 g / m 2 size of PPC paper size 2 cm ⁇ 2 cm) and a load cell, under conditions of a load of 200 g, a friction speed of 200 mm / min, a measurement temperature: 22 ° C., and a humidity: 60% Rh. The frictional resistance was measured, and the static friction coefficient and the dynamic friction coefficient were determined.
  • a stainless steel (SUS316) anchor type stirring blade and a temperature control jacket are provided, and a stainless steel (SUS316) autoclave with a capacity of 6 liters is charged with 3560 ml of deionized water, 104 g of paraffin wax, and CF 3 as a fluorine-containing surfactant.
  • 5.4 g of OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 was charged, and the system was replaced with nitrogen gas three times and TFE gas twice while heating to 70 ° C. to remove oxygen. Thereafter, the pressure in the tank was adjusted to 0.60 MPa with TFE gas, and the mixture was stirred at 250 rpm, and the temperature in the tank was maintained at 70 ° C.
  • PTFE-B Homo PTFE fine powder B was obtained in accordance with the method described in Comparative Example 3 of International Publication No. 2005/061567 except that the drying temperature was changed to 160 ° C. Various measurements and evaluations were performed on the obtained PTFE-B. The results are shown in Table 1.
  • PTFE-C Homo PTFE fine powder C
  • Production Example 4 A modified PTFE fine powder D (PTFE-D) was obtained in the same manner as in Production Example 1 except that the amount of PMVE charged was changed to 0.30 g. Various measurements and evaluations were performed on the obtained PTFE-D. The results are shown in Table 1.
  • Production Example 5 A modified PTFE fine powder E (PTFE-E) was obtained in the same manner as in Production Example 4 except that the amount of PMVE was changed to 0.75 g and the drying temperature of the wet powder was changed to 180 ° C. Various measurements and evaluations were performed on the obtained PTFE-E. The results are shown in Table 1.
  • Production Example 6 A modified PTFE fine powder F (PTFE-F) was obtained in the same manner as in Production Example 5 except that the amount of PMVE charged was changed to 2.00 g. Various measurements and evaluations were performed on the obtained PTFE-F. The results are shown in Table 1.
  • Example 1 (Extrusion and rolling) 28 parts by weight of hydrocarbon oil (“IP Solvent 2028” manufactured by Idemitsu Kosan Co., Ltd.) as an extrusion aid is added and mixed with 100 parts by weight of the modified PTFE fine powder A (PTFE-A) obtained in Preparation Example 1. And left for 12 hours. Next, a mixture of the fine powder A (PTFE-A) and the extrusion aid was put into a 100 mm pre-forming machine and compressed at a pressure of 3 MPa to obtain a preform. Subsequently, the preform was put in a die having an inner diameter of 16 mm ⁇ in an extruder having an inner diameter of 100 mm and paste was extruded to obtain a PTFE molded body.
  • hydrocarbon oil IP Solvent 2028” manufactured by Idemitsu Kosan Co., Ltd.
  • the obtained PTFE molded body was molded (rolled) into a film shape by a calendar roll to obtain an unsintered PTFE film.
  • the hydrocarbon oil was removed by evaporation through a hot-air drying furnace to obtain a strip-shaped unsintered PTFE film having an average thickness of about 100 ⁇ m.
  • the obtained unsintered PTFE film was stretched 5 times in the machine direction at a temperature of 250 ° C. (uniaxial stretching) using a stretching apparatus including a plurality of rolls shown in FIG.
  • the appearance of the uniaxially stretched film was evaluated.
  • the appearance evaluation criteria of the uniaxially stretched film are as follows. ⁇ : Uniform ⁇ : Defects such as ruptures or cracks partially existed x: Defects such as ruptures or cracks existed entirely. Further, the strength (extrusion direction) of the uniaxially stretched film was measured. The strength of the uniaxially stretched film was measured by the following method.
  • Uniform ⁇ : Uniform (partly uneven) ⁇ : There are many unevennesses X: Defects such as partial breaks or cracks exist XX: Physical property evaluation of the porous film (biaxially stretched film) obtained as a whole fracture (weight per unit area, film density, film thickness, matrix tension) Strength, static friction coefficient, dynamic friction coefficient, average pore diameter) and are shown in Table 2.
  • a spunbonded nonwoven fabric (average fiber diameter 24 ⁇ m, basis weight 30 g / m 2 , thickness 0.15 mm) was used as a breathable support material, and both sides of the obtained porous film were heated with the nonwoven fabric using a laminating apparatus.
  • a filter medium having a three-layer structure was obtained by laminating by fusion.
  • the obtained filter media were measured for pressure loss, coefficient of variation of pressure loss, and collection efficiency. The evaluation results are shown in Table 2.
  • Examples 2 to 5 and Comparative Examples 1 to 4 A porous membrane (biaxially stretched membrane) was obtained in the same manner as in Example 1 except that the type of PTFE raw material and the amount of extrusion aid (hydrocarbon oil) were changed as shown in Table 2. Various physical properties were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Examples 1 to 5 biaxially stretched films having a uniform and high strength were obtained.
  • the biaxially stretched films obtained in Comparative Examples 1 and 2 are homogeneous but inferior in strength.
  • Comparative Example 3 since the round bar-shaped PTFE molded body obtained by paste extrusion was hard, the rollability was poor, cracks were generated in the rolled product, and a homogeneous unfired PTFE film could not be obtained.
  • Comparative Example 4 the homogeneity of the obtained biaxially stretched film was inferior even when the amount of the extrusion aid was increased to lower the extrusion pressure.
  • the biaxially stretched porous membrane of the present invention can be suitably used as a filter medium for a filter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Insulating Bodies (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

本発明は、高強度、小孔径かつ均質性に優れる二軸延伸多孔質膜を提供することを目的とする。 本発明は、テトラフルオロエチレンとパーフルオロ(メチルビニルエーテル)とを共重合することにより得られたポリテトラフルオロエチレンからなることを特徴とする二軸延伸多孔質膜である。

Description

二軸延伸多孔質膜
本発明は、二軸延伸多孔質膜に関する。
ポリテトラフルオロエチレンファインパウダーをペースト押出成形して得られる成形体を延伸すると、空孔率の高い多孔質体が得られることが知られている。このポリテトラフルオロエチレン多孔質体はノード(結節)とフィブリル(繊維)から形成されており、水蒸気などの気体を通すが、ポリテトラフルオロエチレンの強い撥水性のため水滴は通さない。この多孔質の延伸体は、未焼成のままシール用材料として使用したり、焼成し、強靭な連続延伸シートやチューブにして、衣類や分離膜に応用されている。
特に二軸延伸された多孔質膜(二軸延伸膜)は、従来から気体・液体(薬液を含む)の精密濾過フィルター、電線被膜用材料、呼吸弁など広範な分野で使用されている。
しかしながら、ポリテトラフルオロエチレン二軸延伸膜の厚みは薄く(一般的に100μm以下)、延伸工程の途上や延伸後の巻き取り工程、ラミネート等の後工程で膜が破断しやすい。さらには、衣料や分離膜として使用される際も破断しやすく、二軸延伸膜の耐久性、信頼性に課題があった。
高い強度を有するポリテトラフルオロエチレン二軸延伸膜の製造方法として、下記の方法が提案されている。
例えば、特許文献1、特許文献2には、押出助剤を含んだ状態でペースト押出物を横方向に延伸した後、助剤を乾燥し、押出方向(縦方向)にすくなくとも1段階の延伸を行った後、さらに横方向に延伸する多孔膜の製造方法が開示されている。
特許文献3には、PTFEの半焼成体を縦方向、横方向の順に二軸延伸した後、これをPTFE焼成体の融点以上の温度でヒートセットする多孔膜の製造方法が開示されている。
また、高強度の多孔体を提供するPTFEファインパウダーについても提案されている。
例えば、特許文献4~5には、特定の破断強度を有する高分子量のテトラフルオロエチレン単独重合体が記載されている。
特許文献6~8には、特定の乳化剤の存在下で重合して得られたポリテトラフルオロエチレン水性分散液が記載されている。
また、特許文献9~11には、パーフルオロアルキルエチレン(PFAE)で変性されたテトラフルオロエチレン系共重合体が記載されている。
また、特許文献12には、テトラフルオロエチレンとパーフルオロ(メチルビニルエーテル)を重合することにより得られた延伸体成形用非溶融加工性ポリテトラフルオロエチレンファインパウダーが記載されている。
特表平11-501961号公報 国際公開第2007/011492号 特開平5-202217号公報 特開2000-143727号公報 特開2002-201217号公報 国際公開第2007-046345号 国際公開第2009/001894号 国際公開第2010/113950号 特開平11-240917号公報 国際公開第2003/033555号 国際公開第2007/005361号 国際公開第2005/061567号
特許文献4~8には、特定の破断強度を有する高分子量のテトラフルオロエチレン単独重合体が記載されているが、このような単独重合体を延伸して得られる延伸体の強度は十分とはいえなかった。
特許文献9~11で開示されているパーフルオロアルキルエチレン(PFAE)で変性されたPTFEファインパウダーや、特許文献12で開示されているパーフルオロ(メチルビニルエーテル)で変性されたPTFEファインパウダーは、得られる成形体の均質性が悪くなる課題があった。
本発明の目的は、高強度、小孔径かつ均質性に優れる二軸延伸多孔質膜を提供することにある。
本発明は、テトラフルオロエチレンとパーフルオロ(メチルビニルエーテル)とを共重合することにより得られたポリテトラフルオロエチレンからなることを特徴とする二軸延伸多孔質膜である。
ポリテトラフルオロエチレンは、全単量体単位に対して0.011モル%以上のパーフルオロ(メチルビニルエーテル)に由来する重合単位を含むことが好ましい。
ポリテトラフルオロエチレンは、全単量体単位に対して0.025モル%以上のパーフルオロ(メチルビニルエーテル)に由来する重合単位を含むことが好ましい。
ポリテトラフルオロエチレンは、標準比重が2.160以下であることが好ましい。
ポリテトラフルオロエチレンは、押出圧力が20.0MPa以下、かつ破断強度が28N以上であることが好ましい。
本発明はまた、上記二軸延伸多孔質膜を含むフィルター用濾材でもある。
本発明は更に、上記フィルター用濾材と、上記フィルター用濾材を保持する枠体と、を備えるフィルターユニットでもある。
本発明は更に、上記二軸延伸多孔質膜を含む高分子電解質膜でもある。
本発明の二軸延伸多孔質膜は、高強度、小孔径かつ均質性に優れる。
実施例で用いたロール延伸装置の概要を示す断面模式図である。 実施例で用いたテンター延伸装置を示す断面模式図である。
以下に本発明を詳細に説明する。
本発明の二軸延伸多孔質膜は、テトラフルオロエチレン(TFE)とパーフルオロ(メチルビニルエーテル)(PMVE)とを共重合することにより得られたポリテトラフルオロエチレン(PTFE)からなる。
上記PTFEは、テトラフルオロエチレンとパーフルオロ(メチルビニルエーテル)とを共重合することにより得られたものである。
上記PTFEは、通常、延伸性、フィブリル化特性および非溶融二次加工性を有する。
上記非溶融二次加工性とは、ASTM D-1238及びD-2116に準拠して、結晶化融点より高い温度でメルトフローレートを測定できない性質、すなわち溶融温度領域でも容易に流動しない性質を意味する。
上記PTFEは、より高強度で均質性に優れる二軸延伸多孔質膜が得られることから、全単量体単位に対して0.011モル%以上のPMVEに由来する重合単位を含むことが好ましい。PMVEに由来する重合単位の含有量は、0.015モル%以上であることがより好ましく、0.025モル%以上であることが更に好ましい。
二軸延伸膜の均質性及び小孔径の観点からは、PMVEに由来する重合単位の含有量は、0.250モル%以下が好ましく、0.150モル%以下がより好ましく、0.100モル%以下が更に好ましい。0.050モル%以下が最も好ましい。
上記PTFEは、TFE及びPMVE以外の単量体に由来する重合単位を含むものであってもよく、TFE及びPMVEに由来する重合体のみからなるものであってもよいが、TFE及びPMVEに由来する重合体のみからなるものが好ましい。
TFE及びPMVE以外の単量体としては、例えば、ヘキサフルオロプロピレン〔HFP〕、クロロトリフルオロエチレン〔CTFE〕等の含フッ素オレフィン;炭素原子1~5個、特に炭素原子1~3個を有するアルキル基を持つフルオロ(アルキルビニルエーテル);フルオロジオキソール等の環式のフッ素化された単量体;パーフルオロアルキルエチレン;ω-ヒドロパーフルオロオレフィン等が挙げられる。
TFE及びPMVE以外の単量体に由来する重合体の含有量は、0.0001~0.300モル%であることが好ましく、0.010~0.100モル%であることがより好ましい。
上記PTFEは、一次融点以上の温度で加熱された履歴のないPTFEであることが好ましい。
上記PTFEは、未焼成のPTFEであってもよいし、半焼成されたPTFEであってもよい。簡便なプロセス、または厚みや孔径の制御のし易さという観点からは、未焼成のPTFEが好ましい。二軸延伸膜の強度を高める、または孔径を小さくする観点からは、半焼成されたPTFEが好ましい。
未焼成のPTFEとしては、例えば、重合上がりのPTFEが挙げられる。
上記未焼成のPTFEとは、二次融点以上の温度に加熱した履歴のないPTFEであり、半焼成のPTFEとは、一次融点以上の温度で加熱された履歴のないPTFEであって、一次融点以下、かつ二次融点以上の温度で加熱されたPTFEである。
上記一次融点は、未焼成のPTFEを示差走査熱量計で測定した場合に、結晶融解曲線上に現れる吸熱カーブの最大ピーク温度を意味する。
上記二次融点は、一次融点以上の温度(例えば、360℃)に加熱したPTFEを示差走査熱量計で測定した場合に、結晶融解曲線上に現れる吸熱カーブの最大ピーク温度を意味する。
本明細書において、上記吸熱カーブは、示差走査熱量計を用いて、昇温速度10℃/分の条件で昇温させて得られたものである。
上記PTFEは、より高強度でかつ均質性に優れる多孔質体が得られることから、平均一次粒子径が150nm以上であることが好ましい。より好ましくは、180nm以上であり、更に好ましくは210nm以上であり、特に好ましくは220nm以上である。
PTFEの平均一次粒子径が大きいほど、その粉末を用いてペースト押出成形をする際に、ペースト押出圧力の上昇を抑えられ、成形性にも優れる。上限は特に限定されないが500nmであってよい。重合工程における生産性の観点からは、350nmであることが好ましい。
上記平均一次粒子径は、重合により得られたPTFEの水性分散液を用い、ポリマー濃度を0.22質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定された平均一次粒子径との検量線を作成し、測定対象である水性分散液について、上記透過率を測定し、上記検量線をもとに決定できる。
上記PTFEは、コアシェル構造を有していてもよい。コアシェル構造を有するポリテトラフルオロエチレンとしては、例えば、粒子中に高分子量のポリテトラフルオロエチレンのコアと、より低分子量のポリテトラフルオロエチレンまたは変性のポリテトラフルオロエチレンのシェルとを含む変性ポリテトラフルオロエチレンが挙げられる。このような変性ポリテトラフルオロエチレンとしては、例えば、特表2005-527652号公報に記載されるポリテトラフルオロエチレンが挙げられる。
上記PTFEは、より高強度で均質性に優れる二軸延伸多孔質膜が得られることから、標準比重〔SSG〕が2.160以下であることが好ましい。SSGが2.160以下のポリテトラフルオロエチレンは、押出成形物の延伸倍率が3倍を超え、延伸成形に適する。より優れた延伸性が得られることから、SSGは2.155以下であることがより好ましく、2.150以下であることが更に好ましく、2.145以下であることが特に好ましい。
ペースト押出成形をする際に、ペースト押出圧力の上昇を抑えられ、成形性にも優れる観点からは、上記標準比重は、2.130以上であることが好ましい。
上記SSGは、溶融成形加工性を有しないポリテトラフルオロエチレンの分子量の指標としてASTM D4895-89に規定されるSSGである。
上記PTFEは、より高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、押出圧力が22.0MPa以下であることが好ましく、20.0MPa以下であることがより好ましく、19.0MPa以下であることが更に好ましく、18.0MPa以下であることが特に好ましい。
押出圧力が高すぎると、押出成形物が硬くなり、後述する圧延時につぶれにくくなって、二軸延伸多孔質膜の均質性が低下する傾向がある。また、押出圧力が低いPTFEを用いると、二軸延伸多孔質膜の強度が低下する傾向にあるが、本発明の二軸延伸多孔質膜は、驚くべきことに、上記範囲の押出圧力であっても優れた強度を有する。
押出圧力の下限は特に限定されないが、例えば、12.0MPaである。
上記押出圧力は、特開2002-201217号公報の記載に従い、下記方法で求めた値である。
まず、室温で2時間以上放置されたPTFEファインパウダー100gに潤滑剤(商品名「アイソパーH(登録商標)」、エクソン社製)21.7gを添加し、3分間混合してPTFEファインパウダー混合物を得る。
その後、得られたPTFEファインパウダー混合物を、25℃恒温槽に2時間放置した後に、リダクションレシオ(ダイスの入り口の断面積と出口の断面積の比)100、押出速度51cm/分の条件で、25℃にて、オリフィス(直径2.5mm、ランド長1.1cmm、導入角30°)を通してペースト押出しを行い、ビードを得る。
上記押出圧力は、ペースト押出しにおいて押出負荷が平衡状態になった時の負荷を測定し、ペースト押出に用いたシリンダーの断面積で除した値である。
上記PTFEは、より高強度で均質性に優れる二軸延伸多孔質膜が得られることから、破断強度が20N以上であることが好ましい。より好ましくは、28N以上であり、更に好ましくは、30N以上であり、特に好ましくは、32N以上であり、殊更に好ましくは36N以上である。
特に、高い延伸倍率で延伸される場合には、上記範囲の破断強度であることが好ましい。
破断強度の上限は特に限定されないが、例えば、70Nである。
上記破断強度は、特開2002-201217号公報の記載に従い、下記方法で求めた値である。
まず、下記方法で押出ビードの延伸試験を行い、破断強度測定用のサンプルを作製する。
上記のペースト押出により得られたビードを230℃で30分間乾燥し、潤滑剤を除去する。乾燥後のビードを適当な長さに切断し、クランプ間が5.1cmとなるよう、各末端を固定し、空気循環炉中で300℃に加熱する。次いで、クランプを総ストレッチが2400%に相当する分離距離となるまで、延伸速度100%/秒で離し、延伸試験を実施する。『総ストレッチ』とは、延伸試験前のビード長さ(100%)に対する延伸による長さの増加である。
上記延伸条件にて作成された延伸ビードを適当な長さに切断し、5.0cmのゲージ長である可動ジョーにおいて挟んで固定し、可動ジョーを300mm/分のスピードで駆動させ、引張り試験機を用いて室温にて破断強度を測定し、延伸ビードから得られる3つのサンプル、延伸ビードの各末端から1つ(クランプの範囲においてネックダウンがあればそれを除く)、およびその中心から1つ、の最小引張り破断負荷(力)を破断強度とする。
上記PTFEは、より高強度で均質性に優れる二軸延伸多孔質膜が得られることから、押出圧力が20.0MPa以下、かつ破断強度が28N以上であることが特に好ましく、押出圧力が19.0MPa以下、かつ破断強度が30N以上であることが最も好ましい。
本発明の二軸延伸多孔質膜は、上記PTFEからなるPTFEファインパウダーから形成することができる。
上記PTFEファインパウダーの平均粒子径は、通常、100~1000μmである。より均質性に優れる二軸延伸多孔質膜が得られることから、平均粒子径は300~800μmであることが好ましく、400~700μmであることがより好ましい。
上記PTFEファインパウダーの平均粒子径は、JIS K6891に準拠して測定した値である。
上記PTFEファインパウダーの見掛密度は、通常、0.35~0.60g/mlである。より均質性に優れる二軸延伸多孔質膜が得られることから、見掛密度は0.40~0.55g/mlが好ましい。
上記見掛密度は、JIS K6892に準拠して測定した値である。
上記PTFEは、界面活性剤、水性媒体、テトラフルオロエチレン、及び、PMVE、並びに、必要に応じてTFE及びPMVE以外の単量体を重合槽に投入する工程、及び、重合槽に重合開始剤を投入してTFE及びPMVE、並びに、必要に応じてTFE及びPMVE以外の単量体との乳化共重合を開始する工程、を含む製造方法により製造することができる。
TFE、PMVE、必要に応じて使用されるTFE及びPMVE以外の単量体の供給は、重合開始前に一括して添加してもよいし、連続的又は間欠的に添加してもよい。高倍率での延伸のし易さからは、重合前に一括して添加する方が好ましい。
上記PTFEの製造方法は、乳化共重合により得られたPTFE水性分散液中のPTFEを凝集させる工程を含むものであってもよい。PTFEを凝集させることによって、PTFEファインパウダーが得られる。
上記PTFEの製造方法は、通常、凝集させて得られたPTFEを回収する工程、及び、回収したPTFEを乾燥する乾燥工程を含む。
上記乳化共重合をより具体的な例を挙げて説明する。例えば、攪拌機を備えた耐圧の反応容器に水性媒体及び上記界面活性剤を仕込み、脱酸素後、TFE、PMVE、必要に応じて使用されるTFE及びPMVE以外の単量体を仕込み、所定の温度にし、重合開始剤を添加して乳化重合を開始し、反応の進行とともに圧力が低下するので、初期圧力を維持するように、追加のTFE、必要に応じてPMVE、必要に応じて使用されるTFE及びPMVE以外の単量体を連続的又は間欠的に追加供給する。所定量のTFE及びPMVE、必要に応じて使用されるTFE及びPMVE以外の単量体を供給した時点で供給を停止し、反応容器内のTFEをパージし、温度を室温に戻して反応を終了する。
上記界面活性剤としては、より高強度で均質性に優れる二軸延伸多孔質膜が得られることから、LogPOWが3.4以下の含フッ素界面活性剤がより好ましい。
LogPOWが大きい化合物は環境への負荷が懸念されており、これを考慮すると、LogPOWが3.4以下の化合物を使用することが好ましい。これまで乳化重合による含フッ素ポリマーの製造には、界面活性剤として主にパーフルオロオクタン酸アンモニウム〔PFOA〕が使用されており、PFOAはLogPOWが3.5であるので、LogPOWが3.4以下の含フッ素界面活性剤に切り替えることが好ましい。
一方で、LogPOWが3.4以下の含フッ素界面活性剤は乳化能に劣る問題がある。高い破断強度のポリテトラフルオロエチレンを得るためには、重合時の水性分散液の安定性が重要であると信じられており、実際に乳化能に劣る含フッ素界面活性剤を使用すると充分な破断強度が得られない。
そこで、国際公開第2009/001894号には、LogPOWが小さい含フッ素界面活性剤を水性分散液の安定性を向上させるために多量に使用する方法が記載されている。しかし、この方法により得られたポリテトラフルオロエチレンでも破断強度は充分ではない。
LogPOWが3.4以下である含フッ素界面活性剤存在下にテトラフルオロエチレンとパーフルオロ(メチルビニルエーテル)(PMVE)を乳化共重合したPTFEを使用することによって、高強度でかつ均質性に優れる二軸延伸多孔質膜を形成することができる。
すなわち、上記PTFEは、LogPOWが3.4以下である含フッ素界面活性剤存在下に、テトラフルオロエチレンと少なくともパーフルオロ(メチルビニルエーテル)とを乳化共重合して得られるものであることが好ましい。
上記界面活性剤は、LogPOWが2.5以上の含フッ素界面活性剤であってもよいし、3.0以上の含フッ素界面活性剤であってもよい。
上記LogPOWは、1-オクタノールと水との分配係数であり、LogP[式中、Pは、含フッ素界面活性剤を含有するオクタノール/水(1:1)混合液が相分離した際のオクタノール中の含フッ素界面活性剤濃度/水中の含フッ素界面活性剤濃度比を表す]で表されるものである。
LogPOWで表されるオクタノール/水分配係数は、カラム:TOSOH ODS-120Tカラム(φ4.6mm×250mm)、溶離液;アセトニトリル/0.6質量%HClO水=1/1(vol/vol%)、流速;1.0ml/分、サンプル量;300μL、カラム温度;40℃、検出光;UV210nmの条件で、既知のオクタノール/水分配係数を有する標準物質(ヘプタン酸、オクタン酸、ノナン酸及びデカン酸)についてHPLCを行い、各溶出時間と既知のオクタノール/水分配係数との検量線を作成し、この検量線に基づき、試料液におけるHPLCの溶出時間から算出する。
LogPOWが3.4以下の含フッ素界面活性剤としては、含フッ素アニオン性界面活性剤が好ましく、米国特許出願公開第2007/0015864号明細書、米国特許出願公開第2007/0015865号明細書、米国特許出願公開第2007/0015866号明細書、米国特許出願公開第2007/0276103号明細書、米国特許出願公開第2007/0117914号明細書、米国特許出願公開第2007/142541号明細書、米国特許出願公開第2008/0015319号明細書、米国特許第3250808号明細書、米国特許第3271341号明細書、特開2003-119204号公報、国際公開第2005/042593号、国際公開第2008/060461号、国際公開第2007/046377号、国際公開第2007/119526号、国際公開第2007/046482号、国際公開第2007/046345号に記載されたもの等を使用できる。
LogPOWが3.4以下の含フッ素界面活性剤としては、一般式:
CF-(CF-COOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)、一般式:
CFCFCFOCF(CF)COOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)、一般式:
CFOCF(CF)CFOCF(CF)COOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)、及び、一般式:
CFCFOCFCFOCFCOOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)
からなる群より選択される少なくとも1種の含フッ素界面活性剤であることが好ましい。
LogPOWが3.4以下の含フッ素界面活性剤としては、一般式:
CFOCFCFOCFCFCOOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)、一般式:
CFOCFCFCFOCHFCFCOOX
(式中、Xは水素原子、NH又はアルカリ金属原子を表す。)
等も挙げることができる。
上記含フッ素界面活性剤が塩である場合、該塩を形成する対イオンとしては、アルカリ金属イオン又はNH4+等が挙げられ、アルカリ金属イオンとしては、例えば、Na、K等が挙げられる。
LogPOWが3.4以下の含フッ素界面活性剤としては、CFOCF(CF)CFOCF(CF)COOH、CFOCF(CF)CFOCF(CF)COONH、CFCFOCFCFOCFCOOH、CFCFOCFCFOCFCOONH、CFOCFCFCFOCHFCFCOOH、CFOCFCFCFOCHFCFCOONH4、CF-(CF-COOH、CF-(CF-COONH、CFCFCFOCF(CF)COONH、CFCFCFOCF(CF)COOH等が挙げられる。
上記界面活性剤は、合計添加量で、水性媒体に対して0.0001~10質量%の量を添加することが好ましい。より好ましい下限は0.1質量%であり、より好ましい上限は2質量%、更に好ましい上限は1質量%である。
少なすぎると、乳化粒子の安定性が良くなく、収率を上げることができないおそれがあり、反応中及び反応後の凝集物や反応容器への付着物が多くなる等の系が不安定になる現象が起こるおそれがある。多すぎると、添加量に見合った安定性の効果が得られず、却って系が不安定になる現象が起こるおそれがあり、重合速度の低下や反応停止が起こるおそれがある。
上記界面活性剤は、重合反応を開始する前に一括で槽内に添加してもよいし、重合反応を開始した後、連続的又は断続的に添加してもよい。
上記界面活性剤の添加量は、乳化粒子の安定性や目的とするPTFEの一次粒子径等によって適宜決定される。
上記乳化共重合における重合開始剤としては、TFEの重合において従来から使用されているものが使用できる。
上記乳化共重合における重合開始剤としては、ラジカル重合開始剤、レドックス重合開始剤等が使用できる。
上記重合開始剤の量は、少ないほど、SSGが低いPTFEを得ることができる点で好ましいが、あまりに少ないと重合速度が小さくなり過ぎる傾向があり、あまりに多いと、SSGが高いPTFEが生成する傾向がある。
上記ラジカル重合開始剤としては、例えば、水溶性過酸化物が挙げられ、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、ジコハク酸パーオキサイド等の水溶性有機過酸化物等が好ましく、過硫酸アンモニウム又はジコハク酸パーオキサイドがより好ましい。これらは、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
上記ラジカル重合開始剤の使用量は、重合温度と目標とするSSGに応じて適宜選択することができるが、一般的に使用される水性媒体の質量の1~100ppmに相当する量が好ましく、1~20ppmに相当する量がより好ましく、1~6ppmに相当する量が更に好ましい。
上記重合開始剤としてラジカル重合開始剤を使用する場合、重合中に亜硫酸アンモニウム等のパーオキサイドの分解剤を添加することによって、系内のラジカル濃度を調整することもできる。
上記重合開始剤としてラジカル重合開始剤を使用する場合、重合中にラジカル捕捉剤を添加することにより、SSGが低いPTFEを容易に得ることができる。
上記ラジカル捕捉剤としては、例えば、非置換フェノール、多価フェノール、芳香族ヒドロキシ化合物、芳香族アミン類、キノン化合物等が挙げられるが、なかでもハイドロキノンが好ましい。
上記ラジカル捕捉剤は、SSGが低いPTFEを得る点で、重合反応に消費される全TFEの50質量%が重合される前に添加することが好ましい。より好ましくは、TFEの40質量%、更に好ましくは30質量%が重合される前に添加することがより好ましい。
上記ラジカル捕捉剤は、使用される水性媒体の質量の0.1~20ppmに相当する量が好ましく、3~10ppmに相当する量がより好ましい。
上記レドックス重合開始剤としては、過マンガン酸カリウム等の過マンガン酸塩、過硫酸塩、臭素酸塩、塩素酸塩、過酸化水素等の酸化剤と、亜硫酸塩、重亜硫酸塩、シュウ酸又はコハク酸等の有機酸、チオ硫酸塩、塩化第一鉄、ジイミン等の還元剤との組合せが挙げられる。上記酸化剤、還元剤いずれも1種単独で又は2種以上を組み合わせて用いてもよい。
中でも、過マンガン酸カリウムとシュウ酸との組み合わせが好ましい。
上記レドックス重合開始剤の使用量は、使用するレドックス重合開始剤の種類、重合温度、目標とするSSGに応じて適宜選択することができるが、使用される水性媒体の質量の1~100ppmに相当する量が好ましい。
上記レドックス重合開始剤は、上記酸化剤又は還元剤を同時に添加することで重合反応を開始しても良いし、予め上記酸化剤又は還元剤の何れか一方を槽内に添加しておき、残る一方を添加することで重合反応を開始しても良い。
上記レドックス重合開始剤は、予め上記酸化剤又は還元剤の何れか一方を槽内に添加しておき、残る一方を添加して重合を開始する場合、残る一方を連続的又は断続的に添加することが好ましい。
上記レドックス重合開始剤は、残る一方を連続的又は断続的に添加する場合、SSGが低いPTFEを得る点で、徐々に添加する速度を減速させることが好ましく、さらに重合途中で中止することが好ましく、該添加中止時期としては、重合反応に消費される全TFEの80質量%が重合される前が好ましい。TFEの65質量%が重合される前がより好ましく、TFEの50質量%が重合される前が更に好ましく、30質量%が重合される前が特に好ましい。
レドックス重合開始剤を用いる場合は水性媒体中のpHをレドックス反応性を損なわない範囲に調整するため、pH緩衝剤を用いることが望ましい。pH緩衝剤としては、リン酸水素二ナトリウム、リン酸二水素ナトリウム、炭酸ナトリウムなどの無機塩類を用いることができ、リン酸水素二ナトリウム2水和物、リン酸水素二ナトリウム12水和物が好ましい。 
また、レドックス重合開始剤を用いる場合の、レドックス反応する金属イオンとしては複数のイオン価をもつ各種の金属を用いることができる。具体例としては、鉄、銅、マンガン、クロムなどの遷移金属が好ましく、特に鉄が好ましい。
上記水性媒体は、重合を行わせる媒体であって、水を含む液体を意味する。上記水性媒体は、水のみであるか、又は、水を含むものであれば特に限定されず、水と、例えば、アルコール、エーテル、ケトン等のフッ素非含有有機溶媒、及び/又は、沸点が40℃以下であるフッ素含有有機溶媒とを含むものであってもよい。
上記重合は、0.05~5.0MPaの圧力下で行うことができる。好ましい圧力の範囲は0.5~3.0MPaである。
上記重合は、10~100℃の温度で行うことができる。好ましい温度の範囲は50~90℃である。
上記重合において、更に、目的に応じて、公知の安定剤、連鎖移動剤等を添加してもよい。
上記安定剤としては、実質的に反応に不活性であって、上記反応条件で液状となる炭素数が12以上の飽和炭化水素を挙げられ、なかでも、パラフィンワックスが好ましい。パラフィンワックスとしては、室温で液体でも、半固体でも、固体であってもよいが、炭素数12以上の飽和炭化水素が好ましい。パラフィンワックスの融点は、通常40~65℃が好ましく、50~65℃がより好ましい。
また、飽和炭化水素以外の分散安定剤として、フッ素系オイル、フッ素系溶剤、シリコーンオイル等が挙げられる。これらは、単独で又は2種以上を組み合わせて用いてもよい。上記安定剤は、水性媒体100質量部に対して1~10質量部で使用することができる。
上記連鎖移動剤としては、公知のものが使用でき、例えば、メタン、エタン、プロパン、ブタン等の飽和炭化水素、クロロメタン、ジクロロメタン、ジフルオロエタン等のハロゲン化炭化水素類、メタノール、エタノール等のアルコール類、水素等が挙げられる。上記連鎖移動剤の使用量は、通常、供給されるTFE全量に対して、1~1000ppmであり、好ましくは1~500ppmである。
また、水性媒体中のpHをレドックス反応性を損なわない範囲に調整するため、pH緩衝剤を用いることが望ましい。pH緩衝剤としては、リン酸水素二ナトリウム、リン酸二水素ナトリウム、炭酸ナトリウムなどの無機塩類を用いることができ、リン酸水素二ナトリウム2水和物、リン酸水素二ナトリウム12水和物が好ましい。 
また、レドックス重合開始剤を用いる場合の、レドックス反応する金属イオンとしては複数のイオン価をもつ各種の金属を用いることができる。具体例としては、鉄、銅、マンガン、クロムなどの遷移金属が好ましく、特に鉄が好ましい。
上記重合は、重合中に生じる凝固物の量を減少させるために水性媒体に対して5~500ppmのジカルボン酸の存在下に行ってもよく、その場合、10~200ppmのジカルボン酸の存在下に行うことが好ましい。上記ジカルボン酸が水性媒体に対して少な過ぎると、充分な効果が得られないおそれがあり、多過ぎると、連鎖移動反応が起こり、得られるポリマーが低分子量のものとなるおそれがある。上記ジカルボン酸は、150ppm以下であることがより好ましい。上記ジカルボン酸は、重合反応の開始前に添加してもよいし、重合途中に添加してもよい。
上記ジカルボン酸としては、例えば、一般式:HOOCRCOOH(式中、Rは炭素数1~5のアルキレン基を表す。)で表されるものが好ましく、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸がより好ましく、コハク酸が更に好ましい。
上記PTFEの重合が終了した時点で、固形分濃度が10~50質量%の水性分散液を得ることができる。上記水性分散液は、上記含フッ素界面活性剤、及び、ポリテトラフルオロエチレンを含有する。ポリテトラフルオロエチレンの平均一次粒子径は150~500nmである。
上記製造方法は、得られたPTFE水性分散液中のPTFEを凝集させる工程、凝集させて得られたPTFEを回収する工程、及び、回収したPTFEを乾燥する乾燥工程を含むことが好ましい。
上記水性分散液に含まれるポリテトラフルオロエチレンを凝集させることによりPTFEファインパウダーが得られる。
上記ポリテトラフルオロエチレンの水性分散液は、凝集、洗浄、乾燥を経てファインパウダーとして回収し、二軸延伸多孔質膜の製造に使用することができる。上記ポリテトラフルオロエチレンの水性分散液に対して凝集を行う場合、通常、ポリマーラテックス等の重合により得た水性分散液を、水を用いて10~20質量%のポリマー濃度になるように希釈し、5~50℃に調整し、場合によっては、pHを中性又はアルカリ性に調整した後、撹拌機付きの容器中で反応中の撹拌よりも激しく撹拌して行う。凝集させる温度は使用する撹拌翼の形状やサイズ、ポリマー濃度、目的とするファインパウダーの平均粒子径に応じて、適宜選択することができる。上記凝集は、メタノール、アセトン等の水溶性有機化合物、硝酸カリウム、炭酸アンモニウム等の無機塩や、塩酸、硫酸、硝酸等の無機酸等を凝析剤として添加しながら撹拌を行ってもよい。上記凝集は、また、インラインミキサー等を使用して連続的に行ってもよい。
上記PTFEを凝集して得られた湿潤粉末の乾燥は、通常、上記湿潤粉末をあまり流動させない状態、好ましくは静置の状態を保ちながら、真空、高周波、熱風等の手段を用いて行う。粉末同士の、特に高温での摩擦は、一般にポリテトラフルオロエチレンファインパウダーに好ましくない影響を与える。これは、この種のポリテトラフルオロエチレンからなる粒子が小さな剪断力によっても簡単にフィブリル化して、元の安定な粒子構造の状態を失う性質を持っているからである。上記乾燥は、10~250℃、好ましくは120~230℃の乾燥温度で行うことができる。
本発明の二軸延伸多孔質膜は、上記特定のPTFEからなるものであるため、ごく一般的な成形・延伸設備を用い、相対的に低い押出圧力でペースト押出を行っても、高強度でかつ均質性に優れる。
本発明の二軸延伸多孔質膜は、縦と横のマトリクス引張強度の積が2.20×10MPa以上であることが好ましい。より好ましくは、3.00×10MPa以上であり、更に好ましくは、5.00×10MPa以上である。
上記縦と横のマトリクス引張強度は、下記方法で求めた値である。
(縦のマトリクス引張強度)
二軸延伸多孔質膜から5つの試料を切り出した。各試料は、縦方向(長手方向、つまりペースト押出方向)に15.0cm、横方向(幅方向、つまりペースト押出方向とは直角方向)に2.0cmの寸法を有する。5つの試料について、縦方向の引張強度測定を行い、5つの試料それぞれが示す最大荷重を求めた。
次に、5つの試料が示した最大荷重の値のうち、最も大きな値と最も小さな値とを除き、残りの3つの値の平均値を算出し、縦の平均最大荷重とした。
縦のマトリクス引張強度は、縦の平均最大荷重、試料幅(2.0cm)、膜厚み(単位:cm)及び空孔率から、下記式を用いて求める。
縦のマトリクス引張強度={縦の平均最大荷重/(2.0×膜厚み)}/(1-空孔率)
(横のマトリクス引張強度)
二軸延伸多孔質膜から5つの試料を切り出した。各試料は、縦方向(長手方向、つまりペースト押出方向)に2.0cm、横方向(幅方向、つまりペースト押出方向とは直角方向)に15.0cmの寸法を有する。5つの試料について、横方向の引張強度測定を行い、5つの試料それぞれが示す最大荷重を求めた。
次に、縦方向と同様に横の平均最大荷重を求め、下記式を用いて横のマトリクス引張強度を求める。
横のマトリクス引張強度={横の平均最大荷重/(2.0×膜厚み)}/(1-空孔率)
なお、上記引張強度測定は、50Nロードセルを備える引張試験機を用い、チャック長さを5.0cm、クロスヘッド速度を300mm/分として行う。
上記空孔率は、下記式により求められる値である。
空孔率=1-(膜密度/PTFE真密度)
上記PTFE真密度は、2.2g/cmである。
上記膜厚み、膜密度は、後述する方法で求める。
本発明の二軸延伸多孔質膜は、気体又は液体の透過量もしくは流量が多くなることが望ましいため、膜密度が1.40g/cm以下であることが好ましい。より好ましくは、1.00g/cm以下であり、更に好ましくは、0.80g/cm以下である。
上記膜密度は下記方法にて求めた値である。
二軸延伸多孔質膜を4.0cm×12.0cmの長方形にカットした試料の質量を精密天秤にて測定し、測定した質量及び膜厚みから、以下の式により試料の密度を計算する。 
ρ=M/(4.0×12.0×t)
ρ=膜密度(g/cm
M=質量(g)
t=膜厚み(cm)
3か所について上記測定および計算を行い、それらの平均値を膜密度とする。
本発明の二軸延伸多孔質膜は、平均孔径が、0.05~2.0μmであることが好ましく、0.2~1.5μmの範囲がより好ましい。
平均孔径が上記範囲であることによって、液体(薬液含む)の精密濾過フィルター等の用途に好適に使用できる。
エアフィルターに用いる場合、低い圧力損失を維持する観点から、平均孔径が0.4~2.0μmが好ましい。
上記平均孔径は、ASTM F-316-86の記載に準じて測定されるミーンフローポアサイズ(MFP)である。
本発明の二軸延伸多孔質膜は、また、平均孔径が2.00μm以下であることが好ましく、1.00μm以下であることがより好ましい。さらに、高い膜強度を要求される場合には、平均孔径が小さいことが好ましいので、0.60μm以下であることが更に好ましく、0.40μm以下であることが特に好ましい。
平均孔径は、0.05μm以上であることが好ましく、より好ましくは0.10μm以上であり、更に好ましくは0.20μm以上である。
本発明の二軸延伸多孔質膜の膜厚みは、0.5μm以上であることが好ましい。より好ましくは、1μm以上であり、更に好ましくは、3μm以上である。膜厚が薄すぎると機械的強度が低下するおそれがある。また、膜厚の上限は特に限定されないが、例えば、100μmである。
例えば、エアフィルターとして用いる場合、圧力損失の上昇を抑制する観点から、好ましい上限は100μmである。
上記膜厚みは、膜厚計を使用し、二軸延伸多孔質膜を5枚重ねて全体の膜厚みを測定し、その値を5で割った数値を1枚の膜厚みとする。
本発明の二軸延伸多孔質膜は、上記PTFE以外にも、公知の添加剤等を含んでもよい。例えば、カーボンナノチューブ、カーボンブラック等の炭素材料、顔料、光触媒、活性炭、抗菌剤、吸着剤、防臭剤等を含むことも好ましい。
上記公知の添加剤等は、本発明の効果を妨げない範囲の量で使用することができる。例えば、本発明の多孔質膜は、上記公知の添加剤等が、合計で40質量%以下であることが好ましく、30質量%以下であることがより好ましい。
逆にいうと、本発明の二軸延伸多孔質膜は、上記PTFEが、60質量%以上であることが好ましく、70質量%以上であることがより好ましい。
本発明の二軸延伸多孔質膜は、例えば、上記PTFEからなるPTFEファインパウダーをペースト押出してペースト押出物を得るペースト押出工程、ペースト押出物を圧延してPTFE未焼成体を得る圧延工程、PTFE未焼成体を乾燥して押出助剤を除去する乾燥工程、必要に応じて乾燥後のPTFE未焼成体を半焼成してPTFE半焼成体を得る工程、得られた乾燥後のPTFE未焼成体又はPTFE半焼成体を縦方向(MD)に延伸して一軸延伸体を得る一軸延伸工程、及び、得られた一軸延伸体を横方向(TD)に延伸する二軸延伸工程、を含む製造方法により製造することができる。
上記方法により、ポリテトラフルオロエチレンは容易にフィブリル化し、結節と繊維からなる二軸延伸多孔質膜が得られる。
なお、通常、上記縦方向(MD)は、ペースト押出工程でペースト押出した方向と同じ方向である。横方向(TD)は、縦方向に対して垂直な方向である。
通常は、圧延工程(半焼成する場合は半焼成体を得る工程)の後、縦方向に延伸して一軸延伸体を得て、その後、横方向に延伸して二軸延伸体を得るが、圧延工程(半焼成する場合は半焼成体を得る工程)の後、横方向に延伸して一軸延伸体を得て、その後、縦方向に延伸して二軸延伸体を得てもよい。
なお、延伸設備の設計上、延伸倍率に制限がある場合等には、縦方向の延伸(一軸延伸工程)、横方向の延伸(二軸延伸工程)のいずれも、複数回行ってもよい(いわゆる多段延伸)。
本発明の二軸延伸多孔質膜は、製造に特別な設備設計が必要でなく、ごく一般的な成形・延伸設備を用いて製造することができる。
上記製造方法は、ペースト押出工程の前に、PTFEファインパウダーに、ソルベントナフサ、ホワイトオイルなどの液状潤滑剤を添加して液状潤滑剤と混合されたPTFEファインパウダーを得る工程を含むことが好ましい。
上記液状潤滑剤の添加量は、後述するペースト押出条件等にもよるが、PTFEファインパウダー100質量部に対して、17~34質量部であることが好ましい。
上記ペースト押出工程は、特定の径を有するダイスや、シート形状の押出物が得られるダイスを備えた押出機を用いて、棒状又はシート状のペースト押出物を得るものであることが好ましい。
上記ペースト押出工程において、押出圧力は、使用する押出機や、押出速度等に応じて適宜設定すればよい。
上記ペースト押出工程は、高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、押出温度が5~100℃であることが好ましい。より好ましくは、30~80℃である。
上記ペースト押出工程は、PTFEファインパウダーを予備成形して予備成形体を得て、この予備成形体を押出機に入れて押出して棒状のペースト押出物を得るものであることが好ましい。
上記圧延工程は、圧延温度が5~100℃であることが好ましく、30~80℃であることがより好ましい。
圧延後の未焼成PTFEの厚みは、通常、20~500μmであり、好ましくは50~400μmである。
上記乾燥工程は、常温でおこなってもよいし、加熱して行ってもよい。上記のように液状潤滑剤を使用した場合、乾燥することにより液状潤滑剤を除去することができる。乾燥温度は、液状潤滑剤の種類等によるが、70~280℃であることが好ましく、100~250℃であることがより好ましい。
上記圧延は、圧延ロール等を用いる方法、ベルトプレス等により行うことができる。
上記製造方法は、必要に応じてPTFE未焼成体を半焼成してPTFE半焼成体を得る工程を含む。
上記半焼成は、PTFEの一次融点以下、かつ二次融点以上の温度で加熱するものである。
上記一次融点は、未焼成のPTFEを示差走査熱量計で測定した場合に、結晶融解曲線上に現れる吸熱カーブの最大ピーク温度を意味する。
上記二次融点は、一次融点以上の温度(例えば、360℃)に加熱したPTFEを示差走査熱量計で測定した場合に、結晶融解曲線上に現れる吸熱カーブの最大ピーク温度を意味する。
本明細書において、上記吸熱カーブは、示差走査熱量計を用いて、昇温速度10℃/分の条件で昇温させて得られたものである。
上記一軸延伸工程は、高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、延伸倍率が2~50倍であることが好ましく、5~30倍であることがより好ましい。
上記一軸延伸工程は、高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、延伸温度が常温~一次融点未満であることが好ましく、200~330℃であることがより好ましく、250~300℃であることが更に好ましい。
上記一軸延伸工程は、高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、延伸速度が5~2000%/秒であることが好ましく、7~1000%/秒であることがより好ましく、10~700%/秒であることが更に好ましい。
一軸延伸を行う方法としては、特に限定されない。工業的にはロール延伸、熱板延伸等が挙げられる。
上記二軸延伸工程は、高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、延伸倍率が2~100倍であることが好ましく、10~50倍であることがより好ましい。
上記二軸延伸工程は、高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、延伸温度が常温~400℃であることが好ましく、150~390℃であることがより好ましく、200~380℃であることが更に好ましい。
上記二軸延伸工程は、高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、延伸速度が5~1000%/秒であることが好ましく、7~700%/秒であることがより好ましく、10~600%/秒であることが更に好ましい。
上記製造方法は、高強度でかつ均質性に優れる二軸延伸多孔質膜が得られることから、二軸延伸工程の後に、熱固定する工程を含むことが好ましい。熱固定の温度は、300~420℃であることが好ましく、350~400℃であることがより好ましい。
上記二軸延伸を行う方法としては特に限定されないが、テンター等を用いて行う方法が挙げられる。
本発明の二軸延伸多孔質膜は、高い空孔率を維持したまま、高い強度と良好な均質性を有することから、エアフィルター、薬液フィルター等の各種精密濾過フィルターの濾材、高分子電解質膜の支持材等として好適に利用できる。また、繊維分野、医療分野、エレクトロケミカル分野、シール材分野、空気濾過分野、換気/内圧調整分野、液濾過分野、一般消費材分野等で使用する製品の素材としても有用である。
以下に、具体的な用途を例示する。
エレクトロケミカル分野
誘電材料プリプレグ、EMI遮蔽材料、伝熱材料等。より詳細には、プリント配線基板、電磁遮蔽シールド材、絶縁伝熱材料、絶縁材料等。
シール材分野
ガスケット、パッキン、ポンプダイアフラム、ポンプチューブ、航空機用シール材等。
空気濾過分野
ULPAフィルター(半導体製造用)、HEPAフィルター(病院・半導体製造用)、円筒カートリッジフィルター(産業用)、バグフィルター(産業用)、耐熱バグフィルタ-(排ガス処理用)、耐熱プリーツフィルター(排ガス処理用)、SINBRANフィルター(産業用)、触媒フィルター(排ガス処理用)、吸着剤付フィルター(HDD組込み)、吸着剤付ベントフィルター(HDD組込み用)、ベントフィルター(HDD組込み用他)、掃除機用フィルター(掃除機用)、汎用複層フェルト材、GT用カートリッジフィルター(GT向け互換品用)、クーリングフィルター(電子機器筐体用)等。
換気/内圧調整分野
凍結乾燥用の容器等の凍結乾燥用材料、電子回路やランプ向けの自動車用換気材料、容器キャップ向け等の容器用途、電子機器向け等の保護換気用途、医療用換気用途等。
液濾過分野
半導体液ろ過フィルター(半導体製造用)、親水性PTFEフィルター(半導体製造用)、化学薬品向けフィルター(薬液処理用)、純水製造ライン用フィルター(純水製造用)、逆洗型液ろ過フィルター(産業排水処理用)等。
一般消費材分野
衣類(民生衣類向け)、ケーブルガイド(バイク向け可動ワイヤ)、バイク用衣服(民生衣服向け)、キャストライナー(医療サポーター)、掃除機フィルター、バグパイプ(楽器)、ケーブル(ギター用信号ケーブル等)、弦(弦楽器用)等。
繊維分野
PTFE繊維(繊維材料)、ミシン糸(テキスタイル)、織糸(テキスタイル)、ロープ等。
医療分野
体内埋設物(延伸品)、人工血管、カテーテル、一般手術(組織補強材料)、頭頸部製品(硬膜代替)、口内健康(組織再生医療)、整形外科(包帯)等。
特に、本発明の二軸延伸多孔質膜は、低圧力損失であるため、ULPAフィルター、HEPAフィルター、各種中性能エアフィルター用の濾材として特に有用である。
本発明の二軸延伸多孔質膜は、高強度でかつ均質性に優れることから、薬液フィルター、エアフィルター等の各種フィルターとして好適に利用できる。すなわち、上記二軸延伸多孔質膜からなるフィルター用濾材も本発明の一つである。
上記フィルター用濾材は、上記多孔質体のみからなるものであってもよいし、上記多孔質体と、他の材料とを積層したものであってもよい。
例えば、取扱い性をよくするために、通気性支持材で少なくとも片面を補強して使用することが好ましい。通気性支持材とは、多孔膜を支持するものであり、好ましくは、多孔膜に接着している。支持材は、通気性を有し、かつ多孔膜を支持できるものであれば特に限定されないが、不織布が好ましい。
このような不織布としては、例えば、ポリエチレンテレフタレート(PET)繊維不織布、ポリブチレンテレフタレート(PBT)繊維不織布、芯成分がPETで鞘成分がポリエチレン(PE)である芯鞘構造の不織布(PET/PE芯/鞘不織布)、芯成分がPETで鞘成分がPBTである芯鞘構造の不織布(PET/PBT芯/鞘不織布)、芯成分が高融点PETで鞘成分が低融点PETである芯鞘構造の不織布(高融点PET/低融点PET芯/鞘不織布)、PET繊維及びPBT繊維の複合繊維からなる不織布、高融点PET繊維及び低融点PET繊維の複合繊維からなる不織布等が挙げられる。支持材は、本発明の効果を妨げないように、高い通気性を有し、低圧力損失であることが好ましい。
上述のように、濾材の性能は、主に、ポリテトラフルオロエチレンからなる多孔質膜の性能に由来し、支持材としてプレフィルタ機能を有する支持材を用いなくても十分に大きな保塵量(捕塵量)が得られるが、更に保塵量を大きくする目的で、支持材としてメルトブロー不織布などを用いてもよい。
支持材の孔径は、本発明の二軸延伸多孔質膜の孔径より大きいことが好ましい。支持材に用いられる不織布の目付は、通常10~600g/m、好ましくは15~300g/m、より好ましくは15~100g/mである。また、支持材に用いられる不織布の膜厚は、好ましくは0.10~0.52mmである。また、保塵量を確保するために、気流の上流側に保塵量の多い通気性支持材(例えば、特開2000-300921号公報、特表2008-525692号公報、米国特許第6808553号に記載のものなど、公知の保塵量を確保できる手段)を使用してよい。
本発明はまた、上記フィルター用濾材と、該フィルター用濾材を保持する枠体と、を備えるフィルターユニットでもある。
本発明の高分子電解質膜は、二軸延伸多孔質膜を含むものである。
高分子電解質膜に用いる場合、上記二軸延伸多孔質膜は、平均孔径が2.00μm以下であることが好ましく、1.00μm以下であることがより好ましい。
さらに、高い膜強度を要求される場合には、平均孔径が小さいことが好ましいので、0.60μm以下であることが更に好ましく、0.40μm以下であることが特に好ましい。
平均孔径は、0.05μm以上であることが好ましく、より好ましくは0.10μm以上であり、更に好ましくは0.20μm以上である。
上記高分子電解質は、固体高分子型燃料電池の高分子固体電解質として用いられる公知のポリマーを使用することができる。
上記高分子電解質としては、特に限定されないが、例えば、イオン交換基を有するパーフルオロカーボン高分子化合物、又は、分子内に芳香環を有する、一部がフッ素化された炭化水素系高分子化合物にイオン交換基を導入した化合物などが好ましい。このなかでも、化学的安定性の観点から、イオン交換基を有するパーフルオロカーボン高分子化合物がより好ましい。
上記高分子電解質は、当量重量(EW)、つまりイオン交換基1当量当たりの乾燥重量が250以上、1500以下であることが好ましい。
EWの上限は、900であることがより好ましく、700であることが更に好ましく、600であることが特に好ましく、500であることが殊更に好ましい。
EWの下限は、300であることがより好ましく、350であることが更に好ましく、400であることが殊更に好ましい。
EWが小さい方が、伝導度が高くなり好ましい反面、熱水への溶解性が大きくなる場合があるため、上記のような適切な範囲であることが望ましい。
EWが低い高分子電解質を使用すると、高分子電解質膜の寸法変化が大きくなり、燃料電池自動車の運転時のような、高温で湿度変化が大きな環境下では、耐久性が悪くなる傾向があるが、本発明の高分子電解質膜は、上記二軸延伸多孔質膜を備えることによって、EWが低い高分子電解質を使用したとしても、寸法変化が小さく、耐久性及び信頼性に優れたものとなる。
上記高分子電解質は、110℃相対湿度80%RHにおけるプロトン伝導度が0.10S/cm以上であることが好ましい。より好ましくは60%RHにおけるプロトン伝導度が0.05S/cm以上であり、更に好ましくは40%RHにおけるプロトン伝導度が0.02S/cm以上、更により好ましくは30%RHにおけるプロトン伝導度が0.01S/cm以上である。
上記高分子電界質のプロトン伝導度は高いほどよいが、例えば、110℃相対湿度50%RHにおけるプロトン伝導度が1.0S/cm以下であってもよい。
上記高分子電解質は、25℃50%RHにおけるイオンクラスター間距離が、0.1nm以上2.6nm以下であることが好ましい。イオンクラスター間距離が2.6nm以下になると伝導度が急激に大きくなる。
イオンクラスター間距離の上限は、より好ましくは2.5nmである。イオンクラスター間距離の下限は、より好ましくは0.5nmであり、さらに好ましくは1.0nmであり、特に好ましくは2.0nmである。
例えば、上記範囲のイオンクラスター間距離を有するフッ素系高分子電解質は、特殊なイオンクラスター構造を有している。フッ素系高分子電解質については後述する。
イオンクラスターとは、複数のプロトン交換基が集合し形成されたイオンチャンネルであり、ナフィオンに代表されるパーフルオロ系プロトン交換膜もこのようなイオンクラスター構造を有すると考えられている(例えば、Gierke.T.D.,Munn.G.E.,Wilson.F.C. J.Polymer Sci. Polymer Phys, 1981, 19, 1687参照。)。
イオンクラスター間距離dは、以下の方法で測定し、算出することができる。
製膜した高分子電解質に対し、25℃50%RHの雰囲気で小角X線散乱測定を実施する。得られた散乱強度をブラッグ角θに対してプロットし、通常2θ>1°に現れるクラスター構造由来のピーク位置におけるブラッグ角θmを算出する。θmから下記式(1)によりイオンクラスター間距離dを算出する。
d=λ/2/sin(θm)   (1)
(式中λは入射X線波長)
なお、この測定の際、膜をキャスト法により製膜した場合は事前に160℃でアニールする。また、後述するフッ素系高分子電解質では、COOZ基又はSOZ基で表される末端基がCOOH又はSOHになるよう処理する。試料膜は測定前に30分以上25℃50%RHの雰囲気に保持した後、測定を実施する。
上記フッ素系高分子電解質は、イオンクラスター間の距離が短いため、プロトンがイオンクラスター間を移動しやすいと推測され、低湿度下でも高い伝導度を有する。
上記高分子電解質は、フッ素系高分子電解質であることが好ましく、上記フッ素系高分子電解質は、COOZ基又はSOZ基(Zはアルカリ金属、アルカリ土類金属、水素、又は、NRを表す。R、R、R及びRはそれぞれ独立に炭素数1~3のアルキル基又は水素を表す。)含有モノマー単位を有するものであることが好ましい。
上記フッ素系高分子電解質において、COOZ基又はSOZ基含有モノマー単位は、全単量体単位の10~95モル%であることが好ましい。ここで「全単量体単位」とは、フッ素系高分子電解質の分子構造上、モノマーに由来する部分の全てを示す。
上記COOZ基又はSOZ基含有モノマー単位は、一般に、下記一般式(I)
CF=CF(CF-O-(CFCFY-O)-(CFY-A (I)
(式中、Yは、F(フッ素原子)、Cl(塩素原子)又はパーフルオロアルキル基を表す。kは0~2の整数、lは0又は1、nは、0~8の整数を表し、n個のYは、同一でも異なっていてもよい。YはF又はClを表す。mは0~12の整数を表す。ただし、m=0の場合は、l=0、n=0となる。m個のYは、同一でも異なっていてもよい。AはCOOZ又はSOZ、Zはアルカリ金属、アルカリ土類金属、水素、又は、NRを表す。R、R、R及びRはそれぞれ独立に炭素数1~3のアルキル基又は水素を表す。)で表されるCOOZ基又はSOZ基含有モノマーに由来するものである。
上記一般式(I)において、上記Yは、F又は-CFであることが好ましく、Fがより好ましい。
は、-SOZであることが好ましく、-SOHであることがより好ましい。
mは0~6の整数であることが好ましい。
また、上記一般式(I)において、合成面及び操作性の観点から、kは0であることがより好ましく、lは1であることがより好ましく、nは0又は1であることがより好ましく、nは0であることが更に好ましい。
また、YはFであり、mは2~6の整数であることがより好ましく、YはFであり、mは2又は4であることが更に好ましく、YはFであり、mは2であることが特に好ましい。
上記フッ素系高分子電解質において、上記COOZ基又はSOZ基含有モノマーは、1種又は2種以上を組み合わせて用いることができる。
上記フッ素系高分子電解質は、上記COOZ基又はSOZ基含有モノマーに由来する繰り返し単位(α)と、COOZ基又はSOZ基含有モノマーと共重合可能なエチレン性フルオロモノマーに由来する繰り返し単位(β)とを含む共重合体であることが好ましい。
上記繰り返し単位(β)を構成することとなるエチレン性フルオロモノマーは、エーテル性酸素〔-O-〕を有さず、ビニル基を有するモノマーであるが、ビニル基はフッ素原子により水素原子の一部又は全部が置換されていてもよい。
なお、本明細書において「エーテル性酸素」とは、モノマー分子を構成する-O-構造を意味する。
上記エチレン性フルオロモノマーとしては、例えば、下記一般式(II)
CF=CF-Rf  (II)
(式中、Rfは、F、Cl又は炭素数1~9の直鎖状又は分岐状のフルオロアルキル基を表す。)
で表されるハロエチレン性フルオロモノマー、あるいは下記一般式(III)
CHY=CFY       (III)
(式中、YはH又はFを表し、YはH、F、Cl又は炭素数1~9の直鎖状又は分岐状のフルオロアルキル基を表す。)
で表される水素含有フルオロエチレン性フルオロモノマー等が挙げられる。
上記エチレン性フルオロモノマーとしては、例えば、テトラフルオロエチレン〔TFE〕、ヘキサフルオロプロピレン〔HFP〕、クロロトリフルオロエチレン〔CTFE〕、フッ化ビニル、フッ化ビニリデン〔VDF〕、トリフルオロエチレン、ヘキサフルオロイソブチレン、パーフルオロブチルエチレン等が挙げられるが、TFE、VDF、CTFE、トリフルオロエチレン、フッ化ビニル、HFPであることが好ましく、TFE、CTFE、HFPがより好ましく、TFE、HFPが更に好ましく、TFEが特に好ましい。上記エチレン性フルオロモノマーとしては、1種又は2種以上を用いることができる。
上記フッ素系高分子電解質は、COOZ基又はSOZ基含有モノマーに由来する繰り返し単位(α)が10~95モル%、エチレン性フルオロモノマーに由来する繰り返し単位(β)が5~90モル%、繰り返し単位(α)と繰り返し単位(β)との和が95~100モル%である共重合体であることが好ましい。
上記COOZ基又はSOZ基含有モノマーに由来する繰り返し単位(α)は、より好ましい下限が15モル%、更に好ましい下限が20モル%、より好ましい上限が60モル%、更に好ましい上限が50モル%である。
上記エチレン性フルオロモノマーに由来する繰り返し単位(β)は、より好ましい下限が35モル%、更に好ましい下限が45モル%、より好ましい上限が85モル%、更に好ましい上限が80モル%である。
上記フッ素系高分子電解質は、上記一般式(I)で表されるCOOZ基又はSOZ基含有モノマーに由来する繰り返し単位と、TFEに由来する繰り返し単位と、を含有する共重合体であることが好ましい。
上記フッ素系高分子電解質は、上記以外の第3成分モノマーに由来する繰り返し単位として、COOZ基又はSOZ基含有モノマー以外のビニルエーテルに由来する繰り返し単位(γ)を、好ましくは0~5モル%、より好ましくは4モル%以下、更に好ましくは3モル%以下有するものであっても差し支えない。
なお、フッ素系高分子電解質のポリマー組成は、例えば、300℃における溶融NMRの測定値から算出することができる。
繰り返し単位(γ)を構成することとなるCOOZ基又はSOZ基含有モノマー以外のビニルエーテルとしては、COOZ基又はSOZ基を含有しないものであれば特に限定されず、例えば、下記一般式(IV)
CF=CF-O-Rf      (IV)
(式中、Rfは、炭素数1~9のフルオロアルキル基又は炭素数1~9のフルオロポリエーテル基を表す。)
で表されるフルオロビニルエーテル、より好ましくはパーフルオロビニルエーテル、あるいは下記一般式(V)
CHY=CF-O-Rf  (V)
(式中、Yは、H又はFを表し、Rfは、炭素数1~9のエーテル基を有していてもよい直鎖状又は分岐状のフルオロアルキル基を表す。)
で表される水素含有ビニルエーテル等が挙げられる。上記ビニルエーテルとしては、1種又は2種以上を用いることができる。
上記高分子電解質は、従来公知の方法を用いて製造することができる。例えば、国際公開第2009/116446号に記載された方法で製造することができる。
本発明の高分子電解質膜は、厚みが1μm以上500μm以下であることが好ましく、より好ましくは2μm以上100μm以下であり、更に好ましくは5μm以上50μm以下である。膜厚が薄いと発電時の直流抵抗を小さくできる一方、ガス透過量が高くなるおそれがあるため、上記のような適切な範囲であることが望ましい。
また、本発明の高分子電解質膜は、上記の二軸延伸多孔質膜を使用することで、優れた耐久性を維持しながら、厚みを薄くすることもできる。
次に、本発明の高分子電解質膜の製造方法について以下に説明する。
(高分子電解質膜の製造方法)
本発明の高分子電解質膜は、例えば、上記二軸延伸多孔質膜を後述する高分子電解質溶液に含浸させるか、高分子電解質溶液を多孔質膜に塗布することで得ることができる。上記含浸又は塗布の後には、乾燥を行うことが好ましい。
上記含浸させる方法としては、ディップコーティングする方法が挙げられる。
上記塗布方法としては、スロットダイ方式や特表平11-501964号公報に開示された正転ロールコーティング、逆転ロールコーティング、グラビアコーティング、ナイフコーティング、キスコーティング、スプレーコーティング等のコーティング技術が挙げられる。これら方式は、作製したい塗工液層の厚み、塗工液等の材料物性、塗工条件を考慮して、適宜選択できる。
上記乾燥では、高分子電解質溶液を構成する溶媒を除去する。乾燥は、常温下で行ってもよいし、加熱下で行ってもよい。
上記乾燥は、加熱下で行うものであることが好ましく、例えば、50~350℃で加熱することが好ましい。
本発明の高分子電解質膜を製造するためのより具体的な方法としては、例えば、移動している又は静置されている細長いキャスティング基材(シート)上に高分子電解質溶液の被膜を形成し、その溶液上に細長い多孔質膜を接触させ、未完成な複合構造体を作製し、この未完成な複合構造体を熱風循環槽中等で乾燥させ、次に乾燥させた未完成な複合構造体の上に高分子電解質溶液の被膜をさらに形成し、高分子電解質膜を作製する方法が挙げられる。
さらに、高分子電解質膜の伝導性や機械的強度を向上する目的で、このようにして作製された高分子電解質膜の少なくとも一方の主面上に、高分子電解質を含む層を1層以上積層してもよい。
また、架橋剤や紫外線、電子線、放射線等を用いて、そこに含まれる化合物同士を架橋してもよい。
(高分子電解質溶液)
上記高分子電解質溶液は、適切な溶媒(樹脂との親和性が良好な溶媒)に、高分子電解質を溶解又は懸濁させて得ることができる。
適切な溶媒としては、例えば、水やエタノール、メタノール、n-プロパノール、イソプロピルアルコール、ブタノール、グリセリンなどのプロトン性有機溶媒や、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどの非プロトン性溶媒等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。特に、1種の溶媒を用いる場合、水単独が好ましい。また、2種類以上を併用する場合、水とプロトン性有機溶媒との混合溶媒が特に好ましい。
溶解又は懸濁する方法は、特に限定されない。例えば、まず、総固形分濃度が1~50質量%となるような条件下、高分子電解質を、例えば、水とプロトン性有機溶媒との混合溶媒に加える。次に、この組成物を必要に応じてガラス製内筒を有するオートクレーブ中に入れ、窒素などの不活性気体で内部の空気を置換した後、内温が50℃~250℃の条件下、1~12時間加熱、攪拌する。これにより、溶解液又は懸濁液が得られる。なお、この際の総固形分濃度は高いほど収率上好ましいが、濃度を高めると未溶解物が生じるおそれがあるため、1~50質量%が好ましく、より好ましくは3~40質量%、さらに好ましくは5~30質量%である。
プロトン性有機溶媒を用いる場合、水とプロトン性有機溶媒の混合比は、溶解方法、溶解条件、高分子電解質の種類、総固形分濃度、溶解温度、攪拌速度等に応じて適宜選択できる。水に対するプロトン性有機溶媒の質量の比率は、水1に対してプロトン性有機溶媒0.1~10が好ましく、特に好ましくは水1に対して有機溶媒0.1~5である。
なお、このような溶液又は懸濁液には、乳濁液(液体中に液体粒子がコロイド粒子あるいはそれより粗大な粒子として分散して乳状をなすもの)、懸濁液(液体中に固体粒子がコロイド粒子あるいは顕微鏡で見える程度の粒子として分散したもの)、コロイド状液体(巨大分子が分散した状態)、ミセル状液体(多数の小分子が分子間力で会合して出来た親液コロイド分散系)等の1種又は2種以上が含まれる。
また、このような溶液又は懸濁液は、濃縮することが可能である。濃縮の方法としては特に限定されない。例えば、加熱し、溶媒を蒸発させる方法や、減圧濃縮する方法等がある。その結果得られる塗工溶液の固形分率は、高すぎると粘度が上昇して取り扱い難くなるおそれがあり、また低すぎると生産性が低下する場合があるため、最終的な塗工溶液の固形分率は0.5~50質量%が好ましい。
以上により得られた溶液又は懸濁液は、粗大粒子成分を除去する観点から、濾過されることがより好ましい。濾過方法は、特に限定されず、従来行われている一般的な方法が適用できる。例えば、通常使用されている定格濾過精度を有する濾材を加工したフィルターを用いて、加圧濾過する方法が代表的に挙げられる。フィルターについては、90%捕集粒子径が粒子の平均粒子径の10倍~100倍の濾材を使用することが好ましい。この濾材は濾紙でもよいし、金属焼結フィルターのような濾材でもよい。特に濾紙の場合は、90%捕集粒子径が粒子の平均粒子径の10~50倍であることが好ましい。金属焼結フィルターの場合は、90%捕集粒子径が粒子の平均粒子径の50~100倍であることが好ましい。当該90%捕集粒子径を平均粒径の10倍以上に設定することは、送液するときに必要な圧力が高くなりすぎることを抑制したり、フィルターが短期間で閉塞してしまうことを抑制し得る。一方、平均粒子径の100倍以下に設定することは、フィルムで異物の原因となるような粒子の凝集物や樹脂の未溶解物を良好に除去する観点から好ましい。
本発明は、上記高分子電解質膜を備える膜電極接合体でもある。電解質膜の両面にアノードとカソードの2種類の電極触媒層が接合したユニットは、膜電極接合体(以下「MEA」と略称することがある)と呼ばれる。電極触媒層のさらに外側に一対のガス拡散層を対向するように接合したものについても、MEAと呼ばれる場合がある。
電極触媒層は、触媒金属の微粒子とこれを担持した導電剤とから構成され、必要に応じて撥水剤が含まれる。電極に使用される触媒としては、水素の酸化反応及び酸素の還元反応を促進する金属であればよく、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、およびこれらの合金等が挙げられ、その中では、主として白金が用いられる。
電極面積に対する電極触媒の担持量としては、電極触媒層を形成した状態で、好ましくは0.001~10mg/cm、より好ましくは0.01~5mg/cm、最も好ましくは0.1~1mg/cmである。
上記で得られたMEA、場合によっては更に一対のガス拡散電極が対向した構造のMEAは、更にバイポーラプレートやバッキングプレート等の一般的な固体高分子電解質型燃料電池に用いられる構成成分と組み合わされて、固体高分子電解質型燃料電池が構成される。本発明は、上記膜電極接合体を備える固体高分子型燃料電池でもある。
バイポーラプレートとは、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイトと樹脂との複合材料、または金属製のプレート等を意味する。バイポーラプレートは、電子を外部負荷回路へ伝達する機能の他、燃料や酸化剤を電極触媒近傍に供給する流路としての機能を持っている。こうしたバイポーラプレートの間にMEAを挿入して複数積み重ねることにより、燃料電池が製造される。
従来、PTFE二軸延伸膜は、延伸時に微少なフィブリルの“毛羽”が立つため、表面の滑り性が悪く、粘着性を感じる手触りである。この“毛羽”は互いに絡み合う為、PTFE二軸延伸膜同士は接着されたような状態になりやすく、長い巻物を作製すると、巻圧が強くなる巻芯部でブロッキングが発生し、ラミネート加工時などに安定して繰り出すことが難しかった。
一方、本発明の二軸延伸多孔質膜では、“毛羽”の発生を抑えることができる。表面が平滑で滑り性が良く、動摩擦係数・静摩擦係数共に、従来のPTFE二軸延伸膜より低いため、加工プロセス上取り扱い易い。
実施例において、各物性の測定は以下の方法により行った。
(1)ポリマー濃度
ポリテトラフルオロエチレン水性分散液1gを、送風乾燥機中で150℃、30分の条件で乾燥し、水性分散液の質量(1g)に対する加熱残分の質量の割合を百分率で表した数値をポリマー固形分濃度(ポリマー濃度)とする。
(2)平均一次粒子径
ポリテトラフルオロエチレン水性分散液を水で固形分濃度が0.15質量%になるまで希釈し、得られた希釈ラテックスの単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真により定方向径を測定して決定した数基準長さ平均粒子径とを測定して、検量線を作成する。この検量線を用いて、各試料の550nmの投射光の実測透過率から数平均粒子径を決定する。
(3)微量共単量体(PMVE)の含量
非溶融加工性PTFEファインパウダーを高温下で溶融させて、F19-NMR測定を行い、得られる微量共単量体中の官能基に由来するシグナルから算出した。
例えば、本願実施例にて使用したPMVEの含有量は、360℃にてF19-NMR測定を行い、以下の式に基づき算出した。
微量共単量体含有量(mol%)=(4B/3)/(A+(B/3))×100
(A=-118ppm付近に現れるCFシグナルとCFシグナルとの合計、B=-52ppm付近に現れるPMVE由来のCFシグナルの積分値)
(4)標準比重〔SSG〕
ASTM D-4895-89に準拠して試料を作製し、得られた試料の比重を水置換法によって測定する。
(5)押出圧力 
特開2002-201277号公報の記載に従い、まず、室温で2時間以上放置されたPTFEファインパウダー100gに潤滑剤(商品名「アイソパーH(登録商標)」、エクソン社製)21.7gを添加し、3分間混合してPTFEファインバウダー混合物を得る。
その後、得られたPTFEファインパウダー混合物を、25℃恒温槽に2時間放置した後に、リダクションレシオ(ダイスの入り口の断面積と出口の断面積の比)100、押出速度51cm/分の条件で、25℃にて、オリフィス(直径2.5mm、ランド長1.1cmm、導入角30°)を通してペースト押出しを行い、ビードを得る。
上記押出圧力は、ペースト押出しにおいて押出負荷が平衡状態になった時の負荷を測定し、ペースト押出に用いたシリンダーの断面積で除した値である。
(6)破断強度 
特開2002-201277号公報の記載に従い、まず、下記方法で押出ビードの延伸試験を行い、破断強度測定用のサンプルを作製する。
上記のペースト押出により得られたビードを230℃で30分間乾燥し、潤滑剤を除去する。乾燥後のビードを適当な長さに切断し、クランプ間が5.1cmとなるよう、各末端を固定し、空気循環炉中で300℃に加熱する。次いで、クランプを総ストレッチが2400%に相当する分離距離となるまで、延伸速度100%/秒で離し、延伸試験を実施する。『総ストレッチ』とは、延伸試験前のビード長さ(100%)に対する延伸による長さの増加である。
上記延伸条件にて作成された延伸ビードを適当な長さに切断し、5.0cmのゲージ長である可動ジョーにおいて挟んで固定し、可動ジョーを300mm/分のスピードで駆動させ、引張り試験機(島津製作所製)を用いて室温にて破断強度を測定し、延伸ビードから得られる3つのサンプル、延伸ビードの各末端から1つ(クランプの範囲においてネックダウンがあればそれを除く)、およびその中心から1つ、の最小引張り破断負荷(力)を破断強度とする。
(7)目付(目付量)
4.0cm×12.0cmの長方形にカットした試料を精密天秤にて測定した質量(g)を面積(0.0048m)で除した値とする。
(8)膜密度
4.0cm×12.0cmの長方形にカットした試料の質量を精密天秤にて測定し、測定した質量、および上記膜厚みから、膜密度を以下の式により計算する。
ρ=M/(4.0×12.0×t) 
式中:ρ=密度(g/cm
M=質量(g)
t=膜厚み(cm)
3か所について上記測定および計算を行い、それらの平均値を膜密度とする。
(9)空孔率
空孔率は、上記膜密度およびPTFE真密度(2.2g/cm)から、以下の式により求める。
空孔率=1-(膜密度/PTFE真密度)
上記PTFE真密度は、2.2g/cmである。
(10)膜厚み
膜厚みは、膜厚計を使用し、二軸延伸多孔質膜を5枚重ねて全体の膜厚みを測定し、その値を5で割った数値を1枚の膜厚みとする。
(11)マトリクス引張強度(縦及び横)
下記方法で求めた縦のマトリクス引張強度と横のマトリクス引張強度の積から、「縦と横のマトリクス引張強度の積」を求める。
(縦のマトリクス引張強度)
まず、二軸延伸多孔質膜から5つの試料を切り出した。各試料は、縦方向(長手方向、つまりペースト押出方向)に15.0cm、横方向(幅方向、つまりペースト押出方向とは直角方向)に2.0cmの寸法を有する。5つの試料について、縦方向の引張強度測定を行い、5つの試料それぞれが示す最大荷重を求めた。
次に、5つの試料が示した最大荷重の値のうち、最も大きな値と最も小さな値とを除き、残りの3つの値の平均値を算出し、縦の平均最大荷重とした。
縦のマトリクス引張強度は、縦の平均最大荷重、試料幅(2.0cm)、膜厚み(単位:cm)及び空孔率から、下記式を用いて求める。
縦のマトリクス引張強度={縦の平均最大荷重/(2.0×膜厚み)}/(1-空孔率)
(横のマトリクス引張強度)
二軸延伸多孔質膜から5つの試料を切り出した。各試料は、縦方向(長手方向、つまりペースト押出方向)に2.0cm、横方向(幅方向、つまりペースト押出方向とは直角方向)に15.0cmの寸法を有する。5つの試料について、横方向の引張強度測定を行い、5つの試料それぞれが示す最大荷重を求めた。
次に、縦方向と同様に横の平均最大荷重を求め、下記式を用いて横のマトリクス引張強度を求める。
横のマトリクス引張強度={横の平均最大荷重/(2.0×膜厚み)}/(1-空孔率)
なお、上記引張強度測定は、50Nロードセルを備える引張試験機を用い、チャック長さを5.0cm、クロスヘッド速度を300mm/分として行う。
(12)平均孔径
ASTM F-316-86に準拠し、ミーンフローポアサイズ(MFP)を測定し、平均孔径とした。
(13)圧力損失
二軸延伸多孔質膜を、流速計で空気の透過する流量を5.3cm/秒に調整し、圧力損失をマノメータで測定した。
(14)圧力損失の変動係数
上記100箇所の圧力損失の数値より標準偏差を求め、上記圧力損失の平均値から、下記式の通り圧力損失の変動係数を計算した。
式 圧力損失の変動係数(%)=(100箇所の圧力損失の標準偏差)/(100箇所の圧力損失の平均値)×100
(15)捕集効率
アトマイザーを用いてNaCl粒子を発生させ、静電分級器で、0.1μmに分級し、透過する流量を5.3cm/秒に調整し、パーティクルカウンターを用いて二軸延伸多孔質膜の前後での粒子数を求め、次式により捕集効率を算出した。
 捕集効率(%)=(CO/CI)×100
 CO=二軸延伸多孔質膜が捕集したNaCl 0.1μmの粒子数
 CI=二軸延伸多孔質膜に供給されたNaCl 0.1μmの粒子数
(16)摩擦係数測定法
摩擦子(PPC用紙目付64g/m2 サイズ2cm×2cm)およびロードセルを用い、加重200g、摩擦速度200mm/min、測定温度:22℃、湿度:60%Rhの条件にて摩擦抵抗を測定し、静摩擦係数及び動摩擦係数を求めた。
作製例1
ステンレス鋼(SUS316)製アンカー型撹拌翼と温度調節用ジャケットを備え、内容量が6リットルのステンレス鋼(SUS316)製オートクレーブに、脱イオン水 3560ml、パラフィンワックス 104g及び含フッ素界面活性剤としてCFOCF(CF)CFOCF(CF)COONH 5.4gを仕込み、70℃に加温しながら窒素ガスで3回、TFEガスで2回、系内を置換して酸素を除いた。その後、TFEガスで槽内圧力を0.60MPaにして250rpmで撹拌し、槽内温度を70℃に保った。
次に、パーフルオロ(メチルビニルエーテル)(PMVE)を0.60g(全量が反応した場合、TFE全重合量に対して0.029モル%(0.049質量%))をTFEで圧入し、オートクレーブの槽内圧力を0.70MPaとした。
続いて、脱イオン水20mlに過硫酸アンモニウム15.4mgを溶かした水溶液をTFEで圧入し、オートクレーブの槽内圧力を0.78MPaにし、重合反応を開始した。
重合反応の進行に伴い、槽内圧力が低下するが、オートクレーブの槽内圧力を常に0.78±0.05MPaに保つようにTFEを連続的に供給した。また、槽内温度を70℃、撹拌速度を250rpmに維持した。
TFEの消費量が429gになった時点(TFEの全重合量1225gに対して、35.0質量%)で、脱イオン水20mlにラジカル補足剤としてヒドロキノン14.32mg(水性媒体に対して4.0ppm)を溶かした水溶液をTFEで圧入した。
重合はその後も継続し、TFEの消費量が1225gになった時点で、撹拌及びモノマー供給を停止して、直ちにオートクレーブ内のガスを常圧まで放出し、反応を終了させ、変性PTFEの水性分散液Aを得た。
重合槽内のポリマー凝固物は痕跡程度であった。
得られた水性分散液のポリマー濃度、平均一次粒子径を測定した。測定結果を表1に示す。
次に、攪拌翼と邪魔板を備え、内容量が6リットルの凝析槽に、脱イオン水で希釈したPTFE水性分散液Aを仕込み、撹拌を開始した。
このとき、炭酸水素アンモニウム水溶液を凝析槽内に仕込んだ。ポリマー粉末が水と分離すれば、撹拌を停止した。得られた湿潤粉末を濾別し、新たに脱イオン水で水洗した。
160℃に設定した熱風循環式乾操機にて18時間乾燥させることにより、変性PTFEのファインパウダーA(PTFE-A)を得た。
PMVE変性量、SSG、押出圧力、破断強度について測定および評価を行った。結果を表1に示す。
作製例2
乾燥温度を160℃に変更する以外は、国際公開第2005/061567号の比較例3に記載の方法の通り、ホモPTFEのファインパウダーB(PTFE-B)を得た。
得られたPTFE-Bについて、各種測定および評価を行った。結果を表1に示す。
作製例3
国際公開第2010/113950号の実施例2に記載の方法の通り、ホモPTFEのファインパウダーC(PTFE-C)を得た。
得られたPTFE-Cについて、各種測定および評価を行った。結果を表1に示す。
作製例4
PMVEの仕込量を0.30gに変更する以外は、作製例1と同様にして変性PTFEのファインパウダーD(PTFE-D)を得た。
得られたPTFE-Dについて、各種測定および評価を行った。結果を表1に示す。
作製例5
PMVEの仕込量を0.75g、湿潤粉末の乾燥温度を180℃に変更する以外は、作製例4と同様にして変性PTFEのファインパウダーE(PTFE-E)を得た。
得られたPTFE-Eについて、各種測定および評価を行った。結果を表1に示す。
作製例6
PMVEの仕込量を2.00gに変更する以外は、作製例5と同様にして変性PTFEのファインパウダーF(PTFE-F)を得た。
得られたPTFE-Fについて、各種測定および評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例1
(押出と圧延)
作製例1で得られた変性PTFEのファインパウダーA(PTFE-A)100重量部あたり押出助剤として炭化水素油(出光興産株式会社製「IPソルベント2028」)を28重量部を加えて混合し、12時間静置した。
次に100φmmの予備成形機に上記ファインパウダーA(PTFE-A)と押出助剤の混合物を投入し、圧力3MPaで圧縮し、プレフォームを得た。続いて、予め内径16mmφのダイスを内径100mmの押出機に、上記プレフォームを入れてペースト押出を行い、PTFE成形体を得た。
更に得られたPTFE成形体を、カレンダーロールによりフィルム状に成形(圧延)し未焼成PTFEフィルムを得た。
熱風乾燥炉に通して炭化水素油を蒸発除去し、平均厚み約100μmの帯状の未焼成PTFEフィルムを得た。
(一軸延伸)
図1で示す複数のロールを備えた延伸装置を用い、得られた未焼成PTFEフィルムを温度250℃の条件で、縦方向に5倍に延伸した(一軸延伸)。
一軸延伸膜の外観評価を行った。一軸延伸膜の外観評価基準は、以下の通りである。
○:均一
△:部分的に破断または亀裂等の欠陥が存在
×:全体的に破断又は亀裂等の欠陥が存在
また、一軸延伸膜の強度(押出方向)を測定した。一軸延伸膜の強度は、下記方法で測定した。
(一軸延伸膜の強度(押出方向))
一軸延伸多孔質膜を、縦方向(長手方向、つまりペースト押出方向)に15.0cm、横方向(幅方向、つまりペースト押出方向とは直角方向)に2.0cmの寸法で試料を5箇所カットし、5箇所それぞれの縦方向の引張強度測定を行った。
次に、最大荷重の最大値および最小値を除いた3箇所の平均値を一軸延伸膜の強度として求めた。
尚、上記引張強度測定は、50Nロードセルを備える引張試験機を用い、チャック長さを5.0cm、クロスヘッド速度を300mm/分として行った。
(二軸延伸)
次に、一軸延伸した未焼成フィルム(一軸延伸膜)を、図2に示す連続クリップできるテンターを用いて幅方向に延伸倍率36倍に延伸し、熱固定を行った(二軸延伸)。このときの延伸温度は290℃、熱固定温度は340℃であった。
得られた多孔膜(二軸延伸膜)の外観評価を行った。二軸延伸膜の外観評価基準は、以下の通りである。
◎:均一
○:均一(一部にムラ)
△:ムラが多い
×:部分的に破断または亀裂等の欠陥が存在
××:全体的に破断
得られた多孔膜(二軸延伸膜)の物性評価(目付、膜密度、膜厚み、マトリクス引張強度、静摩擦係数、動摩擦係数、平均孔径)し、表2に示す。
(濾材の作製)
次いで、通気性支持材として、スパンボンド不織布(平均繊維径24μm、目付30g/m、厚さ0.15mm)を用い、得られた多孔膜の両面を、上記不織布でラミネート装置を用いて熱融着により積層して3層構造の濾材を得た。
得られた濾材の圧力損失、圧力損失の変動係数、捕集効率を測定した。評価結果を表2に示す。
実施例2~5および比較例1~4
PTFE原料の種類と押出助剤(炭化水素油)の量を表2記載の通り変更する以外は、実施例1と同様にして加工して多孔膜(二軸延伸膜)を得た。
実施例1と同様にして各種物性を測定した。結果を表2に示す。
実施例1~5では、均質で強度の高い二軸延伸膜が得られた。比較例1、2で得られた二軸延伸膜では、均質だが、強度に劣る。
比較例3ではペースト押出によって得られた丸棒状のPTFE成形体が硬いため、圧延性が悪く、圧延物に亀裂が発生し、均質な未焼成PTFEフィルムが得られなかった。比較例4では、押出圧力を下げるために押出助剤量を増やしても得られた二軸延伸膜の均質性が劣るものであった。
Figure JPOXMLDOC01-appb-T000002
本発明の二軸延伸多孔質膜は、フィルター用濾材として好適に利用することができる。
1:圧延フィルムの巻出しロール
2、18:巻き取りロール
3、4、5、8、9、10、11、12:ロール
6、7:ヒートロール
13:長手方向延伸フィルムの巻き出しロール
14:予熱ゾーン
15:延伸ゾーン
16:熱固定ゾーン
17:ラミネートロール

Claims (8)

  1. テトラフルオロエチレンとパーフルオロ(メチルビニルエーテル)とを共重合することにより得られたポリテトラフルオロエチレンからなる
    ことを特徴とする二軸延伸多孔質膜。
  2. ポリテトラフルオロエチレンは、全単量体単位に対して0.011モル%以上のパーフルオロ(メチルビニルエーテル)に由来する重合単位を含む請求項1記載の二軸延伸多孔質膜。
  3. ポリテトラフルオロエチレンは、全単量体単位に対して0.025モル%以上のパーフルオロ(メチルビニルエーテル)に由来する重合単位を含む請求項1又は2記載の二軸延伸多孔質膜。
  4. ポリテトラフルオロエチレンは、標準比重が2.160以下である請求項1、2又は3記載の二軸延伸多孔質膜。
  5. ポリテトラフルオロエチレンは、押出圧力が20.0MPa以下、かつ破断強度が28N以上である請求項1、2、3又は4記載の二軸延伸多孔質膜。
  6. 請求項1、2、3、4又は5記載の二軸延伸多孔質膜を含むフィルター用濾材。
  7. 請求項6記載のフィルター用濾材と、前記フィルター用濾材を保持する枠体と、を備えるフィルターユニット。
  8. 請求項1、2、3、4又は5記載の二軸延伸多孔質膜を含む高分子電解質膜。
PCT/JP2014/081777 2013-11-29 2014-12-01 二軸延伸多孔質膜 WO2015080291A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14866220.8A EP3075768A4 (en) 2013-11-29 2014-12-01 Biaxially-oriented porous film
CN201480065029.6A CN105793336B (zh) 2013-11-29 2014-12-01 双向拉伸多孔质膜
US15/100,013 US20170002156A1 (en) 2013-11-29 2014-12-01 Biaxially-stretched porous membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013248708 2013-11-29
JP2013-248708 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080291A1 true WO2015080291A1 (ja) 2015-06-04

Family

ID=53199225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081777 WO2015080291A1 (ja) 2013-11-29 2014-12-01 二軸延伸多孔質膜

Country Status (6)

Country Link
US (1) US20170002156A1 (ja)
EP (1) EP3075768A4 (ja)
JP (2) JP6218723B2 (ja)
CN (1) CN105793336B (ja)
TW (2) TW201834827A (ja)
WO (1) WO2015080291A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121981A1 (ja) * 2018-12-10 2020-06-18 ダイキン工業株式会社 テトラフルオロエチレン重合体、エアフィルタ濾材、フィルタパック、および、エアフィルタユニット
WO2020158940A1 (ja) * 2019-02-01 2020-08-06 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
CN112297475A (zh) * 2020-11-05 2021-02-02 中国长江三峡集团有限公司 一种增强基于ptfe膜强度的高温高线压力微共晶方法
WO2022050252A1 (ja) 2020-09-01 2022-03-10 ダイキン工業株式会社 全固体二次電池用合剤、全固体二次電池用合剤シート及びその製造方法並びに全固体二次電池
WO2022050251A1 (ja) 2020-09-01 2022-03-10 ダイキン工業株式会社 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池
WO2022138940A1 (ja) 2020-12-25 2022-06-30 ダイキン工業株式会社 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池
WO2022138939A1 (ja) 2020-12-25 2022-06-30 ダイキン工業株式会社 非水系電解液を使用する二次電池用電極の製造方法及び非水系電解液を使用する二次電池電極用結着剤
WO2022138942A1 (ja) 2020-12-25 2022-06-30 ダイキン工業株式会社 固体二次電池用シートの製造方法及び固体二次電池用結着剤
CN115819912A (zh) * 2022-10-12 2023-03-21 嘉兴富瑞邦新材料科技有限公司 一种透气聚四氟乙烯拉伸膜及其制备方法
WO2023063390A1 (ja) 2021-10-14 2023-04-20 ダイキン工業株式会社 二次電池電極用合剤組成物、電極合剤シートの製造方法、電極合剤シート、電極及び二次電池
WO2023063389A1 (ja) 2021-10-14 2023-04-20 ダイキン工業株式会社 電気化学デバイス用の合剤シート製造装置及び合剤シート製造方法
WO2023167298A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
WO2023167299A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167300A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167301A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167296A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート、二次電池用合剤シートの製造方法及び二次電池
WO2023167297A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
WO2024004871A1 (ja) * 2022-06-30 2024-01-04 ダイキン工業株式会社 固体二次電池用シートの製造方法、固体二次電池電極用結着剤、電極作製用組成物、電極合剤、及び、電極

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862751B2 (ja) 2013-11-29 2016-02-16 ダイキン工業株式会社 多孔質体、高分子電解質膜、フィルター用濾材及びフィルターユニット
CA2932014C (en) 2013-11-29 2019-03-12 Asahi Kasei Kabushiki Kaisha Polymer electrolyte film
EP3053937B1 (en) 2013-11-29 2019-02-27 Daikin Industries, Ltd. Modified polytetrafluoroethylene fine powder and uniaxially oriented porous body
KR20160091386A (ko) * 2013-11-29 2016-08-02 아사히 가세이 가부시키가이샤 고분자 전해질막
CN105793336B (zh) * 2013-11-29 2019-12-24 大金工业株式会社 双向拉伸多孔质膜
WO2017090247A1 (ja) * 2015-11-24 2017-06-01 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜
WO2018116513A1 (ja) * 2016-12-22 2018-06-28 住友電工ファインポリマー株式会社 多孔質材料、ガスセンサ及び多孔質材料の製造方法
CN108807786B (zh) * 2017-05-04 2020-05-15 宁波昌祺微滤膜科技有限公司 一种用于电池隔离的增强膜及其制备方法
CN111491719B (zh) * 2017-12-18 2022-11-29 香港科技大学 柔性多功能高孔隙率超薄聚乙烯膜的合成方法
JP6590350B1 (ja) * 2018-11-15 2019-10-16 有限会社ヤマカツラボ 未焼成ポリテトラフルオロエチレンフィルム及びその多孔質膜の製造方法
EP3988300A4 (en) * 2019-07-16 2023-08-02 Daikin Industries, Ltd. PRINTED CIRCUIT BOARD RESIN COMPOSITION, PRINTED CIRCUIT BOARD MOLDED BODY, PRINTED CIRCUIT BOARD LAMINATED BODY, AND PRINTED CIRCUIT BOARD
JP7316893B2 (ja) * 2019-09-27 2023-07-28 三井・ケマーズ フロロプロダクツ株式会社 高強度小孔径のポリテトラフルオロエチレン多孔膜
CN114556678B (zh) * 2019-10-21 2024-09-03 日本戈尔合同会社 具有改进的气体与湿气渗透率比的电池
CN110878133A (zh) * 2019-11-08 2020-03-13 常熟三爱富中昊化工新材料有限公司 亲水聚四氟乙烯微孔膜及其制备方法
TW202200259A (zh) * 2020-05-08 2022-01-01 日商科慕 三井氟產品股份有限公司 具有高強度及小孔徑之聚四氟乙烯及/或經改質之聚四氟乙烯的多孔膜
CN115449105B (zh) * 2022-10-12 2023-08-18 嘉兴富瑞邦新材料科技有限公司 一种聚四氟乙烯拉伸膜制备方法与应用

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
JPH05202217A (ja) 1991-07-23 1993-08-10 Daikin Ind Ltd ポリテトラフルオロエチレン多孔膜
JPH11501961A (ja) 1995-03-10 1999-02-16 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 多孔質ptfeフィルムとその製造方法
JPH11501964A (ja) 1995-03-15 1999-02-16 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 部分要素からなる複合膜
JPH11240917A (ja) 1997-12-26 1999-09-07 Asahi Glass Co Ltd テトラフルオロエチレン系共重合体とその用途
JP2000143727A (ja) 1998-11-13 2000-05-26 E I Du Pont De Nemours & Co ポリテトラフルオロエチレン樹脂
JP2000300921A (ja) 1999-04-21 2000-10-31 Nitto Denko Corp エアフィルタ濾材およびそれを用いたエアフィルタユニット
JP2002201277A (ja) 2000-12-28 2002-07-19 Mitsui Chemicals Inc ポリカーボネート樹脂、及びそれを含んで構成される光学部品
JP2002201217A (ja) 2000-10-30 2002-07-19 Asahi Glass Co Ltd 強度に優れるテトラフルオロエチレン重合体
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
WO2003033555A1 (en) 2001-10-15 2003-04-24 Gore Enterprise Holdings, Inc. Tetrafluoroethylene-perfluorobutylethene-copolymer
US6808553B2 (en) 2001-06-13 2004-10-26 Nitto Denko Corporation Filter medium for turbine and methods of using and producing the same
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
WO2005061567A1 (ja) 2003-12-22 2005-07-07 Daikin Industries, Ltd. 非溶融加工性ポリテトラフルオロエチレン及びそのファインパウダー
JP2005527652A (ja) 2002-01-04 2005-09-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 濃縮フルオロポリマー分散液
WO2007005361A1 (en) 2005-07-05 2007-01-11 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
WO2007011492A1 (en) 2005-07-18 2007-01-25 Gore Enterprise Holdings, Inc. Porous ptfe materials and articles produced therefrom
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
WO2007069714A1 (ja) * 2005-12-15 2007-06-21 Tonen Chemical Corporation 親水性複合微多孔膜及びその製造方法
WO2007119526A1 (ja) 2006-04-14 2007-10-25 Bridgestone Corporation インラインヒータ及びその製造方法
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
JP2008525692A (ja) 2004-12-23 2008-07-17 ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツング タービン空気吸入口フィルター
WO2009001894A1 (ja) 2007-06-28 2008-12-31 Daikin Industries, Ltd. ポリテトラフルオロエチレン水性分散液及びその製造方法
WO2009116446A1 (ja) 2008-03-19 2009-09-24 旭化成イーマテリアルズ株式会社 高分子電解質及びその製造方法
WO2010113950A1 (ja) 2009-03-30 2010-10-07 ダイキン工業株式会社 ポリテトラフルオロエチレン及びその製造方法
WO2013115278A1 (ja) * 2012-02-02 2013-08-08 旭硝子株式会社 ポリテトラフルオロエチレンファインパウダーの製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360979A (en) * 1976-11-11 1978-05-31 Daikin Ind Ltd Polytetrafluoroethylene fine powder and its preparation
DE69424569T2 (de) * 1993-01-25 2001-01-18 Daikin Industries, Ltd. Poröser Film aus Polytetrafluoroethylen
JP3271524B2 (ja) * 1996-08-12 2002-04-02 ダイキン工業株式会社 変性ポリテトラフルオロエチレンファインパウダー及びその製造方法
KR100441808B1 (ko) * 1997-03-19 2004-07-27 다이낑 고오교 가부시키가이샤 폴리테트라플루오로에틸렌 성형품 및 그 제조방법
AU9441498A (en) * 1997-09-22 1999-04-12 W.L. Gore & Associates Gmbh An electrochemical energy storage means
US6136933A (en) * 1998-11-13 2000-10-24 E. I. Du Pont De Nemours And Company Process for polymerizing tetrafluoroethylene
JP3552686B2 (ja) * 2000-10-30 2004-08-11 旭硝子株式会社 延伸用テトラフルオロエチレン重合体からなる多孔体フィルム
DE60135894D1 (de) * 2000-10-30 2008-11-06 Asahi Glass Co Ltd Tetrafluoroethylenpolymer für Dehnung
JP5135658B2 (ja) * 2001-08-02 2013-02-06 ダイキン工業株式会社 ポリテトラフルオロエチレンファインパウダー、それから得られるポリテトラフルオロエチレン成形体およびその製造方法
WO2004030132A1 (ja) * 2002-09-30 2004-04-08 Asahi Glass Company, Limited 電解質膜、その製造方法及び固体高分子型燃料電池
JP2007069714A (ja) * 2005-09-06 2007-03-22 Denso Corp 車両用空調装置
EP2011804B1 (en) * 2006-04-13 2013-01-16 Daikin Industries, Ltd. Tetrafluoroethylene polymer and aqueous dispersion thereof
JP2010132712A (ja) * 2007-03-13 2010-06-17 Daikin Ind Ltd 多孔体及びフィルター
US9040646B2 (en) * 2007-10-04 2015-05-26 W. L. Gore & Associates, Inc. Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
CN102037028A (zh) * 2008-05-21 2011-04-27 旭硝子株式会社 聚四氟乙烯细粉的制造方法
JP5544505B2 (ja) * 2009-02-27 2014-07-09 旭硝子株式会社 ポリテトラフルオロエチレン延伸フィルムの製造方法およびポリテトラフルオロエチレン延伸フィルム
US8658707B2 (en) * 2009-03-24 2014-02-25 W. L. Gore & Associates, Inc. Expandable functional TFE copolymer fine powder, the expanded functional products obtained therefrom and reaction of the expanded products
GB201007043D0 (en) * 2010-04-28 2010-06-09 3M Innovative Properties Co Process for producing ptfe and articles thereof
US9309335B2 (en) * 2010-09-30 2016-04-12 Daikin Industries, Ltd. Process for producing polytetrafluoroethylene fine powder
JP5418584B2 (ja) * 2010-12-21 2014-02-19 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
WO2012086710A1 (ja) * 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
EP2837653B1 (en) * 2012-04-11 2020-05-06 Sumitomo Electric Fine Polymer, Inc. Method for producing fluororesin microporous film
TWI639462B (zh) * 2012-04-20 2018-11-01 Daikin Industries, Ltd. 以聚四氟乙烯(ptfe)為主成分之組合物、混合粉末及成形用材料
EP3061512B1 (en) * 2013-10-23 2020-12-09 Daikin Industries, Ltd. Embossed filter medium for air filter, filter pack, air filter unit, and production method for embossed filter medium for air filter
CN105793336B (zh) * 2013-11-29 2019-12-24 大金工业株式会社 双向拉伸多孔质膜

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
JPH05202217A (ja) 1991-07-23 1993-08-10 Daikin Ind Ltd ポリテトラフルオロエチレン多孔膜
JPH11501961A (ja) 1995-03-10 1999-02-16 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 多孔質ptfeフィルムとその製造方法
JPH11501964A (ja) 1995-03-15 1999-02-16 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 部分要素からなる複合膜
JPH11240917A (ja) 1997-12-26 1999-09-07 Asahi Glass Co Ltd テトラフルオロエチレン系共重合体とその用途
JP2000143727A (ja) 1998-11-13 2000-05-26 E I Du Pont De Nemours & Co ポリテトラフルオロエチレン樹脂
JP2000300921A (ja) 1999-04-21 2000-10-31 Nitto Denko Corp エアフィルタ濾材およびそれを用いたエアフィルタユニット
JP2002201217A (ja) 2000-10-30 2002-07-19 Asahi Glass Co Ltd 強度に優れるテトラフルオロエチレン重合体
JP2002201277A (ja) 2000-12-28 2002-07-19 Mitsui Chemicals Inc ポリカーボネート樹脂、及びそれを含んで構成される光学部品
US6808553B2 (en) 2001-06-13 2004-10-26 Nitto Denko Corporation Filter medium for turbine and methods of using and producing the same
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
WO2003033555A1 (en) 2001-10-15 2003-04-24 Gore Enterprise Holdings, Inc. Tetrafluoroethylene-perfluorobutylethene-copolymer
JP2005527652A (ja) 2002-01-04 2005-09-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 濃縮フルオロポリマー分散液
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
WO2005061567A1 (ja) 2003-12-22 2005-07-07 Daikin Industries, Ltd. 非溶融加工性ポリテトラフルオロエチレン及びそのファインパウダー
JP2008525692A (ja) 2004-12-23 2008-07-17 ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツング タービン空気吸入口フィルター
WO2007005361A1 (en) 2005-07-05 2007-01-11 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
WO2007011492A1 (en) 2005-07-18 2007-01-25 Gore Enterprise Holdings, Inc. Porous ptfe materials and articles produced therefrom
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
WO2007069714A1 (ja) * 2005-12-15 2007-06-21 Tonen Chemical Corporation 親水性複合微多孔膜及びその製造方法
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
WO2007119526A1 (ja) 2006-04-14 2007-10-25 Bridgestone Corporation インラインヒータ及びその製造方法
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
WO2009001894A1 (ja) 2007-06-28 2008-12-31 Daikin Industries, Ltd. ポリテトラフルオロエチレン水性分散液及びその製造方法
WO2009116446A1 (ja) 2008-03-19 2009-09-24 旭化成イーマテリアルズ株式会社 高分子電解質及びその製造方法
WO2010113950A1 (ja) 2009-03-30 2010-10-07 ダイキン工業株式会社 ポリテトラフルオロエチレン及びその製造方法
WO2013115278A1 (ja) * 2012-02-02 2013-08-08 旭硝子株式会社 ポリテトラフルオロエチレンファインパウダーの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GIERKE, T. D.; MUNN, G. E.; WILSON, F. C., J. POLYMER SCI., POLYMER PHYS, vol. 19, 1981, pages 1687
See also references of EP3075768A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121981A1 (ja) * 2018-12-10 2020-06-18 ダイキン工業株式会社 テトラフルオロエチレン重合体、エアフィルタ濾材、フィルタパック、および、エアフィルタユニット
JP2020094210A (ja) * 2018-12-10 2020-06-18 ダイキン工業株式会社 テトラフルオロエチレン重合体、エアフィルタ濾材、フィルタパック、および、エアフィルタユニット
WO2020158940A1 (ja) * 2019-02-01 2020-08-06 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
JPWO2020158940A1 (ja) * 2019-02-01 2021-10-28 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
JP7060826B2 (ja) 2019-02-01 2022-04-27 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
WO2022050252A1 (ja) 2020-09-01 2022-03-10 ダイキン工業株式会社 全固体二次電池用合剤、全固体二次電池用合剤シート及びその製造方法並びに全固体二次電池
WO2022050251A1 (ja) 2020-09-01 2022-03-10 ダイキン工業株式会社 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池
CN112297475A (zh) * 2020-11-05 2021-02-02 中国长江三峡集团有限公司 一种增强基于ptfe膜强度的高温高线压力微共晶方法
WO2022138942A1 (ja) 2020-12-25 2022-06-30 ダイキン工業株式会社 固体二次電池用シートの製造方法及び固体二次電池用結着剤
WO2022138940A1 (ja) 2020-12-25 2022-06-30 ダイキン工業株式会社 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池
WO2022138939A1 (ja) 2020-12-25 2022-06-30 ダイキン工業株式会社 非水系電解液を使用する二次電池用電極の製造方法及び非水系電解液を使用する二次電池電極用結着剤
WO2023063389A1 (ja) 2021-10-14 2023-04-20 ダイキン工業株式会社 電気化学デバイス用の合剤シート製造装置及び合剤シート製造方法
WO2023063390A1 (ja) 2021-10-14 2023-04-20 ダイキン工業株式会社 二次電池電極用合剤組成物、電極合剤シートの製造方法、電極合剤シート、電極及び二次電池
WO2023167298A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
WO2023167299A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167300A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167301A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167296A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート、二次電池用合剤シートの製造方法及び二次電池
WO2023167297A1 (ja) 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
WO2024004871A1 (ja) * 2022-06-30 2024-01-04 ダイキン工業株式会社 固体二次電池用シートの製造方法、固体二次電池電極用結着剤、電極作製用組成物、電極合剤、及び、電極
JP7486006B2 (ja) 2022-06-30 2024-05-17 ダイキン工業株式会社 固体二次電池用シートの製造方法、固体二次電池電極用結着剤、電極作製用組成物、電極合剤、及び、電極
CN115819912B (zh) * 2022-10-12 2023-07-14 嘉兴富瑞邦新材料科技有限公司 一种透气聚四氟乙烯拉伸膜及其制备方法
CN115819912A (zh) * 2022-10-12 2023-03-21 嘉兴富瑞邦新材料科技有限公司 一种透气聚四氟乙烯拉伸膜及其制备方法

Also Published As

Publication number Publication date
CN105793336B (zh) 2019-12-24
JP2015127412A (ja) 2015-07-09
TWI713443B (zh) 2020-12-21
JP2016145361A (ja) 2016-08-12
EP3075768A4 (en) 2017-06-21
EP3075768A1 (en) 2016-10-05
JP6218723B2 (ja) 2017-10-25
CN105793336A (zh) 2016-07-20
US20170002156A1 (en) 2017-01-05
TW201834827A (zh) 2018-10-01
TW201532783A (zh) 2015-09-01

Similar Documents

Publication Publication Date Title
JP6218723B2 (ja) 二軸延伸多孔質膜
JP5862751B2 (ja) 多孔質体、高分子電解質膜、フィルター用濾材及びフィルターユニット
JP5823601B2 (ja) 高分子電解質膜
JP5849148B2 (ja) 高分子電解質膜
US8937132B2 (en) Polytetrafluoroethylene mixture
JP6053559B2 (ja) 延伸材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15100013

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014866220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866220

Country of ref document: EP