Nothing Special   »   [go: up one dir, main page]

WO2015080095A1 - Method for regenerating molten salt for chemical reinforcement of glass - Google Patents

Method for regenerating molten salt for chemical reinforcement of glass Download PDF

Info

Publication number
WO2015080095A1
WO2015080095A1 PCT/JP2014/081085 JP2014081085W WO2015080095A1 WO 2015080095 A1 WO2015080095 A1 WO 2015080095A1 JP 2014081085 W JP2014081085 W JP 2014081085W WO 2015080095 A1 WO2015080095 A1 WO 2015080095A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
molten salt
glass
regenerated
chemical strengthening
Prior art date
Application number
PCT/JP2014/081085
Other languages
French (fr)
Japanese (ja)
Inventor
出 鹿島
祐輔 藤原
玉井 喜芳
啓吾 日野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480051561.2A priority Critical patent/CN105555730B/en
Priority to JP2015550932A priority patent/JP6455441B2/en
Publication of WO2015080095A1 publication Critical patent/WO2015080095A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a method for regenerating a molten salt used for chemical strengthening treatment, and particularly to a method for regenerating a molten salt containing potassium nitrate.
  • Cover glass of display devices such as digital cameras, mobile phones, and PDAs (Personal Digital Assistants), and glass substrates of displays are sometimes referred to simply as “chemically tempered glass” glass that has been chemically strengthened by ion exchange or the like. .) Is used.
  • Chemical strengthening treatment by ion exchange compresses the glass surface by substituting metal ions with a small ionic radius (for example, Na ions) and metal ions with a larger ionic radius (for example, K ions) contained in the glass. This is a process for generating a stress layer and improving the strength of the glass.
  • metal ions with a small ionic radius for example, Na ions
  • metal ions with a larger ionic radius for example, K ions
  • the molten salt in which the desired CS value cannot be obtained by the chemical strengthening treatment is usually allowed to cool and solidify, and then ground into small blocks and discarded.
  • waste molten salt (waste salt) cannot be used again, but there existed problems, such as having to use a large amount of molten salt. Therefore, in Patent Document 1, it is assumed that Li or Cs in the glass component is mixed as an impurity in the molten salt, and that the ion exchange capacity of the molten salt is reduced.
  • a method of regenerating a molten salt by allowing it to fall into water as a shower and dissolving, cooling and separating the molten salt in the water is disclosed.
  • an object of the present invention is to provide a method for regenerating a molten salt for glass chemical strengthening treatment that has little influence on glass performance.
  • the present inventors dissolved the molten salt (waste salt) used in the chemical strengthening treatment in an aqueous solution at a temperature lower than the melting point, cooled and dried, thereby reducing the Na concentration. Only the salt can be taken out, and it has been found that the salt having a low Na concentration can be used again as a molten salt for chemical strengthening treatment of glass, and the present invention has been completed.
  • the present invention relates to the following ⁇ 1> to ⁇ 6>.
  • ⁇ 1> A method for regenerating a molten salt for glass chemical strengthening, the step of dissolving the molten salt after glass chemical strengthening treatment in water at a temperature lower than the melting point of the molten salt, and cooling the aqueous solution obtained in the melting step
  • a method for regenerating a molten salt for strengthening glass chemistry comprising a step of obtaining a regenerated salt and a step of drying to reduce the water content in the regenerated salt to less than 5% by mass.
  • ⁇ 2> The method for regenerating a molten salt for strengthening glass chemistry according to ⁇ 1>, wherein the step of cooling the aqueous solution to obtain a regenerated salt further includes a step of concentrating the aqueous solution.
  • ⁇ 3> The method for regenerating a molten salt for glass chemical strengthening according to ⁇ 1> or ⁇ 2>, wherein the molten salt for glass chemical strengthening includes potassium nitrate.
  • ⁇ 4> The method for regenerating a molten salt for glass chemical strengthening according to any one of ⁇ 1> to ⁇ 3>, wherein a moisture content in the regenerated salt is less than 0.2% by mass in the drying step.
  • ⁇ 5> In the step of cooling the aqueous solution to obtain a regenerated salt, the cooled solution is solid-liquid separated into a regenerated salt and a filtrate, and a part of the filtrate is mixed with the solution in the dissolution step, ⁇ 1
  • ⁇ 6> The regenerated salt obtained by the solid-liquid separation is washed, further solid-liquid separated into a regenerated salt and a filtrate, and a part of the filtrate is mixed with the dissolved solution in the dissolving step.
  • a part of the molten salt (waste salt) after the chemical strengthening treatment that has been conventionally discarded can be used again for the chemical strengthening treatment.
  • the amount of molten salt discarded can be reduced, the danger associated with transporting the molten salt to be discarded can be reduced, and the load on the environment can be reduced.
  • the chemically strengthened glass obtained by the chemical strengthening treatment using the regenerated salt exhibits good surface compressive stress and strength. Is very useful.
  • FIG. 1 is a flowchart showing an embodiment of a method for regenerating a molten salt for glass chemical strengthening according to the present invention.
  • FIG. 2 is a solubility curve showing measured values of the solubility of a salt that can be contained in the molten salt after glass chemical strengthening treatment with respect to 100 g of water.
  • FIG. 3 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 2 and the recovered salt recovery rate.
  • FIG. 4 is a graph showing the relationship between the number of recycles of the regenerated salt obtained in Example 2 and the regenerated salt Na concentration.
  • FIG. 5 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 3 and the recovered salt recovery rate.
  • FIG. 6 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 3 and the regenerated salt Na concentration.
  • FIG. 7 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 4 and the recovered salt recovery rate.
  • FIG. 8 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 4 and the concentration of regenerated salt Na.
  • the present invention is a method for regenerating a molten salt for chemical strengthening, the step of dissolving the molten salt after glass chemical strengthening treatment in water at a temperature below the melting point of the molten salt, cooling the obtained aqueous solution to obtain the regenerated salt. And a step of obtaining a moisture content in the regenerated salt of less than 5% by mass by drying.
  • FIG. 1 shows an embodiment of a method for regenerating a molten salt for glass chemical strengthening according to the present invention.
  • the chemical strengthening treatment of glass involves immersing glass as a raw material in a molten salt for glass strengthening (sometimes simply referred to as “molten salt”), and Na in the glass ion exchanges with K in the molten salt.
  • molten salt for glass strengthening
  • Na in the glass ion exchanges with K in the molten salt a compressive stress layer that is a high-density layer is formed on the glass surface.
  • the molten salt in the present invention contains an inorganic potassium salt.
  • the inorganic potassium salt preferably has a melting point below the strain point (usually 500 to 600 ° C.) of the glass to be chemically strengthened.
  • a molten salt containing potassium nitrate (melting point 330 ° C.) as a main component (potassium nitrate molten) Salt) is preferred. If potassium nitrate is a main component, it is preferable because it is in a molten state below the strain point of glass and is easy to handle in the operating temperature range.
  • the main component means that the content in the molten salt is 50% by mass or more.
  • the molten salt is further selected from the group consisting of K 2 CO 3 , Na 2 CO 3 , KHCO 3 , NaHCO 3 , K 3 PO 4 , Na 3 PO 4 , K 2 SO 4 , Na 2 SO 4 , KOH and NaOH. It is preferable to contain at least one salt, and it is more preferable to contain at least one salt selected from the group consisting of K 2 CO 3 , Na 2 CO 3 , KHCO 3 and NaHCO 3 .
  • the content of K 2 CO 3 in the molten salt is 0.1% by mass or more, and chemical strengthening is performed.
  • the chemical strengthening treatment time is preferably 1 minute to 10 hours, more preferably 5 minutes to 8 hours, and even more preferably 10 minutes to 4 hours.
  • the molten salt used for the chemical strengthening treatment in the present invention may contain other chemical species as long as the effects of the present invention are not impaired, for example, sodium chloride, potassium chloride, sodium borate, boric acid.
  • alkali chlorides such as potassium and alkali borates. These may be added alone or in combination of two or more.
  • the molten salt used for the glass chemical strengthening treatment can be produced by a known method, and the glass can be chemically strengthened by a known method using the molten salt.
  • the molten salt is solidified by cooling or cooling the molten salt (waste salt) in which a desired surface compressive stress cannot be obtained by chemical strengthening treatment to a temperature below the melting point of the molten salt.
  • the waste salt includes potassium nitrate and sodium nitrate.
  • the waste salt includes potassium salt and sodium salt of the added salt. That is, for example, when potassium carbonate (K 2 CO 3 ) is added, the waste salt includes potassium carbonate and sodium carbonate.
  • the concentration of Na in the waste salt is generally 4000 to 20000 mass ppm.
  • the waste salt Na is present at a higher concentration than in the molten salt before the chemical strengthening treatment.
  • the solid waste salt having a high Na concentration is taken out and dissolved in water.
  • the waste salt in the solid state is preferably divided as appropriate in order to facilitate dissolution, and is preferably divided into, for example, a size of 1000 cm 3 or less.
  • Water for dissolving the waste salt is not particularly limited, and pure water, distilled water, or the like can be used. From the viewpoint of preventing an increase in impurities contained in the aqueous solution, pure water having an electric conductivity of 10 ⁇ S or less is preferable. .
  • the temperature of water at the time of dissolving the waste salt may be a temperature below the melting point of the molten salt, preferably 60 to 120 ° C, and more preferably 80 to 100 ° C from the viewpoint of easy handling. The water temperature can be appropriately adjusted by a known method such as a water bath or an oil bath.
  • concentration of the waste salt in aqueous solution is so preferable that it is high, and it is more preferable to melt
  • the stirring speed is usually 50 to 2000 rpm, preferably 100 to 1000 rpm.
  • the waste salt When the waste salt is completely dissolved in the water, cool the aqueous solution.
  • the desired salt contained in the waste salt is dissolved to saturation solubility, depending on the type of salt and the proportion contained in the waste salt, other salts may not be completely dissolved and remain in the aqueous solution as a solid. .
  • the foreign material contained in waste salt may remain.
  • the filtrate is cooled after removing undissolved salt and foreign matters by filtration or the like.
  • the filtration accuracy is preferably 100 ⁇ m or less, more preferably 0.2 ⁇ m or more and 100 ⁇ m or less.
  • the cooling can be performed by a known method such as natural cooling (cooling), water cooling, or ice cooling. Cooling is preferably performed to 25 ° C. or lower, more preferably 20 ° C. or lower, and further preferably 10 ° C. or lower, more preferably from the viewpoint of increasing the yield.
  • the waste salt and the precipitate include potassium nitrate and sodium nitrate. Further, depending on the type of salt added to the molten salt, the precipitate contains the potassium salt or sodium salt of the added salt.
  • FIG. 2 is a solubility curve (g / 100 g of water) of measured values showing the temperature dependence of solubility in water for potassium nitrate, sodium nitrate, potassium carbonate and sodium carbonate. According to this, when the temperature of the aqueous solution is around 70 ° C., the solubility of potassium nitrate is higher than that of sodium nitrate and potassium carbonate in the high temperature region, and the solubility of potassium nitrate is lower than that of sodium nitrate and potassium carbonate in the low temperature region.
  • the difference between the saturation solubility at the dissolved temperature and the saturation solubility at the cooled temperature Of the salt precipitates as a solid.
  • the salt to be used as the regenerated salt is potassium nitrate
  • the difference in saturation solubility of potassium nitrate is larger than the difference in saturation solubility of other salts
  • the precipitate deposited by cooling the aqueous solution is not discarded. It contains potassium nitrate at a higher rate than the salt, and the Na concentration in the precipitate is lower than the original waste salt. Therefore, the precipitate can be used again as a molten salt for glass chemical strengthening treatment, and can be called “regenerated salt”.
  • recrystallization causes a salt with a low Na concentration from a waste salt with a high Na concentration. Can be played. If the Na concentration in the regenerated salt is 1000 mass ppm or less, it can be reused for the chemical strengthening treatment of glass.
  • Concentration means to increase the salt concentration in the aqueous solution, but a known method such as vacuum concentration (vacuum concentration) or freeze concentration can be used. By concentrating the aqueous solution, a salt that can no longer be dissolved is deposited. By performing a combination of the cooling step and the concentration step of the aqueous solution, a regenerated salt having a lower Na concentration can be obtained with high efficiency.
  • the obtained regenerated salt is precipitated in the aqueous solution
  • solid-liquid separation is performed in order to use it again for the chemical strengthening treatment of glass.
  • known methods such as filtration and centrifugation can be used.
  • the molten salt for example, potassium nitrate
  • the Na concentration in the liquid smoke increases, and accordingly, the Na concentration in the regenerated salt also increases. Therefore, it is preferable to discard a part of the liquid smoke and control the Na concentration.
  • the amount of the liquid smoke to be reused can be determined in consideration of the Na concentration.
  • the regenerated salt may be washed.
  • the washing can be performed with pure water having an electric conductivity of 10 ⁇ S or less.
  • the temperature of the washing water is preferably 20 ° C. or less.
  • the yield of the regenerated salt obtained when washing is reduced, it is necessary to appropriately determine whether or not washing is necessary in consideration of the balance between the yield and purity according to the purpose.
  • the washing liquid is further solid-liquid separated to obtain regenerated salt. Since the molten salt (for example, potassium nitrate) remains in the liquid after solid-liquid separation, a part of the liquid can be mixed and reused in the waste salt solution. However, when recycling is repeated by reusing the liquid smoke, the Na concentration in the liquid smoke increases, and accordingly, the Na concentration in the regenerated salt also increases. Therefore, it is preferable to discard a part of the liquid smoke and control the Na concentration. The amount of the liquid smoke to be reused can be determined in consideration of the Na concentration.
  • the molten salt for example, potassium nitrate
  • the regenerated salt before drying contains about 6% by mass of water.
  • a stainless steel (SUS) container is used when the regenerated salt is heated to be subjected to chemical strengthening treatment to form a molten salt. If the amount of water in the regenerated salt is large, the regenerated salt is heated to form a molten salt. In the process, the SUS container corrodes. Due to the corrosion, suspended matters are generated in the molten salt, and if the glass is subjected to chemical strengthening treatment as it is, the performance of the resulting chemically strengthened glass is affected.
  • the smaller the amount of water in the regenerated salt the better, preferably less than 5% by mass, more preferably less than 2% by mass, still more preferably less than 1% by mass, and particularly preferably less than 0.2% by mass.
  • the water content in the regenerated salt can be measured by TGA (thermogravimetry). Distilled water produced by drying can be reused as a solvent for dissolving the waste salt. By reusing distilled water, it can contribute to the reduction of environmental burden.
  • the drying temperature may usually be 40 to 300 ° C, more preferably 80 to 200 ° C.
  • the drying time may usually be 1 to 12 hours, and more preferably 1 to 4 hours. Moreover, you may reduce pressure simultaneously with a heating at the time of drying.
  • a known method such as a hot plate or heating vacuum drying can be used. It is preferable to store the regenerated salt after drying in a sealed container in order to prevent moisture from entering.
  • the regenerated salt that has undergone the drying step can be used as a molten salt for glass chemical strengthening treatment by heating to a temperature at which the glass is chemically strengthened.
  • the regenerated salt obtained by the present invention can be reused as a molten salt repeatedly by the regenerating treatment of the present invention after being used as a molten salt for glass chemical strengthening treatment.
  • the regeneration method of the present invention by reusing a part of the liquid smoke after solid-liquid separation to dissolve the waste salt, the yield of the regenerated salt is increased while keeping the Na concentration in the regenerated salt below a predetermined level. Can be raised. If the filtrate is not reused, it is difficult to increase the yield of regenerated salt. On the other hand, when all the filtrates are reused, the Na concentration in the aqueous solution increases, and the Na concentration in the resulting regenerated salt also increases.
  • the regenerated salt obtained by the present invention contains nitrous acid in the range of 10 to 100 ppm by weight.
  • the amount of nitrous acid contained in a new potassium nitrate molten salt not subjected to chemical strengthening is usually 10 ppm by weight or less. It is thought that the nitric acid content increases because nitric acid in the molten salt changes to nitrous acid by repeated chemical strengthening.
  • the nitrous acid content in the molten salt can be measured by a naphthylethylenediamine colorimetric method.
  • the glass used for the chemical strengthening process in this invention should contain sodium and it has a composition which can be strengthened by shaping
  • Specific examples include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkali barium glass, and aluminoborosilicate glass.
  • aluminosilicate glass has a large amount of Na substitution in the glass, so that the molten salt is severely deteriorated. For this reason, it is preferable because the effect of the method for regenerating a molten salt according to the present invention can be remarkably obtained.
  • the glass can be manufactured and formed based on known methods.
  • the thickness of the glass used for the chemical strengthening treatment and the presence or absence of polishing are also arbitrary.
  • ⁇ Evaluation method> (Measurement of Na concentration)
  • the Na concentration in the waste salt and the regenerated salt was identified using an atomic absorption photometer “ZA-3300” manufactured by Hitachi High-Technologies Corporation.
  • the surface compressive stress of the aluminosilicate glass after the chemical strengthening treatment was evaluated using a surface stress meter “FSM-6000LE” manufactured by Orihara Seisakusho.
  • the amount of water contained in the regenerated salt was quantified using a heat drying moisture meter “MS-70” manufactured by A & D.
  • the aluminosilicate glass was chemically strengthened in a molten salt consisting only of potassium nitrate.
  • the chemical strengthening treatment temperature was 450 ° C.
  • the Na concentration in the molten salt (waste salt) after the chemical strengthening treatment was 6000 ppm.
  • the molten salt after the chemical strengthening treatment was naturally cooled to 25 ° C. to obtain a waste salt. 1000 g of solid waste salt was divided into sizes of 30 cm 3 or less, weighed into a 2000 mL beaker, and 800 g of pure water was added. While this was automatically stirred at 200 rpm, it was heated to 80 ° C. with a water bath to obtain an aqueous solution in which all waste salts were dissolved in pure water.
  • the waste salt After confirming that the waste salt was completely dissolved, it was ice-cooled to 1 ° C. with automatic stirring at 200 to 300 rpm to precipitate (recrystallize) the salt.
  • suction filtration was performed to separate the obtained salt crystals from the aqueous solution.
  • the crystals separated by filtration were collected and dried on a hot plate set at 80 ° C. for 5 hours to obtain 903 g of regenerated salt.
  • the obtained regenerated salt had a water content of 3% by mass and a nitrous acid content of 20 ppm.
  • the recovery rate was actually 90% against the theoretical yield of 94% obtained from the solubility curve.
  • the Na concentration in the obtained regenerated salt was 400 mass ppm.
  • Example 1 The regenerated salt obtained in Example 1 was heated to 450 ° C. in a SUS container to form a molten salt, and aluminosilicate glass preheated to 200 to 400 ° C. was immersed therein for 2 hours for chemical strengthening treatment. At this time, no suspended matter due to SUS corrosion was visually confirmed in the molten salt.
  • the glass was washed twice with ion exchange water at 20 to 80 ° C., and washed with running water with ion exchange water at room temperature.
  • the initial surface compressive stress (initial CS) of the obtained chemically strengthened glass was 844 MPa.
  • the initial CS when the aluminosilicate glass is chemically strengthened with new potassium nitrate not subjected to ion exchange treatment as a molten salt is 750 to 900 MPa.
  • Example 2 150 kg of waste salt containing potassium nitrate as a main component and Na concentration of 10,000 ppm was put in a SUS container, and 90.3 kg of pure water was added. This was heated to 90 ° C. with an electric heater and dissolved with stirring. After completely dissolving, it was taken out into another SUS container, cooled to room temperature by allowing to cool, and the salt was precipitated. Next, centrifugation was carried out to separate the obtained salt crystals and the aqueous solution, and a salt and a filtrate having a water content of 2% by mass were obtained. The obtained salt was washed with pure water and centrifuged again to obtain a salt and a filtrate having a water content of 2% by mass.
  • the obtained salt was dried at 200 ° C. for 8 hours to obtain a regenerated salt having a water content of 0.05 mass%, an Na concentration of 70 ppm, and a nitrous acid concentration of 40 ppm. Further, 43.7 kg of the filtrate obtained by centrifugation was discarded, and the remaining 104.8 kg of filtrate was placed in a SUS container together with 112.5 kg of waste salt, and 6.5 kg of pure water was added. This was similarly heated to 90 ° C. and dissolved with stirring. Thereafter, cooling, centrifugation, washing and centrifugation were performed to obtain a regenerated salt and a filtrate. Table 1 shows the experimental results obtained by repeating this. Table 2 shows the result of the simulation performed under the same conditions. Further, the graphs of these results are shown in FIGS.
  • Example 2 The regenerated salt obtained in Example 2 was heated to 450 ° C. in a SUS container to form a molten salt, and the initial CS of the chemically strengthened glass obtained by performing chemical strengthening treatment in the same manner as in Example 1 was 786 MPa. .
  • Example 3 In the simulation of Example 2, Table 3 shows the simulation result when the amount of discarded liquid is 53.7 kg, and Table 4 shows the simulation result when the amount of discarded waste is 33.7 kg. Moreover, what made these results into a graph is shown in FIG. 5 and FIG.
  • Example 4 In the simulation of Example 2, the simulation results when all of the liquid smoke is discarded are shown in Table 5. Table 6 shows the simulation results when all of the liquid smoke is reused. Moreover, what made these results into a graph is shown in FIG. 7 and FIG.
  • the regenerated salt obtained by the regenerating method according to the present invention has a very low water content and Na concentration, and even when reused as a molten salt for glass chemical strengthening treatment, It was found that a surface compressive stress equivalent to that of a new molten salt not subjected to ion exchange treatment can be applied. Further, the solubility curve shown in FIG. 2 suggests that the yield of the regenerated salt can be increased by lowering the precipitation temperature during recrystallization. Furthermore, it was found that the yield of regenerated salt can be increased by reusing the filtrate obtained during the solid-liquid separation. It was also found that the Na concentration in the regenerated salt obtained can be controlled by adjusting the amount of the liquid recycle to be reused.
  • a regenerated salt having a performance equivalent to that of a new molten salt can be obtained by subjecting the used molten salt provided to the chemically strengthened glass to a regeneration treatment.
  • This regeneration process can reduce the amount of used molten salt (waste salt) to be discarded, and can reduce the environmental impact and produce chemically tempered glass at a low cost, realizing high productivity. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 The present invention relates to a method for regenerating a molten salt for chemical reinforcement, the method for regenerating a molten salt for chemical reinforcement of glass including a step for dissolving a molten salt subsequent to glass chemical reinforcement treatment in water at a temperature less than the melting point of the molten salt, a step for cooling the resultant aqueous solution and obtaining a regenerated salt, and a step for bringing the moisture content in the regenerated salt to less than 5% by mass by drying.

Description

ガラス化学強化用溶融塩の再生方法Method for regenerating molten salt for glass chemical strengthening
 本発明は、化学強化処理に用いる溶融塩の再生方法に関し、特に、硝酸カリウムを含む溶融塩の再生方法に関する。 The present invention relates to a method for regenerating a molten salt used for chemical strengthening treatment, and particularly to a method for regenerating a molten salt containing potassium nitrate.
 デジタルカメラ、携帯電話およびPDA(Personal Digital Assistants)といったディスプレイ装置などのカバーガラスおよびディスプレイのガラス基板には、イオン交換等で化学強化処理したガラス(以下、単に「化学強化ガラス」と称することがある。)が用いられている。 Cover glass of display devices such as digital cameras, mobile phones, and PDAs (Personal Digital Assistants), and glass substrates of displays are sometimes referred to simply as “chemically tempered glass” glass that has been chemically strengthened by ion exchange or the like. .) Is used.
 イオン交換による化学強化処理は、ガラス中に含まれる小さいイオン半径の金属イオン(例えば、Naイオン)とより大きいイオン半径の金属イオン(例えば、Kイオン)とを置換することにより、ガラス表面に圧縮応力層を生じさせてガラスの強度を向上させる処理である。 Chemical strengthening treatment by ion exchange compresses the glass surface by substituting metal ions with a small ionic radius (for example, Na ions) and metal ions with a larger ionic radius (for example, K ions) contained in the glass. This is a process for generating a stress layer and improving the strength of the glass.
 硝酸カリウムを含む溶融塩(硝酸カリウム溶融塩)中において、ガラス中のNaイオンと溶融塩中のKイオンとをイオン交換することにより化学強化ガラスを製造する場合、化学強化処理を行うにつれて、ガラスから溶融塩中に溶け出すNaの量が増加し、溶融塩中のNaイオン濃度が高くなる。
 化学強化の特性のひとつである表面圧縮応力(CS)は、硝酸カリウム溶融塩中のNa濃度増加に伴い低下するため、得られる化学強化ガラスのCS値が基準値を下回ると、当該溶融塩を廃棄し、新たな溶融塩を使用する必要がある。
When producing chemically strengthened glass by ion exchange of Na ions in glass and K ions in molten salt in molten salt containing potassium nitrate (potassium nitrate molten salt), it is melted from the glass as the chemical strengthening treatment is performed. The amount of Na dissolved in the salt increases, and the Na ion concentration in the molten salt increases.
Since the surface compressive stress (CS), which is one of the characteristics of chemical strengthening, decreases as the Na concentration in the potassium nitrate molten salt increases, the molten salt is discarded when the CS value of the resulting chemically strengthened glass falls below the reference value. However, it is necessary to use a new molten salt.
 化学強化処理によって所望のCS値が得られなくなった溶融塩は、通常放冷固化した後、小ブロックに粉砕してから廃棄される。しかし、当該処理方法では廃溶融塩(廃塩)を再度使用することができず、溶融塩を多量に使用しなければならない等の課題があった。
 そこで特許文献1には、ガラス成分中のLi又はCsが不純物として溶融塩中に混入することが、当該溶融塩のイオン交換能力が低下する原因であるとして、高温溶融状態の塩を槽内の水中にシャワー状に降らせ、当該水中に溶融塩を溶解、冷却及び分離することにより、溶融塩を再生処理する方法が開示されている。
The molten salt in which the desired CS value cannot be obtained by the chemical strengthening treatment is usually allowed to cool and solidify, and then ground into small blocks and discarded. However, in the said processing method, waste molten salt (waste salt) cannot be used again, but there existed problems, such as having to use a large amount of molten salt.
Therefore, in Patent Document 1, it is assumed that Li or Cs in the glass component is mixed as an impurity in the molten salt, and that the ion exchange capacity of the molten salt is reduced. A method of regenerating a molten salt by allowing it to fall into water as a shower and dissolving, cooling and separating the molten salt in the water is disclosed.
日本国特開昭58-194761号公報Japanese Unexamined Patent Publication No. 58-194761
 しかしながら、再生処理された溶融塩を加熱して再び溶融状態とする過程で、溶融塩を保持するステンレス鋼製の容器が腐食することがあった。この腐食により溶融塩中に浮遊物が発生し、そのままガラスの化学強化処理を行うと、得られる化学強化ガラスの性能に影響を及ぼすことが懸念される。
 そこで本発明では、ガラス性能への影響が少ないガラス化学強化処理用溶融塩の再生方法を提供することを目的とする。
However, in the process of heating the regenerated molten salt to a molten state again, the stainless steel container holding the molten salt may corrode. Due to this corrosion, floating substances are generated in the molten salt, and if the glass is chemically strengthened as it is, there is a concern that the performance of the resulting chemically strengthened glass will be affected.
Therefore, an object of the present invention is to provide a method for regenerating a molten salt for glass chemical strengthening treatment that has little influence on glass performance.
 本発明者らは、鋭意研鑽を積んだ結果、化学強化処理に用いられた後の溶融塩(廃塩)を融点未満の温度で水溶液に溶解し、冷却、乾燥することによって、Na濃度の低い塩のみを取り出すことができ、当該Na濃度の低い塩を再度ガラスの化学強化処理用溶融塩として用いることができることを見出し、本発明を完成するに至った。 As a result of earnest study, the present inventors dissolved the molten salt (waste salt) used in the chemical strengthening treatment in an aqueous solution at a temperature lower than the melting point, cooled and dried, thereby reducing the Na concentration. Only the salt can be taken out, and it has been found that the salt having a low Na concentration can be used again as a molten salt for chemical strengthening treatment of glass, and the present invention has been completed.
 すなわち、本発明は下記<1>~<6>に関するものである。
<1>ガラス化学強化用溶融塩の再生方法であって、ガラス化学強化処理後の溶融塩を前記溶融塩の融点未満の温度で水に溶解する工程、前記溶解工程で得られた水溶液を冷却して再生塩を得る工程、及び、乾燥により前記再生塩中の水分量を5質量%未満とする工程を含む、ガラス化学強化用溶融塩の再生方法。
<2>前記水溶液を冷却して再生塩を得る工程において、さらに前記水溶液を濃縮する工程を含む、前記<1>に記載のガラス化学強化用溶融塩の再生方法。
<3>前記ガラス化学強化用溶融塩が硝酸カリウムを含む、前記<1>又は<2>に記載のガラス化学強化用溶融塩の再生方法。
<4>前記乾燥工程において前記再生塩中の水分量を0.2質量%未満とする、前記<1>~<3>のいずれかに記載のガラス化学強化用溶融塩の再生方法。
<5>前記水溶液を冷却して再生塩を得る工程において、冷却した溶液を再生塩と濾液とに固液分離して、濾液の一部を前記溶解工程における溶解液に混合する、前記<1>~<4>のいずれかに記載のガラス化学強化用溶融塩の再生方法。
<6>前記固液分離により得られた再生塩を洗浄し、さらに再生塩と濾液とに固液分離して、濾液の一部を前記溶解工程における溶解液に混合する、前記<5>に記載のガラス化学強化用溶融塩の再生方法。
That is, the present invention relates to the following <1> to <6>.
<1> A method for regenerating a molten salt for glass chemical strengthening, the step of dissolving the molten salt after glass chemical strengthening treatment in water at a temperature lower than the melting point of the molten salt, and cooling the aqueous solution obtained in the melting step A method for regenerating a molten salt for strengthening glass chemistry, comprising a step of obtaining a regenerated salt and a step of drying to reduce the water content in the regenerated salt to less than 5% by mass.
<2> The method for regenerating a molten salt for strengthening glass chemistry according to <1>, wherein the step of cooling the aqueous solution to obtain a regenerated salt further includes a step of concentrating the aqueous solution.
<3> The method for regenerating a molten salt for glass chemical strengthening according to <1> or <2>, wherein the molten salt for glass chemical strengthening includes potassium nitrate.
<4> The method for regenerating a molten salt for glass chemical strengthening according to any one of <1> to <3>, wherein a moisture content in the regenerated salt is less than 0.2% by mass in the drying step.
<5> In the step of cooling the aqueous solution to obtain a regenerated salt, the cooled solution is solid-liquid separated into a regenerated salt and a filtrate, and a part of the filtrate is mixed with the solution in the dissolution step, <1 The method for regenerating a molten salt for glass chemical strengthening according to any one of> to <4>.
<6> The regenerated salt obtained by the solid-liquid separation is washed, further solid-liquid separated into a regenerated salt and a filtrate, and a part of the filtrate is mixed with the dissolved solution in the dissolving step. A method for regenerating a molten salt for glass chemical strengthening as described.
 本発明に係るガラス化学強化用溶融塩の再生方法によれば、従来廃棄されていた化学強化処理後の溶融塩(廃塩)の一部を再度化学強化処理に使用することができるため、経済的に有用である。また、溶融塩の廃棄量を少なくすることができるため、廃棄する溶融塩の運搬等に伴う危険を減らすこともでき、環境への負荷も低減できる。さらに、得られた再生塩の水分量を5質量%未満とすることにより、当該再生塩を用いた化学強化処理により得られた化学強化ガラスは、良好な表面圧縮応力及び強度を示すことからも、非常に有用である。 According to the method for regenerating a molten salt for glass chemical strengthening according to the present invention, a part of the molten salt (waste salt) after the chemical strengthening treatment that has been conventionally discarded can be used again for the chemical strengthening treatment. Useful. In addition, since the amount of molten salt discarded can be reduced, the danger associated with transporting the molten salt to be discarded can be reduced, and the load on the environment can be reduced. Furthermore, by setting the water content of the obtained regenerated salt to less than 5% by mass, the chemically strengthened glass obtained by the chemical strengthening treatment using the regenerated salt exhibits good surface compressive stress and strength. Is very useful.
図1は、本発明に係るガラス化学強化用溶融塩の再生方法の一実施形態を示すフロー図である。FIG. 1 is a flowchart showing an embodiment of a method for regenerating a molten salt for glass chemical strengthening according to the present invention. 図2は、ガラス化学強化処理後の溶融塩に含まれ得る塩の、水100gに対する溶解性の測定値を示した溶解度曲線である。FIG. 2 is a solubility curve showing measured values of the solubility of a salt that can be contained in the molten salt after glass chemical strengthening treatment with respect to 100 g of water. 図3は、実施例2で得られた再生塩のリサイクル回数と再生塩回収率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 2 and the recovered salt recovery rate. 図4は、実施例2で得られた再生塩のリサイクル回数と再生塩Na濃度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the number of recycles of the regenerated salt obtained in Example 2 and the regenerated salt Na concentration. 図5は、実施例3で得られた再生塩のリサイクル回数と再生塩回収率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 3 and the recovered salt recovery rate. 図6は、実施例3で得られた再生塩のリサイクル回数と再生塩Na濃度との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 3 and the regenerated salt Na concentration. 図7は、実施例4で得られた再生塩のリサイクル回数と再生塩回収率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 4 and the recovered salt recovery rate. 図8は、実施例4で得られた再生塩のリサイクル回数と再生塩Na濃度との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the number of recycles of regenerated salt obtained in Example 4 and the concentration of regenerated salt Na.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
 本明細書において“質量%”と“重量%”、“質量ppm”と“重量ppm”とは、それぞれ同義である。また、単に“ppm”と記載した場合は、“重量ppm”のことを示す。
 また、本明細書において、「Na濃度」と表記した際は、Naとしての濃度を意味するものである。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention.
In the present specification, “mass%” and “weight%”, “mass ppm” and “weight ppm” have the same meaning. In addition, when “ppm” is simply described, it indicates “weight ppm”.
In this specification, “Na concentration” means a concentration as Na.
<溶融塩の再生>
 本発明は化学強化用溶融塩の再生方法であって、ガラス化学強化処理後の溶融塩を前記溶融塩の融点未満の温度で水に溶解する工程、得られた水溶液を冷却して再生塩を得る工程、及び、乾燥により前記再生塩中の水分量を5質量%未満とする工程を含むことを特徴とする。
<Regeneration of molten salt>
The present invention is a method for regenerating a molten salt for chemical strengthening, the step of dissolving the molten salt after glass chemical strengthening treatment in water at a temperature below the melting point of the molten salt, cooling the obtained aqueous solution to obtain the regenerated salt. And a step of obtaining a moisture content in the regenerated salt of less than 5% by mass by drying.
 図1に、本発明に係るガラス化学強化用溶融塩の再生方法の一実施形態を示す。 FIG. 1 shows an embodiment of a method for regenerating a molten salt for glass chemical strengthening according to the present invention.
 ガラスの化学強化処理は、原料であるガラスをガラス強化用溶融塩(単に「溶融塩」と称することもある。)中に浸漬させ、ガラス中のNaが溶融塩中のKとイオン交換することにより、ガラス表面に高密度層である圧縮応力層が形成される処理である。 The chemical strengthening treatment of glass involves immersing glass as a raw material in a molten salt for glass strengthening (sometimes simply referred to as “molten salt”), and Na in the glass ion exchanges with K in the molten salt. Thus, a compressive stress layer that is a high-density layer is formed on the glass surface.
 本発明における溶融塩は、無機カリウム塩を含有する。無機カリウム塩としては化学強化を行うガラスの歪点(通常500~600℃)以下に融点を有するものが好ましく、本発明においては硝酸カリウム(融点330℃)を主成分として含有する溶融塩(硝酸カリウム溶融塩)が好ましい。硝酸カリウムが主成分であれば、ガラスの歪点以下で溶融状態であり、かつ使用温度領域においてハンドリングが容易となることから好ましい。ここで主成分とは溶融塩における含有量が50質量%以上であることを意味する。 The molten salt in the present invention contains an inorganic potassium salt. The inorganic potassium salt preferably has a melting point below the strain point (usually 500 to 600 ° C.) of the glass to be chemically strengthened. In the present invention, a molten salt containing potassium nitrate (melting point 330 ° C.) as a main component (potassium nitrate molten) Salt) is preferred. If potassium nitrate is a main component, it is preferable because it is in a molten state below the strain point of glass and is easy to handle in the operating temperature range. Here, the main component means that the content in the molten salt is 50% by mass or more.
 溶融塩はさらに、KCO、NaCO、KHCO、NaHCO、KPO、NaPO、KSO、NaSO、KOH及びNaOHからなる群より選ばれる少なくとも1の塩を含有することが好ましく、中でもKCO、NaCO、KHCO及びNaHCOからなる群より選ばれる少なくとも1の塩を含有することがより好ましい。 The molten salt is further selected from the group consisting of K 2 CO 3 , Na 2 CO 3 , KHCO 3 , NaHCO 3 , K 3 PO 4 , Na 3 PO 4 , K 2 SO 4 , Na 2 SO 4 , KOH and NaOH. It is preferable to contain at least one salt, and it is more preferable to contain at least one salt selected from the group consisting of K 2 CO 3 , Na 2 CO 3 , KHCO 3 and NaHCO 3 .
 例えば硝酸カリウムを主成分とする溶融塩にKCOを添加してガラスの化学強化処理を行う場合には、溶融塩におけるKCOの含有量を0.1質量%以上とし、化学強化処理温度を350~500℃とすると、化学強化処理時間は1分~10時間が好ましく、5分~8時間がより好ましく、10分~4時間がさらに好ましい。 For example, when K 2 CO 3 is added to a molten salt containing potassium nitrate as a main component and glass is chemically strengthened, the content of K 2 CO 3 in the molten salt is 0.1% by mass or more, and chemical strengthening is performed. When the treatment temperature is 350 to 500 ° C., the chemical strengthening treatment time is preferably 1 minute to 10 hours, more preferably 5 minutes to 8 hours, and even more preferably 10 minutes to 4 hours.
 またさらに、本発明における化学強化処理に用いる溶融塩には、本発明の効果を阻害しない範囲で他の化学種を含んでいてもよく、例えば、塩化ナトリウム、塩化カリウム、ホウ酸ナトリウム、ホウ酸カリウム等のアルカリ塩化塩やアルカリホウ酸塩などが挙げられる。これらは単独で添加しても、複数種を組み合わせて添加してもよい。 Furthermore, the molten salt used for the chemical strengthening treatment in the present invention may contain other chemical species as long as the effects of the present invention are not impaired, for example, sodium chloride, potassium chloride, sodium borate, boric acid. Examples include alkali chlorides such as potassium and alkali borates. These may be added alone or in combination of two or more.
 ガラスの化学強化処理に用いる溶融塩は、公知の方法で製造することができ、該溶融塩を用い、公知の方法によりガラスの化学強化処理を行うことができる。 The molten salt used for the glass chemical strengthening treatment can be produced by a known method, and the glass can be chemically strengthened by a known method using the molten salt.
 化学強化処理によって、所望の表面圧縮応力が得られなくなった溶融塩(廃塩)を、溶融塩の融点未満の温度まで放冷又は冷却することにより、溶融塩は固化する。溶融塩として硝酸カリウムを含む溶融塩を用いた場合、廃塩には、硝酸カリウム及び硝酸ナトリウムが含まれる。また、溶融塩に添加する塩の種類によって、廃塩には添加した塩のカリウム塩やナトリウム塩も含まれることとなる。すなわち、例えば炭酸カリウム(KCO)を添加した場合には、廃塩には炭酸カリウムや炭酸ナトリウムも含まれる。
 廃塩中のNa濃度は一般的に4000~20000質量ppmである。
The molten salt is solidified by cooling or cooling the molten salt (waste salt) in which a desired surface compressive stress cannot be obtained by chemical strengthening treatment to a temperature below the melting point of the molten salt. When a molten salt containing potassium nitrate is used as the molten salt, the waste salt includes potassium nitrate and sodium nitrate. In addition, depending on the type of salt added to the molten salt, the waste salt includes potassium salt and sodium salt of the added salt. That is, for example, when potassium carbonate (K 2 CO 3 ) is added, the waste salt includes potassium carbonate and sodium carbonate.
The concentration of Na in the waste salt is generally 4000 to 20000 mass ppm.
 廃塩中には、化学強化処理を行う前の溶融塩中と比べてNaが高い濃度で存在している。この高Na濃度である固体状態の廃塩を取り出し、水に溶解させる。固体状態の廃塩は、溶解を容易にするために適宜分割することが好ましく、例えば1000cm以下のサイズに分割することが好ましい。 In the waste salt, Na is present at a higher concentration than in the molten salt before the chemical strengthening treatment. The solid waste salt having a high Na concentration is taken out and dissolved in water. The waste salt in the solid state is preferably divided as appropriate in order to facilitate dissolution, and is preferably divided into, for example, a size of 1000 cm 3 or less.
 廃塩を溶解する水としては、特に制限はなく、純水、蒸留水、等を用いることができ、水溶液中に含まれる不純物の増加を防ぐ観点から電気伝導度が10μS以下の純水が好ましい。
 廃塩溶解時の水の温度は溶融塩の融点未満の温度であればよく、60~120℃が好ましく、取り扱いの容易性から80~100℃がより好ましい。水温は、ウォーターバス、オイルバス等、公知の方法で適宜調整することができる。
 なお、水溶液中の廃塩の濃度は高いほど好ましく、飽和溶解度まで溶解していることがより好ましい。また、廃塩全体の飽和溶解度ではなく、廃塩に含まれる複数の塩のうち、再生塩として利用したい所望の塩の飽和溶解度まで溶解させることも好ましい。
Water for dissolving the waste salt is not particularly limited, and pure water, distilled water, or the like can be used. From the viewpoint of preventing an increase in impurities contained in the aqueous solution, pure water having an electric conductivity of 10 μS or less is preferable. .
The temperature of water at the time of dissolving the waste salt may be a temperature below the melting point of the molten salt, preferably 60 to 120 ° C, and more preferably 80 to 100 ° C from the viewpoint of easy handling. The water temperature can be appropriately adjusted by a known method such as a water bath or an oil bath.
In addition, the density | concentration of the waste salt in aqueous solution is so preferable that it is high, and it is more preferable to melt | dissolve to saturation solubility. Moreover, it is also preferable to make it melt | dissolve not to the saturation solubility of the whole waste salt but to the saturation solubility of the desired salt to utilize as a regenerated salt among the plurality of salts contained in the waste salt.
 廃塩を溶解させる際は、水を攪拌しながら溶解させることが、溶液を均一にできることから好ましい。攪拌速度は通常50~2000rpmであればよく、100~1000rpmが好ましい。 When dissolving the waste salt, it is preferable to dissolve the water while stirring since the solution can be made uniform. The stirring speed is usually 50 to 2000 rpm, preferably 100 to 1000 rpm.
 廃塩が水に完全に溶解したら、水溶液を冷却する。廃塩に含まれる所望の塩について飽和溶解度まで溶解させる場合には、塩の種類や廃塩に含まれる割合によっては、その他の塩が溶けきれずに固体のまま水溶液中に残留する場合がある。また、廃塩中に含まれる異物が残留する場合もある。その場合には、濾過等により溶解していない塩や異物を除去してから、濾液を冷却する。濾過精度としては100μm以下であることが好ましく、より好ましくは0.2μm以上100μm以下である。 When the waste salt is completely dissolved in the water, cool the aqueous solution. When the desired salt contained in the waste salt is dissolved to saturation solubility, depending on the type of salt and the proportion contained in the waste salt, other salts may not be completely dissolved and remain in the aqueous solution as a solid. . Moreover, the foreign material contained in waste salt may remain. In that case, the filtrate is cooled after removing undissolved salt and foreign matters by filtration or the like. The filtration accuracy is preferably 100 μm or less, more preferably 0.2 μm or more and 100 μm or less.
 冷却は自然冷却(放冷)、水冷、氷冷等、公知の方法を用いることができる。冷却は25℃以下まで行うことが好ましく、より好ましくは20℃以下、さらに好ましくは10℃以下まで冷却することが、収率を上げる点からより好ましい。 The cooling can be performed by a known method such as natural cooling (cooling), water cooling, or ice cooling. Cooling is preferably performed to 25 ° C. or lower, more preferably 20 ° C. or lower, and further preferably 10 ° C. or lower, more preferably from the viewpoint of increasing the yield.
 廃塩を溶解した際の温度における塩の溶解度と、冷却した際の温度における塩の溶解度の差により、冷却後の水溶液には析出物が生じる(晶析)。硝酸カリウムを含む溶融塩を用いた場合、廃塩及び当該析出物には、硝酸カリウム及び硝酸ナトリウムが含まれる。また、溶融塩に添加する塩の種類によって、該析出物には添加した塩のカリウム塩やナトリウム塩が含まれることとなる。 Due to the difference between the solubility of the salt at the temperature when the waste salt is dissolved and the solubility of the salt at the temperature at the time of cooling, precipitates are formed in the aqueous solution after cooling (crystallization). In the case of using a molten salt containing potassium nitrate, the waste salt and the precipitate include potassium nitrate and sodium nitrate. Further, depending on the type of salt added to the molten salt, the precipitate contains the potassium salt or sodium salt of the added salt.
 図2は、硝酸カリウム、硝酸ナトリウム、炭酸カリウム及び炭酸ナトリウムについて、水に対する溶解度の温度依存性を示した測定値の溶解度曲線(g/水100g)である。
 これによれば、水溶液の温度が70℃付近を境に、高温領域では硝酸カリウムの溶解度が硝酸ナトリウム及び炭酸カリウムよりも高くなり、低温領域では硝酸カリウムの溶解度は硝酸ナトリウム及び炭酸カリウムよりも低くなる。
 すなわち、硝酸カリウム、硝酸ナトリウム、炭酸カリウム及び炭酸ナトリウムの4種類の塩を含む廃塩を飽和溶解度まで溶解させた水溶液の場合、溶解させた温度における飽和溶解度と、冷却させた温度における飽和溶解度の差分の塩が固体として析出する。再生塩として使用したい塩を硝酸カリウムとした場合、硝酸カリウムの当該飽和溶解度の差が、その他の塩の飽和溶解度の差よりも大きい場合、該水溶液を冷却して析出した析出物は、もとの廃塩に比べて硝酸カリウムを高い割合で含んでおり、当該析出物中のNa濃度は、もとの廃塩よりも低くなる。そのため、当該析出物は、ガラス化学強化処理の溶融塩に再度使用することができ、「再生塩」と呼ぶことができる。
FIG. 2 is a solubility curve (g / 100 g of water) of measured values showing the temperature dependence of solubility in water for potassium nitrate, sodium nitrate, potassium carbonate and sodium carbonate.
According to this, when the temperature of the aqueous solution is around 70 ° C., the solubility of potassium nitrate is higher than that of sodium nitrate and potassium carbonate in the high temperature region, and the solubility of potassium nitrate is lower than that of sodium nitrate and potassium carbonate in the low temperature region.
That is, in the case of an aqueous solution in which waste salts containing four kinds of salts of potassium nitrate, sodium nitrate, potassium carbonate and sodium carbonate are dissolved to saturation solubility, the difference between the saturation solubility at the dissolved temperature and the saturation solubility at the cooled temperature Of the salt precipitates as a solid. When the salt to be used as the regenerated salt is potassium nitrate, when the difference in saturation solubility of potassium nitrate is larger than the difference in saturation solubility of other salts, the precipitate deposited by cooling the aqueous solution is not discarded. It contains potassium nitrate at a higher rate than the salt, and the Na concentration in the precipitate is lower than the original waste salt. Therefore, the precipitate can be used again as a molten salt for glass chemical strengthening treatment, and can be called “regenerated salt”.
 以上のように、本発明では、高温領域と低温領域とで硝酸カリウムと硝酸ナトリウムの溶解度の大小が逆転することを利用して、再結晶により、高Na濃度の廃塩から、低Na濃度の塩を再生することができる。再生塩中のNa濃度は1000質量ppm以下であれば、ガラスの化学強化処理に再利用することができる。 As described above, in the present invention, by utilizing the fact that the solubility of potassium nitrate and sodium nitrate is reversed between the high temperature region and the low temperature region, recrystallization causes a salt with a low Na concentration from a waste salt with a high Na concentration. Can be played. If the Na concentration in the regenerated salt is 1000 mass ppm or less, it can be reused for the chemical strengthening treatment of glass.
 また、廃塩を水に溶解した後、得られた水溶液を冷却して再生塩を得る工程において、さらに前記水溶液を濃縮することも好ましい。
 濃縮とは水溶液中の塩濃度を高めることであるが、真空濃縮(減圧濃縮)や凍結濃縮等の公知の方法を用いることができる。水溶液を濃縮することにより、溶解しきれなくなった塩が析出する。水溶液の冷却工程と濃縮工程を組み合わせて行うことにより、より低Na濃度の再生塩を高効率に得ることができる。
It is also preferable to further concentrate the aqueous solution in the step of dissolving the waste salt in water and then cooling the obtained aqueous solution to obtain a regenerated salt.
Concentration means to increase the salt concentration in the aqueous solution, but a known method such as vacuum concentration (vacuum concentration) or freeze concentration can be used. By concentrating the aqueous solution, a salt that can no longer be dissolved is deposited. By performing a combination of the cooling step and the concentration step of the aqueous solution, a regenerated salt having a lower Na concentration can be obtained with high efficiency.
 得られた再生塩は水溶液中に析出しているため、再度ガラスの化学強化処理に使用するためには、固液分離を行う。固液分離は、濾過、遠心分離等の公知の方法を用いることができる。固液分離後の瀘液には、溶融塩(例えば硝酸カリウム)が残存しているため、廃塩の溶解液に瀘液の一部を混合して再利用することができる。ただし、瀘液を再利用して再生を繰り返す場合には、瀘液中のNa濃度が増加し、それに伴い再生塩中のNa濃度も増加する。したがって、瀘液の一部を廃棄し、Na濃度をコントロールすることが好ましい。再利用する瀘液の量はNa濃度を考慮して決定することができる。 Since the obtained regenerated salt is precipitated in the aqueous solution, solid-liquid separation is performed in order to use it again for the chemical strengthening treatment of glass. For the solid-liquid separation, known methods such as filtration and centrifugation can be used. Since the molten salt (for example, potassium nitrate) remains in the liquid after solid-liquid separation, a part of the liquid can be mixed and reused in the waste salt solution. However, when recycling is repeated by reusing the liquid smoke, the Na concentration in the liquid smoke increases, and accordingly, the Na concentration in the regenerated salt also increases. Therefore, it is preferable to discard a part of the liquid smoke and control the Na concentration. The amount of the liquid smoke to be reused can be determined in consideration of the Na concentration.
 得られた再生塩の純度を高めるために、再生塩を洗浄してもよい。洗浄は電気伝導度が10μS以下の純水で行うことができる。また洗浄水の温度は20℃以下とすることが好ましい。ただし、洗浄を行うと得られる再生塩の収率は低下するため、目的に合わせて収率と純度のバランスを考え、洗浄の要否を適宜決定することが必要である。 In order to increase the purity of the obtained regenerated salt, the regenerated salt may be washed. The washing can be performed with pure water having an electric conductivity of 10 μS or less. The temperature of the washing water is preferably 20 ° C. or less. However, since the yield of the regenerated salt obtained when washing is reduced, it is necessary to appropriately determine whether or not washing is necessary in consideration of the balance between the yield and purity according to the purpose.
 再生塩の洗浄後、洗浄液をさらに固液分離して再生塩を得る。固液分離後の瀘液には、溶融塩(例えば硝酸カリウム)が残存しているため、廃塩の溶解液に瀘液の一部を混合して再利用することができる。ただし、瀘液を再利用して再生を繰り返す場合には、瀘液中のNa濃度が増加し、それに伴い再生塩中のNa濃度も増加する。したがって、瀘液の一部を廃棄し、Na濃度をコントロールすることが好ましい。再利用する瀘液の量はNa濃度を考慮して決定することができる。 After washing the regenerated salt, the washing liquid is further solid-liquid separated to obtain regenerated salt. Since the molten salt (for example, potassium nitrate) remains in the liquid after solid-liquid separation, a part of the liquid can be mixed and reused in the waste salt solution. However, when recycling is repeated by reusing the liquid smoke, the Na concentration in the liquid smoke increases, and accordingly, the Na concentration in the regenerated salt also increases. Therefore, it is preferable to discard a part of the liquid smoke and control the Na concentration. The amount of the liquid smoke to be reused can be determined in consideration of the Na concentration.
 固液分離により再生塩を回収した後、化学強化処理に再利用する前によく乾燥させることが好ましい。乾燥させることによって、再生塩中の水分量を少なくすることができる。乾燥前の再生塩には、6質量%程度の水分が含まれる。
 再生塩を化学強化処理に供するために加熱し溶融塩とする際に、ステンレス鋼(SUS)容器を使用するが、再生塩中の水分量が多いと、再生塩を加熱して溶融塩とする過程でSUS容器が腐食する。当該腐食により溶融塩中に浮遊物が発生し、そのままガラスの化学強化処理を行うと、得られる化学強化ガラスの性能に影響を及ぼす。そのため、再生塩中の水分量は少ないほど好ましく、好ましくは5質量%未満、より好ましくは2質量%未満、さらに好ましくは1質量%未満、特に好ましくは0.2質量%未満である。なお、再生塩中の水分量はTGA(熱重量測定法)によって測定することができる。乾燥によって生じる蒸留水は、廃塩を溶解する際の溶媒として再利用することができる。蒸留水を再利用することにより、環境負荷の低減に寄与することができる。
After recovering the regenerated salt by solid-liquid separation, it is preferable to dry well before reuse in the chemical strengthening treatment. By drying, the amount of water in the regenerated salt can be reduced. The regenerated salt before drying contains about 6% by mass of water.
A stainless steel (SUS) container is used when the regenerated salt is heated to be subjected to chemical strengthening treatment to form a molten salt. If the amount of water in the regenerated salt is large, the regenerated salt is heated to form a molten salt. In the process, the SUS container corrodes. Due to the corrosion, suspended matters are generated in the molten salt, and if the glass is subjected to chemical strengthening treatment as it is, the performance of the resulting chemically strengthened glass is affected. Therefore, the smaller the amount of water in the regenerated salt, the better, preferably less than 5% by mass, more preferably less than 2% by mass, still more preferably less than 1% by mass, and particularly preferably less than 0.2% by mass. The water content in the regenerated salt can be measured by TGA (thermogravimetry). Distilled water produced by drying can be reused as a solvent for dissolving the waste salt. By reusing distilled water, it can contribute to the reduction of environmental burden.
 乾燥温度は通常40~300℃であればよく、80~200℃がより好ましい。乾燥時間は通常1~12時間であればよく、1~4時間がより好ましい。また、乾燥時に加熱と同時に減圧してもよい。
 乾燥は、ホットプレートや加熱真空乾燥等の公知の方法を用いることができる。
 乾燥後の再生塩は水分の混入を防ぐため、密閉容器に保存することが好ましい。
The drying temperature may usually be 40 to 300 ° C, more preferably 80 to 200 ° C. The drying time may usually be 1 to 12 hours, and more preferably 1 to 4 hours. Moreover, you may reduce pressure simultaneously with a heating at the time of drying.
For the drying, a known method such as a hot plate or heating vacuum drying can be used.
It is preferable to store the regenerated salt after drying in a sealed container in order to prevent moisture from entering.
 乾燥工程を経た再生塩は、ガラスの化学強化処理を行う温度まで加熱することで、ガラス化学強化処理用の溶融塩として使用することができる。 The regenerated salt that has undergone the drying step can be used as a molten salt for glass chemical strengthening treatment by heating to a temperature at which the glass is chemically strengthened.
 本発明により得られた再生塩は、ガラス化学強化処理用の溶融塩として使用後、本発明の再生処理により繰り返し溶融塩として再利用できる。本発明の再生方法によれば、固液分離後の瀘液の一部を廃塩の溶解に再利用することで、再生塩中のNa濃度を所定以下に保ちつつ、再生塩の収率を上げることができる。瀘液を再利用しない場合、再生塩の収率を上げることは困難となる。一方、全ての瀘液を再利用した場合は、水溶液中のNa濃度が増加し、得られる再生塩中のNa濃度も増加する。 The regenerated salt obtained by the present invention can be reused as a molten salt repeatedly by the regenerating treatment of the present invention after being used as a molten salt for glass chemical strengthening treatment. According to the regeneration method of the present invention, by reusing a part of the liquid smoke after solid-liquid separation to dissolve the waste salt, the yield of the regenerated salt is increased while keeping the Na concentration in the regenerated salt below a predetermined level. Can be raised. If the filtrate is not reused, it is difficult to increase the yield of regenerated salt. On the other hand, when all the filtrates are reused, the Na concentration in the aqueous solution increases, and the Na concentration in the resulting regenerated salt also increases.
 溶融塩の無機カリウムが硝酸カリウムである場合、本発明により得られる再生塩には、亜硝酸が10~100重量ppmの範囲で含まれる。なお、化学強化に供していない新品の硝酸カリウム溶融塩に含まれる亜硝酸の量は通常10重量ppm以下である。溶融塩中の硝酸が、化学強化を繰り返すことにより亜硝酸に変化するため亜硝酸含有量が増加するものと考えられる。溶融塩中の亜硝酸含有量はナフチルエチレンジアミン比色法により測定することができる。 When the inorganic potassium of the molten salt is potassium nitrate, the regenerated salt obtained by the present invention contains nitrous acid in the range of 10 to 100 ppm by weight. The amount of nitrous acid contained in a new potassium nitrate molten salt not subjected to chemical strengthening is usually 10 ppm by weight or less. It is thought that the nitric acid content increases because nitric acid in the molten salt changes to nitrous acid by repeated chemical strengthening. The nitrous acid content in the molten salt can be measured by a naphthylethylenediamine colorimetric method.
 なお、本発明における化学強化処理に供されるガラスはナトリウムを含んでいればよく、成形、化学強化処理による強化が可能な組成を有するものである限り、種々の組成のものを使用することができる。具体的には、例えば、アルミノシリケートガラス、ソーダライムガラス、ホウ珪酸ガラス、鉛ガラス、アルカリバリウムガラス、アルミノホウ珪酸ガラス等が挙げられる。
 中でも、アルミノシリケートガラスはガラス中のNa置換量が多いため溶融塩の劣化が激しい。このため、本発明に係る溶融塩の再生方法の効果を顕著に得ることができることから好ましい。
In addition, as long as the glass used for the chemical strengthening process in this invention should contain sodium and it has a composition which can be strengthened by shaping | molding and a chemical strengthening process, it is possible to use the thing of various compositions. it can. Specific examples include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkali barium glass, and aluminoborosilicate glass.
Among these, aluminosilicate glass has a large amount of Na substitution in the glass, so that the molten salt is severely deteriorated. For this reason, it is preferable because the effect of the method for regenerating a molten salt according to the present invention can be remarkably obtained.
 化学強化処理に供されるガラスの製造方法、成形方法については特に限定されず、公知の方法に基づいて製造、成形することができる。また、化学強化処理に供するガラスの厚みや研磨の有無も任意である。 There are no particular limitations on the method of manufacturing and forming the glass subjected to the chemical strengthening treatment, and the glass can be manufactured and formed based on known methods. Moreover, the thickness of the glass used for the chemical strengthening treatment and the presence or absence of polishing are also arbitrary.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。
<ガラス>
 本実施例において、下記に示す組成(モル%)のアルミノシリケートガラスを用いた。SiO 64.4%、Al 8.0%、NaO 12.5%、KO 4.0%、MgO 10.5%、CaO 0.1%、SrO 0.1%、BaO 0.1%、ZrO 2.5%
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
<Glass>
In this example, an aluminosilicate glass having the following composition (mol%) was used. SiO 2 64.4%, Al 2 O 3 8.0%, Na 2 O 12.5%, K 2 O 4.0%, MgO 10.5%, CaO 0.1%, SrO 0.1%, BaO 0.1%, ZrO 2 2.5%
<評価方法>
(Na濃度の測定)
 本実施例において、廃塩及び再生塩中のNa濃度は、日立ハイテクノロジーズ社製の原子吸光光度計「ZA-3300」を使用して同定した。
(表面圧縮応力-CS-の測定)
 化学強化処理後のアルミノシリケートガラスの表面圧縮応力は、折原製作所の表面応力計「FSM-6000LE」を使用して評価を行った。 
(水分量の測定)
 再生塩中に含まれる水分量は、エー・アンド・デー社製の加熱乾燥式水分計「MS-70」を使用して、定量を行った。
<Evaluation method>
(Measurement of Na concentration)
In this example, the Na concentration in the waste salt and the regenerated salt was identified using an atomic absorption photometer “ZA-3300” manufactured by Hitachi High-Technologies Corporation.
(Measurement of surface compressive stress -CS-)
The surface compressive stress of the aluminosilicate glass after the chemical strengthening treatment was evaluated using a surface stress meter “FSM-6000LE” manufactured by Orihara Seisakusho.
(Measurement of water content)
The amount of water contained in the regenerated salt was quantified using a heat drying moisture meter “MS-70” manufactured by A & D.
<実施例1>
 アルミノシリケートガラスを硝酸カリウムのみからなる溶融塩中で化学強化処理を行った。化学強化処理温度は450℃とした。化学強化処理後の溶融塩(廃塩)中のNa濃度は6000ppmであった。
 化学強化処理後の溶融塩を25℃まで自然冷却し、廃塩を得た。
 固体の廃塩1000gを30cm以下のサイズに分割し、2000mLビーカーに秤量し、純水800gを加えた。これを200rpmで自動攪拌させながら、ウォーターバスで80℃に加温し、廃塩をすべて純水に溶解させた水溶液を得た。廃塩が完全に溶解したことを確認し、200~300rpmで自動攪拌しながら、1℃まで氷冷し、塩を析出(再結晶)させた。
 次に、得られた塩の結晶と水溶液を分離するために吸引濾過を行った。濾別した結晶を回収し、80℃に設定したホットプレート上で5時間乾燥させることで、再生塩903gを得た。得られた再生塩中の水分量は3質量%、亜硝酸の含有量は20ppmであった。回収率は溶解度曲線から求めた理論収率94%に対し、実際には90%であった。また、得られた再生塩中のNa濃度は400質量ppmであった。
<Example 1>
The aluminosilicate glass was chemically strengthened in a molten salt consisting only of potassium nitrate. The chemical strengthening treatment temperature was 450 ° C. The Na concentration in the molten salt (waste salt) after the chemical strengthening treatment was 6000 ppm.
The molten salt after the chemical strengthening treatment was naturally cooled to 25 ° C. to obtain a waste salt.
1000 g of solid waste salt was divided into sizes of 30 cm 3 or less, weighed into a 2000 mL beaker, and 800 g of pure water was added. While this was automatically stirred at 200 rpm, it was heated to 80 ° C. with a water bath to obtain an aqueous solution in which all waste salts were dissolved in pure water. After confirming that the waste salt was completely dissolved, it was ice-cooled to 1 ° C. with automatic stirring at 200 to 300 rpm to precipitate (recrystallize) the salt.
Next, suction filtration was performed to separate the obtained salt crystals from the aqueous solution. The crystals separated by filtration were collected and dried on a hot plate set at 80 ° C. for 5 hours to obtain 903 g of regenerated salt. The obtained regenerated salt had a water content of 3% by mass and a nitrous acid content of 20 ppm. The recovery rate was actually 90% against the theoretical yield of 94% obtained from the solubility curve. Further, the Na concentration in the obtained regenerated salt was 400 mass ppm.
<ガラス化学強化処理>
 実施例1で得られた再生塩をSUS容器内で450℃まで加熱して溶融塩にし、そこに200~400℃に予熱したアルミノシリケートガラスを2時間浸漬することで化学強化処理を行った。このとき、溶融塩中にSUSの腐食による浮遊物は目視で確認されなかった。強化処理後、ガラスを20~80℃のイオン交換水で2回洗浄し、室温のイオン交換水で流水洗浄した。得られた化学強化ガラスの初期表面圧縮応力(初期CS)は844MPaであった。なお、イオン交換処理に供していない新品の硝酸カリウムを溶融塩として、アルミノシリケートガラスを化学強化処理した際の初期CSは750~900MPaである。
<Glass chemical strengthening treatment>
The regenerated salt obtained in Example 1 was heated to 450 ° C. in a SUS container to form a molten salt, and aluminosilicate glass preheated to 200 to 400 ° C. was immersed therein for 2 hours for chemical strengthening treatment. At this time, no suspended matter due to SUS corrosion was visually confirmed in the molten salt. After the tempering treatment, the glass was washed twice with ion exchange water at 20 to 80 ° C., and washed with running water with ion exchange water at room temperature. The initial surface compressive stress (initial CS) of the obtained chemically strengthened glass was 844 MPa. The initial CS when the aluminosilicate glass is chemically strengthened with new potassium nitrate not subjected to ion exchange treatment as a molten salt is 750 to 900 MPa.
<実施例2>
 硝酸カリウムを主成分とし、Na濃度が10,000ppmである廃塩150kgをSUS容器に入れ、純水90.3kgを加えた。これを電気ヒーターで90℃に加熱し、撹拌しながら溶解した。完全に溶解した後、別のSUS容器に取り出し、放冷により室温まで冷却し、塩を析出させた。次に、得られた塩の結晶と水溶液を分離するために遠心分離を行い、水分量が2質量%である塩と瀘液を得た。得られた塩を純水で洗浄し、再度遠心分離を行い、水分量が2質量%である塩と瀘液を得た。得られた塩を200℃で8時間乾燥し、水分量が0.05質量%、Na濃度が70ppm、亜硝酸濃度が40ppmの再生塩を得た。さらに、遠心分離で得た瀘液のうち43.7kgを廃棄し、残り104.8kgの瀘液を112.5kgの廃塩とともにSUS容器に入れ、純水6.5kgを追加した。これを同様に90℃に加熱し、撹拌しながら溶解した。その後、冷却、遠心分離、洗浄、遠心分離を行い、再生塩と瀘液を得た。これを繰り返し行った実験結果を表1に示す。また、同様の条件でシミュレーションを行った結果を表2に示す。さらに、これらの結果をグラフにしたものを図3および図4に示す。
<Example 2>
150 kg of waste salt containing potassium nitrate as a main component and Na concentration of 10,000 ppm was put in a SUS container, and 90.3 kg of pure water was added. This was heated to 90 ° C. with an electric heater and dissolved with stirring. After completely dissolving, it was taken out into another SUS container, cooled to room temperature by allowing to cool, and the salt was precipitated. Next, centrifugation was carried out to separate the obtained salt crystals and the aqueous solution, and a salt and a filtrate having a water content of 2% by mass were obtained. The obtained salt was washed with pure water and centrifuged again to obtain a salt and a filtrate having a water content of 2% by mass. The obtained salt was dried at 200 ° C. for 8 hours to obtain a regenerated salt having a water content of 0.05 mass%, an Na concentration of 70 ppm, and a nitrous acid concentration of 40 ppm. Further, 43.7 kg of the filtrate obtained by centrifugation was discarded, and the remaining 104.8 kg of filtrate was placed in a SUS container together with 112.5 kg of waste salt, and 6.5 kg of pure water was added. This was similarly heated to 90 ° C. and dissolved with stirring. Thereafter, cooling, centrifugation, washing and centrifugation were performed to obtain a regenerated salt and a filtrate. Table 1 shows the experimental results obtained by repeating this. Table 2 shows the result of the simulation performed under the same conditions. Further, the graphs of these results are shown in FIGS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<化学強化処理>
 実施例2で得られた再生塩をSUS容器内で450℃まで加熱して溶融塩にし、実施例1と同様に化学強化処理を行って得られた化学強化ガラスの初期CSは786MPaであった。
<Chemical strengthening treatment>
The regenerated salt obtained in Example 2 was heated to 450 ° C. in a SUS container to form a molten salt, and the initial CS of the chemically strengthened glass obtained by performing chemical strengthening treatment in the same manner as in Example 1 was 786 MPa. .
<実施例3>
 実施例2のシミュレーションにおいて、瀘液の廃棄量を53.7kgとした場合のシミュレーション結果を表3に、瀘液の廃棄量を33.7kgとした場合のシミュレーション結果を表4に示す。また、これらの結果をグラフにしたものを図5および図6に示す。
<Example 3>
In the simulation of Example 2, Table 3 shows the simulation result when the amount of discarded liquid is 53.7 kg, and Table 4 shows the simulation result when the amount of discarded waste is 33.7 kg. Moreover, what made these results into a graph is shown in FIG. 5 and FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例4>
 実施例2のシミュレーションにおいて、瀘液の全てを廃棄した場合のシミュレーション結果を表5に示す。瀘液の全てを再利用した場合のシミュレーション結果を表6に示す。また、これらの結果をグラフにしたものを図7および図8に示す。
<Example 4>
In the simulation of Example 2, the simulation results when all of the liquid smoke is discarded are shown in Table 5. Table 6 shows the simulation results when all of the liquid smoke is reused. Moreover, what made these results into a graph is shown in FIG. 7 and FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上の結果から、本発明に係る再生方法により得られた再生塩は含まれる水分量及びNa濃度が非常に低く、ガラス化学強化処理用の溶融塩として再利用した際でも、ガラスに対して、イオン交換処理に供していない新品の溶融塩と同等の表面圧縮応力を付与できることが分かった。
 また、図2に示した溶解度曲線から、再生塩の収率は、再結晶時の析出温度を下げるとより高めることができる可能性が示唆された。
 さらに、固液分離の際に得られる瀘液を再利用することにより、再生塩の収率を高めることができることが分かった。また、再利用する瀘液の量を調整することにより、得られる再生塩中のNa濃度をコントロールできることが分かった。
From the above results, the regenerated salt obtained by the regenerating method according to the present invention has a very low water content and Na concentration, and even when reused as a molten salt for glass chemical strengthening treatment, It was found that a surface compressive stress equivalent to that of a new molten salt not subjected to ion exchange treatment can be applied.
Further, the solubility curve shown in FIG. 2 suggests that the yield of the regenerated salt can be increased by lowering the precipitation temperature during recrystallization.
Furthermore, it was found that the yield of regenerated salt can be increased by reusing the filtrate obtained during the solid-liquid separation. It was also found that the Na concentration in the regenerated salt obtained can be controlled by adjusting the amount of the liquid recycle to be reused.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2013年11月29日出願の日本特許出願(特願2013-247987)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on November 29, 2013 (Japanese Patent Application No. 2013-247987), the contents of which are incorporated herein by reference.
 本発明によれば、化学強化ガラスに供された使用済みの溶融塩に対して、再生処理を施すことで、新品の溶融塩と同等の性能を持つ再生塩を得ることができる。当該再生処理により、使用済み溶融塩(廃塩)の廃棄量を減らすことができ、環境負荷を低減しつつ、化学強化ガラスの生産が低コストで可能となり、高い生産性の実現が可能となる。 According to the present invention, a regenerated salt having a performance equivalent to that of a new molten salt can be obtained by subjecting the used molten salt provided to the chemically strengthened glass to a regeneration treatment. This regeneration process can reduce the amount of used molten salt (waste salt) to be discarded, and can reduce the environmental impact and produce chemically tempered glass at a low cost, realizing high productivity. .

Claims (6)

  1.  ガラス化学強化用溶融塩の再生方法であって、
     ガラス化学強化処理後の溶融塩を前記溶融塩の融点未満の温度で水に溶解する工程、前記溶解工程で得られた水溶液を冷却して再生塩を得る工程、及び、乾燥により前記再生塩中の水分量を5質量%未満とする工程を含む、ガラス化学強化用溶融塩の再生方法。
    A method for regenerating a molten salt for strengthening glass chemistry,
    A step of dissolving the molten salt after glass chemical strengthening treatment in water at a temperature lower than the melting point of the molten salt, a step of cooling the aqueous solution obtained in the dissolving step to obtain a regenerated salt, and drying in the regenerated salt A method for regenerating a molten salt for strengthening glass chemistry, comprising a step of setting the moisture content of the glass to less than 5% by mass.
  2.  前記水溶液を冷却して再生塩を得る工程において、さらに前記水溶液を濃縮する工程を含む、請求項1に記載のガラス化学強化用溶融塩の再生方法。 The method for regenerating a molten salt for glass chemical strengthening according to claim 1, wherein the step of cooling the aqueous solution to obtain a regenerated salt further comprises a step of concentrating the aqueous solution.
  3.  前記ガラス化学強化用溶融塩が硝酸カリウムを含む、請求項1又は2に記載のガラス化学強化用溶融塩の再生方法。 The method for regenerating a molten salt for glass chemical strengthening according to claim 1 or 2, wherein the molten salt for glass chemical strengthening contains potassium nitrate.
  4.  前記乾燥工程において前記再生塩中の水分量を0.2質量%未満とする、請求項1~3のいずれか一項に記載のガラス化学強化用溶融塩の再生方法。 The method for regenerating a molten salt for glass chemical strengthening according to any one of claims 1 to 3, wherein the moisture content in the regenerated salt is less than 0.2% by mass in the drying step.
  5.  前記水溶液を冷却して再生塩を得る工程において、冷却した溶液を再生塩と濾液とに固液分離して、濾液の一部を前記溶解工程における溶解液に混合する、請求項1~4のいずれか一項に記載のガラス化学強化用溶融塩の再生方法。 In the step of cooling the aqueous solution to obtain a regenerated salt, the cooled solution is subjected to solid-liquid separation into a regenerated salt and a filtrate, and a part of the filtrate is mixed with the solution in the dissolution step. The regeneration method of the molten salt for glass chemical strengthening as described in any one of Claims.
  6.  前記固液分離により得られた再生塩を洗浄し、さらに再生塩と濾液とに固液分離して、濾液の一部を前記溶解工程における溶解液に混合する、請求項5に記載のガラス化学強化用溶融塩の再生方法。
     
    The glass chemistry according to claim 5, wherein the regenerated salt obtained by the solid-liquid separation is washed, further solid-liquid separated into a regenerated salt and a filtrate, and a part of the filtrate is mixed with the dissolved solution in the dissolving step. A method for recycling molten salt for strengthening.
PCT/JP2014/081085 2013-11-29 2014-11-25 Method for regenerating molten salt for chemical reinforcement of glass WO2015080095A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480051561.2A CN105555730B (en) 2013-11-29 2014-11-25 The regeneration method of chemically enhancing glass fuse salt
JP2015550932A JP6455441B2 (en) 2013-11-29 2014-11-25 Method for regenerating molten salt for strengthening glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013247987 2013-11-29
JP2013-247987 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080095A1 true WO2015080095A1 (en) 2015-06-04

Family

ID=53199035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081085 WO2015080095A1 (en) 2013-11-29 2014-11-25 Method for regenerating molten salt for chemical reinforcement of glass

Country Status (4)

Country Link
JP (1) JP6455441B2 (en)
CN (1) CN105555730B (en)
TW (1) TW201527236A (en)
WO (1) WO2015080095A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155456A1 (en) * 2017-02-24 2018-08-30 Agc株式会社 Chemically tempered glass plate and production method therefor
US10351472B2 (en) 2016-08-10 2019-07-16 Corning Incorporated Methods for reducing surface defects
US10556826B2 (en) 2015-11-20 2020-02-11 Corning Incorporated Methods for regenerating lithium-enriched salt baths
US20210107827A1 (en) * 2018-06-21 2021-04-15 Schott Glass Technologies (Suzhou) Co. Ltd. Chemically toughened glass article having no optical orange skin and method for producing same
WO2022005958A1 (en) * 2020-06-30 2022-01-06 Corning Incorporated Methods of regenerating poisoned molten salt baths with glass and associated glass compositions
WO2022039932A1 (en) * 2020-08-17 2022-02-24 Corning Incorporated Systems and methods for recycling waste ion exchange materials
US11648549B2 (en) 2018-11-29 2023-05-16 Corning Incorporated Ion exchange systems and methods for ion exchanging glass articles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311205B (en) * 2017-08-15 2018-11-27 东旭科技集团有限公司 The method for purifying potassium nitrate in tempered glass waste liquid
CN110711764A (en) * 2019-10-29 2020-01-21 江苏盛勤环境工程有限公司 Solid waste salt recycling process technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291037A (en) * 1985-06-17 1986-12-20 Nippon Sheet Glass Co Ltd Method for purifying molten salt
JP2013067555A (en) * 2011-09-09 2013-04-18 Hoya Corp Method for producing cover glass for potable appliance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024881B2 (en) * 2011-09-09 2016-11-16 Hoya株式会社 Ion exchange glass article manufacturing method
CN103466664B (en) * 2013-09-17 2015-07-08 蓝思科技股份有限公司 Fully-automatic production line type potassium nitrate recovering process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291037A (en) * 1985-06-17 1986-12-20 Nippon Sheet Glass Co Ltd Method for purifying molten salt
JP2013067555A (en) * 2011-09-09 2013-04-18 Hoya Corp Method for producing cover glass for potable appliance

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161781B2 (en) 2015-11-20 2021-11-02 Corning Incorporated Methods for regenerating lithium-enriched salt baths
US10556826B2 (en) 2015-11-20 2020-02-11 Corning Incorporated Methods for regenerating lithium-enriched salt baths
US10843963B2 (en) 2015-11-20 2020-11-24 Corning Incorporated Methods for regenerating lithium-enriched salt baths
US10351472B2 (en) 2016-08-10 2019-07-16 Corning Incorporated Methods for reducing surface defects
US11261129B2 (en) 2016-08-10 2022-03-01 Corning Incorporated Methods for reducing surface defects
WO2018155456A1 (en) * 2017-02-24 2018-08-30 Agc株式会社 Chemically tempered glass plate and production method therefor
JP7044101B2 (en) 2017-02-24 2022-03-30 Agc株式会社 Chemically tempered glass plate and its manufacturing method
JPWO2018155456A1 (en) * 2017-02-24 2019-12-12 Agc株式会社 Chemically tempered glass plate and manufacturing method thereof
US20210107827A1 (en) * 2018-06-21 2021-04-15 Schott Glass Technologies (Suzhou) Co. Ltd. Chemically toughened glass article having no optical orange skin and method for producing same
US11932570B2 (en) * 2018-06-21 2024-03-19 Schott Glass Technologies (Suzhou) Co. Ltd. Chemically toughened glass article having no optical orange skin and method for producing same
US11648549B2 (en) 2018-11-29 2023-05-16 Corning Incorporated Ion exchange systems and methods for ion exchanging glass articles
WO2022005958A1 (en) * 2020-06-30 2022-01-06 Corning Incorporated Methods of regenerating poisoned molten salt baths with glass and associated glass compositions
WO2022039932A1 (en) * 2020-08-17 2022-02-24 Corning Incorporated Systems and methods for recycling waste ion exchange materials
US11865532B2 (en) 2020-08-17 2024-01-09 Corning Incorporated Systems and methods for recycling waste ion exchange materials

Also Published As

Publication number Publication date
JP6455441B2 (en) 2019-01-23
CN105555730A (en) 2016-05-04
JPWO2015080095A1 (en) 2017-03-16
CN105555730B (en) 2018-09-18
TW201527236A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP6455441B2 (en) Method for regenerating molten salt for strengthening glass
US9926225B2 (en) Media and methods for etching glass
JP5779296B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
JP5977841B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
JP5229966B2 (en) Manufacturing method of polarizing glass
US3415637A (en) Strengthening glass sheets by ion exchange
CN114409274A (en) Method for regenerating a lithium-rich salt bath
JP2011105598A5 (en) Glass substrate for cover glass of portable terminal device and method for manufacturing the same
JPWO2014122935A1 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
JP5959809B2 (en) Glass having excellent resistance to surface damage and method for producing the same
WO2014045979A1 (en) Production method of chemically toughened glass
WO2018041102A1 (en) Method for stabilizing surface compressive stress of chemically-toughened glass online
JPWO2016010050A1 (en) Anti-glare processing glass and anti-glare glass using the same
JP6241309B2 (en) Method for producing regenerated salt for chemically strengthening glass and method for producing chemically strengthened glass
CN112645608A (en) Silicon-free salt bath purification additive material and method of use thereof
CN112390539B (en) Salt bath purification additive material and method of use thereof
CN113045222A (en) Method for producing chemically strengthened glass and lithium ion adsorbent
JP7024565B2 (en) Manufacturing method of chemically strengthened glass
JP2016188166A (en) Method for manufacturing chemically strengthened glass
CN107089672B (en) A kind of optical glass Production of Potassium Nitrate method
CN104909392A (en) Method and additive capable of accelerating clarification and impurity removal of molten potassium nitrate solution
US3410653A (en) Alkali metal salt separation
FR2996677A1 (en) RADIOACTIVE WASTE IMMOBILIZATION MATRIX COMPRISING AT LEAST ALKALI SALTS AND METHOD FOR IMMOBILIZATION OF THESE RADIOACTIVE WASTE COMPRISING AT LEAST ALKALINE SALTS TO OBTAIN THE IMMOBILIZATION MATRIX
CN106435754A (en) Softening and impurity removing technology of recycled old cotton
WO2024057820A1 (en) Method for producing strengthened glass, and ion-exchange liquid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051561.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865596

Country of ref document: EP

Kind code of ref document: A1