Nothing Special   »   [go: up one dir, main page]

WO2015076356A1 - 短鎖rnaの検出方法 - Google Patents

短鎖rnaの検出方法 Download PDF

Info

Publication number
WO2015076356A1
WO2015076356A1 PCT/JP2014/080854 JP2014080854W WO2015076356A1 WO 2015076356 A1 WO2015076356 A1 WO 2015076356A1 JP 2014080854 W JP2014080854 W JP 2014080854W WO 2015076356 A1 WO2015076356 A1 WO 2015076356A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
region
reverse transcription
primer
detection method
Prior art date
Application number
PCT/JP2014/080854
Other languages
English (en)
French (fr)
Inventor
高橋 孝治
重彦 宮本
創太郎 佐野
友野 潤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US15/037,920 priority Critical patent/US10392652B2/en
Priority to JP2015549198A priority patent/JP6691380B2/ja
Publication of WO2015076356A1 publication Critical patent/WO2015076356A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means

Definitions

  • the present invention relates to a simple method for detecting short RNA.
  • RNAs are expressed in the living body. There are a large amount of RNAs encoding non-translated regions called non-coding RNAs, including mRNAs that encode amino acid sequences of proteins.
  • non-coding RNAs include mRNAs that encode amino acid sequences of proteins.
  • micro RNA is a short RNA consisting of 18 to 25 nucleotides present in cells. MicroRNAs play an important regulatory role in animal, plant and virus development. More recently, it has become clear that microRNAs have regulatory functions in intracellular protein translation and the like in animals. Since then, microRNA research has progressed dramatically.
  • miRBBase database version 19 http://www.mirbase.org/
  • PubMed database http: // /Www.ncbi.nlm.nih.gov/pubmed
  • MicroRNA controls and suppresses translation by binding to target messenger RNA. It is estimated that about 30% of the human genome is regulated for transcription and expression by microRNA.
  • microRNAs are involved in these diseases in development, growth and proliferation, apoptosis, differentiation, and various cell expression processes including various human diseases such as cancer and diabetes. is there.
  • Non-Patent Document 1 The importance of microRNA in cancer is emphasized in Non-Patent Document 1 and described regarding the involvement of microRNA in various human cancers, and measuring changes in the expression level of microRNA is advancing cancer research. It is stated to be very useful.
  • Non-Patent Document 2 discloses a qRT-PCR assay comprising a gene-specific reverse transcription step followed by a fluorescence detection step using a gene-specific forward primer comprising a TaqMan probe and a universal reverse primer. Also in patent document 1, the fluorescence detection of microRNA is made
  • Non-Patent Document 3 discloses a qRT-PCR assay comprising a gene-specific reverse transcription step followed by a SYBR® green qPCR step using a gene-specific forward primer and two universal primers.
  • the present invention has been made in view of the above problems, and its purpose is to efficiently perform a PCR reaction by extending a short RNA to a long chain by a reverse transcription reaction. By having a strand, the high specificity of the hybridization method is utilized, and the time and process required for the detection process of the PCR product are reduced, without requiring a special device, easily and accurately. It is an object to provide a nucleic acid detection method and a nucleic acid detection device or kit for visual detection.
  • the inventors of the present invention produced a cDNA having a longer chain than the target RNA by performing a reverse transcription reaction with the target RNA using a reverse transcription primer, Amplified as a double-stranded nucleic acid having a single-stranded region efficiently, and further, this nucleic acid amplified fragment is bound to a solid phase having an oligonucleotide probe capable of hybridizing the single-stranded region, and this is detected
  • the inventors have found that the nucleic acid amplification fragment can be detected easily and with high accuracy without requiring a special apparatus, and have completed the present invention.
  • the present invention provides the following steps (a) to (c): (A) using a reverse transcription primer having a sequence non-complementary to the target RNA on the 5 ′ end side, performing a reverse transcription reaction using the target RNA as a template to produce a reverse transcription product longer than the target RNA; (B) performing a nucleic acid amplification reaction using the reverse transcription product as a template using two primers to produce a double-stranded DNA amplified fragment containing a single-stranded region at least on one end; and (c)
  • the present invention relates to a nucleic acid detection method comprising a step of hybridizing a single-stranded region of the double-stranded DNA amplified fragment with an oligonucleotide probe immobilized on a solid phase.
  • the target RNA preferably has a base sequence of 10 bases or more.
  • the target RNA has a base sequence of 15 bases or more.
  • the target RNA is preferably a microRNA.
  • the reverse transcription primer preferably contains 3 or more base sequences complementary to the target RNA.
  • step (a) it is preferable to include a step of adding 3 or more bases of poly A sequence to the target RNA before step (a).
  • the reverse transcription primer preferably contains 3 or more bases of poly T sequence.
  • the reverse transcription primer preferably contains one or more bases complementary to the target RNA at the 3 'end.
  • the reverse transcript is preferably 3 bases or longer than the target RNA.
  • the non-complementary sequence to the target RNA is preferably a sequence that can take a loop structure by having a sequence of 5 bases or more complementary to each other in the sequence.
  • the primer preferably includes a tag region, a polymerase reaction inhibition region, and a region having a sequence capable of hybridizing to a reverse transcription product or a complementary strand thereof.
  • the polymerase reaction inhibition region preferably contains a nucleic acid derivative.
  • the nucleic acid derivative is a group consisting of L-type nucleic acid, 3-deoxy-2-hydroxy-dN, modified base nucleic acid, damaged base nucleic acid, phosphate binding site modified nucleic acid, RNA, 2′-OMe-N, and derivatives thereof It is preferable that it is at least one selected from.
  • the nucleic acid derivative is bound to a region having a sequence capable of hybridizing to a reverse transcription product or a complementary strand thereof with a 5′-5 ′ bond and / or to a tag region with a 3′-3 ′ bond. It is preferable.
  • the polymerase reaction inhibition region preferably contains a non-nucleic acid derivative.
  • the non-nucleic acid derivative preferably has a D-threoninol skeleton.
  • At least one selected from the group consisting of azobenzene, biotin, EDTA, and chromophore is introduced into the D-threoninol skeleton.
  • the non-nucleic acid derivative is selected from the group consisting of a carbon chain (C n ), a peg chain ((CH 2 CH 2 O) n ), a disulfide-containing chain (C n SSC n ), a dithiol phosphoramidite, and derivatives thereof. It is preferable that at least one selected.
  • the primer includes a plurality of types and / or a plurality of polymerase reaction inhibition regions.
  • the tag region is preferably composed of a nucleic acid in the same direction as a region having a sequence capable of hybridizing to a reverse transcription product or a complementary strand thereof.
  • the tag region preferably includes a nucleic acid in the same direction as a region having a sequence capable of hybridizing to a reverse transcription product or a complementary strand thereof, and a nucleic acid in the reverse direction.
  • the double-stranded DNA amplified fragment is preferably capable of binding to a labeling substance.
  • the double-stranded DNA amplified fragment is preferably capable of binding to a labeling substance via a single-stranded region.
  • the double-stranded DNA amplified fragment is capable of binding to a labeling substance via a sequence containing a labeling binding substance.
  • the labeling substance comprises a colored carrier and enables visual detection of the double-stranded DNA amplified fragment.
  • the step of hybridizing the single-stranded region of the double-stranded DNA amplified fragment and the oligonucleotide probe immobilized on the solid phase is preferably performed on a nucleic acid detection device.
  • the nucleic acid detection device is preferably a chromatography device.
  • the method further includes a step of binding the double-stranded DNA amplified fragment and the labeling substance before the step (c).
  • steps (d) to (h) (D) placing the double-stranded DNA amplified fragment and the labeling substance in regions different from the region where the oligonucleotide probe is immobilized on the nucleic acid detection device, (E) using a solvent, the double-stranded DNA amplified fragment is diffused in the direction of the region where the labeling substance is disposed; (F) In the region where the labeling substance is disposed, the double-stranded DNA amplified fragment is bound to the labeling substance; (G) diffusing the complex bound in step (f) on the device in the direction in which the oligonucleotide probe is disposed; (H) in a region where the oligonucleotide probe is immobilized, the oligonucleotide probe and the complex are hybridized; It is preferable to contain.
  • the present invention also provides a nucleic acid detection device for use in the above-described nucleic acid detection method, which comprises a region in which the double-stranded DNA amplified fragment is arranged, and a chromatography holding the oligonucleotide probe that binds to the double-stranded DNA amplified fragment
  • the present invention relates to a detection device comprising a carrier and an oligonucleotide probe bound with a labeling substance.
  • the chain length can be extended and an efficient DNA amplification reaction can be performed.
  • a complex with a labeled compound can be formed on the other side, and DNA amplification products can be easily and quickly visually determined without using a special device.
  • detection sensitivity is improved by detecting structurally stable double-stranded DNA compared to full-length single-stranded detection.
  • a complementary oligonucleotide probe on the solid phase two or more targets present in the sample It is also possible to discriminate nucleic acids simultaneously.
  • V A, G, C
  • FIG. 2 is a conceptual diagram of a method for synthesizing a double-stranded nucleic acid having a single strand at both ends from the reverse transcription product prepared in FIG. 1.
  • FIG. 3 is a conceptual diagram of a method for synthesizing a double-stranded nucleic acid having a single strand at one end and a labeled binding region consisting of biotin or the like on the other side from the reverse transcription product prepared in FIG.
  • It is the schematic which shows an example of a nucleic acid chromatography device.
  • It is a conceptual diagram of a PCR product detection principle.
  • It is the schematic which shows an example of a microarray (DNA chip).
  • 7 is a part of the detection result of PCR amplification product by the nucleic acid chromatography-like strip in Example 4.
  • the present invention provides the following steps (a) to (c): (A) using a reverse transcription primer having a sequence non-complementary to the target RNA on the 5 ′ end side, performing a reverse transcription reaction using the target RNA as a template to produce a reverse transcription product longer than the target RNA; (B) performing a nucleic acid amplification reaction using the reverse transcription product as a template using two primers to produce a double-stranded DNA amplified fragment containing a single-stranded region at least on one end; and (c)
  • the present invention relates to a nucleic acid detection method comprising a step of hybridizing a single-stranded region of the double-stranded DNA amplified fragment with an oligonucleotide probe immobilized on a solid phase.
  • cDNA is prepared from the target RNA in the sample sample as a template by reverse transcription using reverse transcription primers, and then nucleic acid amplification is performed using a specific primer set. Can be obtained.
  • RNA includes total RNA, messenger RNA, transfer RNA, ribosomal RNA, antisense RNA, non-coding RNA, micro RNA (miRNA), pri-miRNA, pre-miRNA, small interfering RNA, small hairpin RNA, gRNA, snRNA, snRNA , Small temporal RNA, Piwi-interacting RNA may be used.
  • RNA does not need to be purified RNA, and can be directly applied to a reverse transcription reaction and a nucleic acid amplification reaction without purifying cells and tissues containing RNA.
  • the RNA preferably has a base sequence of 10 bases or more, and more preferably has a base sequence of 15 bases or more.
  • a poly A sequence can be added to the 3 'end of the target RNA before the reverse transcription reaction.
  • the length of the poly A (adenine) sequence to be added is not particularly limited, but it is preferably 3 bases or more, more preferably 5 bases or more.
  • a reverse transcription primer having a sequence non-complementary to the target RNA on the 5 ′ end side is used.
  • a reverse sequence having a sequence 3 complementary to a partial sequence of the target RNA 1 and further having an optional additional sequence 4 non-complementary to the target RNA on the 5 ′ end side is used.
  • the reverse transcript is preferably 3 bases or longer than the target RNA.
  • the target RNA having poly A at the 3 ′ end side or the target RNA 6 to which poly A is added by poly A polymerase are complementary to poly A.
  • target RNA One type of target RNA may be used, or two or more types of target RNA may be present.
  • the reverse transcription primer used for the reverse transcription reaction may be one type or two or more types.
  • the reverse transcription primer 2 includes a sequence complementary to the 3 ′ end side of the target RNA and a tag sequence non-complementary to the target RNA.
  • the reverse transcription primer 7 contains a sequence complementary to the 3 ′ end of the target RNA, or a poly T sequence complementary to the poly A at the 3 ′ end of the evaluation RNA, and And has a non-complementary tag sequence.
  • the poly T sequence is preferably 3 bases or more. Even when the reverse transcription primer contains a poly-T sequence, it is preferable to contain one or more bases complementary to the target RNA on the 3 'end side.
  • the reverse transcription primer preferably includes 3 bases or more of a sequence complementary to the target RNA (primer body region). When the length is 2 bases or less, there is a tendency that specific hybridization cannot be performed.
  • the sequence that is non-complementary to the target RNA contained in the reverse transcription primer is preferably a sequence that can have a loop structure by having sequences of 5 bases or more complementary to each other in the sequence.
  • the reverse transcription primer has a loop structure, binding of pri-miRNA and pre-miRNA by the loop portion is inhibited, and the reverse transcription reaction is difficult to proceed.
  • a nucleic acid amplification reaction is carried out using a specific primer set and the reverse transcription product prepared as shown in FIGS.
  • the primer includes a tag region, a polymerase reaction inhibition region, and a primer body region.
  • the primer main body region is a region having a sequence capable of hybridizing to the reverse transcription product or its complementary strand.
  • the tag region and the polymerase reaction inhibition region are not double-stranded by the nucleic acid amplification reaction.
  • the primer may also be a primer comprising a compound having a D-threoninol skeleton into which azobenzene is introduced, and normal single-stranded DNA.
  • a normal single-stranded DNA portion functions as a tag region
  • a compound having a D-threoninol skeleton into which azobenzene has been introduced functions as a polymerase reaction inhibition region.
  • FIG. 3 shows nucleic acid amplification primers.
  • This primer consists of a primer body region 11 and a tag region 12 that is not double-stranded by a nucleic acid amplification reaction on the 5 'end side of the primer. Further, a polymerase reaction inhibition region 13 may be provided between the primer main body region and the tag region.
  • the primer main body region means an oligonucleotide region having a base sequence capable of hybridizing to a reverse transcription product or a complementary strand thereof and functioning as a primer in a nucleic acid amplification reaction. Specifically, it is a sequence similar to the 5 ′ end side of the reverse transcription product (single-stranded DNA) or a sequence capable of hybridizing with the 3 ′ end side, and is generally a 5 ′ end of the reverse transcription product.
  • the base sequence is the same as the base sequence, or is complementary to the base sequence on the 3 ′ end side of the reverse transcription product.
  • These primer main body regions may have base deletions, insertions, and mismatch sites as long as they can specifically bind to the reverse transcription product or its complementary strand.
  • the length of the primer body region is preferably 8 bases or more, more preferably 12 bases or more, and further preferably 15 bases or more.
  • there is no particular upper limit to the primer chain length but from the viewpoint of the synthesis cost and the like, those having 50 bases or less, or 40 bases or less are usually preferred.
  • the tag region of the primer preferably contains natural nucleotides.
  • Natural nucleotides are nucleotides composed of natural adenine, thymine, guanine, cytosine, uracil base, deoxyribose, ribose sugar moiety, and phosphate group. It is a nucleotide that has not undergone any modification. Natural nucleotides may be D-type nucleotides or L-type nucleotides. The D-type nucleotide refers to a nucleotide composed of D-type deoxyribose or ribose.
  • the L-type nucleotide refers to a nucleotide composed of L-type deoxyribose or ribose.
  • a natural nucleotide in the tag region By including a natural nucleotide in the tag region, there is an effect that synthesis is cheap and easy.
  • the ratio of the natural nucleotide in the tag region of the primer is preferably 5% or more, more preferably 20% or more, further preferably 50% or more, and preferably 70% or more. Even more preferably, it is most preferably 90% or more.
  • the length of the tag region is not particularly limited as long as it has a sufficient length to hybridize with a complementary strand nucleic acid. Usually, it is 5 to 60 bases, preferably 6 to 40 bases.
  • the tag region of the primer is preferably composed of a nucleic acid in the same direction as the primer main body region having a sequence capable of hybridizing to the reverse transcription product or its complementary strand. Since the primer tag region is composed of nucleic acids in the same direction as the primer main body region, the synthesis is inexpensive and easy. For example, even if a non-natural compound such as azobenzene is inserted between the tag region and the primer body region, the tag region and the primer body region may be arranged in the same direction even if they are not directly connected. preferable.
  • the tag region may contain a nucleic acid in the same direction as the primer main body region having a sequence capable of hybridizing to the reverse transcription product or its complementary strand, and a nucleic acid in the reverse direction.
  • the nucleic acid is in the same direction means that adjacent nucleotides are not bonded at the 3′-position or 5′-position of the sugar in the nucleotide, but at the 5′-position and 3 ′ of the sugar in the nucleotide.
  • the nucleotides are also located in the 5′-position and 3′-position of the sugar in the main body region. It is formed between.
  • the polymerase reaction inhibition region is a region that inhibits a nucleic acid elongation reaction by polymerase and keeps the region in a single-stranded structure.
  • the primer may include a plurality of types and / or a plurality of polymerase reaction inhibition regions.
  • the structure of the polymerase reaction inhibition region is not particularly limited as long as it can inhibit the nucleic acid elongation reaction by polymerase, and includes a structure containing a nucleic acid derivative or a non-nucleic acid derivative.
  • the nucleic acid derivative is not particularly limited as long as it can inhibit the elongation reaction by polymerase and keep the tag region in a single-stranded structure.
  • a nucleic acid derivative a nucleic acid having an inverted sequence structure such as a 5′-5 ′ bond or a 3′-3 ′ bond, or a nucleic acid having a three-dimensional structure that inhibits the progress of polymerase, such as a strong hairpin structure or a pseudoknot structure , L-type nucleic acid, 3-deoxy-2-hydroxy-dN, modified base nucleic acid, damaged base nucleic acid, phosphate binding site modified nucleic acid, RNA, 2′-OMe-N, and derivatives thereof.
  • Halpin structure or “pseudoknot structure” means a stable loop structure formed by pairing with another single-stranded region in the same molecule.
  • the “inverted sequence structure” is a structure having a 5′-5 ′ bond and a 3′-3 ′ bond.
  • the 5'-5 'bond or the 3'-3' bond is a compound represented by the chemical formula (1)
  • a structure in which the 5′-position of the deoxyribose constituting the DNA and the 5′-position of the adjacent deoxyribose are bound via the phosphate group, or the 3′-position and the phosphate group are adjacent This is a structure in which the 3 ′ position of deoxyribose is bound. Since the normal bond at the 5'-position and the 3'-position is in the opposite direction, it is called an inverted arrangement structure.
  • a primer body region (a region having a sequence capable of hybridizing to a reverse transcription product or a complementary strand thereof) is linked to a 5 ′ region by a 5′-5 ′ bond, and 3 of the tag region.
  • Examples thereof include a structure having an inverted structure twice so as to be linked to the 'terminal' by a 3'-3 'bond.
  • the number of inversion structures may be included at least once, and is not particularly limited, but is preferably included even times. If it has an inverted structure of even number of times, the end of the tag region will be 5 'like the normal primer, so non-specific extension reaction from the tag region can be suppressed and effective at the time of detection. is there. Further, by setting the polymerase reaction inhibition region not to one base shown in the chemical formula (1) but preferably 5 to 60 bases, it is possible to perform both functions of the polymerase reaction inhibition region and the tag region.
  • L-type nucleic acid has chemical formula (2)
  • Deoxyribose or ribose which is a sugar constituting a nucleic acid, is L-type DNA, L-type RNA having a structure of an optical isomer with respect to natural D-type, and derivatives thereof. Since L-type nucleic acid is not recognized by a commonly used DNA polymerase, it does not function as a template for an extension reaction. Since L-type DNA forms a left-handed double helix structure, it does not form a hybrid with a naturally occurring D-type nucleic acid and can form a hybrid only with L-type nucleic acids.
  • 3-deoxy-2-hydroxy-dA deoxyribose does not have a hydroxyl group at the 3 ′ position, and 2′-5 between the 2 ′ position and the adjacent deoxyribose 5 ′ position. 'We are joined by joining. Therefore, since it is not recognized by DNA polymerase, it does not function as an extension reaction template.
  • 3-deoxy-2-hydroxy-dN is preferably linked to the primer by a 2'-5 'bond.
  • the modified base nucleic acid is a nucleic acid having a modification such as biotin (biotin) or chromophore at the base site of DNA.
  • biotin biotin
  • chromophores include, but are not limited to, pyrene, etheno, pyrrolo, perylene, fluorescein, FITC, Cy3, Cy5, TAMRA, dabsyl, cyanine and the like.
  • modified base nucleic acids include chemical formula (5)
  • Biotin-dT represented by the chemical formula (9)
  • Damaged base nucleic acids are abasic nucleotides (AP sites: depurine bases, depyrimidine bases), chemical formula (17)
  • a nucleic acid having an abasic or modified base such as Abasic or 5-hydroxymethyl-dN. Since they are not recognized by commonly used DNA polymerases, they do not function as templates for extension reactions.
  • the phosphate binding site-modified nucleic acid has the chemical formula (19)
  • phosphorothioate S oligo
  • a part of the phosphate group of the nucleic acid is replaced with another atom or molecule, and it is not recognized by DNA polymerase, so it does not function as a template for the extension reaction.
  • RNA has the chemical formula (20)
  • the sugar constituting the nucleic acid is composed of ribose and is not recognized by a commonly used DNA polymerase, so it does not function as a template for an extension reaction.
  • the sugar moiety constituting the nucleic acid is modified and is not recognized by DNA polymerase, so it does not function as a template for the extension reaction.
  • Non-nucleic acid derivatives include D-threonin skeleton, carbon chain (C n ), fatty chain such as PCspacer, peg chain ((CH 2 CH 2 O) n ), disulfide-containing chain (C n SSC n ), PNA, dithiol
  • Examples of the phosphoramidite and derivatives thereof include, but are not particularly limited to, as long as the nucleic acid elongation reaction by a polymerase can be inhibited and the region can be maintained in a single-stranded structure. Since these non-nucleic acid molecules have a structure different from that of nucleic acid, they are not recognized by DNA polymerase and do not function as a template for DNA extension reaction.
  • the D-threoninol skeleton has the chemical formula (22)
  • the azobenzene represented by can be inserted.
  • the fatty chain as indicated by C n , shows a structure in which carbon chains are linked and its derivative.
  • the peg chain shows a structure in which polyethylene glycol is linked as shown by (CH 2 CH 2 O) n and a derivative thereof.
  • n is not particularly limited, but includes Spacer 18 (hexa-ethylene glycol spacer).
  • Disulfide-containing chain indicates those having a structure of disulfide bonds represented by (C n SSC n).
  • C n SSC n the chemical formula (29)
  • PNA is a molecule having a peptide structure in the main chain and a structure similar to DNA or RNA, and N- (2-aminoethyl) glycine is bonded to the main chain by an amide bond.
  • a purine ring or pyrimidine ring corresponding to the nucleobase is bonded to the main chain via a methylene group and a carbonyl group.
  • nucleic acid artificially synthesized by cross-linking the sugar structure of DNA or RNA.
  • the tag region consists only of natural nucleotides and the direction of the nucleic acid in the tag region is the same as that of the primer body region, a polymerase reaction inhibition region is usually required between the primer region and the primer region.
  • the tag region is not a template for a reaction by DNA polymerase and is not double-stranded after the nucleic acid amplification reaction, such as an L-type nucleic acid or an artificial nucleic acid, the tag region also functions as a polymerase reaction inhibition region.
  • the primer of the present invention may have a stable loop structure such as a hairpin structure or a pseudoknot structure, a non-natural nucleic acid such as an L-type nucleic acid or an artificial nucleic acid, and a non-nucleic acid molecule such as a fatty chain alone. It may be a combination of a plurality.
  • Primers can also be labeled with various molecules commonly used for labeling oligonucleotides.
  • molecules include enzymes, magnetic particles, fluorescent dyes, radioisotopes and the like. These may be used alone or in combination.
  • the method for producing the designed primer is not particularly limited, and can be produced by a known method. Specifically, the designed primer can be easily obtained by using a DNA synthesizer or using a commissioned synthesis service.
  • the nucleic acid amplification method is not particularly limited as long as it can obtain a double-stranded DNA amplified fragment having a single-stranded region at the end using the above-mentioned primers.
  • An example is PCR.
  • isothermal amplification methods such as LAMP method and ICAN method can also be used.
  • the combination of the reverse primer and forward primer used in the PCR reaction may be a different polymerase reaction inhibition region for both primers and one may be used as a label binding region, or one may inhibit the polymerase reaction.
  • the region the other side may be modified with biotin or the like without introducing the polymerase reaction inhibiting region into the labeled binding region.
  • the PCR conditions are not particularly limited as long as the desired region of the cDNA is amplified when PCR is performed using the above-described reverse transcription product as a template and the primer set.
  • the polymerase used for PCR is not particularly limited, but is more preferably a thermostable DNA polymerase, and a thermostable DNA polymerase substantially free of 3 ′ ⁇ 5 ′ exonuclease activity. It is more preferable that Examples of such a thermostable DNA polymerase include Ex-Taq (manufactured by Takara Bio Inc.) and the like, but are not limited thereto.
  • the PCR reaction conditions such as temperature, time, buffer composition, etc.
  • the length of the DNA amplified by the nucleic acid amplification reaction is preferably 20 bases or more, and more preferably 40 bases or more. If it is less than 20 bases, non-specific amplification tends to increase.
  • a double-stranded DNA amplification product in which a single-stranded region is added to the end of the reverse transcription product can be obtained.
  • FIG. 4 shows an amplification reaction in the case where a primer set comprising a primer body region, a polymerase reaction inhibition region, and a tag region is used with the reverse transcription product prepared by the method shown in FIG. 1 as a template.
  • a schematic diagram is shown.
  • the forward primer 18 has a primer main body region 19 having the same sequence as a part of the 5 ′ end side of the reverse transcription product 5, and a polymerase reaction inhibition region 20 and a tag region 21 on the 5 ′ end side thereof.
  • the reverse primer 14 has a primer main body region 15 having a sequence complementary to a part of the 3 ′ end side of the reverse transcription product, and a polymerase reaction inhibition region 16 and a tag region 17 on the 5 ′ end side thereof.
  • the sequences of tag regions that bind to both primers usually have different sequences.
  • a DNA amplification fragment having a single-stranded region at both ends is a double-stranded DNA portion identical to the target nucleic acid region, and a single strand as a tag portion at each 5 ′ end on both sides thereof. It means a DNA amplification product having a region. That is, the DNA amplification fragment shown in FIG. 4 is a double-stranded DNA amplification fragment having a single-stranded region composed of nucleic acids not modified at both ends, and the single-stranded regions at both ends are continuous. It has a sequence consisting of the same direction as the DNA strand.
  • FIG. 5 shows a schematic diagram of the amplification reaction when the reverse transcription product prepared in FIG. 2 is used as a template and a primer comprising a primer body region, a polymerase reaction inhibition region, a tag region, and a label-binding primer.
  • the forward primer 27 has a primer main body region 19 composed of the same sequence and a poly T sequence as a part of the 5 ′ end side of the reverse transcription product 10 and a label binding region 29 on the 5 ′ end side thereof.
  • the reverse primer 23 has a primer body region 24 having a sequence complementary to a part of the 3 ′ end side of the reverse transcription product, and a polymerase reaction inhibition region 25 and a tag region 26 on the 5 ′ end side thereof.
  • the tag region added to the primer does not substantially participate in the PCR reaction, and thus a DNA amplification product 30 having a single-stranded region at the end is obtained.
  • a DNA amplified fragment having a single-stranded region at the end is a double-stranded DNA portion having the same sequence as the reverse transcription product, and one tag portion on the 5 ′ end side of one side thereof. It means a DNA amplification product having a strand region.
  • the DNA amplification fragment shown in FIG. 5 is a double-stranded DNA amplification fragment having a single-stranded region composed of a nucleic acid not modified at the end, and the single-stranded region at the end is a continuous DNA strand. It has an array consisting of the same direction.
  • a hybridization complex is formed using a single-stranded region of the double-stranded DNA amplified fragment.
  • Hybridization means that molecules containing nucleic acids complementarily form a complex, and includes DNA / RNA, DNA / RNA, DNA / PNA, L-DNA / L-DNA complexes, and the like.
  • the DNA amplification product obtained in the nucleic acid amplification step is subjected to hybridization without performing single-stranded treatment such as heat treatment. Can be used for reaction.
  • a single-stranded region of a double-stranded DNA amplification fragment having a single-stranded region tag at the end can be hybridized with an oligonucleotide probe fixed to a capture carrier (solid phase). Furthermore, it is preferable that the double-stranded DNA amplified fragment can bind to the labeling substance.
  • the bond between the double-stranded DNA amplified fragment and the labeling substance may be a bond via a single-stranded region or a bond via a label-binding region.
  • a complex composed of a double-stranded DNA amplified fragment, an oligonucleotide probe, and a labeling substance is called a three-component complex. Note that the order of combining the three is not particularly limited.
  • the length of the oligonucleotide probe is not particularly limited as long as it can hybridize with the single-stranded region of the double-stranded DNA amplified fragment, but it is preferably 5 bases or more, more preferably 10 to 40 bases.
  • the structure of the label binding region is not particularly limited as long as the label can be bound.
  • a sequence containing a target binding substance such as biotin can be used as the label binding region.
  • a labeling substance in which streptavidin is bound to the label binding region can be bound using the biotin-streptavidin interaction.
  • the single-stranded region can be a label binding region.
  • the labeling substance can be indirectly bound to the label binding region using hybridization of the single-stranded region and the oligonucleotide probe bound to the labeling substance.
  • the length of the oligonucleotide probe is not particularly limited as long as it can hybridize with the single-stranded region of the double-stranded DNA amplified fragment, but it is preferably 5 bases or more, more preferably 10 to 40 bases.
  • the labeling substance is not particularly limited as long as it can detect a double-stranded DNA amplified fragment, but it is preferably a colored carrier that can realize visual detection of a double-stranded DNA amplified fragment.
  • colored carriers include colored particles, enzymes, and dye-binding carriers. Among these, it is preferable to use colored particles.
  • Colored particles include colloidal particles made of metals such as gold, silver, copper, and platinum, colored latex obtained by coloring latex with pigments and dyes, and silica nano particles in which pigment molecules are immobilized inside silica (silicon dioxide) particles. And particles. Among these, it is preferable to use colloidal gold particles or colored latex particles made of a water-dispersed polymer colored in blue or red. By using such colored particles, visual determination of the amplified DNA fragment can be made easier. In particular, when multiple items are detected at the same time, it is easy to visually determine a large number of items simultaneously by using colored particles of different colors for each item.
  • the particle size is not particularly limited, but there is little adverse effect on the formation of a ternary complex and the capture of the amplification product containing the target sequence on the solid phase, and the detection In particular, it is preferable that the color is good.
  • the particle size of the colored particles is selected from particle sizes smaller than the pore size of the chromatography medium described later. Specifically, a thickness of 500 nm or less is usually used, among which 0.1 nm to 100 nm is preferable, and 1 nm to 50 nm is more preferable.
  • these enzymes are preferably proteins that catalyze the reaction of a substrate that develops color or emits light. Examples thereof include peroxidase, alkaline phosphatase, luciferase and the like, but are not limited to these as long as they can be detected with the naked eye.
  • Hybridization between the single-stranded region at the end of the double-stranded DNA amplified fragment and the oligonucleotide probe is not particularly limited as long as it is carried out under conditions where hybridization occurs, but is carried out at room temperature in 10 mM phosphate buffer. It is preferable. At this time, the efficiency of hybridization is increased by adding a salt such as sodium chloride.
  • the presence or absence of the target nucleic acid can be determined.
  • the presence or absence of the target nucleic acid is preferably determined visually.
  • the amplification product of the nucleic acid amplification reaction can be used in the hybridization reaction as it is without being subjected to a single strand treatment such as heat denaturation. Further, the presence or absence of the target nucleic acid can be determined visually and simply without the need for a special device.
  • the nucleic acid detection method by forming the above three-component complex is performed on a nucleic acid detection device. Moreover, it is more preferable to carry out by a chromatography device.
  • the nucleic acid chromatography device of FIG. 6 includes a sample pad 31 (a carrier for adding a double-stranded DNA amplified fragment), a conjugate pad 32 (a carrier on which a colored carrier is disposed) on a member 35 serving as a base material,
  • the carrier 33 chromatography medium holding the capture oligonucleotide and the absorption pad 34 are bonded together using an adhesive or the like.
  • a test line 36 coated with a capture oligonucleotide and a control line 37 are provided on the carrier 33.
  • the conjugate pad 32 may be omitted.
  • the present invention also provides a nucleic acid detection device for use in the above-described nucleic acid detection method, which comprises a region in which the double-stranded DNA amplified fragment is arranged, and a chromatography holding the oligonucleotide probe that binds to the double-stranded DNA amplified fragment
  • the present invention also relates to a detection device comprising a carrier and an oligonucleotide probe bound with a labeling substance.
  • a double-stranded DNA amplified fragment is placed on the sample pad 31.
  • the double-stranded DNA amplified fragment is diffused in the direction of the arrow.
  • the double-stranded DNA amplified fragment is captured by hybridization with the immobilized oligonucleotide probe in the test line 36.
  • step (c) it is preferable to further include a step of binding the double-stranded DNA amplified fragment and the labeling substance before the step (c).
  • the double-stranded DNA amplified fragment and the labeling substance are bound to each other at the conjugate pad 32.
  • a double-stranded DNA amplified fragment is disposed on the sample pad 31 and a labeling substance is disposed on the conjugate pad 32.
  • the double-stranded DNA amplified fragment is diffused from the sample pad 31 in the direction of the arrow.
  • the double-stranded DNA amplified fragment is bound to the labeling substance at the conjugate pad 32.
  • a complex formed by binding of the double-stranded DNA amplified fragment and the labeling substance is diffused in the arrow direction.
  • the oligonucleotide probe and the complex are hybridized on the test line 36.
  • an oligonucleotide probe having a sequence complementary to the tag region of the double-stranded DNA amplified fragment is immobilized as a capture oligonucleotide probe.
  • the capture oligonucleotide probe may be bound directly to the membrane, may be bound via a functional group, or may be bound to the membrane via some substance.
  • mediators include, but are not limited to, peptides, proteins, and nucleic acids. When the mediator is avidin, biotin modification is required for the capture oligonucleotide.
  • a substance for capturing the colored carrier is immobilized on the control line on the membrane.
  • the substance for capturing a colored carrier is not particularly limited, and examples thereof include oligonucleotide probes, peptides, and proteins.
  • the oligonucleotide probe is bound to the labeling substance, the oligonucleotide probe is also used as the coloring carrier capturing substance for the control line. Therefore, the labeling substance is always captured when the solution is developed.
  • the colored carrier capturing substance for the control line may be directly bonded to the membrane in the same manner as described above, may be bonded to the membrane through a functional group, or may be bonded to the membrane through some substance. Also good.
  • the mediator include, but are not limited to, peptides, proteins, and nucleic acids. When the mediator is avidin, biotin modification is required for the capture substance.
  • the presence of the target nucleic acid in the sample can be visually determined by coloration in the test line.
  • visual observation means observing with the naked eye to judge the color.
  • the concentration of the target nucleic acid can be quantified by measuring the color intensity of the test line coloration with a chromatographic reader or the like. .
  • the chromatographic medium examples include qualitative filter paper, quantitative filter paper, liquid separation filter paper, glass fiber filter paper, silica fiber filter paper, and filter paper made of composite fiber filter paper. Further, filter paper made of cellulose such as nitrocellulose or cellulose acetate, a synthetic resin film such as a polyether sulfone membrane, or a porous gel such as silica gel, agarose, dextran, or gelatin can be used. A nylon membrane can also be used suitably. In actual use, the form and size of the chromatographic medium are not particularly limited, and may be appropriate in operation and observation of reaction results.
  • These carriers can be subjected to various modifications in order to improve hydrophilicity and compound binding.
  • the deployment direction in the device may be a horizontal direction as shown in FIG. 6 or a vertical direction, and is not particularly limited. Since the solvent in the nucleic acid amplification reaction can be used as the developing solvent, the reaction solution after the nucleic acid amplification reaction can be dropped directly onto the sample pad 32 in FIG. Alternatively, a developing solution can be added separately to the reaction solution after the amplification reaction and added to the sample pad.
  • the developing solvent is not particularly limited as long as it is liquid, but a Good buffer solution such as a phosphate buffer solution or a Tris buffer solution can be used. Further, a salt, a surfactant, a protein, or a nucleic acid may be dissolved in the solvent.
  • the formation of a tripartite complex on a chromatographic carrier will be described as an example.
  • the amplified DNA fragment 30 obtained in the nucleic acid amplification step is used in the next complex formation step without performing a single-strand treatment such as heat treatment.
  • the first complex 40 is formed by binding to the DNA amplified fragment 30.
  • the complex 40 may be formed before being applied to a development medium, as in a PCR reaction container, or a DNA amplified fragment may be applied on a carrier, and the labeling substance may be applied and dried while moving by capillary action. It is also possible to form the substrate by passing it through.
  • the complex 40 is brought into contact with the capture oligonucleotide probe 42 previously bound to an identifiable position on the chromatography medium 41 made of a porous membrane or the like on the development medium.
  • the capture oligonucleotide 42 has a sequence complementary to the single-stranded tag sequence 26 of the DNA amplification fragment, and a hybridization between the complex 40 and the capture oligonucleotide results in a tripartite complex. It is formed.
  • the order in which the ternary complex is formed is not particularly limited. After forming the complex 40 in which the amplified DNA fragment and the labeling substance are bound, it is preferable to form a complex with the capture oligonucleotide probe. However, the amplified DNA fragment is concentrated on the development medium with the capture oligonucleotide probe. Later, the labeling substance can be developed to form a ternary complex.
  • FIG. 8 and FIG. 9 show examples of detection devices for amplified DNA fragments having single-stranded regions at both ends using single-stranded tag regions in the label binding region shown in FIG.
  • nucleic acid detection device forms other than the chromatography device examples include the microarray (DNA chip) shown in FIG. It is possible to form a ternary complex by hybridization in the well on which the capture oligonucleotides on the microarray 45 are fixed.
  • the nucleic acid detection method and the nucleic acid detection device of the present invention can be used for any technique including a nucleic acid amplification step. In other words, it can be used for techniques in all fields including detection of DNA amplification fragments (for example, PCR products) by nucleic acid amplification methods. Specifically, for example, research fields of molecular biology, pathogen detection, detection of contaminants in foods such as allergens, food quality control (inspection of fake labeled foods, genetically modified foods, etc.), livestock management, basicity It can be used for detection of type (hereinafter also referred to as “SNP”), examination of diseases such as cancer, and the like.
  • SNP type
  • the present invention includes a method for detecting an infectious disease caused by a pathogen, a method for detecting a mixture (for example, allergen) in food, a quality control for food, and a method for managing livestock, which include the nucleic acid detection method according to the present invention as a step. And nucleotide polymorphism detection methods and the like.
  • the pathogen detection method according to the present invention only needs to include a step of detecting a gene specifically possessed by the pathogen using the nucleic acid detection method according to the present invention.
  • the said pathogen is not specifically limited, For example, a pathogenic bacterium, a pathogenic virus, food poisoning bacteria, nosocomial infection bacteria, a virus, etc. can be mentioned, for example. More specifically, for example, viruses such as hepatitis C virus (HCV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes virus, human immunodeficiency virus (HIV), E.
  • Bacteria such as Mycobacterium tuberculosis, Salmonella typhi, Salmonella or Vibrio parahaemolyticus, or microorganisms such as mycoplasma can be exemplified.
  • the pathogen detection method according to the present invention will be described more specifically. For example, whether or not a gene specifically possessed by the pathogen is contained in a DNA sample prepared from a sample to be examined for the presence or absence of the pathogen. Is determined using the nucleic acid detection method.
  • a sample to be examined for the presence of a pathogen can be used as it is as a template for nucleic acid amplification without preparing a DNA sample.
  • a bacterium such as E. coli
  • a bacterial colony suspension can be used as a template.
  • the pathogen detection method according to the present invention can be used for diagnosis of microbial infections.
  • the allergen detection method according to the present invention only needs to include a step of detecting a gene encoding an allergen using the nucleic acid detection method according to the present invention.
  • the said allergen is not specifically limited,
  • the allergen contained in foodstuffs can be mentioned specifically, for example. More specifically, egg white allergen, milk allergen, wheat allergen, buckwheat allergen, peanut allergen and the like can be mentioned.
  • the method for detecting allergens according to the present invention will be described more specifically. For example, whether or not a DNA sample prepared from food contains an allergen-encoding gene such as egg, milk, wheat, buckwheat, or peanut. Determination is performed using the nucleic acid detection method. As a result, when such a gene is detected, it is determined that the food contains an allergen-containing raw material.
  • the origin of allergens is not limited to those exemplified above.
  • all of rice, corn, millet, millet, millet, buckwheat, and legumes were included.
  • DNA is stable to heat and is detected in trace amounts even in processed foods. Therefore, the data obtained by the method for detecting allergens according to the present invention is used for displaying food or as allergy information for food, as well as for food additives such as processing aids and carryover. It can be used to detect contamination of substances unintended by the producer, such as the presence of very small amounts or the presence or absence of cross-contamination of production lines.
  • the present invention can be used for paternity testing of mammals including humans, identification of breeds of livestock, identification of agricultural product varieties, detection of SNPs, detection of diseases (such as cancer) due to gene mutation, and the like.
  • mammals including humans, identification of breeds of livestock, identification of agricultural product varieties, detection of SNPs, detection of diseases (such as cancer) due to gene mutation, and the like.
  • livestock it can be used for purposes such as pedigree registration, individual identification, parent-child determination, and removal of pathogenic gene carrier individuals.
  • the present invention is not limited to the configurations described above, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.
  • RNA Synthesis of template RNA
  • a synthetic RNA (miR-156a, chain length 20 mer) was synthesized by Tsukuba Oligo Service and used as a template.
  • reverse transcription primer RTp having a sequence complementary to the 6 ′ base at the 3 ′ end of template miR-156a at the 3 ′ end was synthesized. It was commissioned by Tsukuba Oligo Service. RTp: 5′-GTTGGCCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC GTGCTC- 3 ′ (SEQ ID NO: 2) Of the primer sequences, sequences that form hybridization with the target nucleic acid are underlined.
  • step (3) PrimeScript (registered trademark) High Fidelity RT-PCR Kit (manufactured by Takara Bio Inc.) using the template miR-156a synthesized in step (1) as the reverse transcription reaction template and the reverse transcription primer synthesized in step (2).
  • the reverse transcription reaction was performed according to the protocol.
  • the reverse transcription reaction solution was 1 fmol of template miR-156a, 2 ⁇ l of reverse transcription primer RTp (10 ⁇ M), 4 ⁇ l of 5 times concentrated PrimeScript Buffer, 0.5 ⁇ l of RNase Inhibitor (40 U / ⁇ l), PrimeScript RTlase (200 U / ⁇ l) ) was prepared to 1.0 ⁇ l and 20 ⁇ l with RNase-free water. Thereafter, the mixture was gently mixed and a reverse transcription reaction was carried out at 30 ° C. for 10 minutes, 42 ° C. for 30 minutes, and 95 ° C. for 5 minutes to prepare miR-156a cDNA.
  • TXR 5 '-GGTTAGCTTCCAACCACGTGTATGATC-X-GCGGCGGTGACAGAAGAGAG-3' (SEQ ID NO: 3)
  • HF 5 '-FITC-GTGCAGGGTCCCGAGT-3' (SEQ ID NO: 4)
  • PCR reaction was performed using the primer set prepared in the step (4). Put 15 pmol each of primer TXR and primer HF and 0.5 ⁇ l of the above step (3) reverse transcription reaction solution into a 0.2 ml PCR tube, and use the ExTaq PCR device (manufactured by Takara Bio Inc.). According to the instructions, 100 ⁇ l of a PCR reaction solution was prepared. Then, the tube was set in a thermal cycler (GeneAmp PCR System, manufactured by Applied Biosystems), heat treated at 95 ° C. for 5 minutes, then cycled at 95 ° C.
  • a thermal cycler GeneAmp PCR System, manufactured by Applied Biosystems
  • PCR amplification product was obtained by performing the treatment repeatedly.
  • PCR reaction was performed using negative control 1 for RNA not subjected to reverse transcription (miR-156a) and negative control 2 for the sample subjected to reverse transcription reaction in step (3) by adding total RNA from another mouse. went.
  • nucleic acid chromatography-like test strip A base material consisting of a backing sheet, a chromatographic medium composed of the nitrocellulose membrane prepared above, a conjugation pad, a general-purpose sample pad as a sample addition section, and a developed sample Then, an absorption pad for absorbing the labeling substance was attached as shown in FIG. 6 to prepare a test strip for detecting a PCR amplification product using an azobenzene insertion primer and a FITC-modified primer set.
  • step (5) Detection of PCR product by test strip
  • the PCR product prepared in step (5) is immediately applied to the sample addition site on the test strip prepared in step (8) without denaturation and detected by chromatography. It was.
  • a target nucleic acid-specific colored line was detected on the test line.
  • no line was detected in the PCR product when miR156a was added as a negative control 1 without reverse transcription.
  • a reverse transcription product of mouse total RNA was added as a negative control 2 as a template, no line was detected.
  • the time required for detection by chromatography was as short as 10 to 15 minutes.
  • RNA extraction of Arabidopsis thaliana 1 g of Arabidopsis thaliana was placed in liquid nitrogen and ground in a mortar. Next, total RNA was extracted using a simple RNA extraction kit (for RT-PCR) according to the protocol.
  • the reverse transcription reaction solution was 1 ⁇ l of poly A added RNA, 2 ⁇ l of reverse transcription primer RTp-T (10 ⁇ M), 4 ⁇ l of 5 times concentrated PrimeScript Buffer, 0.5 ⁇ l of RNase Inhibitor (40 U / ⁇ l), PrimeScript RTase (200 U) / ⁇ l) was prepared to 1.0 ⁇ l, and 20 ⁇ l with RNase-free water. Thereafter, the mixture was gently mixed and a reverse transcription reaction was carried out at 30 ° C. for 10 minutes, 42 ° C. for 30 minutes, and 95 ° C. for 5 minutes to prepare miR-156a cDNA.
  • Forward primer F having the same sequence as the 5 ′ end side of the reverse transcription product prepared in the synthesis step (4) of the primer with the fatty chain and the FITC modified primer, and complementary to the 3 ′ end side of the reverse transcription product
  • a reverse primer R having a unique sequence was designed. Further, a polymerase-inhibited region (XS) having a non-nucleic acid fatty chain structure at the 5 ′ end of the reverse primer R and a tagged primer (TXR) into which the tag sequence T was introduced were prepared. Further, a labeled primer (HF) in which FITC was introduced at the 5 ′ end of the forward primer F was prepared. The primer set prepared in this study is shown.
  • T-XS-R 5 '-GGTTAGCTTCCAACCACGTGTATGATC-XS-GCGGCGGTGACAGAAGAGAGGT-3' (SEQ ID NO: 7)
  • HF 5 '-FITC-GTGCAGGGTCCCGAGT-3' (SEQ ID NO: 8)
  • PCR reaction was performed using the primer set prepared in the step (5). Place 15 pmol each of primer TXR and primer HF and 0.5 ⁇ l of the step (4) reverse transcription reaction solution in a 0.2 ml PCR tube, and use the ExTaq PCR device (manufactured by Takara Bio Inc.). According to the instructions, 100 ⁇ l of a PCR reaction solution was prepared. Then, the tube was set in a thermal cycler (GeneAmp PCR System, manufactured by Applied Biosystems), heat treated at 95 ° C. for 5 minutes, then cycled at 95 ° C.
  • a thermal cycler GeneAmp PCR System, manufactured by Applied Biosystems
  • PCR amplification product was obtained by performing the treatment repeatedly.
  • PCR reaction was performed using negative control 1 for RNA not subjected to reverse transcription (miR-156a), and negative control 2 for the sample subjected to reverse transcription reaction in step (4) by adding total RNA from another mouse. went.
  • a coating solution of an oligonucleotide probe having a sequence (SEQ ID NO: 9) complementary to the tag region of SEQ ID NO: 7 is prepared.
  • the coating solution was applied onto a line using a dispenser on a nitrocellulose membrane (trade name: Hi-Flow 180, manufactured by Millipore) and air-dried at 40 ° C. for 30 minutes.
  • Oligonucleotide probe 2 5 ′-(GATCATACACGTGGTTGGAAGCTAACC) -3 ′ (SEQ ID NO: 9)
  • PCR product prepared in step (6) is mixed with a developing solution containing a surfactant and sodium chloride without denaturation, and immediately on the test strip prepared in step (9).
  • a developing solution containing a surfactant and sodium chloride without denaturation was applied to the sample addition site and chromatographic detection was performed.
  • the target miR156a subjected to the reverse transcription reaction in step (4) was used as a template, a colored line specific to the target nucleic acid was detected on the test line.
  • no line was detected in the PCR product when miR156a was added as a negative control 1 without reverse transcription.
  • no line was detected in the PCR product when a reverse transcription product of mouse total RNA was added as a template as negative control 2.
  • the time required for detection by chromatography was as short as 10 to 15 minutes.
  • RNAs 1 to 3 were synthesized by Tsukuba Oligo Service and used as templates.
  • Template miRNA 5′-UGACAGAGAGAGUGAGCAC-3 ′ (SEQ ID NO: 10)
  • Template miRNA2 5′-UUUGGAUGAAGGGAGCUCUA-3 ′ (SEQ ID NO: 11)
  • Template miRNA3 5′-UGAUUGAGCCGCCGCCAAAUUC-3 ′ (SEQ ID NO: 12)
  • RTp1 5'-TGGGCTGACCTAGAGGTCTTAAC GTGCTC- 3 '(SEQ ID NO: 13)
  • RTp2 5′-CCCGGAACAGACACCAGGTTTACAC TAGAGC- 3 ′ (SEQ ID NO: 14)
  • RTp3 5′-ATACCGATGAGTGTGCTACCAAC GATATT- 3 ′ (SEQ ID NO: 15)
  • the reverse transcription reaction solution was 1 ⁇ l of each sample, 2 ⁇ l of reverse transcription primer RTp1-3 (10 ⁇ M each), 4 ⁇ l of 5 times concentrated PrimeScript Buffer, 0.5 ⁇ l of RNase Inhibitor (40 U / ⁇ l), PrimeScript RTase (200 U / ⁇ l) was prepared to 1.0 ⁇ l, and 20 ⁇ l with RNase-free water. Thereafter, the mixture was gently mixed, and reverse transcription reaction was performed at 30 ° C. for 10 minutes, 42 ° C. for 30 minutes, and 95 ° C. for 5 minutes to perform reverse transcription reaction for each of samples (i) to (v) to prepare cDNA.
  • These 6 kinds of azobenzene insertion primers were purchased by custom synthesis at Tsukuba Oligo Service Co., Ltd. The three primer sets prepared in this study are shown below.
  • Tag sequence T1 5 ′-(TGGCAACATTTTCACTGGGTTTTAG) -3 ′ (SEQ ID NO: 16)
  • Tag sequence T2 5 ′-(GGTTAGCTTCCAACCACCTGTAGTAGCA) -3 ′ (SEQ ID NO: 17)
  • Primer T1-X-F1 5 '-(TGGCAACATTTTTCACTGGGTTTTAG XTGGGCTGACCTAGAGGCTCTT) -3' (SEQ ID NO: 18)
  • Primer T2-X-R1 5 '-(GGGTAGCTTCCAACCACGTGGTAGCA X GCGGCGGTGACAGAAGAGAGGT) -3' (SEQ ID NO: 19)
  • Tag sequence T3 5 ′-(CGCATTGAGCAAGTGTACAGAGCAT) -3 ′ (SEQ ID NO: 20)
  • Tag sequence T4 5 ′-(ATTATGCCGTGGAGAAGCATATCATA) -3 ′ (SEQ ID NO: 21)
  • PCR reaction using three sets of azobenzene insertion primer sets PCR reaction was performed using the three primer sets prepared in the above step (4).
  • Primer T1-X-F1, Primer T2-X-R1, Primer T3-X-F2, Primer T4-X-R2, Primer T5-X-F3, and Primer T6-X-R3 were each 15 pmol
  • step Place 1 ⁇ l of the reverse transcription reaction solution for each of samples (i) to (v) prepared in 3) into a PCR tube, and prepare 100 ⁇ l of the PCR reaction solution according to the instructions of the ExTaq PCR device (Takara Bio). did.
  • the tube was set in a thermal cycler (GeneAmp PCR System, manufactured by Applied Biosystems), heat-treated at 95 ° C for 5 minutes, then at 95 ° C for 30 seconds, at 55 ° C for 30 seconds, and at 72 ° C for 30 minutes. A second cycle was performed 30 times, and for samples (i) to (iv), a DNA amplified fragment having the target sequence was obtained. For sample (v), there is no amplified DNA fragment (negative control).
  • GeneAmp PCR System manufactured by Applied Biosystems
  • oligonucleotide probe 3-bound latex blue
  • oligonucleotide probe 4-bound latex orange
  • oligonucleotide probe 5-bound latex green
  • Oligonucleotide probe 3 5 ′-(CTAATAACCCAGTGAAAAATGTTGCCA) -NH 2 -3 ′ (SEQ ID NO: 28)
  • Oligonucleotide probe 4 5 ′-(TTGCTCTGTACACTTGCTCAATGCG) -NH 2 -3 ′ (SEQ ID NO: 29)
  • Oligonucleotide probe 5 5 ′-(TTACCATGGACATGCGCAATT) -NH 2 -3 ′ (SEQ ID NO: 30)
  • Oligonucleotide probe 6 5 ′-(GATCATACACGTGGTTGGAAGCTAACC) -Biotin-3 ′ (SEQ ID NO: 31)
  • Oligonucleotide probe 7 5 ′-(TATGATATGTCTCTCCCACGCATAAT) -Biotin-3 ′ (SEQ ID NO: 32)
  • Oligonucleotide probe 8 5 ′-(CTCAGCAGTTTCCTCTAAAGTA) -Biotin-3 ′ (SEQ ID NO: 33)
  • RNAs 1 to 3 were synthesized by Tsukuba Oligo Service and used as templates.
  • Template miRNA 5′-UGACAGAAGAGAGUGAGCAC-3 ′ (SEQ ID NO: 34)
  • Template miRNA2 5′-UUUGGAUGAAGGGAGCUCUA-3 ′ (SEQ ID NO: 35)
  • Template miRNA3 5′-UGAUUGAGCCGCCGCCAAAUUC-3 ′ (SEQ ID NO: 36)
  • Each sample (i) to (v) was made up to 1 ⁇ l, 10 ⁇ l concentrated buffer 2 ⁇ l, 10 mM ATP 2 ⁇ l, extracted RNA 2 ⁇ l, poly A polymerase 1 U, RNase-free water 20 ⁇ l. The mixture was reacted at 37 ° C. for 10 minutes, and poly A was added to the 3 ′ end of the miRNA.
  • step (3) (4) PrimeScript (registered trademark) High Fidelity RT-PCR Kit (Takara Bio) using the poly A-added sample prepared in step (2) as the reverse transcription reaction template and the reverse transcription primer RTp-T synthesized in step (3).
  • the reverse transcription reaction was performed according to the protocol of the company.
  • the reverse transcription reaction solution was 1 ⁇ l of the poly A addition reaction solution of samples (i) to (v), 2 ⁇ l of reverse transcription primer RTp-T (10 ⁇ M), 4 ⁇ l of 5 times concentrated PrimeScript Buffer, RNase Inhibitor (40 U / ⁇ l). ), 0.5 ⁇ l of PrimeScript RTase (200 U / ⁇ l), and 20 ⁇ l with RNase-free water. Thereafter, the mixture was gently mixed, and a reverse transcription product of each sample was prepared by performing a reverse transcription reaction at 30 ° C. for 10 minutes, 42 ° C. for 30 minutes, and 95 ° C. for 5 minutes.
  • Polymerase reaction inhibition region (X) containing azobenzene which is a non-nucleic acid structure on each 5 ′ terminal side, and tagged primers into which tag sequences T7, T8, T9 have been introduced, T7-XR1, T8-XR2, And T9-X-R3 were synthesized.
  • These four types of modified primers were purchased after custom synthesis at Tsukuba Oligo Service Co., Ltd. The three primer sets prepared in this study are shown below.
  • PCR reaction using azobenzene insertion primer and Biotin primer set PCR reaction using the primer set prepared in the above step (5) was performed.
  • Primer HF, Primer T7-XR1, Primer T8-XR2, and Primer T9-XR3 were each 15 pmol, and each sample (i) to (v) prepared in step (4) 1 ⁇ l of the reverse transcription reaction solution was put into a PCR tube, and 100 ⁇ l of a PCR reaction solution was prepared according to the instructions of the ExTaq PCR device (manufactured by Takara Bio Inc.).
  • the tube was set in a thermal cycler (GeneAmp PCR System, manufactured by Applied Biosystems), heat-treated at 95 ° C for 5 minutes, then at 95 ° C for 30 seconds, at 55 ° C for 30 seconds, and at 72 ° C for 30 minutes. A second cycle was performed 30 times, and for samples (i) to (iv), a DNA amplified fragment having the target sequence was obtained. For sample (v), there is no amplified DNA fragment (negative control).
  • GeneAmp PCR System manufactured by Applied Biosystems
  • Oligonucleotide probe 9 5 ′-(GATCTACACGTGGGTTGGAAGCTACACC) -3 ′ (SEQ ID NO: 45)
  • Oligonucleotide probe 10 5 ′-(TATGATATGTCTCTCCCACGCATAAT) -3 ′ (SEQ ID NO: 46)
  • Oligonucleotide probe 11 5 ′-(CTCAGCAGTTTCCTCTAAAGTA) -3 ′ (SEQ ID NO: 47)
  • Example 5 (1) Synthesis of template RNA In the same manner as in Example 1, template miR-156a was synthesized.
  • step (3) PrimeScript (registered trademark) High Fidelity RT-PCR Kit (manufactured by Takara Bio Inc.) using the template miR-156a synthesized in step (1) as the reverse transcription reaction template and the reverse transcription primer synthesized in step (2).
  • the reverse transcription reaction was performed according to the protocol.
  • T-Xr-R 5 '-GGTTAGCTTCCAACCACGTGTATGATC-Xr-GCGGCGGTGACAGAAGAGAGGT-3' (SEQ ID NO: 48)
  • DF 5 ′-DIG-GTGCAGGGTCCCGAGT-3 ′ (SEQ ID NO: 49)
  • PCR using polymerase reaction inhibition region (5′-5 ′ binding + 3′-3 ′ binding) insertion primer and DIG-modified primer Using the reverse transcription product prepared in the step (3) as a template, a PCR reaction was performed on each sample using the primer set prepared in the step (4). Put 15 pmol each of primer T-Xr-R and primer DF and 0.5 ⁇ l of the above step (3) reverse transcription reaction solution into a 0.2 ml PCR tube, and use ExTaq PCR kit (manufactured by Takara Bio Inc.). According to the instructions, 100 ⁇ l of a PCR reaction solution was prepared.
  • the tube was set in a thermal cycler (GeneAmp PCR System, manufactured by Applied Biosystems), heat treated at 95 ° C. for 5 minutes, then subjected to 30 cycles of 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds.
  • the PCR amplification product was obtained by performing the treatment repeatedly.
  • nucleic acid chromatography-like test strip A base material consisting of a backing sheet, a chromatographic medium composed of the nitrocellulose membrane prepared above, a conjugation pad, a general-purpose sample pad as a sample addition section, and a developed sample A test for detection of PCR amplification products using 5'-5 'binding primer, 3'-3' binding insertion primer and DIG-modified primer set. A strip was made.
  • step (5) Detection of PCR product by test strip
  • the PCR product prepared in step (5) is immediately applied to the sample addition site on the test strip prepared in step (8) without denaturation and detected by chromatography. It was.
  • a target nucleic acid-specific colored line was detected on the test line.
  • the reverse transcription reaction solution of sample (i) was used as a template, no line was detected.
  • the time required for detection by chromatography was as short as 10 to 15 minutes. The color intensity of each line was measured with a chromatographic reader (manufactured by Hamamatsu Photonics).
  • Target RNA 2. Reverse transcription primer3. 3. Primer body region of sequence complementary to part of target RNA 4. Additional sequence not derived from target sequence Reverse transcript cDNA 6). Target RNA (having poly A sequence at 3 'end) 7). Reverse transcription primer8. 8. Primer body region with poly T sequence Any additional sequence not derived from the target sequence10.
  • Reverse transcript cDNA (with poly T sequence) 11.
  • Primer body region 12.
  • Tag area 13.
  • Polymerase reaction inhibition region 14.
  • Reverse primer 15. Primer body region of reverse primer 16. Polymerase reaction inhibition region 17.
  • Tag area 22. DNA amplification product having a single-stranded region at both ends 23.
  • Reverse primer 24 Primer body region of reverse primer 25. Polymerase reaction inhibition region 26. Tag area 27. Forward primer 28. Primer body region comprising the same sequence as part of the 5 ′ end of the reverse transcript 29.
  • Label binding region 30 DNA amplification product having a single-stranded region at the end and a labeled binding region at the opposite end 31.
  • Label molecule 45. Carrier (microarray) holding capture oligonucleotides in each well 46.
  • 46. Bead carrier holding capture oligonucleotide Chromatographic strip nitrocellulose membrane (detector only) 48.
  • Test line 1 49.
  • Test line 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

簡便かつ高精度に、短鎖RNAを検出する方法を提供する。 下記工程(a)~(c):(a)標的RNAに非相補的な配列を5'末端側に有する逆転写プライマーを用いて、前記標的RNAを鋳型として逆転写反応を行い、前記標的RNAより長い逆転写産物を作製する工程、(b)二本のプライマーを用いて、前記逆転写産物を鋳型として核酸増幅反応を行い、少なくとも片側の末端に一本鎖領域を含む二本鎖DNA増幅断片を作製する工程、および(c)前記二本鎖DNA増幅断片の一本鎖領域と、固相上に固定したオリゴヌクレオチドプローブとをハイブリダイズさせる工程を含む、核酸検出方法を提供する。

Description

短鎖RNAの検出方法
本発明は、短鎖RNAの簡便な検出方法に関する。
生体内には多様なRNAが発現している。タンパク質のアミノ酸配列をコードしているmRNAを始めとして、ノンコーディングRNAと呼ばれる非翻訳領域をコードするRNAも多量に存在する。ノンコーディングRNAの中でもマイクロRNA(miRNA)は、細胞内に存在する18~25個のヌクレオチドからなる短鎖のRNAである。動物、植物及びウイルスの発生においてマイクロRNAは重要な制御的役割を果たしている。さらに最近になって、マイクロRNAが動物において、細胞内のタンパク質翻訳等において制御機能を有することが明らかになってきた。それ以降、マイクロRNAの研究は劇的に進展し、今日miRBase データベースバージョン19(http://www.mirbase.org/)には24,521種のマイクロRNAが登録され、PubMedデータベース(http://www.ncbi.nlm.nih.gov/pubmed)には25,646個のマイクロRNA関連論文が含まれており、これらはマイクロRNAの関心の高さおよび重要性を反映している。
マイクロRNAは、標的となるメッセンジャーRNAに結合することで翻訳を制御、抑制する。約30%のヒトゲノムはマイクロRNAによって転写、発現の制御がなされていると推測されている。
また、マイクロRNAの重要性は発生、成長および増殖、アポトーシス、分化、並びに様々なヒトの疾患、例えば癌および糖尿病を含む様々な細胞発現過程において、これらの疾患に関与していることが明らかである。
癌におけるマイクロRNAの重要性は、非特許文献1で強調され、ヒトの種々の癌におけるマイクロRNAの関与に関して述べられており、マイクロRNAの発現量の変化を測定することが癌研究の進展に大いに有用であることが述べられている。
これまでのマイクロRNAの検出方法として、qRT-PCR法、もしくは、マイクロアレイアッセイによる方法がある。しかし、マイクロRNAは18~25個のヌクレオチドの短鎖のRNAであるために非常に増幅および検出が困難であった。この課題に対する解決法は、非特許文献2、特許文献1、非特許文献3に発表されている。非特許文献2は、遺伝子特異的逆転写工程、続くTaqManプローブおよびユニバーサル逆方向プライマーを含む遺伝子特異的順方向プライマーを使用した蛍光検出工程を含むqRT-PCRアッセイを開示している。特許文献1においても、同様の逆転写反応およびプライマーを用いて、マイクロRNAの蛍光検出がなされている。非特許文献3は、遺伝子特異的逆転写工程、続く遺伝子特異的順方向プライマーおよび2個のユニバーサルプライマーを使用したSYBR(登録商標)green qPCR工程を含むqRT-PCRアッセイを開示している。
しかしながら、迅速に、かつ簡便に、qRT-PCRによりマイクロRNAを検出し、マイクロアレイアッセイを行う方法は、知られていない。
特許第4879975号
Bandyopadhyay et al.Silence 2010,1:6 Chen C et al.Nucleic Acids Res.2005 Nov 27;33(20):e179. Sharbati-Tehrani et al.BMC Molecular.2008,9:34
臨床現場における遺伝子診断や検査においては、検査装置が大型かつ高価であること、および、検査時間を要することで、患者の検査費用や数回の通院での手間や負担を要することが多い。そこで、検査の正確性を保ちつつも患者および検査者の負担を軽減する必要があるという理由から、簡便、迅速かつ特異性の高い方法、低コストで特殊な装置を必要としない方法が求められる。本発明は、前記問題に鑑みてなされたものであって、その目的は短鎖のRNAを逆転写反応により長鎖に延長することでPCR反応を効率的に行い、さらに、PCR産物に一本鎖を有することによって、ハイブリダイゼーション法の特異性の高さを活用し、かつ、PCR産物の検出工程に要する時間と工程を減らし、特殊な装置を必要とすることなく、簡便かつ高精度に、目視にて検出する核酸検出方法、および核酸検出デバイスまたはキットを提供することを課題とする。
本発明者らは、上記課題を解決するため鋭意検討を行った結果、標的RNAに対して逆転写プライマーを用いて逆転写反応を行うことで、標的RNAよりも長鎖のcDNAを作製し、効率的に一本鎖領域を有する二本鎖核酸として増幅し、さらに、当該核酸増幅断片を、前記一本鎖領域をハイブリダイゼーションし得るオリゴヌクレオチドプローブを有する固相と結合させ、これを検出することにより、特殊な装置を必要とすることなく、前記核酸増幅断片を簡便かつ高精度に検出できることを独自に見出し、本発明を完成させるに至った。
本発明は、下記工程(a)~(c):
(a)標的RNAに非相補的な配列を5’末端側に有する逆転写プライマーを用いて、前記標的RNAを鋳型として逆転写反応を行い、前記標的RNAより長い逆転写産物を作製する工程、
(b)二本のプライマーを用いて、前記逆転写産物を鋳型として核酸増幅反応を行い、少なくとも片側の末端に一本鎖領域を含む二本鎖DNA増幅断片を作製する工程、および
(c)前記二本鎖DNA増幅断片の一本鎖領域と、固相上に固定したオリゴヌクレオチドプローブとをハイブリダイズさせる工程
を含む、核酸検出方法に関する。
前記標的RNAが10塩基以上の塩基配列を有することが好ましい。
前記標的RNAが15塩基以上の塩基配列を有することが好ましい。
前記標的RNAがマイクロRNAであることが好ましい。
前記逆転写プライマーが標的RNAに相補的な配列を3塩基以上含むことが好ましい。
さらに、工程(a)の前に、標的RNAに対してポリA配列を3塩基以上付加する工程を含むことが好ましい。
前記逆転写プライマーがポリT配列を3塩基以上含むことが好ましい。
前記逆転写プライマーが、3’末端側に標的RNAに相補的な配列を1塩基以上含むことが好ましい。
前記逆転写産物が、標的RNAよりも3塩基以上長いことが好ましい。
前記標的RNAに非相補的な配列が、その配列内に互いに相補的な5塩基以上の配列を有することで、ループ構造を取り得る配列であることが好ましい。
前記プライマーが、タグ領域、ポリメラーゼ反応阻害領域、および逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域を含むことが好ましい。
前記ポリメラーゼ反応阻害領域が核酸誘導体を含むことが好ましい。
前記核酸誘導体が、L型核酸、3-deoxy-2-hydroxy-dN、修飾塩基核酸、損傷塩基核酸、リン酸結合部位修飾核酸、RNA、2’-OMe-N、およびそれらの誘導体からなる群から選択される少なくとも1つであることが好ましい。
前記核酸誘導体が、5’-5’結合で逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域と結合し、かつ/または、3’-3’結合でタグ領域と結合していることが好ましい。
前記ポリメラーゼ反応阻害領域が、非核酸誘導体を含むことが好ましい。
前記非核酸誘導体が、D-threoninol骨格を有することが好ましい。
前記D-threoninol骨格に、アゾベンゼン、ビオチン、EDTA、および発色団からなる群から選択される少なくとも1つが導入されていることが好ましい。
前記非核酸誘導体が、炭素鎖(C)、ペグ鎖((CHCHO))、ジスルフィド含有鎖(CSSC)、ジチオールフォスフォロアミダイト、および、それらの誘導体からなる群から選択される少なくとも1つであることが好ましい。
前記プライマーが、複数種類および/または複数個のポリメラーゼ反応阻害領域を含むことが好ましい。
前記タグ領域が、逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域と同一方向の核酸からなることが好ましい。
前記タグ領域が、逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域と同一方向の核酸、および逆方向の核酸を含むことが好ましい。
前記二本鎖DNA増幅断片が、標識物質と結合可能であることが好ましい。
前記二本鎖DNA増幅断片が、一本鎖領域を介して標識物質と結合可能であることが好ましい。
前記二本鎖DNA増幅断片が、標識結合物質を含む配列を介して標識物質と結合可能であることが好ましい。
前記二本鎖DNA増幅断片の一本鎖領域と標識物質とを結合させる工程をさらに含むことが好ましい。
標識物質が着色担体からなり、前記二本鎖DNA増幅断片の目視検出を可能にすることが好ましい。
前記二本鎖DNA増幅断片の一本鎖領域と、固相上に固定したオリゴヌクレオチドプローブとをハイブリダイズさせる工程が、核酸検出デバイス上で行われることが好ましい。
前記核酸検出デバイスが、クロマトグラフィーデバイスであることが好ましい。
下記工程(a)~(c):
(a)前記核酸検出デバイス上の、前記オリゴヌクレオチドプローブが固定されている領域とは異なる領域に、前記二本鎖DNA増幅断片を配置する工程、
(b)溶媒を用いて、前記二本鎖DNA増幅断片を、前記オリゴヌクレオチドプローブが固定されている領域の方向に、前記デバイス上で拡散させる工程、および
(c)前記オリゴヌクレオチドプローブが固定されている領域において、前記オリゴヌクレオチドプローブと、前記二本鎖DNA増幅断片とを、ハイブリダイズさせる工程、
を含むことが好ましい。
前記工程(c)の前に、前記二本鎖DNA増幅断片と、前記標識物質とを結合させる工程をさらに含むことが好ましい。
下記工程(d)~(h):
(d)前記核酸検出デバイス上の、前記オリゴヌクレオチドプローブが固定されている領域とは各々異なる領域に、前記二本鎖DNA増幅断片、および前記標識物質をそれぞれ配置し、
(e)溶媒を用いて、前記二本鎖DNA増幅断片を、前記標識物質が配置されている領域の方向に拡散させ、
(f)前記標識物質が配置されている領域において、前記二本鎖DNA増幅断片と、標識物質とを結合させ、
(g)工程(f)で結合した複合体を前記オリゴヌクレオチドプローブが配置されている方向に、前記デバイス上で拡散させ、
(h)前記オリゴヌクレオチドプローブが固定されている領域において、前記オリゴヌクレオチドプローブと前記複合体とをハイブリダイズさせる、
を含むことが好ましい。
また、本発明は、前記核酸検出方法に用いる核酸検出デバイスであって、前記二本鎖DNA増幅断片を配置する領域、前記二本鎖DNA増幅断片と結合する前記オリゴヌクレオチドプローブを保持したクロマトグラフィー担体、および、標識物質が結合したオリゴヌクレオチドプローブとを具備してなる検出デバイスに関する。
本発明によれば、短鎖のRNAに対して逆転写反応を行うことにより、鎖長を延長し効率的なDNA増幅反応ができ、さらにDNA増幅産物の一本鎖領域を利用して特異的に固相と結合させることができ、更にもう片側には標識化合物との複合体を形成することができ、特殊な装置を用いることなくDNA増幅産物を簡便、迅速に目視判定することが可能となる。さらに、構造的に安定な二本鎖DNAを検出することによって、全長一本鎖の検出と比較して検出感度が向上される。また、固相に結合させるための増幅産物の一本鎖領域と、これに相補的な固相上のオリゴヌクレオチドプローブの組み合わせを複数種用意することで、試料中に存在する2種以上の標的核酸を同時に判別することも可能となる。
標的RNAと相補的な配列を有し、その配列の5’側に付加配列を有する逆転写プライマーを用いた逆転写反応の概念図である。 3’末端にポリAが付加した標的RNAに対して、付加配列-ポリT-VN(V=A,G,C)の逆転写プライマーを用いた逆転写反応の概念図である。 PCR用プライマーの概念図である。 図1で作製した逆転写産物から、両末端に一本鎖を有する二本鎖核酸の合成法の概念図である。 図2で作製した逆転写産物から、片側末端に一本鎖を有し、もう片側にはビオチン等からなる標識結合領域を有する二本鎖核酸の合成法の概念図である。 核酸クロマトグラフィーデバイスの一例を示す概略図である。 PCR産物検出原理の概念図である。 マイクロアレイ(DNAチップ)の一例を示す概略図である。 ビーズ担体の一例を示す概略図である。 実施例4における核酸クロマトグラフィー様ストリップによるPCR増幅産物の検出結果の一部である。
本発明は、下記工程(a)~(c):
(a)標的RNAに非相補的な配列を5’末端側に有する逆転写プライマーを用いて、前記標的RNAを鋳型として逆転写反応を行い、前記標的RNAより長い逆転写産物を作製する工程、
(b)二本のプライマーを用いて、前記逆転写産物を鋳型として核酸増幅反応を行い、少なくとも片側の末端に一本鎖領域を含む二本鎖DNA増幅断片を作製する工程、および
(c)前記二本鎖DNA増幅断片の一本鎖領域と、固相上に固定したオリゴヌクレオチドプローブとをハイブリダイズさせる工程
を含む、核酸検出方法に関する。
二本鎖DNA増幅断片は、鋳型となる試料サンプル中の標的RNAに対して、逆転写プライマーを用いて逆転写反応によりcDNAを作製し、さらに、特定のプライマーセットを用いて核酸増幅反応を行うことにより得られる。
試料サンプルは特に限定されず、核酸増幅反応の鋳型として用いることができればよい。具体的には、血液、体液、組織、口腔内粘膜、毛髪、爪、培養細胞、動物、植物、微生物等のあらゆる生物試料サンプル由来の核酸を用いることができる。RNAとしてはトータルRNA、メッセンジャーRNA、トランスファーRNA、リボソームRNA、アンチセンスRNA、ノンコーディングRNA、マイクロRNA(miRNA)、pri-miRNA、pre-miRNA、small interfering RNA、small hairpin RNA、gRNA、snRNA、snoRNA、small temporal RNA、Piwi-interacting RNAを用いてもよい。
RNAは精製されたRNAである必要はなく、RNAを含む細胞や組織を精製処理することなく、そのまま逆転写反応および核酸増幅反応に適用することができる。RNAは、10塩基以上の塩基配列を有することが好ましく、15塩基以上の塩基配列を有することがより好ましい。
また、逆転写反応の前に、標的RNAの3’末端にポリA配列を付加することもできる。付加するポリA(アデニン)配列の長さは特に限定されないが、3塩基以上付加することが好ましく、5塩基以上付加することがより好ましい。
逆転写反応には、標的RNAに非相補的な配列を5’末端側に有する逆転写プライマーを使用する。逆転写反応において、図1のように標的RNA1の一部の配列と相補的な配列3を有し、さらにその5’末端側に標的RNAに非相補的な任意の付加配列4とを有する逆転写プライマー2を用いることにより、標的RNAには由来しない付加配列を有し、標的RNAより長鎖の逆転写産物cDNA5を作製することができる。逆転写産物は、標的RNAよりも3塩基以上長いことが好ましい。
また、別の逆転写反応の例としては、図2のようにポリAを3’末端側に有する標的RNA、もしくはポリAポリメラーゼによってポリAを付加した標的RNA6に対して、ポリAと相補的なポリT配列8を有し、さらにその5’末端側に標的RNAに非相補的な任意の付加配列9とを有する逆転写プライマー7を用いることにより、標的RNAに非相補的な付加配列を有し、標的RNAより長鎖の逆転写産物cDNA10を作製することができる。
標的RNAは1種類でもよく、2種類以上の標的RNAが存在してもよい。逆転写反応に用いる逆転写プライマーは1種類でもよく、2種類以上用いてもよい。
逆転写プライマー2は、標的RNAの3’末端側に対して相補的な配列を含み、かつ標的RNAに対して非相補的なタグ配列を有する。逆転写プライマー7は、標的RNAの3’末端側に対して相補的な配列を含み、もしくは評定RNAの3’末端のポリAに対して相補的なポリT配列を含み、かつ標的RNAに対して非相補的なタグ配列を有する。ポリT配列は、3塩基以上であることが好ましい。逆転写プライマーがポリT配列を含むときも、3’末端側に、標的RNAに相補的な配列を1塩基以上含むことが好ましい。
逆転写プライマーは、標的RNAに相補的な配列(プライマー本体領域)を3塩基以上含むことが好ましい。2塩基長以下では、特異的なハイブリダイズができない傾向がある。
逆転写プライマーに含まれる、標的RNAに非相補的な配列は、その配列内に互いに相補的な5塩基以上の配列を有することで、ループ構造をとり得る配列であることが好ましい。逆転写プライマーがループ構造をとることにより、ループ部によるpri-miRNAやpre-miRNAとの結合阻害が起こり、逆転写反応が進みにくくなる。よって、特異的に成熟マイクロRNA(mature-miRNA)を逆転写することができる。
逆転写反応に続いて、特定のプライマーセット、および図1、図2のように作製した逆転写産物を用いて核酸増幅反応を行う。
プライマーは、タグ領域、ポリメラーゼ反応阻害領域、およびプライマー本体領域を含む。プライマー本体領域は、逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域である。タグ領域、およびポリメラーゼ反応阻害領域は、核酸増幅反応によっても二本鎖化されない。例えば、後述のように、プライマーがL型核酸を含む場合には、L型核酸がタグ領域、およびポリメラーゼ反応阻害領域を兼ねる。また、プライマーは、アゾベンゼンが導入されたD-threoninol骨格を有する化合物、および通常の一本鎖DNAからなるプライマーでもよい。この場合、通常の一本鎖DNA部分がタグ領域として機能し、アゾベンゼンが導入されたD-threoninol骨格を有する化合物がポリメラーゼ反応阻害領域として機能する。
図3に核酸増幅用プライマーを示す。このプライマーは、プライマー本体領域11と、前記プライマーの5’末端側の核酸増幅反応により二本鎖化されないタグ領域12からなる。また、プライマー本体領域とタグ領域との間に、ポリメラーゼ反応阻害領域13を有していてもよい。
プライマー本体領域とは、逆転写産物もしくはその相補鎖にハイブリダイズ可能であり、核酸増幅反応におけるプライマーとして機能し得る塩基配列を有するオリゴヌクレオチド領域を意味する。具体的には、逆転写産物(一本鎖DNA)の5’末端側と類似の配列、または3’末端側とハイブリダイズし得る配列であり、一般的には、逆転写産物の5’末端側と同一の塩基配列、または逆転写産物の3’末端側の塩基配列と相補的な配列である。これらのプライマー本体領域は、逆転写産物もしくはその相補鎖と特異的に結合可能であれば、塩基欠損や挿入、およびミスマッチ部位を有していてもよい。プライマー本体領域の長さは、8塩基以上であることが好ましく、12塩基以上であることがより好ましく、15塩基以上であることがさらに好ましい。また、プライマーの鎖長には特に上限はないが、その合成のコストなどの観点から、通常は50塩基以下、あるいは40塩基以下のものが好適である。
プライマーのタグ領域は、天然のヌクレオチドを含むことが好ましい。天然のヌクレオチドとは、天然のアデニン、チミン、グアニン、シトシン、ウラシルの塩基、および、デオキシリボース、リボースの糖部、および、リン酸基から構成されるヌクレオチドのことであり、各部分が人工的な修飾を受けていないヌクレオチドのことである。天然のヌクレオチドは、D型ヌクレオチドであってもよく、L型ヌクレオチドであってもよい。D型ヌクレオチドとは、D型のデオキシリボースもしくはリボースからなるヌクレオチドを示す。また、L型ヌクレオチドとは、L型のデオキシリボースもしくはリボースからなるヌクレオチドを示す。タグ領域が天然のヌクレオチドを含むことにより、合成が安価で容易になるという効果を奏する。また、プライマーのタグ領域における天然のヌクレオチドの割合は、5%以上であることが好ましく、20%以上であることがより好ましく、50%以上であることがさらに好ましく、70%以上であることがさらにより好ましく、90%以上であることが最も好ましい。タグ領域の長さは特に限定されず、相補鎖核酸とハイブリダイズするために十分な長さを有していればよい。通常、5塩基~60塩基であり、好ましくは6塩基~40塩基である。
具体的には、プライマーのタグ領域は、逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有するプライマー本体領域と同一方向の核酸からなることが好ましい。プライマーのタグ領域がプライマー本体領域と同一方向の核酸からなることにより、合成が安価で容易になるという効果を奏する。例えば、アゾベンゼン等の非天然の化合物がタグ領域とプライマー本体領域の間に入っている場合のように、タグ領域とプライマー本体領域が直接つながっていなくても、同一方向に配列されていることが好ましい。また、タグ領域は、逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有するプライマー本体領域と同一方向の核酸、および逆方向の核酸を含んでいてもよい。
ここで、核酸が同一方向であるとは、隣り合うヌクレオチド同士が、ヌクレオチド中の糖の3’位同士や5’位同士で結合するのではなく、ヌクレオチド中の糖の5’位と3’位の間でホスホジエステル結合していることをいう。例えば、タグ領域において、ヌクレオチド同士がホスホジエステル結合により糖の5’位と3’位の間で結合されている場合には、本体領域においても、ヌクレオチド同士が糖の5’位と3’位の間で形成されていることをいう。
ポリメラーゼ反応阻害領域は、ポリメラーゼによる核酸伸長反応を阻害し、当該領域を一本鎖構造に保つ領域である。プライマーは、複数種類および/または複数個のポリメラーゼ反応阻害領域を含んでいてもよい。ポリメラーゼ反応阻害領域の構造は、ポリメラーゼによる核酸伸長反応を阻害できれば特に限定されないが、核酸誘導体、または非核酸誘導体を含む構造が挙げられる。
核酸誘導体は、ポリメラーゼによる伸長反応を阻害し、タグ領域を一本鎖構造に保つことが可能なら特に限定されない。核酸誘導体として、5’-5’結合や3’-3’結合等の逆位配列構造を形成する核酸、強固なヘアピン構造やシュードノット構造のようにポリメラーゼの進行を阻害する立体構造を有する核酸、L型核酸、3-deoxy-2-hydroxy-dN、修飾塩基核酸、損傷塩基核酸、リン酸結合部位修飾核酸、RNA、2’-OMe-N、およびそれらの誘導体が挙げられる。
「ヘアピン構造」や「シュードノット構造」とは、同一分子内の他の一本鎖領域と対合して形成される、安定なループ構造を意味する。
「逆位配列構造」とは、5’-5’結合、3’-3’結合を有する構造である。5’-5’結合もしくは3’-3’結合とは、化学式(1)
Figure JPOXMLDOC01-appb-C000001
 
で表される、DNAを構成するデオキシリボースの5’位とリン酸基を挟んで隣のデオキシリボースの5’位が結合している構造、もしくは、3’位とリン酸基を挟んで隣のデオキシリボースの3’位が結合している構造である。通常の5’位と3’位の結合とは逆方向であるため、逆位配列構造と呼ぶ。具体的な例としては、プライマー本体領域(逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域)の5’領域と5’-5’結合で連結され、かつ、前記タグ領域の3’末端と3’-3’結合で連結されるように、逆位構造を2回有した構造が挙げられる。また、逆位構造の回数は少なくとも1回含んでいればよく、特に限定しないが、偶数回含んでいることが好ましい。偶数回の逆位構造を有すればタグ領域の末端が通常のプライマーと同じく5’位になるため、タグ領域からの非特異的な伸長反応を抑制することができ、検出時にも効果的である。また、ポリメラーゼ反応阻害領域を化学式(1)に示す1塩基ではなく、好ましくは5~60塩基とすることで、ポリメラーゼ反応阻害領域とタグ領域の両方の機能を果たすことも可能である。
L型核酸は、化学式(2)
Figure JPOXMLDOC01-appb-C000002
もしくは化学式(3)
Figure JPOXMLDOC01-appb-C000003
で表される、核酸を構成する糖であるデオキシリボースもしくはリボースが、天然型のD型に対して光学異性体の構造を有するL型DNA、L型RNA、およびその誘導体である。L型核酸は、一般的に使用されているDNAポリメラーゼに認識されないので、伸長反応の鋳型として機能しない。L型DNAは左巻きの二重らせん構造を形成するので、天然に存在するD型核酸とハイブリッドを形成することはなく、L型核酸同士でのみハイブリッドを形成できる。
3-deoxy-2-hydroxy-dNは、化学式(4)
Figure JPOXMLDOC01-appb-C000004
で表される3-deoxy-2-hydroxy-dAのように、デオキシリボースの3’位に水酸基を有しておらず、2’位と隣のデオキシリボース5’位の間で2’-5’結合により結合している。そのため、DNAポリメラーゼに認識されないので、伸長反応の鋳型として機能しない。本発明では、3-deoxy-2-hydroxy-dNが、2’-5’結合によりプライマーと連結されていることが好ましい。
修飾塩基核酸は、DNAの塩基部位にbiotin(ビオチン)や発色団などの修飾を有する核酸である。発色団としては、ピレン、エテノ、ピロロ、ぺリレン、フルオレセイン、FITC、Cy3、Cy5、TAMRA、ダブシル、シアニンなどが挙げられるがそれらに限定しない。修飾塩基核酸の例としては、化学式(5)
Figure JPOXMLDOC01-appb-C000005
で表されるアミノC6-dA、化学式(6)
Figure JPOXMLDOC01-appb-C000006
で表される2-Thio-dT、化学式(7)
Figure JPOXMLDOC01-appb-C000007
で表される4-Thio-dT、化学式(8)
Figure JPOXMLDOC01-appb-C000008
で表されるビオチン-dT、化学式(9)
Figure JPOXMLDOC01-appb-C000009
で表されるカルボキシ-dT、化学式(10)
Figure JPOXMLDOC01-appb-C000010
で表されるピレン-dU、化学式(11)
Figure JPOXMLDOC01-appb-C000011
で表されるぺリレン-dU、化学式(12)
Figure JPOXMLDOC01-appb-C000012
で表されるピロロ-dC、化学式(13)
Figure JPOXMLDOC01-appb-C000013
で表されるエテノ-dA、化学式(14)
Figure JPOXMLDOC01-appb-C000014
で表されるFITC-dT、化学式(15)
Figure JPOXMLDOC01-appb-C000015
で表されるTAMRA-dT、化学式(16)
Figure JPOXMLDOC01-appb-C000016
で表されるダブシル-dT、BHQ-1-dT、Cy3-dT、Cy5-dTなどが挙げられるがこれらに限定されない。これらは塩基部の修飾が立体的な障害となり、DNAポリメラーゼに認識されないので、伸長反応の鋳型として機能しない。
損傷塩基核酸は、脱塩基ヌクレオチド(APサイト:脱プリン塩基、脱ピリミジン塩基)、化学式(17)
Figure JPOXMLDOC01-appb-C000017
で表されるdSpacer、化学式(18)
Figure JPOXMLDOC01-appb-C000018
で表されるAbasicや、5-ヒドロキシメチル-dNなど、脱塩基や修飾された塩基を有する核酸である。これらは、一般的に使用されるDNAポリメラーゼでは認識されないので、伸長反応の鋳型として機能しない。
リン酸結合部位修飾核酸は、化学式(19)
Figure JPOXMLDOC01-appb-C000019
で表されるホスホロチオエート(Sオリゴ)のように、核酸のリン酸基の一部を他の原子や分子で置き換えたもので、DNAポリメラーゼでは認識されないので、伸長反応の鋳型として機能しない。
RNAは、化学式(20)
Figure JPOXMLDOC01-appb-C000020
で表され、核酸を構成する糖がリボースからなり、一般的に使用されるDNAポリメラーゼでは認識されないので、伸長反応の鋳型として機能しない。
2’-OMe-Nは、化学式(21)
Figure JPOXMLDOC01-appb-C000021
で表される2’-OMe-Gのように、核酸を構成する糖部が修飾されており、DNAポリメラーゼでは認識されないので、伸長反応の鋳型として機能しない。
非核酸誘導体としては、D-threoninol骨格、炭素鎖(C)、PCspacerなどの脂肪鎖、ペグ鎖((CHCHO))、ジスルフィド含有鎖(CSSC)、PNA、ジチオールフォスフォロアミダイト、および、それらの誘導体が挙げられるが、ポリメラーゼによる核酸伸長反応を阻害し、当該領域を一本鎖構造に保つことが可能なら特に限定されない。これらの非核酸分子は、核酸とは異なる構造を持つため、DNAポリメラーゼでは認識されず、DNA伸長反応の鋳型として機能しない。
D-threoninol(スレオニノール)骨格は、化学式(22)
Figure JPOXMLDOC01-appb-C000022
で表され、核酸同士をスレオニノールで結合した構造をしており、スレオニノールのアミノ基に種々の分子を挿入することが可能である。アミノ基を介して結合できるものであれば特に限定しないが、例えば、Pyrrolo(ピロロ)、Pyrene(ピレン)、Etheno(エテノ)、Perylene(ぺリレン)、FITC、TET、HEX、JOE、Cy3、Cy5、Dabcyl、BHQなどの発色団、Biotin、EDTAの他、化学式(23)
Figure JPOXMLDOC01-appb-C000023
で表されるアゾベンゼンを挿入することができる。
脂肪鎖は、Cで示すように、炭素鎖が連なった構造、および、その誘導体を示す。例えば、化学式(24)
Figure JPOXMLDOC01-appb-C000024
で表されるC3リンカーや、C6リンカー、化学式(25)
Figure JPOXMLDOC01-appb-C000025
で表されるC12リンカーが挙げられる。nの数は特に限定されない。また、誘導体として、化学式(26)
Figure JPOXMLDOC01-appb-C000026
で表されるPCSspacer等の構造も挙げられる。
ペグ鎖は、(CHCHO)で示すようにポリエチレングリコールが連なった構造、および、その誘導体を示す。例えば、化学式(27)
Figure JPOXMLDOC01-appb-C000027
で表されるSpacer9(トリエチレングリコールスペーサー)や、
化学式(28)
Figure JPOXMLDOC01-appb-C000028
で表される、Spacer18(ヘキサ-エチレングリコールスペーサー)が挙げられるが、nの数は特に限定されない。
ジスルフィド含有鎖は、(CSSC)で表されるジスルフィド結合の構造を有するものを示す。例えば、化学式(29)
Figure JPOXMLDOC01-appb-C000029
で表される炭素数が3のものが挙げられる。また、ジスルフィド結合を有していれば両側には脂肪鎖やペグ鎖などどの構造を取っていてもよい。また、ジスルフィド含有鎖として、化学式(30)
Figure JPOXMLDOC01-appb-C000030
で表されるジチオールフォスフォロアミダイトなども挙げられる。
PNAとは主鎖にペプチド構造を保持した、DNAやRNAに似た構造を持つ分子であり、N-(2-アミノエチル)グリシンがアミド結合で結合したものが主鎖となっている。そして、核酸塩基に相当するプリン環やピリミジン環が、メチレン基とカルボニル基を介して主鎖に結合している。
BNA(LNA)とは、化学式(31)
Figure JPOXMLDOC01-appb-C000031
で表され、DNAもしくはRNAの糖部構造を架橋修飾することによって人工的に合成された核酸を示す。
タグ領域が天然のヌクレオチドのみからなり、タグ領域の核酸の方向がプライマー本体領域と同一である場合には、通常、プライマー領域との間にポリメラーゼ反応阻害領域を要する。一方、タグ領域がL型核酸や人工核酸などのように、DNAポリメラーゼによる反応の鋳型にならず核酸増幅反応後も二本鎖化されない場合、タグ領域がポリメラーゼ反応阻害領域としても機能する。また、本発明のプライマーは、ヘアピン構造、シュードノット構造などの安定なループ構造、L型核酸、人工核酸などの非天然核酸、および脂肪鎖などの非核酸分子を単独で有するものであってもよく、複数を組み合わせて有するものであってもよい。
プライマーは、オリゴヌクレオチドの標識に通常用いられる様々な分子により標識することも可能である。このような分子としては、酵素、磁性粒子、蛍光色素、放射性同位元素等が挙げられる。これらを単独で使用してもよく、複数を組み合わせて使用してもよい。
設計したプライマーを製造する方法は、特に限定されるものではなく、公知の方法により製造することができる。具体的には、DNA合成装置を用いるか、受託合成サービスを利用することで、設計したプライマーを容易に得ることができる。
核酸増幅法は、上述のプライマーを使用して、末端に一本鎖領域を有する二本鎖DNA増幅断片を得られる方法であれば特に限定されない。例えば、PCRが挙げられる。また、LAMP法、ICAN法などの等温増幅法も用いることができる。
核酸増幅法としてPCRを用いる場合、PCR反応に用いるリバースプライマーとフォワードプライマーの組み合わせとしては、両方のプライマーに異なるポリメラーゼ反応阻害領域を用いて一方を標識結合領域としてもよいし、片方にポリメラーゼ反応阻害領域を用いて、もう片方にはポリメラーゼ反応阻害領域を導入せずビオチンなどの修飾を行って標識結合領域としてもよい。
PCR条件は特に限定されるものではなく、上述した逆転写産物を鋳型として、前記プライマーセットを用いてPCRを行ったときに、cDNAの所望の領域が増幅される条件であればよい。具体的には、PCRに用いるポリメラーゼは、特に限定されるものではないが、耐熱性DNAポリメラーゼであることがより好ましく、3’→5’エキソヌクレアーゼ活性を実質的に有さない耐熱性DNAポリメラーゼであることがより好ましい。このような耐熱性DNAポリメラーゼとしては、Ex-Taq(タカラバイオ社製)等を挙げることができるが、これに限定されない。また、温度、時間、緩衝液組成等のPCRの反応条件も特に限定されるものではなく、選択したDNAポリメラーゼ、プライマーの配列、目的配列部分の長さ等に応じて、適宜設定すればよい。核酸増幅反応により増幅されるDNAの長さは、20塩基以上であることが好ましく、40塩基以上であることがより好ましい。20塩基未満であると非特異的増幅が増える傾向がある。
前記プライマーセットを使用して、定法によりPCRを行うことで、逆転写産物の末端に一本鎖領域を付加した二本鎖DNA増幅産物を得ることができる。
図4には、増幅反応の一例として、図1に記載の方法で作製した逆転写産物を鋳型として、プライマー本体領域とポリメラーゼ反応阻害領域とタグ領域からなるプライマーセットを用いた場合の増幅反応の模式図を示す。
フォワードプライマー18は逆転写産物5の5’末端側の一部と同一の配列からなるプライマー本体領域19と、その5’末端側にポリメラーゼ反応阻害領域20とタグ領域21を有する。リバースプライマー14は、逆転写産物の3’末端側の一部と相補的な配列からなるプライマー本体領域15と、その5’末端側にポリメラーゼ反応阻害領域 16とタグ領域17を有する。両プライマーに結合するタグ領域の配列は通常、それぞれ異なる配列を有している。前記プライマーセットを使用してPCRを行うと、プライマーに付加されたタグ領域は実質的にPCR反応に関与しないため、両末端に一本鎖領域を有するDNA増幅産物22が得られる。両末端に一本鎖領域を有するDNA増幅断片とは、図4で示すように標的核酸領域と同一の二本鎖DNA部、および、その両側のそれぞれの5’末端にタグ部として一本鎖領域を有するDNA増幅産物を意味する。つまり、図4に記載のDNA増幅断片は、両末端に修飾されていない核酸で構成される一本鎖領域を有する二本鎖DNA増幅断片であり、両末端の一本鎖領域はそれぞれ連続するDNA鎖と同一方向からなる配列を有している。
図5には、増幅反応の一例として、図2で作製した逆転写産物を鋳型として、プライマー本体領域とポリメラーゼ反応阻害領域とタグ領域からなるプライマーと標識結合プライマーを用いた場合の増幅反応の模式図を示す。フォワードプライマー27は逆転写産物10の5’末端側の一部と同一の配列およびポリT配列からなるプライマー本体領域19と、その5’末端側に標識結合領域29を有する。リバースプライマー23は、逆転写産物の3’末端側の一部と相補的な配列からなるプライマー本体領域24と、その5’末端側にポリメラーゼ反応阻害領域25とタグ領域26を有する。前記プライマーセットを使用してPCRを行うと、プライマーに付加されたタグ領域は実質的にPCR反応に関与しないため、末端に一本鎖領域を有するDNA増幅産物30が得られる。末端に一本鎖領域を有するDNA増幅断片とは、図5で示すように逆転写産物と同一の配列を有する二本鎖DNA部、および、その片側の5’末端側にタグ部として一本鎖領域を有するDNA増幅産物を意味する。つまり、図5に記載のDNA増幅断片は、末端に修飾されていない核酸で構成される一本鎖領域を有する二本鎖DNA増幅断片であり、末端の一本鎖領域は連続するDNA鎖と同一方向からなる配列を有している。
前記二本鎖DNA増幅断片の一本鎖領域を利用して、ハイブリダイゼーション複合体を形成する。ハイブリダイゼーションとは核酸を含む分子が相補的に複合体を形成することをいい、DNA/DNAのほか、DNA/RNA、DNA/PNA、L-DNA/L-DNAによる複合体などが含まれる。本発明の核酸検出方法では二本鎖DNA増幅断片が一本鎖領域を有するので、核酸増幅工程で得られたDNA増幅産物は、熱処理等の一本鎖化処理等を行うことなく、ハイブリダイゼーション反応に使用することができる。
末端に一本鎖領域タグを有する二本鎖DNA増幅断片の一本鎖領域と、捕捉用担体(固相)に固定したオリゴヌクレオチドプローブをハイブリダイズさせることができる。さらに、二本鎖DNA増幅断片が標識物質と結合可能であることが好ましい。二本鎖DNA増幅断片と標識物質との結合は、一本鎖領域を介した結合であってもよいし、標識結合領域を介した結合であってもよい。二本鎖DNA増幅断片、オリゴヌクレオチドプローブ、および標識物質からなる複合体を三者複合体と呼ぶ。なお、三者の結合順は特に限定されない。
オリゴヌクレオチドプローブの長さは、二本鎖DNA増幅断片の一本鎖領域とハイブリダイズできれば特に限定されないが、5塩基長以上であることが好ましく、10~40塩基長であることがより好ましい。
標識結合領域は、標識が結合できればその構造は特に限定されない。例えば、ビオチン等の標的結合物質を含む配列を標識結合領域とすることができる。標的結合物質としてビオチンを使用する場合は、ビオチン-ストレプトアビジンの相互作用を利用して、標識結合領域にストレプトアビジンを結合させた標識物質を結合させることができる。
また、別態様として、一本鎖領域を標識結合領域とすることができる。この場合は、当該一本鎖領域と、標識物質に結合したオリゴヌクレオチドプローブとのハイブリダイゼーションを利用して、標識結合領域に間接的に標識物質を結合させることができる。オリゴヌクレオチドプローブの長さは、二本鎖DNA増幅断片の一本鎖領域とハイブリダイズできれば特に限定されないが、5塩基長以上であることが好ましく、10~40塩基長であることがより好ましい。
標識物質は、二本鎖DNA増幅断片の検出を実現するものであれば特に限定されないが、着色担体であって二本鎖DNA増幅断片の目視検出を実現できるものであることが好ましい。このような着色担体としては、着色粒子や酵素、色素結合担体などが挙げられる。これらの中でも、着色粒子を用いることが好ましい。
着色粒子としては、金、銀、銅、白金などの金属からなるコロイド粒子や、顔料や染料などでラテックスを着色してなる着色ラテックス、色素分子をシリカ(二酸化ケイ素)粒子内部に固定化したシリカナノ粒子などが挙げられる。これらの中でも、金コロイド粒子や、青色、赤色等に着色された水分散型高分子重合体からなる着色ラテックス粒子を用いることが好ましい。このような着色粒子を用いることにより、DNA増幅断片の目視判定をより容易なものとすることができる。特に多項目を同時に検出する際には、項目ごとに異なる色の着色粒子を用いることにより、多数の項目を同時に目視判定することが容易となる。
着色粒子を用いる場合、その粒径は、特に限定されるものではないが、三者複合体の形成、および、標的配列を含む増幅産物の固相への捕捉に悪影響が小さく、かつ、検出の際に発色のよいものであることが好ましい。着色粒子の粒径は、後述のクロマトグラフィー用媒体の孔径より小さい粒径から選択される。具体的には、通常500nm以下が用いられ、中でも0.1nm~100nmとすることが好ましく、1nm~50nmとすることがより好ましい。
着色担体として酵素を用いる場合、これらの酵素は、発色、もしくは、発光する基質の反応を触媒するタンパク質であることが好ましい。例えば、ペルオキシダーゼ、アルカリホスファターゼ、ルシフェラーゼなどが挙げられるが、肉眼で検出可能であればこれらに限定されない。
二本鎖DNA増幅断片の末端の一本鎖領域と、オリゴヌクレオチドプローブとのハイブリダイゼーションは、ハイブリダイゼーションが起こる条件で行われれば特に限定されないが、室温下、10mMリン酸緩衝液中で行われることが好ましい。このとき塩化ナトリウム等の塩を入れることで、ハイブリダイゼーションの効率は上昇する。
捕捉用担体(固相)上の認識可能な位置に形成された三者複合体に含まれる標識物質を検出することにより、標的核酸の有無を判定することができる。標的核酸の有無は、目視で判定することが好ましい。本発明の検出法によれば、核酸増幅反応の増幅産物は熱変性等の一本鎖化処理を行うことなく、そのままハイブリダイゼーション反応に使用することが可能である。また、特殊な装置を必要とすることなく、標的核酸の有無を簡便、迅速に目視にて判定することが可能である。
上記の三者複合体の形成による核酸検出方法は、核酸検出デバイス上で行われることが好ましい。また、クロマトグラフィーデバイスで行われることがより好ましい。
図6の核酸クロマトグラフィーデバイスは、基材となる部材35の上に、サンプルパッド31(二本鎖DNA増幅断片を添加するための担体)、コンジュゲートパッド32(着色担体を配置した担体)、捕捉用オリゴヌクレオチドを保持した担体33(クロマトグラフィー用媒体)、および吸収パッド34を、粘着剤等を用いて貼り合わせたものである。担体33の上には、捕捉用オリゴヌクレオチドを塗布したテストライン36、および、コントロールライン37が設けられている。着色担体結合オリゴヌクレオチドを展開溶液に混合する場合は、コンジュゲートパッド32が無くてもよい。
クロマトグラフィーでは、下記工程(a)~(c):(a)前記核酸検出デバイス上の、前記オリゴヌクレオチドプローブが固定されている領域とは異なる領域に、前記二本鎖DNA増幅断片を配置する工程、(b)溶媒を用いて、前記二本鎖DNA増幅断片を、前記オリゴヌクレオチドプローブが固定されている領域の方向に、前記デバイス上で拡散させる工程、および(c)前記オリゴヌクレオチドプローブが固定されている領域において、前記オリゴヌクレオチドプローブと、前記二本鎖DNA増幅断片とを、ハイブリダイズさせる工程、を含む方法により、二本鎖DNA増幅断片が検出されることが好ましい。また、本発明は、前記核酸検出方法に用いる核酸検出デバイスであって、前記二本鎖DNA増幅断片を配置する領域、前記二本鎖DNA増幅断片と結合する前記オリゴヌクレオチドプローブを保持したクロマトグラフィー担体、および、標識物質が結合したオリゴヌクレオチドプローブとを具備してなる検出デバイスにも関する。
例えば、図6の核酸クロマトグラフィーデバイスの場合、工程(a)ではサンプルパッド31に二本鎖DNA増幅断片を配置する。工程(b)では矢印方向に二本鎖DNA増幅断片を拡散させる。工程(c)ではテストライン36において、固定されたオリゴヌクレオチドプローブとのハイブリダイズにより、二本鎖DNA増幅断片を捕捉する。
工程(c)の前に、二本鎖DNA増幅断片と、標識物質とを結合させる工程をさらに含むことが好ましい。例えば、図6の核酸クロマトグラフィーデバイスの場合、コンジュゲートパッド32において、二本鎖DNA増幅断片と標識物質とを結合させる。
また、クロマトグラフィーでは、下記工程(d)~(h):(d)前記核酸検出デバイス上の、前記オリゴヌクレオチドプローブが固定されている領域とは各々異なる領域に、前記二本鎖DNA増幅断片、および前記標識物質をそれぞれ配置し、(e)溶媒を用いて、前記二本鎖DNA増幅断片を、前記標識物質が配置されている領域の方向に拡散させ、(f)前記標識物質が配置されている領域において、前記二本鎖DNA増幅断片と、標識物質とを結合させ、(g)工程(f)で結合した複合体を前記オリゴヌクレオチドプローブが配置されている方向に、前記デバイス上で拡散させ、(h)前記オリゴヌクレオチドプローブが固定されている領域において、前記オリゴヌクレオチドプローブと前記複合体とをハイブリダイズさせる、を含むことが好ましい。
例えば、図6の核酸クロマトグラフィーデバイスの場合、工程(d)ではサンプルパッド31に二本鎖DNA増幅断片を配置し、コンジュゲートパッド32に標識物質を配置する。工程(e)では、二本鎖DNA増幅断片を、サンプルパッド31から矢印方向に拡散させる。工程(f)ではコンジュゲートパッド32において、二本鎖DNA増幅断片と、標識物質が結合する。工程(g)では二本鎖DNA増幅断片と、標識物質との結合による複合体を、矢印方向に拡散させる。工程(h)ではテストライン36においてオリゴヌクレオチドプローブと複合体とをハイブリダイズさせる。
メンブレン上のテストラインには前記二本鎖DNA増幅断片のタグ領域と相補的な配列を有するオリゴヌクレオチドプローブが、捕捉用のオリゴヌクレオチドプローブとして固定化されている。捕捉用のオリゴヌクレオチドプローブは、直接メンブレンに結合してもよく、官能基を介して結合していてもよく、何らかの物質を介してメンブレンに結合していてもよい。その仲介となる物質は、ペプチド、タンパク質、核酸などが挙げられるが限定されない。仲介となる物質がアビジンの場合は、捕捉用オリゴヌクレオチドにビオチン修飾が必要となる。
メンブレン上のコントロールラインには、着色担体捕捉用の物質が固定化されている。着色担体捕捉用物質としては、特に限定されないがオリゴヌクレオチドプローブ、ペプチド、タンパク質などが挙げられる。標識物質にオリゴヌクレオチドプローブを結合させている場合は、コントロールライン用の着色担体捕捉用物質もオリゴヌクレオチドプローブを用いる。よって、溶液が展開すると必ず標識物質が捕捉されるようになっている。コントロールライン用の着色担体捕捉用物質に関しても前述と同様に直接メンブレンに結合してもよいし、官能基を介して、結合していてもよいし、何らかの物質を介してメンブレンに結合していてもよい。その仲介となる物質は、ペプチド、タンパク質、核酸などが挙げられるが、限定されない。仲介となる物質がアビジンの場合は、捕捉用物質にビオチン修飾が必要となる。
テストラインにおける呈色により、試料中のターゲット核酸の存在を目視で判別することが可能である。一方、コントロールラインにおける呈色により、正常な展開と呈色反応が行えていることを目視で判別することが可能である。ここで、目視とは肉眼で観察して色を判断することをいう。また、本発明において、テストラインの着色強度は標的核酸の濃度と相関するので、テストライン呈色の着色強度をクロマトリーダー等で測定することにより、標的核酸の濃度を定量することが可能である。
クロマトグラフィー用媒体としては、定性濾紙、定量濾紙、分液濾紙、硝子繊維濾紙、シリカ繊維濾紙、複合繊維濾紙よりなる濾紙などが挙げられる。また、ニトロセルロースや酢酸セルロースなどのセルロースよりなる濾紙や、ポリエーテルスルフォンメンブレンなどの合成樹脂の膜や、シリカゲル、アガロース、デキストラン、ゼラチンなどの多孔質ゲルも使用することができる。また、ナイロンメンブレンも好適に使用できる。実際の使用に際して、このクロマトグラフ媒体の形態および大きさは特に制限されるものではなく、操作および反応結果の観察において適切であればよい。
これらの担体は、親水性や化合物の結合性を向上させるために様々な修飾を施すことも可能である。操作をより簡便にするためには、反応部位が表面に形成されているクロマトグラフィー媒体の裏面に、プラスチックなどよりなる支持体を設けることが好ましい。
デバイス内の展開方向としては、図6に示すように水平方向でもよいし、垂直方向でもよく特に限定されない。展開溶媒としては、核酸増幅反応における溶媒を使用することができるので、核酸増幅反応後の反応液をそのまま、図6におけるサンプルパッド32に滴下することができる。または、増幅反応後の反応液に、別途展開溶液を添加しサンプルパッドに添加することも可能である。展開溶媒としては、液体であれば特に限定されないが、リン酸緩衝液や、Tris緩衝液などのグッド緩衝液が使用可能である。また、溶媒には塩、界面活性剤、タンパク質、もしくは、核酸を溶解しておいてもよい。
図7にて、本発明の実施形態の一例として、クロマト担体上での三者複合体の形成を例にとって説明する。核酸増幅工程で得られたDNA増幅断片30は、熱処理等の一本鎖化処理等を行うことなく次の複合体形成工程に使用する。前記DNA断片の標識結合領域29と特異的に結合可能な物質38を着色担体39に結合させておくことで、前記DNA増幅断片30との結合により、第1の複合体40が形成される。複合体40は、PCRの反応容器のように、展開媒体にアプライする前に形成してもよいし、DNA増幅断片を担体上にアプライし、毛細管現象で移動中に前記標識物質を塗布、乾燥させた担体を通過させて形成することも可能である。
複合体40は、多孔質メンブレン等からなるクロマトグラフィー用媒体41上の識別可能な位置に予め結合した捕捉用オリゴヌクレオチドプローブ42と、展開媒体上で接触する。前記捕捉用のオリゴヌクレオチド42は、前記DNA増幅断片の一本鎖タグ配列26と相補的な配列を有しており、複合体40と捕捉用オリゴヌクレオチドとのハイブリダイゼーションにより、三者複合体が形成される。
三者複合体を形成する順序は特に限定されない。DNA増幅断片と標識物質が結合した複合体40を形成後、捕捉用のオリゴヌクレオチドプローブとの複合体を形成するのが好ましいが、DNA増幅断片を捕捉用のオリゴヌクレオチドプローブで展開媒体上で濃縮後、標識物質を展開し、三者複合体を形成することも可能である。
図8、図9では、図4で示した標識結合領域にも一本鎖タグ領域を利用した、両末端に一本鎖領域を有するDNA増幅断片の検出デバイスの例を示している。
クロマトグラフィーデバイス以外の核酸検出デバイス形態としては、図8で示されるマイクロアレイ(DNAチップ)が挙げられる。マイクロアレイ45上の捕捉用オリゴヌクレオチドを固定したウェル内に、ハイブリダイゼーションにより三者複合体を形成させることが可能である。
また、図9で示されるビーズ形態が挙げられる。捕捉用オリゴヌクレオチドを保持したビーズ担体46上で、ハイブリダイゼーションによる三者複合体を形成させることが可能である。
本発明の核酸検出方法、および核酸検出デバイスは、核酸増幅工程を含むあらゆる技術に用いることができる。換言すれば、核酸増幅法によるDNA増幅断片(例えば、PCR産物)を検出することを含むあらゆる分野の技術に用いることができる。具体的には、例えば、分子生物学の研究分野、病原体の検出、アレルゲンなど食品中の混入物の検出、食品の品質管理(偽装表示食品、遺伝子組み換え食品などの検査)、家畜管理、塩基多型(以下、「SNP」ともいう)の検出、ガンなどの疾患検査等に用いることができる。したがって、本発明には、本発明にかかる核酸検出方法を一工程として含む、病原体による感染症の検出方法、食品中の混合物(例えば、アレルゲン)の検出方法、食品の品質管理、家畜の管理方法、および塩基多型の検出方法等も含まれる。
ここで、本発明の利用の一実施形態として、本発明にかかる病原体の検出方法、およびアレルゲンの検出方法、について詳細に説明する。
本発明にかかる病原体の検出方法は、本発明にかかる核酸検出方法を用いて、病原体が特異的に有する遺伝子を検出する工程を含んでいればよい。上記病原体は、特に限定されるものではないが、具体的には、例えば、病原性細菌、病原性ウイルス、食中毒細菌、院内感染原因細菌およびウイルス等を挙げることができる。より具体的には、例えば、C型肝炎ウイルス(HCV)、サイトメガロウイルス(CMV)、エプスタインーバーウイルス(EBV)、ヘルペスウイルス、ヒト免疫不全ウイルス(HIV)等のウイルス、0157等の大腸菌、結核菌、チフス菌、サルモネラ菌もしくは腸炎ビブリオ菌等の細菌、またはマイコプラズマ等の微生物を例示することができる。
本発明にかかる病原体の検出方法について、より具体的に説明すると、例えば、病原体の有無を検査する対象となる試料から調製したDNA試料に、上記病原体が特異的に有する遺伝子が含まれるか否かを上記核酸検出方法を用いて判定する。また、DNA試料を調製することなく、病原体の有無を検査する対象となる試料をそのまま核酸増幅法の鋳型として使用することもできる。例えば、病原体として大腸菌等の細菌を検出する場合に、細菌のコロニーの懸濁液を鋳型として使用することができる。その結果、病原体が特異的に有する遺伝子が検出された場合には、該試料には病原体が含まれていると判定する。これにより、特殊な装置を必要とすることなく、簡便に、かつ、高精度に、試料中に病原体が含まれているか否かを判定することができる。すなわち、本発明にかかる病原体の検出方法は、微生物の感染症の診断に用いることができる。
本発明にかかるアレルゲンの検出方法は、本発明にかかる核酸検出方法を用いて、アレルゲンをコードする遺伝子を検出する工程を含んでいればよい。上記アレルゲンは特に限定されるものではないが、具体的には、例えば、食品中に含まれるアレルゲンを挙げることができる。より具体的には、卵白アレルゲン、乳アレルゲン、小麦アレルゲン、そばアレルゲン、および落花生アレルゲン等を挙げることができる。本発明にかかるアレルゲンの検出方法について、より具体的に説明すると、例えば、食品から調製したDNA試料に、卵、乳、小麦、そば、落花生などのアレルゲンをコードする遺伝子が含まれるか否かを上記核酸検出方法を用いて判定する。その結果、このような遺伝子が検出された場合には、該食品には、アレルゲンを含有する原料が含まれていると判定する。
これにより、特殊な装置を必要とすることなく、簡便に、かつ、高精度に食品等の試料中に、アレルゲンを含有する原料が含まれているか否かを判定することができる。なお、アレルゲンの由来は、上記例示したものに限定されるものではなく、例えば、穀類を例に取れば、イネ、トウモロコシ、アワ、キビ、ヒエ、ソバ、およびマメ類のすべてが含まれまた、DNAは、熱に安定であり、加工食品中でも微量に検出される。したがって、本発明にかかるアレルゲンの検出方法により得られたデータは、食品の表示に利用したり、食品のアレルギー情報として利用したりすることに加えて、加工助剤やキャリーオーバー等食品添加物のごく微量の残存、あるいは製造ライン問の相互汚染の有無等の生産者の意図していない物質の混入の検出に用いることができる。
そのほか、本発明は、ヒトを含む哺乳動物の親子鑑定、家畜の血統の特定、農産物の品種の特定、SNP検出、遺伝子の変異による疾患(癌など)の検出等に用いることができる。具体的には、例えば、家畜についていえば、血統登録、個体識別、親子判定、病原遺伝子のキャリア個体の除去などの目的に利用することができる。なお本発明は、以上説示した各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示した技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、実施例により本発明をさらに詳細に説明する。但し、本発明はこれらの実施例にその技術的範囲が限定されるものではない。
<実施例1>
(1)テンプレート用RNAの合成
本実施例では、合成RNA(miR-156a、鎖長20mer)をつくばオリゴサービスにて合成し、鋳型として用いた。
テンプレートmiR-156a:5’-UGACAGAAGAGAGUGAGCAC-3’(配列番号1)
(2)逆転写プライマーの合成
テンプレートmiR-156aの3’末端側の6塩基と相補的な配列を、3’末端側に有する逆転写プライマーRTpを合成した。つくばオリゴサービスにて受託合成した。
RTp:5’-GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACGTGCTC-3’(配列番号2)
なお、プライマーの配列のうち、標的核酸とハイブリダイゼーションを形成する配列に下線を付す。
(3)逆転写反応
鋳型として工程(1)で合成したテンプレートmiR-156a、工程(2)で合成した逆転写プライマーを用い、PrimeScript(登録商標) High Fidelity RT-PCR Kit(タカラバイオ社製)のプロトコルに従い逆転写反応を行った。
逆転写反応液は、テンプレートmiR-156aを1fmol、逆転写プライマーRTp(10μM)を2μl、5倍濃縮のPrimeScript Bufferを4μl、RNase Inhibitor(40U/μl)を0.5μl、PrimeScript RTase(200U/μl)を1.0μl、およびRNaseフリー水で20μlに調製した。その後、穏やかに混和し、30℃10分、42℃30分、95℃5分で逆転写反応を行うことでmiR-156aのcDNAを作製した。
(4)アゾベンゼン付きプライマーおよびFITC修飾プライマーの合成
工程(3)で作製した逆転写産物の5’末端側と同一の配列を有するフォワードプライマーFと、逆転写産物の3’末端側と相補的な配列を有するリバースプライマーRを設計した。さらにリバースプライマーRの5’末端に非核酸のアゾベンゼン構造を有するポリメラーゼ阻害領域(X)、およびタグ配列Tを導入したタグ付プライマー(T-X-R)を作製した。さらにフォワードプライマーFの5’末端にFITCを導入した標識プライマー(H-F)を作製した。
本検討で作製したプライマーセットを示す。
T-X-R:5’--GGTTAGCTTCCAACCACGTGTATGATC-X-GCGGCGGTGACAGAAGAGAGT-3’(配列番号3)
H-F:5’--FITC-GTGCAGGGTCCGAGGT-3’(配列番号4)
(5)アゾベンゼン付きプライマーとFITC修飾プライマーを用いたPCR
前記工程(3)で作製した逆転写産物を鋳型として、前記工程(4)で作製したプライマーセットを用いてPCR反応を行った。プライマーT-X-RとプライマーH-Fを各15pmolと、前記工程(3)逆転写反応液0.5μlとを0.2mlのPCR用チューブに入れ、ExTaq PCRデバイス(タカラバイオ社製)の説明書に従い、100μlのPCR反応液を調製した。その後、チューブをサーマルサイクラー(GeneAmp PCR System、アプライドバイオシステム社製)にセットし、95℃で5分間熱処理後、95℃で30秒、55℃で30秒、72℃で30秒のサイクルを35回行い、PCR増幅産物を得た。また、逆転写を行っていないRNA(miR-156a)をネガティブコントロール1、および別のマウスのトータルRNAを添加して工程(3)の逆転写反応を行ったサンプルをネガティブコントロール2としてPCR反応を行った。
(6)抗FITC抗体結合金コロイドの作製
Gold Colloid(40nm、9.0×1010(粒子数/ml)、British BioCell International社製)と抗FITC抗体溶液(5mMリン酸バッファー、pH7)を混合し、20分、室温で静置した。1%BSA、0.1%PEG溶液を1/2量添加し、10,000rpmで25分間遠心分離し、上清を除去、1%BSA、0.1%PEG溶液を添加し混和後、10000rpmで25分間遠心分離した。遠心後に上清を除去し、5mMリン酸バッファー(pH7)を添加した。このバッファー置換を再度行った。調製した金コロイド溶液に界面活性剤を混合して、グラスファイバー製パッドに均一になるように添加した後、真空乾燥機にて乾燥させ、コンジュゲーションパッドとした。
(7)捕捉用オリゴヌクレオチドプローブの固相への固定化
配列番号3のタグ領域に相補的な配列(配列番号5)を有する3’末端ビオチン修飾オリゴヌクレオチドプローブを、ストレプトアビジンと混合する。その混合液をニトロセルロースメンブレン(商品名:Hi-Flow 180、ミリポア社製)にディスペンサーを用いてライン上に塗布し、40℃で30分間風乾した。
オリゴヌクレオチドプローブ1:5’-(GATCATACACGTGGTTGGAAGCTAACC)-Biotin-3’(配列番号5)。
(8)核酸クロマトグラフィー様テストストリップの作製
バッキングシートから成る基材に、上記で作成したニトロセルロースメンブレンからなるクロマトグラフィー媒体、コンジュゲーションパッド、試料添加部である汎用性のサンプルパッド、展開した試料や標識物質を吸収するための吸収パッドを図6に示すように貼り合わせ、アゾベンゼン挿入プライマーとFITC修飾プライマーセットを用いたPCR増幅産物の検出用テストストリップを作製した。
(9)テストストリップによるPCR産物の検出
工程(5)で作製したPCR産物を変性することなく、直ちに工程(8)で作製したテストストリップ上の試料添加部位にアプライし、クロマトグラフィーによる検出を行った。工程(3)で逆転写反応を行った標的のmiR156aを鋳型とした場合、テストライン上に標的核酸特異的な着色ラインが検出された。一方、ネガティブコントロール1としてmiR156aを逆転写反応せずに添加した場合のPCR産物においても、ラインの検出は認められなかった。また、ネガティブコントロール2としてマウスのトータルRNAの逆転写産物を鋳型として添加した場合にもラインの検出は認められなかった。クロマトグラフィーによる検出に要した時間は、10~15分と短時間であった。
<実施例2>
(1)シロイヌナズナのトータルRNAの抽出
シロイヌナズナ1gに液体窒素に入れて乳鉢ですり潰した。次に、簡易RNA抽出キット(RT-PCR用)をプロトコルに従い使用して、トータルRNAを抽出した。
(2)ポリA付加
ポリAポリメラーゼ(ニューイングランドバイオラボズ社製)を用いて、シロイヌナズナから抽出したRNAについてポリA付加反応を行った。10倍濃縮のバッファーを2μl、10mM ATPを2μl、抽出RNA2μl、ポリAポリメラーゼ1U、およびRNaseフリー水を混合し、合計で20μlとした。37℃10分反応させ、RNAの3’末端にポリAを付加した。
(3)逆転写プライマーの合成
該RNAの3’末端側のポリA部に相補的な配列を、3’末端側に有する逆転写プライマーRTp-Tを合成した。つくばオリゴサービスにて受託合成した。
(V=A,G or C、N=A,T,G or C)
RTp-T:5’-GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTTTTTTTTTTTTTTTVN-3’(配列番号6)
(4)逆転写反応
鋳型として工程(2)で作製したポリA付加RNA、逆転写プライマーとして工程(3)で合成した逆転写プライマーRTp-Tを用い、PrimeScript(登録商標) High Fidelity RT-PCR Kit(タカラバイオ社製)のプロトコルに従い逆転写反応を行った。
逆転写反応液は、ポリA付加RNAを1μl、逆転写プライマーRTp-T(10μM)を2μl、5倍濃縮のPrimeScript Bufferを4μl、RNase Inhibitor(40U/μl)を0.5μl、PrimeScript RTase(200U/μl)を1.0μl、およびRNaseフリー水で20μlに調製した。その後、穏やかに混和し、30℃10分、42℃30分、95℃5分で逆転写反応を行うことでmiR-156aのcDNAを作製した。
(5)脂肪鎖付きプライマーおよびFITC修飾プライマーの合成
工程(4)で作製した逆転写産物の5’末端側と同一の配列を有するフォワードプライマーFと、逆転写産物の3’末端側と相補的な配列を有するリバースプライマーRを設計した。さらにリバースプライマーRの5’末端に非核酸の脂肪鎖構造を有するポリメラーゼ阻害領域(XS)、およびタグ配列Tを導入したタグ付プライマー(T-X-R)を作製した。さらにフォワードプライマーFの5’末端にFITCを導入した標識プライマー(H-F)を作製した。
本検討で作製したプライマーセットを示す。
T-XS-R:5’--GGTTAGCTTCCAACCACGTGTATGATC-XS-GCGGCGGTGACAGAAGAGAGT-3’(配列番号7)
H-F:5’--FITC-GTGCAGGGTCCGAGGT-3’(配列番号8)
(6)脂肪鎖付きプライマーとFITC修飾プライマーを用いたPCR
前記工程(4)で作製した逆転写産物を鋳型として、前記工程(5)で作製したプライマーセットを用いてPCR反応を行った。プライマーT-X-RとプライマーH-Fを各15pmolと、前記工程(4)逆転写反応液0.5μlとを0.2mlのPCR用チューブに入れ、ExTaq PCRデバイス(タカラバイオ社製)の説明書に従い、100μlのPCR反応液を調製した。その後、チューブをサーマルサイクラー(GeneAmp PCR System、アプライドバイオシステム社製)にセットし、95℃で5分間熱処理後、95℃で30秒、55℃で30秒、72℃で30秒のサイクルを35回行い、PCR増幅産物を得た。また、逆転写を行っていないRNA(miR-156a)をネガティブコントロール1、および別のマウスのトータルRNAを添加して工程(4)の逆転写反応を行ったサンプルをネガティブコントロール2としてPCR反応を行った。
(7)抗FITC抗体結合金コロイドの作製
Gold Colloid(40nm、9.0×1010(粒子数/ml)、British BioCell International社製)と抗FITC抗体溶液(5mMリン酸バッファー、pH7)を混合し、20分、室温で静置した。1%BSA、0.1%PEG溶液を1/2量添加し、10,000rpmで25分間遠心分離し、上清を除去、1%BSA、0.1%PEG溶液を添加し混和後、10000rpmで25分間遠心分離した。遠心後に上清を除去し、5mMリン酸バッファー(pH7)を添加した。このバッファー置換を再度行った。調製した金コロイド溶液に界面活性剤を混合して、グラスファイバー製パッドに均一になるように添加した後、真空乾燥機にて乾燥させ、コンジュゲーションパッドとした。
(8)捕捉用オリゴヌクレオチドプローブの固相への固定化
配列番号7のタグ領域に相補的な配列(配列番号9)を有するオリゴヌクレオチドプローブの塗布溶液を調製する。その塗布溶液をニトロセルロースメンブレン(商品名:Hi-Flow 180、ミリポア社製)にディスペンサーを用いてライン上に塗布し、40℃で30分間風乾した。
オリゴヌクレオチドプローブ2:5’-(GATCATACACGTGGTTGGAAGCTAACC)-3’(配列番号9)
(9)核酸クロマトグラフィー様テストストリップの作製
バッキングシートから成る基材に、上記で作成したニトロセルロースメンブレンからなるクロマトグラフィー媒体、コンジュゲーションパッド、試料添加部である汎用性のサンプルパッド、展開した試料や標識物質を吸収するための吸収パッドを図6に示すように貼り合わせ、脂肪鎖構造挿入プライマーとFITC修飾プライマーセットを用いたPCR増幅産物の検出用テストストリップを作製した。
(10)テストストリップによるPCR産物の検出
工程(6)で作製したPCR産物を変性することなく、界面活性剤および塩化ナトリウムを含む展開溶液と混合し、直ちに工程(9)で作製したテストストリップ上の試料添加部位にアプライし、クロマトグラフィーによる検出を行った。工程(4)で逆転写反応を行った標的のmiR156aを鋳型とした場合、テストライン上に標的核酸特異的な着色ラインが検出された。一方、ネガティブコントロール1としてmiR156aを逆転写反応せずに添加した場合のPCR産物では、ラインの検出は認められなかった。また、ネガティブコントロール2としてマウスのトータルRNAの逆転写産物を鋳型として添加した場合のPCR産物においてもラインの検出は認められなかった。クロマトグラフィーによる検出に要した時間は、10~15分と短時間であった。
<実施例3>
(1)テンプレート用RNA1~3の合成
合成RNA1~3をつくばオリゴサービスにて合成し、鋳型として用いた。
テンプレートmiRNA:5’-UGACAGAAGAGAGUGAGCAC-3’(配列番号10)
テンプレートmiRNA2:5’-UUUGGAUUGAAGGGAGCUCUA-3’(配列番号11)
テンプレートmiRNA3:5’-UGAUUGAGCCGCGCCAAUAUC-3’(配列番号12)
(2)逆転写プライマーの合成
テンプレートmiRNA1の3’末端側の6塩基と相補的な配列を3’末端側に有する逆転写プライマーRTp1、テンプレートmiRNA2の3’末端側の6塩基と相補的な配列を3’末端側に有する逆転写プライマーRTp2、テンプレートmiRNA3の3’末端側の6塩基と相補的な配列を3’末端に有する逆転写プライマーRTp3を合成した。つくばオリゴサービスにて受託合成した。
RTp1:5’-TGGGCTGACCTAGAGGTCTTAACGTGCTC-3’(配列番号13)
RTp2:5’-CCGGAACAGACACCAGGTTTAACTAGAGC-3’(配列番号14)
RTp3:5’-ATACCGATGAGTGTGCTACCAACGATATT-3’(配列番号15)
(3)逆転写反応
鋳型として工程(1)で合成したテンプレートmiRNA1~3、工程(2)で合成した逆転写プライマーRTp1~3を用い、PrimeScript(R) High Fidelity RT-PCR Kit(タカラバイオ社製)のプロトコルに従い逆転写反応を行った。
サンプルとして、次の(i)~(v)を準備した。
(i)テンプレートmiRNA1(1nM)
(ii)テンプレートmiRNA2(1nM)
(iii)テンプレートmiRNA3(1nM)
(iv)テンプレートmiRNA1,2,3(各1nM混合)
(v)テンプレートなし
逆転写反応液は、各サンプル1μlに対して、逆転写プライマーRTp1~3(各10μM)を2μlずつ、5倍濃縮のPrimeScript Bufferを4μl、RNase Inhibitor(40U/μl)を0.5μl、PrimeScript RTase(200U/μl)を1.0μl、およびRNaseフリー水で20μlに調製した。その後、穏やかに混和し、30℃10分、42℃30分、95℃5分で逆転写反応を行うことでサンプル(i)~(v)のそれぞれについて逆転写反応を行いcDNAを作製した。
(4)アゾベンゼン挿入プライマーの合成
miRNA1~3に対する逆転写産物cDNA1~3を鋳型として、核酸増幅反応が行えるようにそれぞれフォワードプライマー(F1)とリバースプライマー(R1)、フォワードプライマー(F2)とリバースプライマー(R2)、および、フォワードプライマー(F3)とリバースプライマー(R3)の3組のプライマーをそれぞれ設計した。それぞれの5’末端に非核酸構造であるアゾベンゼンを含むポリメラーゼ反応阻害領域(X)、およびタグ配列T1とT2、タグ配列T3とT4、および、タグ配列T5とT6を導入したタグ付きプライマー、T1-X-F1とT2-X-R1、T3-X-F2とT4-X-R2、および、T5-X-F3とT6-X-R3を合成した。この6種のアゾベンゼン挿入プライマーはつくばオリゴサービス株式会社にて受託合成を行い購入した。以下に本検討で作製した3組のプライマーセットを示す。
タグ配列T1:5’-(TGGCAACATTTTTCACTGGGTTTATAG)-3’(配列番号16)
タグ配列T2:5’-(GGTTAGCTTCCAACCACGTGTAGATCA)-3’(配列番号17)
プライマーT1-X-F1:5’-(TGGCAACATTTTTCACTGGGTTTATAG X TGGGCTGACCTAGAGGTCTT)-3’(配列番号18)
プライマーT2-X-R1:5’-(GGTTAGCTTCCAACCACGTGTAGATCA X GCGGCGGTGACAGAAGAGAGT)-3’(配列番号19)
タグ配列T3:5’-(CGCATTGAGCAAGTGTACAGAGCAT)-3’(配列番号20)
タグ配列T4:5’-(ATTATGCGTGGAGAAGCATATCATA)-3’(配列番号21)
プライマーT3-X-F2:5’-(CGCATTGAGCAAGTGTACAGAGCAT X CCGGAACAGACACCAGGTTT)-3’(配列番号22)
プライマーT4-X-R2:5’-(ATTATGCGTGGAGAAGCATATCATA X CGGCGGTTTGGATTGAAGGGA)-3’(配列番号23)
タグ配列T5:5’-(AATTGCGCATGTCCATGTGTAA)-3’(配列番号24)
タグ配列T6:5’-(TACTTTAGAGGAAACTGCTGAG)-3’(配列番号25)
プライマーT5-X-F3:5’-(AATTGCGCATGTCCATGTGTAA X ATACCGATGAGTGTGCTACC)-3’(配列番号26)
プライマーT6-X-R3:5’-(TACTTTAGAGGAAACTGCTGAG X TTCCTTGATTGAGCCGCGCC)-3’(配列番号27)
(5)アゾベンゼン挿入プライマーセット3組を用いたPCR反応
前記工程(4)で実施し作製した3組のプライマーセットを用いたPCR反応を行った。プライマーT1-X-F1、プライマーT2-X-R1、プライマーT3-X-F2、プライマーT4-X-R2、プライマーT5-X-F3、および、プライマーT6-X-R3を各15pmolと、工程(3)で作製したサンプル(i)~(v)の各サンプルに対する逆転写反応液1μlをPCR用チューブに入れ、ExTaq PCRデバイス(タカラバイオ社製)の説明書に従い、100μlのPCR反応液を調製した。
これら反応液を調製後、チューブをサーマルサイクラー(GeneAmp PCR System、アプライドバイオシステム社製)にセットし、95℃で5分間熱処理後、95℃で30秒、55℃で30秒、72℃で30秒のサイクルを30回行い、サンプル(i)~(iv)に関しては目的の配列を有するDNA増幅断片を得た。サンプル(v)に関しては、増幅DNA断片なし(ネガティブコントロールとする)。
(6)ラテックス結合オリゴヌクレオチドプローブの作製
カルボキシル基含有ポリスチレンラテックス(青色)(固形分10%(w/w)、Bangs社製)とアミノ基含有オリゴヌクレオチドプローブ3(配列番号28、配列番号16の相補鎖)、カルボキシル基含有ポリスチレンラテックス(オレンジ色)(固形分10%(w/w)、Bangs社製)とアミノ基含有オリゴヌクレオチドプローブ4(配列番号29、配列番号20の相補鎖)、および、カルボキシル基含有ポリスチレンラテックス(緑色)(固形分10%(w/w)、Bangs社製)とアミノ基含有オリゴヌクレオチドプローブ5(配列番号30、配列番号24の相補鎖)を、それぞれ水溶性カルボジイミドを必要量添加したMES緩衝液中で混合し、結合後、モノエタノールアミンでブロッキングを行った。前記反応液を遠心分離後、上清を除去し、得られた沈殿を水洗した。洗浄後、界面活性剤を含むHEPES緩衝液に再懸濁し、オリゴヌクレオチドプローブ3結合ラテックス(青色)、オリゴヌクレオチドプローブ4結合ラテックス(オレンジ色)、オリゴヌクレオチドプローブ5結合ラテックス(緑色)を作製した。
この3種のラテックスをグラスファイバー製パッドに均一になるように添加した後、真空乾燥機にて乾燥させ、コンジュゲーションパッドとした。
オリゴヌクレオチドプローブ3:5’-(CTATAAACCCAGTGAAAAATGTTGCCA)-NH-3’(配列番号28)
オリゴヌクレオチドプローブ4:5’-(TTGCTCTGTACACTTGCTCAATGCG)-NH-3’(配列番号29)
オリゴヌクレオチドプローブ5:5’-(TTACACATGGACATGCGCAATT)-NH-3’(配列番号30)
(7)3種のオリゴヌクレオチドプローブの固相への固定化
配列番号17に相補的な配列(配列番号31)を有する3’末端ビオチン修飾オリゴヌクレオチドプローブ6、配列番号21に相補的な配列(配列番号32)を有する3’末端ビオチン修飾オリゴヌクレオチドプローブ7、および、配列番号25に相補的な配列(配列番号33)を有する3’末端ビオチン修飾オリゴヌクレオチドプローブ8を、それぞれストレプトアビジンと混合する。それらの混合液をニトロセルロースメンブレン(商品名:Hi-Flow 135、ミリポア社製)上の3箇所にディスペンサーを用いて、上流側から順に互いに離れた位置でライン上に塗布し、40℃で30分間風乾した。3本の検出ラインを作製した。
オリゴヌクレオチドプローブ6:5’-(GATCATACACGTGGTTGGAAGCTAACC)-Biotin-3’(配列番号31)
オリゴヌクレオチドプローブ7:5’-(TATGATATGCTTCTCCACGCATAAT)-Biotin-3’(配列番号32)
オリゴヌクレオチドプローブ8:5’-(CTCAGCAGTTTCCTCTAAAGTA)-Biotin-3’(配列番号33)
(8)核酸クロマトグラフィー様テストストリップの作製
バッキングシートから成る基材に、上記で作成したニトロセルロースメンブレンからなるクロマトグラフィー媒体、工程(6)で作製したコンジュゲーションパッド、試料添加部である汎用性のサンプルパッド、展開した試料や標識物質を吸収するための吸収パッドを図6に示すように貼り合わせ、アゾベンゼン挿入プライマーセットを用いたPCR増幅産物の検出用テストストリップを作製した。
(9)テストストリップによるPCR産物の検出
工程(4)で作製した(i)~(v)のPCR産物をそれぞれ変性することなく、直ちに工程(5)で作製したテストストリップ上の試料添加部位にそれぞれアプライし、クロマトグラフィーによる検出を行った。その結果は以下に示す。
サンプル(i):1本目の検出ラインのみ青色に着色。
サンプル(ii):2本目の検出ラインのみオレンジ色に着色。
サンプル(iii):3本目の検出ラインのみ緑色に着色。
サンプル(iv):1本目の検出ラインが青色に、2本目の検出ラインがオレンジ色に、3本目の検出ラインが緑色にそれぞれ着色。
サンプル(v):どの検出ラインも着色は認められなかった。
この結果から、それぞれの標的遺伝子特異的に検出が可能であり、3種類の同時検出も確認できた。また、クロマトグラフィーによる検出に要した時間は、10~15分と短時間であった。
<実施例4>
(1)テンプレート用RNA1~3の合成
合成RNA1~3をつくばオリゴサービスにて合成し、鋳型として用いた。
テンプレートmiRNA:5’-UGACAGAAGAGAGUGAGCAC-3’(配列番号34)
テンプレートmiRNA2:5’-UUUGGAUUGAAGGGAGCUCUA-3’(配列番号35)
テンプレートmiRNA3:5’-UGAUUGAGCCGCGCCAAUAUC-3’(配列番号36)
(2)ポリA付加
ポリAポリメラーゼ(ニューイングランドバイオラボズ社製)を用いて、テンプレートmiRNA1~3についてポリA付加反応を行った。
サンプルとして、次の(i)~(v)を準備した。
(i)テンプレートmiRNA1(1nM)
(ii)テンプレートmiRNA2(1nM)
(iii)テンプレートmiRNA3(1nM)
(iv)テンプレートmiRNA1,2,3(各1nM混合)
(v)テンプレートなし
各サンプル(i)~(v)を1μl、10倍濃縮のバッファーを2μl、10mM ATPを2μl、抽出RNA2μl、ポリAポリメラーゼ1U、RNaseフリー水で20μlとした。37℃10分反応させ、miRNAの3’末端にポリAを付加した。
(3)逆転写プライマーの合成
テンプレートmiRNAの3’末端側のポリA部に相補的な配列を3’末端側に有する逆転写プライマーRTp-Tを合成した。つくばオリゴサービスにて受託合成した。(V=A,G or C、N=A,T,G or C)
RTp-T:5’-GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTTTTTTTTTTTTTTTVN-3’(配列番号37)
(4)逆転写反応
鋳型として工程(2)で作製したポリA付加サンプル、工程(3)で合成した逆転写プライマーRTp-Tを用い、PrimeScript(登録商標) High Fidelity RT-PCR Kit(タカラバイオ社製)のプロトコルに従い逆転写反応を行った。
逆転写反応液は、サンプル(i)~(v)のポリA付加反応液を1μl、逆転写プライマーRTp-T(10μM)を2μl、5倍濃縮のPrimeScript Bufferを4μl、RNase Inhibitor(40U/μl)を0.5μl、PrimeScript RTase(200U/μl)を1.0μl、およびRNaseフリー水で20μlに調製した。その後、穏やかに混和し、30℃10分、42℃30分、95℃5分で逆転写反応を行うことで各サンプルの逆転写産物を作製した。
(5)アゾベンゼン挿入プライマーおよびBiotin修飾プライマーの合成
ポリAを付加したmiRNA1~3に対する逆転写産物cDNA1~3を鋳型として、核酸増幅反応が行えるようにそれぞれフォワードプライマー(F)とリバースプライマー(R1)~(R3)のプライマーをそれぞれ設計した。フォワードプライマーの5’末端にはビオチン修飾を導入したB-Fを、リバースプライマー(R1)~(R3)には、逆転写産物cDNA1~3のそれぞれの3’末端側に相補的な配列と、それぞれの5’末端側に非核酸構造であるアゾベンゼンを含むポリメラーゼ反応阻害領域(X)、およびタグ配列T7、T8、T9を導入したタグ付きプライマー、T7-X-R1、T8-X-R2、およびT9-X-R3を合成した。この4種の修飾プライマーはつくばオリゴサービス株式会社にて受託合成を行い購入した。以下に本検討で作製した3組のプライマーセットを示す。
B-F:5’--Biotin-TCTGGTGCAGGGTCCGAGGTA-3’(配列番号38)
タグ配列T7:5’-(GGTTAGCTTCCAACCACGTGTAGATCA)-3’(配列番号39)
プライマーT7-X-R1:5’-(GGTTAGCTTCCAACCACGTGTAGATCA X GCGGCGGTGACAGAAGAGAGT)-3’(配列番号40)
タグ配列T8:5’-(ATTATGCGTGGAGAAGCATATCATA)-3’(配列番号41)
プライマーT8-X-R2:5’-(ATTATGCGTGGAGAAGCATATCATA X CGGCGGTTTGGATTGAAGGGA)-3’(配列番号42)
タグ配列T9:5’-(TACTTTAGAGGAAACTGCTGAG)-3’(配列番号43)
プライマーT9-X-R3:5’-(TACTTTAGAGGAAACTGCTGAG X TTCCTTGATTGAGCCGCGCC)-3’(配列番号44)
(6)アゾベンゼン挿入プライマーおよびBiotinプライマーセットを用いたPCR反応
前記工程(5)で作製したプライマーセットを用いたPCR反応を行った。プライマーH-F、プライマーT7-X-R1、プライマーT8-X-R2、および、プライマーT9-X-R3を各15pmolと、工程(4)で作製したサンプル(i)~(v)の各サンプルに対する逆転写反応液1μlをPCR用チューブに入れ、ExTaq PCRデバイス(タカラバイオ社製)の説明書に従い、100μlのPCR反応液を調製した。
これら反応液を調製後、チューブをサーマルサイクラー(GeneAmp PCR System、アプライドバイオシステム社製)にセットし、95℃で5分間熱処理後、95℃で30秒、55℃で30秒、72℃で30秒のサイクルを30回行い、サンプル(i)~(iv)に関しては目的の配列を有するDNA増幅断片を得た。サンプル(v)に関しては、増幅DNA断片なし(ネガティブコントロールとする)。
(7)ストレプトアビジン結合金コロイドの作製
Gold Colloid(40nm、9.0×1010(粒子数/ml)、British BioCell International社製)とストレプトアビジン溶液(5mMリン酸バッファー、pH7)を混合し、20分、室温で静置した。1%BSA、0.1%PEG溶液を1/2量添加し、10,000rpmで25分間遠心分離し、上清を除去、1%BSA、0.1%PEG溶液を添加し混和後、10000rpmで25分間遠心分離した。遠心後に上清を除去し、5mMリン酸バッファー(pH7)を添加した。このバッファー置換を再度行った。調製した金コロイド溶液に界面活性剤を混合して、グラスファイバー製パッドに均一になるように添加した後、真空乾燥機にて乾燥させ、コンジュゲーションパッドとした。
(8)3種のオリゴヌクレオチドプローブの固相への固定化
配列番号39に相補的な配列(配列番号45)を有するオリゴヌクレオチドプローブ9、配列番号41に相補的な配列(配列番号46)を有するオリゴヌクレオチドプローブ10、および、配列番号43に相補的な配列(配列番号47)を有するオリゴヌクレオチドプローブ11を、それぞれ塗布溶液を調製し、ニトロセルロースメンブレン(商品名:FF170HP、ワットマン社製)上の3箇所にディスペンサーを用いて、上流側から順に互いに離れた位置でライン上に塗布し、40℃で30分間風乾した。3本の検出ラインを作製した。
オリゴヌクレオチドプローブ9:5’-(GATCTACACGTGGTTGGAAGCTAACC)-3’(配列番号45)
オリゴヌクレオチドプローブ10:5’-(TATGATATGCTTCTCCACGCATAAT)-3’(配列番号46)
オリゴヌクレオチドプローブ11:5’-(CTCAGCAGTTTCCTCTAAAGTA)-3’(配列番号47)
(9)核酸クロマトグラフィー様テストストリップの作製
バッキングシートから成る基材に、工程(8)で作成したニトロセルロースメンブレンからなるクロマトグラフィー媒体、工程(7)で作製したコンジュゲーションパッド、試料添加部である汎用性のサンプルパッド、展開した試料や標識物質を吸収するための吸収パッドを図6に示すように貼り合わせ、アゾベンゼン挿入プライマーセットを用いたPCR増幅産物の検出用テストストリップを作製した。
(10)テストストリップによるPCR産物の検出
工程(4)で作製した(i)~(v)のPCR産物をそれぞれ変性することなく、直ちに工程(9)で作製したテストストリップ上の試料添加部位にそれぞれアプライし、クロマトグラフィーによる検出を行った。その結果は以下に示す。
サンプル(i):1本目の検出ラインのみ着色。
サンプル(ii):2本目の検出ラインのみ着色。
サンプル(iii):3本目の検出ラインのみ着色。
サンプル(iv):1本目、2本目、3本目全ての検出ラインが着色。
サンプル(v):どの検出ラインも着色は認められなかった。
この結果から、それぞれの標的遺伝子特異的に検出が可能であり、3種類の同時検出も確認できた。結果は図10に記載した。また、クロマトグラフィーによる検出に要した時間は、10~15分と短時間であった。
<実施例5>
(1)テンプレート用RNAの合成
実施例1と同様にテンプレートmiR-156aを合成した。
(2)逆転写プライマーの合成
実施例1と同様に逆転写プライマーRTpを合成した。
(3)逆転写反応
鋳型として工程(1)で合成したテンプレートmiR-156a、工程(2)で合成した逆転写プライマーを用い、PrimeScript(登録商標) High Fidelity RT-PCR Kit(タカラバイオ社製)のプロトコルに従い逆転写反応を行った。
テンプレート濃度の異なる以下のサンプルを用意した。
(i)テンプレートなし
(ii)テンプレートmiR-156a 1pM
(iii)テンプレートmiR-156a 10pM
(iv)テンプレートmiR-156a 100pM
各サンプル(i)~(iv)をそれぞれのチューブに2μl添加し、実施例1の工程(3)と同条件で逆転写反応を行い、各サンプルにおいてmiR-156aのcDNAを作製した。
(4)ポリメラーゼ反応阻害領域(5’-5’結合+3’-3’結合)挿入プライマー、およびDIG修飾プライマーの合成
工程(3)で作製した逆転写産物の5’末端側と同一の配列を有するフォワードプライマーFと、逆転写産物の3’末端側と相補的な配列を有するリバースプライマーRを設計した。さらにリバースプライマーRの5’末端に5’-5’結合+3’-3’結合の構造を有するポリメラーゼ阻害領域(Xr)、およびタグ配列Tを導入したタグ付プライマー(T-X-R)を作製した。さらにフォワードプライマーFの5’末端にDIGを導入した標識プライマー(D-F)を作製した。
本検討で作製したプライマーセットを示す。
T-Xr-R:5’--GGTTAGCTTCCAACCACGTGTATGATC-Xr-GCGGCGGTGACAGAAGAGAGT-3’(配列番号48)
D-F:5’--DIG-GTGCAGGGTCCGAGGT-3’(配列番号49)
(5)ポリメラーゼ反応阻害領域(5’-5’結合+3’-3’結合)挿入プライマーとDIG修飾プライマーを用いたPCR
前記工程(3)で作製した逆転写産物を鋳型として、前記工程(4)で作製したプライマーセットを用いて、各サンプルに対してPCR反応を行った。プライマーT-Xr-RとプライマーD-Fを各15pmolと、前記工程(3)逆転写反応液0.5μlとを0.2mlのPCR用チューブに入れ、ExTaq PCRキット(タカラバイオ社製)の説明書に従い、100μlのPCR反応液を調製した。その後、チューブをサーマルサイクラー(GeneAmp PCR System、アプライドバイオシステム社製)にセットし、95℃で5分間熱処理後、95℃で30秒、55℃で30秒、72℃で30秒のサイクルを30回行い、PCR増幅産物を得た。
(6)抗DIG抗体結合金コロイドの作製
Gold Colloid(40nm、9.0×1010(粒子数/ml)、British BioCell International社製)と抗DIG抗体溶液(5mMリン酸バッファー、pH7)を混合し、20分、室温で静置した。1%BSA、0.1%PEG溶液を1/2量添加し、10,000rpmで25分間遠心分離し、上清を除去、1%BSA、0.1%PEG溶液を添加し混和後、10000rpmで25分間遠心分離した。遠心後に上清を除去し、5mMリン酸バッファー(pH7)を添加した。このバッファー置換を再度行った。調製した金コロイド溶液に界面活性剤を混合して、グラスファイバー製パッドに均一になるように添加した後、真空乾燥機にて乾燥させ、コンジュゲーションパッドとした。
(7)捕捉用オリゴヌクレオチドプローブの固相への固定化
配列番号3のタグ領域に相補的な配列(配列番号5)を有する3’末端ビオチン修飾オリゴヌクレオチドプローブを、ストレプトアビジンと混合する。その混合液をニトロセルロースメンブレン(商品名:Hi-Flow 180、ミリポア社製)にディスペンサーを用いてライン上に塗布し、40℃で30分間風乾した。
オリゴヌクレオチドプローブ12:5’-(GATCATACACGTGGTTGGAAGCTAACC)-Biotin-3’(配列番号50)
(8)核酸クロマトグラフィー様テストストリップの作製
バッキングシートから成る基材に、上記で作成したニトロセルロースメンブレンからなるクロマトグラフィー媒体、コンジュゲーションパッド、試料添加部である汎用性のサンプルパッド、展開した試料や標識物質を吸収するための吸収パッドを図6に示すように貼り合わせ、5’-5’結合、3’-3’結合挿入プライマーとDIG修飾プライマーセットを用いたPCR増幅産物の検出用テストストリップを作製した。
(9)テストストリップによるPCR産物の検出
工程(5)で作製したPCR産物を変性することなく、直ちに工程(8)で作製したテストストリップ上の試料添加部位にアプライし、クロマトグラフィーによる検出を行った。工程(3)で逆転写反応を行ったサンプル(ii)~(iv)の逆転写産物を鋳型とした場合、テストライン上に標的核酸特異的な着色ラインが検出された。一方、サンプル(i)の逆転写反応液をテンプレートとした場合は、ラインの検出は認められなかった。クロマトグラフィーによる検出に要した時間は、10~15分と短時間であった。また、各ラインの着色強度は、クロマトリーダー(浜松ホトニクス社製)で測定した結果、サンプル(i)~(iv)中の標的RNA(miRNA156)の濃度と相関があり、その着色の違いは目視でも確認ができた。以下に、各サンプルを検出した際のテストラインの着色強度を示す。
サンプル(i):2mABS
サンプル(ii):114mABS
サンプル(iii):153mABS
サンプル(iv):173mABS
1.標的RNA
2.逆転写プライマー
3.標的RNAの一部と相補的な配列のプライマー本体領域
4.標的配列に由来しない付加配列
5.逆転写産物cDNA
6.標的RNA(3’末端にポリA配列を有する)
7.逆転写プライマー
8.ポリT配列を有するプライマー本体領域
9.標的配列に由来しない任意の付加配列
10.逆転写産物cDNA(ポリT配列を有する)
11.プライマー本体領域
12.タグ領域
13.ポリメラーゼ反応阻害領域
14.リバースプライマー
15.リバースプライマーのプライマー本体領域
16.ポリメラーゼ反応阻害領域
17.タグ領域
18.フォワードプライマー
19.逆転写産物の5’末端の一部と同一の配列からなるプライマー本体領域
20.ポリメラーゼ反応阻害領域
21.タグ領域
22.両末端に一本鎖領域を有するDNA増幅産物
23.リバースプライマー
24.リバースプライマーのプライマー本体領域
25.ポリメラーゼ反応阻害領域
26.タグ領域
27.フォワードプライマー
28.逆転写産物の5’末端の一部と同一の配列からなるプライマー本体領域
29.標識結合領域
30.末端に一本鎖領域を有し、反対側の末端に標識結合領域を有するDNA増幅産物
31.サンプルパッド
32.コンジュゲートパッド
33.捕捉用オリゴヌクレオチドを保持した担体
34.吸収パッド
35.基材
36.テストライン
37.コントロールライン
38.標識結合領域に特異的に結合可能な物質
39.着色担体(標識分子)
40.標識分子とDNA増幅産物との第1複合体
41.多孔質メンブレン
42.捕捉用オリゴヌクレオチド
43.標識分子に結合したオリゴヌクレオチド
44.標識分子
45.捕捉用オリゴヌクレオチドを各ウェルに保持した担体(マイクロアレイ)
46.捕捉用オリゴヌクレオチドを保持したビーズ担体
47.クロマトグラフィー様ストリップのニトロセルロースメンブレン(検出部のみ)
48.テストライン1
49.テストライン2
50.テストライン3

Claims (32)

  1. 下記工程(a)~(c):
    (a)標的RNAに非相補的な配列を5’末端側に有する逆転写プライマーを用いて、前記標的RNAを鋳型として逆転写反応を行い、前記標的RNAより長い逆転写産物を作製する工程、
    (b)二本のプライマーを用いて、前記逆転写産物を鋳型として核酸増幅反応を行い、少なくとも片側の末端に一本鎖領域を含む二本鎖DNA増幅断片を作製する工程、および
    (c)前記二本鎖DNA増幅断片の一本鎖領域と、固相上に固定したオリゴヌクレオチドプローブとをハイブリダイズさせる工程
    を含む、核酸検出方法。
  2. 前記標的RNAが10塩基以上の塩基配列を有する、請求項1に記載の核酸検出方法。
  3. 前記標的RNAが15塩基以上の塩基配列を有する、請求項1または2に記載の核酸検出方法。
  4. 前記標的RNAがマイクロRNAである、請求項1~3のいずれかに記載の核酸検出方法。
  5. 前記逆転写プライマーが標的RNAに相補的な配列を3塩基以上含む、請求項1~4のいずれかに記載の核酸検出方法。
  6. さらに、工程(a)の前に、標的RNAに対してポリA配列を3塩基以上付加する工程を含む、請求項1~4のいずれかに記載の核酸検出方法。
  7. 前記逆転写プライマーがポリT配列を3塩基以上含む、請求項1~4、および6のいずれかに記載の核酸検出方法。
  8. 前記逆転写プライマーが、3’末端側に標的RNAに相補的な配列を1塩基以上含む、請求項7に記載の核酸検出方法。
  9. 前記逆転写産物が、標的RNAよりも3塩基以上長い、請求項1~8のいずれかに記載の核酸検出方法。
  10. 前記標的RNAに非相補的な配列が、その配列内に互いに相補的な5塩基以上の配列を有することで、ループ構造を取り得る配列である、請求項1~9のいずれかに記載の核酸検出方法。
  11. 前記プライマーが、タグ領域、ポリメラーゼ反応阻害領域、および逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域を含む、請求項1~10のいずれかに記載の核酸検出方法。
  12. 前記ポリメラーゼ反応阻害領域が核酸誘導体を含む、請求項11に記載の核酸検出方法。
  13. 前記核酸誘導体が、L型核酸、3-deoxy-2-hydroxy-dN、修飾塩基核酸、損傷塩基核酸、リン酸結合部位修飾核酸、RNA、2’-OMe-N、およびそれらの誘導体からなる群から選択される少なくとも1つである、請求項12に記載の核酸検出方法。
  14. 前記核酸誘導体が、5’-5’結合で逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域と結合し、かつ/または、3’-3’結合でタグ領域と結合している、請求項12に記載の核酸検出方法。
  15. 前記ポリメラーゼ反応阻害領域が、非核酸誘導体を含む、請求項11に記載の核酸検出方法。
  16. 前記非核酸誘導体が、D-threoninol骨格を有する、請求項15に記載の核酸検出方法。
  17. 前記D-threoninol骨格に、アゾベンゼン、ビオチン、EDTA、および発色団からなる群から選択される少なくとも1つが導入されている、請求項16に記載の核酸検出方法。
  18. 前記非核酸誘導体が、炭素鎖(C)、ペグ鎖((CHCHO))、ジスルフィド含有鎖(CSSC)、ジチオールフォスフォロアミダイト、および、それらの誘導体からなる群から選択される少なくとも1つである、請求項15に記載の核酸検出方法。
  19. 前記プライマーが、複数種類および/または複数個のポリメラーゼ反応阻害領域を含む、請求項11~18のいずれかに記載の核酸検出方法。
  20. 前記タグ領域が、逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域と同一方向の核酸からなる、請求項11~19のいずれかに記載の核酸検出方法。
  21. 前記タグ領域が、逆転写産物もしくはその相補鎖にハイブリダイズ可能な配列を有する領域と同一方向の核酸、および逆方向の核酸を含む、請求項11~20のいずれかに記載の核酸検出方法。
  22. 前記二本鎖DNA増幅断片が、標識物質と結合可能である、請求項1~21のいずれかに記載の核酸検出方法。
  23. 前記二本鎖DNA増幅断片が、一本鎖領域を介して標識物質と結合可能である、請求項22に記載の核酸検出方法。
  24. 前記二本鎖DNA増幅断片が、標識結合物質を含む配列を介して標識物質と結合可能である、請求項22に記載の核酸検出方法。
  25. 前記二本鎖DNA増幅断片の一本鎖領域と標識物質とを結合させる工程をさらに含む、請求項1~23のいずれかに記載の核酸検出方法。
  26. 標識物質が着色担体からなり、前記二本鎖DNA増幅断片の目視検出を可能にする、請求項22~25のいずれかに記載の核酸検出方法。
  27. 前記二本鎖DNA増幅断片の一本鎖領域と、固相上に固定したオリゴヌクレオチドプローブとをハイブリダイズさせる工程が、核酸検出デバイス上で行われる、請求項1~26のいずれかに記載の核酸検出方法。
  28. 前記核酸検出デバイスが、クロマトグラフィーデバイスである、請求項27に記載の核酸検出方法。
  29. 下記工程(a)~(c):
    (a)前記核酸検出デバイス上の、前記オリゴヌクレオチドプローブが固定されている領域とは異なる領域に、前記二本鎖DNA増幅断片を配置する工程、
    (b)溶媒を用いて、前記二本鎖DNA増幅断片を、前記オリゴヌクレオチドプローブが固定されている領域の方向に、前記デバイス上で拡散させる工程、および
    (c)前記オリゴヌクレオチドプローブが固定されている領域において、前記オリゴヌクレオチドプローブと、前記二本鎖DNA増幅断片とを、ハイブリダイズさせる工程、
    を含む、請求項27または28に記載の核酸検出方法。
  30. 前記工程(c)の前に、前記二本鎖DNA増幅断片と、前記標識物質とを結合させる工程をさらに含む、請求項29に記載の核酸検出方法。
  31. 下記工程(d)~(h):
    (d)前記核酸検出デバイス上の、前記オリゴヌクレオチドプローブが固定されている領域とは各々異なる領域に、前記二本鎖DNA増幅断片、および前記標識物質をそれぞれ配置し、
    (e)溶媒を用いて、前記二本鎖DNA増幅断片を、前記標識物質が配置されている領域の方向に拡散させ、
    (f)前記標識物質が配置されている領域において、前記二本鎖DNA増幅断片と、標識物質とを結合させ、
    (g)工程(f)で結合した複合体を前記オリゴヌクレオチドプローブが配置されている方向に、前記デバイス上で拡散させ、
    (h)前記オリゴヌクレオチドプローブが固定されている領域において、前記オリゴヌクレオチドプローブと前記複合体とをハイブリダイズさせる、
    を含む、請求項29または30に記載の核酸検出方法。
  32. 請求項1~31のいずれかに記載の核酸検出方法に用いる核酸検出デバイスであって、前記二本鎖DNA増幅断片を配置する領域、前記二本鎖DNA増幅断片と結合する前記オリゴヌクレオチドプローブを保持したクロマトグラフィー担体、および、標識物質が結合したオリゴヌクレオチドプローブとを具備してなる検出デバイス。 
PCT/JP2014/080854 2013-11-22 2014-11-21 短鎖rnaの検出方法 WO2015076356A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/037,920 US10392652B2 (en) 2013-11-22 2014-11-21 Micro RNA detection method using two primers to produce an amplified double stranded DNA fragment having a single stranded region at one end
JP2015549198A JP6691380B2 (ja) 2013-11-22 2014-11-21 短鎖rnaの検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013241938 2013-11-22
JP2013-241938 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015076356A1 true WO2015076356A1 (ja) 2015-05-28

Family

ID=53179615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080854 WO2015076356A1 (ja) 2013-11-22 2014-11-21 短鎖rnaの検出方法

Country Status (3)

Country Link
US (1) US10392652B2 (ja)
JP (1) JP6691380B2 (ja)
WO (1) WO2015076356A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153157A (ja) * 2017-03-21 2018-10-04 株式会社東芝 Rna増幅方法、rna検出方法及びアッセイキット
CN108796048A (zh) * 2018-06-25 2018-11-13 浙江大学医学院附属妇产科医院 一种精确分辨tRNA来源片段末端单个核苷酸差异的检测方法
JP2019017383A (ja) * 2017-07-11 2019-02-07 株式会社東芝 短鎖核酸伸長用プライマーセット、アッセイキット、短鎖核酸伸長方法、増幅方法及び検出方法
WO2020241785A1 (ja) * 2019-05-29 2020-12-03 藤倉化成株式会社 固相付着用組成物、当該組成物を利用する固相担体、並びに当該固相担体の生産方法及び使用方法
US11130988B2 (en) 2016-03-18 2021-09-28 Kabushiki Kaisha Toshiba Method for detecting a plurality of short-chain nucleic acid in sample, combinatorial analysis kit, analysis kit supply management method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024944A2 (de) * 2000-09-18 2002-03-28 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Verfahren zum nachweis mindestens einer nukleinsäuresequenz
JP2002534434A (ja) * 1998-12-30 2002-10-15 オリゴス・イーティーシー・インコーポレイテッド 酸安定性骨格で修飾された末端がブロックされた核酸及びその治療的使用
JP2003504018A (ja) * 1999-07-02 2003-02-04 インビトロゲン・コーポレーション 核酸合成の感度および特異性の増大のための組成物および方法
JP2006201062A (ja) * 2005-01-21 2006-08-03 Kainosu:Kk 核酸の検出あるいは定量方法
WO2006095550A1 (ja) * 2005-03-04 2006-09-14 Kyoto University Pcrプライマー、それを利用したpcr法及びpcr増幅産物、並びにpcr増幅産物を利用するデバイス及びdna-タンパク複合体
JP2007111048A (ja) * 2005-10-05 2007-05-10 Qiagen Gmbh プルーフリーディング特性を有するdnaポリメラーゼを用いるポリメラーゼ連鎖反応のための方法
JP2008525037A (ja) * 2004-12-23 2008-07-17 アイ−スタツト・コーポレイシヨン 分子診断システム及び方法
JP2010516284A (ja) * 2007-01-26 2010-05-20 ストラタジーン カリフォルニア マイクロrnaの検出のための方法、組成物及びキット
WO2010106997A1 (ja) * 2009-03-19 2010-09-23 株式会社カネカ 核酸の検出方法及びキット、デバイス
JP2010533494A (ja) * 2007-07-14 2010-10-28 イオニアン テクノロジーズ, インコーポレイテッド 核酸の指数関数的増幅のためのニック形成および伸長増殖
WO2012070618A1 (ja) * 2010-11-24 2012-05-31 株式会社カネカ 増幅核酸検出方法及び検出デバイス
WO2013039228A1 (ja) * 2011-09-14 2013-03-21 日本碍子株式会社 標的核酸の検出方法
WO2013038534A1 (ja) * 2011-09-14 2013-03-21 日本碍子株式会社 標的核酸の検出方法
JP2013530698A (ja) * 2010-06-14 2013-08-01 ナショナル ユニヴァーシティー オブ シンガポール 修飾ステムループオリゴヌクレオチドが仲介する逆転写および塩基間隔が制限された定量的pcr
WO2013162026A1 (ja) * 2012-04-27 2013-10-31 株式会社カネカ 核酸の増幅方法、および、増幅核酸の検出方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310650A (en) 1986-09-29 1994-05-10 Abbott Laboratoires Method and device for improved reaction kinetics in nucleic acid hybridizations
CA1303983C (en) 1987-03-27 1992-06-23 Robert W. Rosenstein Solid phase assay
US5403711A (en) 1987-11-30 1995-04-04 University Of Iowa Research Foundation Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved
EP0387696B1 (en) 1989-03-17 1997-08-27 Abbott Laboratories Method and device for improved reaction kinetics in nucleic acid hybridizations
US5629158A (en) 1989-03-22 1997-05-13 Cemu Bitecknik Ab Solid phase diagnosis of medical conditions
GB8920097D0 (en) 1989-09-06 1989-10-18 Ici Plc Amplification processes
JP3408265B2 (ja) 1992-03-13 2003-05-19 国際試薬株式会社 Pcr増幅dnaの測定法
US5500375A (en) 1993-04-13 1996-03-19 Serex, Inc. Integrated packaging-holder device for immunochromatographic assays in flow-through or dipstick formats
JP3489102B2 (ja) 1993-09-07 2004-01-19 Jsr株式会社 標的核酸の検出方法およびそのためのキット
US5475098A (en) 1994-06-14 1995-12-12 The United States Of America As Represented By The Department Of Health And Human Services Distinctive DNA sequence of E. coli 0157:H7 and its use for the rapid, sensitive and specific detection of 0157:H7 and other enterohemorrhagic E. coli
US5925518A (en) 1995-05-19 1999-07-20 Akzo Nobel N.V. Nucleic acid primers for amplification of a mycobacteria RNA template
US5874216A (en) 1996-02-23 1999-02-23 Ensys Environmental Products, Inc. Indirect label assay device for detecting small molecules and method of use thereof
CZ293215B6 (cs) 1996-08-06 2004-03-17 F. Hoffmann-La Roche Ag Rekombinantní tepelně stálá DNA polymeráza, způsob její přípravy a prostředek, který ji obsahuje
US6124092A (en) 1996-10-04 2000-09-26 The Perkin-Elmer Corporation Multiplex polynucleotide capture methods and compositions
US6136610A (en) 1998-11-23 2000-10-24 Praxsys Biosystems, Inc. Method and apparatus for performing a lateral flow assay
GB9902970D0 (en) 1999-02-11 1999-03-31 Zeneca Ltd Novel matrix
WO2001021637A1 (fr) 1999-09-20 2001-03-29 Makoto Komiyama Oligonucleotide sensible a la lumiere
JP2001157598A (ja) 1999-12-01 2001-06-12 Matsushita Electric Ind Co Ltd 遺伝子検出方法およびその方法を利用した装置
EP1130113A1 (en) 2000-02-15 2001-09-05 Johannes Petrus Schouten Multiplex ligation dependent amplification assay
GB0016814D0 (en) 2000-07-07 2000-08-30 Lee Helen Improved dipstick assays (3)
US20030198980A1 (en) 2001-12-21 2003-10-23 Applera Corporation Heteroconfigurational polynucleotides and methods of use
WO2004065582A2 (en) 2003-01-15 2004-08-05 Dana-Farber Cancer Institute, Inc. Amplification of dna in a hairpin structure, and applications
JP3923917B2 (ja) 2003-03-26 2007-06-06 株式会社東芝 ターゲットの製造方法、標的配列検出方法、ターゲットおよび標的配列検出用アッセイキット
FR2853077B1 (fr) 2003-03-28 2005-12-30 Vedalab Procedes immunochromatographiques en phase solide
AU2004232976B2 (en) 2003-04-18 2011-02-10 Becton, Dickinson And Company Immuno-amplification
DE602004032125D1 (de) 2003-05-07 2011-05-19 Coris Bioconcept Sprl Einstufige oligochromatographische vorrichtung und verfahren zu ihrer verwendung
CN1459506A (zh) 2003-05-30 2003-12-03 山东大学 中国对虾抗菌肽基因的重组表达与应用
JP4623522B2 (ja) 2003-06-03 2011-02-02 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド 光学検査装置のための読み取りヘッド
JPWO2006043387A1 (ja) 2004-09-28 2008-05-22 第一化学薬品株式会社 検体の免疫学的検査方法及びその方法に用いる検査器具
CN101137759A (zh) 2005-02-18 2008-03-05 独立行政法人科学技术振兴机构 基因检测方法
WO2007117256A1 (en) 2005-05-31 2007-10-18 Applera Corporation Multiplexed amplification of short nucleic acids
CN100513577C (zh) 2005-07-04 2009-07-15 北京大学 一种pcr方法
EP1966366A4 (en) 2005-12-29 2011-06-15 I Stat Corp AMPLIFICATION SYSTEM AND METHODS FOR MOLECULAR DIAGNOSIS
KR20150017388A (ko) 2006-03-08 2015-02-16 아케믹스 엘엘씨 안질환의 치료에 유용한 보체 결합 앱타머 및 항-c5 제제
WO2008105814A2 (en) 2006-08-22 2008-09-04 Los Alamos National Security, Llc Miniturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids
US8377379B2 (en) 2006-12-15 2013-02-19 Kimberly-Clark Worldwide, Inc. Lateral flow assay device
US9063130B2 (en) 2007-09-11 2015-06-23 Kaneka Corporation Nucleic acid detection method and nucleic acid detection kit
US8008019B2 (en) 2007-11-28 2011-08-30 Luminex Molecular Diagnostics Use of dual-tags for the evaluation of genomic variable repeat regions
JP2009162535A (ja) 2007-12-28 2009-07-23 Sekisui Medical Co Ltd 固相作製用試薬及び該試薬を使用して作製した固相
JP2009296948A (ja) 2008-06-13 2009-12-24 Olympus Corp Pcr用プライマー、標的核酸の検出方法及び標的生体分子の検出方法
JP5231106B2 (ja) 2008-07-03 2013-07-10 株式会社カイノス 検体検査用具
US20110244597A1 (en) 2008-11-28 2011-10-06 Konica Minolta Medical & Graphic, Inc. Immunochromatographic medium and immunochromatographic method
US9587270B2 (en) 2009-06-29 2017-03-07 Luminex Corporation Chimeric primers with hairpin conformations and methods of using same
MX2012012908A (es) 2010-05-07 2013-05-01 Quantibact As Metodo para generar un acido nucleico de doble hebra con una saliente de una sola hebra.
CN101845511A (zh) 2010-06-12 2010-09-29 中国人民解放军军事医学科学院微生物流行病研究所 一种核酸检测方法及其专用试剂盒
US9029103B2 (en) 2010-08-27 2015-05-12 Illumina Cambridge Limited Methods for sequencing polynucleotides
WO2013040491A2 (en) 2011-09-15 2013-03-21 Shafer David A Probe: antiprobe compositions for high specificity dna or rna detection

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534434A (ja) * 1998-12-30 2002-10-15 オリゴス・イーティーシー・インコーポレイテッド 酸安定性骨格で修飾された末端がブロックされた核酸及びその治療的使用
JP2003504018A (ja) * 1999-07-02 2003-02-04 インビトロゲン・コーポレーション 核酸合成の感度および特異性の増大のための組成物および方法
WO2002024944A2 (de) * 2000-09-18 2002-03-28 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Verfahren zum nachweis mindestens einer nukleinsäuresequenz
JP2008525037A (ja) * 2004-12-23 2008-07-17 アイ−スタツト・コーポレイシヨン 分子診断システム及び方法
JP2006201062A (ja) * 2005-01-21 2006-08-03 Kainosu:Kk 核酸の検出あるいは定量方法
WO2006095550A1 (ja) * 2005-03-04 2006-09-14 Kyoto University Pcrプライマー、それを利用したpcr法及びpcr増幅産物、並びにpcr増幅産物を利用するデバイス及びdna-タンパク複合体
JP2007111048A (ja) * 2005-10-05 2007-05-10 Qiagen Gmbh プルーフリーディング特性を有するdnaポリメラーゼを用いるポリメラーゼ連鎖反応のための方法
JP2010516284A (ja) * 2007-01-26 2010-05-20 ストラタジーン カリフォルニア マイクロrnaの検出のための方法、組成物及びキット
JP2010533494A (ja) * 2007-07-14 2010-10-28 イオニアン テクノロジーズ, インコーポレイテッド 核酸の指数関数的増幅のためのニック形成および伸長増殖
WO2010106997A1 (ja) * 2009-03-19 2010-09-23 株式会社カネカ 核酸の検出方法及びキット、デバイス
JP2013530698A (ja) * 2010-06-14 2013-08-01 ナショナル ユニヴァーシティー オブ シンガポール 修飾ステムループオリゴヌクレオチドが仲介する逆転写および塩基間隔が制限された定量的pcr
WO2012070618A1 (ja) * 2010-11-24 2012-05-31 株式会社カネカ 増幅核酸検出方法及び検出デバイス
WO2013039228A1 (ja) * 2011-09-14 2013-03-21 日本碍子株式会社 標的核酸の検出方法
WO2013038534A1 (ja) * 2011-09-14 2013-03-21 日本碍子株式会社 標的核酸の検出方法
WO2013162026A1 (ja) * 2012-04-27 2013-10-31 株式会社カネカ 核酸の増幅方法、および、増幅核酸の検出方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Highlighting JAPAN", March 2013 (2013-03-01), Retrieved from the Internet <URL:http://dwl.gov-online.go.jp/video/cao/dl/public_html/gov/pdf/hlj/20130301/24-25.pdf>> [retrieved on 20150123] *
JUNG ET AL., CARBON, vol. 48, 2010, pages 1070 - 1078 *
LIANG ET AL., NUCLEIC ACIDS SYMPOSIUM SERIES, no. 52, 8 September 2008 (2008-09-08), pages 19 - 20 *
LIANG, X. ET AL.: "Nick Sealing by T4 DNA Ligase on a Modified DNA Template: Tethering a Functional Molecule on D-Threo", CHEM. EUR. J., vol. 17, 2011, pages 10388 - 10396 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130988B2 (en) 2016-03-18 2021-09-28 Kabushiki Kaisha Toshiba Method for detecting a plurality of short-chain nucleic acid in sample, combinatorial analysis kit, analysis kit supply management method
JP2018153157A (ja) * 2017-03-21 2018-10-04 株式会社東芝 Rna増幅方法、rna検出方法及びアッセイキット
US11072822B2 (en) 2017-03-21 2021-07-27 Kabushiki Kaisha Toshiba RNA amplification method, RNA detection method and assay kit
JP2019017383A (ja) * 2017-07-11 2019-02-07 株式会社東芝 短鎖核酸伸長用プライマーセット、アッセイキット、短鎖核酸伸長方法、増幅方法及び検出方法
JP7055691B2 (ja) 2017-07-11 2022-04-18 株式会社東芝 短鎖核酸伸長用プライマーセット、アッセイキット、短鎖核酸伸長方法、増幅方法及び検出方法
US11655505B2 (en) 2017-07-11 2023-05-23 Kabushiki Kaisha Toshiba Short-chain nucleic acid elongation primer set, assay kit, and short-chain nucleic acid elongation, amplification and detection methods
CN108796048A (zh) * 2018-06-25 2018-11-13 浙江大学医学院附属妇产科医院 一种精确分辨tRNA来源片段末端单个核苷酸差异的检测方法
WO2020241785A1 (ja) * 2019-05-29 2020-12-03 藤倉化成株式会社 固相付着用組成物、当該組成物を利用する固相担体、並びに当該固相担体の生産方法及び使用方法

Also Published As

Publication number Publication date
US10392652B2 (en) 2019-08-27
JPWO2015076356A1 (ja) 2017-03-16
US20160362732A1 (en) 2016-12-15
JP6691380B2 (ja) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6513892B1 (ja) 増幅核酸検出方法及び検出デバイス
JP6219816B2 (ja) 核酸の増幅方法、および、増幅核酸の検出方法
CN103797119B (zh) 靶核酸的检测方法
CN112154216A (zh) 生物分子探针以及检测基因和蛋白表达的方法
CN113528628A (zh) 用于基因组应用和治疗应用的核酸分子的克隆复制和扩增的系统和方法
JP6691380B2 (ja) 短鎖rnaの検出方法
CN116406428A (zh) 用于使用酶促核酸延伸进行原位单细胞分析的组合物和方法
JP7030051B2 (ja) 2以上の標的核酸を検出するためのプライマーセット、キット及び方法
WO2019073049A1 (en) ISOTHERMIC AMPLIFICATION IN SOLID PHASE
WO2017006859A1 (ja) 標的核酸の検出法
WO2021132596A1 (ja) プライマーセット及びそれを用いて標的核酸を検出する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549198

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037920

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863673

Country of ref document: EP

Kind code of ref document: A1