WO2015069041A1 - 무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치 - Google Patents
무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치 Download PDFInfo
- Publication number
- WO2015069041A1 WO2015069041A1 PCT/KR2014/010622 KR2014010622W WO2015069041A1 WO 2015069041 A1 WO2015069041 A1 WO 2015069041A1 KR 2014010622 W KR2014010622 W KR 2014010622W WO 2015069041 A1 WO2015069041 A1 WO 2015069041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- value
- nan
- beacon frame
- master rank
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/20—Hop count for routing purposes, e.g. TTL
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/002—Mutual synchronization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
- H04W84/20—Master-slave selection or change arrangements
Definitions
- the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting / receiving a signal from a neighbor awareness networking (NAN) terminal.
- NAN neighbor awareness networking
- WLAN is based on radio frequency technology, and can be used in homes, businesses, or businesses by using portable terminals such as personal digital assistants (PDAs), laptop computers, and portable multimedia players (PMPs). It is a technology that allows wireless access to the Internet in a specific service area.
- PDAs personal digital assistants
- PMPs portable multimedia players
- the present invention is a technical problem to define the operation of the terminal when there are a plurality of anchor master in the NAN cluster (Neighbor Awareness Networking) cluster.
- NAN cluster Neighbor Awareness Networking
- a method of transmitting and receiving a signal by a neighbor awareness networking (NAN) terminal in a wireless communication system comprising: receiving a synchronization beacon frame from a first terminal; And comparing at least one of an anchor master rank value and a hop counter value included in the synchronous beacon frame with a value stored in the terminal, wherein the anchor master rank value and the hop counter value included in the synchronous beacon frame are the same. If the anchor master rank value and the hop counter value stored in the terminal are the same, further comprising comparing the anchor master rank value and the master rank value of the terminal, wherein the anchor master rank value and the master rank value of the terminal are the same.
- NAN neighbor awareness networking
- the terminal updates the AMBTT value stored in the terminal to the AMBTT value included in the synchronization beacon frame. This is a signal transmission / reception method of a NAN terminal.
- a second technical aspect of the present invention is a NAN (Neighbor Awareness Networking) terminal apparatus in a wireless communication system, comprising: a receiving module; And a processor, wherein the processor receives a synchronous beacon frame from a first terminal, compares one or more of an anchor master rank value and a hop counter value included in the synchronous beacon frame with a value stored in the terminal, When the anchor master rank value and the hop counter value included in the synchronous beacon frame are the same as the anchor master rank value and the hop counter value stored in the terminal, the anchor master rank value is compared with the master rank value of the terminal, and the anchor master If the rank value and the master rank value of the terminal is the same, and the AMBTT (Anchor Master Beacon Transmission Time) value stored in the terminal is greater than the AMBTT value included in the synchronization beacon frame, the terminal uses the AMBTT value stored in the terminal The terminal device updates the AMBTT value included in the sync beacon frame.
- the processor receives a synchronous beacon frame from a first terminal,
- the first to second technical aspects of the present invention may include one or more of the following.
- the AMBTT value stored in the terminal may be included in a sync beacon frame received from the second terminal.
- the anchor master rank value and the hop counter value included in the sync beacon frame transmitted by the second terminal may be the same as the anchor master rank value and the hop counter value included in the sync beacon frame transmitted by the first terminal.
- the sync beacon frame transmitted by the first terminal and the sync beacon frame transmitted by the second terminal may be included in one discovery window.
- the terminal may change the master rank value when one or more of a master preference, a random factor, and a device MAC address increase.
- the change of the master rank value may be performed when the discovery window ends.
- the terminal may perform anchor master selection in the next discovery window of the discovery window.
- the terminal may not transmit a discovery beacon frame until the next discovery window.
- the terminal may periodically transmit a discovery beacon frame.
- the terminal may not transmit a discovery beacon frame until the next discovery window.
- the change of the master rank value may be performed at the start of the discovery window.
- the terminal may perform anchor master selection in the discovery window.
- the terminal when there are a plurality of terminals operating as anchor masters in a cluster, the terminal may experience confusion in the anchor master selection process.
- FIG. 1 is a diagram illustrating an exemplary structure of an IEEE 802.11 system.
- 2 to 3 are diagrams illustrating a NAN cluster.
- FIG. 4 illustrates a structure of a NAN terminal.
- FIG. 7 is a diagram illustrating a state transition of a NAN terminal.
- FIG. 8 is a diagram illustrating a discovery window and the like.
- 9 is a diagram for explaining a master rank change.
- FIG. 10 is a block diagram illustrating a configuration of a wireless device according to an embodiment of the present invention.
- each component or feature may be considered to be optional unless otherwise stated.
- Each component or feature may be embodied in a form that is not combined with other components or features.
- some components and / or features may be combined to form an embodiment of the present invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-A (LTE-Advanced) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
- Wi-Fi IEEE 802.11
- WiMAX IEEE 802.16
- E-UTRA Evolved UTRA
- FIG. 1 is a diagram showing an exemplary structure of an IEEE 802.11 system to which the present invention can be applied.
- the IEEE 802.11 architecture may be composed of a plurality of components, and by their interaction, a WLAN may be provided that supports transparent STA mobility for higher layers.
- the Basic Service Set (BSS) may correspond to a basic building block in an IEEE 802.11 WLAN.
- FIG. 1 exemplarily shows that two BSSs (BSS1 and BSS2) exist and include two STAs as members of each BSS (STA1 and STA2 are included in BSS1 and STA3 and STA4 are included in BSS2). do.
- an ellipse representing a BSS may be understood to represent a coverage area where STAs included in the BSS maintain communication. This area may be referred to as a basic service area (BSA).
- BSA basic service area
- the most basic type of BSS in an IEEE 802.11 WLAN is an independent BSS (IBSS).
- the IBSS may have a minimal form consisting of only two STAs.
- the BSS (BSS1 or BSS2) of FIG. 1, which is the simplest form and other components are omitted, may correspond to a representative example of the IBSS. This configuration is possible when STAs can communicate directly.
- this type of WLAN is not configured in advance, but may be configured when a WLAN is required, and may be referred to as an ad-hoc network.
- the membership of the STA in the BSS may be dynamically changed by turning the STA on or off, the STA entering or exiting the BSS region, and the like.
- the STA may join the BSS using a synchronization process.
- the STA In order to access all services of the BSS infrastructure, the STA must be associated with the BSS. This association may be set up dynamically and may include the use of a Distribution System Service (DSS).
- DSS Distribution System Service
- FIG. 1 illustrates components of a distribution system (DS), a distribution system medium (DSM), an access point (AP), and the like.
- DS distribution system
- DSM distribution system medium
- AP access point
- the station-to-station distance directly in the WLAN may be limited by PHY performance. In some cases, this distance limit may be sufficient, but in some cases, communication between more distant stations may be necessary.
- the distribution system DS may be configured to support extended coverage.
- the DS refers to a structure in which BSSs are interconnected. Specifically, instead of the BSS independently as shown in FIG. 1, the BSS may exist as an extended type component of a network composed of a plurality of BSSs.
- DS is a logical concept and can be specified by the nature of the distribution system medium (DSM).
- the IEEE 802.11 standard logically distinguishes between wireless medium (WM) and distribution system media (DSM). Each logical medium is used for a different purpose and is used by different components.
- the definition of the IEEE 802.11 standard does not limit these media to the same or to different ones. In this way the plurality of media are logically different, the flexibility of the IEEE 802.11 WLAN structure (DS structure or other network structure) can be described. That is, the IEEE 802.11 WLAN structure can be implemented in various ways, the corresponding WLAN structure can be specified independently by the physical characteristics of each implementation.
- the DS may support the mobile device by providing seamless integration of multiple BSSs and providing logical services for handling addresses to destinations.
- An AP means an entity that enables access to a DS through WM for associated STAs and has STA functionality. Data movement between the BSS and the DS may be performed through the AP.
- STA2 and STA3 shown in FIG. 1 have the functionality of a STA, and provide a function to allow associated STAs STA1 and STA4 to access the DS.
- all APs basically correspond to STAs, all APs are addressable entities. The address used by the AP for communication on the WM and the address used by the AP for communication on the DSM need not necessarily be the same.
- Data transmitted from one of the STAs associated with an AP to the STA address of that AP may always be received at an uncontrolled port and processed by an IEEE 802.1X port access entity.
- transmission data (or frame) may be transmitted to the DS.
- the operation of the STA operating in the WLAN system may be described in terms of a layer structure.
- the hierarchy may be implemented by a processor.
- the STA may have a plurality of hierarchical structures.
- the hierarchical structure covered by the 802.11 standard document is mainly the MAC sublayer and physical (PHY) layer on the DLL (Data Link Layer).
- the PHY may include a Physical Layer Convergence Procedure (PLCP) entity, a Physical Medium Dependent (PMD) entity, and the like.
- PLCP Physical Layer Convergence Procedure
- PMD Physical Medium Dependent
- the MAC sublayer and PHY conceptually contain management entities called MAC sublayer management entities (MLMEs) and physical layer management entities (PLMEs), respectively.These entities provide a layer management service interface on which layer management functions operate. .
- SME Station Management Entity
- An SME is a layer-independent entity that can appear to be in a separate management plane or appear to be off to the side. While the exact features of the SME are not described in detail in this document, they generally do not include the ability to collect layer-dependent states from various Layer Management Entities (LMEs), and to set similar values for layer-specific parameters. You may seem to be in charge. SMEs can generally perform these functions on behalf of general system management entities and implement standard management protocols.
- LMEs Layer Management Entities
- the aforementioned entities interact in a variety of ways.
- entities can interact by exchanging GET / SET primitives.
- a primitive means a set of elements or parameters related to a particular purpose.
- the XX-GET.request primitive is used to request the value of a given MIB attribute (management information based attribute information).
- the XX-GET.confirm primitive is used to return the appropriate MIB attribute information value if the Status is "Success", otherwise it is used to return an error indication in the Status field.
- the XX-SET.request primitive is used to request that the indicated MIB attribute be set to a given value. If the MIB attribute means a specific operation, this is to request that the operation be performed.
- the XX-SET.confirm primitive confirms that the indicated MIB attribute is set to the requested value when status is "success", otherwise it is used to return an error condition in the status field. If the MIB attribute means a specific operation, this confirms that the operation has been performed.
- the MLME and SME may exchange various MLME_GET / SET primitives through a MLME_SAP (Service Access Point).
- various PLME_GET / SET primitives may be exchanged between PLME and SME through PLME_SAP and may be exchanged between MLME and PLME through MLME-PLME_SAP.
- NAN Neighbor Awareness Networking
- the NAN network may consist of NAN terminals using the same set of NAN parameters (eg, time interval between successive discovery windows, interval of discovery window, beacon interval or NAN channel, etc.).
- NAN terminals may configure a NAN cluster, where the NAN cluster uses the same set of NAN parameters and means a set of NAN terminals synchronized to the same discovery window schedule.
- 2 shows an example of a NAN cluster.
- a NAN terminal belonging to a NAN cluster may directly transmit a multicast / unicast service discovery frame to another NAN terminal within a range of a discovery window.
- one or more NAN masters may exist in the NAN cluster, and the NAN master may be changed.
- the NAN master may transmit both a sync beacon frame, a discovery beacon frame, and a service discovery frame.
- the NAN terminal is based on a physical layer of 802.11, and includes a NAN discovery engine, a NAN medium access control (MAC), and applications (Application 1, Application 2, ..., Application N).
- NAN APIs are the main component.
- the NAN discovery engine can provide the functionality of subscribe, publish, and follow-up.
- the publish / subscribe function operates from the service / application through the service interface. When the publish / subscribe command is executed, an instance of the publish / subscribe function is created. Each instance runs independently, and depending on the implementation, several instances can run simultaneously.
- the follow-up function is a means for a service / application to send and receive service specific information.
- the NAN terminal may perform a master role and this may be changed. That is, the NAN terminal may transition various roles and states, and an example thereof is illustrated in FIG. 7.
- the role and state that a NAN terminal may have include a master (hereinafter, master is a master role and sync.State), a non-master sync, a non-master non-sync Sync) and the like.
- master is a master role and sync.State
- non-master sync a non-master non-sync Sync
- Each role and state may determine whether to transmit a discovery beacon frame and / or a sync beacon frame, which may be illustrated in Table 1 below.
- the state of the NAN terminal may be determined through a master rank.
- the master rank indicates the will of the NAN terminal to operate as a NAN master. In other words, a large value indicates a large preference for the NAN master.
- NAN MR may be determined by the following equation (1) by the Master Preference, Random Factor, Device MAC address.
- the Master Preference, Random Factor, and Device MAC address may be indicated through a master indication attribute included in a NAN Beacon frame.
- the master indication attorney may be as illustrated in Table 2 below.
- Attribute ID One 0x00 Identifies the type of NAN attribute.
- Length 2 2 Length of the following field in the attribute Master preference One 0-255 Information that is used to indicate a NAN Device's preference to serve as the role of Master, with a larger value indicating a higher preference.
- Random factor One 0-255 A random number selected by the sending NAN Device.
- the NAN terminal that activates the NAN service and starts the NAN cluster sets both the Master Preference and the Random Factor to 0, and resets the NANWarmUp. Until the NANWarmUp expires, the NAN terminal should set the Master Preference field value in the master indication attribute to a value greater than 0 and set the Random Factor value in the master indication attribute to a new value.
- a NAN terminal joining a NAN cluster having an anchor master's Master Preference set to a value greater than 0 may set the Master Preference to a value greater than 0 and set a Random Factor to a new value regardless of whether NANWarmUp expires. .
- the NAN terminal may be an anchor master of the NAN cluster according to the MR value. That is, all NAN terminals have the capability to operate as an anchor master.
- the anchor master means a device having the largest MR in the NAN cluster, having a HC (Hop count to the Anchor Master) value of 0 and having the smallest Anchor Master Beacon Transmit Time (AMBTT) value.
- Two anchor masters may exist temporarily in a NAN cluster, but one anchor master is a principle.
- the NAN terminal which becomes the anchor master in the existing NAN cluster uses the TSF used in the existing NAN cluster as it is.
- the NAN terminal may be an anchor master in the following case.
- a new NAN cluster is started, when a master rank is changed (when the MR value of another NAN terminal is changed or when the anchor master's own MR is changed), or when the beacon frame of the current anchor master is no longer received, the NAN The terminal may be an anchor master.
- the NAN terminal may lose the status of the anchor master.
- the anchor master may be determined by an anchor master selection algorithm as described below. That is, the anchor master selection is an algorithm for determining which NAN terminal is the anchor master of the NAN cluster, and each NAN terminal drives the anchor master selection algorithm when participating in the NAN cluster.
- the NAN terminal When the NAN terminal starts a new NAN cluster, the NAN terminal becomes an anchor master of the new NAN cluster. NAN sync beacon frames with hop counts exceeding the threshold are not used by the NAN terminal. Otherwise NAN sync beacon frame is used to determine the anchor master of the NAN cluster.
- the NAN terminal When receiving a NAN sync beacon frame having a hop count that does not exceed the threshold, the NAN terminal compares the stored anchor master rank value with the anchor master rank value in the beacon frame. If the stored anchor master rank value is larger than the anchor master value in the beacon frame, the NAN terminal discards the anchor master value in the beacon frame. If the stored anchor master rank value is smaller than the anchor master value in the beacon frame, the NAN terminal stores a new value increased by 1 in the anchor master rank and hop count included in the beacon frame and the AMBTT value in the beacon frame. Also, if the stored anchor master rank value is equal to the anchor master value in the beacon frame, the hop counter is compared. If the hop count value of the beacon frame is larger than the stored value, the NAN terminal ignores the received beacon frame.
- the NAN terminal When the hop count value of the beacon frame is equal to (stored value-1) and the AMBTT value is larger than the stored value, the NAN terminal newly stores the AMBTT value of the beacon frame. If the hop count value of the beacon frame is less than (stored value-1), the NAN terminal increases the hop count value of the beacon frame by one.
- the stored AMBTT value is updated according to the following rules. If the received beacon frame is transmitted by the anchor master, the AMBTT value is set to the lowest 4 octet value of the time stamp included in the beacon. If the received beacon frame is received from a device other than the NAN master or master sink, the AMBTT value is set to a value included in the NAN cluster attribute of the received beacon.
- the NAN terminal may assume itself as an anchor master and update the anchor master record.
- the NAN terminal other than the anchor master compares the changed MR with the stored value. If the changed MR value of the NAN terminal is larger than the stored value, the NAN terminal may assume itself as an anchor master and update the anchor master record.
- the NAN terminal sets the anchor master field of the cluster attribute in the NAN sync and discovery beacon frame to the value in the anchor master record, except when the anchor master sets the AMBTT value to the TSF value of the corresponding beacon transmission. Can be.
- the NAN terminal transmitting the NAN sync or discovery beacon frame may ensure that the TSF of the beacon frame will be derived from the same anchor master included in the cluster attribute.
- the NAN terminal i) when the NAN beacon indicates an anchor master rank of a value larger than the anchor master record of the NAN terminal, ii) the NAN beacon indicates an anchor master rank of the same value as the anchor master record of the NAN terminal,
- the TSF timer value in the NAN beacon received with the same cluster ID may be applied.
- NAN terminals participating in the same NAN cluster may be synchronized to a common clock.
- TSF of the NAN cluster may be implemented by a distributed algorithm that must be performed in all NAN terminals.
- Each NAN terminal participating in the NAN cluster may transmit NAN Sync. Beacon frames according to the algorithm.
- the device may synchronize its clock during the discovery window (DW).
- the length of the DW is 16 TUs.
- one or more NAN terminals may transmit synchronization beacon frames to help all NAN terminals in the NAN cluster synchronize their clocks.
- the NAN Beacon transmission is distributed.
- the transmission time of the NAN beacon frame is a DW section existing every 512 TU.
- All NAN terminals may participate in NAN beacon generation and transmission according to the role and state of the device.
- Each NAN terminal must maintain its own TSF timer used for NAN beacon cycle timing.
- the NAN sync beacon period may be established by the NAN terminal generating the NAN cluster.
- a series of TBTTs is defined so that the DW section that can transmit a sync beacon frame is exactly 512 TU apart.
- a time of zero is defined as the first TBTT, and the discovery window starts at each TBTT.
- Each NAN terminal serving as a master transmits a NAN discovery beacon frame outside the NAN discovery window.
- the NAN terminal in the master role transmits the NAN discovery beacon every 100 TUs.
- the time between successive NAN discovery beacons transmitted from the same NAN terminal is 200 TUs or less. If the scheduled transmission time overlaps with the NAN discovery window of the NAN cluster in which the NAN terminal participates, the NAN terminal in the master role may omit transmission of the NAN discovery beacon.
- the NAN terminal in the master role may use a WMM Access Category-Voice (AC_VO) contention setting.
- AC_VO WMM Access Category-Voice
- FIG. 8 illustrates a relationship between the transmission of the NAN discovery beacon frame, the NAN sync / discovery beacon frame, and the discovery window.
- FIG. 8 (a) shows transmission of a NAN discovery beacon and a sync beacon frame of a NAN terminal operating in a 2.4 GHz band
- FIG. 8 (b) shows a NAN discovery beacon and synchronization of a NAN terminal operating in a 2.4 GHz and a 5 GHz band. Indicates transmission of a beacon frame.
- the NAN terminal When the NAN terminal receives the synchronous beacon frame from the first terminal, it is possible to compare the stored anchor master rank value and the anchor master rank value in the beacon frame.
- the NAN terminal discards the anchor master value in the beacon frame. If the stored anchor master rank value is smaller than the anchor master value in the beacon frame, the NAN terminal stores a new value increased by 1 in the anchor master rank and hop count included in the beacon frame and the AMBTT value in the beacon frame. If the stored anchor master rank value is equal to the anchor master value in the beacon frame, the hop counter is compared. In this case, when the hop counter value in the beacon frame and the hop counter value stored in the terminal are the same, the terminal compares the anchor master rank value and the master rank value of the terminal. If the two values are the same, the AMBTT included in the beacon frame and the terminal are stored in the terminal. You can compare AMBTT values. When the AMBTT value stored in the terminal is larger than the AMBTT value included in the beacon frame, the terminal may update / store the AMBTT value stored in the terminal to the AMBTT value included in the beacon frame.
- the AMBTT value stored in the terminal may be included in the sync beacon frame received from the second terminal.
- the anchor master rank value and the hop counter value included in the sync beacon frame transmitted by the second terminal may be the same as the anchor master rank value and hop count value included in the sync beacon frame transmitted by the first terminal.
- the sync beacon frame transmitted by the first terminal and the sync beacon frame transmitted by the second terminal may be included in one discovery window.
- the terminal receives the synchronization beacon frame from the second terminal operating as an anchor master to perform the anchor master selection process, and then receives the synchronization beacon frame from the first terminal operating as the anchor master in the same discovery window.
- the UE selects the AMBTT value having a larger value by comparing the AMBTT value. That is, the terminal that has transmitted the most recent sync beacon frame is selected as the anchor master.
- the terminal may perform the master rank change in accordance with the contents described below together with or separately from the above-described anchor master selection.
- the terminal may change the master rank value when one or more of a master preference, a random factor, and a device MAC address increase.
- a change in the master rank of the terminal that has received the synchronization beacon frame at a specific time t1 in the discovery window may include a) a time t2 at which the discovery window ends or b) a discovery window. It may be performed at one of the starting time points t3.
- the NAN anchor master selection and / or NAN master selection procedure is performed in the next discovery window.
- the terminal may be in an anchor master, master sync, or non-master sync state to perform (anchor) master selection in the next discovery window.
- the terminal may perform (anchor) master selection in the next discovery window, but may not transmit the discovery beacon frame in the time interval in which the next discovery window starts. .
- the UE may update the values, transmit the discovery beacons every period, and perform (anchor) master selection while transmitting and receiving a sync beacon in the next discovery period. If the UE is in a non-synchronous state that cannot transmit a synchronous beacon, after updating the values, it becomes the anchor master / master sync / non-master sync state and performs (anchor) master selection while transmitting and receiving the synchronous beacon in the next discovery window. can do. At this time, the terminal may not transmit the discovery beacon frame until the next discovery window.
- the terminal may change the master rank value before the start of the discovery window or at the start point / initial stage.
- the terminal updates the anchor master rank stored in the changed anchor master rank. Then perform the NAN anchor master selection / master selection process.
- the stored anchor master rank is updated to the changed master rank and the NAN anchor master suntec / master within the discovery window section.
- the selection process can be performed.
- the discovery beacon frame may be transmitted periodically.
- the terminal If the state of the terminal is non-master non-sink, it is possible to perform the NAN anchor master selection / master selection based on its changed master rank value. After that, if the changed master rank value is larger than the stored / updated anchor master rank value, the terminal becomes the terminal in the sync state (anchor master / master / non-master sink) and the NAN anchor master suntec / in the next discovery window section. Master selection can be performed.
- FIG. 10 is a block diagram illustrating a configuration of a wireless device according to an embodiment of the present invention.
- the wireless device 10 may include a processor 11, a memory 12, and a transceiver 13.
- the transceiver 13 may transmit / receive a radio signal, for example, may implement a physical layer according to the IEEE 802 system.
- the processor 11 may be electrically connected to the transceiver 13 to implement a physical layer and / or a MAC layer according to the IEEE 802 system.
- the processor 11 may be configured to perform one or more operations of an application, service, and ASP layer according to various embodiments of the present invention described above, or may be configured to perform an operation related to an apparatus operating as an AP / STA. .
- a module for implementing the operation of the wireless device according to various embodiments of the present invention described above may be stored in the memory 12 and executed by the processor 11.
- the memory 12 may be included in the processor 11 or installed outside the processor 11 and connected to the processor 11 by a known means.
- Embodiments of the present invention described above may be implemented through various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Role and State | Discovery Beacon | Synchronization Beacon |
Master | 전송가능 | 전송가능 |
Non-Master Sync | 전송불가 | 전송가능 |
Non-Master Non-Sync | 전송불가 | 전송불가 |
Field Name | Size (Octets) | Value | Description |
Attribute ID | 1 | 0x00 | Identifies the type of NAN attribute. |
Length | 2 | 2 | Length of the following field in the attribute |
Master Preference | 1 | 0-255 | Information that is used to indicate a NAN Device’s preference to serve as the role of Master, with a larger value indicating a higher preference. |
Random Factor | 1 | 0-255 | A random number selected by the sending NAN Device. |
Claims (13)
- 무선통신시스템에서 NAN(Neighbor Awareness Networking) 단말이 신호를 송수신 하는 방법에 있어서,제1 단말로부터 동기 비콘 프레임을 수신하는 단계;상기 동기 비콘 프레임에 포함된 앵커 마스터 랭크 값, 홉 카운터 값 중 하나 이상을 상기 단말에 저장된 값과 비교하는 단계를 포함하며,상기 동기 비콘 프레임에 포함된 앵커 마스터 랭크 값 및 홉 카운터 값이 상기 단말에 저장된 앵커 마스터 랭크 값 및 홉 카운터 값과 동일한 경우, 상기 앵커 마스터 랭크 값과 상기 단말의 마스터 랭크 값을 비교하는 단계를 더 포함하며,상기 앵커 마스터 랭크 값과 상기 단말의 마스터 랭크 값이 동일하고, 상기 단말에 저장된 AMBTT(Anchor Master Beacon Transmission Time) 값이 상기 동기 비콘 프레임에 포함된 AMBTT 값보다 큰 경우, 상기 단말은 상기 단말에 저장된 AMBTT 값을 상기 동기 비콘 프레임에 포함된 AMBTT 값으로 업데이트하는, NAN 단말의 신호 송수신 방법.
- 제1항에 있어서,상기 단말에 저장된 AMBTT 값은 제2 단말로부터 수신된 동기 비콘 프레임에 포함된 것인, NAN 단말의 신호 송수신 방법.
- 제2항에 있어서,상기 제2 단말이 전송한 동기 비콘 프레임에 포함된 앵커 마스터 랭크 값 및 홉 카운터 값은 상기 제1 단말이 전송한 동기 비콘 프레임에 포함된 앵커 마스터 랭크 값 및 홉 카운터 값과 동일한, NAN 단말의 신호 송수신 방법.
- 제2항에 있어서,상기 제1 단말이 전송한 동기 비콘 프레임과 상기 제2 단말이 전송한 동기 비콘 프레임은 하나의 디스커버리 윈도 내에 포함되는 것인, NAN 단말의 신호 송수신 방법.
- 제1항에 있어서,상기 단말은 마스터 프리퍼런스(Master Preference), 랜덤 팩터(Random Factor), 장치 MAC 주소(Device MAC address) 증 하나 이상이 변경되면, 마스터 랭크 값을 변경시키는, NAN 단말의 신호 송수신 방법.
- 제5항에 있어서,상기 마스터 랭크 값의 변경은 디스커버리 윈도가 종료되는 시점에 수행되는, NAN 단말의 신호 송수신 방법.
- 제6항에 있어서,상기 변경이 수행된 후 마스터 랭크 값이 상기 단말에 저장된 앵커 마스터 랭크 값보다 큰 경우, 상기 단말은 상기 디스커버리 윈도의 다음 번 디스커버리 윈도에서 앵커 마스터 선택을 수행하는, NAN 단말의 신호 송수신 방법.
- 제7항에 있어서,상기 변경이 수행되기 이전에 상기 단말이 마스터 상태인 경우, 상기 단말은 상기 다음 번 디스커버리 윈도 이전까지 디스커버리 비콘 프레임을 전송하지 않는, NAN 단말의 신호 송수신 방법.
- 제7항에 있어서,,상기 변경이 수행되기 이전에 상기 단말이 앵커 마스터 상태인 경우, 상기 단말은 디스커버리 비콘 프레임을 주기적으로 전송하는, NAN 단말의 신호 송수신 방법.
- 제7항에 있어서,상기 변경이 수행되기 이전에 상기 단말이 비 동기 상태인 경우, 상기 단말은 상기 다음 번 디스커버리 윈도 이전까지 디스커버리 비콘 프레임을 전송하지 않는, NAN 단말의 신호 송수신 방법.
- 제5항에 있어서,상기 마스터 랭크 값의 변경은 디스커버리 윈도가 시작되는 시점에 수행되는, NAN 단말의 신호 송수신 방법.
- 제11항에 있어서,상기 변경이 수행된 후 마스터 랭크 값이 상기 단말에 저장된 앵커 마스터 랭크 값보다 큰 경우, 상기 단말은 상기 디스커버리 윈도에서 앵커 마스터 선택을 수행하는, NAN 단말의 신호 송수신 방법.
- 무선통신시스템에서 NAN(Neighbor Awareness Networking) 단말 장치에 있어서,수신 모듈; 및프로세서를 포함하고,상기 프로세서는, 제1 단말로부터 동기 비콘 프레임을 수신하고, 상기 동기 비콘 프레임에 포함된 앵커 마스터 랭크 값, 홉 카운터 값 중 하나 이상을 상기 단말에 저장된 값과 비교하며,상기 동기 비콘 프레임에 포함된 앵커 마스터 랭크 값 및 홉 카운터 값이 상기 단말에 저장된 앵커 마스터 랭크 값 및 홉 카운터 값과 동일한 경우, 상기 앵커 마스터 랭크 값과 상기 단말의 마스터 랭크 값을 비교하며,상기 앵커 마스터 랭크 값과 상기 단말의 마스터 랭크 값이 동일하고, 상기 단말에 저장된 AMBTT(Anchor Master Beacon Transmission Time) 값이 상기 동기 비콘 프레임에 포함된 AMBTT 값보다 큰 경우, 상기 단말은 상기 단말에 저장된 AMBTT 값을 상기 동기 비콘 프레임에 포함된 AMBTT 값으로 업데이트하는, 단말 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/025,995 US9974075B2 (en) | 2013-11-06 | 2014-11-06 | Method and apparatus for NAN terminal to transceive signal in wireless communication system |
KR1020167007300A KR101785672B1 (ko) | 2013-11-06 | 2014-11-06 | 무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361900411P | 2013-11-06 | 2013-11-06 | |
US61/900,411 | 2013-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015069041A1 true WO2015069041A1 (ko) | 2015-05-14 |
Family
ID=53041740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/010622 WO2015069041A1 (ko) | 2013-11-06 | 2014-11-06 | 무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9974075B2 (ko) |
KR (1) | KR101785672B1 (ko) |
WO (1) | WO2015069041A1 (ko) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017010731A1 (ko) * | 2015-07-10 | 2017-01-19 | 엘지전자 주식회사 | 무선 통신 시스템에서 프록시 서비스를 업데이트하는 방법 및 그 장치 |
WO2017014503A1 (ko) * | 2015-07-17 | 2017-01-26 | 엘지전자 주식회사 | 무선 통신 시스템에서 데이터를 교환하는 방법 및 장치 |
WO2017028205A1 (zh) * | 2015-08-18 | 2017-02-23 | 华为技术有限公司 | 一种锚主节点am管理的方法及节点 |
WO2017052213A1 (ko) * | 2015-09-22 | 2017-03-30 | 엘지전자 주식회사 | 이웃 인식 네트워크의 스케줄링 방법 및 이를 이용한 기기 |
WO2017146461A1 (ko) * | 2016-02-24 | 2017-08-31 | 엘지전자 주식회사 | 페이징 기법에 따른 이웃 인식 네트워크를 위한 방법 및 이를 이용한 무선 단말 |
CN108419297A (zh) * | 2018-01-19 | 2018-08-17 | 京信通信系统(中国)有限公司 | 无线通信方法及无线接入设备、网络规划设备、终端设备 |
CN108810887A (zh) * | 2017-05-01 | 2018-11-13 | 线性技术有限责任公司 | 多个管理器或接入点在无线网络中的不相交安全 |
CN113993106A (zh) * | 2019-05-14 | 2022-01-28 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104053227B (zh) * | 2013-12-02 | 2017-06-27 | 华为终端有限公司 | 一种用于锚主设备选择的方法和设备 |
JP5826877B2 (ja) * | 2014-03-14 | 2015-12-02 | 株式会社東芝 | クロック同期管理装置、クロック同期管理装置の制御方法及び制御プログラム |
US10051676B2 (en) * | 2014-10-30 | 2018-08-14 | Intel Corporation | Apparatus, system and method of peer to peer communication |
US20190007903A1 (en) * | 2017-06-28 | 2019-01-03 | Qualcomm Incorporated | Coordinated neighbor aware network (nan) role assignment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6711409B1 (en) * | 1999-12-15 | 2004-03-23 | Bbnt Solutions Llc | Node belonging to multiple clusters in an ad hoc wireless network |
US20070295259A1 (en) * | 2006-06-23 | 2007-12-27 | Ghobad Heidari-Bateni | System and method for power management |
US20100073686A1 (en) * | 2008-09-23 | 2010-03-25 | Henry Ponti Medeiros | Clustering protocol for directional sensor networks |
KR101034380B1 (ko) * | 2009-05-20 | 2011-05-16 | 강릉원주대학교산학협력단 | Nan에서의 이웃 검색을 이용한 보안 시스템 및 방법 |
WO2011062317A1 (ko) * | 2009-11-18 | 2011-05-26 | 연세대학교산학협력단 | 센서 네트워크 및 센서 네트워크의 클러스터링 방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7247799B2 (en) | 2005-06-07 | 2007-07-24 | Belkin International, Inc. | Cord management device and method of manufacturing same |
US9432925B2 (en) * | 2013-08-05 | 2016-08-30 | Nokia Technologies Oy | Method, apparatus, and computer program product for hop count usage in cluster selection |
-
2014
- 2014-11-06 US US15/025,995 patent/US9974075B2/en active Active
- 2014-11-06 WO PCT/KR2014/010622 patent/WO2015069041A1/ko active Application Filing
- 2014-11-06 KR KR1020167007300A patent/KR101785672B1/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6711409B1 (en) * | 1999-12-15 | 2004-03-23 | Bbnt Solutions Llc | Node belonging to multiple clusters in an ad hoc wireless network |
US20070295259A1 (en) * | 2006-06-23 | 2007-12-27 | Ghobad Heidari-Bateni | System and method for power management |
US20100073686A1 (en) * | 2008-09-23 | 2010-03-25 | Henry Ponti Medeiros | Clustering protocol for directional sensor networks |
KR101034380B1 (ko) * | 2009-05-20 | 2011-05-16 | 강릉원주대학교산학협력단 | Nan에서의 이웃 검색을 이용한 보안 시스템 및 방법 |
WO2011062317A1 (ko) * | 2009-11-18 | 2011-05-26 | 연세대학교산학협력단 | 센서 네트워크 및 센서 네트워크의 클러스터링 방법 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10158736B2 (en) | 2015-07-10 | 2018-12-18 | Lg Electronics Inc. | Method for updating proxy service in wireless communication system and device therefor |
WO2017010731A1 (ko) * | 2015-07-10 | 2017-01-19 | 엘지전자 주식회사 | 무선 통신 시스템에서 프록시 서비스를 업데이트하는 방법 및 그 장치 |
WO2017014503A1 (ko) * | 2015-07-17 | 2017-01-26 | 엘지전자 주식회사 | 무선 통신 시스템에서 데이터를 교환하는 방법 및 장치 |
WO2017028205A1 (zh) * | 2015-08-18 | 2017-02-23 | 华为技术有限公司 | 一种锚主节点am管理的方法及节点 |
EP3749027A1 (en) * | 2015-08-18 | 2020-12-09 | Huawei Technologies Co., Ltd. | Anchor master am management method and node |
WO2017052213A1 (ko) * | 2015-09-22 | 2017-03-30 | 엘지전자 주식회사 | 이웃 인식 네트워크의 스케줄링 방법 및 이를 이용한 기기 |
US10548086B2 (en) | 2016-02-24 | 2020-01-28 | Lg Electronics Inc. | Method for neighbor aware network according to paging scheme and wireless terminal using same |
WO2017146461A1 (ko) * | 2016-02-24 | 2017-08-31 | 엘지전자 주식회사 | 페이징 기법에 따른 이웃 인식 네트워크를 위한 방법 및 이를 이용한 무선 단말 |
CN108810887A (zh) * | 2017-05-01 | 2018-11-13 | 线性技术有限责任公司 | 多个管理器或接入点在无线网络中的不相交安全 |
US10897710B2 (en) | 2017-05-01 | 2021-01-19 | Analog Devices International Unlimited Company | Disjoint security in wireless networks with multiple managers or access points |
CN108810887B (zh) * | 2017-05-01 | 2022-03-18 | 亚德诺半导体国际无限责任公司 | 多个管理器或接入点在无线网络中的不相交安全 |
CN108419297A (zh) * | 2018-01-19 | 2018-08-17 | 京信通信系统(中国)有限公司 | 无线通信方法及无线接入设备、网络规划设备、终端设备 |
CN113993106A (zh) * | 2019-05-14 | 2022-01-28 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN113993106B (zh) * | 2019-05-14 | 2024-03-01 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20160048118A (ko) | 2016-05-03 |
US20160249352A1 (en) | 2016-08-25 |
KR101785672B1 (ko) | 2017-10-16 |
US9974075B2 (en) | 2018-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015069041A1 (ko) | 무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치 | |
WO2015060651A1 (ko) | 무선 통신 시스템에서 nan 단말의 신호 전송 방법 및 장치 | |
WO2015126220A2 (ko) | 무선 통신 시스템에서 nan 클러스터로의 참가 방법 및 이를 위한 장치 | |
WO2015170818A1 (ko) | 무선 통신 시스템에서 nan 단말의 신호 수신 방법 및 장치 | |
WO2015072796A1 (ko) | 무선 통신 시스템에서 nan 단말의 상태 변경 방법 및 장치 | |
WO2015152657A1 (ko) | 무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치 | |
WO2015115829A1 (ko) | 무선 통신 시스템에서 nan 단말의 nan 서비스 디스커버리 프레임 전송 방법 및 장치 | |
WO2015126187A1 (ko) | 무선 통신 시스템에서 nan 단말의 멀티캐스트 주소 공유 방법 및 장치 | |
WO2015119454A1 (ko) | 무선 통신 시스템에서 nan 단말의 상태 천이 방법 및 장치 | |
WO2015119440A1 (ko) | 무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치 | |
WO2016144088A1 (ko) | 무선 통신 시스템에서 멀티 채널을 이용하여 데이터를 전송하는 방법 및 장치 | |
WO2016140466A1 (ko) | 무선랜 시스템에서 페이징 수행 방법 및 이를 이용한 기기 | |
WO2017014503A1 (ko) | 무선 통신 시스템에서 데이터를 교환하는 방법 및 장치 | |
WO2017057988A1 (ko) | 무선 통신 시스템에서 nan 단말이 nan 클러스터로 머징하는 방법 및 장치 | |
WO2017065561A1 (ko) | 무선 통신 시스템에서 nan 단말이 프레임을 전송하는 방법 및 장치 | |
WO2017105154A1 (ko) | 무선 통신 시스템에서 nan 단말이 레인징 오퍼레이션을 수행하는 방법 및 장치 | |
WO2016148506A1 (ko) | 무선 통신 시스템에서 서비스 디스커버리를 수행하는 방법 및 장치 | |
WO2016148354A1 (ko) | 무선 통신 시스템에서 디스커버리 윈도우 어웨이크 주기를 설정하는 방법 및 장치 | |
WO2016129915A1 (ko) | 무선 통신 시스템에서 데이터 전송 방법 및 이를 이용한 장치 | |
WO2017052249A1 (ko) | 무선 통신 시스템에서 nan 데이터 링크를 유지하는 방법 및 장치 | |
WO2017105152A1 (ko) | 무선 통신 시스템에서 nan 단말이 데이터 교환을 수행하는 제공하는 방법 및 장치 | |
WO2016126137A1 (ko) | 무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치 | |
WO2014003471A1 (ko) | 무선랜 시스템에서 액세스 포인트의 검색 방법 | |
WO2017123068A1 (ko) | 무선 통신 시스템에서 nan 단말이 데이터 교환을 수행하는 제공하는 방법 및 장치 | |
WO2017007183A1 (ko) | 무선 통신 시스템에서 전력 제어 방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14859447 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167007300 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15025995 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14859447 Country of ref document: EP Kind code of ref document: A1 |