WO2015072945A1 - Layered thermal barrier coating and coating method - Google Patents
Layered thermal barrier coating and coating method Download PDFInfo
- Publication number
- WO2015072945A1 WO2015072945A1 PCT/TR2014/000430 TR2014000430W WO2015072945A1 WO 2015072945 A1 WO2015072945 A1 WO 2015072945A1 TR 2014000430 W TR2014000430 W TR 2014000430W WO 2015072945 A1 WO2015072945 A1 WO 2015072945A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal barrier
- layer
- coating
- metal surface
- barrier layer
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/11—Thermal or acoustic insulation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
- F02F3/10—Pistons having surface coverings
Definitions
- the present invention relates to a layered thermal barrier coating, which enables heat insulation of cylinder head, piston, valve, exhaust/intake port and/or engine cylinder wall components in diesel engines, and which, by reducing the heat transfer via these components to the cooling and lubricating system, enables to increase the useful heat that will be utilized; and to a method for providing this coating.
- thermal barrier coating applications are developed.
- ceramic containing thermal barrier coating on the piston, cylinder wall, valve, cylinder head and exhaust/intake port components which are exposed to high combustion temperatures, heat transfer to/from the said components is reduced.
- this application also protects the engine components against the influences of high heat.
- the objective of the present invention is to provide a layered thermal barrier coating in diesel engines; which is applied on the cylinder head, piston, exhaust/intake port and engine cylinder wall components and thereby enables the heat transfer from the said components to the cooling and lubricating system to be reduced; and a coating method.
- Another objective of the present invention is to provide a layered thermal barrier coating in diesel engines, which prevents penetration of the fuel into the thermal barrier layer, and a coating method.
- a further objective of the present invention is to provide a layered thermal barrier coating in diesel engines, which prevents penetration of the fuel to the pores, on the thermal barrier layer and accordingly prevents delay of combustion by means of a final layer that is applied on a normal thermal barrier layer, and a coating method.
- the layered thermal barrier coating (1) of the present invention which, in diesel engines, enables to reduce the heat transfer to the lubricating and cooling systems and to prevent delay -of combustion resulting due to penetration of the fuel to the piston (P), valve (V) and cylinder head (H) surface; comprises
- thickness of the bonding layer (3) can be optimized according to the metal surface (2) on which it will be applied and generally varies between 50 ⁇ -150 ⁇ .
- NiCr alloys are used for the bonding layer (3), which alloys are comprised of 16-21% by weight of chrome, 15-20% by weight of different metal elements, and nickel for the remaining amount.
- the bonding layer (3) is produced from a material or a mixture of materials selected from a group comprising NiAl, NiCrAl, NiCrAlY and NiCrMo materials.
- the thickness of the thermal barrier layer (4) can be optimized according to the surface on which it will be applied and the desired heat transfer amount, and generally varies between 200 ⁇ -300 ⁇ .
- the thermal barrier layer (4) is produced from a material or a mixture of materials selected from a group consisting of zirconium, yttrium, aluminum and magnesium oxides.
- a material or a mixture of materials selected from a group comprising iridium, palladium, platinum and rhodium, which serves as a catalyst for combustion and thus accelerates combustion is added into the final layer (5).
- thickness of the final layer (5) varies between 10 ⁇ -30 ⁇ in order to optimally eliminate the porosity in the thermal barrier layer (4).
- the layered thermal barrier coating method comprises the steps of
- thermal barrier layer (4) on the bonding layer (3) surface by a ceramic based material
- the metal surface (2) in the step of heating the metal surface (2) in order to remove the oil and moisture remaining thereon, is heated to a temperature of 150 °C-200°C.
- a nonporous bonding layer (3) which has improved micro and macro hardness levels and high abrasion and corrosion resistance is produced by performing the coating process via plasma spray method.
- This thermal barrier coating application which is widely used in turbines, and which also includes the present invention, is basically comprised of the following stages: roughening the metal surface (2) in order to enable the coating (1) to be firmly attached to the metal surface, applying the bonding layer to the roughened surface, applying the thermal barrier layer (4) onto the bonding layer (3), and applying a nonporous final layer (5) on the thermal barrier layer (4) in order to eliminate the pores. Coating process is generally performed via spraying method. Within the framework of the layered thermal barrier coating method of the present invention, thermal barrier layer (4) is applied on the components such as cylinder head (H), piston (P), valve (V), exhaust/intake port (E) and cylinder wall (C) in diesel engines (D). By means of the coating (1) that is applied, heat transfer from the said components to the cooling and lubricating system is reduced and/or combustion is accelerated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Acoustics & Sound (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Coating By Spraying Or Casting (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
The present invention relates to a layered thermal barrier coating (1); which enables to increase the useful heat that will be utilized by reducing the heat transfer to the cooling and lubricating system via the cylinder head (H), piston (P), valve (V), exhaust/intake port (E) and cylinder wall (C) components in diesel engines (D); prevents penetration of unburned fuel to the porous surface formed due to the porous structure of the thermal barrier coating; and additionally can prevent wearing of the cylinder head (H), piston (P), valve (V), exhaust/intake port (E) and/or cylinder wall (C) components; and to a method for providing this coating (1).
Description
DESCRIPTION
LAYERED THERMAL BARRIER COATING AND COATING METHOD
Field of the Invention
The present invention relates to a layered thermal barrier coating, which enables heat insulation of cylinder head, piston, valve, exhaust/intake port and/or engine cylinder wall components in diesel engines, and which, by reducing the heat transfer via these components to the cooling and lubricating system, enables to increase the useful heat that will be utilized; and to a method for providing this coating.
Background of the Invention A part of the heat obtained as a result of combustion in diesel engines passes to the cooling and lubricating systems via the engine components. In order to prevent this situation, which causes the engine components to be destroyed as a result of overheating and the amount of useful heat that can be utilized to decrease, thermal barrier coating applications are developed. In the state of the art, by applying ceramic containing thermal barrier coating on the piston, cylinder wall, valve, cylinder head and exhaust/intake port components which are exposed to high combustion temperatures, heat transfer to/from the said components is reduced. In addition to reducing the heat transfer to the cooling and lubricating systems, this application also protects the engine components against the influences of high heat.
In the current art, due to the porous structure of the thermal barrier coating, penetration of the fuel to the porous structure formed on the combustion surface causes delayed combustion.
United States patent document no. US4852542, an application in the state of the art, discloses a thermal barrier coating of a specified thickness of 0.002 to 0.009 inch to insulate the combustion chamber of an internal combustion engine to achieve optimum reduction of transient head flow.
United States patent document no. US5413877, an application in the state of the art, discloses an engine block comprising thermal barrier and wear coating. The thermal barrier is applied to the engine cylinder surface to reduce the waste heat amount. Thus it reduces the need for air or liquid cooling.
German patent document no. DE102010034655, an application in the state of the art, discloses an engine having an engine block coated by a heat insulating material. The heat insulating material directly rests against the engine block. International patent document no. W09324672, an application in the state of the art, discloses a thermal barrier coating for metal articles subjected to rapid thermal cycling.
Summary of the Invention
The objective of the present invention is to provide a layered thermal barrier coating in diesel engines; which is applied on the cylinder head, piston, exhaust/intake port and engine cylinder wall components and thereby enables the heat transfer from the said components to the cooling and lubricating system to be reduced; and a coating method.
Another objective of the present invention is to provide a layered thermal barrier coating in diesel engines, which prevents penetration of the fuel into the thermal barrier layer, and a coating method.
A further objective of the present invention is to provide a layered thermal barrier coating in diesel engines, which prevents penetration of the fuel to the pores, on the thermal barrier layer and accordingly prevents delay of combustion by means of a final layer that is applied on a normal thermal barrier layer, and a coating method.
Detailed Description of the Invention
"Layered thermal barrier coating and coating method in diesel engines" developed to fulfill the objective of the present invention is illustrated in the accompanying figures, wherein;
Figure 1 is a view of the cylinder head, cylinder wall, piston, valve, exhaust/intake port in a diesel engine section.
Figure 2 a sectional view of the layered thermal barrier coating of the present invention.
The components given in the figures are assigned reference numbers as follows:
1. Layered thermal barrier coating
2. Metal surface
3. Bonding layer
4. Thermal barrier layer
5. Final layer
D. Diesel engine
H. Cylinder head
C. Cylinder wall
P. Piston
V. Valve
E. Exhaust/intake port
The layered thermal barrier coating (1) of the present invention; which, in diesel engines, enables to reduce the heat transfer to the lubricating and cooling systems and to prevent delay -of combustion resulting due to penetration of the fuel to the piston (P), valve (V) and cylinder head (H) surface; comprises
- a metal surface (2) which is used in production of diesel engine (D) part and on which the coating application will be performed,
- a bonding layer (3) which is applied on the metal surface (2) before the thermal barrier layer (4) and which both enables the thermal barrier layer (4) to be firmly attached to the metal surface (2) and prevents the thermal barrier layer (4) from getting broken due to the different expansion coefficients of the metal surface (2) and the thermal barrier layer (4),
- at least one thermal barrier layer (4) which enables to reduce the heat transfer to the metal surface (2) by means of its porous structure by being applied on the bonding layer (3),
- a final layer (5) which is applied on the thermal barrier layer (4) thereby eliminating the porosity caused by the porous structure of the thermal barrier layer (4), and which thus prevents the fuel from penetrating into the thermal barrier layer (4) particularly at the piston (P), valve (V) and cylinder head (H).
In the preferred embodiment of the invention, thickness of the bonding layer (3) can be optimized according to the metal surface (2) on which it will be applied and generally varies between 50μπι-150μηι. In the preferred embodiment of the invention, NiCr alloys are used for the bonding layer (3), which alloys are comprised of 16-21% by weight of chrome, 15-20% by weight of different metal elements, and nickel for the remaining amount.
In the preferred embodiment of the invention, the bonding layer (3) is produced from a material or a mixture of materials selected from a group comprising NiAl, NiCrAl, NiCrAlY and NiCrMo materials. In the preferred embodiment of the invention, the thickness of the thermal barrier layer (4) can be optimized according to the surface on which it will be applied and the desired heat transfer amount, and generally varies between 200μπι-300μηι.
In the preferred embodiment of the invention, the thermal barrier layer (4) is produced from a material or a mixture of materials selected from a group consisting of zirconium, yttrium, aluminum and magnesium oxides.
In the preferred embodiment of the invention, the final layer (5) is produced from a material similar to the bonding layer (3). In the preferred embodiment of the invention, the final layer (5), similar to the bonding layer (3), is produced from NiCr alloys, which are comprised of 16-21% by weight of chrome, 15-20% by weight of different metal elements and nickel for the remaining amount. Preferably, the final layer (5) is produced from a material or a mixture of materials selected from a group comprising NiAl, NiCrAl, NiCrAlY and NiCrMo materials.
In the preferred embodiment of the invention, a material or a mixture of materials selected from a group comprising iridium, palladium, platinum and rhodium, which serves as a catalyst for combustion and thus accelerates combustion, is added into the final layer (5).
In the preferred embodiment of the invention, thickness of the final layer (5) varies between 10μ-30μιη in order to optimally eliminate the porosity in the thermal barrier layer (4). The layered thermal barrier coating method comprises the steps of
- washing the metal surface (2) that will be coated,
- heating the metal surface (2) in order to remove the oil and moisture remaining thereon,
- roughening the metal surface (2) by spraying sand on the metal surface (2) that will be coated,
- coating the roughened metal surface (2) by the bonding layer (3),
- forming the thermal barrier layer (4) on the bonding layer (3) surface by a ceramic based material,
- coating the thermal barrier layer (4) with a final layer (5) in order to eliminate the porosity caused by the porous inner structure of the thermal barrier layer (4),
- processing the final layer (5) according to the desired surface roughness.
In the preferred embodiment of the invention, in the step of heating the metal surface (2) in order to remove the oil and moisture remaining thereon, the metal surface (2) is heated to a temperature of 150 °C-200°C.
In the preferred embodiment of the invention, in the step of coating the roughened metal surface (2) with the bonding layer (3), a nonporous bonding layer (3) which has improved micro and macro hardness levels and high abrasion and corrosion resistance is produced by performing the coating process via plasma spray method.
This thermal barrier coating application, which is widely used in turbines, and which also includes the present invention, is basically comprised of the following stages: roughening the metal surface (2) in order to enable the coating (1) to be firmly attached to the metal surface, applying the bonding layer to the roughened surface, applying the thermal barrier layer (4) onto the bonding layer (3), and applying a nonporous final layer (5) on the thermal barrier layer (4) in order to eliminate the pores. Coating process is generally performed via spraying method.
Within the framework of the layered thermal barrier coating method of the present invention, thermal barrier layer (4) is applied on the components such as cylinder head (H), piston (P), valve (V), exhaust/intake port (E) and cylinder wall (C) in diesel engines (D). By means of the coating (1) that is applied, heat transfer from the said components to the cooling and lubricating system is reduced and/or combustion is accelerated.
The bonding layer (3) both enables the thermal barrier coating material (4) to get attached to the metal surface (2), and prevents the breakages that may occur on the thermal barrier layer "(4) due to the different expansions between the main material forming the metal surface (2) and the thermal barrier layer (4) material.
Penetration of the fuel into the surface due to the porous structure of the thermal barrier layer (4) is prevented thanks to the layered thermal barrier coating (1) in diesel engines (D), by means of using a final layer (5) produced from a material similar to the bonding layer (3) on the thermal barrier layer (4). This way, delayed combustion is prevented. Furthermore, by means of the catalytic materials added into the final layer (5) combustion can be accelerated. Thanks to the layered structure of the present invention, penetration of the fuel into the surface pores will become difficult or be prevented. Thickness values of the layers (3, 4, 5) given for each stage are given as a range. Coating thicknesses may vary according to the desired application area.
Claims
A layered thermal barrier coating (1), which prevents the engine components in diesel engine (D) from wearing as a result of overheating and/or friction, enables to reduce the heat transfer to the cooling and lubricating system, and enables to prevent delayed combustion resulting due to the penetration of fuel to the piston (P), valve (V) and cylinder head (H) on which only the bonding layer (3) and thermal barrier layer (4) are applied, comprising
- a metal surface (2) which is used in production of diesel engine (D) part and on which the coating application will be performed, and characterized by
- a bonding layer (3) which is applied on the metal surface (2) before the thermal barrier layer (4) and which both enables the thermal barrier layer (4) to be firmly attached to the metal surface (2) and prevents the thermal barrier layer (4) from getting broken due to the different expansion coefficients of the metal surface (2) and the thermal barrier layer (4),
- at least one thermal barrier layer (4) which enables to reduce the heat transfer to the metal surface (2) by means of its porous structure by being applied on the bonding layer (3),
- a final layer (5) which is applied on the thermal barrier layer (4) thereby eliminating the porosity caused by the porous structure of the thermal barrier layer (4), and which thus prevents the fuel from penetrating into the thermal barrier layer (4) particularly at the piston (P), valve (V) and cylinder head (H).
A layered thermal barrier coating (1) according to Claim 1, characterized by the bonding layer (3), whose thickness can be optimized according to the metal surface (2) on which it will be applied and generally varies between 50μηι-150μηι.
A layered thermal barrier coating (1) according to Claim 1 or 2, characterized by the bonding layer (3); wherein NiCr alloys are used, which are comprised of 16-21% by weight of chrome; 15-20% by weight of aluminum, molybdenum, yttrium and organic substances; and nickel for the remaining amount.
A layered thermal barrier coating (1) according to any one of the preceding claims, characterized by the bonding layer (3) which is produced from a material or a mixture of materials selected from a group comprising NiAl, NiCrAl, NiCrAlY and NiCrMo materials.
A layered thermal barrier coating (1) according to any one of the preceding claims, characterized by the thermal barrier layer (4) whose thickness can be optimized according to the surface on which it will be applied and the desired heat transfer amount, and generally varies between 200μιη-300μπι.
A layered thermal barrier coating (1) according to any one of the preceding claims, characterized by the thermal barrier layer (4) which is produced from a material or a mixture of materials selected from a group consisting of zirconium, yttrium, aluminum and magnesium oxides.
A layered thermal barrier coating (1) according to any one of the preceding claims, characterized by the final layer (5); wherein NiCr alloys are used, which are comprised of 16-21% by weight of chrome; 15- 20% by weight of aluminum, molybdenum, yttrium and organic substances; and nickel for the remaining amount. A layered thermal barrier coating (1) according to any one of the preceding claims, characterized by the final layer (5) which is produced
from a material or a mixture of materials selected from a group comprising NiAl, NiCrAl, NiCrAlY and NiCrMo materials.
9. A layered thermal barrier coating (1) according to any one of the preceding claims, characterized by the final layer (5) into which is added a material or, a mixture of materials selected from a group comprising iridium, palladium, platinum and rhodium, which serves as a catalyst for combustion and thus accelerates combustion. 10. A layered thermal barrier coating (1) according to any one of the preceding claims, characterized by the final layer (5) whose thickness varies between 10μ-30μη in order to optimally eliminate the porosity in the thermal barrier layer (4).
11. A method for producing the layered thermal barrier coating (1) defined in any one of the preceding claims, characterized by the steps of
- washing the metal surface (2) that will be coated,
- heating the metal surface (2) in order to remove the oil and moisture remaining thereon,
- roughening the metal surface (2) by spraying sand on the metal surface (2) that will be coated,
- coating the roughened metal surface (2) by the bonding layer (3),
- forming the thermal barrier layer (4) on the bonding layer (3) surface by a ceramic based material,
- coating the thermal barrier layer (4) with a final layer (5) in order to eliminate the porosity caused by the porous inner structure of the thermal barrier layer (4),
- processing the final layer (5) according to the desired surface roughness.
12. A layered thermal barrier coating method according to Claim 11, characterized in that, the metal surface (2) is heated to a temperature of
150°C-200°C in the step of heating the metal surface (2) in order to remove the oil and moisture remaining thereon.
13. A layered thermal barrier coating method according to Claim 1 1 or 12, characterized in that, a nonporous bonding layer (3) which has improved micro and macro hardness levels and high abrasion and corrosion resistance is produced by performing the coating process via plasma spray method in the step of coating the roughened metal surface (2) with the bonding layer (3).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2016/06617T TR201606617T1 (en) | 2013-11-18 | 2014-11-17 | LAYERED THERMAL BARRIER COATING AND COATING METHOD |
EP14833406.3A EP3071733A1 (en) | 2013-11-18 | 2014-11-17 | Layered thermal barrier coating and coating method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR201313376 | 2013-11-18 | ||
TR2013/13376 | 2013-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015072945A1 true WO2015072945A1 (en) | 2015-05-21 |
Family
ID=52440793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/TR2014/000430 WO2015072945A1 (en) | 2013-11-18 | 2014-11-17 | Layered thermal barrier coating and coating method |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3071733A1 (en) |
TR (1) | TR201606617T1 (en) |
WO (1) | WO2015072945A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017160896A1 (en) * | 2016-03-16 | 2017-09-21 | Federal-Mogul Llc | Piston with advanced catalytic energy release |
WO2017174143A1 (en) * | 2016-04-08 | 2017-10-12 | Volvo Truck Corporation | A piston for a cylinder for an internal combustion engine |
WO2018011362A1 (en) * | 2016-07-13 | 2018-01-18 | Oerlikon Metco Ag, Wohlen | Coating cylinder bores without prior activation of the surface |
WO2018132394A1 (en) * | 2017-01-10 | 2018-07-19 | Federal-Mogul Llc | Galleryless short compression insulated steel piston |
US10578050B2 (en) * | 2015-11-20 | 2020-03-03 | Tenneco Inc. | Thermally insulated steel piston crown and method of making using a ceramic coating |
CN111279008A (en) * | 2017-10-27 | 2020-06-12 | 天纳克有限责任公司 | Internal combustion engine component with dynamic thermal barrier coating and methods of making and using such coating |
US10876475B2 (en) * | 2015-11-20 | 2020-12-29 | Tenneco Inc. | Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating |
CN112481579A (en) * | 2020-11-27 | 2021-03-12 | 安徽盈锐优材科技有限公司 | Ceramic insulating coating and preparation method thereof |
US11667005B1 (en) | 2022-04-27 | 2023-06-06 | Caterpillar Inc. | Method of making piston using polishing removal of thermal barrier coating (TBC) material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5169674A (en) * | 1990-10-23 | 1992-12-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of applying a thermal barrier coating system to a substrate |
US5384200A (en) * | 1991-12-24 | 1995-01-24 | Detroit Diesel Corporation | Thermal barrier coating and method of depositing the same on combustion chamber component surfaces |
US5987882A (en) * | 1996-04-19 | 1999-11-23 | Engelhard Corporation | System for reduction of harmful exhaust emissions from diesel engines |
-
2014
- 2014-11-17 EP EP14833406.3A patent/EP3071733A1/en not_active Withdrawn
- 2014-11-17 WO PCT/TR2014/000430 patent/WO2015072945A1/en active Application Filing
- 2014-11-17 TR TR2016/06617T patent/TR201606617T1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5169674A (en) * | 1990-10-23 | 1992-12-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of applying a thermal barrier coating system to a substrate |
US5384200A (en) * | 1991-12-24 | 1995-01-24 | Detroit Diesel Corporation | Thermal barrier coating and method of depositing the same on combustion chamber component surfaces |
US5987882A (en) * | 1996-04-19 | 1999-11-23 | Engelhard Corporation | System for reduction of harmful exhaust emissions from diesel engines |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10876475B2 (en) * | 2015-11-20 | 2020-12-29 | Tenneco Inc. | Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating |
US10578050B2 (en) * | 2015-11-20 | 2020-03-03 | Tenneco Inc. | Thermally insulated steel piston crown and method of making using a ceramic coating |
US10018146B2 (en) | 2016-03-16 | 2018-07-10 | Federal-Mogul Llc | Piston with advanced catalytic energy release |
CN109072811A (en) * | 2016-03-16 | 2018-12-21 | 费德罗-莫格尔有限责任公司 | With the advanced exergonic piston of catalysis |
WO2017160896A1 (en) * | 2016-03-16 | 2017-09-21 | Federal-Mogul Llc | Piston with advanced catalytic energy release |
US10801439B2 (en) | 2016-04-08 | 2020-10-13 | Volvo Truck Corporation | Piston for a cylinder for an internal combustion engine |
CN109072397B (en) * | 2016-04-08 | 2021-08-31 | 沃尔沃卡车集团 | Piston for a cylinder of an internal combustion engine |
CN109072397A (en) * | 2016-04-08 | 2018-12-21 | 沃尔沃卡车集团 | The piston of cylinder for internal combustion engine |
WO2017174143A1 (en) * | 2016-04-08 | 2017-10-12 | Volvo Truck Corporation | A piston for a cylinder for an internal combustion engine |
US10920308B2 (en) | 2016-07-13 | 2021-02-16 | Oerlikon Metco Ag, Wohlen | Coating cylinder bores without prior activation of the surface |
CN109642306A (en) * | 2016-07-13 | 2019-04-16 | 欧瑞康美科股份公司,沃伦 | Cylinder perforation is coated in the case where no preactivated surface |
WO2018011362A1 (en) * | 2016-07-13 | 2018-01-18 | Oerlikon Metco Ag, Wohlen | Coating cylinder bores without prior activation of the surface |
WO2018132394A1 (en) * | 2017-01-10 | 2018-07-19 | Federal-Mogul Llc | Galleryless short compression insulated steel piston |
US10690247B2 (en) | 2017-01-10 | 2020-06-23 | Tenneco Inc. | Galleryless short compression insulated steel piston |
CN111279008A (en) * | 2017-10-27 | 2020-06-12 | 天纳克有限责任公司 | Internal combustion engine component with dynamic thermal barrier coating and methods of making and using such coating |
CN112481579A (en) * | 2020-11-27 | 2021-03-12 | 安徽盈锐优材科技有限公司 | Ceramic insulating coating and preparation method thereof |
US11667005B1 (en) | 2022-04-27 | 2023-06-06 | Caterpillar Inc. | Method of making piston using polishing removal of thermal barrier coating (TBC) material |
Also Published As
Publication number | Publication date |
---|---|
EP3071733A1 (en) | 2016-09-28 |
TR201606617T1 (en) | 2017-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3071733A1 (en) | Layered thermal barrier coating and coating method | |
US10995661B2 (en) | Thermally insulated engine components using a ceramic coating | |
Buyukkaya | Thermal analysis of functionally graded coating AlSi alloy and steel pistons | |
KR102557856B1 (en) | Thermally insulated steel piston crown and its manufacturing method using ceramic coating | |
US20100136258A1 (en) | Method for improved ceramic coating | |
US6627323B2 (en) | Thermal barrier coating resistant to deposits and coating method therefor | |
EP2108715A3 (en) | Thermal barrier coating system and coating methods for gas turbine engine shroud | |
CN1890456A (en) | Component comprising a thermal insulation layer and an anti-erosion layer | |
US8722202B2 (en) | Method and system for enhancing heat transfer of turbine engine components | |
EP3748031B1 (en) | Reflective coating and coating process therefor | |
US11492692B2 (en) | Thermal barrier coating with high corrosion resistance | |
Abbas et al. | A study on combustion and performance characteristics of ceramic coated (PSZ/Al2O3) and uncoated piston–DI engine | |
JPH0527706B2 (en) | ||
Krishnamani et al. | Thermal analysis of ceramic coated aluminum alloy piston using finite element method | |
KR20200122370A (en) | Heat shielding coating, turbine member, gas turbine, and manufacturing method of heat shielding coating | |
US20080307957A1 (en) | Piston-Pin Bore Dimensions for a Piston of an Internal Combustion Engine | |
Pandian et al. | Thermal and Structural Analysis of Functionally Graded NiCrAlY/YSZ/Al₂O₃ Coated Piston | |
CN106715880B (en) | Piston, piston machine with piston and automobile with piston machine | |
CA3001802A1 (en) | Thermal coating system with aluminide | |
KR20230132480A (en) | Implanted thermal barrier coating system | |
Kumar et al. | Performance of 2024 aluminum alloy thermal barrier coating systems subjected to elevated temperature fluctuation as a fatigue | |
US11332635B1 (en) | Protective heat-resistant coating compositions | |
US20190186355A1 (en) | Thermal barriers for engines and methods of making the same | |
EP3161177A1 (en) | A coating system and method | |
JP2024107623A (en) | Composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14833406 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016/06617 Country of ref document: TR |
|
REEP | Request for entry into the european phase |
Ref document number: 2014833406 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014833406 Country of ref document: EP |