Nothing Special   »   [go: up one dir, main page]

WO2015072815A1 - Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same - Google Patents

Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same Download PDF

Info

Publication number
WO2015072815A1
WO2015072815A1 PCT/KR2014/011081 KR2014011081W WO2015072815A1 WO 2015072815 A1 WO2015072815 A1 WO 2015072815A1 KR 2014011081 W KR2014011081 W KR 2014011081W WO 2015072815 A1 WO2015072815 A1 WO 2015072815A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
zinc
acid
organic zinc
zinc catalyst
Prior art date
Application number
PCT/KR2014/011081
Other languages
French (fr)
Korean (ko)
Inventor
김성경
박승영
조현주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/034,696 priority Critical patent/US10047196B2/en
Priority to CN201480063125.7A priority patent/CN105764954B/en
Priority to EP14862667.4A priority patent/EP3048129B1/en
Priority to JP2016526195A priority patent/JP6364076B2/en
Priority claimed from KR1020140160747A external-priority patent/KR101650510B1/en
Publication of WO2015072815A1 publication Critical patent/WO2015072815A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides or epoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc

Definitions

  • the present invention is an organic zinc catalyst that suppresses agglomeration between catalyst particles during the production process, has a more uniform and finer particle size, and thus exhibits an improved activity in the polymerization process for producing a polyalkylene carbonate resin, a method for preparing the same, and It relates to a method for producing a polyalkylene carbonate resin using the same.
  • such zinc dicarboxylate-based catalysts typically zinc glutarate catalysts, react with dicarboxylic acids such as zinc precursors and glutaric acid. It forms and takes the form of fine crystalline particles.
  • produces, and in many cases, it has a comparatively large particle size and a nonuniform particle shape. Due to such a large and nonuniform particle size, when the polymerization process for producing polyalkylene carbonate resin is performed using the zinc catalyst dicarocarboxylate-based catalyst, the contact area between the reactants and the catalyst is not secured and polymerization is performed. There was a drawback that the activity was not fully expressed
  • the present invention is suppressed and the aggregation between the particles during manufacture, more uniform and also the fine particle size to have, thereby producing a polyalkyl with an organic zinc catalyst showing an improved activity in the polymerization process for the production of alkylene carbonate resin, thereof in accordance with i To provide a way.
  • This invention also provides the manufacturing method of the polyalkylene carbonate resin using the said organic zinc catalyst.
  • the present invention is a zinc dicarboxylate organic zinc catalyst used in the reaction for producing a polyalkylene carbonate resin from carbon dioxide and epoxide,
  • an aliphatic hydrocarbon group having 3 to 15 carbon atoms (however, the aliphatic hydrocarbon group may or may not include one or more oxygen or carbonyl groups).
  • the present invention also provides a zinc precursor, a "dicarboxylic acid, monomethyl having an aliphatic hydrocarbon group having a carbon number of 3 to 15 (however, may not be included groups aliphatic hydrocarbons, include a one or more oxygen or carbonyl or.) It provides a method for producing the organic zinc catalyst comprising the step of reacting a carboxylic acid.
  • the present invention in the presence of the organic zinc catalyst, epoxide and It provides a method for producing a polyalkylene carbonate resin comprising the step of polymerizing a monomer including carbon dioxide.
  • an organic zinc catalyst according to an embodiment of the present invention a method for preparing the same, and a method for preparing a polyalkylene carbonate resin using the same will be described in detail.
  • the zinc dicarboxylate-based organic zinc catalyst used in the reaction for producing a polyalkylene carbonate resin from carbon dioxide and epoxide at least one side of the zinc dicarboxylate-based zinc catalyst
  • An organic zinc having a moiety derived from a monocarboxylic acid having an aliphatic hydrocarbon group having 3 to 15 carbon atoms (wherein the aliphatic hydrocarbon group may or may not include one or more oxygen or carbonyl groups) at the terminal of A catalyst is provided.
  • relatively hydrophobic end capping structures can suppress aggregation between catalyst particles from each other. Therefore, the organozinc catalyst is suppressed between the catalyst particles during the manufacturing process, it can exhibit a more uniform and fine particle size.
  • the organic zinc catalyst of the embodiment has a more uniform and fine particle diameter by suppressing aggregation between catalyst particles during the manufacturing process, and shows an improved activity in the polymerization process for producing polyalkylene carbonate resin, such a polymerization process Very preferably.
  • Such organic zinc catalysts may basically comprise a chain structure equivalent to previously known zinc dicarboxylate-based catalysts. That is, the organic zinc catalyst may have a structure in which zinc, a dicarboxylate, for example, an aliphatic dicarboxylate having 3 to 20 carbon atoms or an aromatic dicarboxylate having 8 to 40 carbon atoms is bonded. , The monocarboxylic acid-derived residue may be bonded to the terminal.
  • the organic zinc catalyst may have a chemical structure of Formula 1:
  • R1 and R3 are each independently an aliphatic hydrocarbon group having 3 to 15 carbon atoms derived from a monocarboxylic acid (however, the aliphatic hydrocarbon group may or may not include one or more oxygen or carbonyl groups).
  • R2 may represent an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 40 carbon atoms derived from dicarboxylic acid or dicarboxylate.
  • the dicarboxylate is an aliphatic dicarboxylate having 3 to 20 carbon atoms, such as glutarate, malonate, succinate, or adipate, terephthalate, isophthalate, homo It may be any of aromatic dicarboxylates having 8 to 40 carbon atoms, such as phthalate or phenylglutarate.
  • the dicarboxylate is glutarate in view of the activity of the organic zinc catalyst.
  • the zinc dicarboxylate-based organic zinc catalyst is preferably a zinc glutarate-based catalyst.
  • Such dicarboxylates are aliphatic dicarboxylic acids having 3 to 20 carbon atoms, such as dicarboxylic acids such as glutaric acid, malonic acid, succinic acid or adipic acid, and terephthalic acid, isophthalic acid and homo. It is derived from aromatic dicarboxylic acids having 8 to 40 carbon atoms such as phthalic acid or phenyl glutaric acid, and can be formed by reaction of these dicarboxylic acids with zinc.
  • the moiety bonded and capped to at least one end of the organic zinc catalyst may include 3 to 15 carbon atoms, or 4 to 15 carbon atoms, or an aliphatic carbon of 6 to 15 carbon atoms, with or without one or more oxygen or carbonyl groups.
  • a monocarboxylic acid having a hydrocarbon group representative examples of such a monocarboxylic acid, valeric acid; Lauric acid; 3,5-dioxonucleosanic acid; 3,5,7-trioxo-dodecanoic acid; Keto acids such as acetoacetic acid or levulinic acid; Black is 4-oxo-4H-1-benzopyran-2-carboxylic acid (4-oxo-4H-1 -benzopyran-2-carboxycarboxylic acid) or 5-hydroxy-4-oxo-4H-pyran- Oxo carboxylic acids such as 2-carboxylic acid (5-Hydroxy-4-oxo-4H-pyran-2-carboxylic acid), and two or more kinds of mixtures selected for these cases may be used.
  • the organic zinc catalyst may be end capped with a monocarboxylic acid-derived residue through reaction with various monocarboxylic acids.
  • an organic zinc catalyst end-capped with a monocarboxylic acid having an aliphatic hydrocarbon group having less than 3 carbon atoms for example, propionic acid, etc.
  • a monocarboxylic acid having an aliphatic hydrocarbon group having less than 3 carbon atoms for example, propionic acid, etc.
  • the monocarboxylic acid-derived residues are more capped at both ends of the zinc dicarboxylate-based organic zinc catalyst in order to more effectively suppress aggregation during the catalyst preparation process.
  • the monocarboxylic acid-derived moiety is about 0.1 to 0.5 moles, or about 0.2 to 0.5 moles, and black is about 1 mole of the dicarboxylate-derived moiety bound to the organic zinc catalyst. It is appropriate that they are bonded in a ratio of 0.2 to 0.4 mol.
  • the organic zinc catalyst of the above-described embodiment is about 0.2 to 0.9 / ffli, or about 0.3 to 0.8 ⁇ , as the aggregation between the catalyst particles is suppressed during the manufacturing process Or in the form of uniform particles having an average particle diameter of about 0.5 to 0.7 and a standard deviation of about 0.05 to 0.3 ⁇ , or about 0.05 to Q.2, or about 0.05 to 0.1 ⁇ .
  • the organic zinc catalyst is used as a catalyst in the production of polyalkylene carbonate resin by copolymerization of carbon dioxide and epoxide, the contact area between the catalyst particles and the reactant may be increased, thereby improving activity.
  • Such a production method may include, for example, a zinc precursor, a dicarboxylic acid, and an aliphatic hydrocarbon group having 3 to 15 carbon atoms (however, the aliphatic hydrocarbon group may or may not include one or more oxygen or carbonyl groups). Reacting a monocarboxylic acid having a may be included.
  • the reaction step may include reacting the zinc precursor, the dicarboxylic acid, and further adding the monocarboxylic acid to react.
  • an organic zinc catalyst may be prepared.
  • an organic zinc catalyst of one embodiment which exhibits a more uniform and finer particle size and improved activity, can be prepared.
  • the zinc precursor may be zinc oxide or zinc hydroxide, or zinc such as zinc acetate (Zn (0 2 CCH 3 ) 2 ), zinc nitrate (Zn (N0 3 ) 2 ) or zinc sulfate (ZnS0 4 ). Salts may be used, and any zinc precursors previously used in the preparation of zinc dicarboxylate catalysts may be 'used' without any limitation.
  • any zinc precursors previously used in the preparation of zinc dicarboxylate catalysts may be 'used' without any limitation.
  • the reaction step of the dicarboxylic acid is about
  • the reaction may be performed for about 0.5 to 10 hours at a silver degree of 40 to 90 ° C., and the reaction of the monocarboxylic acid may be performed for about 1 to 20 hours at a temperature of about 80 to 150 ° C.
  • agglomeration between the catalyst particles during the catalyst preparation process can be effectively suppressed while ensuring the proper production of the zinc dicarboxylate-based catalyst, so that a catalyst having a more uniform and finer particle size and excellent activity can be produced properly.
  • the monocarboxylic acid in the preparation of the catalyst, may be used in a ratio of about 0.1 to 0.5 moles per 1 mole of the dicarboxylic acid, the dicarboxylic acid is about 1.0 to 1 mole of the zinc precursor To 1.5 mol.
  • agglomeration between the catalyst particles during the catalyst preparation process is more effectively suppressed while ensuring proper production of the zinc dicarboxylate-based catalyst having excellent activity, so that a catalyst having a more uniform and finer particle size and excellent activity can be produced properly.
  • a method for producing a polyalkylene carbonate resin comprising the step of polymerizing a monomer comprising epoxide and carbon dioxide ⁇ in the presence of the above-described organic zinc catalyst.
  • the organic zinc catalyst may be used in the form of a heterogeneous catalyst, and the polymerization step may proceed to solution polymerization in an organic solvent.
  • the heat of reaction can be appropriately controlled, and the molecular weight or viscosity of the polyalkylene carbonate resin to be obtained can be easily controlled.
  • solvents include methylene chloride, ethylene dichloride, trichloroethane, tetrachloroethane, chloroform, acetonitrile propionitrile, dimethylformamide, ⁇ -methyl-2-pyridoneone dimethyl sulfoxide, Nitromethane, 1,4-dioxane, nucleic acid, toluene, tetrahydrofuran, methyl ethyl ketone, methyl amine ketone, methyl isobutyl ketone, acetone, cyclonuclear xanone, trichloroethylene, methyl acetate, vinyl acetate, ethyl acetate It may be used propyl acetate, butyl lactone, caprolactone, nitropropane, at least one selected from benzene, styrene, xylene, and the group consisting of methyl Pro pajol (me thyl)
  • the solvent may be used in a weight ratio of about 1: 0.5 to 1: 100 relative to the epoxide, and may be suitably used in a weight ratio of about 1: 1 to 1:10. At this time, if the ratio is too small, less than about 1: 0.5, the solvent may not function properly as a reaction medium and it may be difficult to take advantage of the above-described solution polymerization. In addition, when the ratio exceeds about 1: 100, the concentration of epoxide and the like may be relatively lowered, which may lower productivity, and may lower the molecular weight of the finally formed resin or increase side reactions.
  • the .organic zinc catalyst may be added in a molar ratio of about 1:50 to 1: 1000 relative to the epoxide. More preferably, the organic zinc catalyst may be added in a molar ratio of about 1:70 to 1: 600, or about 1:80 to 1: 300 relative to the epoxide. If the ratio is too small, it is difficult to show a catalytic catalytic activity during solution polymerization. On the contrary, if the ratio is too large, an excessive amount of catalyst is used to produce inefficient and by-products, or back-biting of the resin due to heating in the presence of a catalyst. ) May occur.
  • examples of the epoxide include an alkylene oxide having 2 to 20 carbon atoms unsubstituted or substituted with halogen or an alkyl group having 1 to 5 carbon atoms; Cycloalkylene oxide having 4 to 20 carbon atoms unsubstituted or substituted with halogen or alkyl group having 1 to 5 carbon atoms; And a styrene oxide having 8 to 20 carbon atoms substituted or unsubstituted with halogen or an alkyl group having 1 to 5 carbon atoms.
  • the epoxide may be an alkylene oxide having 2 to 20 carbon atoms unsubstituted or substituted with halogen or an alkyl group having 1 to 5 carbon atoms.
  • epoxides include ethylene oxide, propylene oxide, butene oxide, pentene oxide, nuxene oxide, octene oxide, decene oxide, dodecene oxad, tetradecene oxide, nuxadecene oxide, octadecene oxide, butadiene monooxide, 1 , 2-epoxy-7-octene, epifluorohydrin, epichlorohydrin, epibromohydrin, isopropyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, 2-ethyl Nucleosil glycidyl ether, allyl glycidyl ether, cyclopentene oxide, cyclonuxene oxide, cyclooctene oxide, cyclododecene oxide, alpha-pinene oxide, 2,3-epoxynor
  • solution polymerization described above may be performed at about 50 to 100 ° C. and about 15 to 50 bar for about 1 to 60 hours. In addition, the solution polymerization is about
  • the polymerization process and conditions may be followed by conventional polymerization conditions for preparing the polyalkylene carbonate resin, and thus, further description thereof will be omitted.
  • Example 2 Preparation of Organic Zinc Catalyst
  • Example 2 An organic zinc catalyst of Example 2 was prepared in the same manner as in Example 1, except that lauric acid was used instead of valeric acid in Example 1, and the chemical structure thereof was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, the organic zinc catalyst of Example 2 was confirmed to have a standard deviation of an average particle diameter? Of about 0.48 and a particle diameter of about 0.28.
  • Example 3 Preparation of Organic Zinc Catalyst
  • Example 3 An organic zinc catalyst of Example 3 was prepared in the same manner as in Example 1, except that acetoacetic acid was used instead of valeric acid in Example 1, and the chemical structure thereof was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, the organic zinc catalyst of Example 3 was found to have a standard deviation of an average particle diameter of about 0.57 and a particle diameter of about 0.23.
  • Example 4 Preparation of Organic Zinc Catalyst
  • the organic zinc catalyst of Example 4 was prepared in the same manner as in Example 1, except that 5-hydroxy-4-oxo-4H-pyran-2-carboxylic acid was used instead of valeric acid in Example 1. The chemical structure was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, the organic zinc catalyst of Example 4 was confirmed to have a standard deviation of an average particle diameter of about 0.51 mm 3 and a particle diameter of about 0.28 mm. Comparative Example 1: Preparation of Organic Zinc Catalyst
  • An organic zinc catalyst of Comparative Example 2 was prepared in the same manner as in Example 1, except that propionic acid was used instead of valeric acid in Example 1, and the chemical structure thereof was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, the organic zinc catalyst of 2 was found to have a standard deviation of an average particle diameter of about 0.73 mm 3 and a particle diameter of about 0.34 1. 1 and 2, and the respective examples and comparative examples described above, Examples 1 to 2
  • An organic zinc catalyst prepared using a monocarboxylic acid having an aliphatic hydrocarbon group having 3 to 15 carbon atoms at 4 does not use such a monocarboxylic acid (Comparative Example 1), or a monocarboxylic acid having a hydrocarbon group having less than 3 carbon atoms bonded thereto. It was confirmed to have a more uniform and finer particle diameter compared to the organic zinc catalyst prepared using (propionic acid) (Comparative Example 2). Polymerization Example:
  • Polyethylene carbonate was polymerized and prepared in the following manner using the catalysts of Examples 1 to 4 and Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention relates to: an organic zinc catalyst having a more uniform and finer particle size due to the inhibition of aggregation among catalyst particles during a preparation step, thereby exhibiting more improved activities in a polymerization step for preparing a polyalkylene carbonate resin; a preparation method therefor; and a method for preparing a polyalkylene carbonate resin by using the same. The organic zinc catalyst is a zinc dicarboxylate-based organic zinc catalyst used in a reaction for preparing a polyalkylene carbonate resin from carbon dioxide and an epoxide, wherein a monocarboxylic acid-derived residue having a C3-15 aliphatic hydrocarbon group (wherein at least one oxygen or carboxyl group can or cannot be contained in the aliphatic hydrocarbon group) is coupled to at least one end of the zinc dicarboxylate-based organic zinc catalyst.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
유기 아연 촉매, 이의 제조 방법 및 이를 사용한 폴리알킬렌 카보네이트 수지의 제조 방법  Organic zinc catalyst, preparation method thereof and preparation method of polyalkylene carbonate resin using same
【기술분야】  Technical Field
본 발명은 제조 과정 중에 촉매 입자 간 응집이 억제되어, 보다 균일하고도 미세한 입경을 가지며, 이에 따라 폴리알킬렌 카보네이트 수지의 제조를 위한 중합 과정에서 보다 향상된 활성을 나타내는 유기 아연 촉매, 이의 제조 방법 및 이를 사용한 폴리알킬렌 카보네이트 수지의 제조 방법에 관한 것이다.  The present invention is an organic zinc catalyst that suppresses agglomeration between catalyst particles during the production process, has a more uniform and finer particle size, and thus exhibits an improved activity in the polymerization process for producing a polyalkylene carbonate resin, a method for preparing the same, and It relates to a method for producing a polyalkylene carbonate resin using the same.
【배경기술】  Background Art
산업 혁명 이후, 인류는 화석 연료를 대량 소비함으로써, 현대 사회를 구축하여 왔지만, 한편으로 대기 증의 이산화탄소 농도를 증가시키고, 게다가 삼림 파괴 등의 환경 파괴에 의해 이 증가를 더욱 촉진시키고 있다. 지구 온난화는 대기 중의 이산화탄소, 프레온이나 메탄과 같은 온실 효과 가스가 증가한 것이 원인이 되는 점에서, 지구 온난화에 대한 기여율이 높은 이산화탄소의 대기 중 농도를 감소시키는 것은 매우 중요하고, 이 배출 규제나 고정화 등의 여러 가지 연구가 세계적인 규모로 실시되고 있다.  Since the Industrial Revolution, mankind has built up a modern society by consuming large amounts of fossil fuels, but on the one hand, increasing atmospheric carbon dioxide concentrations, and further promoting this increase by environmental destruction such as deforestation. Since global warming is caused by an increase in greenhouse gases such as carbon dioxide in the atmosphere and freon or methane, it is very important to reduce the atmospheric concentration of carbon dioxide, which has a high contribution to global warming. A variety of studies are being conducted on a global scale.
. 그 증에서도 이노우에 등에 의해 발견된 이산화탄소와 에폭사이드의 공중합 반웅은 지구 온난화 문제의 해결을 담당할 반웅으로서 기대되고 있고, 화학적 이산화탄소의 고정과 같은 관점뿐만 아니라, 탄소 자원으로서의 이산화탄소의 이용이라는 관점에서도 활발히 연구되고 있다. 특히 , 최근 들어 , 상기 이산화탄소와 에폭사이드의 중합에 의한 폴리알킬렌 카보네이트 수지는 생분해 가능한 수지의 일종으로서 크게 각광받고 있다.  . In this case, the reaction of copolymerization of carbon dioxide and epoxide found by Inoue et al. Is expected as a reaction to solve the problem of global warming, and is active not only from the viewpoint of chemical carbon dioxide fixing but also from the use of carbon dioxide as a carbon resource. Is being studied. In particular, in recent years, polyalkylene carbonate resins obtained by polymerization of the carbon dioxide and epoxide have gained much attention as a kind of biodegradable resins.
이전부터 이러한 폴리알킬렌 카보네이트 수지의 제조를 위한 다양한 촉매가 연구 및 제안되고 있으며, 대표적인 촉매로서 아연 및 디카르복실산이 결합된 아연 글루타레이트 촉매 등의 아연 디카르복실레이트계 촉매가 알려져 있다.  Various catalysts for the preparation of such polyalkylene carbonate resins have been researched and proposed in the past, and zinc dicarboxylate-based catalysts such as zinc glutarate catalysts in which zinc and dicarboxylic acid are combined are known.
그런데, 이러한 아연 디카르복실레이트계 촉매, 대표적으로 아연 글루타레이트 촉매는 아연 전구체 및 글루타르산 등 디카르복실산을 반웅시켜 형성되며, 미세한 결정성 입자 형태를 띠게 된다. 그런데, 이러한 촉매 제조 과정에서, 촉매 입자 간의 웅집이 발생하는 경우가 많아 비교적 큰 입경 및 불균일한 입자 형태를 갖게 되는 경우가 많았다. 이러한 크고 불균일한 입자 크기 등으로 인해, 상기 아연 촉매 디카로복실레이트계 촉매를 사용하여 폴리알킬렌 카보네이트 수지의 제조를 위한 증합 공정을 진행할 경우, 반응물과 촉매 간의 층분한 접촉 면적이 확보되지 않아 중합 활성이 층분히 발현되지 못하는 단점이 있었다■ However, such zinc dicarboxylate-based catalysts, typically zinc glutarate catalysts, react with dicarboxylic acids such as zinc precursors and glutaric acid. It forms and takes the form of fine crystalline particles. By the way, in the process of manufacturing such a catalyst, the groove | channel between catalyst particles often generate | occur | produces, and in many cases, it has a comparatively large particle size and a nonuniform particle shape. Due to such a large and nonuniform particle size, when the polymerization process for producing polyalkylene carbonate resin is performed using the zinc catalyst dicarocarboxylate-based catalyst, the contact area between the reactants and the catalyst is not secured and polymerization is performed. There was a drawback that the activity was not fully expressed
이러한 단점으로 인해, 촉매 제조 과정 증의 촉매 입자 응집을 억제할 수 있고, 보다 향상된 활성 등을 나타내는 촉매의 제공을 가능케 하는 촉매 관련 기술의 개발이 계속적으로 요구되고 있다.  Due to these drawbacks, there is a continuous demand for the development of a catalyst-related technology that can suppress catalyst particle aggregation of the catalyst production process and to provide a catalyst exhibiting improved activity and the like.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 제조 과정 중에 촉매 입자 간 응집이 억제되어, 보다 균일하고도 미세한 입경을 가지며, 이에 따라 폴리알킬렌 카보네이트 수지의 제조를 위한 중합 과정에서 보다 향상된 활성을 나타내는 유기 아연 촉매와, 이의 제조 방법을 제공하는 것이다. The present invention is suppressed and the aggregation between the particles during manufacture, more uniform and also the fine particle size to have, thereby producing a polyalkyl with an organic zinc catalyst showing an improved activity in the polymerization process for the production of alkylene carbonate resin, thereof in accordance with i To provide a way.
본 발명은 또한, 상기 유기 아연 촉매를 사용한 폴리알킬렌 카보네이트 수지의 제조 방법을 제공하는 것이다.  This invention also provides the manufacturing method of the polyalkylene carbonate resin using the said organic zinc catalyst.
【과제의 해결 수단】  [Measures of problem]
. 본 발명은 이산화탄소와, 에폭사이드로부터 폴리알킬렌 카보네이트 수지를 제조하는 반응에 사용되는 아연 디카르복실레이트계 유기 아연 촉매로서,  . The present invention is a zinc dicarboxylate organic zinc catalyst used in the reaction for producing a polyalkylene carbonate resin from carbon dioxide and epoxide,
상기 아연 디카르복실레이트계 유기 아연 촉매의 적어도 일측의 말단에, 탄소수 3 내지 15의 지방족 탄화수소기 (단, 지방족 탄화수소기에는, 하나 이상의 산소 또는 카보닐기가 포함되거나 포함되지 않을 수 있다.)를 갖는 모노카르복실산 유래 잔기가 결합되어 있는 유기 아연 촉매를 제공한다.  At least one end of the zinc dicarboxylate-based organic zinc catalyst, an aliphatic hydrocarbon group having 3 to 15 carbon atoms (however, the aliphatic hydrocarbon group may or may not include one or more oxygen or carbonyl groups). Provided is an organic zinc catalyst having a monocarboxylic acid-derived residue bonded thereto.
본 발명은 또한, 아연 전구체와, '디카르복실산과, 탄소수 3 내지 15의 지방족 탄화수소기 (단, 지방족 탄화수소기에는, 하나 이상의 산소 또는 카보닐기가 포함되거나 포함되지 않을 수 있다.)를 갖는 모노카르복실산을 반응시키는 단계를 포함하는 상기 유기 아연 촉매의 제조 방법을 제공한다. The present invention also provides a zinc precursor, a "dicarboxylic acid, monomethyl having an aliphatic hydrocarbon group having a carbon number of 3 to 15 (however, may not be included groups aliphatic hydrocarbons, include a one or more oxygen or carbonyl or.) It provides a method for producing the organic zinc catalyst comprising the step of reacting a carboxylic acid.
또한, 본 발명은 상기 유기 아연 촉매의 존재 하에, 에폭사이드 및 이산화탄소를 포함한 단량체를 중합시키는 단계를 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법을 제공한다. 이하, 발명의 구현예에 따른 유기 아연 촉매, 이의 제조 방법 및 이를 사용한 폴리알킬렌 카보네이트 수지의 제조 방법 등에 대해 상세히 설명하기로 한다. In addition, the present invention, in the presence of the organic zinc catalyst, epoxide and It provides a method for producing a polyalkylene carbonate resin comprising the step of polymerizing a monomer including carbon dioxide. Hereinafter, an organic zinc catalyst according to an embodiment of the present invention, a method for preparing the same, and a method for preparing a polyalkylene carbonate resin using the same will be described in detail.
발명의 일 구현예에 따르면, 이산화탄소와, 에폭사이드로부터 폴리알킬렌 카보네이트 수지를 제조하는 반웅에 사용되는 아연 디카르복실레이트계 유기 아연 촉매로서, 상기 아연 디카르복실레이트계 유기 아연 촉매의 적어도 일측의 말단에, 탄소수 3 내지 15의 지방족 탄화수소기 (단, 지방족 탄화수소기에는, 하나 이상의 산소 또는 카보닐기가 포함되거나 포함되지 않을 수 있다.)를 갖는 모노카르복실산 유래 잔기가 결합되어 있는 유기 아연 촉매가 제공된다.  According to one embodiment of the invention, the zinc dicarboxylate-based organic zinc catalyst used in the reaction for producing a polyalkylene carbonate resin from carbon dioxide and epoxide, at least one side of the zinc dicarboxylate-based zinc catalyst An organic zinc having a moiety derived from a monocarboxylic acid having an aliphatic hydrocarbon group having 3 to 15 carbon atoms (wherein the aliphatic hydrocarbon group may or may not include one or more oxygen or carbonyl groups) at the terminal of A catalyst is provided.
상기 일 구현예의 유기 아연 촉매는 기존에 알려진 아연 디카르복실레이트계 유기 아연 촉매의 구조에서, 이의 적어도 일측 말단에 탄소수 3 내지 15의 지방족 탄화수소기를 갖는 모노카르복실산 유래 잔기 (예를 들어, "(탄소수 3 내지 15의 지방족 탄화수소 )-(C=0)-O-"의 구조를 갖는 잔기)가 결합되어 이러한 잔기로 말단 캡핑된 구조를 갖는 것이다.  The organic zinc catalyst of the embodiment is a monocarboxylic acid-derived moiety having an aliphatic hydrocarbon group having 3 to 15 carbon atoms at at least one end thereof in the structure of a known zinc dicarboxylate-based organic zinc catalyst. (Residue having a structure of aliphatic hydrocarbon having 3 to 15 carbon atoms)-(C = 0) -O- ″) is bonded to have a structure end-capped with these residues.
이러한 말단 캡핑 구조, 특히, 비교적 긴 사슬 길이를 갖는 지방족 탄화수소기 함유 구조로 말단 캡핑된 구조적 특성에 따라, 상대적으로 소수성을 띠는 말단 캡핑 구조들이 서로 촉매 입자 간의 응집을 억제할 수 있다. 따라서, 상기 유기 아연 촉매는 그 제조 과정 중에 촉매 입자 간 웅집이 억제되어, 보다 균일하고도 미세한 입자 크기를 나타낼 수 있다.  According to the structural properties end capped with such end capping structures, particularly aliphatic hydrocarbon group-containing structures having relatively long chain lengths, relatively hydrophobic end capping structures can suppress aggregation between catalyst particles from each other. Therefore, the organozinc catalyst is suppressed between the catalyst particles during the manufacturing process, it can exhibit a more uniform and fine particle size.
그 결과, 이러한 일 구현예의 유기 아연 촉매를 사용하여 이산화탄소 및 에폭사이드의 공중합을 진행하고 폴리알킬렌 카보네이트 수지를 제조하는 경우, 공중합을 위한 반응물과, 유기 아연 촉매 입자 간의 접촉 면적이 보다 증가하고 공중합 활성이 크게 향상될 수 있음이 확인되었다.  As a result, when the copolymerization of carbon dioxide and epoxide is carried out using the organic zinc catalyst of this embodiment and a polyalkylene carbonate resin is produced, the contact area between the reactant for copolymerization and the organic zinc catalyst particles is increased and the copolymerization is performed. It was confirmed that the activity can be greatly improved.
따라서, 상기 일 구현예의 유기 아연 촉매는 제조 과정 중에 촉매 입자 간 응집아 억제되어 보다 균일하고도 미세한 입경을 가지며, 폴리알킬렌 카보네이트 수지의 제조를 위한 중합 과정에서 보다 향상된 활성을 나타내어, 이러한 중합 과정에서 매우 바람직하게 사용될 수 있다. 이러한 유기 아연 촉매는 기본적으로 이전에 알려진 아연 디카르복실레이트계 촉매와 동등한 사슬 구조를 포함할 수 있다. 즉, 상기 유기 아연 촉매는 아연과, 디카르복실레이트, 예를 들어, 탄소수 3 내지 20의 지방족 디카르복실레이트 또는 탄소수 8 내지 40의 방향족 디카르복실레이트가 결합된 구조를 가질 수 있고, 다만, 그 말단에 상기 모노카르복실산 유래 잔기가 결합될 수 있다. 예를 들어, 상기 유기 아연 촉매는 하기 일반식 1의 화학 구조를 가질 수 있다: Accordingly, the organic zinc catalyst of the embodiment has a more uniform and fine particle diameter by suppressing aggregation between catalyst particles during the manufacturing process, and shows an improved activity in the polymerization process for producing polyalkylene carbonate resin, such a polymerization process Very preferably. Such organic zinc catalysts may basically comprise a chain structure equivalent to previously known zinc dicarboxylate-based catalysts. That is, the organic zinc catalyst may have a structure in which zinc, a dicarboxylate, for example, an aliphatic dicarboxylate having 3 to 20 carbon atoms or an aromatic dicarboxylate having 8 to 40 carbon atoms is bonded. , The monocarboxylic acid-derived residue may be bonded to the terminal. For example, the organic zinc catalyst may have a chemical structure of Formula 1:
[일반 1]  [General 1]
Figure imgf000006_0001
Figure imgf000006_0001
일반식 1에서, R1 및 R3는 각각 독립적으로 모노카르복실산에서 유래한 탄소수 3 내지 15의 지방족 탄화수소기 (단, 지방족 탄화수소기에는, 하나 이상의 산소 또는 카보닐기가 포함되거나 포함되지 않을 수 있다.)를 나타내며, R2는 디카르복실산 또는 디카르복실레이트에서 유래한 탄소수 1 내지 20의 지방족 탄화수소기 또는 탄소수 6 내지 40의 방향족 탄화수소기를 나타낼 수 있다.  In Formula 1, R1 and R3 are each independently an aliphatic hydrocarbon group having 3 to 15 carbon atoms derived from a monocarboxylic acid (however, the aliphatic hydrocarbon group may or may not include one or more oxygen or carbonyl groups). ), And R2 may represent an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 40 carbon atoms derived from dicarboxylic acid or dicarboxylate.
이러한 일 구현예의 유기 아연 촉매의 구조에서, 상기 디카르복실레이트는 글루타레이트, 말로네이트, 숙시네이트, 또는 아디페이트 등 탄소수 3 내지 20의 지방족 디카르복실레이트나, 테레프탈레이트, 이소프탈레이트, 호모프탈레이트 또는 페닐글루타레이트 등 탄소수 8 내지 40의 방향족 디카르복실레이트의 어떠한 것으로도 될 수 있다. 다만, 상기 유기 아연 촉매의 활성 등의 측면에서 상기 디카르복실레이트가 글루타레이트로 되어. 상기 아연 디카르복실레이트계 유기 아연 촉매는 아연 글루타레이트계 촉매로 됨이 적절하다. 이러한 디카르복실레이트는 이에 대응하는 디카르복실산, 예를 들어, 글루타르산, 말론산, 숙신산 또는 아디프산 등의 탄소수 3 내지 20의 지방족 디카르복실산이나, 테레프탈산, 이소프탈산, 호모프탈산 또는 페닐 글루타르산 등의 탄소수 8 내지 40의 방향족 디카르복실산에서 유래하여, 이들 디카르복실산와 아연의 반응에 의해 형성될 수 있다. 또한, 상기 유기 아연 촉매의 적어도 일 측 말단에 결합 및 캡핑되는 잔기는, 하나 이상의 산소 또는 카보닐기가 포함되거나 포함되지 않는 탄소수 3 내지 15, 혹은 탄소수 4 내지 15, 흑은 탄소수 6 내지 15의 지방족 탄화수소기를 갖는 모노카르복실산에서 유래할 수 있는데, 이러한 모노카르복실산의 대표적인 예로는, 발레릭산; 라우릭산; 3,5-디옥소핵사노익산; 3,5,7-트리옥소-도데카노익산; 아세토아세트산 (Acetoacetic acid) 또는 루불리닉산 (Levulinic acid) 등의 케토 산 (keto acids); 흑은 4-옥소 -4H-1-벤조피란 -2-카르복실산 (4-oxo-4H-1 -benzopyran-2- carboxyᅵic acid) 또는 5-히드록시 -4-옥소 -4H-피란 -2-카르복실산 (5-Hydroxy-4-oxo- 4H-pyran-2-carboxylic acid) 등의 옥소 카르복실산 (oxo carboxylic acids)을 들 수 있으며, 이들 증에 선택된 2종 이상의 흔합물을 사용할 수도 있음은 물론이다. 이러한 모노카르복실산 유래 잔기가 상기 유기 아연 촉매의 말단에 캡핑됨에 따라, 촉매 제조 과정에서 촉매 입자 간의 웅집이 보다 효과적으로 억제되어, 균일하고도 미세한 입경과 함께 보다 향상된 활성을 나타내는 유기 아연 촉매가 적절히 제조 및 제공될 수 있다. 다만, 이외에도 다양한 모노카르복실산과의 반응을 통해 모노카르복실산 유래 잔기로 상기 유기 아연 촉매를 말단 캡핑시킬 수 있음은 자명하다. In the structure of the organic zinc catalyst of one embodiment, the dicarboxylate is an aliphatic dicarboxylate having 3 to 20 carbon atoms, such as glutarate, malonate, succinate, or adipate, terephthalate, isophthalate, homo It may be any of aromatic dicarboxylates having 8 to 40 carbon atoms, such as phthalate or phenylglutarate. However, the dicarboxylate is glutarate in view of the activity of the organic zinc catalyst. The zinc dicarboxylate-based organic zinc catalyst is preferably a zinc glutarate-based catalyst. Such dicarboxylates are aliphatic dicarboxylic acids having 3 to 20 carbon atoms, such as dicarboxylic acids such as glutaric acid, malonic acid, succinic acid or adipic acid, and terephthalic acid, isophthalic acid and homo. It is derived from aromatic dicarboxylic acids having 8 to 40 carbon atoms such as phthalic acid or phenyl glutaric acid, and can be formed by reaction of these dicarboxylic acids with zinc. In addition, the moiety bonded and capped to at least one end of the organic zinc catalyst may include 3 to 15 carbon atoms, or 4 to 15 carbon atoms, or an aliphatic carbon of 6 to 15 carbon atoms, with or without one or more oxygen or carbonyl groups. It may be derived from a monocarboxylic acid having a hydrocarbon group, representative examples of such a monocarboxylic acid, valeric acid; Lauric acid; 3,5-dioxonucleosanic acid; 3,5,7-trioxo-dodecanoic acid; Keto acids such as acetoacetic acid or levulinic acid; Black is 4-oxo-4H-1-benzopyran-2-carboxylic acid (4-oxo-4H-1 -benzopyran-2-carboxycarboxylic acid) or 5-hydroxy-4-oxo-4H-pyran- Oxo carboxylic acids such as 2-carboxylic acid (5-Hydroxy-4-oxo-4H-pyran-2-carboxylic acid), and two or more kinds of mixtures selected for these cases may be used. Of course you can. As the monocarboxylic acid-derived residue is capped at the end of the organic zinc catalyst, the pores between the catalyst particles are more effectively suppressed during the catalyst preparation process, and an organic zinc catalyst showing improved activity with a uniform and fine particle size is appropriately Can be made and provided. However, it is apparent that the organic zinc catalyst may be end capped with a monocarboxylic acid-derived residue through reaction with various monocarboxylic acids.
만일, 탄소수 3 미만의 지방족 탄화수소기를 갖는 모노카르복실산 (예를 들어, 프로피온산 등)으로 말단 캡핑된 유기 아연 촉매를 사용하는 경우, 상기 지방족 탄화수소기가 층분한 소수성을 나타내기 어렵고 촉매 입자 간의 응집을 억제하기 어려을 수 있다. 이 때문에, 미세하고도 균일한 입경을 갖는 유기 아연 촉매를 얻기 어려워질 수 있고, 상기 유기 아연 촉매의 중합 활성이 충분치 못하게 될 수 있다.  If an organic zinc catalyst end-capped with a monocarboxylic acid having an aliphatic hydrocarbon group having less than 3 carbon atoms (for example, propionic acid, etc.) is used, it is difficult for the aliphatic hydrocarbon group to exhibit stratified hydrophobicity and coagulation between catalyst particles. It can be difficult to suppress. For this reason, it may become difficult to obtain an organic zinc catalyst having a fine and uniform particle diameter, and the polymerization activity of the organic zinc catalyst may become insufficient.
또한, 싱-기 일 구현예의 유기 아연 촉매에서, 촉매 제조 과정 중의 응집을 보다 효과적으로 억제하기 위해, 상기 모노카르복실산 유래 잔기는 아연 디카르복실레이트계 유기 아연 촉매의 양 말단에 캡핑됨이 보다 적절하며, 이를 고려하여 상기 모노카르복실산 유래 잔기는 상기 유기 아연 촉매에 결합된 디카르복실레이트 유래 잔기의 1몰을 기준으로, 약 0.1 내지 0.5몰, 혹은 약 0.2 내지 0.5몰, 흑은 약 0.2 내지 0.4몰의 비율로 결합되어 있음이 적절하다.  In addition, in the organic zinc catalyst of the single-group embodiment, the monocarboxylic acid-derived residues are more capped at both ends of the zinc dicarboxylate-based organic zinc catalyst in order to more effectively suppress aggregation during the catalyst preparation process. As appropriate, the monocarboxylic acid-derived moiety is about 0.1 to 0.5 moles, or about 0.2 to 0.5 moles, and black is about 1 mole of the dicarboxylate-derived moiety bound to the organic zinc catalyst. It is appropriate that they are bonded in a ratio of 0.2 to 0.4 mol.
그리고, 상술한 일 구현예의 유기 아연 촉매는 그 제조 과정 중에 촉매 입자 간의 응집이 억제됨에 따라, 약 0.2 내지 0.9/ffli, 혹은 약 0.3 내지 0.8 ΛΠ, 혹은 약 0.5 내지 0.7 의 평균 입경 및 약 0.05 내지 0.3μιη, 혹은 약 0.05 내지 Q.2 , 혹은 약 0.05 내지 0.1 ΛΠ의 입경의 표준 편차를 갖는 균일한 입자 형태로 될 수 있다. 이로서, 상기 유기 아연 촉매가 이산화탄소 및 에폭사이드의 공중합에 의한 폴리알킬렌 카보네이트 수지 제조시의 촉매로 사용되면, 촉매 입자와 반응물과의 접촉 면적이 보다 증가하여 향상된 활성이 나타날 수 있다. 한편, 발명의 다른 구현예에 따르면, 상술한 일 구현예의 유기 아연 촉매의 제조 방법이 제공된다. 이러한 제조 방법은, 예를 들어, 아연 전구체와, 디카르복실산과, 탄소수 3 내지 15의 지방족 탄화수소기 (단, 지방족 탄화수소기에는, 하나 이상의 산소 또는 카보닐기가 포함되거나 포함되지 않을 수 있다.)를 갖는 모노카르복실산을 반응시키는 단계를 포함할 수 있다. In addition, the organic zinc catalyst of the above-described embodiment is about 0.2 to 0.9 / ffli, or about 0.3 to 0.8 ΛΠ, as the aggregation between the catalyst particles is suppressed during the manufacturing process Or in the form of uniform particles having an average particle diameter of about 0.5 to 0.7 and a standard deviation of about 0.05 to 0.3 μιη, or about 0.05 to Q.2, or about 0.05 to 0.1 Λπ. As such, when the organic zinc catalyst is used as a catalyst in the production of polyalkylene carbonate resin by copolymerization of carbon dioxide and epoxide, the contact area between the catalyst particles and the reactant may be increased, thereby improving activity. On the other hand, according to another embodiment of the invention, there is provided a method for producing the organic zinc catalyst of the above-described embodiment. Such a production method may include, for example, a zinc precursor, a dicarboxylic acid, and an aliphatic hydrocarbon group having 3 to 15 carbon atoms (however, the aliphatic hydrocarbon group may or may not include one or more oxygen or carbonyl groups). Reacting a monocarboxylic acid having a may be included.
보다 구체적으로, 이러한 제조 방법에서 상기 반응 단계는 아연 전구체와, 디카르복실산을 반응시키는 단계와, 상기 모노카르복실산을 더 가하여 반응시키는 단계를 포함할 수 있다.  More specifically, in the production method, the reaction step may include reacting the zinc precursor, the dicarboxylic acid, and further adding the monocarboxylic acid to react.
이러한 제조 방법에 따르면, 아연 전구체와 디카르복실산을 반웅시켜 아연 디카르복실레이트계 촉매를 제조한 후, 모노카르복실산을 가하여 각 촉매를 말단 캡핑시키면서 추가적인 촉매 입자간의 응집을 억제하여 최종적으로 일 구현예의 유기 아연 촉매를 제조할 수 있다. 이로서 , 보다 균일하고도 미세한 입경과, 향상된 활성을 나타내는 일 구현예의 유기 아연 촉매가 제조될 수 있다.  According to this production method, after reacting the zinc precursor and the dicarboxylic acid to prepare a zinc dicarboxylate catalyst, monocarboxylic acid is added to suppress the aggregation between the additional catalyst particles while end capping each catalyst. In one embodiment, an organic zinc catalyst may be prepared. As such, an organic zinc catalyst of one embodiment, which exhibits a more uniform and finer particle size and improved activity, can be prepared.
이러한 제조 과정에서, 상기 아연 전구체로는 산화아연 또는 수산화아연이나, 아세트산 아연 (Zn(02CCH3)2), 질산 아연 (Zn(N03)2) 또는 황산 아연 (ZnS04) 등의 아연 염을 사용할 수 있으며, 이외에도 이전부터 아연 디카르복실레이트계 촉매의 제조에 사용되던 임의의 아연 전구체를 별다른 제한 없이 모두 '사용할 수 있다. 또한, 상기 디카르복실산 및 모노카르복실산의 예에 관해서는, 이미 상술한 바 있으므로 이에 관한 추가적인 설명은 생략하기로 한다. 그리고, 상기 촉매의 제조 방법에서, 상기 디카르복실산의 반응 단계는 약In this manufacturing process, the zinc precursor may be zinc oxide or zinc hydroxide, or zinc such as zinc acetate (Zn (0 2 CCH 3 ) 2 ), zinc nitrate (Zn (N0 3 ) 2 ) or zinc sulfate (ZnS0 4 ). Salts may be used, and any zinc precursors previously used in the preparation of zinc dicarboxylate catalysts may be 'used' without any limitation. In addition, since examples of the dicarboxylic acid and the monocarboxylic acid have already been described above, further description thereof will be omitted. And in the method for producing the catalyst, the reaction step of the dicarboxylic acid is about
40 내지 90 °C의 은도에서 약 0.5 내지 10 시간 동안 진행될 수 있으며, 상기 모노카르복실산의 반웅 단계는 약 80 내지 150 °C의 온도에서 약 1 내지 20 시간 동안 진행될 수 있다. 이로서, 아연 디카르복실레이트계 촉매의 적절한 생성을 담보하면서, 촉매 제조 과정 중의 촉매 입자 간 응집이 효과적으로 억제되어, 보다 균일하고도 미세한 입경 및 우수한 활성을 나타내는 촉매가 적절히 제조될 수 있다. The reaction may be performed for about 0.5 to 10 hours at a silver degree of 40 to 90 ° C., and the reaction of the monocarboxylic acid may be performed for about 1 to 20 hours at a temperature of about 80 to 150 ° C. As a result, agglomeration between the catalyst particles during the catalyst preparation process can be effectively suppressed while ensuring the proper production of the zinc dicarboxylate-based catalyst, so that a catalyst having a more uniform and finer particle size and excellent activity can be produced properly. Can be.
또한, 상기 촉매 제조 과정에서, 상기 모노카르복실산은 상기 디카르복실산의 1몰에 대해 약 0.1 내지 0.5몰의 비율로 사용될 수 있으며, 상기 디카르복실산은 상기 아연 전구체의 1몰에 대해 약 1.0 내지 1 .5 몰의 비율로 사용될 수 있다. 이로서, 우수한 활성을 갖는 아연 디카르복실레이트계 촉매의 적절한 생성을 담보하면서, 촉매 제조 과정 중의 촉매 입자 간 응집이 더욱 효과적으로 억제되어, 보다 균일하고도 미세한 입경 및 우수한 활성을 나타내는 촉매가 적절히 제조될 수 있다.  In addition, in the preparation of the catalyst, the monocarboxylic acid may be used in a ratio of about 0.1 to 0.5 moles per 1 mole of the dicarboxylic acid, the dicarboxylic acid is about 1.0 to 1 mole of the zinc precursor To 1.5 mol. As a result, agglomeration between the catalyst particles during the catalyst preparation process is more effectively suppressed while ensuring proper production of the zinc dicarboxylate-based catalyst having excellent activity, so that a catalyst having a more uniform and finer particle size and excellent activity can be produced properly. Can be.
한편, 발명의 또 다른 구현예에 따르면, 상술한 유기 아연 촉매의 존재 하에, 에폭사이드 및 이산화탄 ί를 포함한 단량체를 중합시키는 단계를 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법이 제공된다.  On the other hand, according to another embodiment of the present invention, there is provided a method for producing a polyalkylene carbonate resin comprising the step of polymerizing a monomer comprising epoxide and carbon dioxide ί in the presence of the above-described organic zinc catalyst.
이러한 촉매의 제조 방법에서, 상기 유기 아연 촉매는 불균일 촉매의 형태로서 사용될 수 있고, 상기 중합 단계는 유기 용매 내에서 용액 중합으로 진행될 수 있다. 이로서, 반응열이 적절히 제어될 수 있으며, 얻고자 하는 폴리알킬렌 카보네이트 수지의 분자량 또는 점도 제어가 용이해 질 수 있다.  In the preparation method of such a catalyst, the organic zinc catalyst may be used in the form of a heterogeneous catalyst, and the polymerization step may proceed to solution polymerization in an organic solvent. As a result, the heat of reaction can be appropriately controlled, and the molecular weight or viscosity of the polyalkylene carbonate resin to be obtained can be easily controlled.
이러한 용액 중합에서, 용매로는 메틸렌 클로라이드, 에틸렌 디클로라이드, 트리클로로 에탄, 테트라클로로에탄, 클로로포름, 아세토나이트릴 프로피오나이트릴, 디메틸포름아마이드, Ν-메틸 -2-피를리돈ᅳ 디메틸 설폭사이드, 니트로메탄, 1,4-다이옥산, 핵산, 를루엔, 테트라하이드로퓨란, 메틸에틸케톤, 메틸아민케톤, 메틸 아이소부틸 케톤, 아세톤, 사이클로핵.사논, 트리클로로 에틸렌, 메틸 아세테이트, 바이닐 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 부틸로락톤, 카프로락톤, 니트로프로판, 벤젠, 스티렌, 자일렌 및 메틸프로파졸 (methyl propasol)로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다. 이중에서도, 메틸렌 클로라이드 또는 에틸렌 디클로라이드를 용매로서 사용함에 따라, 중합 반응의 진행을 보다 효과적으로 할 수 있다. In this solution polymerization, solvents include methylene chloride, ethylene dichloride, trichloroethane, tetrachloroethane, chloroform, acetonitrile propionitrile, dimethylformamide, Ν-methyl-2-pyridoneone dimethyl sulfoxide, Nitromethane, 1,4-dioxane, nucleic acid, toluene, tetrahydrofuran, methyl ethyl ketone, methyl amine ketone, methyl isobutyl ketone, acetone, cyclonuclear xanone, trichloroethylene, methyl acetate, vinyl acetate, ethyl acetate It may be used propyl acetate, butyl lactone, caprolactone, nitropropane, at least one selected from benzene, styrene, xylene, and the group consisting of methyl Pro pajol (me thyl propasol). Of these, by using methylene chloride or ethylene dichloride as a solvent, the progress of the polymerization reaction can be made more effective.
상기 용매는 에폭사이드 대비 약 1 : 0.5 내지 1 : 100의 중량비로 사용할 수 있고, 적절하게는 약 1 : 1 내지 1 : 10의 중량비로 사용할 수 있다. 이때, 그 비율이 약 1 : 0.5 미만으로 너무 적으면 용매가 반웅 매질로서 제대로 작용하지 못하여 상술한 용액 중합의 장점을 살리기 어려을 수 있다. 또한, 그 비율이 약 1 : 100을 초과하면 상대적으로 에폭사이드 등의 농도가 낮아져 생산성이 저하될 수 있고, 최종 형성된 수지의 분자량이 낮아지거나 부반응이 늘어날 수 있다. The solvent may be used in a weight ratio of about 1: 0.5 to 1: 100 relative to the epoxide, and may be suitably used in a weight ratio of about 1: 1 to 1:10. At this time, if the ratio is too small, less than about 1: 0.5, the solvent may not function properly as a reaction medium and it may be difficult to take advantage of the above-described solution polymerization. In addition, when the ratio exceeds about 1: 100, the concentration of epoxide and the like may be relatively lowered, which may lower productivity, and may lower the molecular weight of the finally formed resin or increase side reactions.
또한, 상기 .유기 아연 촉매는 에폭사이드 대비 약 1 : 50 내지 1 : 1000의 몰비로 투입될 수 있다. 보다 바람직하게, 상기 유기 아연 촉매는 에폭사이드 대비 약 1 : 70 내지 1 : 600, 혹은 약 1 : 80 내지 1 : 300의 몰비로 투입될 수 있다. 그 비율이 지나치게 작으면 용액 중합시 층분한 촉매활성을 나타내기 어렵고, 반대로 지나치게 커지면 과다한 양의 촉매 사용으로 효율적이지 않고 부산물이 생기거나, 촉매 존재 하에 가열로 인한 수지의 백 바이팅 (back-biting)이 일어날 수 있다.  In addition, the .organic zinc catalyst may be added in a molar ratio of about 1:50 to 1: 1000 relative to the epoxide. More preferably, the organic zinc catalyst may be added in a molar ratio of about 1:70 to 1: 600, or about 1:80 to 1: 300 relative to the epoxide. If the ratio is too small, it is difficult to show a catalytic catalytic activity during solution polymerization. On the contrary, if the ratio is too large, an excessive amount of catalyst is used to produce inefficient and by-products, or back-biting of the resin due to heating in the presence of a catalyst. ) May occur.
한편, 상기 에폭사이드로는, 할로겐 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치환된 탄소수 2 내지 20의 알킬렌 옥사이드; 할로겐 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치환된 탄소수 4 내지 20의 사이클로 알킬렌옥사이드; 및 할로겐 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치된 탄소수 8 내지 20의 스타이렌 옥사이드;로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 대표적으로, 상기 에폭사이드로는 할로겐 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치환된 탄소수 2 내지 20의 알킬렌 옥사이드를 사용할 수 있다.  On the other hand, examples of the epoxide include an alkylene oxide having 2 to 20 carbon atoms unsubstituted or substituted with halogen or an alkyl group having 1 to 5 carbon atoms; Cycloalkylene oxide having 4 to 20 carbon atoms unsubstituted or substituted with halogen or alkyl group having 1 to 5 carbon atoms; And a styrene oxide having 8 to 20 carbon atoms substituted or unsubstituted with halogen or an alkyl group having 1 to 5 carbon atoms. Representatively, the epoxide may be an alkylene oxide having 2 to 20 carbon atoms unsubstituted or substituted with halogen or an alkyl group having 1 to 5 carbon atoms.
이러한 에폭사이드의 구체적인 예로는 에틸렌 옥사이드, 프로필렌 옥사이드, 부텐 옥사이드, 펜텐 옥사이드, 핵센 옥사이드, 옥텐 옥사이드, 데센 옥사이드, 도데센 옥사아드, 테트라데센 옥사이드, 핵사데센 옥사이드, 옥타데센 옥사이드, 부타디엔 모노옥사이드, 1 ,2-에폭시 -7-옥텐, 에피플루오로하이드린, 에피클로로하이드린, 에피브로모하이드린, 아이소프로필 글리시딜 에테르, 부틸 글리시딜 에테르, t-부틸 글리시딜 에테르, 2-에틸핵실 글리시딜 에테르, 알릴 글리시딜 에테르, 사이클로펜텐 옥사이드, 사이클로핵센 옥사이드, 사이클로옥텐 옥사이드, ,사이클로도데센 옥사이드, 알파-파이넨 옥사이드, 2,3-에폭시노보넨, 리모넨 옥사이드, 디엘드린, 2, 3-에폭시프로필벤젠, 스타이렌 옥사이드, 페닐프로필렌 옥사이드, 스틸벤 옥사이드, 클로로스틸벤 옥사이드, 디클로로스틸벤 옥사이드, 1 ,2-에폭시 -3-페녹시프로판, 벤질옥시메틸 옥시란, 글리시딜-메틸페닐 에테르, 클로로페닐 -2,3-에폭시프로필 에테르, 에폭시프로필 메특시페닐 에테르, 바이페닐 글리시딜 에테르, 글리시딜 나프틸 에테르 등이 있다. 가장 대표적으로, 상기 에폭사이드로는 에틸렌 옥사이드를 사용한다. Specific examples of such epoxides include ethylene oxide, propylene oxide, butene oxide, pentene oxide, nuxene oxide, octene oxide, decene oxide, dodecene oxad, tetradecene oxide, nuxadecene oxide, octadecene oxide, butadiene monooxide, 1 , 2-epoxy-7-octene, epifluorohydrin, epichlorohydrin, epibromohydrin, isopropyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, 2-ethyl Nucleosil glycidyl ether, allyl glycidyl ether, cyclopentene oxide, cyclonuxene oxide, cyclooctene oxide, cyclododecene oxide, alpha-pinene oxide, 2,3-epoxynorbornene, limonene oxide, dieldrin, 2, 3-epoxypropylbenzene, styrene oxide, phenylpropylene oxide, Ben-oxide, stilbene oxide, chloro, dichloro-stilbene oxide and 1,2-epoxy-3-phenoxy propane, benzyloxymethyl-oxirane, a glycidyl-ether, phenyl, chlorophenyl-2,3-epoxypropyl ether, Epoxypropyl mesoxyphenyl ether, biphenyl glycidyl ether, glycidyl naphthyl ether, and the like. Most typically, ethylene oxide is used as the epoxide.
부가하여, 상술한 용액 중합은 약 50 내지 100 °C 및 약 15 내지 50 bar에서, 약 1 내지 60 시간 동안 수행할 수 있다. 또한, 상기 용액 중합은 약In addition, the solution polymerization described above may be performed at about 50 to 100 ° C. and about 15 to 50 bar for about 1 to 60 hours. In addition, the solution polymerization is about
70 내지 9C C 및 약 20 내지 40 bar에서, 약 3 내지 40시간 동안 수행하는 것이 보다 적절하다. At 70 to 9 C C and about 20 to 40 bar, it is more appropriate to carry out for about 3 to 40 hours.
한편, 상술한 사항을 제외한 나머지 중합 공정 및 조건은 폴리알킬렌 카보네이트 수지의 제조를 위한 통상적인 중합 조건 등에 따를 수 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.  Meanwhile, except for the above-described matters, the polymerization process and conditions may be followed by conventional polymerization conditions for preparing the polyalkylene carbonate resin, and thus, further description thereof will be omitted.
[발명의 효과]  [Effects of the Invention]
본 발명에 따르면, 촉매 제조 과정 중에 촉매 입자 간의 응집이 효과적으로 억제되어, 보다 미세하면서도 균일한 입자 크기를 가지며, 뛰어난 활성을 나타내는 폴리알킬렌 카보네이트 수지의 제조를 위한 유기 아연 촉매 및 이의 제조 방법이 제공될 수 있다.  According to the present invention, there is provided an organic zinc catalyst for producing a polyalkylene carbonate resin having a finer and more uniform particle size and exhibiting excellent activity because the aggregation between the catalyst particles is effectively suppressed during the catalyst preparation process, and a method for producing the same. Can be.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 및 2 는 각각 실시예 1 및 비교예 1 에서 제조된 유기 아연 촉매의 SEM 사진이다.  1 and 2 are SEM photographs of the organic zinc catalyst prepared in Example 1 and Comparative Example 1, respectively.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 발명을 예시하기 위한 것일 뿐, 발명을 이들만으로 한정하는 것은 아니다. 실시예 1 : 유기 아연 촉매의 제조  Hereinafter, preferred embodiments are presented to help understand the invention. However, the following examples are only to illustrate the invention, not limited to the invention only. Example 1 Preparation of Organic Zinc Catalyst
250mL 크기의 등근 바닥 플라스크에서, 100mL 를루엔에 6.6g(0.05mol)의 글루타르산 및 0.1 mL의 아세트산을 가하여 환류 하에 분산시켰다. 이어서 , 55 °C의 온도에서 30 분간 가열하고, 4.1 g(0.05mol)의 ΖπΟ를 50mL의 를루엔에 가하여 분산시키고, 이를 상기 글루타르산의 분산액에 가한 후 3 시간 동안 교반하였다. 이후, 0.02m이의 발레릭산을 피펫으로 서서히 첨가하고, 0 °C에서 4 시간 동안 가열하였다. 흰색 고체가 생성된 후, 이를 여과하고, 아세톤 /에탄올로 세척하고, 130 °C에서 진공 오븐으로 건조하였다. 이러한 방법으로 실시예 1의 유기 아연 촉매를 제조하여 그 화학 구조를 확인하였다. 또한, 이러한 유기 아연 촉매의 SEM 사진을 도 1에 도시하였다. 이러한 SEM 분석을 통해 확인한 결과, 실시예 1의 유기 아연 촉매는 약 0.52 ΛΠ의 평균 입경 및 약 0.27卿의 입경의 표준 편차를 갖는 것으로 확인되었다. 실시예 2: 유기 아연 촉매의 제조 In a 250 mL equilateral bottom flask, 100 mL was added to ruene and dispersed under reflux by addition of 6.6 g (0.05 mol) of glutaric acid and 0.1 mL of acetic acid. Subsequently, heating was performed at a temperature of 55 ° C. for 30 minutes, and 4.1 g (0.05 mol) of ππΟ was added to 50 mL of toluene and dispersed, which was added to the dispersion of glutaric acid, followed by stirring for 3 hours. Thereafter, 0.02 m of valeric acid was slowly added by pipette and heated at 0 ° C. for 4 hours. After a white solid is formed, it is filtered and acetone / ethanol Washed and dried in a vacuum oven at 130 ° C. In this way, the organic zinc catalyst of Example 1 was prepared and its chemical structure was confirmed. Moreover, the SEM photograph of this organic zinc catalyst is shown in FIG. As a result of the SEM analysis, it was confirmed that the organic zinc catalyst of Example 1 had a standard deviation of an average particle diameter of about 0.52 Λπ and a particle diameter of about 0.27 mm 3. Example 2: Preparation of Organic Zinc Catalyst
실시예 1에서 발레릭산 대신 라우릭산을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 2의 유기 아연 촉매를 제조하여 그 화학 구조를 확인하였다. 또한, 이러한 유기 아연 촉매를 SEM 분석을 통해 확인하였고, 그 결과 실시예 2의 유기 아연 촉매는 약 0.48 의 평균 입경 및 약 0.28 의 입경의 표준 편차를 갖는 것으로 확인되었다. 실시예 3: 유기 아연 촉매의 제조 An organic zinc catalyst of Example 2 was prepared in the same manner as in Example 1, except that lauric acid was used instead of valeric acid in Example 1, and the chemical structure thereof was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, the organic zinc catalyst of Example 2 was confirmed to have a standard deviation of an average particle diameter? Of about 0.48 and a particle diameter of about 0.28. Example 3: Preparation of Organic Zinc Catalyst
실시예 1에서 발레릭산 대신 아세토아세트산을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 3의 유기 아연 촉매를 제조하여 그 화학 구조를 확인하였다. 또한, 이러한 유기 아연 촉매를 SEM 분석을 통해 확인하였고, 그 결과 실시예 3의 유기 아연 촉매는 약 0.57 의 평균 입경 및 약 0.23 의 입경의 표준 편차를 갖는 것으로 확인되었다. 실시예 4: 유기 아연 촉매의 제조  An organic zinc catalyst of Example 3 was prepared in the same manner as in Example 1, except that acetoacetic acid was used instead of valeric acid in Example 1, and the chemical structure thereof was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, the organic zinc catalyst of Example 3 was found to have a standard deviation of an average particle diameter of about 0.57 and a particle diameter of about 0.23. Example 4: Preparation of Organic Zinc Catalyst
실시예 1에서 발레릭산 대신 5-히드록시 -4-옥소 -4H-피란 -2-카르복실산 을 사용한 것을 제외하고는, 실시예 1과 동일힌- 방법으로 실시예 4의 유기 아연 촉매를 제조하여 그 화학 구조를 확인하였다. 또한, 이러한 유기 아연 촉매를 SEM 분석을 통해 확인하였고, 그 결과 실시예 4의 유기 아연 촉매는 약 0.51卿의 평균 입경 및 약 0.28 의 입경의 표준 편차를 갖는 것으로 확인되었다. 비교예 1 : 유기 아연 촉매의 제조  The organic zinc catalyst of Example 4 was prepared in the same manner as in Example 1, except that 5-hydroxy-4-oxo-4H-pyran-2-carboxylic acid was used instead of valeric acid in Example 1. The chemical structure was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, the organic zinc catalyst of Example 4 was confirmed to have a standard deviation of an average particle diameter of about 0.51 mm 3 and a particle diameter of about 0.28 mm. Comparative Example 1: Preparation of Organic Zinc Catalyst
실시예 1에서 발레릭산을 사용하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 비교예 1의 유기 아연 촉매를 제조하여 그 화학 구조를 확인하였다. 또한, 이러한 유기 아연 촉매의 SEM 사진을 도 2에 도시하였다. 비교예 2: 유기 아연 촉매의 제조 An organic zinc catalyst of Comparative Example 1 was prepared in the same manner as in Example 1, except that valeric acid was not used in Example 1, and the chemical structure thereof was obtained. Confirmed. In addition, the SEM photograph of such an organic zinc catalyst is shown in FIG. Comparative Example 2: Preparation of Organic Zinc Catalyst
실시예 1에서 발레릭산 대신 프로피온산 을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 비교예 2의 유기 아연 촉매를 제조하여 그 화학 구조를 확인하였다. 또한, 이러한 유기 아연 촉매를 SEM 분석을 통해 확인하였고 그 결과 비교에 2의 유기 아연 촉매는 약 0.73卿의 평균 입경 및 약 0.34 1의 입경의 표준 편차를 갖는 것으로 확인되었다. 도 1 및 2와, 상술한 각각의 실시예 및 비교예를 참고하면, 실시예 1 내지 An organic zinc catalyst of Comparative Example 2 was prepared in the same manner as in Example 1, except that propionic acid was used instead of valeric acid in Example 1, and the chemical structure thereof was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, the organic zinc catalyst of 2 was found to have a standard deviation of an average particle diameter of about 0.73 mm 3 and a particle diameter of about 0.34 1. 1 and 2, and the respective examples and comparative examples described above, Examples 1 to 2
4에서 탄소수 3 내지 15의 지방족 탄화수소기를 갖는 모노카르복실산을 사용해 제조된 유기 아연 촉매는 이러한 모노카르복실산을 사용하지 않거나 (비교예 1 ), 탄소수 3 미만의 탄화수소기가 결합된 모노카르복실산 (프로피온산)을 사용해 제조된 유기 아연 촉매 (비교예 2)에 비해 보다 균일하고도 미세한 입경을 갖는 것으로 확인되었다. 중합예: An organic zinc catalyst prepared using a monocarboxylic acid having an aliphatic hydrocarbon group having 3 to 15 carbon atoms at 4 does not use such a monocarboxylic acid (Comparative Example 1), or a monocarboxylic acid having a hydrocarbon group having less than 3 carbon atoms bonded thereto. It was confirmed to have a more uniform and finer particle diameter compared to the organic zinc catalyst prepared using (propionic acid) (Comparative Example 2). Polymerization Example:
실시예 1 내지 4, 비교예 1 및 2의 촉매를 사용해 다음의 방법으로 폴리에틸렌 카보네이트를 중합 및 제조하였다.  Polyethylene carbonate was polymerized and prepared in the following manner using the catalysts of Examples 1 to 4 and Comparative Examples 1 and 2.
먼저, Glove box 내에서, 고압 반응기 내에 0.4g의 촉매와 8.52g의 디클로로메탄 (methylene chloride)을 넣은 후, 8.9g의 산화에틸렌 (ethylene oxide)을 넣었다. 그 후 반응기내에 이산화탄소를 이용해 30bar로 가압하였다. 중합반응은 70oC에서 3시간 동안 진행되었다. 반응 종료 후 미반응의 이산화탄소와 산화에틸렌은 용매인 디클로로메탄과 함께 제거되었다. 제조된 폴리에틸렌 카보네이트의 양을 알기 위해 남아있는 고체를 완전 건조 후 정량하였다. 이러한 중합 결과에 따른 촉매의 활성 및 수율을 하기 표 1에 정리하여 나타내었다. [표 1 ] First, in a glove box, 0.4g of catalyst and 8.52g of dichloromethane (methylene chloride) were placed in a high pressure reactor, followed by 8.9g of ethylene oxide. Then pressurized to 30 bar with carbon dioxide in the reactor. The polymerization was carried out at 70 ° C. for 3 hours. After the reaction was completed, unreacted carbon dioxide and ethylene oxide were removed together with the solvent dichloromethane. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below. TABLE 1
Figure imgf000014_0001
상기 표 1 을 참고하면, 실시예 1 내지 4 의 촉매의 경우, 비교예 1 및 2 에 비해 우수한 활성을 나타내며, 우수한 수율로 폴리에틸렌 카보네이트의 제조를 가능케 함을 확인하였다.
Figure imgf000014_0001
Referring to Table 1, in the case of the catalysts of Examples 1 to 4, it showed that the activity is excellent compared to Comparative Examples 1 and 2, it is possible to manufacture the polyethylene carbonate in excellent yield.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
이산화탄소와, 에폭사이드로부터 폴리알킬렌 카보네이트 수지를 제조하는 반응에 사용되는 아연 디카르복실레이트계 유기 아연 촉매로서,  As a zinc dicarboxylate type organic zinc catalyst used for reaction which produces carbon dioxide and polyalkylene carbonate resin from an epoxide,
상기 아연 디카르복실레이트계 유기 아연 촉매의 적어도 일측의 말단에, 하나 이상의 산소 또는 카보닐기가 포함 또는 미포함된 탄소수 3 내지 15의 지방족 탄화수소기를 갖는 모노카르복실산 유래 잔기가 결합되어 있는 유기 아연 촉매.  An organic zinc catalyst having a monocarboxylic acid-derived residue having an aliphatic hydrocarbon group having 3 to 15 carbon atoms with or without one or more oxygen or carbonyl groups bound to at least one end of the zinc dicarboxylate-based organic zinc catalyst .
[청구항 2】 [Claim 2]
제 1 항에 있어서, 상기 아연 디카르복실레이트계 유기 아연 촉매는 아연과, 탄소수 3 내지 20의 지방족 디카르복실레이트 또는 탄소수 8 내지 40의 방향족 디카르복실레이트가 결합된 촉매인 유기 아연 촉매.  The organic zinc catalyst of claim 1, wherein the zinc dicarboxylate-based organic zinc catalyst is a catalyst in which zinc, an aliphatic dicarboxylate having 3 to 20 carbon atoms or an aromatic dicarboxylate having 8 to 40 carbon atoms is bonded.
【청구항 3】 [Claim 3]
거 1 1 항에 있어서, 상기 아연 디카르복실레이트계 유기 아연 촉매는 아연 글루타레이트계 촉매인 유기 아연 촉매. ^  The organic zinc catalyst according to claim 1, wherein the zinc dicarboxylate organic zinc catalyst is a zinc glutarate catalyst. ^
【청구항 4】 [Claim 4]
제 1 항에 있어서, 상기 모노카르복실산은 발레릭산, 라우릭산, 3,5- 디옥소핵사노익산 3,5, 7-트리옥소-도데카노익산, 아세토아세트산 (Acetoacetic acid), 루불리닉산 (Levulinic acid), 4-옥소 -4H-1-벤조피란 -2-카르복실산 (4-oxo-4H-1 - benzopyran-2-carboxylic acid) 및 5-히드록시 -4-옥소 -4H-피란 -2-카르복실산 (5- Hydroxy-4-oxo-4H-pyran-2-carboxylic acid)으로 이루어진 군에서 선택된 1종 이상을 포함하는 유기 아연 촉매.  According to claim 1, wherein the monocarboxylic acid is valeric acid, lauric acid, 3,5-dioxonucleoanoic acid 3,5, 7-trioxo-dodecanoic acid, acetoacetic acid (Acetoacetic acid), rubulic acid ( Levulinic acid), 4-oxo-4H-1-benzopyran-2-carboxylic acid (4-oxo-4H-1 -benzopyran-2-carboxylic acid) and 5-hydroxy-4-oxo-4H-pyran- An organic zinc catalyst comprising at least one member selected from the group consisting of 2-carboxylic acids (5-Hydroxy-4-oxo-4H-pyran-2-carboxylic acid).
【청구항 5】 ' [5.] "
제 1 항에 있어서, 상기 모노카르복실산 유래 잔기는 상기 유기 아연 촉매의 디카르복실레이트 유래 잔기의 1몰에 대해 0.1 내지 0.5몰의 비율로 결합되어 있는 유기 아연 촉매. The organic zinc catalyst according to claim 1, wherein the monocarboxylic acid-derived residue is bonded at a ratio of 0.1 to 0.5 moles with respect to 1 mole of the dicarboxylate-derived residue of the organic zinc catalyst.
【청구항 6】 [Claim 6]
제 1 항에 있어서, 0.2 내지 0.9卿의 평균 입경 및 0.05 내지 0.3μπ]의 입경의 표준 편차를 갖는 입자 형태의 유기 아연 촉매.  The organic zinc catalyst according to claim 1, having a standard deviation of the average particle diameter of 0.2 to 0.9 mm 3 and the particle diameter of 0.05 to 0.3 μπ].
【청구항 7】 [Claim 7]
아연 전구체와,  With zinc precursor,
디카르복실산과,  Dicarboxylic acid,
하나 이상의 산소 또는 카보닐기가 포함 또는 미포함된 탄소수 3 내지 15의 지방족 탄화수소기를 갖는 모노카르복실산을 반응시키는 단계를 포함하는 제 1 항의 유기 아연 촉매의 제조 방법.  A process for preparing the organic zinc catalyst of claim 1, comprising the step of reacting a monocarboxylic acid having an aliphatic hydrocarbon group having 3 to 15 carbon atoms with or without one or more oxygen or carbonyl groups.
【청구항 8】 [Claim 8]
제 7 항에 있어서, 상기 반웅 단계는 아연 전구체와, 디카르복실산을 반응시키는 단계와,  The method of claim 7, wherein the reaction step comprises the steps of reacting a zinc precursor, dicarboxylic acid,
상기 모노카르복실산을 더 가하여 반응시키는 단계를 포함하는 유기 아연 촉매의 제조 방법.  Method for producing an organic zinc catalyst comprising the step of further adding the monocarboxylic acid to react.
【청구항 9】 [Claim 9]
제 7 항에 있어서, 상기 아연 전구체는 산화아연, 수산화아연, 아세트산 아연 (Zn(02CCH3)2), 질산 아연 (Zn(N03)2) 및 황산 아연 (ZnS04)으로 이루어진 군에서 선택된 화합물을 포함하는 유기 아연 촉매의 제조 방법. 8. The zinc precursor according to claim 7, wherein the zinc precursor is selected from the group consisting of zinc oxide, zinc hydroxide, zinc acetate (Zn (0 2 CCH 3 ) 2 ), zinc nitrate (Zn (N0 3 ) 2 ) and zinc sulfate (ZnS0 4 ). A process for the preparation of an organic zinc catalyst comprising a selected compound.
【청구항 101 [Claim 101]
게 8 항에 있어서, 상기 디카르복실산의 반응 단계는 40 내지 90 °C의 온도에서 0.5 내지 10 시간 동안 진행되며, 상기 모노카르복실산의 반응 단계는 80 내지 15C C의 온도에서 1 내지 20 시간 동안 진행되는 유기 아연 촉매의 제조 방법. According to claim 8, wherein the reaction step of the dicarboxylic acid is carried out for 0.5 to 10 hours at a temperature of 40 to 90 ° C, the reaction step of the monocarboxylic acid is 1 to 20 at a temperature of 80 to 15 C C Process for preparing an organic zinc catalyst that proceeds over time.
【청구항 1 1】 [Claim 1 11]
. 제 7 항에 있어서, 상기 모노카르복실산은 상기 디카르복실산의 1몰에 대해 0.1 내지 0.5몰의 비율로 사용되는 유기 아연 촉매의 제조 방법. . The method of claim 7, wherein the monocarboxylic acid is used in an amount of 0.1 to 0.5 moles with respect to 1 mole of the dicarboxylic acid.
【청구항 12】 [Claim 12]
제 7 항에 있어서, 상기 디카르복실산은 상기 아연 전구체의 1몰에 대해 8. The dicarboxylic acid according to claim 7, wherein the dicarboxylic acid is used per mole of the zinc precursor.
1.0 내지 1.5몰의 비율로 사용되는 유기 아연 촉매의 제조 방법. A process for producing an organic zinc catalyst used at a ratio of 1.0 to 1.5 moles.
【청구항 13] [Claim 13]
제 1 항의 유기 아연 촉매의 존재 하에, 에폭사이드 및 이산화탄소를 포함한 단량체를 중합시키는 단계를 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법.  A process for producing a polyalkylene carbonate resin comprising polymerizing a monomer comprising epoxide and carbon dioxide in the presence of the organic zinc catalyst of claim 1.
【청구항 14】 ' [14.] "
제 13 항에 있어서, 유기 용매 내에서 용액 중합으로 진행되는 폴리알킬렌 카보네이트 수지의 제조 방법.  The method for producing a polyalkylene carbonate resin according to claim 13, which is subjected to solution polymerization in an organic solvent.
PCT/KR2014/011081 2013-11-18 2014-11-18 Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same WO2015072815A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/034,696 US10047196B2 (en) 2013-11-18 2014-11-18 Organic zinc catalyst, and manufacturing method thereof and manufacturing method of polyalkylene carbonate resin using the same (as amended)
CN201480063125.7A CN105764954B (en) 2013-11-18 2014-11-18 Organozinc catalyst and preparation method thereof and the method for using the catalyst preparation polyalkylene carbonate resin
EP14862667.4A EP3048129B1 (en) 2013-11-18 2014-11-18 Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same
JP2016526195A JP6364076B2 (en) 2013-11-18 2014-11-18 Organozinc catalyst, process for producing the same, and process for producing polyalkylene carbonate resin using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130139987 2013-11-18
KR10-2013-0139987 2013-11-18
KR10-2014-0160747 2014-11-18
KR1020140160747A KR101650510B1 (en) 2013-11-18 2014-11-18 Organic zinc catalyst, its preparation method, and method for preparing poly(alkylene carbonate) resin using the same

Publications (1)

Publication Number Publication Date
WO2015072815A1 true WO2015072815A1 (en) 2015-05-21

Family

ID=53057679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011081 WO2015072815A1 (en) 2013-11-18 2014-11-18 Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same

Country Status (1)

Country Link
WO (1) WO2015072815A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732475B2 (en) * 1988-08-09 1998-03-30 三井化学株式会社 Zinc-containing solid catalyst and method for producing polyalkylene carbonate using the catalyst
KR20030097237A (en) * 2002-06-20 2003-12-31 주식회사 포스코 Method of preparing catyalyst for polymerization of aliphatic polycarbonate and method of polymerizing aliphatic polycarbonate
KR20090025219A (en) * 2006-05-09 2009-03-10 스미또모 세이까 가부시키가이샤 Organic zinc catalyst, and process for production of poly(alkylene carbonate)using the same
WO2011004730A1 (en) * 2009-07-07 2011-01-13 住友精化株式会社 Process for production of aliphatic polycarbonate particles
KR20120023820A (en) * 2009-05-22 2012-03-13 스미또모 세이까 가부시키가이샤 Method for producing aliphatic polycarbonate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732475B2 (en) * 1988-08-09 1998-03-30 三井化学株式会社 Zinc-containing solid catalyst and method for producing polyalkylene carbonate using the catalyst
KR20030097237A (en) * 2002-06-20 2003-12-31 주식회사 포스코 Method of preparing catyalyst for polymerization of aliphatic polycarbonate and method of polymerizing aliphatic polycarbonate
KR20090025219A (en) * 2006-05-09 2009-03-10 스미또모 세이까 가부시키가이샤 Organic zinc catalyst, and process for production of poly(alkylene carbonate)using the same
KR20120023820A (en) * 2009-05-22 2012-03-13 스미또모 세이까 가부시키가이샤 Method for producing aliphatic polycarbonate
WO2011004730A1 (en) * 2009-07-07 2011-01-13 住友精化株式会社 Process for production of aliphatic polycarbonate particles

Similar Documents

Publication Publication Date Title
KR101640244B1 (en) Preparation method of organic zinc catalyst and poly(alkylene carbonate) resin
KR101650510B1 (en) Organic zinc catalyst, its preparation method, and method for preparing poly(alkylene carbonate) resin using the same
JP6272473B2 (en) Method for producing polyalkylene carbonate resin
US10836860B2 (en) Organic zinc catalyst, preparation method thereof, and method for preparing polyalkylene carbonate resin using the catalyst
KR102176690B1 (en) Preparation method of organic zinc catalyst, the catalyst prepard by the method, and preparation method of poly(alkylene carbonate) resin using the catalyst
KR101639364B1 (en) Organic zinc catalyst
KR102233983B1 (en) Organic zinc catalyst, preparation method of the catalyst and production method of poly(alkylene carbonate) resin over the catalyst
KR102125050B1 (en) Organic zinc catalyst, preparation method of the catalyst and production method of poly(alkylene carbonate) resin over the catalyst
WO2015072815A1 (en) Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same
KR102039206B1 (en) Organic zinc catalyst, its preparation method, and method for preparing poly(alkylene carbonate) using the same
KR101870315B1 (en) Organic zinc catalyst, preparation method of the catalyst, and preparation method of poly(alkylene carbonate) resin using the catalyst
WO2015072814A1 (en) Method for preparing polyalkylene carbonate resin
KR101747399B1 (en) Preparation method of organic zinc catalyst and poly(alkylene carbonate) resin
KR20160012726A (en) Process for producing polyalkylene carbonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862667

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014862667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014862667

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016526195

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15034696

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE