Nothing Special   »   [go: up one dir, main page]

WO2015072205A1 - Method for producing optical film, optical film and image display device - Google Patents

Method for producing optical film, optical film and image display device Download PDF

Info

Publication number
WO2015072205A1
WO2015072205A1 PCT/JP2014/072316 JP2014072316W WO2015072205A1 WO 2015072205 A1 WO2015072205 A1 WO 2015072205A1 JP 2014072316 W JP2014072316 W JP 2014072316W WO 2015072205 A1 WO2015072205 A1 WO 2015072205A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
adhesive composition
optical film
layer
producing
Prior art date
Application number
PCT/JP2014/072316
Other languages
French (fr)
Japanese (ja)
Inventor
雅 品川
龍一 井上
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020157013162A priority Critical patent/KR101984350B1/en
Priority to KR1020177017583A priority patent/KR20170077293A/en
Priority to CN201480003729.2A priority patent/CN104884258A/en
Publication of WO2015072205A1 publication Critical patent/WO2015072205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • B32B37/003Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid air inclusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention provides an optical film including a laminated structure in which at least a first film and a second film are bonded via an adhesive layer or a pressure-sensitive adhesive layer composed of a cured product layer of an adhesive composition or a pressure-sensitive adhesive composition, and It relates to the manufacturing method. Furthermore, the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the optical film.
  • Liquid crystal display devices are rapidly expanding in the market for watches, mobile phones, PDAs, notebook computers, personal computer monitors, DVD players, TVs, etc.
  • the liquid crystal display device visualizes the polarization state by switching of the liquid crystal, and a polarizer is used from the display principle.
  • polarizing films are also required to have higher transmittance, higher degree of polarization, and higher color reproducibility.
  • an iodine-based polarizer having a stretched structure by adsorbing iodine to polyvinyl alcohol (hereinafter also simply referred to as “PVA”) is most widely used. in use.
  • PVA polyvinyl alcohol
  • a polarizing film in which a transparent protective film is bonded to both surfaces of a polarizer by a so-called aqueous adhesive in which a polyvinyl alcohol-based material is dissolved in water has been used.
  • an active energy ray-curable resin composition that does not contain water or an organic solvent is becoming mainstream because it has advantages such that the drying step can be omitted and the dimensional change is small. is there.
  • the adhesive composition is applied only to the laminating surface of the transparent protective film, and the laminating surface.
  • an optical film including a laminated structure is manufactured by laminating a polarizer or the like from the side.
  • foreign matter such as dust or dust adheres to the surface of the polarizer / transparent protective film before application of the adhesive composition or the like, or the adhesive composition contains minute foreign matter. In this case, foreign matters remain in the adhesive layer, and as a result, appearance defects may occur.
  • an optical film including a step of thinly coating an optical functional layer having a wet coating amount of 10 mL / m 2 or less on a transparent support or an undercoat layer formed on the transparent support.
  • an optical film manufacturing method including a step of removing foreign matters having a height of 10 ⁇ m or more from the transparent support or the undercoat layer before applying the optical functional layer is described.
  • Patent Document 1 attempts to crush and remove foreign matters by calendaring or the like in a state where foreign matters already exist on the transparent support or the like. Therefore, the foreign matter removal accuracy is not high, and minute foreign matter remains after the removal step. For this reason, the technique described in Patent Document 1 is difficult to apply to a method for manufacturing a thin optical film in which the appearance defect is a problem even when the thickness is particularly thin and minute foreign matter is present. Was the actual situation.
  • the present invention has been completed as a result of taking the above circumstances into consideration, and its purpose is to produce an optical film in which appearance defects due to foreign matters and / or bubbles are prevented even when the optical film is thin. It is to provide a method.
  • the present inventor adopts a specific coating method when manufacturing an optical film including a laminated structure in which at least two films are bonded together, It has been found that by applying the adhesive composition or the pressure-sensitive adhesive composition to both bonding surfaces of the film, it is possible to remove foreign substances and / or bubbles and apply the adhesive composition or the pressure-sensitive adhesive composition at a time. It was.
  • the present invention has been obtained as a result of such diligence, and has the following configuration.
  • the present invention provides an optical film including a laminated structure in which at least a first film and a second film are bonded via an adhesive layer or a pressure-sensitive adhesive layer comprising a cured product layer of the adhesive composition or the pressure-sensitive adhesive composition. It is a manufacturing method of this, Comprising: Apply
  • the present invention relates to a method for producing an optical film characterized by having a coating step of removing foreign substances and / or bubbles.
  • an adhesive composition or an adhesive composition is applied to one of the two films, and the other film is applied thereto.
  • the adhesive composition or the pressure-sensitive adhesive composition is applied to both the bonding surface of the first film and the bonding surface of the second film, and this application is performed by a coating method of a post-metering application method. Is carried out while removing foreign substances and / or bubbles.
  • the optical film manufacturing method according to the present invention can manufacture an optical film in which appearance defects due to foreign matters are prevented.
  • the adhesive (or pressure-sensitive adhesive) coating surface of one film is directly on the bonding surface of the other film (the adhesive composition (or pressure-sensitive adhesive composition) is not present). Laminated while in contact. In this case, since the adhesive composition (or the pressure-sensitive adhesive composition) having viscosity is in direct contact with the bonding surface of the other film, air bubbles are easily caught during bonding.
  • the adhesive composition (or the pressure-sensitive adhesive composition) to both the bonding surface of the first film and the bonding surface of the second film
  • the adhesive ( Or an adhesive) application surface is bonded together in contact with the adhesive (or adhesive) application surface of the second film. That is, since adhesive compositions (or pressure-sensitive adhesive compositions) having viscosity are bonded together while being overlapped, bubbles are difficult to bite at the time of bonding, and bubbles are easily removed. Therefore, the method according to the present invention is superior in terms of the effect of removing bubbles as compared with the single-side coating method, and thus an optical film in which appearance defects due to bubbles are prevented can be produced.
  • the “post-measuring coating method” means a method for obtaining a predetermined coating film thickness by applying an external force to the liquid film to remove excess liquid.
  • the post-metering coating method include a gravure roll coating method, a forward roll coating method, an air knife coating method, a rod / bar coating method, etc., but from the viewpoints of foreign matter removal accuracy and coating film thickness uniformity
  • the coating method is preferably a gravure roll coating method using a gravure roll.
  • “removing foreign matters and / or bubbles” means removing at least one or both of foreign matters and bubbles.
  • the post-metering application method is a method of applying the adhesive composition or the pressure-sensitive adhesive composition by circulation, and the adhesive composition or the second film is applied from the first film and / or the second film by application. It is preferable to have a foreign matter removing function for removing foreign matters mixed in the pressure-sensitive adhesive composition from the adhesive composition or the pressure-sensitive adhesive composition.
  • a coating liquid composed of an adhesive composition or a pressure-sensitive adhesive composition is applied to the bonding surfaces of the first film and the second film, and the coating liquid is applied to the first film and / or the first film by coating.
  • the coating method used has a foreign matter removing function that removes foreign matter mixed in the adhesive composition or pressure-sensitive adhesive composition from the first film and / or second film by coating from the adhesive composition or pressure-sensitive adhesive composition. If it is provided, the amount of foreign matter in the coating solution can be significantly reduced. Thereby, possibility that a foreign material exists in the bonding surface of the 1st film and 2nd film after application
  • the rotation direction of the gravure roll and the traveling direction of the first film and the second film are opposite to each other.
  • foreign matter such as dust and dust existing on the bonding surface of the first film and the bonding surface of the second film, and further, a gel-like material and an aggregate derived from the adhesive composition or the pressure-sensitive adhesive composition are scraped off. The effect is effectively enhanced, and the appearance defect of the optical film finally obtained can be more effectively prevented.
  • a honeycomb mesh pattern a trapezoid pattern, a lattice pattern, a pyramid pattern, or a diagonal line pattern can be formed.
  • the pattern formed on the surface of the gravure roll is preferably a honeycomb mesh pattern.
  • the cell volume is preferably 1 to 5 cm 3 / m 2 in order to increase the surface accuracy of the coated surface after application of the adhesive composition or pressure-sensitive adhesive composition, and 2 to 3 cm 3 / m. 2 is preferable.
  • the number of cell lines per roll is preferably 200 to 3000 lines / inch in order to increase the surface accuracy of the coated surface after application of the adhesive composition or pressure-sensitive adhesive composition.
  • the rotation speed ratio of the gravure roll with respect to the traveling speed of the first film and the second film is preferably 100 to 300%.
  • the thickness of the adhesive layer (or the pressure-sensitive adhesive layer) and further the total thickness of the optical film are larger, the foreign matter is less likely to be visually recognized, and the appearance defect tends to be less problematic.
  • the thinner the adhesive layer (or pressure-sensitive adhesive layer), and the thinner the total thickness of the optical film the easier it is to visually recognize foreign matter, and as a result, appearance defects become a problem. There are many cases.
  • an optical film having a very low incidence of foreign matters in the adhesive layer (or pressure-sensitive adhesive layer) can be produced.
  • the manufacturing method according to the present invention is particularly useful when the manufacturing method of a particularly large polarizing film, specifically, when the first film is a transparent protective film and the second film is a polarizer.
  • the production method according to the present invention even in the case of producing a thin polarizing film, particularly when the polarizer has a thickness of 10 ⁇ m or less, in the adhesive layer (or the pressure-sensitive adhesive layer), foreign matter or This is preferable because a thin polarizing film in which the occurrence of appearance defects due to bubbles can be prevented can be produced.
  • the present invention also relates to an optical film produced by any one of the production methods described above, and further to an image display device using the optical film described above.
  • the optical film manufacturing method according to the present invention is particularly problematic in appearance defects due to foreign matters, an optical film having a thin adhesive layer, an optical film having a thin total thickness, particularly a thin polarizing film. This is particularly effective as a manufacturing method.
  • the manufacturing method of the optical film which concerns on this invention is applying an adhesive composition or an adhesive composition to both the bonding surface of a 1st film and the bonding surface of a 2nd film using a back metering application system. And a coating process for removing foreign matter.
  • FIG. 1 shows an example of a schematic diagram of a method for producing an optical film according to the present invention.
  • a gravure roll coating method using a gravure roll is used as a post-measuring coating method, and an adhesive composition is used.
  • the first film 1 is conveyed rightward in FIG. 1 when the adhesive composition 3 is applied using the gravure roll coating method 10, while the gravure coating method 10 is
  • the gravure roll provided is rotating clockwise. That is, the rotation direction of the gravure roll and the traveling direction of the first film are opposite to each other.
  • the second film 2 and the gravure roll the rotation direction of the gravure roll and the traveling direction of the second film 2 are opposite to each other.
  • the effect of scraping off foreign matters such as dust and dust existing on the bonding surface of the first film 1 and the bonding surface of the second film 2, and further the gel-like material and aggregate derived from the adhesive composition is effective.
  • the appearance defect of the optical film finally obtained can be prevented more effectively.
  • the rotation speed of the gravure roll with respect to the traveling speed of the first film 1 and the second film 2 is 100 to 300%. Preferably, it is 150 to 250%.
  • FIG. 2 shows an example of a schematic diagram of a gravure roll coating method, which is a post-metering coating method used in the present invention.
  • the adhesive composition 3 is applied to the first film 1 using the gravure coating method 10. It represents the situation.
  • the foreign matter when the foreign matter is removed while pressing the gravure roll 4 against the first film 1, the foreign matter such as dust and dust existing on the bonding surface of the first film 1, and further, the adhesive composition is derived. It is possible to more effectively remove the gel-like and aggregates.
  • the gravure coating method 10 includes at least a gravure roll 4.
  • a gravure roll 4 On the surface of the gravure roll, an uneven pattern such as a honeycomb mesh pattern, trapezoid pattern, lattice pattern, pyramid pattern or oblique line pattern is formed.
  • a honeycomb mesh pattern is preferably formed, and the cell volume is preferably 1 to 5 cm 3 / m 2. It is preferably 2 to 3 cm 3 / m 2 .
  • the number of cell lines per roll is preferably 200 to 3000 lines / inch in order to increase the surface accuracy of the coated surface after application of the adhesive composition or pressure-sensitive adhesive composition.
  • the concavo-convex pattern of the gravure roll 4 has a function of applying the adhesive composition 3 to the bonding surface of the first film while scraping the adhesive composition (coating liquid) 3.
  • it is preferably a closed system in which the adhesive coating liquid is not exposed to the outside air.
  • the foreign matter existing on the bonding surface of the first film 1, and further the gel-like substance and aggregate derived from the adhesive composition 3 are scraped off by the gravure roll 4 during the application, and the adhesive It moves in the container 5 containing the composition 3 and may be applied again to the bonding surface of the first film by the gravure roll 4. Therefore, particularly when the post-measuring application method is a method in which the adhesive composition or the pressure-sensitive adhesive composition is circulated and applied, the gravure roll 4 is scraped as the application process of the adhesive composition 3 becomes longer. There is a concern that the amount of accumulated foreign matter and the like taken will increase.
  • the gravure coating method 10 has a foreign matter removing function for removing foreign matters mixed in the adhesive composition or the pressure-sensitive adhesive composition from the first film and / or the second film by coating from the adhesive composition or the pressure-sensitive adhesive composition.
  • the amount of foreign matter or the like present in the applied adhesive composition 3 is always kept from a very small amount to zero. Therefore, finally, the generation amount of foreign matters and the like on the bonding surface of the first film 1 can be extremely reduced.
  • the foreign matter removing function includes a filter, a distillation apparatus, and centrifugal separation.
  • the filter 7 can be arranged on the downstream side of the pump function 8 as shown in FIG.
  • the filter 7 can also be arrange
  • the mesh size of the filter 7 can be appropriately changed depending on the material of the first film 1 and the second film, the blending design of the adhesive composition 3, and the like, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the adhesive composition 3 may be circulated using a tank 6 or the like as shown in FIG. 2, or the adhesive composition 3 after being applied by the gravure roll 4 may be discarded.
  • the adhesive composition 3 is applied to both the bonding surface of the first film 1 and the bonding surface of the second film 2 by the application method of the post-metering application method shown in FIG. 1, for example, using a nip roll 9.
  • the 1st film 1 and the 2nd film 2 are bonded through an adhesive composition (adhesive layer).
  • the line speed of the first film and / or the second film depends on the curing time of the adhesive composition (or the pressure-sensitive adhesive composition), but is preferably 1 to 500 m / min. Preferably, it is 5 to 300 m / min, and more preferably 10 to 100 m / min. If the line speed is too low, the productivity is poor, or the damage to the first film / and / or the second film is too great to produce an optical film that can withstand a durability test. If the line speed is too high, the adhesive composition may not be sufficiently cured, and the target adhesiveness may not be obtained.
  • Such an optical film includes a laminated structure in which at least a first film and a second film are bonded via an adhesive layer or an adhesive layer composed of a cured product layer of an adhesive composition or an adhesive composition.
  • the adhesive layer or the pressure-sensitive adhesive layer is not particularly limited as long as it is optically transparent, and water-based, solvent-based, hot-melt, and radical-curing types are used.
  • a transparent curable adhesive layer is suitable.
  • a radical curable adhesive is suitably used as the adhesive composition.
  • the radical curable adhesive include active energy ray curable adhesives such as an electron beam curable adhesive and an ultraviolet curable adhesive.
  • an active energy ray curable adhesive that can be cured in a short time is preferable, and an ultraviolet curable adhesive that can be cured with low energy is more preferable.
  • UV curing adhesives can be broadly classified into radical polymerization curing adhesives and cationic polymerization adhesives.
  • the radical polymerization curable adhesive can be used as a thermosetting adhesive.
  • curable component of the radical polymerization curable adhesive examples include a compound having a (meth) acryloyl group and a compound having a vinyl group. These curable components may be monofunctional or bifunctional or higher. Moreover, these curable components can be used individually by 1 type or in combination of 2 or more types. As these curable components, for example, compounds having a (meth) acryloyl group are suitable.
  • the compound having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and 2-methyl-2-nitro.
  • Examples of the compound having a (meth) acryloyl group include cycloalkyl (meth) acrylate (for example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.), aralkyl (meth) acrylate (for example, benzyl (meth)).
  • cycloalkyl (meth) acrylate for example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.
  • aralkyl (meth) acrylate for example, benzyl (meth)
  • Acrylates polycyclic (meth) acrylates (eg 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl -2-norbornylmethyl (meth) acrylate, etc.), hydroxyl group-containing (meth) acrylic acid esters (eg, hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxypropylmethyl) -Butyl (meth) methacrylate), alkoxy group or phenoxy group-containing (meth) acrylic acid esters (2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate) , 3-methoxybutyl (meth) acrylate, ethyl carbitol (
  • Examples of compounds having a (meth) acryloyl group other than the above include amide group-containing monomers such as hydroxyethyl acrylamide, N-methylol acrylamide, N-methoxymethyl acrylamide, N-ethoxymethyl acrylamide, and (meth) acrylamide. It is done. Moreover, nitrogen-containing monomers, such as acryloyl morpholine, etc. are mentioned.
  • Examples of the curable component of the radical polymerization curable adhesive include compounds having a plurality of polymerizable double bonds such as a (meth) acryloyl group and a vinyl group, and the compound can be used as a crosslinking component. It can also be mixed with the adhesive component.
  • Examples of the curable component that becomes such a crosslinking component include tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecane dimethanol diacrylate, cyclic trimethylolpropane formal acrylate, dioxane glycol diacrylate, and EO.
  • the radical polymerization curable adhesive contains the curable component, and in addition to the component, a radical polymerization initiator is added according to the type of curing.
  • a radical polymerization initiator is added according to the type of curing.
  • An agent is used.
  • the amount of the radical polymerization initiator used is usually about 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight per 100 parts by weight of the curable component.
  • the radical polymerization curable adhesive may be added with a photosensitizer that increases the curing speed and sensitivity of the electron beam typified by a carbonyl compound, if necessary.
  • the amount of the photosensitizer used is usually about 0.001 to 10 parts by weight, preferably 0.01 to 3 parts by weight per 100 parts by weight of the curable component.
  • Examples of the curable component of the cationic polymerization curable adhesive include compounds having an epoxy group or an oxetanyl group.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used.
  • a preferable epoxy compound a compound having at least two epoxy groups and at least one aromatic ring in the molecule, or at least two epoxy groups in the molecule, at least one of which has an alicyclic ring. Examples thereof include a compound formed between two adjacent carbon atoms constituting it.
  • examples of the water-based curable adhesive include vinyl polymer, gelatin, vinyl latex, polyurethane, isocyanate, polyester, and epoxy.
  • Such an adhesive layer composed of an aqueous adhesive can be formed as an aqueous solution coating / drying layer, etc., but when preparing the aqueous solution, a catalyst such as a crosslinking agent, other additives, and an acid can be used as necessary. Can be blended.
  • the water-based adhesive is preferably an adhesive containing a vinyl polymer
  • the vinyl polymer is preferably a polyvinyl alcohol resin.
  • the adhesive agent containing the polyvinyl alcohol-type resin which has an acetoacetyl group is more preferable from the point which improves durability.
  • the compound which has at least two functional groups reactive with a polyvinyl alcohol-type resin can be used preferably.
  • boric acid and borax carboxylic acid compounds, alkyl diamines; isocyanates; epoxies; monoaldehydes; dialdehydes; amino-formaldehyde resins; and divalent or trivalent metal salts and oxides thereof Is mentioned.
  • the adhesive that forms the curable adhesive layer may contain an additive as necessary.
  • additives include coupling agents such as silane coupling agents and titanium coupling agents, adhesion promoters typified by ethylene oxide, additives that improve wettability with transparent films, acryloxy group compounds and hydrocarbons (Natural and synthetic resins) and other additives that improve mechanical strength and processability, UV absorbers, anti-aging agents, dyes, processing aids, ion trapping agents, antioxidants, tackifiers, Stabilizers such as fillers (other than metal compound fillers), plasticizers, leveling agents, foaming inhibitors, antistatic cracks, heat stabilizers, hydrolysis stabilizers, and the like.
  • the thickness of the transparent curable adhesive layer is preferably 0.01 to 10 ⁇ m. More preferably, it is 0.1 to 5 ⁇ m, and still more preferably 0.3 to 4 ⁇ m. Since the height between each film layer of appearance defects due to foreign matters or bubbles is generally several ⁇ m (about 2 to 5 ⁇ m), if the thickness of the adhesive layer is 2 ⁇ m or less, the problem of appearance defects is significant. Become. However, since the optical film manufacturing method according to the present invention can prevent appearance defects, it is particularly useful as a method for manufacturing an optical film having an adhesive layer thickness of 2 ⁇ m or less.
  • the pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive.
  • Various pressure-sensitive adhesives can be used as the pressure-sensitive adhesive, such as rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, polyvinylpyrrolidone-based pressure-sensitive adhesives, Examples include acrylamide-based adhesives and cellulose-based adhesives.
  • An adhesive base polymer is selected according to the type of the adhesive.
  • acrylic pressure-sensitive adhesives are preferably used because they are excellent in optical transparency, exhibit appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and are excellent in weather resistance and heat resistance.
  • the radical polymerization curable adhesive can be used in an electron beam curable type or an ultraviolet curable type.
  • the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong and damages the transparent protective film and the polarizer. There is a risk of giving.
  • the irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy.
  • the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the transparent protective film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. I can't.
  • the electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition where a little oxygen is introduced. Depending on the material of the transparent protective film, by appropriately introducing oxygen, the transparent protective film surface where the electron beam first hits can be obstructed to prevent oxygen damage and prevent damage to the transparent protective film. An electron beam can be irradiated efficiently.
  • the ultraviolet curable type when adopted in the present invention, it is preferable to use a device that does not emit light having a wavelength shorter than 380 nm as the ultraviolet ray generating device, and more specifically, the integrated illuminance and wavelength in the wavelength range of 380 to 440 nm.
  • the ratio with the integrated illuminance in the range of 250 to 370 nm is preferably 100: 0 to 100: 50, and more preferably 100: 0 to 100: 40.
  • a gallium-filled metal halide lamp and an LED light source that emits light in the wavelength range of 380 to 440 nm are preferable.
  • low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight as the light source It is also possible to use a light having a wavelength shorter than 380 nm by using a band pass filter.
  • the first film and / or the second film can be used without particular limitation as long as it is a transparent optical film.
  • the greater the thickness of the adhesive layer (or the pressure-sensitive adhesive layer) and the greater the total thickness of the optical film the more difficult it is to visually recognize foreign matter, and the appearance defects tend to be less problematic.
  • the thinner the adhesive layer (or pressure-sensitive adhesive layer), and the thinner the total thickness of the optical film the easier it is to visually recognize foreign matter, and as a result, appearance defects become a problem. There are many cases.
  • an optical film having a very low incidence of foreign matters in the adhesive layer (or pressure-sensitive adhesive layer) can be produced.
  • the manufacturing method according to the present invention is particularly useful when the manufacturing method of a particularly large polarizing film, specifically, when the first film is a transparent protective film and the second film is a polarizer.
  • the production method according to the present invention even in the case of producing a thin polarizing film, particularly when the polarizer has a thickness of 10 ⁇ m or less, in the adhesive layer (or the pressure-sensitive adhesive layer), foreign matter or This is preferable because a thin polarizing film in which the occurrence of appearance defects due to bubbles can be prevented can be produced.
  • the first film and / or the second film may be subjected to a surface modification treatment before applying the active energy ray-curable adhesive composition.
  • a surface modification treatment include corona treatment, plasma treatment, and saponification treatment.
  • the first film and the second film are preferably bonded via an adhesive layer formed by a cured product layer of the radical polymerization curable adhesive composition.
  • an easy-adhesion layer can be provided between the first film and the second film.
  • the easy adhesion layer can be formed of, for example, various resins having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a silicone-based, a polyamide skeleton, a polyimide skeleton, a polyvinyl alcohol skeleton, and the like. These polymer resins can be used alone or in combination of two or more. Moreover, you may add another additive for formation of an easily bonding layer. Specifically, a stabilizer such as a tackifier, an ultraviolet absorber, an antioxidant, and a heat resistance stabilizer may be used.
  • the easy-adhesion layer is formed by applying and drying a material for forming the easy-adhesion layer on a film by a known technique.
  • the material for forming the easy-adhesion layer is usually adjusted as a solution diluted to an appropriate concentration in consideration of thickness after drying, smoothness of application, and the like.
  • the thickness of the easy-adhesion layer after drying is preferably 0.01 to 5 ⁇ m, more preferably 0.02 to 2 ⁇ m, and still more preferably 0.05 to 1 ⁇ m. Note that a plurality of easy-adhesion layers can be provided, but also in this case, the total thickness of the easy-adhesion layers is preferably in the above range.
  • a polarizing film including a laminated structure in which at least a first film and a second film are bonded is necessary on the first film 1 that is a transparent protective film and the transparent protective film or the PET base material.
  • the laminated second film 2 in which a polarizer is laminated via an adhesive layer can be produced by bonding them together via an adhesive layer made of a cured product layer of the adhesive composition.
  • the polarizer surface of the laminated second film 2 is used as a bonding surface, and an example in which the adhesive composition is applied to the bonding surface is shown.
  • the thickness of the first film and the second film is preferably 60 ⁇ m or less, and 40 ⁇ m or less. It is more preferable that
  • the total thickness of the polarizing film is 100 ⁇ m or less, since the thickness is thin, appearance defects due to foreign matters in the adhesive layer often become a problem.
  • an optical film in which the generation of foreign matters in the adhesive layer can be effectively prevented can be manufactured. Therefore, when manufacturing a thin polarizing film having a total thickness of 100 ⁇ m or less, particularly Is suitable for producing a thin polarizing film having a total thickness of 50 ⁇ m or less.
  • a thin polarizing film in the present invention it is possible to effectively prevent appearance defects even when producing a thin polarizing film including a thin polarizer having a thickness of 10 ⁇ m or less.
  • the polarizer is not particularly limited, and various types can be used.
  • the polarizer include hydrophilic polymer films such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, and ethylene / vinyl acetate copolymer partially saponified film, and two colors such as iodine and dichroic dye.
  • polyene-based oriented films such as those obtained by adsorbing a functional material and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer composed of a polyvinyl alcohol film and a dichroic material such as iodine is preferable.
  • the thickness of these polarizers is not particularly limited, but is generally about 80 ⁇ m or less.
  • a polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there.
  • Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching.
  • the film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • a thin polarizer having a thickness of 10 ⁇ m or less can be used. From the viewpoint of thinning, the thickness is preferably 1 to 7 ⁇ m. Such a thin polarizer is preferable in that the thickness unevenness is small, the visibility is excellent, the dimensional change is small, the durability is excellent, and the thickness of the polarizing film can be reduced.
  • the thin polarizer typically, JP-A-51-069644, JP-A-2000-338329, WO2010 / 100917, PCT / JP2010 / 001460, or Japanese Patent Application No. 2010- And a thin polarizer described in Japanese Patent Application No. 269002 and Japanese Patent Application No. 2010-263692.
  • These thin polarizers can be obtained by a production method including a step of stretching and dyeing a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a stretching resin base material in a laminated state. With this manufacturing method, even if the PVA-based resin layer is thin, it can be stretched without problems such as breakage due to stretching by being supported by the stretching resin substrate.
  • PVA-based resin polyvinyl alcohol-based resin
  • the thin polarizers among the production methods including the step of stretching in the state of a laminate and the step of dyeing, WO2010 / 100917 pamphlet, PCT / PCT / PCT / JP 2010/001460 specification, or Japanese Patent Application No. 2010-269002 and Japanese Patent Application No. 2010-263692, the one obtained by a production method including a step of stretching in a boric acid aqueous solution is preferable. What is obtained by the manufacturing method including the process of extending
  • the thin high-performance polarizer described in the specification of the above PCT / JP2010 / 001460 is a thin film having a thickness of 7 ⁇ m or less made of a PVA-based resin oriented with a dichroic material, which is integrally formed on a resin substrate. It is a high-functional polarizer and has optical properties such as a single transmittance of 42.0% or more and a polarization degree of 99.95% or more.
  • the thin high-performance polarizer generates a PVA-based resin layer by applying and drying a PVA-based resin on a resin substrate having a thickness of at least 20 ⁇ m, and the generated PVA-based resin layer is used as a dichroic dyeing solution. So that the dichroic substance is adsorbed on the PVA resin layer, and the PVA resin layer on which the dichroic substance is adsorbed is integrated with the resin base material in the boric acid aqueous solution so that the total draw ratio is the original length. It can manufacture by extending
  • a method for producing a laminate film including a thin high-functional polarizer in which a dichroic material is oriented and includes a resin substrate having a thickness of at least 20 ⁇ m and a PVA resin on one side of the resin substrate.
  • surface of the resin base material A step of adsorbing the dichroic substance to the PVA resin layer contained in the laminate film by immersing the film in a dye solution containing the dichroic substance, and a PVA resin adsorbing the dichroic substance
  • the above-mentioned Japanese Patent Application Nos. 2010-269002 and 2010-263692 are thin polarizers, which are continuous web polarizers made of a PVA-based resin in which a dichroic material is oriented, and are amorphous esters.
  • a laminate including a PVA-based resin layer formed on a thermoplastic resin base material is stretched in a two-stage stretching process consisting of air-assisted stretching and boric acid-water stretching to a thickness of 10 ⁇ m or less. It is.
  • Such a thin polarizer has P> ⁇ (100.929T ⁇ 42.4-1) ⁇ 100 (where T ⁇ 42.3) and P ⁇ 99, where T is the single transmittance and P is the polarization degree. .9 (where T ⁇ 42.3) is preferable.
  • the thin polarizer is a stretch intermediate composed of an oriented PVA resin layer by high-temperature stretching in the air with respect to a PVA resin layer formed on an amorphous ester thermoplastic resin substrate of a continuous web.
  • a colored intermediate product comprising a PVA-based resin layer in which a dichroic material (preferably iodine or a mixture of iodine and an organic dye) is oriented by adsorption of the dichroic material to the stretched intermediate product and a step of generating the product.
  • a thin polarizer comprising a step of generating a product, and a step of generating a polarizer having a thickness of 10 ⁇ m or less comprising a PVA-based resin layer in which a dichroic material is oriented by stretching in a boric acid solution with respect to a colored intermediate product It can be manufactured by a manufacturing method.
  • the total draw ratio of the PVA resin layer formed on the amorphous ester thermoplastic resin base material by high-temperature drawing in air and drawing in boric acid solution should be 5 times or more. desirable.
  • stretching can be 60 degreeC or more.
  • the colored intermediate product is added to the aqueous boric acid solution whose liquid temperature does not exceed 40 ° C. It is desirable to do so by dipping.
  • the amorphous ester-based thermoplastic resin base material is amorphous polyethylene containing copolymerized polyethylene terephthalate copolymerized with isophthalic acid, copolymerized polyethylene terephthalate copolymerized with cyclohexanedimethanol, or other copolymerized polyethylene terephthalate. It can be terephthalate and is preferably made of a transparent resin, and the thickness thereof can be 7 times or more the thickness of the PVA resin layer to be formed.
  • the draw ratio of high-temperature drawing in the air is preferably 3.5 times or less, and the drawing temperature of high-temperature drawing in the air is preferably not less than the glass transition temperature of the PVA resin, specifically in the range of 95 ° C to 150 ° C.
  • the total stretching ratio of the PVA resin layer formed on the amorphous ester thermoplastic resin base material is preferably 5 to 7.5 times .
  • the total stretching ratio of the PVA-based resin layer formed on the amorphous ester-based thermoplastic resin base material is 5 times or more and 8.5 times or less. Is preferred. More specifically, a thin polarizer can be produced by the following method.
  • a base material for a continuous web of isophthalic acid copolymerized polyethylene terephthalate (amorphous PET) in which 6 mol% of isophthalic acid is copolymerized is prepared.
  • the glass transition temperature of amorphous PET is 75 ° C.
  • a laminate comprising a continuous web of amorphous PET substrate and a polyvinyl alcohol (PVA) layer is prepared as follows. Incidentally, the glass transition temperature of PVA is 80 ° C.
  • a 200 ⁇ m-thick amorphous PET base material and a 4-5% PVA aqueous solution in which PVA powder having a polymerization degree of 1000 or more and a saponification degree of 99% or more are dissolved in water are prepared.
  • an aqueous PVA solution is applied to a 200 ⁇ m thick amorphous PET substrate and dried at a temperature of 50 to 60 ° C. to obtain a laminate in which a 7 ⁇ m thick PVA layer is formed on the amorphous PET substrate. .
  • a thin high-functional polarizer having a thickness of 3 ⁇ m is manufactured from the laminate including the PVA layer having a thickness of 7 ⁇ m through the following steps including a two-step stretching process of air-assisted stretching and boric acid water stretching.
  • the laminate including the 7 ⁇ m-thick PVA layer is integrally stretched with the amorphous PET substrate to produce a stretched laminate including the 5 ⁇ m-thick PVA layer.
  • a laminate including a 7 ⁇ m-thick PVA layer is subjected to a stretching apparatus disposed in an oven set to a stretching temperature environment of 130 ° C. so that the stretching ratio is 1.8 times. Are stretched uniaxially at the free end.
  • the PVA layer contained in the stretched laminate is changed to a 5 ⁇ m thick PVA layer in which PVA molecules are oriented.
  • a colored laminate in which iodine is adsorbed on a 5 ⁇ m-thick PVA layer in which PVA molecules are oriented is generated by a dyeing process.
  • this colored laminate has a single transmittance of the PVA layer constituting the high-performance polarizer finally produced by using the stretched laminate in a dye solution containing iodine and potassium iodide at a liquid temperature of 30 ° C.
  • Iodine is adsorbed to the PVA layer contained in the stretched laminate by dipping for an arbitrary period of time so as to be 40 to 44%.
  • the staining solution uses water as a solvent, and an iodine concentration within the range of 0.12 to 0.30% by weight and a potassium iodide concentration within the range of 0.7 to 2.1% by weight.
  • concentration ratio of iodine and potassium iodide is 1 to 7.
  • potassium iodide is required to dissolve iodine in water.
  • the stretched laminate is immersed for 60 seconds in a dyeing solution having an iodine concentration of 0.30% by weight and a potassium iodide concentration of 2.1% by weight. A colored laminate is adsorbed on the substrate.
  • the colored laminate is further stretched integrally with the amorphous PET base material by the second stage boric acid water stretching step to produce an optical film laminate including a PVA layer constituting a highly functional polarizer having a thickness of 3 ⁇ m.
  • the optical film laminate is subjected to stretching by applying the colored laminate to a stretching apparatus provided in a treatment apparatus set to a boric acid aqueous solution having a liquid temperature range of 60 to 85 ° C. containing boric acid and potassium iodide. It is stretched uniaxially at the free end so that the magnification is 3.3 times. More specifically, the liquid temperature of the boric acid aqueous solution is 65 ° C.
  • the colored laminate having an adjusted iodine adsorption amount is first immersed in an aqueous boric acid solution for 5 to 10 seconds. After that, the colored laminate is passed as it is between a plurality of sets of rolls with different peripheral speeds, which is a stretching apparatus installed in the processing apparatus, and the stretching ratio can be freely increased to 3.3 times over 30 to 90 seconds. Stretch uniaxially.
  • the PVA layer contained in the colored laminate is changed into a PVA layer having a thickness of 3 ⁇ m in which the adsorbed iodine is oriented higher in one direction as a polyiodine ion complex.
  • This PVA layer constitutes a high-functional polarizer of the optical film laminate.
  • the optical film laminate was removed from the boric acid aqueous solution and adhered to the surface of the 3 ⁇ m-thick PVA layer formed on the amorphous PET substrate by the washing step. It is preferable to wash boric acid with an aqueous potassium iodide solution. Thereafter, the washed optical film laminate is dried by a drying process using hot air at 60 ° C.
  • the cleaning process is a process for eliminating appearance defects such as boric acid precipitation.
  • an adhesive is applied to the surface of a 3 ⁇ m-thick PVA layer formed on an amorphous PET substrate by a bonding and / or transfer process.
  • the amorphous PET substrate can be peeled off, and the 3 ⁇ m thick PVA layer can be transferred to the 80 ⁇ m thick triacetyl cellulose film.
  • the manufacturing method of said thin polarizer may contain another process other than the said process.
  • examples of other steps include an insolubilization step, a crosslinking step, and a drying (adjustment of moisture content) step.
  • the other steps can be performed at any appropriate timing.
  • the insolubilization step is typically performed by immersing the PVA resin layer in a boric acid aqueous solution. By performing the insolubilization treatment, water resistance can be imparted to the PVA resin layer.
  • the concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water.
  • the liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20 ° C. to 50 ° C.
  • the insolubilization step is performed after the laminate is manufactured and before the dyeing step and the underwater stretching step.
  • the crosslinking step is typically performed by immersing the PVA resin layer in an aqueous boric acid solution.
  • the concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water.
  • blend iodide it is preferable to mix
  • the blending amount of iodide is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of the iodide are as described above.
  • the liquid temperature of the crosslinking bath is preferably 20 ° C. to 50 ° C.
  • the crosslinking step is performed before the second boric acid aqueous drawing step.
  • the dyeing step, the crosslinking step, and the second boric acid aqueous drawing step are performed in this order.
  • the material for forming the transparent protective film provided on one or both sides of the polarizer is preferably a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose polymers such as diacetyl cellulose and triacetyl cellulose
  • acrylic polymers such as polymethyl methacrylate
  • styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin)
  • AS resin acrylonitrile / styrene copolymer
  • polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above
  • the polymer that forms the transparent protective film include polymer blends. One or more kinds of arbitrary appropriate additives may be contained in the transparent protective film.
  • the additive examples include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an anti-coloring agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
  • the content of the thermoplastic resin in the transparent protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. .
  • content of the said thermoplastic resin in a transparent protective film is 50 weight% or less, there exists a possibility that the high transparency etc. which a thermoplastic resin originally has cannot fully be expressed.
  • the transparent protective film examples include a polymer film described in JP-A-2001-343529 (WO01 / 37007), for example, (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, B) Resin compositions containing a thermoplastic resin having substituted and / or unsubstituted phenyl and nitrile groups in the side chain.
  • Specific examples include a film of a resin composition containing an alternating copolymer composed of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • As the film a film made of a mixed extruded product of the resin composition or the like can be used. Since these films have a small phase difference and a small photoelastic coefficient, problems such as unevenness due to the distortion of the polarizing film can be eliminated, and since the moisture permeability is small, the humidification durability is excellent.
  • the thickness of the transparent protective film can be determined as appropriate, but is generally about 1 to 500 ⁇ m from the viewpoints of workability such as strength and handleability and thin layer properties. In particular, 20 to 80 ⁇ m is preferable, and 30 to 60 ⁇ m is more preferable.
  • the transparent protective film which consists of the same polymer material may be used by the front and back, and the transparent protective film which consists of a different polymer material etc. may be used.
  • Functional surfaces such as a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer or an antiglare layer can be provided on the surface of the transparent protective film to which the polarizer is not adhered.
  • the functional layers such as the hard coat layer, antireflection layer, antisticking layer, diffusion layer and antiglare layer can be provided on the transparent protective film itself, and separately provided separately from the transparent protective film. You can also
  • the polarizing film of the present invention can be used as an optical film laminated with another optical layer in practical use.
  • the optical layer is not particularly limited.
  • a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film.
  • One or more optical layers that may be used can be used.
  • a reflective polarizing film or semi-transmissive polarizing film in which a polarizing plate or a semi-transmissive reflecting plate is further laminated on the polarizing film of the present invention an elliptical polarizing film or circularly polarizing film in which a retardation film is further laminated on a polarizing film.
  • a wide viewing angle polarizing film obtained by further laminating a viewing angle compensation film on a film or a polarizing film, or a polarizing film obtained by further laminating a brightness enhancement film on the polarizing film is preferred.
  • An optical film obtained by laminating the above optical layer on a polarizing film can be formed by a method of sequentially laminating separately in the manufacturing process of a liquid crystal display device or the like. It is excellent in stability and assembly work, and has the advantage of improving the manufacturing process of a liquid crystal display device and the like.
  • an appropriate adhesive means such as a pressure-sensitive adhesive layer can be used.
  • their optical axes can be set at an appropriate arrangement angle in accordance with the target retardation characteristics.
  • a pressure-sensitive adhesive layer for adhering to other members such as a liquid crystal cell can be provided on the polarizing film described above or an optical film in which at least one polarizing film is laminated.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited.
  • an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer is appropriately used as a base polymer. It can be selected and used.
  • those having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used.
  • the pressure-sensitive adhesive layer can be provided on one side or both sides of a polarizing film or an optical film as a superimposed layer of different compositions or types. Moreover, when providing in both surfaces, it can also be set as adhesive layers, such as a different composition, a kind, and thickness, in the front and back of a polarizing film or an optical film.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 1 to 500 ⁇ m, preferably 1 to 200 ⁇ m, and particularly preferably 1 to 100 ⁇ m.
  • the exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put to practical use. Thereby, it can prevent contacting an adhesive layer in the usual handling state.
  • a separator for example, an appropriate thin leaf body such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foamed sheet, metal foil, or a laminate thereof, or a silicone-based or long sheet as necessary.
  • an appropriate release agent such as a chain alkyl type, fluorine type or molybdenum sulfide, can be used.
  • the polarizing film or optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device.
  • the liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or an optical film, and an illumination system as necessary, and incorporating a drive circuit. There is no limitation in particular except the point which uses the polarizing film or optical film by invention, and it can apply according to the former.
  • the liquid crystal cell any type such as a TN type, an STN type, or a ⁇ type can be used.
  • liquid crystal display devices such as a liquid crystal display device in which a polarizing film or an optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight or a reflector used in an illumination system can be formed.
  • the polarizing film or optical film by this invention can be installed in the one side or both sides of a liquid crystal cell.
  • polarizing film or an optical film on both sides they may be the same or different.
  • liquid crystal display device for example, a single layer or a suitable layer such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged.
  • Parts by weight in the composition means the number of parts when the total amount of the composition is 100 parts by weight.
  • Adjustment of adhesive composition ⁇ Adjustment of active energy ray-curable adhesive composition> HEAA (hydroxyethyl acrylamide) [manufactured by Kojin Co., Ltd.] 38.5 parts by weight, Aronix M-220 (tripropylene glycol diacrylate) [manufactured by Toagosei Co., Ltd.] 20.0 parts by weight, ACMO (acryloylmorpholine) [Kojinsha 38.5 parts by weight, KAYACURE DETX-S (diethylthioxanthone) [manufactured by Nippon Kayaku Co., Ltd.], 1.5 parts by weight, IRGACURE907 (2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane- 1-On) 1.5 parts by weight [manufactured by BASF] was mixed and stirred at 50 ° C. for 1 hour to obtain an active energy ray-curable adhesive.
  • HEAA hydroxyethyl acrylamide
  • ⁇ Preparation of polyvinyl alcohol-based adhesive composition Polyvinyl alcohol-based resin containing acetoacetyl group (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%) to 100 parts, Under temperature conditions, an aqueous solution dissolved in pure water and adjusted to a solid content concentration of 3.7% was prepared. An aqueous adhesive solution was prepared by adding 18 parts of an aqueous colloidal alumina solution (average particle size 15 nm, solid content concentration 10%, positive charge) to 100 parts of the aqueous solution.
  • the PVA molecules in the PVA layer formed on the amorphous PET substrate by such two-stage stretching are oriented in the higher order, and the iodine adsorbed by the dyeing is oriented in the one direction as the polyiodine ion complex. It was possible to produce an optical film laminate (second film (total thickness 40 ⁇ m)) including a PVA layer having a thickness of 5 ⁇ m, constituting a thin polarizer.
  • a transparent protective film made of a (meth) acrylic resin having a lactone ring structure was used.
  • Example 1 1 and 2 a gravure roll coating method 10 (MCD coater (manufactured by Fuji Machine Co., Ltd.)) (cell shape: honeycomb mesh pattern, number of gravure roll cell lines: 1000 / inch, rotation speed) Ratio 140%), and applying the adhesive composition 3 to both the bonding surface of the first film 1 and the bonding surface of the second film 2, the polarizing film is removed while removing foreign substances and bubbles.
  • the second film 2 made of the PET base material and the thin polarizer was coated with the adhesive composition 3 so that the thin polarizer surface became the bonding surface, and the adhesive composition 3 was dried. It applied to the 1st film and the 2nd film so that the thickness of a back adhesive layer might be set to 1 micrometer. Was used with a use foreign matter removal method).
  • an ultraviolet ray (gallium filled metal halide lamp) irradiation device Fusion UV Systems, Inc.
  • Light HAMMER10 bulb V bulb Peak illuminance: 1600 mW / cm 2 , integrated dose
  • the adhesive composition 3 was cured using 1000 / mJ / cm 2 (wavelength 380 to 440 nm) to produce an optical film.
  • the illuminance of ultraviolet rays was measured using a Sola-Check system manufactured by Solatell.
  • Examples 2 to 9 Comparative Examples 1 to 6 Type of adhesive composition for bonding first film and second film, presence / absence of application of adhesive composition to first film and / or second film, type of post-measuring application method, formation pattern of gravure roll surface
  • the optical film was manufactured by the same method as Example 1 except having changed into the thing of Table 1. In the bar coater coating method and the air knife coating method, commercially available coating devices were used.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Polarising Elements (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Liquid Crystal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

A method for producing an optical film which comprises a multilayer structure wherein at least a first film and a second film are bonded with each other with an adhesive layer or bonding agent layer being interposed therebetween, said adhesive layer or bonding agent layer being composed of a layer of a cured product of an adhesive composition or bonding agent composition. This method for producing an optical film comprises a coating step wherein foreign materials and/or air bubbles are removed by applying the adhesive composition or bonding agent composition to both the bonding surface of the first film and the bonding surface of the second film using a post-measurement coating method.

Description

光学フィルムの製造方法、光学フィルムおよび画像表示装置Optical film manufacturing method, optical film, and image display device
 本発明は、接着剤組成物または粘着剤組成物の硬化物層からなる接着剤層または粘着剤層を介して、少なくとも第1フィルムおよび第2フィルムが貼合された積層構造を含む光学フィルムおよびその製造方法に関する。さらには、本発明は、前記光学フィルムを用いた液晶表示装置、有機EL表示装置、PDPなどの画像表示装置に関する。 The present invention provides an optical film including a laminated structure in which at least a first film and a second film are bonded via an adhesive layer or a pressure-sensitive adhesive layer composed of a cured product layer of an adhesive composition or a pressure-sensitive adhesive composition, and It relates to the manufacturing method. Furthermore, the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the optical film.
 時計、携帯電話、PDA、ノートパソコン、パソコン用モニタ、DVDプレーヤー、TVなどでは液晶表示装置が急激に市場展開している。液晶表示装置は、液晶のスイッチングによる偏光状態を可視化させたものであり、その表示原理から、偏光子が用いられる。特に、TVなどの用途では、ますます高輝度、高コントラスト、広い視野角が求められ、偏光フィルムにおいてもますます高透過率、高偏光度、高い色再現性などが求められている。 Liquid crystal display devices are rapidly expanding in the market for watches, mobile phones, PDAs, notebook computers, personal computer monitors, DVD players, TVs, etc. The liquid crystal display device visualizes the polarization state by switching of the liquid crystal, and a polarizer is used from the display principle. In particular, in applications such as TV, higher brightness, higher contrast, and wider viewing angle are required, and polarizing films are also required to have higher transmittance, higher degree of polarization, and higher color reproducibility.
 偏光子としては、高透過率、高偏光度を有することから、例えばポリビニルアルコール(以下、単に「PVA」ともいう)にヨウ素を吸着させ、延伸した構造のヨウ素系偏光子が最も一般的に広く使用されている。一般的に偏光フィルムは、ポリビニルアルコール系の材料を水に溶かしたいわゆる水系接着剤によって、偏光子の両面に透明保護フィルムを貼り合わせたものが用いられてきた。しかしながら、近年になって、乾燥工程が省略可能であり寸法変化が少ないなどのメリットを有することから、水や有機溶剤を含有しない活性エネルギー線硬化型樹脂組成物を使用することが主流になりつつある。 As the polarizer, since it has a high transmittance and a high degree of polarization, for example, an iodine-based polarizer having a stretched structure by adsorbing iodine to polyvinyl alcohol (hereinafter also simply referred to as “PVA”) is most widely used. in use. In general, a polarizing film in which a transparent protective film is bonded to both surfaces of a polarizer by a so-called aqueous adhesive in which a polyvinyl alcohol-based material is dissolved in water has been used. However, in recent years, the use of an active energy ray-curable resin composition that does not contain water or an organic solvent is becoming mainstream because it has advantages such that the drying step can be omitted and the dimensional change is small. is there.
 活性エネルギー線硬化型樹脂組成物を使用して、複数のフィルムを貼合わせて光学フィルムを製造する場合、例えば、透明保護フィルムの貼合面のみに接着剤組成物を塗布し、かかる貼合面側から偏光子などを貼合わせて、積層構造を含む光学フィルムを製造するのが一般的である。しかしながら、従来の製造方法では、接着剤組成物などを塗布する前の偏光子・透明保護フィルムなどの表面にゴミや埃などの異物が付着していたり、接着剤組成物が微小な異物を含んでいる場合、接着剤層に異物が残存することとなり、その結果、外観欠点が発生する場合があった。 When using an active energy ray-curable resin composition to produce an optical film by laminating a plurality of films, for example, the adhesive composition is applied only to the laminating surface of the transparent protective film, and the laminating surface. In general, an optical film including a laminated structure is manufactured by laminating a polarizer or the like from the side. However, in the conventional manufacturing method, foreign matter such as dust or dust adheres to the surface of the polarizer / transparent protective film before application of the adhesive composition or the like, or the adhesive composition contains minute foreign matter. In this case, foreign matters remain in the adhesive layer, and as a result, appearance defects may occur.
 下記特許文献1では、透明支持体上または該透明支持体上に形成した下塗層上に、ウェット塗布量が10mL/m以下である光学機能層を薄層塗布する工程を含む光学フィルムの製造方法において、光学機能層を塗布する前に、高さが10μm以上の異物を透明支持体上または下塗層上から除去する工程を備えた光学フィルムの製造方法が記載されている。 In the following Patent Document 1, an optical film including a step of thinly coating an optical functional layer having a wet coating amount of 10 mL / m 2 or less on a transparent support or an undercoat layer formed on the transparent support. In the manufacturing method, an optical film manufacturing method including a step of removing foreign matters having a height of 10 μm or more from the transparent support or the undercoat layer before applying the optical functional layer is described.
特開2008-180905号公報JP 2008-180905 A
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の技術では、既に透明支持体上などに異物が存在する状態で、カレンダー処理などにより異物を押しつぶして除去することを試みるものであるため、異物の除去精度は高くなく、微小な異物は除去工程後にも残存することとなる。このため、上記特許文献1に記載の技術は、特に厚みが薄く、微小な異物が存在する場合であっても外観欠点が問題となる薄型の光学フィルムの製造方法には適用が困難であるのが実情であった。 However, as a result of investigation by the present inventors, the technique described in Patent Document 1 attempts to crush and remove foreign matters by calendaring or the like in a state where foreign matters already exist on the transparent support or the like. Therefore, the foreign matter removal accuracy is not high, and minute foreign matter remains after the removal step. For this reason, the technique described in Patent Document 1 is difficult to apply to a method for manufacturing a thin optical film in which the appearance defect is a problem even when the thickness is particularly thin and minute foreign matter is present. Was the actual situation.
 本発明は上記実情を考慮の結果、完成されたものであり、その目的は、光学フィルムが薄型であっても、異物および/または気泡に起因した外観欠点の発生が防止された光学フィルムの製造方法を提供することにある。 The present invention has been completed as a result of taking the above circumstances into consideration, and its purpose is to produce an optical film in which appearance defects due to foreign matters and / or bubbles are prevented even when the optical film is thin. It is to provide a method.
 本発明者は前記課題を解決すべく鋭意検討を重ねた結果、少なくとも2枚のフィルムを貼合わせた積層構造を含む光学フィルムを製造する際、特定の塗布方式を採用し、貼り合わせる2枚のフィルムの両方の貼合面に接着剤組成物または粘着剤組成物を塗布することにより、異物および/または気泡の除去と接着剤組成物または粘着剤組成物の塗布とを一度に実施できることを見出した。本発明は、かかる鋭意工夫の結果得られたものであり、下記構成を備える。 As a result of intensive studies to solve the above problems, the present inventor adopts a specific coating method when manufacturing an optical film including a laminated structure in which at least two films are bonded together, It has been found that by applying the adhesive composition or the pressure-sensitive adhesive composition to both bonding surfaces of the film, it is possible to remove foreign substances and / or bubbles and apply the adhesive composition or the pressure-sensitive adhesive composition at a time. It was. The present invention has been obtained as a result of such diligence, and has the following configuration.
 即ち本発明は、接着剤組成物または粘着剤組成物の硬化物層からなる接着剤層または粘着剤層を介して、少なくとも第1フィルムおよび第2フィルムが貼合された積層構造を含む光学フィルムの製造方法であって、後計量塗布方式を用いて、前記第1フィルムの貼合面および前記第2フィルムの貼合面の両方に前記接着剤組成物または前記粘着剤組成物を塗布することにより、異物および/または気泡を除去する塗布工程を有することを特徴とする光学フィルムの製造方法、に関する。 That is, the present invention provides an optical film including a laminated structure in which at least a first film and a second film are bonded via an adhesive layer or a pressure-sensitive adhesive layer comprising a cured product layer of the adhesive composition or the pressure-sensitive adhesive composition. It is a manufacturing method of this, Comprising: Apply | coating the said adhesive composition or the said adhesive composition to both the bonding surface of a said 1st film and the bonding surface of a said 2nd film using a back metering application system. The present invention relates to a method for producing an optical film characterized by having a coating step of removing foreign substances and / or bubbles.
 2枚のフィルムを貼合わせて、積層構造を有する光学フィルムを製造する場合、2枚のフィルムのうち、片方のフィルムに接着剤組成物または粘着剤組成物を塗布し、これにもう片方のフィルムを貼合わせて製造するのが一般的である(以下、「片面塗布方法」とも言う)。しかしながら、本発明においては、第1フィルムの貼合面および第2フィルムの貼合面の両方に接着剤組成物または粘着剤組成物を塗布し、かかる塗布を、後計量塗布方式の塗工方式を用いて、異物および/または気泡を除去しつつ実施する。具体的には、後計量塗布方式を用いて、貼り合わせる2枚のフィルムの両方の貼合面に存在するゴミや埃などの異物を掻き取りつつ、かつ接着剤組成物または粘着剤組成物由来のゲル状物や凝集物をも2枚のフィルムの両方の貼合面から掻き取りつつ、2枚のフィルムの両方の貼合面に接着剤組成物または粘着剤組成物を塗布する。その結果、本発明に係る光学フィルムの製造方法では、2枚のフィルムの両方の貼合面に異物が存在する可能性が極めて低くなる。その結果、本発明に係る光学フィルムの製造方法では、異物に起因した外観欠点の発生が防止された光学フィルムを製造することができる。 When an optical film having a laminated structure is manufactured by laminating two films, an adhesive composition or an adhesive composition is applied to one of the two films, and the other film is applied thereto. Is generally manufactured by bonding (hereinafter, also referred to as “one-side coating method”). However, in the present invention, the adhesive composition or the pressure-sensitive adhesive composition is applied to both the bonding surface of the first film and the bonding surface of the second film, and this application is performed by a coating method of a post-metering application method. Is carried out while removing foreign substances and / or bubbles. Specifically, using a post-measuring coating method, while scraping off foreign matters such as dust and dust present on both bonding surfaces of the two films to be bonded together, and derived from the adhesive composition or pressure-sensitive adhesive composition The adhesive composition or the pressure-sensitive adhesive composition is applied to both the bonding surfaces of the two films while scraping the gel-like materials and aggregates of both from the bonding surfaces of the two films. As a result, in the method for producing an optical film according to the present invention, the possibility that foreign matter exists on both bonding surfaces of the two films is extremely low. As a result, the optical film manufacturing method according to the present invention can manufacture an optical film in which appearance defects due to foreign matters are prevented.
 一方、片面塗布方法では、接着剤組成物または粘着剤組成物を塗布しないフィルムの貼合面に存在する異物を除去できないため、積層後に形成される接着剤層(または粘着剤層)中に異物が残存する可能性が高くなる。加えて、片面塗布方法では、片方のフィルムの接着剤(または粘着剤)塗布面が、もう片方の(接着剤組成物(または粘着剤組成物)が存在しない)フィルムの貼合面と直に接触しつつ貼合わされる。この場合、粘性を有する接着剤組成物(または粘着剤組成物)が、もう片方のフィルムの貼合面に直に接触するため、貼合わせ時に気泡が噛みこみ易い。一方、本発明に係る方法では、第1フィルムの貼合面および第2フィルムの貼合面の両方に接着剤組成物(または粘着剤組成物)を塗布するため、第1フィルムの接着剤(または粘着剤)塗布面が、第2フィルムの接着剤(または粘着剤)塗布面と接触しつつ貼合わされる。つまり、粘性を有する接着剤組成物(または粘着剤組成物)同士が重なりあいながら貼合わされるため、貼合わせ時に気泡が噛みこみ難く、かつ気泡が抜け易くなる。したがって、本発明に係る方法では、片面塗布方法に比べて、気泡除去効果の点でも優れるため、気泡に起因した外観欠点の発生が防止された光学フィルムを製造することができる。 On the other hand, in the single-sided coating method, foreign matter present on the bonding surface of the film to which the adhesive composition or the pressure-sensitive adhesive composition is not applied cannot be removed, so that the foreign matter is formed in the adhesive layer (or pressure-sensitive adhesive layer) formed after lamination. Is likely to remain. In addition, in the single-side coating method, the adhesive (or pressure-sensitive adhesive) coating surface of one film is directly on the bonding surface of the other film (the adhesive composition (or pressure-sensitive adhesive composition) is not present). Laminated while in contact. In this case, since the adhesive composition (or the pressure-sensitive adhesive composition) having viscosity is in direct contact with the bonding surface of the other film, air bubbles are easily caught during bonding. On the other hand, in the method according to the present invention, in order to apply the adhesive composition (or the pressure-sensitive adhesive composition) to both the bonding surface of the first film and the bonding surface of the second film, the adhesive ( Or an adhesive) application surface is bonded together in contact with the adhesive (or adhesive) application surface of the second film. That is, since adhesive compositions (or pressure-sensitive adhesive compositions) having viscosity are bonded together while being overlapped, bubbles are difficult to bite at the time of bonding, and bubbles are easily removed. Therefore, the method according to the present invention is superior in terms of the effect of removing bubbles as compared with the single-side coating method, and thus an optical film in which appearance defects due to bubbles are prevented can be produced.
 なお、本発明において「後計量塗布方式」とは、液膜に外力を与えて過剰液を除去し、所定の塗布膜厚を得る方式を意味する。本発明に係る光学フィルムの製造方法では、接着剤組成物または粘着剤組成物からなる液膜にかかる外力が与えられる際に、貼合面に存在するゴミや埃などの異物などが掻き取られる。後計量塗布方式の具体例としては、グラビアロール塗布方式、フォワードロール塗布方式、エアナイフ塗布方式、ロッド/バー塗布方式などが挙げられるが、異物の除去精度や塗布膜厚の均一性などの観点から、本発明においては、前記塗布方式が、グラビアロールを使用したグラビアロール塗布方式であることが好ましい。また、本発明において「異物および/または気泡を除去」とは、異物および気泡のうち、少なくとも一方または両方を除去することを意味する。 In the present invention, the “post-measuring coating method” means a method for obtaining a predetermined coating film thickness by applying an external force to the liquid film to remove excess liquid. In the method for producing an optical film according to the present invention, when an external force is applied to a liquid film made of an adhesive composition or a pressure-sensitive adhesive composition, foreign matters such as dust and dust existing on the bonding surface are scraped off. . Specific examples of the post-metering coating method include a gravure roll coating method, a forward roll coating method, an air knife coating method, a rod / bar coating method, etc., but from the viewpoints of foreign matter removal accuracy and coating film thickness uniformity In the present invention, the coating method is preferably a gravure roll coating method using a gravure roll. In the present invention, “removing foreign matters and / or bubbles” means removing at least one or both of foreign matters and bubbles.
 上記製造方法において、後計量塗布方式が前記接着剤組成物または粘着剤組成物を循環させて塗布する方式であり、塗布によって前記第1フィルムおよび/または前記第2フィルムから前記接着剤組成物または粘着剤組成物に混入した異物を、前記接着剤組成物または粘着剤組成物から取り除く異物除去機能を備えていることが好ましい。後計量塗布方式では、接着剤組成物または粘着剤組成物からなる塗布液を第1フィルムおよび第2フィルムの貼合面に塗布するが、かかる塗布液が、塗布によって第1フィルムおよび/または第2フィルムの貼合面から除去された異物を含んでいると、塗布後の第1フィルムおよび第2フィルムの貼合面に異物が存在する可能性が高まることになる。しかしながら、使用する塗布方式が、塗布によって第1フィルムおよび/または第2フィルムから接着剤組成物または粘着剤組成物に混入した異物を、接着剤組成物または粘着剤組成物から取り除く異物除去機能を備えている場合、塗布液中の異物量を著しく低減することが可能となる。これにより、塗布後の第1フィルムおよび第2フィルムの貼合面に異物が存在する可能性を著しく低減することができる。 In the above manufacturing method, the post-metering application method is a method of applying the adhesive composition or the pressure-sensitive adhesive composition by circulation, and the adhesive composition or the second film is applied from the first film and / or the second film by application. It is preferable to have a foreign matter removing function for removing foreign matters mixed in the pressure-sensitive adhesive composition from the adhesive composition or the pressure-sensitive adhesive composition. In the post-measuring coating method, a coating liquid composed of an adhesive composition or a pressure-sensitive adhesive composition is applied to the bonding surfaces of the first film and the second film, and the coating liquid is applied to the first film and / or the first film by coating. When the foreign material removed from the bonding surface of 2 films is included, possibility that a foreign material will exist in the bonding surface of the 1st film after application | coating and the 2nd film will increase. However, the coating method used has a foreign matter removing function that removes foreign matter mixed in the adhesive composition or pressure-sensitive adhesive composition from the first film and / or second film by coating from the adhesive composition or pressure-sensitive adhesive composition. If it is provided, the amount of foreign matter in the coating solution can be significantly reduced. Thereby, possibility that a foreign material exists in the bonding surface of the 1st film and 2nd film after application | coating can be reduced significantly.
 上記製造方法において、前記グラビアロールの回転方向と、前記第1フィルムおよび前記第2フィルムの進行方向とが逆方向であることが好ましい。この場合、第1フィルムの貼合面および第2フィルムの貼合面に存在するゴミや埃などの異物、さらには接着剤組成物または粘着剤組成物由来のゲル状物や凝集物を掻き取る効果が効果的に高まり、最終的に得られる光学フィルムの外観欠点をより効果的に防止することができる。 In the above manufacturing method, it is preferable that the rotation direction of the gravure roll and the traveling direction of the first film and the second film are opposite to each other. In this case, foreign matter such as dust and dust existing on the bonding surface of the first film and the bonding surface of the second film, and further, a gel-like material and an aggregate derived from the adhesive composition or the pressure-sensitive adhesive composition are scraped off. The effect is effectively enhanced, and the appearance defect of the optical film finally obtained can be more effectively prevented.
 前記グラビアロールの表面には、種々のパターンを形成可能であり、例えば、ハニカムメッシュパターン、台形パターン、格子パターン、ピラミッドパターンまたは斜線パターンなどが形成可能である。最終的に得られる光学フィルムの外観欠点の発生を効果的に防止するためには、前記グラビアロールの表面に形成されたパターンがハニカムメッシュパターンであることが好ましい。ハニカムメッシュパターンの場合、接着剤組成物または粘着剤組成物塗布後の塗布面の面精度を高めるために、セル容積は1~5cm/mであることが好ましく、2~3cm/mであることが好ましい。同様に、接着剤組成物または粘着剤組成物塗布後の塗布面の面精度を高めるために、ロール1inchあたりのセル線数は200~3000線/inchであることが好ましい。また、前記第1フィルムおよび前記第2フィルムの進行速度に対する、前記グラビアロールの回転速度比が、100~300%であることが好ましい。 Various patterns can be formed on the surface of the gravure roll. For example, a honeycomb mesh pattern, a trapezoid pattern, a lattice pattern, a pyramid pattern, or a diagonal line pattern can be formed. In order to effectively prevent the appearance defect of the optical film finally obtained, the pattern formed on the surface of the gravure roll is preferably a honeycomb mesh pattern. In the case of a honeycomb mesh pattern, the cell volume is preferably 1 to 5 cm 3 / m 2 in order to increase the surface accuracy of the coated surface after application of the adhesive composition or pressure-sensitive adhesive composition, and 2 to 3 cm 3 / m. 2 is preferable. Similarly, the number of cell lines per roll is preferably 200 to 3000 lines / inch in order to increase the surface accuracy of the coated surface after application of the adhesive composition or pressure-sensitive adhesive composition. In addition, the rotation speed ratio of the gravure roll with respect to the traveling speed of the first film and the second film is preferably 100 to 300%.
 ところで、接着剤層(または粘着剤層)の厚み、さらには光学フィルムの総厚みが厚ければ厚いほど、異物が視認されにくくなり、外観欠点は問題視され難い傾向がある。一方、接着剤層(または粘着剤層)の厚みが薄ければ薄いほど、さらには光学フィルムの総厚みが薄ければ薄いほど、異物は視認され易くなり、その結果、外観欠点が問題となる場合が多い。しかしながら、本発明に係る光学フィルムの製造方法では、接着剤層(または粘着剤層)中の異物の発生率が極めて低い光学フィルムが製造可能であるため、光学フィルムの中でも、薄型化の要求が特に大きい偏光フィルムの製造方法、具体的には、前記第1フィルムは透明保護フィルムであり、前記第2フィルムは偏光子である場合に、本発明に係る製造方法は特に有用である。本発明に係る製造方法は、前記偏光子の厚みが10μm以下である場合のように、特に薄型偏光フィルムを製造する場合であっても、接着剤層(または粘着剤層)中において、異物または気泡に起因した外観欠点の発生が防止された薄型偏光フィルムを製造できるため好ましい。 By the way, as the thickness of the adhesive layer (or the pressure-sensitive adhesive layer) and further the total thickness of the optical film are larger, the foreign matter is less likely to be visually recognized, and the appearance defect tends to be less problematic. On the other hand, the thinner the adhesive layer (or pressure-sensitive adhesive layer), and the thinner the total thickness of the optical film, the easier it is to visually recognize foreign matter, and as a result, appearance defects become a problem. There are many cases. However, in the method for producing an optical film according to the present invention, an optical film having a very low incidence of foreign matters in the adhesive layer (or pressure-sensitive adhesive layer) can be produced. The manufacturing method according to the present invention is particularly useful when the manufacturing method of a particularly large polarizing film, specifically, when the first film is a transparent protective film and the second film is a polarizer. In the production method according to the present invention, even in the case of producing a thin polarizing film, particularly when the polarizer has a thickness of 10 μm or less, in the adhesive layer (or the pressure-sensitive adhesive layer), foreign matter or This is preferable because a thin polarizing film in which the occurrence of appearance defects due to bubbles can be prevented can be produced.
 また、本発明は、前記いずれかの製造方法により製造された光学フィルム、さらには前記記載の光学フィルムが用いられていることを特徴とする画像表示装置、に関する。 The present invention also relates to an optical film produced by any one of the production methods described above, and further to an image display device using the optical film described above.
 本発明に係る光学フィルムの製造方法では、貼り合わせる2枚のフィルムの両方の貼合面に存在する異物、および接着剤組成物中または粘着剤組成物中に存在する異物を効率良く除去することが可能であり、かつ気泡が接着剤層中または粘着剤層中に混入することを防止できるため、異物および/または気泡に起因した外観欠点の発生が防止された光学フィルムを製造することができる。したがって、本発明に係る光学フィルムの製造方法は、異物に起因した外観欠点が特に問題になる、接着剤層の厚みが薄い光学フィルム、さらには総厚みが薄い光学フィルム、特には薄型偏光フィルムの製造方法として、特に有効である。 In the method for producing an optical film according to the present invention, foreign matters existing on both bonding surfaces of two films to be bonded, and foreign matters existing in the adhesive composition or the pressure-sensitive adhesive composition are efficiently removed. In addition, since it is possible to prevent air bubbles from being mixed into the adhesive layer or the pressure-sensitive adhesive layer, it is possible to produce an optical film in which appearance defects due to foreign matters and / or air bubbles are prevented. . Therefore, the optical film manufacturing method according to the present invention is particularly problematic in appearance defects due to foreign matters, an optical film having a thin adhesive layer, an optical film having a thin total thickness, particularly a thin polarizing film. This is particularly effective as a manufacturing method.
本発明に係る光学フィルムの製造方法の概略図の一例である。It is an example of the schematic of the manufacturing method of the optical film which concerns on this invention. 本発明に用いる後計量塗布方式であるグラビアロール塗布方式の概略図の一例である。It is an example of the schematic diagram of the gravure roll coating system which is a post-metering coating system used for this invention.
 以下に本発明に係る光学フィルムの製造方法を、図面を参照しながら説明する。 Hereinafter, a method for producing an optical film according to the present invention will be described with reference to the drawings.
 本発明に係る光学フィルムの製造方法は、後計量塗布方式を用いて、第1フィルムの貼合面および第2フィルムの貼合面の両方に接着剤組成物または粘着剤組成物を塗布しつつ、異物を除去する塗布工程を有する。 The manufacturing method of the optical film which concerns on this invention is applying an adhesive composition or an adhesive composition to both the bonding surface of a 1st film and the bonding surface of a 2nd film using a back metering application system. And a coating process for removing foreign matter.
 図1は、本発明に係る光学フィルムの製造方法の概略図の一例を示しており、本実施形態では、後計量塗布方式として、グラビアロールを使用したグラビアロール塗布方式を用い、接着剤組成物を塗布した例を示す。図1中、第1フィルム1はグラビアロール塗布方式10を用いて接着剤組成物3が塗布される時点において、図1中では右方向に向かって搬送されており、一方、グラビア塗布方式10が備えるグラビアロールは時計回りに回転している。つまり、グラビアロールの回転方向と第1フィルムの進行方向とが逆方向となっている。同様に、第2フィルム2とグラビアロールとの関係においても、グラビアロールの回転方向と第2フィルム2の進行方向とが逆方向となっている。この場合、第1フィルム1の貼合面および第2フィルム2の貼合面に存在するゴミや埃などの異物、さらには接着剤組成物由来のゲル状物や凝集物を掻き取る効果が効果的に高まり、最終的に得られる光学フィルムの外観欠点をより効果的に防止することができる。 FIG. 1 shows an example of a schematic diagram of a method for producing an optical film according to the present invention. In this embodiment, a gravure roll coating method using a gravure roll is used as a post-measuring coating method, and an adhesive composition is used. An example in which is applied. In FIG. 1, the first film 1 is conveyed rightward in FIG. 1 when the adhesive composition 3 is applied using the gravure roll coating method 10, while the gravure coating method 10 is The gravure roll provided is rotating clockwise. That is, the rotation direction of the gravure roll and the traveling direction of the first film are opposite to each other. Similarly, also in the relationship between the second film 2 and the gravure roll, the rotation direction of the gravure roll and the traveling direction of the second film 2 are opposite to each other. In this case, the effect of scraping off foreign matters such as dust and dust existing on the bonding surface of the first film 1 and the bonding surface of the second film 2, and further the gel-like material and aggregate derived from the adhesive composition is effective. The appearance defect of the optical film finally obtained can be prevented more effectively.
 最終的に得られる光学フィルムの外観欠点をさらに効果的に防止するためには、第1フィルム1および第2フィルム2の進行速度に対する、グラビアロールの回転速度が、100~300%であることが好ましく、150~250%であることが好ましい。 In order to more effectively prevent the appearance defect of the optical film finally obtained, the rotation speed of the gravure roll with respect to the traveling speed of the first film 1 and the second film 2 is 100 to 300%. Preferably, it is 150 to 250%.
 図2は、本発明に用いる後計量塗布方式であるグラビアロール塗布方式の概略図の一例を示し、特にはグラビア塗布方式10を用いて、第1フィルム1に接着剤組成物3が塗布される様子を表している。図2に示すとおり、第1フィルム1に対し、グラビアロール4を押し当てつつ異物を除去すると、第1フィルム1の貼合面に存在するゴミや埃などの異物、さらには接着剤組成物由来のゲル状物や凝集物をより効果的に除去することができる。 FIG. 2 shows an example of a schematic diagram of a gravure roll coating method, which is a post-metering coating method used in the present invention. In particular, the adhesive composition 3 is applied to the first film 1 using the gravure coating method 10. It represents the situation. As shown in FIG. 2, when the foreign matter is removed while pressing the gravure roll 4 against the first film 1, the foreign matter such as dust and dust existing on the bonding surface of the first film 1, and further, the adhesive composition is derived. It is possible to more effectively remove the gel-like and aggregates.
 図2に示すとおり、グラビア塗布方式10はグラビアロール4を少なくとも備える。グラビアロールの表面には、ハニカムメッシュパターン、台形パターン、格子パターン、ピラミッドパターンまたは斜線パターンなどの凹凸パターンが形成されている。接着剤組成物または粘着剤組成物塗布後の塗布面の面精度を高めるためには、ハニカムメッシュパターンが形成されていることが好ましく、セル容積は1~5cm/mであることが好ましく、2~3cm/mであることが好ましい。同様に、接着剤組成物または粘着剤組成物塗布後の塗布面の面精度を高めるために、ロール1inchあたりのセル線数は200~3000線/inchであることが好ましい。グラビアロール4の凹凸パターンは、接着剤組成物(塗布液)3を掻き上げつつ、第1フィルムの貼合面に接着剤組成物3を塗布する機能を有する。本発明においては、接着剤組成物3中に異物が混入することを防止するため、接着剤塗布液が外気に曝されない密閉系であることが好ましい。 As shown in FIG. 2, the gravure coating method 10 includes at least a gravure roll 4. On the surface of the gravure roll, an uneven pattern such as a honeycomb mesh pattern, trapezoid pattern, lattice pattern, pyramid pattern or oblique line pattern is formed. In order to increase the surface accuracy of the coated surface after application of the adhesive composition or pressure-sensitive adhesive composition, a honeycomb mesh pattern is preferably formed, and the cell volume is preferably 1 to 5 cm 3 / m 2. It is preferably 2 to 3 cm 3 / m 2 . Similarly, the number of cell lines per roll is preferably 200 to 3000 lines / inch in order to increase the surface accuracy of the coated surface after application of the adhesive composition or pressure-sensitive adhesive composition. The concavo-convex pattern of the gravure roll 4 has a function of applying the adhesive composition 3 to the bonding surface of the first film while scraping the adhesive composition (coating liquid) 3. In the present invention, in order to prevent foreign matters from being mixed into the adhesive composition 3, it is preferably a closed system in which the adhesive coating liquid is not exposed to the outside air.
 図2に示す例では塗布の際、第1フィルム1の貼合面に存在する異物、さらには接着剤組成物3由来のゲル状物や凝集物は、グラビアロール4により掻き取られ、接着剤組成物3の入った容器5内に移動し、再度、グラビアロール4により第1フィルムの貼合面に塗布される場合がある。したがって、特に後計量塗布方式が接着剤組成物または粘着剤組成物を循環させて塗布する方式である場合、接着剤組成物3の塗布工程が長時間となるに連れて、グラビアロール4により掻き取られた異物などの蓄積量は増大することが懸念される。しかしながら、グラビア塗布方式10が、塗布によって第1フィルムおよび/または第2フィルムから接着剤組成物または粘着剤組成物に混入した異物を、接着剤組成物または粘着剤組成物から取り除く異物除去機能を備えている場合、塗布する接着剤組成物3中に存在する異物などの量は常に極微量乃至ゼロに保たれる。したがって、最終的に、第1フィルム1の貼合面上における異物などの発生量を極めて低減することができる。本発明において、異物除去機能としてはフィルター、蒸留装置、遠心分離などが挙げられる。異物除去機能としてフィルターを使用する場合、図2に示すとおり、例えばポンプ機能8の下流側にフィルター7を配置可能である。また、ポンプ機能8の上流側にフィルター7を配置することもできるし、その数は問わない。フィルター7のメッシュサイズは、第1フィルム1および第2フィルムの材質や接着剤組成物3の配合設計などにより適宜変更可能であるが、10μm以下が好ましく、5μm以下がより好ましい。接着剤組成物3は、図2に示すとおりタンク6などを使用して、循環させても良いし、グラビアロール4により塗布された後の接着剤組成物3は破棄しても良い。 In the example shown in FIG. 2, the foreign matter existing on the bonding surface of the first film 1, and further the gel-like substance and aggregate derived from the adhesive composition 3 are scraped off by the gravure roll 4 during the application, and the adhesive It moves in the container 5 containing the composition 3 and may be applied again to the bonding surface of the first film by the gravure roll 4. Therefore, particularly when the post-measuring application method is a method in which the adhesive composition or the pressure-sensitive adhesive composition is circulated and applied, the gravure roll 4 is scraped as the application process of the adhesive composition 3 becomes longer. There is a concern that the amount of accumulated foreign matter and the like taken will increase. However, the gravure coating method 10 has a foreign matter removing function for removing foreign matters mixed in the adhesive composition or the pressure-sensitive adhesive composition from the first film and / or the second film by coating from the adhesive composition or the pressure-sensitive adhesive composition. In the case where it is provided, the amount of foreign matter or the like present in the applied adhesive composition 3 is always kept from a very small amount to zero. Therefore, finally, the generation amount of foreign matters and the like on the bonding surface of the first film 1 can be extremely reduced. In the present invention, the foreign matter removing function includes a filter, a distillation apparatus, and centrifugal separation. When a filter is used as the foreign matter removing function, for example, the filter 7 can be arranged on the downstream side of the pump function 8 as shown in FIG. Moreover, the filter 7 can also be arrange | positioned in the upstream of the pump function 8, and the number does not ask | require. The mesh size of the filter 7 can be appropriately changed depending on the material of the first film 1 and the second film, the blending design of the adhesive composition 3, and the like, preferably 10 μm or less, and more preferably 5 μm or less. The adhesive composition 3 may be circulated using a tank 6 or the like as shown in FIG. 2, or the adhesive composition 3 after being applied by the gravure roll 4 may be discarded.
 図1に示す後計量塗布方式の塗布方式により、第1フィルム1の貼合面および第2フィルム2の貼合面の両方に接着剤組成物3が塗布された後、例えばニップロール9を用いて第1フィルム1と第2フィルム2とが接着剤組成物(接着剤層)を介して貼合される。 After the adhesive composition 3 is applied to both the bonding surface of the first film 1 and the bonding surface of the second film 2 by the application method of the post-metering application method shown in FIG. 1, for example, using a nip roll 9. The 1st film 1 and the 2nd film 2 are bonded through an adhesive composition (adhesive layer).
 光学フィルムを連続ラインで製造する場合、第1フィルムおよび/または第2フィルムのライン速度は、接着剤組成物(または粘着剤組成物)の硬化時間によるが、好ましくは1~500m/min、より好ましくは5~300m/min、さらに好ましくは10~100m/minである。ライン速度が小さすぎる場合は、生産性が乏しい、または第1フィルム/およびまたは第2フィルムへのダメージが大きすぎ、耐久性試験などに耐えうる光学フィルムが作製できない。ライン速度が大きすぎる場合は、接着剤組成物の硬化が不十分となり、目的とする接着性が得られない場合がある。 When the optical film is produced in a continuous line, the line speed of the first film and / or the second film depends on the curing time of the adhesive composition (or the pressure-sensitive adhesive composition), but is preferably 1 to 500 m / min. Preferably, it is 5 to 300 m / min, and more preferably 10 to 100 m / min. If the line speed is too low, the productivity is poor, or the damage to the first film / and / or the second film is too great to produce an optical film that can withstand a durability test. If the line speed is too high, the adhesive composition may not be sufficiently cured, and the target adhesiveness may not be obtained.
 次に、本発明に係る製造方法により製造される光学フィルムについて以下に説明する。かかる光学フィルムは、接着剤組成物または粘着剤組成物の硬化物層からなる接着剤層または粘着剤層を介して、少なくとも第1フィルムおよび第2フィルムが貼合された積層構造を含む。 Next, the optical film manufactured by the manufacturing method according to the present invention will be described below. Such an optical film includes a laminated structure in which at least a first film and a second film are bonded via an adhesive layer or an adhesive layer composed of a cured product layer of an adhesive composition or an adhesive composition.
 <接着剤層または粘着剤層>
 前記接着剤層または粘着剤層は光学的に透明であれば、特に制限されず水系、溶剤系、ホットメルト系、ラジカル硬化型の各種形態のものが用いられる。光学フィルムとして、透明導電性積層体または偏光フィルムを製造する場合には、透明硬化型接着剤層を好適である。
<Adhesive layer or pressure-sensitive adhesive layer>
The adhesive layer or the pressure-sensitive adhesive layer is not particularly limited as long as it is optically transparent, and water-based, solvent-based, hot-melt, and radical-curing types are used. When producing a transparent conductive laminate or a polarizing film as the optical film, a transparent curable adhesive layer is suitable.
 <透明硬化型接着剤層>
 透明硬化型接着剤層に形成には、接着剤組成物として、例えばラジカル硬化型接着剤が好適に用いられる。ラジカル硬化型接着剤としては、電子線硬化型、紫外線硬化型などの活性エネルギー線硬化型の接着剤を例示できる。特に短時間で硬化可能な、活性エネルギー線硬化型が好ましく、さらには低エネルギーで硬化可能な紫外線硬化型接着剤が好ましい。
<Transparent curable adhesive layer>
For forming the transparent curable adhesive layer, for example, a radical curable adhesive is suitably used as the adhesive composition. Examples of the radical curable adhesive include active energy ray curable adhesives such as an electron beam curable adhesive and an ultraviolet curable adhesive. In particular, an active energy ray curable adhesive that can be cured in a short time is preferable, and an ultraviolet curable adhesive that can be cured with low energy is more preferable.
 紫外線硬化型接着剤としては、大きくラジカル重合硬化型接着剤とカチオン重合型接着剤に区分出来る。その他、ラジカル重合硬化型接着剤は熱硬化型接着剤として用いることができる。 UV curing adhesives can be broadly classified into radical polymerization curing adhesives and cationic polymerization adhesives. In addition, the radical polymerization curable adhesive can be used as a thermosetting adhesive.
 ラジカル重合硬化型接着剤の硬化性成分としては、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物が挙げられる。これら硬化性成分は、単官能または二官能以上のいずれも用いることができる。またこれら硬化性成分は、1種を単独で、または2種以上を組み合わせて用いることができる。これら硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物が好適である。 Examples of the curable component of the radical polymerization curable adhesive include a compound having a (meth) acryloyl group and a compound having a vinyl group. These curable components may be monofunctional or bifunctional or higher. Moreover, these curable components can be used individually by 1 type or in combination of 2 or more types. As these curable components, for example, compounds having a (meth) acryloyl group are suitable.
 (メタ)アクリロイル基を有する化合物としては、具体的には例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類が挙げられる。 Specific examples of the compound having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and 2-methyl-2-nitro. Propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) Acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate 4-methyl-2 Propyl pentyl (meth) acrylate, n- octadecyl (meth) (meth) acrylic acid (1-20 carbon atoms) such as acrylates alkyl esters.
 また、(メタ)アクリロイル基を有する化合物としては、例えば、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)等が挙げられる。 Examples of the compound having a (meth) acryloyl group include cycloalkyl (meth) acrylate (for example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.), aralkyl (meth) acrylate (for example, benzyl (meth)). Acrylates), polycyclic (meth) acrylates (eg 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl -2-norbornylmethyl (meth) acrylate, etc.), hydroxyl group-containing (meth) acrylic acid esters (eg, hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxypropylmethyl) -Butyl (meth) methacrylate), alkoxy group or phenoxy group-containing (meth) acrylic acid esters (2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate) , 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, etc.), epoxy group-containing (meth) acrylic acid esters (eg glycidyl (meth) acrylate, etc.), halogen-containing (Meth) acrylic acid esters (for example, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl) Pill (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate), alkylaminoalkyl (meth) acrylates (e.g., dimethylaminoethyl (meth) acrylate, etc.) and the like.
 また、前記以外の(メタ)アクリロイル基を有する化合物としては、ヒドロキシエチルアクリルアミド、N-メチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、(メタ)アクリルアミド等のアミド基含有モノマー等が挙げられる。また、アクリロイルモルホリン等の窒素含有モノマー等が挙げられる。 Examples of compounds having a (meth) acryloyl group other than the above include amide group-containing monomers such as hydroxyethyl acrylamide, N-methylol acrylamide, N-methoxymethyl acrylamide, N-ethoxymethyl acrylamide, and (meth) acrylamide. It is done. Moreover, nitrogen-containing monomers, such as acryloyl morpholine, etc. are mentioned.
 また、前記ラジカル重合硬化型接着剤の硬化性成分としては、(メタ)アクリロイル基、ビニル基等の重合性二重結合を複数個有する化合物を例示することができ、当該化合物は、架橋成分として接着剤成分に混合することもできる。かかる架橋成分になる硬化性成分としては、例えば、トリプロピレングリコールジアクリレート、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、環状トリメチロールプロパンフォルマルアクリレート、ジオキサングリコールジアクリレート、EO変性ジグリセリンテトラアクリレート、アロニックスM-220(東亞合成社製)、ライトアクリレート1,9ND-A(共栄社化学社製)、ライトアクリレートDGE-4A(共栄社化学社製)、ライトアクリレートDCP-A(共栄社化学社製)、SR-531(Sartomer社製)、CD-536(Sartomer社製)等が挙げられる。また必要に応じて、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマー等が挙げられる。 Examples of the curable component of the radical polymerization curable adhesive include compounds having a plurality of polymerizable double bonds such as a (meth) acryloyl group and a vinyl group, and the compound can be used as a crosslinking component. It can also be mixed with the adhesive component. Examples of the curable component that becomes such a crosslinking component include tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecane dimethanol diacrylate, cyclic trimethylolpropane formal acrylate, dioxane glycol diacrylate, and EO. Modified diglycerin tetraacrylate, Aronix M-220 (manufactured by Toagosei Co., Ltd.), light acrylate 1,9ND-A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DCP-A (kyoeisha) Chemical), SR-531 (Sartomer), CD-536 (Sartomer) and the like. Moreover, various epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, various (meth) acrylate monomers, and the like are included as necessary.
 ラジカル重合硬化型接着剤は、前記硬化性成分を含むが、前記成分に加えて、硬化のタイプに応じて、ラジカル重合開始剤を添加する。前記接着剤を電子線硬化型で用いる場合には、前記接着剤にはラジカル重合開始剤を含有させることは特に必要ではないが、紫外線硬化型、熱硬化型で用いる場合には、ラジカル重合開始剤が用いられる。ラジカル重合開始剤の使用量は硬化性成分100重量部あたり、通常0.1~10重量部程度、好ましくは、0.5~3重量部である。また、ラジカル重合硬化型接着剤には、必要に応じて、カルボニル化合物などで代表される電子線による硬化速度や感度を上がる光増感剤を添加することもできる。光増感剤の使用量は硬化性成分100重量部あたり、通常0.001~10重量部程度、好ましくは、0.01~3重量部である。 The radical polymerization curable adhesive contains the curable component, and in addition to the component, a radical polymerization initiator is added according to the type of curing. When the adhesive is used as an electron beam curable type, it is not particularly necessary that the adhesive contains a radical polymerization initiator, but when it is used as an ultraviolet curable type or a thermosetting type, radical polymerization is started. An agent is used. The amount of the radical polymerization initiator used is usually about 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight per 100 parts by weight of the curable component. Moreover, the radical polymerization curable adhesive may be added with a photosensitizer that increases the curing speed and sensitivity of the electron beam typified by a carbonyl compound, if necessary. The amount of the photosensitizer used is usually about 0.001 to 10 parts by weight, preferably 0.01 to 3 parts by weight per 100 parts by weight of the curable component.
 カチオン重合硬化型接着剤の硬化性成分としては、エポキシ基やオキセタニル基を有する化合物が挙げられる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物等が例として挙げられる。 Examples of the curable component of the cationic polymerization curable adhesive include compounds having an epoxy group or an oxetanyl group. The compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used. As a preferable epoxy compound, a compound having at least two epoxy groups and at least one aromatic ring in the molecule, or at least two epoxy groups in the molecule, at least one of which has an alicyclic ring. Examples thereof include a compound formed between two adjacent carbon atoms constituting it.
 また、透明硬化型接着剤層を形成には、水系の硬化型接着剤として、例えば、ビニルポリマー系、ゼラチン系、ビニル系ラテックス系、ポリウレタン系、イソシアネート系、ポリエステル系、エポキシ系等を例示できる。このような水系接着剤からなる接着剤層は、水溶液の塗布乾燥層などとして形成しうるが、その水溶液の調製に際しては、必要に応じて、架橋剤や他の添加剤、酸等の触媒も配合することができる。 For forming the transparent curable adhesive layer, examples of the water-based curable adhesive include vinyl polymer, gelatin, vinyl latex, polyurethane, isocyanate, polyester, and epoxy. . Such an adhesive layer composed of an aqueous adhesive can be formed as an aqueous solution coating / drying layer, etc., but when preparing the aqueous solution, a catalyst such as a crosslinking agent, other additives, and an acid can be used as necessary. Can be blended.
 前記水系接着剤としては、ビニルポリマーを含有する接着剤などを用いることが好ましく、ビニルポリマーとしては、ポリビニルアルコール系樹脂が好ましい。またポリビニルアルコール系樹脂としては、アセトアセチル基を有するポリビニルアルコール系樹脂を含む接着剤が耐久性を向上させる点からより好ましい。また、ポリビニルアルコール系樹脂に配合できる架橋剤としては、ポリビニルアルコール系樹脂と反応性を有する官能基を少なくとも2つ有する化合物が好ましく使用できる。例えば、ホウ酸やホウ砂、カルボン酸化合物、アルキルジアミン類;イソシアネート類;エポキシ類;モノアルデヒド類;ジアルデヒド類;アミノ-ホルムアルデヒド樹脂;さらに二価金属、または三価金属の塩およびその酸化物が挙げられる。 The water-based adhesive is preferably an adhesive containing a vinyl polymer, and the vinyl polymer is preferably a polyvinyl alcohol resin. Moreover, as a polyvinyl alcohol-type resin, the adhesive agent containing the polyvinyl alcohol-type resin which has an acetoacetyl group is more preferable from the point which improves durability. Moreover, as a crosslinking agent which can be mix | blended with a polyvinyl alcohol-type resin, the compound which has at least two functional groups reactive with a polyvinyl alcohol-type resin can be used preferably. For example, boric acid and borax, carboxylic acid compounds, alkyl diamines; isocyanates; epoxies; monoaldehydes; dialdehydes; amino-formaldehyde resins; and divalent or trivalent metal salts and oxides thereof Is mentioned.
 前記硬化型接着剤層を形成する接着剤は、必要であれば適宜添加剤を含むものであっても良い。添加剤の例としては、シランカップリング剤、チタンカップリング剤等のカップリング剤、エチレンオキシドで代表される接着促進剤、透明フィルムとの濡れ性を向上させる添加剤、アクリロキシ基化合物や炭化水素系(天然、合成樹脂)などに代表され、機械的強度や加工性などを向上させる添加剤、紫外線吸収剤、老化防止剤、染料、加工助剤、イオントラップ剤、酸化防止剤、粘着付与剤、充填剤(金属化合物フィラー以外)、可塑剤、レベリング剤、発泡抑制剤、帯電防止割、耐熱安定剤、耐加水分解安定剤等の安定剤等が挙げられる。 The adhesive that forms the curable adhesive layer may contain an additive as necessary. Examples of additives include coupling agents such as silane coupling agents and titanium coupling agents, adhesion promoters typified by ethylene oxide, additives that improve wettability with transparent films, acryloxy group compounds and hydrocarbons (Natural and synthetic resins) and other additives that improve mechanical strength and processability, UV absorbers, anti-aging agents, dyes, processing aids, ion trapping agents, antioxidants, tackifiers, Stabilizers such as fillers (other than metal compound fillers), plasticizers, leveling agents, foaming inhibitors, antistatic cracks, heat stabilizers, hydrolysis stabilizers, and the like.
 また、前記透明硬化型接着剤層の厚さは、0.01~10μmであることが好ましい。より好ましくは、0.1~5μm、さらに好ましくは0.3~4μmである。なお異物または気泡に由来する外観欠点の各フィルム層間における高さは一般に(2~5μm程度の)数μmであるため、接着剤層の厚さが2μm以下であると、外観欠点の問題が大きくなる。しかしながら、本発明に係る光学フィルムの製造方法では、外観欠点の発生を防止できるため、接着剤層の厚さが2μm以下である光学フィルムの製造方法として特に有用である。 The thickness of the transparent curable adhesive layer is preferably 0.01 to 10 μm. More preferably, it is 0.1 to 5 μm, and still more preferably 0.3 to 4 μm. Since the height between each film layer of appearance defects due to foreign matters or bubbles is generally several μm (about 2 to 5 μm), if the thickness of the adhesive layer is 2 μm or less, the problem of appearance defects is significant. Become. However, since the optical film manufacturing method according to the present invention can prevent appearance defects, it is particularly useful as a method for manufacturing an optical film having an adhesive layer thickness of 2 μm or less.
 前記粘着剤層は、粘着剤から形成される。粘着剤としては各種の粘着剤を用いることができ、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などが挙げられる。前記粘着剤の種類に応じて粘着性のベースポリマーが選択される。前記粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れる点から、アクリル系粘着剤が好ましく使用される。 The pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive. Various pressure-sensitive adhesives can be used as the pressure-sensitive adhesive, such as rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, polyvinylpyrrolidone-based pressure-sensitive adhesives, Examples include acrylamide-based adhesives and cellulose-based adhesives. An adhesive base polymer is selected according to the type of the adhesive. Among the pressure-sensitive adhesives, acrylic pressure-sensitive adhesives are preferably used because they are excellent in optical transparency, exhibit appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and are excellent in weather resistance and heat resistance. The
 ラジカル重合硬化型接着剤は、電子線硬化型、紫外線硬化型の態様で用いることができる。 The radical polymerization curable adhesive can be used in an electron beam curable type or an ultraviolet curable type.
 電子線硬化型において、電子線の照射条件は、上記ラジカル重合硬化型接着剤組成物を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて、透明保護フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、透明保護フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。 In the electron beam curable type, any appropriate condition can be adopted as the electron beam irradiation condition as long as the radical polymerization curable adhesive composition can be cured. For example, in the electron beam irradiation, the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong and damages the transparent protective film and the polarizer. There is a risk of giving. The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. When the irradiation dose is less than 5 kGy, the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the transparent protective film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. I can't.
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。透明保護フィルムの材料によるが、酸素を適宜導入することによって、最初に電子線があたる透明保護フィルム面にあえて酸素阻害を生じさせ、透明保護フィルムへのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。 The electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition where a little oxygen is introduced. Depending on the material of the transparent protective film, by appropriately introducing oxygen, the transparent protective film surface where the electron beam first hits can be obstructed to prevent oxygen damage and prevent damage to the transparent protective film. An electron beam can be irradiated efficiently.
 一方、紫外線硬化型において、紫外線吸収能を付与した透明保護フィルムを使用する場合、およそ380nmより短波長の光を吸収するため、380nmより短波長の光は活性エネルギー線硬化型接着剤組成物に到達しないため、その重合反応に寄与しない。さらに、透明保護フィルムによって吸収された380nmより短波長の光は熱に変換され、透明保護フィルム自体が発熱し、偏光フィルムのカール・シワなど不良の原因となる。そのため、本発明において紫外線硬化型を採用する場合、紫外線発生装置として380nmより短波長の光を発光しない装置を使用することが好ましく、より具体的には、波長範囲380~440nmの積算照度と波長範囲250~370nmの積算照度との比が100:0~100:50であることが好ましく、100:0~100:40であることがより好ましい。このような積算照度の関係を満たす紫外線としては、ガリウム封入メタルハライドランプ、波長範囲380~440nmを発光するLED光源が好ましい。あるいは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザーまたは太陽光を光源とし、バンドパスフィルターを用いて380nmより短波長の光を遮断して用いることもできる。 On the other hand, in the case of using a transparent protective film imparted with ultraviolet absorbing ability in the ultraviolet curable type, light having a wavelength shorter than about 380 nm is absorbed. Therefore, light having a wavelength shorter than 380 nm is applied to the active energy ray curable adhesive composition. Since it does not reach, it does not contribute to the polymerization reaction. Furthermore, light having a wavelength shorter than 380 nm absorbed by the transparent protective film is converted into heat, and the transparent protective film itself generates heat, which causes defects such as curling and wrinkling of the polarizing film. Therefore, when the ultraviolet curable type is adopted in the present invention, it is preferable to use a device that does not emit light having a wavelength shorter than 380 nm as the ultraviolet ray generating device, and more specifically, the integrated illuminance and wavelength in the wavelength range of 380 to 440 nm. The ratio with the integrated illuminance in the range of 250 to 370 nm is preferably 100: 0 to 100: 50, and more preferably 100: 0 to 100: 40. As the ultraviolet ray satisfying such a relationship of integrated illuminance, a gallium-filled metal halide lamp and an LED light source that emits light in the wavelength range of 380 to 440 nm are preferable. Alternatively, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight as the light source, It is also possible to use a light having a wavelength shorter than 380 nm by using a band pass filter.
 第1フィルムおよび/または第2フィルムは、透明な光学用フィルムであれば、特に制限なく使用可能である。前記のとおり、接着剤層(または粘着剤層)の厚み、さらには光学フィルムの総厚みが厚ければ厚いほど、異物が視認されにくくなり、外観欠点は問題視され難い傾向がある。一方、接着剤層(または粘着剤層)の厚みが薄ければ薄いほど、さらには光学フィルムの総厚みが薄ければ薄いほど、異物は視認され易くなり、その結果、外観欠点が問題となる場合が多い。しかしながら、本発明に係る光学フィルムの製造方法では、接着剤層(または粘着剤層)中の異物の発生率が極めて低い光学フィルムが製造可能であるため、光学フィルムの中でも、薄型化の要求が特に大きい偏光フィルムの製造方法、具体的には、前記第1フィルムは透明保護フィルムであり、前記第2フィルムは偏光子である場合に、本発明に係る製造方法は特に有用である。本発明に係る製造方法は、前記偏光子の厚みが10μm以下である場合のように、特に薄型偏光フィルムを製造する場合であっても、接着剤層(または粘着剤層)中において、異物または気泡に起因した外観欠点の発生が防止された薄型偏光フィルムを製造できるため好ましい。 The first film and / or the second film can be used without particular limitation as long as it is a transparent optical film. As described above, the greater the thickness of the adhesive layer (or the pressure-sensitive adhesive layer) and the greater the total thickness of the optical film, the more difficult it is to visually recognize foreign matter, and the appearance defects tend to be less problematic. On the other hand, the thinner the adhesive layer (or pressure-sensitive adhesive layer), and the thinner the total thickness of the optical film, the easier it is to visually recognize foreign matter, and as a result, appearance defects become a problem. There are many cases. However, in the method for producing an optical film according to the present invention, an optical film having a very low incidence of foreign matters in the adhesive layer (or pressure-sensitive adhesive layer) can be produced. The manufacturing method according to the present invention is particularly useful when the manufacturing method of a particularly large polarizing film, specifically, when the first film is a transparent protective film and the second film is a polarizer. In the production method according to the present invention, even in the case of producing a thin polarizing film, particularly when the polarizer has a thickness of 10 μm or less, in the adhesive layer (or the pressure-sensitive adhesive layer), foreign matter or This is preferable because a thin polarizing film in which the occurrence of appearance defects due to bubbles can be prevented can be produced.
 第1フィルムおよび/または第2フィルムは、上記活性エネルギー線硬化型接着剤組成物を塗布する前に、表面改質処理を行ってもよい。具体的な処理としては、コロナ処理、プラズマ処理、ケン化処理による処理などが挙げられる。 The first film and / or the second film may be subjected to a surface modification treatment before applying the active energy ray-curable adhesive composition. Specific examples of the treatment include corona treatment, plasma treatment, and saponification treatment.
 なお本発明に係る光学フィルムの製造方法では、第1フィルムと第2フィルムとが、好適には上記ラジカル重合硬化型接着剤組成物の硬化物層により形成された接着剤層を介して貼り合されるが、第1フィルムと第2フィルムとの間には、易接着層を設けることができる。易接着層は、例えば、ポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格、ポリウレタン骨格、シリコーン系、ポリアミド骨格、ポリイミド骨格、ポリビニルアルコール骨格などを有する各種樹脂により形成することができる。これらポリマー樹脂は1種を単独で、または2種以上を組み合わせて用いることができる。また易接着層の形成には他の添加剤を加えてもよい。具体的にはさらには粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤などの安定剤などを用いてもよい。 In the method for producing an optical film according to the present invention, the first film and the second film are preferably bonded via an adhesive layer formed by a cured product layer of the radical polymerization curable adhesive composition. However, an easy-adhesion layer can be provided between the first film and the second film. The easy adhesion layer can be formed of, for example, various resins having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a silicone-based, a polyamide skeleton, a polyimide skeleton, a polyvinyl alcohol skeleton, and the like. These polymer resins can be used alone or in combination of two or more. Moreover, you may add another additive for formation of an easily bonding layer. Specifically, a stabilizer such as a tackifier, an ultraviolet absorber, an antioxidant, and a heat resistance stabilizer may be used.
 易接着層の形成は、易接着層の形成材をフィルム上に、公知の技術により塗布、乾燥することにより行われる。易接着層の形成材は、乾燥後の厚み、塗布の円滑性などを考慮して適当な濃度に希釈した溶液として、通常調整される。易接着層は乾燥後の厚みは、好ましくは0.01~5μm、さらに好ましくは0.02~2μm、さらに好ましくは0.05~1μmである。なお、易接着層は複数層設けることができるが、この場合にも、易接着層の総厚みは上記範囲になるようにするのが好ましい。 The easy-adhesion layer is formed by applying and drying a material for forming the easy-adhesion layer on a film by a known technique. The material for forming the easy-adhesion layer is usually adjusted as a solution diluted to an appropriate concentration in consideration of thickness after drying, smoothness of application, and the like. The thickness of the easy-adhesion layer after drying is preferably 0.01 to 5 μm, more preferably 0.02 to 2 μm, and still more preferably 0.05 to 1 μm. Note that a plurality of easy-adhesion layers can be provided, but also in this case, the total thickness of the easy-adhesion layers is preferably in the above range.
 以下に、光学フィルムとして偏光フィルムを例に挙げて説明する。少なくとも第1フィルムおよび第2フィルムが貼合された積層構造を含む偏光フィルムは、例えば図1において、透明保護フィルムである第1フィルム1と、透明保護フィルムまたはPET基材などの上に、必要に応じて接着剤層を介して偏光子が積層された積層第2フィルム2とを、接着剤組成物の硬化物層からなる接着剤層を介して貼り合わせることにより製造することができる。本実施形態では、積層第2フィルム2の偏光子面を貼合面とし、かかる貼合面に接着剤組成物を塗布した例を示す。 Hereinafter, a polarizing film will be described as an example of the optical film. For example, in FIG. 1, a polarizing film including a laminated structure in which at least a first film and a second film are bonded is necessary on the first film 1 that is a transparent protective film and the transparent protective film or the PET base material. Accordingly, the laminated second film 2 in which a polarizer is laminated via an adhesive layer can be produced by bonding them together via an adhesive layer made of a cured product layer of the adhesive composition. In this embodiment, the polarizer surface of the laminated second film 2 is used as a bonding surface, and an example in which the adhesive composition is applied to the bonding surface is shown.
 本発明に係る製造方法では、効果的に接着剤層における異物の発生が防止された光学フィルムを製造することができるため、異物に起因した外観欠点が大きな問題となり得る、特に厚みの薄い光学フィルムを製造するのに適している。したがって、第1フィルムおよび第2フィルム(本実施形態では、第1フィルムは保護フィルム、第2フィルムはPET基材+偏光子の積層フィルム)の厚みは、60μm以下であることが好ましく、40μm以下であることがより好ましい。なお、偏光フィルムの総厚みが100μm以下であると、厚みが薄いため接着剤層の異物などに起因した外観欠点が問題となる場合が多い。しかしながら、本発明に係る製造方法では、効果的に接着剤層における異物の発生が防止された光学フィルムを製造することができるため、総厚みが100μm以下である薄型偏光フィルムを製造する場合、特には総厚みが50μm以下である薄型偏光フィルムを製造する場合に好適である。本発明において薄型偏光フィルムを製造する場合、特に厚みが10μm以下である薄型偏光子を含む薄型偏光フィルムを製造する場合であっても、外観欠点の発生を効果的に防止することができる。 In the production method according to the present invention, an optical film in which the generation of foreign matters in the adhesive layer can be effectively prevented can be produced, so that the appearance defect due to the foreign matters can be a big problem. Suitable for manufacturing. Therefore, the thickness of the first film and the second film (in this embodiment, the first film is a protective film, and the second film is a laminated film of a PET base material and a polarizer) is preferably 60 μm or less, and 40 μm or less. It is more preferable that In addition, when the total thickness of the polarizing film is 100 μm or less, since the thickness is thin, appearance defects due to foreign matters in the adhesive layer often become a problem. However, in the manufacturing method according to the present invention, an optical film in which the generation of foreign matters in the adhesive layer can be effectively prevented can be manufactured. Therefore, when manufacturing a thin polarizing film having a total thickness of 100 μm or less, particularly Is suitable for producing a thin polarizing film having a total thickness of 50 μm or less. When producing a thin polarizing film in the present invention, it is possible to effectively prevent appearance defects even when producing a thin polarizing film including a thin polarizer having a thickness of 10 μm or less.
 偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムなどの親水性高分子フィルムに、ヨウ素や二色性染料などの二色性材料を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物などポリエン系配向フィルムなどが挙げられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚みは特に制限されないが、一般的に80μm程度以下である。 The polarizer is not particularly limited, and various types can be used. Examples of the polarizer include hydrophilic polymer films such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, and ethylene / vinyl acetate copolymer partially saponified film, and two colors such as iodine and dichroic dye. And polyene-based oriented films such as those obtained by adsorbing a functional material and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products. Among these, a polarizer composed of a polyvinyl alcohol film and a dichroic material such as iodine is preferable. The thickness of these polarizers is not particularly limited, but is generally about 80 μm or less.
 ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。 A polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
 また偏光子としては厚みが10μm以下の薄型の偏光子を用いることができる。薄型化の観点から言えば当該厚みは1~7μmであるのが好ましい。このような薄型の偏光子は、厚みムラが少なく、視認性が優れており、また寸法変化が少ないため耐久性に優れ、さらには偏光フィルムとしての厚みも薄型化が図れる点が好ましい。 As the polarizer, a thin polarizer having a thickness of 10 μm or less can be used. From the viewpoint of thinning, the thickness is preferably 1 to 7 μm. Such a thin polarizer is preferable in that the thickness unevenness is small, the visibility is excellent, the dimensional change is small, the durability is excellent, and the thickness of the polarizing film can be reduced.
 薄型の偏光子としては、代表的には、特開昭51-069644号公報や特開2000-338329号公報や、WO2010/100917号パンフレット、PCT/JP2010/001460の明細書、または特願2010-269002号明細書や特願2010-263692号明細書に記載されている薄型偏光子を挙げることができる。これら薄型偏光子は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法による得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断などの不具合なく延伸することが可能となる。 As the thin polarizer, typically, JP-A-51-069644, JP-A-2000-338329, WO2010 / 100917, PCT / JP2010 / 001460, or Japanese Patent Application No. 2010- And a thin polarizer described in Japanese Patent Application No. 269002 and Japanese Patent Application No. 2010-263692. These thin polarizers can be obtained by a production method including a step of stretching and dyeing a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a stretching resin base material in a laminated state. With this manufacturing method, even if the PVA-based resin layer is thin, it can be stretched without problems such as breakage due to stretching by being supported by the stretching resin substrate.
 前記薄型偏光子としては、積層体の状態で延伸する工程と染色する工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、WO2010/100917号パンフレット、PCT/JP2010/001460の明細書、または特願2010-269002号明細書や特願2010-263692号明細書に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特願2010-269002号明細書や特願2010-263692号明細書に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。 Among the thin polarizers, among the production methods including the step of stretching in the state of a laminate and the step of dyeing, WO2010 / 100917 pamphlet, PCT / PCT / PCT / JP 2010/001460 specification, or Japanese Patent Application No. 2010-269002 and Japanese Patent Application No. 2010-263692, the one obtained by a production method including a step of stretching in a boric acid aqueous solution is preferable. What is obtained by the manufacturing method including the process of extending | stretching in the air auxiliary before extending | stretching in the boric acid aqueous solution as described in Japanese Patent Application No. 2010-269002 and Japanese Patent Application No. 2010-263692 is preferable.
 上記のPCT/JP2010/001460の明細書に記載の薄型高機能偏光子は、樹脂基材に一体に製膜される、二色性物質を配向させたPVA系樹脂からなる厚みが7μm以下の薄型高機能偏光子であって、単体透過率が42.0%以上および偏光度が99.95%以上の光学特性を有する。 The thin high-performance polarizer described in the specification of the above PCT / JP2010 / 001460 is a thin film having a thickness of 7 μm or less made of a PVA-based resin oriented with a dichroic material, which is integrally formed on a resin substrate. It is a high-functional polarizer and has optical properties such as a single transmittance of 42.0% or more and a polarization degree of 99.95% or more.
 上記薄型高機能偏光子は、少なくとも20μmの厚みを有する樹脂基材に、PVA系樹脂の塗布および乾燥によってPVA系樹脂層を生成し、生成されたPVA系樹脂層を二色性物質の染色液に浸漬して、PVA系樹脂層に二色性物質を吸着させ、二色性物質を吸着させたPVA系樹脂層を、ホウ酸水溶液中において、樹脂基材と一体に総延伸倍率を元長の5倍以上となるように延伸することによって、製造することができる。 The thin high-performance polarizer generates a PVA-based resin layer by applying and drying a PVA-based resin on a resin substrate having a thickness of at least 20 μm, and the generated PVA-based resin layer is used as a dichroic dyeing solution. So that the dichroic substance is adsorbed on the PVA resin layer, and the PVA resin layer on which the dichroic substance is adsorbed is integrated with the resin base material in the boric acid aqueous solution so that the total draw ratio is the original length. It can manufacture by extending | stretching so that it may become 5 times or more.
 また、二色性物質を配向させた薄型高機能偏光子を含む積層体フィルムを製造する方法であって、少なくとも20μmの厚みを有する樹脂基材と、樹脂基材の片面にPVA系樹脂を含む水溶液を塗布および乾燥することによって形成されたPVA系樹脂層とを含む積層体フィルムを生成する工程と、樹脂基材と樹脂基材の片面に形成されたPVA系樹脂層とを含む前記積層体フィルムを、二色性物質を含む染色液中に浸漬することによって、積層体フィルムに含まれるPVA系樹脂層に二色性物質を吸着させる工程と、二色性物質を吸着させたPVA系樹脂層を含む前記積層体フィルムを、ホウ酸水溶液中において、総延伸倍率が元長の5倍以上となるように延伸する工程と、二色性物質を吸着させたPVA系樹脂層が樹脂基材と一体に延伸されたことにより、樹脂基材の片面に、二色性物質を配向させたPVA系樹脂層からなる、厚みが7μm以下、単体透過率が42.0%以上かつ偏光度が99.95%以上の光学特性を有する薄型高機能偏光子を製膜させた積層体フィルムを製造する工程を含むことで、上記薄型高機能偏光子を製造することができる。 Moreover, it is a method for producing a laminate film including a thin high-functional polarizer in which a dichroic material is oriented, and includes a resin substrate having a thickness of at least 20 μm and a PVA resin on one side of the resin substrate. The said laminated body containing the process of producing | generating the laminated body film containing the PVA-type resin layer formed by apply | coating and drying aqueous solution, and the PVA-type resin layer formed in the single side | surface of the resin base material A step of adsorbing the dichroic substance to the PVA resin layer contained in the laminate film by immersing the film in a dye solution containing the dichroic substance, and a PVA resin adsorbing the dichroic substance A step of stretching the laminate film including a layer in a boric acid aqueous solution so that the total stretching ratio is 5 times or more of the original length, and a PVA resin layer on which a dichroic substance is adsorbed Integrated with As a result, a thickness of 7 μm or less, a single transmittance of 42.0% or more, and a degree of polarization of 99.95% or more consisting of a PVA-based resin layer in which a dichroic material is oriented on one surface of a resin base material. The thin high-performance polarizer can be produced by including a step of producing a laminate film in which a thin high-performance polarizer having the above optical properties is formed.
 上記の特願2010-269002号明細書や特願2010-263692号明細書薄型偏光子は、二色性物質を配向させたPVA系樹脂からなる連続ウェブの偏光子であって、非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層を含む積層体が空中補助延伸とホウ酸水中延伸とからなる2段延伸工程で延伸されることにより、10μm以下の厚みにされたものである。かかる薄型偏光子は、単体透過率をT、偏光度をPとしたとき、P>-(100.929T-42.4-1)×100(ただし、T<42.3)、およびP≧99.9(ただし、T≧42.3)の条件を満足する光学特性を有するようにされたものであることが好ましい。 The above-mentioned Japanese Patent Application Nos. 2010-269002 and 2010-263692 are thin polarizers, which are continuous web polarizers made of a PVA-based resin in which a dichroic material is oriented, and are amorphous esters. A laminate including a PVA-based resin layer formed on a thermoplastic resin base material is stretched in a two-stage stretching process consisting of air-assisted stretching and boric acid-water stretching to a thickness of 10 μm or less. It is. Such a thin polarizer has P> − (100.929T−42.4-1) × 100 (where T <42.3) and P ≧ 99, where T is the single transmittance and P is the polarization degree. .9 (where T ≧ 42.3) is preferable.
 具体的には、前記薄型偏光子は、連続ウェブの非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層に対する空中高温延伸によって、配向されたPVA系樹脂層からなる延伸中間生成物を生成する工程と、延伸中間生成物に対する二色性物質の吸着によって、二色性物質(ヨウ素またはヨウ素と有機染料の混合物が好ましい)を配向させたPVA系樹脂層からなる着色中間生成物を生成する工程と、着色中間生成物に対するホウ酸水中延伸によって、二色性物質を配向させたPVA系樹脂層からなる厚みが10μm以下の偏光子を生成する工程とを含む薄型偏光子の製造方法により製造することができる。 Specifically, the thin polarizer is a stretch intermediate composed of an oriented PVA resin layer by high-temperature stretching in the air with respect to a PVA resin layer formed on an amorphous ester thermoplastic resin substrate of a continuous web. A colored intermediate product comprising a PVA-based resin layer in which a dichroic material (preferably iodine or a mixture of iodine and an organic dye) is oriented by adsorption of the dichroic material to the stretched intermediate product and a step of generating the product. A thin polarizer comprising a step of generating a product, and a step of generating a polarizer having a thickness of 10 μm or less comprising a PVA-based resin layer in which a dichroic material is oriented by stretching in a boric acid solution with respect to a colored intermediate product It can be manufactured by a manufacturing method.
 この製造方法において、空中高温延伸とホウ酸水中延伸とによる非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層の総延伸倍率が、5倍以上になるようにするのが望ましい。ホウ酸水中延伸のためのホウ酸水溶液の液温は、60℃以上とすることができる。ホウ酸水溶液中で着色中間生成物を延伸する前に、着色中間生成物に対して不溶化処理を施すのが望ましく、その場合、液温が40℃を超えないホウ酸水溶液に前記着色中間生成物を浸漬することにより行うのが望ましい。上記非晶性エステル系熱可塑性樹脂基材は、イソフタル酸を共重合させた共重合ポリエチレンテレフタレート、シクロヘキサンジメタノールを共重合させた共重合ポリエチレンテレフタレートまたは他の共重合ポリエチレンテレフタレートを含む非晶性ポリエチレンテレフタレートとすることができ、透明樹脂からなるものであることが好ましく、その厚みは、製膜されるPVA系樹脂層の厚みの7倍以上とすることができる。また、空中高温延伸の延伸倍率は3.5倍以下が好ましく、空中高温延伸の延伸温度はPVA系樹脂のガラス転移温度以上、具体的には95℃~150℃の範囲であるのが好ましい。空中高温延伸を自由端一軸延伸で行う場合、非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層の総延伸倍率が、5倍以上7.5倍以下であるのが好ましい。また、空中高温延伸を固定端一軸延伸で行う場合、非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層の総延伸倍率が、5倍以上8.5倍以下であるのが好ましい。
更に具体的には、次のような方法により、薄型偏光子を製造することができる。
In this production method, the total draw ratio of the PVA resin layer formed on the amorphous ester thermoplastic resin base material by high-temperature drawing in air and drawing in boric acid solution should be 5 times or more. desirable. The liquid temperature of the boric acid aqueous solution for boric-acid water extending | stretching can be 60 degreeC or more. Before stretching the colored intermediate product in the aqueous boric acid solution, it is desirable to insolubilize the colored intermediate product. In this case, the colored intermediate product is added to the aqueous boric acid solution whose liquid temperature does not exceed 40 ° C. It is desirable to do so by dipping. The amorphous ester-based thermoplastic resin base material is amorphous polyethylene containing copolymerized polyethylene terephthalate copolymerized with isophthalic acid, copolymerized polyethylene terephthalate copolymerized with cyclohexanedimethanol, or other copolymerized polyethylene terephthalate. It can be terephthalate and is preferably made of a transparent resin, and the thickness thereof can be 7 times or more the thickness of the PVA resin layer to be formed. In addition, the draw ratio of high-temperature drawing in the air is preferably 3.5 times or less, and the drawing temperature of high-temperature drawing in the air is preferably not less than the glass transition temperature of the PVA resin, specifically in the range of 95 ° C to 150 ° C. When performing high temperature stretching in the air by free end uniaxial stretching, the total stretching ratio of the PVA resin layer formed on the amorphous ester thermoplastic resin base material is preferably 5 to 7.5 times . In addition, when performing high-temperature stretching in the air by uniaxial stretching at the fixed end, the total stretching ratio of the PVA-based resin layer formed on the amorphous ester-based thermoplastic resin base material is 5 times or more and 8.5 times or less. Is preferred.
More specifically, a thin polarizer can be produced by the following method.
 イソフタル酸を6mol%共重合させたイソフタル酸共重合ポリエチレンテレフタレート(非晶性PET)の連続ウェブの基材を作製する。非晶性PETのガラス転移温度は75℃である。連続ウェブの非晶性PET基材とポリビニルアルコール(PVA)層からなる積層体を、以下のように作製する。ちなみにPVAのガラス転移温度は80℃である。 A base material for a continuous web of isophthalic acid copolymerized polyethylene terephthalate (amorphous PET) in which 6 mol% of isophthalic acid is copolymerized is prepared. The glass transition temperature of amorphous PET is 75 ° C. A laminate comprising a continuous web of amorphous PET substrate and a polyvinyl alcohol (PVA) layer is prepared as follows. Incidentally, the glass transition temperature of PVA is 80 ° C.
 200μm厚の非晶性PET基材と、重合度1000以上、ケン化度99%以上のPVA粉末を水に溶解した4~5%濃度のPVA水溶液とを準備する。次に、200μm厚の非晶性PET基材にPVA水溶液を塗布し、50~60℃の温度で乾燥し、非晶性PET基材に7μm厚のPVA層が製膜された積層体を得る。 A 200 μm-thick amorphous PET base material and a 4-5% PVA aqueous solution in which PVA powder having a polymerization degree of 1000 or more and a saponification degree of 99% or more are dissolved in water are prepared. Next, an aqueous PVA solution is applied to a 200 μm thick amorphous PET substrate and dried at a temperature of 50 to 60 ° C. to obtain a laminate in which a 7 μm thick PVA layer is formed on the amorphous PET substrate. .
 7μm厚のPVA層を含む積層体を、空中補助延伸およびホウ酸水中延伸の2段延伸工程を含む以下の工程を経て、3μm厚の薄型高機能偏光子を製造する。第1段の空中補助延伸工程によって、7μm厚のPVA層を含む積層体を非晶性PET基材と一体に延伸し、5μm厚のPVA層を含む延伸積層体を生成する。具体的には、この延伸積層体は、7μm厚のPVA層を含む積層体を130℃の延伸温度環境に設定されたオーブンに配備された延伸装置にかけ、延伸倍率が1.8倍になるように自由端一軸に延伸したものである。この延伸処理によって、延伸積層体に含まれるPVA層を、PVA分子が配向された5μm厚のPVA層へと変化させる。 A thin high-functional polarizer having a thickness of 3 μm is manufactured from the laminate including the PVA layer having a thickness of 7 μm through the following steps including a two-step stretching process of air-assisted stretching and boric acid water stretching. In the first-stage aerial auxiliary stretching step, the laminate including the 7 μm-thick PVA layer is integrally stretched with the amorphous PET substrate to produce a stretched laminate including the 5 μm-thick PVA layer. Specifically, in this stretched laminate, a laminate including a 7 μm-thick PVA layer is subjected to a stretching apparatus disposed in an oven set to a stretching temperature environment of 130 ° C. so that the stretching ratio is 1.8 times. Are stretched uniaxially at the free end. By this stretching treatment, the PVA layer contained in the stretched laminate is changed to a 5 μm thick PVA layer in which PVA molecules are oriented.
 次に、染色工程によって、PVA分子が配向された5μm厚のPVA層にヨウ素を吸着させた着色積層体を生成する。具体的には、この着色積層体は、延伸積層体を液温30℃のヨウ素およびヨウ化カリウムを含む染色液に、最終的に生成される高機能偏光子を構成するPVA層の単体透過率が40~44%になるように任意の時間、浸漬することによって、延伸積層体に含まれるPVA層にヨウ素を吸着させたものである。本工程において、染色液は、水を溶媒として、ヨウ素濃度を0.12~0.30重量%の範囲内とし、ヨウ化カリウム濃度を0.7~2.1重量%の範囲内とする。ヨウ素とヨウ化カリウムの濃度の比は1対7である。ちなみに、ヨウ素を水に溶解するにはヨウ化カリウムを必要とする。より詳細には、ヨウ素濃度0.30重量%、ヨウ化カリウム濃度2.1重量%の染色液に延伸積層体を60秒間浸漬することによって、PVA分子が配向された5μm厚のPVA層にヨウ素を吸着させた着色積層体を生成する。 Next, a colored laminate in which iodine is adsorbed on a 5 μm-thick PVA layer in which PVA molecules are oriented is generated by a dyeing process. Specifically, this colored laminate has a single transmittance of the PVA layer constituting the high-performance polarizer finally produced by using the stretched laminate in a dye solution containing iodine and potassium iodide at a liquid temperature of 30 ° C. Iodine is adsorbed to the PVA layer contained in the stretched laminate by dipping for an arbitrary period of time so as to be 40 to 44%. In this step, the staining solution uses water as a solvent, and an iodine concentration within the range of 0.12 to 0.30% by weight and a potassium iodide concentration within the range of 0.7 to 2.1% by weight. The concentration ratio of iodine and potassium iodide is 1 to 7. Incidentally, potassium iodide is required to dissolve iodine in water. More specifically, the stretched laminate is immersed for 60 seconds in a dyeing solution having an iodine concentration of 0.30% by weight and a potassium iodide concentration of 2.1% by weight. A colored laminate is adsorbed on the substrate.
 さらに、第2段のホウ酸水中延伸工程によって、着色積層体を非晶性PET基材と一体にさらに延伸し、3μm厚の高機能偏光子を構成するPVA層を含む光学フィルム積層体を生成する。具体的には、この光学フィルム積層体は、着色積層体をホウ酸とヨウ化カリウムを含む液温範囲60~85℃のホウ酸水溶液に設定された処理装置に配備された延伸装置にかけ、延伸倍率が3.3倍になるように自由端一軸に延伸したものである。より詳細には、ホウ酸水溶液の液温は65℃である。それはまた、ホウ酸含有量を水100重量部に対して4重量部とし、ヨウ化カリウム含有量を水100重量部に対して5重量部とする。本工程においては、ヨウ素吸着量を調整した着色積層体をまず5~10秒間ホウ酸水溶液に浸漬する。しかる後に、その着色積層体をそのまま処理装置に配備された延伸装置である周速の異なる複数の組のロール間に通し、30~90秒かけて延伸倍率が3.3倍になるように自由端一軸に延伸する。この延伸処理によって、着色積層体に含まれるPVA層を、吸着されたヨウ素がポリヨウ素イオン錯体として一方向に高次に配向した3μm厚のPVA層へと変化させる。このPVA層が光学フィルム積層体の高機能偏光子を構成する。 Further, the colored laminate is further stretched integrally with the amorphous PET base material by the second stage boric acid water stretching step to produce an optical film laminate including a PVA layer constituting a highly functional polarizer having a thickness of 3 μm. To do. Specifically, the optical film laminate is subjected to stretching by applying the colored laminate to a stretching apparatus provided in a treatment apparatus set to a boric acid aqueous solution having a liquid temperature range of 60 to 85 ° C. containing boric acid and potassium iodide. It is stretched uniaxially at the free end so that the magnification is 3.3 times. More specifically, the liquid temperature of the boric acid aqueous solution is 65 ° C. It also has a boric acid content of 4 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 5 parts by weight with respect to 100 parts by weight of water. In this step, the colored laminate having an adjusted iodine adsorption amount is first immersed in an aqueous boric acid solution for 5 to 10 seconds. After that, the colored laminate is passed as it is between a plurality of sets of rolls with different peripheral speeds, which is a stretching apparatus installed in the processing apparatus, and the stretching ratio can be freely increased to 3.3 times over 30 to 90 seconds. Stretch uniaxially. By this stretching treatment, the PVA layer contained in the colored laminate is changed into a PVA layer having a thickness of 3 μm in which the adsorbed iodine is oriented higher in one direction as a polyiodine ion complex. This PVA layer constitutes a high-functional polarizer of the optical film laminate.
 光学フィルム積層体の製造に必須の工程ではないが、洗浄工程によって、光学フィルム積層体をホウ酸水溶液から取り出し、非晶性PET基材に製膜された3μm厚のPVA層の表面に付着したホウ酸をヨウ化カリウム水溶液で洗浄するのが好ましい。しかる後に、洗浄された光学フィルム積層体を60℃の温風による乾燥工程によって乾燥する。なお洗浄工程は、ホウ酸析出などの外観欠点を解消するための工程である。 Although not an indispensable step for the production of an optical film laminate, the optical film laminate was removed from the boric acid aqueous solution and adhered to the surface of the 3 μm-thick PVA layer formed on the amorphous PET substrate by the washing step. It is preferable to wash boric acid with an aqueous potassium iodide solution. Thereafter, the washed optical film laminate is dried by a drying process using hot air at 60 ° C. The cleaning process is a process for eliminating appearance defects such as boric acid precipitation.
 同じく光学フィルム積層体の製造に必須の工程というわけではないが、貼合せおよび/または転写工程によって、非晶性PET基材に製膜された3μm厚のPVA層の表面に接着剤を塗布しながら、80μm厚のトリアセチルセルロースフィルムを貼合せたのち、非晶性PET基材を剥離し、3μm厚のPVA層を80μm厚のトリアセチルセルロースフィルムに転写することもできる。 Similarly, it is not an indispensable process for producing an optical film laminate, but an adhesive is applied to the surface of a 3 μm-thick PVA layer formed on an amorphous PET substrate by a bonding and / or transfer process. However, after bonding the 80 μm thick triacetyl cellulose film, the amorphous PET substrate can be peeled off, and the 3 μm thick PVA layer can be transferred to the 80 μm thick triacetyl cellulose film.
 [その他の工程]
 上記の薄型偏光子の製造方法は、上記工程以外に、その他の工程を含み得る。その他の工程としては、例えば、不溶化工程、架橋工程、乾燥(水分率の調節)工程等が挙げられる。その他の工程は、任意の適切なタイミングで行い得る。上記不溶化工程は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。好ましくは、不溶化工程は、積層体作製後、染色工程や水中延伸工程の前に行う。上記架橋工程は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。また、上記染色工程後に架橋工程を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。好ましくは、架橋工程は上記第2のホウ酸水中延伸工程の前に行う。好ましい実施形態においては、染色工程、架橋工程および第2のホウ酸水中延伸工程をこの順で行う。
[Other processes]
The manufacturing method of said thin polarizer may contain another process other than the said process. Examples of other steps include an insolubilization step, a crosslinking step, and a drying (adjustment of moisture content) step. The other steps can be performed at any appropriate timing. The insolubilization step is typically performed by immersing the PVA resin layer in a boric acid aqueous solution. By performing the insolubilization treatment, water resistance can be imparted to the PVA resin layer. The concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water. The liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20 ° C. to 50 ° C. Preferably, the insolubilization step is performed after the laminate is manufactured and before the dyeing step and the underwater stretching step. The crosslinking step is typically performed by immersing the PVA resin layer in an aqueous boric acid solution. By performing the crosslinking treatment, water resistance can be imparted to the PVA resin layer. The concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water. Moreover, when performing a bridge | crosslinking process after the said dyeing | staining process, it is preferable to mix | blend iodide further. By blending iodide, elution of iodine adsorbed on the PVA resin layer can be suppressed. The blending amount of iodide is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of the iodide are as described above. The liquid temperature of the crosslinking bath (boric acid aqueous solution) is preferably 20 ° C. to 50 ° C. Preferably, the crosslinking step is performed before the second boric acid aqueous drawing step. In a preferred embodiment, the dyeing step, the crosslinking step, and the second boric acid aqueous drawing step are performed in this order.
 上記偏光子の片面または両面に設けられる透明保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロースなどのセルロース系ポリマー、ポリメチルメタクリレートなどのアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)などのスチレン系ポリマー、ポリカーボネート系ポリマーなどが挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミドなどのアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または上記ポリマーのブレンド物なども上記透明保護フィルムを形成するポリマーの例として挙げられる。透明保護フィルム中には任意の適切な添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。透明保護フィルム中の上記熱可塑性樹脂の含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、さらに好ましくは60~98重量%、特に好ましくは70~97重量%である。透明保護フィルム中の上記熱可塑性樹脂の含有量が50重量%以下の場合、熱可塑性樹脂が本来有する高透明性などが十分に発現できないおそれがある。 The material for forming the transparent protective film provided on one or both sides of the polarizer is preferably a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin) And polymers based on polycarbonate and polycarbonate. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Examples of the polymer that forms the transparent protective film include polymer blends. One or more kinds of arbitrary appropriate additives may be contained in the transparent protective film. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an anti-coloring agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent. The content of the thermoplastic resin in the transparent protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. . When content of the said thermoplastic resin in a transparent protective film is 50 weight% or less, there exists a possibility that the high transparency etc. which a thermoplastic resin originally has cannot fully be expressed.
 また、透明保護フィルムとしては、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルム、例えば、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、(B)側鎖に置換および/または非置換フェニルならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が挙げられる。具体例としてはイソブチレンとN-メチルマレイミドからなる交互共重合体とアクリロニトリル・スチレン共重合体とを含有する樹脂組成物のフィルムが挙げられる。フィルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。これらのフィルムは位相差が小さく、光弾性係数が小さいため偏光フィルムの歪みによるムラなどの不具合を解消することができ、また透湿度が小さいため、加湿耐久性に優れる。 Examples of the transparent protective film include a polymer film described in JP-A-2001-343529 (WO01 / 37007), for example, (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, B) Resin compositions containing a thermoplastic resin having substituted and / or unsubstituted phenyl and nitrile groups in the side chain. Specific examples include a film of a resin composition containing an alternating copolymer composed of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer. As the film, a film made of a mixed extruded product of the resin composition or the like can be used. Since these films have a small phase difference and a small photoelastic coefficient, problems such as unevenness due to the distortion of the polarizing film can be eliminated, and since the moisture permeability is small, the humidification durability is excellent.
 透明保護フィルムの厚みは、適宜に決定しうるが、一般には強度や取扱性などの作業性、薄層性などの点より1~500μm程度である。特に20~80μmが好ましく、30~60μmがより好ましい。 The thickness of the transparent protective film can be determined as appropriate, but is generally about 1 to 500 μm from the viewpoints of workability such as strength and handleability and thin layer properties. In particular, 20 to 80 μm is preferable, and 30 to 60 μm is more preferable.
 なお、偏光子の両面に透明保護フィルムを設ける場合、その表裏で同じポリマー材料からなる透明保護フィルムを用いてもよく、異なるポリマー材料などからなる透明保護フィルムを用いてもよい。 In addition, when providing a transparent protective film on both surfaces of a polarizer, the transparent protective film which consists of the same polymer material may be used by the front and back, and the transparent protective film which consists of a different polymer material etc. may be used.
 上記透明保護フィルムの偏光子を接着させない面には、ハードコート層、反射防止層、スティッキング防止層、拡散層ないしアンチグレア層などの機能層を設けることができる。なお、上記ハードコート層、反射防止層、スティッキング防止層、拡散層やアンチグレア層などの機能層は、透明保護フィルムそのものに設けることができるほか、別途、透明保護フィルムとは別体のものとして設けることもできる。 Functional surfaces such as a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer or an antiglare layer can be provided on the surface of the transparent protective film to which the polarizer is not adhered. The functional layers such as the hard coat layer, antireflection layer, antisticking layer, diffusion layer and antiglare layer can be provided on the transparent protective film itself, and separately provided separately from the transparent protective film. You can also
 本発明の偏光フィルムは、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1/2や1/4などの波長板を含む)、視角補償フィルムなどの液晶表示装置などの形成に用いられることのある光学層を1層または2層以上用いることができる。特に、本発明の偏光フィルムに更に反射板または半透過反射板が積層されてなる反射型偏光フィルムまたは半透過型偏光フィルム、偏光フィルムに更に位相差板が積層されてなる楕円偏光フィルムまたは円偏光フィルム、偏光フィルムに更に視角補償フィルムが積層されてなる広視野角偏光フィルム、あるいは偏光フィルムに更に輝度向上フィルムが積層されてなる偏光フィルムが好ましい。 The polarizing film of the present invention can be used as an optical film laminated with another optical layer in practical use. The optical layer is not particularly limited. For example, for forming a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film. One or more optical layers that may be used can be used. In particular, a reflective polarizing film or semi-transmissive polarizing film in which a polarizing plate or a semi-transmissive reflecting plate is further laminated on the polarizing film of the present invention, an elliptical polarizing film or circularly polarizing film in which a retardation film is further laminated on a polarizing film. A wide viewing angle polarizing film obtained by further laminating a viewing angle compensation film on a film or a polarizing film, or a polarizing film obtained by further laminating a brightness enhancement film on the polarizing film is preferred.
 偏光フィルムに上記光学層を積層した光学フィルムは、液晶表示装置などの製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業などに優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着剤層などの適宜な接着手段を用いうる。上記の偏光フィルムやその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。 An optical film obtained by laminating the above optical layer on a polarizing film can be formed by a method of sequentially laminating separately in the manufacturing process of a liquid crystal display device or the like. It is excellent in stability and assembly work, and has the advantage of improving the manufacturing process of a liquid crystal display device and the like. For the lamination, an appropriate adhesive means such as a pressure-sensitive adhesive layer can be used. When adhering the above polarizing film and other optical films, their optical axes can be set at an appropriate arrangement angle in accordance with the target retardation characteristics.
 前述した偏光フィルムや、偏光フィルムを少なくとも1層積層されている光学フィルムには、液晶セルなどの他部材と接着するための粘着剤層を設けることができる。粘着剤層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。 A pressure-sensitive adhesive layer for adhering to other members such as a liquid crystal cell can be provided on the polarizing film described above or an optical film in which at least one polarizing film is laminated. The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited. For example, an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer is appropriately used as a base polymer. It can be selected and used. In particular, those having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used.
 粘着剤層は、異なる組成または種類などのものの重畳層として偏光フィルムや光学フィルムの片面または両面に設けることもできる。また両面に設ける場合に、偏光フィルムや光学フィルムの表裏において異なる組成や種類や厚みなどの粘着剤層とすることもできる。粘着剤層の厚みは、使用目的や接着力などに応じて適宜に決定でき、一般には1~500μmであり、1~200μmが好ましく、特に1~100μmが好ましい。 The pressure-sensitive adhesive layer can be provided on one side or both sides of a polarizing film or an optical film as a superimposed layer of different compositions or types. Moreover, when providing in both surfaces, it can also be set as adhesive layers, such as a different composition, a kind, and thickness, in the front and back of a polarizing film or an optical film. The thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 1 to 500 μm, preferably 1 to 200 μm, and particularly preferably 1 to 100 μm.
 粘着剤層の露出面に対しては、実用に供するまでの間、その汚染防止などを目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着剤層に接触することを防止できる。セパレータとしては、上記厚み条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体などの適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデンなどの適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。 The exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put to practical use. Thereby, it can prevent contacting an adhesive layer in the usual handling state. As the separator, except for the above thickness conditions, for example, an appropriate thin leaf body such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foamed sheet, metal foil, or a laminate thereof, or a silicone-based or long sheet as necessary. Appropriate ones according to the prior art, such as those coated with an appropriate release agent such as a chain alkyl type, fluorine type or molybdenum sulfide, can be used.
 本発明の偏光フィルムまたは光学フィルムは液晶表示装置などの各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと偏光フィルムまたは光学フィルム、および必要に応じての照明システムなどの構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光フィルムまたは光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。 The polarizing film or optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or an optical film, and an illumination system as necessary, and incorporating a drive circuit. There is no limitation in particular except the point which uses the polarizing film or optical film by invention, and it can apply according to the former. As the liquid crystal cell, any type such as a TN type, an STN type, or a π type can be used.
 液晶セルの片側または両側に偏光フィルムまたは光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による偏光フィルムまたは光学フィルムは液晶セルの片側または両側に設置することができる。両側に偏光フィルムまたは光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層または2層以上配置することができる。 Appropriate liquid crystal display devices such as a liquid crystal display device in which a polarizing film or an optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight or a reflector used in an illumination system can be formed. In that case, the polarizing film or optical film by this invention can be installed in the one side or both sides of a liquid crystal cell. When providing a polarizing film or an optical film on both sides, they may be the same or different. Further, when forming the liquid crystal display device, for example, a single layer or a suitable layer such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged.
 以下に、本発明の実施例を記載するが、本発明の実施形態はこれらに限定されない。なお、組成物中の「重量部」は、組成物の全量を100重量部としたときの部数を意味する。 Examples of the present invention will be described below, but the embodiments of the present invention are not limited thereto. “Parts by weight” in the composition means the number of parts when the total amount of the composition is 100 parts by weight.
(1)接着剤組成物の調整
 <活性エネルギー線硬化型接着剤組成物の調整>
 HEAA(ヒドロキシエチルアクリルアミド)[興人社製]38.5重量部、アロニックスM-220(トリプロピレングリコールジアクリレート)[東亞合成社製]20.0重量部、ACMO(アクリロイルモルホリン)[興人社製]38.5重量部、KAYACURE DETX-S(ジエチルチオキサントン)[日本化薬社製]1.5重量部、IRGACURE907(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)[BASF社製]1.5重量部を混合して50℃で1時間攪拌し活性エネルギー線硬化型接着剤を得た。
(1) Adjustment of adhesive composition <Adjustment of active energy ray-curable adhesive composition>
HEAA (hydroxyethyl acrylamide) [manufactured by Kojin Co., Ltd.] 38.5 parts by weight, Aronix M-220 (tripropylene glycol diacrylate) [manufactured by Toagosei Co., Ltd.] 20.0 parts by weight, ACMO (acryloylmorpholine) [Kojinsha 38.5 parts by weight, KAYACURE DETX-S (diethylthioxanthone) [manufactured by Nippon Kayaku Co., Ltd.], 1.5 parts by weight, IRGACURE907 (2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane- 1-On) 1.5 parts by weight [manufactured by BASF] was mixed and stirred at 50 ° C. for 1 hour to obtain an active energy ray-curable adhesive.
<ポリビニルアルコール系接着剤組成物の調整>
 アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200、ケン化度:98.5モル%、アセトアセチル化度:5モル%)100部に対し、メチロールメラミン50部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7%に調整した水溶液を調整した。前記水溶液100部の対し、アルミナコロイド水溶液(平均粒子径15nm、固形分濃度10%、正電荷)18部を加えて接着剤水溶液を調整した。
<Preparation of polyvinyl alcohol-based adhesive composition>
Polyvinyl alcohol-based resin containing acetoacetyl group (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%) to 100 parts, Under temperature conditions, an aqueous solution dissolved in pure water and adjusted to a solid content concentration of 3.7% was prepared. An aqueous adhesive solution was prepared by adding 18 parts of an aqueous colloidal alumina solution (average particle size 15 nm, solid content concentration 10%, positive charge) to 100 parts of the aqueous solution.
<有機溶剤系接着剤組成物>
 セメダイン198L(セメダイン社製)を用いた。
<Organic solvent-based adhesive composition>
Cemedine 198L (Cemedine) was used.
(2)薄型偏光子の作製
 薄型偏光子を作製するため、まず、非晶性PET基材に24μm厚のPVA層が製膜された積層体を延伸温度130℃の空中補助延伸によって延伸積層体を生成し、次に、延伸積層体を染色によって着色積層体を生成し、さらに着色積層体を延伸温度65度のホウ酸水中延伸によって総延伸倍率が5.94倍になるように非晶性PET基材と一体に延伸された10μm厚のPVA層を含む光学フィルム積層体を生成した。このような2段延伸によって非晶性PET基材に製膜されたPVA層のPVA分子が高次に配向され、染色によって吸着されたヨウ素がポリヨウ素イオン錯体として一方向に高次に配向された薄型偏光子を構成する、厚さ5μmのPVA層を含む光学フィルム積層体(第2フィルム(総厚み40μm))を生成することができた。
(2) Production of Thin Polarizer In order to produce a thin polarizer, first, a laminate in which a PVA layer having a thickness of 24 μm is formed on an amorphous PET substrate is stretched by air-assisted stretching at a stretching temperature of 130 ° C. Next, a colored laminate is produced by dyeing the stretched laminate, and further, the colored laminate is amorphous so that the total draw ratio becomes 5.94 times by stretching in boric acid water at a stretching temperature of 65 degrees. An optical film laminate comprising a 10 μm thick PVA layer stretched together with a PET substrate was produced. The PVA molecules in the PVA layer formed on the amorphous PET substrate by such two-stage stretching are oriented in the higher order, and the iodine adsorbed by the dyeing is oriented in the one direction as the polyiodine ion complex. It was possible to produce an optical film laminate (second film (total thickness 40 μm)) including a PVA layer having a thickness of 5 μm, constituting a thin polarizer.
 第1フィルムとしては、ラクトン環構造を有する(メタ)アクリル樹脂からなる透明保護フィルム(厚み40μm)を使用した。 As the first film, a transparent protective film (thickness 40 μm) made of a (meth) acrylic resin having a lactone ring structure was used.
 実施例1
 図1、2に示すラインにおいて、グラビアロール4を備えるグラビアロール塗布方式10(MCDコーター(富士機械社製)(セル形状:ハニカムメッシュパターン、グラビアロールのセル線数:1000本/inch、回転速度比140%)を使用して、第1フィルム1の貼合面および第2フィルム2の貼合面の両方に接着剤組成物3を塗布することにより、異物および気泡を除去しつつ偏光フィルムを製造した。PET基材および薄型偏光子からなる第2フィルム2は、薄型偏光子面が貼合面となるように、接着剤組成物3を塗布した。なお、接着剤組成物3は、乾燥後の接着剤層の厚みが1μmとなるように第1フィルムおよび第2フィルムに塗布した。グラビアロール塗布方式10としては、図2に示す異物除去機能(フィルターを使用した異物除去方法)を備えるものを使用した。
Example 1
1 and 2, a gravure roll coating method 10 (MCD coater (manufactured by Fuji Machine Co., Ltd.)) (cell shape: honeycomb mesh pattern, number of gravure roll cell lines: 1000 / inch, rotation speed) Ratio 140%), and applying the adhesive composition 3 to both the bonding surface of the first film 1 and the bonding surface of the second film 2, the polarizing film is removed while removing foreign substances and bubbles. The second film 2 made of the PET base material and the thin polarizer was coated with the adhesive composition 3 so that the thin polarizer surface became the bonding surface, and the adhesive composition 3 was dried. It applied to the 1st film and the 2nd film so that the thickness of a back adhesive layer might be set to 1 micrometer. Was used with a use foreign matter removal method).
<活性エネルギー線>
 図1に示すラインを通過させた後、活性エネルギー線として、紫外線(ガリウム封入メタルハライドランプ) 照射装置:Fusion UV Systems,Inc社製Light HAMMER10 バルブ:Vバルブ ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用して、接着剤組成物3を硬化させて、光学フィルムを製造した。なお、紫外線の照度は、Solatell社製Sola-Checkシステムを使用して測定した。
<Active energy rays>
After passing through the line shown in FIG. 1, as an active energy ray, an ultraviolet ray (gallium filled metal halide lamp) irradiation device: Fusion UV Systems, Inc. Light HAMMER10 bulb: V bulb Peak illuminance: 1600 mW / cm 2 , integrated dose The adhesive composition 3 was cured using 1000 / mJ / cm 2 (wavelength 380 to 440 nm) to produce an optical film. The illuminance of ultraviolet rays was measured using a Sola-Check system manufactured by Solatell.
 実施例2~9、比較例1~6
 第1フィルムおよび第2フィルムを貼合せる接着剤組成物の種類、第1フィルムおよび/または第2フィルムへの接着剤組成物の塗布の有無、後計量塗布方式の種類、グラビアロール表面の形成パターンを表1に記載のものに変更したこと以外は、実施例1と同様の方法により光学フィルムを製造した。バーコーター塗布方式およびエアナイフ塗布方式では、各々市販の塗布装置を使用した。
Examples 2 to 9, Comparative Examples 1 to 6
Type of adhesive composition for bonding first film and second film, presence / absence of application of adhesive composition to first film and / or second film, type of post-measuring application method, formation pattern of gravure roll surface The optical film was manufactured by the same method as Example 1 except having changed into the thing of Table 1. In the bar coater coating method and the air knife coating method, commercially available coating devices were used.
<接着剤層中の異物数のカウント方法> 目視検査と自動検査装置とを用いた反射検査により、偏光フィルムの接着剤層中における外観欠点数(異物由来および(貼合せ)気泡由来の外観欠点数(個/m))をカウントした。結果を表1に示す。
<Counting method of the number of foreign matters in the adhesive layer> The number of appearance defects (foreign matter-derived and (lamination) bubble-derived appearance defects in the adhesive layer of the polarizing film by visual inspection and reflection inspection using an automatic inspection device. The number (pieces / m 2 ) was counted. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (10)

  1.  接着剤組成物または粘着剤組成物の硬化物層からなる接着剤層または粘着剤層を介して、少なくとも第1フィルムおよび第2フィルムが貼合された積層構造を含む光学フィルムの製造方法であって、
     後計量塗布方式を用いて、前記第1フィルムの貼合面および前記第2フィルムの貼合面の両方に前記接着剤組成物または前記粘着剤組成物を塗布することにより、異物および/または気泡を除去する塗布工程を有することを特徴とする光学フィルムの製造方法。
    It is a method for producing an optical film including a laminated structure in which at least a first film and a second film are bonded via an adhesive layer or an adhesive layer composed of a cured product layer of an adhesive composition or an adhesive composition. And
    By applying the adhesive composition or the pressure-sensitive adhesive composition to both the bonding surface of the first film and the bonding surface of the second film using a post-metering application method, foreign matter and / or bubbles The manufacturing method of the optical film characterized by having the application | coating process which removes.
  2.  後計量塗布方式が前記接着剤組成物または粘着剤組成物を循環させて塗布する方式であり、塗布によって前記第1フィルムおよび/または前記第2フィルムから前記接着剤組成物または粘着剤組成物に混入した異物を、前記接着剤組成物または粘着剤組成物から取り除く異物除去機能を備えている請求項1に記載の光学フィルムの製造方法。 The post-measuring application method is a method in which the adhesive composition or the pressure-sensitive adhesive composition is circulated and applied to the adhesive composition or the pressure-sensitive adhesive composition from the first film and / or the second film by application. The manufacturing method of the optical film of Claim 1 provided with the foreign material removal function which removes the mixed foreign material from the said adhesive composition or an adhesive composition.
  3.  前記塗布方式が、グラビアロールを使用したグラビアロール塗布方式である請求項1または2に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1 or 2, wherein the coating method is a gravure roll coating method using a gravure roll.
  4.  前記グラビアロールの回転方向と、前記第1フィルムおよび前記第2フィルムの進行方向とが逆方向である請求項3に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 3, wherein the rotation direction of the gravure roll is opposite to the traveling direction of the first film and the second film.
  5.  前記グラビアロールの表面に形成されたパターンがハニカムメッシュパターンである請求項3または4に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 3 or 4, wherein the pattern formed on the surface of the gravure roll is a honeycomb mesh pattern.
  6.  前記第1フィルムおよび前記第2フィルムの進行速度に対する、前記グラビアロールの回転速度比が、100~300%である請求項3~5のいずれかに記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 3 to 5, wherein a rotation speed ratio of the gravure roll with respect to a traveling speed of the first film and the second film is 100 to 300%.
  7.  前記第1フィルムは透明保護フィルムであり、前記第2フィルムは偏光子である請求項1~6のいずれかに記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 6, wherein the first film is a transparent protective film, and the second film is a polarizer.
  8.  前記偏光子の厚みが10μm以下である請求項7に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 7, wherein the polarizer has a thickness of 10 μm or less.
  9.  請求項1~8のいずれかの製造方法により製造された光学フィルム。 An optical film produced by the production method according to any one of claims 1 to 8.
  10.  請求項9に記載の光学フィルムが用いられていることを特徴とする画像表示装置。 An image display device using the optical film according to claim 9.
PCT/JP2014/072316 2013-11-14 2014-08-26 Method for producing optical film, optical film and image display device WO2015072205A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157013162A KR101984350B1 (en) 2013-11-14 2014-08-26 Method of producing optical film, optical film and image display device
KR1020177017583A KR20170077293A (en) 2013-11-14 2014-08-26 Method of producing optical film, optical film and image display device
CN201480003729.2A CN104884258A (en) 2013-11-14 2014-08-26 Method for producing optical film, optical film and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-235748 2013-11-14
JP2013235748A JP5815645B2 (en) 2013-11-14 2013-11-14 Optical film manufacturing method, optical film, and image display device

Publications (1)

Publication Number Publication Date
WO2015072205A1 true WO2015072205A1 (en) 2015-05-21

Family

ID=53057150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072316 WO2015072205A1 (en) 2013-11-14 2014-08-26 Method for producing optical film, optical film and image display device

Country Status (5)

Country Link
JP (1) JP5815645B2 (en)
KR (2) KR20170077293A (en)
CN (2) CN104884258A (en)
TW (1) TWI586721B (en)
WO (1) WO2015072205A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126038A (en) * 2016-01-15 2017-07-20 日東電工株式会社 Method for manufacturing optical film
WO2019004431A1 (en) * 2017-06-29 2019-01-03 株式会社Adeka Adhesive composition
EP3702137A4 (en) * 2017-10-24 2021-07-28 DIC Corporation Lamination device and lamination method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376872B2 (en) * 2014-07-16 2018-08-22 日東電工株式会社 Method for producing laminated optical film
JP6367628B2 (en) * 2014-07-16 2018-08-01 日東電工株式会社 Optical film manufacturing method, optical film, and image display device
JP6766456B2 (en) * 2015-06-29 2020-10-14 三菱ケミカル株式会社 Radical curable compositions, plastic sheets, plastic sheet rolls and moldings
KR101933160B1 (en) 2015-09-18 2019-03-15 가부시키가이샤 씽크. 라보라토리 Gravure printing method
WO2017145607A1 (en) * 2016-02-26 2017-08-31 日東電工株式会社 Polarizer, one-side-protected polarizing film, polarizing film including adhesive layer, and image display device and method for continuously manufacturing same
KR101734776B1 (en) 2016-06-22 2017-05-11 주식회사 엘지화학 The manufacturing method of optical film and optical film
EP3572477A4 (en) 2017-01-17 2020-10-07 Sekisui Chemical Co., Ltd. Filling-bonding material, protective sheet-equipped filling-bonding material, laminated body, optical device, and protective panel for optical device
JP2018200447A (en) * 2017-05-30 2018-12-20 日東電工株式会社 Manufacturing method of optical film
CN115220143B (en) * 2017-10-05 2024-11-05 住友化学株式会社 Method and apparatus for manufacturing optical member
JP7219137B2 (en) * 2019-03-28 2023-02-07 日東電工株式会社 Method for manufacturing polarizing film
JP7311291B2 (en) * 2019-03-28 2023-07-19 日東電工株式会社 Method for manufacturing polarizing film
JP7292130B2 (en) * 2019-06-28 2023-06-16 日東電工株式会社 Polarizer manufacturing method and polarizer manufacturing apparatus
CN111175878B (en) * 2020-01-03 2020-11-13 昆山之奇美材料科技有限公司 Production, manufacturing and coating treatment process of polaroid for liquid crystal display screen
EP4129630A4 (en) * 2020-03-27 2024-05-08 DIC Corporation Lamination method and lamination device
WO2022075264A1 (en) * 2020-10-09 2022-04-14 富士フイルム株式会社 Method for manufacturing optical system for head-mounted display
JP2023105601A (en) * 2022-01-19 2023-07-31 日東電工株式会社 Surface-protective film and optical member with surface-protective film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101335A (en) * 2011-10-21 2013-05-23 Sumitomo Chemical Co Ltd Method of manufacturing polarizer
JP2013151140A (en) * 2011-06-10 2013-08-08 Sumitomo Chemical Co Ltd Method for producing laminate structure
JP2013228726A (en) * 2012-03-30 2013-11-07 Nitto Denko Corp Polarizing film, optical film and image display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180905A (en) 2007-01-24 2008-08-07 Fujifilm Corp Manufacturing method and support for optical film, optical film, polarizer, and image display
TWI541569B (en) * 2008-03-31 2016-07-11 住友化學股份有限公司 Apparatus and method for manufacturing polarizing plate
JP2010280856A (en) * 2009-06-05 2010-12-16 Nitto Denko Corp Pressure-sensitive adhesive layer, pressure-sensitive adhesive member, production method thereof, and image display device
CN102741717B (en) * 2010-03-05 2014-12-31 日东电工株式会社 Adhesive for polarizing plate, polarizing plate, method for producing same, optical film, and image display device
CN103842863B (en) * 2011-10-07 2019-06-07 住友化学株式会社 The manufacturing method of polarization plates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151140A (en) * 2011-06-10 2013-08-08 Sumitomo Chemical Co Ltd Method for producing laminate structure
JP2013101335A (en) * 2011-10-21 2013-05-23 Sumitomo Chemical Co Ltd Method of manufacturing polarizer
JP2013228726A (en) * 2012-03-30 2013-11-07 Nitto Denko Corp Polarizing film, optical film and image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126038A (en) * 2016-01-15 2017-07-20 日東電工株式会社 Method for manufacturing optical film
WO2017122470A1 (en) * 2016-01-15 2017-07-20 日東電工株式会社 Optical film manufacturing method
WO2019004431A1 (en) * 2017-06-29 2019-01-03 株式会社Adeka Adhesive composition
JPWO2019004431A1 (en) * 2017-06-29 2020-04-30 株式会社Adeka Adhesive composition
EP3702137A4 (en) * 2017-10-24 2021-07-28 DIC Corporation Lamination device and lamination method

Also Published As

Publication number Publication date
TW201518352A (en) 2015-05-16
JP5815645B2 (en) 2015-11-17
TWI586721B (en) 2017-06-11
KR20170077293A (en) 2017-07-05
JP2015093470A (en) 2015-05-18
CN109591431A (en) 2019-04-09
KR20150073201A (en) 2015-06-30
CN104884258A (en) 2015-09-02
KR101984350B1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP5815645B2 (en) Optical film manufacturing method, optical film, and image display device
TWI610798B (en) Polarized film and manufacturing method thereof, optical film and image display device
WO2017122470A1 (en) Optical film manufacturing method
TWI528056B (en) Method for producing polarizing plate
JP5313297B2 (en) Active energy ray-curable adhesive composition, polarizing plate, optical film, and image display device
JP5519760B1 (en) Active energy ray-curable adhesive composition, polarizing film and method for producing the same, optical film and image display device
WO2016010029A1 (en) Optical film production method, optical film, and image display device
JP5801435B2 (en) Active energy ray-curable adhesive composition, polarizing film and method for producing the same, optical film and image display device
JP6481059B2 (en) Polarizing film and method for manufacturing the same, optical film and image display device
WO2015118975A1 (en) Polarizing plate and display device
JP2012181278A (en) Set of roll-like polarizing plates, method for manufacturing the same and method for manufacturing liquid crystal panel
KR20230129341A (en) Method for manufacturing optical film
JP2017134413A (en) Polarizing film and production method of the same, optical film, and image display device
JP2018092187A (en) Polarizing film and production method of the same, optical film and image display device
JP6609075B2 (en) Polarizing film and method for manufacturing the same, optical film and image display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157013162

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861650

Country of ref document: EP

Kind code of ref document: A1