WO2015060344A1 - Magnetic field gradient sensor - Google Patents
Magnetic field gradient sensor Download PDFInfo
- Publication number
- WO2015060344A1 WO2015060344A1 PCT/JP2014/078090 JP2014078090W WO2015060344A1 WO 2015060344 A1 WO2015060344 A1 WO 2015060344A1 JP 2014078090 W JP2014078090 W JP 2014078090W WO 2015060344 A1 WO2015060344 A1 WO 2015060344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- sensor
- sensor head
- detection
- magnetic core
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/04—Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/022—Measuring gradient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/028—Electrodynamic magnetometers
Definitions
- the present invention relates to a gradient magnetic field sensor.
- This application claims priority on the basis of Japanese Patent Application No. 2013-2119016 for which it applied to Japan on October 22, 2013, and uses the content here.
- Cardiac magnetic field measurement is an effective means for early detection of heart diseases and the like.
- a measurement system using SQUID Superconducting Quantum Interference Device
- this is not only expensive liquid helium for cooling and large dewar for cooling, but also a shield room
- This is necessary and requires a lot of introduction and operation costs. This hinders the spread of the magnetocardiogram measurement technique.
- Non-Patent Documents 1 to 3 research on cardiomagnetic field measurement using various sensors instead of SQUID has been conducted (see Non-Patent Documents 1 to 3).
- an electrocardiogram measurement using a fundamental wave type orthogonal fluxgate sensor that does not require any cooling or heating has been attempted (see Non-Patent Document 4).
- a fundamental wave type orthogonal fluxgate sensor energizes a magnetic wire by applying an AC excitation current (excitation AC current) with a DC current (excitation DC current) larger than the amplitude value as a bias.
- excitation AC current AC current
- DC current excitation DC current
- a resolution of 1.8 pT / ⁇ Hz is obtained at 1 Hz (see Non-Patent Document 6).
- Non-Patent Documents 7 and 8 There has already been a report (see Non-Patent Documents 7 and 8) on a gradiometer that obtains a differential output using a fluxgate sensor, and there is an example applied to pulmonary magnetogram measurement (see Non-Patent Document 9).
- the output from the two sensors is differentiated by the circuit after synchronous detection, so the resolution cannot be gained, or the single core parallel fluxgate sensor is used as a gradiometer. A slight shift of the coil deteriorates the effect of reducing the uniform magnetic field and is difficult to adjust.
- the present invention provides a gradient magnetic field sensor capable of measuring a weak magnetic field easily and with high sensitivity.
- the gradient magnetic field sensor has a first magnetic core and a first detection coil wound around the first magnetic core, and the first magnetic core is energized for excitation.
- a first sensor head to which a current and an exciting direct current are applied and which outputs a detection voltage corresponding to a magnetic field in the extending direction; a second magnetic core; and a second detection coil wound around the second magnetic core;
- a second sensor head that applies an excitation AC current and an excitation DC current to the second magnetic core and outputs a detection voltage corresponding to a magnetic field in the extending direction; and the first sensor head outputs A sensor circuit that receives a composite voltage of a detection voltage and a detection voltage output from the second sensor head and outputs a gradient magnetic field detection signal corresponding to the composite voltage; and the first sensor head and the sensor circuit
- the second sensor heads are not separated from each other. Et al., With each of the extending direction are arranged to have the same axis or parallel, the detected voltage to be output to the same direction of the magnetic field are connected
- each of the first detection coil and the second detection coil is connected at one end, and the other end of the first detection coil is connected to the ground.
- the other end of the detection coil is connected to the sensor circuit.
- the gradient magnetic field sensor is an excitation that can independently change the exciting direct current applied to at least one of the first magnetic core and the second magnetic core.
- An adjustment unit is further provided.
- the sensor circuit is a negative feedback circuit having a feedback resistor, and a displacement of a voltage generated between the feedback resistors in accordance with the combined voltage is detected by the gradient magnetic field detection signal. Output as.
- the above-mentioned gradient magnetic field sensor can measure a weak magnetic field easily and with high sensitivity.
- FIG. 1 is a diagram illustrating a functional configuration of the gradient magnetic field sensor according to the first embodiment.
- the gradient magnetic field sensor 4 (gradiometer) according to the first embodiment includes two sensor heads constituting a so-called fundamental mode orthogonal fluxgate sensor head (FM-OFG). 1 and 2 and a fluxgate sensor circuit 3 (sensor circuit).
- FM-OFG fundamental mode orthogonal fluxgate sensor head
- the sensor head 1 (first sensor head) includes a magnetic core 110 (first magnetic core) and a detection coil 11 (first detection coil).
- the sensor head 2 (second sensor head) includes a magnetic core 120 (second magnetic core) and a detection coil 12 (second detection coil).
- the magnetic core 110 and the magnetic core 120 are configured by, for example, a Co-based amorphous wire formed in a U-shape (or hairpin shape).
- the material used for the magnetic core 110 and the magnetic core 120 is not limited to this as long as the material has high conductivity and appropriate soft magnetism.
- the detection coil 11 is a coil wound around its extending direction (Z axis) so as to wrap around the magnetic core 110.
- the detection coil 12 is a coil wound around the extending direction so as to surround the magnetic core 120.
- the detection coil 11 and the detection coil 12 have 1000 turns.
- the sensor head 1 and the sensor head 2 are arranged so that the extending directions of the magnetic cores (magnetic cores 110 and 120) are on the same axis (Z-axis) line. At this time, the sensor head 1 and the sensor head 2 are spaced apart by a separation distance l (see FIG. 1).
- the sensor head disposed on the ⁇ Z direction side (the lower side of the drawing) is referred to as sensor head 1
- the sensor head disposed on the + Z direction side (the upper side of the drawing) is referred to as sensor head 2.
- the magnetic core 110 and the magnetic core 120 are connected in series with an AC power supply VEX and a DC power supply E having a value larger than its amplitude.
- the AC power source VEX and the DC power source E apply a predetermined AC voltage and DC voltage to the magnetic core 110 and the magnetic core 120 and energize them, the sensor heads 1 and 2 are excited.
- the sensor heads 1 and 2 can output a detection voltage corresponding to the magnetic field along each extending direction, so-called orthogonal fluxgate sensor (fundamental-mode orthogonal-fluxgate (MF-OFG)).
- MF-OFG fundamental-mode orthogonal-fluxgate
- each end of the detection coil 11 and the detection coil 12 is connected by electric wiring so as to be connected in series.
- the other end side of the detection coil 12 is connected to the fluxgate sensor circuit 3, and the other end side of the detection coil 11 is connected to the ground.
- the detection coil 11 and the detection coil 12 are such that induced voltages (detection voltages V 1 and V 2 ) generated with respect to the magnetic field in the same direction cancel each other (so that the polarities of the detection coils 11 and 12 are opposite to each other). Connected.
- the fluxgate sensor circuit 3 includes a synchronous detection circuit 30 (PSD: Phase Sensitive Detector), a smoothing circuit 31 (smoothing filter), an error amplifier 32 (Error Amplifier), and a low-pass filter 33, and is a negative feedback circuit (non-patented). Reference 10). Sensor output V 2 -V 1 from the sensor head 1 and 2, capacitor C, the synchronous detection circuit 30: through (PSD Phase Sensitive Detector) and a smoothing circuit 31 (smoothing filter), corresponding to the sensor output V 2 -V 1 It becomes a constant voltage and is sent to an error amplifier 32 (Error Amplifier).
- PSD Phase Sensitive Detector
- a smoothing circuit 31 smoothing filter
- the feedback current if flows through the detection coils 11 and 12 through the feedback resistor Rf so that the input to the error amplifier 32 (sensor output V 2 ⁇ V 1 ) becomes zero.
- the voltage displacement (gradient magnetic field detection signal Vo) generated between the feedback resistors Rf at this time corresponds to the sensor output V 2 ⁇ V 1 .
- the gradient magnetic field detection signal Vo is output via the low-pass filter 33 in order to reduce the switching ripple generated in the synchronous detection circuit 30.
- a negative feedback current i f to generate a magnetic field n ⁇ i f in the direction of strengthening the input field H of the magnetic core 110 in the sensor head 1, in the sensor head 2 input field H + field in a direction to cancel the lG n ⁇ i f Is generated.
- the magnetic field gradient G is detected in the environment of the uniform magnetic field H when the above-described negative feedback configuration fluxgate sensor circuit 3 is used.
- the magnitude ⁇ H1 of the magnetic field detected by the sensor head 1 and the magnitude of the magnetic field ⁇ H2 detected by the sensor head 2 are expressed as follows.
- “l” is the separation distance 1 between the two sensor heads 1 and 2
- “n” is the winding density n of the detection coils 11 and 12
- “ if ” is the fluxgate sensor.
- the feedback current if from the circuit 3 to the sensor heads 1 and 2 is shown.
- the detection voltage V1 of the sensor head 1 and the detection voltage V2 of the sensor head 2 are the following from the equations (1) and (2) It is expressed by a formula.
- the sensor outputs V 2 -V 1 of the detection coils 11 and 12 applied to the fluxgate sensor circuit 3 are as follows.
- the negative feedback current if flows so that the sensor output V 2 -V 1 is zero. Thereby, the negative feedback current is derived as follows.
- the gradient magnetic field detection signal Vo which is the final output of the gradient magnetic field sensor 4, so given from the voltage R f ⁇ i f according to the feedback resistor R f, the gradient magnetic field detection signal Vo, the distance l and a magnetic field gradient G
- (1G) the gradient magnetic field detection signal
- the external magnetic noise can be regarded as a uniform magnetic field H, and the local magnetic field such as a cardiac magnetic field is equivalent to the magnetic field gradient G, signal detection that eliminates the influence of the external magnetic noise by using the gradient magnetic field sensor 4 according to this embodiment. Is possible.
- FIG. 2 is a diagram illustrating a method for adjusting the gradient magnetic field sensor according to the first embodiment.
- the expression (5) indicates that the influence of the uniform magnetic field H can be eliminated.
- the expression (5) is satisfied because the sensor head 1 and the sensor This is a case where the sensitivity (coefficient K) is completely equal in the head 2. If the sensitivities of the sensor heads 1 and 2 are different, the uniform magnetic field H is not completely canceled and affects the gradient magnetic field detection signal Vo.
- the actual sensitivities of the sensor heads 1 and 2 slightly differ between the sensor heads 1 and 2 due to individual differences that occur at the time of manufacture even if the excitation conditions of the magnetic cores 110 and 120 are the same.
- a method of adjusting the excitation current to the magnetic cores 110 and 120 is effective. Since the gradient magnetic field sensor 4 according to the present embodiment forms a fundamental wave type orthogonal flux gate, the magnetic cores 110 and 120 are biased with an AC voltage by the AC power supply VEX and a DC voltage by the DC power supply E, The heads 1 and 2 are excited.
- the fundamental wave type orthogonal flux gate when the alternating current for excitation (current flowing through application of the alternating voltage of the AC power supply VEX) is constant, the sensitivity (coefficient K) of the sensor heads 1 and 2 is the direct current for excitation ( It is known to have a monotonically decreasing relationship with respect to a current that flows when a DC voltage is applied from the DC power source E). Therefore, in the gradient magnetic field sensor 4 according to the present embodiment, the AC power supply VEX and the DC power supply E shown in FIG. 1 are actually configured as shown in FIG.
- the AC voltage from the AC power supply VEX is applied to each of the magnetic cores 110 and 120 connected in series through the resistor R1.
- a common alternating current Iac excitation alternating current
- a DC voltage from the DC power source E is also applied to each of the magnetic cores 110 and 120 connected in series, whereby a common DC current Idc1 (excitation for excitation) is applied to the magnetic cores 110 and 120 based on the resistors R2 and R3. DC current) flows.
- the DC voltage output from the DC power source E ′ (actually, a battery or the like) is applied only to the magnetic core 120 through the variable resistor Rv.
- a direct current Idc2 (exciting direct current) based on the variable resistance Rv further flows in the magnetic core 110.
- the DC power supply E ′ and the variable resistor Rv function as an excitation adjusting unit that can change the excitation DC current applied to the magnetic core 110 of the sensor head 1 independently of the sensor head 2.
- the circuit configuration shown in FIG. 2 is an example of a unit that can independently change the exciting direct current applied to the magnetic core 110 (120) of the sensor head 1 (sensor head 2). It is not limited to the circuit configuration shown. Other circuit configuration examples will be described later (see FIG. 15).
- the operator of the gradient magnetic field sensor 4 can independently adjust the excitation of the sensor head 2 by setting the resistance value of the variable resistor Rv as desired. That is, when the sensitivity (coefficient K) of the sensor head 2 is larger than the sensitivity of the sensor head 1, the sensitivity of the sensor heads 1 and 2 is increased by increasing the DC current Idc2 (decreasing the resistance value of the variable resistor Rv). Can be the same. On the contrary, when the sensitivity (coefficient K) of the sensor head 1 is larger than the sensitivity of the sensor head 2, the direct current Idc2 is decreased (the resistance value of the variable resistor Rv is increased), thereby Sensitivity can be the same.
- FIG. 3 is a photograph showing a configuration example of the sensor head 1.
- the length of the detection coils 11 and 12 in the extending direction is, for example, 30 mm.
- the extension diameter of the detection coils 11 and 12 is, for example, 3 mm.
- FIG. 4 shows an arrangement example of the two sensor heads 1 and 2. In the present embodiment, as shown in FIG. 4, the sensor heads 1 and 2 are arranged on the coaxial line (on the Z-axis, see FIG. 1) with a separation distance l.
- the separation distance l is a distance between the center positions of the sensor heads 1 and 2 and is, for example, 50 mm.
- FIG. 5 shows an example of a holder for two sensor heads 1 and 2. As shown in FIG. 5, two sensor heads 1 and 2 are stored in a plastic cover so that the two sensor heads 1 and 2 can be accurately arranged on the same axis (see FIG. 4). In this embodiment, the sensor head 1 is stored in the protrusion arranged on the left side of FIG. 5, and the sensor head 2 is stored in the plastic cover body on the right side of FIG.
- the AC power supply VEX is adjusted so that, for example, an AC current having an effective value of 12 mA (excitation AC current) flows at 100 kHz.
- the direct current power source E is adjusted so that a direct current of about 40 mA flows.
- FIG. 6A and 6B are a first diagram and a second diagram, respectively, for explaining the evaluation method of the gradient magnetic field sensor according to the first embodiment.
- the evaluation of the gradient magnetic field sensor 4 uses a Helmholtz coil 5 (see Non-Patent Document 11) in which three sets of circular coils are combined.
- the Helmholtz coil 5 can generate a uniform magnetic field when the exciting current ie flows in the same direction between the left and right coils (FIG. 6A).
- a uniform magnetic field of 1.0 ⁇ T can be generated with an excitation current ie of 3.5 mA.
- the magnetic field gradient with the central magnetic field between the Helmholtz coils 5 set to 0 can be generated (FIG. 6B).
- a magnetic field gradient of 2.25 ⁇ T / m can be generated with an excitation current ie of 3.5 mA.
- the Helmholtz coil 5 is evaluated by flowing an alternating current of 5 Hz, for example.
- the sensor heads 1 and 2 are arranged so that the extending direction (Z axis, see FIG. 1) faces east and west.
- FIG. 7 is a first diagram illustrating an evaluation result of the gradient magnetic field sensor according to the first embodiment.
- the horizontal axis indicates the direct current Idc2 that flows only to the sensor head 2
- the vertical axis indicates the suppression ratio (Suppression ratio) corresponding to the direct current Idc2.
- the “suppression ratio” refers to a case where the gradient magnetic field sensor 4 (gradiometer) according to the present embodiment is observed with respect to a uniform magnetic field of 1 ⁇ T, and a case where the sensor head 2 is removed and observed as a magnetometer.
- the gradient magnetic field detection signal Vo is a ratio.
- the measurement result shown in FIG. 7 shows that each of the three sensor heads (sensor heads Head1, Head2, Head3) prototyped as the sensor head 2 used for the gradient magnetic field sensor 4 has a direct current to the sensor head 2 by the variable resistor R2. It is shown how the response of the sensor heads 1 and 2 to the uniform magnetic field changes as a result of adjusting Idc2 (see FIG. 2).
- Idc2 adjusting Idc2
- FIG. 8 is a second diagram for explaining the evaluation result of the gradient magnetic field sensor according to the first embodiment.
- FIG. 8 shows the waveform of the gradient magnetic field detection signal Vo when the sensor head Head1 shown in FIG. 7 is used.
- FIG. 9 is a third diagram illustrating the evaluation result of the gradient magnetic field sensor according to the first embodiment.
- Idc2 0
- the reciprocal of the suppression ratio when the optimal condition is set According to FIG. 9, it can be seen that a more harmonious set requires less DC current Idc2. Even if the DC current Idc2 is not adjusted, the suppression ratio is 1/60 to 1/150.
- FIG. 10 is a diagram illustrating the configuration of the sensor head according to the second embodiment.
- the sensor heads 1 and 2 are arranged with a separation distance l (50 mm) so that their extending directions are parallel to each other. Yes.
- FIG. 12, and FIG. 13 are a first diagram, a second diagram, and a third diagram, respectively, for explaining the evaluation results of the gradient magnetic field sensor according to the second embodiment.
- the horizontal axis indicates the DC current Idc2 that flows only through the sensor head 2 as in FIG. 7, and the vertical axis indicates the suppression ratio (Suppression ratio) corresponding to the change in the DC current Idc2. Show.
- FIG. 11 Although the characteristics shown in FIG. 11 are slightly different from those in FIG. 7, even when the extending directions of the sensor heads 1 and 2 are arranged in parallel (second embodiment), they are arranged on the same axis. It can be seen that a high suppression ratio can be obtained in the same adjustment range as in the case (first embodiment). Further, when the dependency between the uniform magnetic field and the direct current Idc2 is investigated, it has been found that the dependency is not high. For example, when the uniform magnetic field is in the range of 1 ⁇ T to 5 ⁇ T, the direct current Idc2 for obtaining a high suppression ratio remains only 5%.
- the gradient magnetic field sensor 4 according to the second embodiment can also obtain a suppression ratio in the same range as in the first embodiment.
- the gradient magnetic field sensor 4 according to the present embodiment is highly resistant to magnetic noise coming from a remote place.
- a small magnetic source such as a magnetic piece can be sensed by reducing the separation distance l to 1 cm or less.
- the sensor heads 1 and 2 need to be arranged in a range of 1 cm to 5 mm or less with respect to the magnetic piece.
- the influence of the uniform magnetic field can be greatly reduced.
- DC current Idc2 the exciting direct current
- a suppression ratio of 1/40000 can be obtained at the maximum.
- Such adjustment is extremely simple because it is only necessary to change the exciting DC current (specifically, the variable resistor Rv (see FIG. 2)) while monitoring the sensor output (gradient magnetic field detection signal Vo). Can be done.
- a weak magnetic field can be measured easily and with high sensitivity.
- FIG. 14 is a diagram illustrating a functional configuration of the gradient magnetic field sensor according to the proportionality.
- a conventional gradient magnetic field detection method as in the gradient magnetic field sensor 9 shown in FIG. 14, two independent sensor heads 1 and 2 are arranged at a separation distance l, and the gradient magnetic field is determined from the difference between the detected voltages. Find by subtraction through working amplifier. In the case of this method, it is necessary to prepare the fluxgate sensor circuit 3 for each of the sensor heads 1 and 2, so that not only the circuit scale is doubled but also the sensitivity of the sensor heads 1 and 2 is not matched. Not only the gradient magnetic field but also a part of the magnetic field at that point is detected. If the signal magnetic field is weak, the influence of the noise magnetic field becomes large and measurement becomes impossible.
- the gradient magnetic field sensor 4 solves the above problem by canceling the uniform magnetic field H at the previous stage of the fluxgate sensor circuit 3, that is, at the stage of the sensor heads 1 and 2. Since the gradient magnetic field sensor 4 has only one fluxgate sensor circuit 3 as shown in FIG. 1, the circuit scale can be reduced.
- FIG. 15 is a diagram illustrating a method for adjusting a gradient magnetic field sensor according to a modification of each embodiment.
- the gradient magnetic field sensor 4 according to the first and second embodiments includes an excitation adjustment unit that can independently change the excitation DC current applied to at least one of the magnetic core 110 and the magnetic core 120. It has been described that the DC power supply E ′ and the variable resistor Rv) are included.
- an excitation adjustment unit may be realized with a circuit configuration as shown in FIG.
- the magnetic core 110 includes an alternating current Iac2 (exciting alternating current) based on the alternating current power supply VEX, a direct current Idc2 (exciting direct current) based on the direct current power supply E1, and Flows.
- the AC current Iac2 flows from the AC power supply VEX to the magnetic core 110 through the buffer amplifier Buf, the variable resistor Rv1, and the capacitor.
- the direct current Idc2 flows from the direct current power source E1 to the magnetic core 110 via the variable resistor Rv2.
- the operator of the gradient magnetic field sensor 4 can independently change the alternating current Iac2 based on the resistance value of the variable resistor Rv1, and can independently change the direct current Idc2 based on the resistance value of the variable resistor Rv2. Can be changed.
- an AC current Iac1 (excitation AC current) based on the AC power supply VEX common to the magnetic core 110 and a DC current Idc1 (excitation DC current) based on the DC power supply E2 flow through the magnetic core 110.
- the AC current Iac1 flows from the AC power supply VEX to the magnetic core 120 through the buffer amplifier Buf, the variable resistor Rv3, and the capacitor.
- the direct current Idc1 flows from the direct current power source E2 to the magnetic core 120 via the variable resistor Rv4.
- the operator of the gradient magnetic field sensor 4 can independently change the AC current Iac1 based on the resistance value of the variable resistor Rv3, and can independently change the DC current Idc1 based on the resistance value of the variable resistor Rv4. Can be changed.
- the gradient magnetic field sensor 4 According to the gradient magnetic field sensor 4 according to this modification, all of the AC current Iac2, the DC current Idc2, and the AC current Iac1 and DC current Idc1 flowing through the sensor head 1 are independently adjusted. be able to.
- the excitation AC current and the excitation DC current based on various combinations of the excitation AC current and the excitation DC current (that is, the resistance values of the variable resistors Rv1 to Rv4).
- the suppression ratio can be further reduced.
- the above-mentioned gradient magnetic field sensor can measure a weak magnetic field easily and with high sensitivity.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
A magnetic field gradient sensor (4) is provided with a first sensor head (1) and second sensor head (2) that each have a magnetic core (110, 120) to which excitation AC current and excitation DC current are applied and a detection coil (11, 12) wrapped around the magnetic core and that each output a detection voltage corresponding to a magnetic field in the directions of extension of the sensor head and a sensor circuit (3) that has, applied thereto, the combined voltage of the detection voltage output by the first sensor head and the detection voltage output by the second sensor head and outputs a magnetic field gradient detection signal corresponding to the combined voltage. The first sensor head and second sensor head are disposed so as to be separated and have directions of extension that are coaxial or parallel.
Description
本発明は、勾配磁界センサに関する。
本願は、2013年10月22日に、日本に出願された特願2013-219016号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a gradient magnetic field sensor.
This application claims priority on the basis of Japanese Patent Application No. 2013-2119016 for which it applied to Japan on October 22, 2013, and uses the content here.
本願は、2013年10月22日に、日本に出願された特願2013-219016号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a gradient magnetic field sensor.
This application claims priority on the basis of Japanese Patent Application No. 2013-2119016 for which it applied to Japan on October 22, 2013, and uses the content here.
心磁界計測は、心疾患等の早期発見に有効な手段である。現在は、SQUID(Superconducting QUantum Interference Device)を用いた測定システムが用いられているが、これは、冷却のための液体ヘリウムが高価で保冷のためのデュワーが大型になるだけでなく、シールドルームも必要となり、多大な導入・運転コストがかかる。このため、心磁界測定技術の普及の妨げとなっている。
Cardiac magnetic field measurement is an effective means for early detection of heart diseases and the like. Currently, a measurement system using SQUID (Superconducting Quantum Interference Device) is used, but this is not only expensive liquid helium for cooling and large dewar for cooling, but also a shield room This is necessary and requires a lot of introduction and operation costs. This hinders the spread of the magnetocardiogram measurement technique.
一方、SQUIDに代わる、種々センサを用いた心磁界計測に関する研究が行われている(非特許文献1~3参照)。特に、冷却・加熱を一切必要としない、基本波型直交フラックスゲートセンサを用いた心磁界計測が試みられている(非特許文献4参照)。例えば、基本波型直交フラックスゲートセンサは、交流の励磁電流(励磁用交流電流)にその振幅値よりも大きな直流電流(励磁用直流電流)をバイアスとして与えたものを、磁性ワイヤに通電する。これにより、バルクハウゼンノイズが大幅に低減されるだけでなく高感度化も達成でき(非特許文献5参照)、1Hzにおいて1.8pT/√Hzの分解能が得られている(非特許文献6参照)。
On the other hand, research on cardiomagnetic field measurement using various sensors instead of SQUID has been conducted (see Non-Patent Documents 1 to 3). In particular, an electrocardiogram measurement using a fundamental wave type orthogonal fluxgate sensor that does not require any cooling or heating has been attempted (see Non-Patent Document 4). For example, a fundamental wave type orthogonal fluxgate sensor energizes a magnetic wire by applying an AC excitation current (excitation AC current) with a DC current (excitation DC current) larger than the amplitude value as a bias. Thereby, not only Barkhausen noise is greatly reduced but also high sensitivity can be achieved (see Non-Patent Document 5), and a resolution of 1.8 pT / √Hz is obtained at 1 Hz (see Non-Patent Document 6). ).
その他、フラックスゲートセンサに関する種々の技術が提案されている(非特許文献7~非特許文献12参照)。
In addition, various technologies related to the fluxgate sensor have been proposed (see Non-Patent Document 7 to Non-Patent Document 12).
しかし、このセンサを十分に活用するためには、外部からの磁気雑音を十分に遮蔽する必要がある。このため、SQUID心磁計でも用いられている、グラディオメータの構成でフラックスゲートを再構成することが望まれる。フラックスゲートセンサを用いて、差動出力を得るグラディオメータについての報告(非特許文献7、8参照)はすでにあり、肺磁図計測に応用された例がある(非特許文献9参照)。しかし、ここで報告されているものは2つのセンサからの出力を同期検波後に回路で差動化しているため分解能が稼げず、又は、シングルコアの平行フラックスゲートセンサをグラディオメータとしているので、検出コイルのわずかなずれが一様磁界の低減効果を劣化させてしまい、その調整が困難である。
However, in order to fully utilize this sensor, it is necessary to sufficiently shield external magnetic noise. For this reason, it is desired to reconfigure the fluxgate with the configuration of a gradiometer, which is also used in SQUID magnetocardiographs. There has already been a report (see Non-Patent Documents 7 and 8) on a gradiometer that obtains a differential output using a fluxgate sensor, and there is an example applied to pulmonary magnetogram measurement (see Non-Patent Document 9). However, what is reported here is that the output from the two sensors is differentiated by the circuit after synchronous detection, so the resolution cannot be gained, or the single core parallel fluxgate sensor is used as a gradiometer. A slight shift of the coil deteriorates the effect of reducing the uniform magnetic field and is difficult to adjust.
また、液体ヘリウムで4.2ケルビン(=-269℃)に冷却される超伝導コイルを用いれば磁界の差に比例する電流を生成することができ、これを利用した差動型のピックアップコイルが知られているが、差を取る精度は2つの円形コイルの形状の整合によって制限され、Hは1/50~1/100程度に低減される程度である。また、冷却のためのコストは極めて大きい。
In addition, if a superconducting coil cooled to 4.2 Kelvin (= −269 ° C.) with liquid helium is used, a current proportional to the difference in magnetic field can be generated, and a differential pickup coil using this can be obtained. As is known, the accuracy of the difference is limited by the matching of the shapes of the two circular coils, and H is reduced to about 1/50 to 1/100. Also, the cost for cooling is extremely high.
本発明は、容易かつ高感度に微弱磁界を測定することができる勾配磁界センサを提供する。
The present invention provides a gradient magnetic field sensor capable of measuring a weak magnetic field easily and with high sensitivity.
本発明の第1の態様によれば、勾配磁界センサは、第1磁性コアと、当該第1磁性コアに巻かれた第1検出コイルと、を有し、当該第1磁性コアに励磁用交流電流及び励磁用直流電流が印加され、延在方向の磁界に応じた検出電圧を出力する第1センサヘッドと、第2磁性コアと、当該第2磁性コアに巻かれた第2検出コイルと、を有し、当該第2磁性コアに励磁用交流電流及び励磁用直流電流が印加され、延在方向の磁界に応じた検出電圧を出力する第2センサヘッドと、前記第1センサヘッドが出力する検出電圧と、前記第2センサヘッドが出力する検出電圧と、の合成電圧が入力され、当該合成電圧に応じた勾配磁界検出信号を出力するセンサ回路と、を備え、前記第1センサヘッド及び前記第2センサヘッドは、互いに離間されながら、各々の延在方向が同一軸線上又は平行となるように配置されるとともに、同一方向の磁界に対して出力する前記検出電圧が互いに打ち消し合うように接続されている。
According to the first aspect of the present invention, the gradient magnetic field sensor has a first magnetic core and a first detection coil wound around the first magnetic core, and the first magnetic core is energized for excitation. A first sensor head to which a current and an exciting direct current are applied and which outputs a detection voltage corresponding to a magnetic field in the extending direction; a second magnetic core; and a second detection coil wound around the second magnetic core; A second sensor head that applies an excitation AC current and an excitation DC current to the second magnetic core and outputs a detection voltage corresponding to a magnetic field in the extending direction; and the first sensor head outputs A sensor circuit that receives a composite voltage of a detection voltage and a detection voltage output from the second sensor head and outputs a gradient magnetic field detection signal corresponding to the composite voltage; and the first sensor head and the sensor circuit The second sensor heads are not separated from each other. Et al., With each of the extending direction are arranged to have the same axis or parallel, the detected voltage to be output to the same direction of the magnetic field are connected to cancel each other.
また、本発明の第2の態様によれば、前記第1検出コイル及び前記第2検出コイルは、各々の一端が結線され、前記第1検出コイルの他端がグラウンドに接続され、前記第2検出コイルの他端が前記センサ回路に接続されている。
According to the second aspect of the present invention, each of the first detection coil and the second detection coil is connected at one end, and the other end of the first detection coil is connected to the ground. The other end of the detection coil is connected to the sensor circuit.
また、本発明の第3の態様によれば、勾配磁界センサは、前記第1磁性コア、前記第2磁性コアの少なくとも一方に印加される前記励磁用直流電流を、独立に変更可能とする励磁調整部を更に備える。
According to the third aspect of the present invention, the gradient magnetic field sensor is an excitation that can independently change the exciting direct current applied to at least one of the first magnetic core and the second magnetic core. An adjustment unit is further provided.
また、本発明の第4の態様によれば、前記センサ回路は、帰還抵抗を有する負帰還回路であって、前記合成電圧に応じて当該帰還抵抗間に生ずる電圧の変位を前記勾配磁界検出信号として出力する。
According to a fourth aspect of the present invention, the sensor circuit is a negative feedback circuit having a feedback resistor, and a displacement of a voltage generated between the feedback resistors in accordance with the combined voltage is detected by the gradient magnetic field detection signal. Output as.
上述の勾配磁界センサによれば、容易かつ高感度に微弱磁界を測定することができる。
The above-mentioned gradient magnetic field sensor can measure a weak magnetic field easily and with high sensitivity.
<第1の実施形態>
以下、第1の実施形態に係る勾配磁界センサについて図面を参照しながら説明する。 <First Embodiment>
The gradient magnetic field sensor according to the first embodiment will be described below with reference to the drawings.
以下、第1の実施形態に係る勾配磁界センサについて図面を参照しながら説明する。 <First Embodiment>
The gradient magnetic field sensor according to the first embodiment will be described below with reference to the drawings.
図1は、第1の実施形態に係る勾配磁界センサの機能構成を示す図である。
図1に示すように、第1の実施形態に係る勾配磁界センサ4(グラディオメータ)は、いわゆる基本波型直交フラックスゲートセンサヘッド(FM-OFG:fundamental mode orthogonal fluxgate)を構成する2つのセンサヘッド1、2と、フラックスゲートセンサ回路3(センサ回路)と、を備えている。 FIG. 1 is a diagram illustrating a functional configuration of the gradient magnetic field sensor according to the first embodiment.
As shown in FIG. 1, the gradient magnetic field sensor 4 (gradiometer) according to the first embodiment includes two sensor heads constituting a so-called fundamental mode orthogonal fluxgate sensor head (FM-OFG). 1 and 2 and a fluxgate sensor circuit 3 (sensor circuit).
図1に示すように、第1の実施形態に係る勾配磁界センサ4(グラディオメータ)は、いわゆる基本波型直交フラックスゲートセンサヘッド(FM-OFG:fundamental mode orthogonal fluxgate)を構成する2つのセンサヘッド1、2と、フラックスゲートセンサ回路3(センサ回路)と、を備えている。 FIG. 1 is a diagram illustrating a functional configuration of the gradient magnetic field sensor according to the first embodiment.
As shown in FIG. 1, the gradient magnetic field sensor 4 (gradiometer) according to the first embodiment includes two sensor heads constituting a so-called fundamental mode orthogonal fluxgate sensor head (FM-OFG). 1 and 2 and a fluxgate sensor circuit 3 (sensor circuit).
センサヘッド1(第1センサヘッド)は、磁性コア110(第1磁性コア)と、検出コイル11(第1検出コイル)と、を有してなる。また、センサヘッド2(第2センサヘッド)は、磁性コア120(第2磁性コア)と、検出コイル12(第2検出コイル)と、を有してなる。
磁性コア110及び磁性コア120は、例えば、U字型(又はヘアピン型)に形成されたCo基アモルファスワイヤにより構成される。なお、他の実施形態において、磁性コア110及び磁性コア120(磁性ワイヤ)に用いる材料は、導電率が高く適切な軟磁性を有する材料であればこれに限定されない。
検出コイル11は、磁性コア110の周囲を包むように、その延在方向(Z軸線)回りに巻かれてなるコイルである。同様に、検出コイル12は、磁性コア120の周囲を囲うように、その延在方向回りに巻かれてなるコイルである。
検出コイル11及び検出コイル12は、例えば、巻き数が1000巻とされる。 The sensor head 1 (first sensor head) includes a magnetic core 110 (first magnetic core) and a detection coil 11 (first detection coil). The sensor head 2 (second sensor head) includes a magnetic core 120 (second magnetic core) and a detection coil 12 (second detection coil).
Themagnetic core 110 and the magnetic core 120 are configured by, for example, a Co-based amorphous wire formed in a U-shape (or hairpin shape). In another embodiment, the material used for the magnetic core 110 and the magnetic core 120 (magnetic wire) is not limited to this as long as the material has high conductivity and appropriate soft magnetism.
Thedetection coil 11 is a coil wound around its extending direction (Z axis) so as to wrap around the magnetic core 110. Similarly, the detection coil 12 is a coil wound around the extending direction so as to surround the magnetic core 120.
For example, thedetection coil 11 and the detection coil 12 have 1000 turns.
磁性コア110及び磁性コア120は、例えば、U字型(又はヘアピン型)に形成されたCo基アモルファスワイヤにより構成される。なお、他の実施形態において、磁性コア110及び磁性コア120(磁性ワイヤ)に用いる材料は、導電率が高く適切な軟磁性を有する材料であればこれに限定されない。
検出コイル11は、磁性コア110の周囲を包むように、その延在方向(Z軸線)回りに巻かれてなるコイルである。同様に、検出コイル12は、磁性コア120の周囲を囲うように、その延在方向回りに巻かれてなるコイルである。
検出コイル11及び検出コイル12は、例えば、巻き数が1000巻とされる。 The sensor head 1 (first sensor head) includes a magnetic core 110 (first magnetic core) and a detection coil 11 (first detection coil). The sensor head 2 (second sensor head) includes a magnetic core 120 (second magnetic core) and a detection coil 12 (second detection coil).
The
The
For example, the
本実施形態において、センサヘッド1及びセンサヘッド2は、各々の磁性コア(磁性コア110、120)の延在方向が同一軸(Z軸)線上となるように配置される。このとき、センサヘッド1とセンサヘッド2とは、離間距離lだけ離れて配置される(図1参照)。なお、-Z方向側(紙面下方側)に配されるセンサヘッドをセンサヘッド1とし、+Z方向側(紙面上方側)に配されるセンサヘッドをセンサヘッド2とする。
In the present embodiment, the sensor head 1 and the sensor head 2 are arranged so that the extending directions of the magnetic cores (magnetic cores 110 and 120) are on the same axis (Z-axis) line. At this time, the sensor head 1 and the sensor head 2 are spaced apart by a separation distance l (see FIG. 1). The sensor head disposed on the −Z direction side (the lower side of the drawing) is referred to as sensor head 1, and the sensor head disposed on the + Z direction side (the upper side of the drawing) is referred to as sensor head 2.
図1に示すように、磁性コア110と磁性コア120とは、交流電源VEXと、その振幅より大きな値を持つ直流電源Eと、直列に接続される。交流電源VEX及び直流電源Eが、磁性コア110、磁性コア120に対し所定の交流電圧及び直流電圧を印加して通電することで、センサヘッド1、2が励磁される。これにより、センサヘッド1、2は、各々の延在方向に沿う磁界に応じた検出電圧を出力可能な、いわゆる直交フラックスゲートセンサ(基本波型直交フラックスゲート(MF-OFG:Fundamental mode orthogonal fluxgate))をなす。これにより、バルクハウゼンノイズの低減及びセンサの高感度化を図ることができる。
As shown in FIG. 1, the magnetic core 110 and the magnetic core 120 are connected in series with an AC power supply VEX and a DC power supply E having a value larger than its amplitude. When the AC power source VEX and the DC power source E apply a predetermined AC voltage and DC voltage to the magnetic core 110 and the magnetic core 120 and energize them, the sensor heads 1 and 2 are excited. As a result, the sensor heads 1 and 2 can output a detection voltage corresponding to the magnetic field along each extending direction, so-called orthogonal fluxgate sensor (fundamental-mode orthogonal-fluxgate (MF-OFG)). ). Thereby, Barkhausen noise can be reduced and the sensitivity of the sensor can be increased.
また、図1に示すように、検出コイル11と、検出コイル12とは、直列接続となるように各々の一端が電気配線で結線される。また、検出コイル12の他端側がフラックスゲートセンサ回路3に接続されるとともに、検出コイル11の他端側がグラウンドに接続される。また、検出コイル11と、検出コイル12とは、同一方向の磁界に対して生じる誘起電圧(検出電圧V1、V2)が互いに打ち消し合うように(互いの極性が逆向きとなるように)接続される。これにより、同一方向の磁界に対しては、センサヘッド1の検出電圧V1及びセンサヘッド2の検出電圧V2の合成電圧(センサ出力)として、それぞれのセンサヘッド1、2から出力される検出電圧の差分を取ったもの(V2-V1)が現れる。
このようにすることで、遠方から到達してくるような一様磁気雑音に関しては、センサヘッド1、2の両方で同様にピックアップされてセンサ出力には現れない。しかし、心磁界の様に局所的な磁界に対しては、一方のセンサヘッド(例えば、センサヘッド2)でのみピックアップされるので、センサ出力として観測される。これにより、一様磁気雑音を除去して信号を検出する事ができるようになり、対雑音性能を向上させることができる。 Moreover, as shown in FIG. 1, each end of thedetection coil 11 and the detection coil 12 is connected by electric wiring so as to be connected in series. The other end side of the detection coil 12 is connected to the fluxgate sensor circuit 3, and the other end side of the detection coil 11 is connected to the ground. Further, the detection coil 11 and the detection coil 12 are such that induced voltages (detection voltages V 1 and V 2 ) generated with respect to the magnetic field in the same direction cancel each other (so that the polarities of the detection coils 11 and 12 are opposite to each other). Connected. Thereby, for a magnetic field in the same direction, detection output from each of the sensor heads 1 and 2 as a combined voltage (sensor output) of the detection voltage V 1 of the sensor head 1 and the detection voltage V 2 of the sensor head 2. A voltage difference (V 2 −V 1 ) appears.
In this way, uniform magnetic noise that reaches from a distance is picked up similarly by both the sensor heads 1 and 2 and does not appear in the sensor output. However, since a local magnetic field such as a cardiac magnetic field is picked up only by one sensor head (for example, sensor head 2), it is observed as a sensor output. As a result, uniform magnetic noise can be removed and a signal can be detected, and the anti-noise performance can be improved.
このようにすることで、遠方から到達してくるような一様磁気雑音に関しては、センサヘッド1、2の両方で同様にピックアップされてセンサ出力には現れない。しかし、心磁界の様に局所的な磁界に対しては、一方のセンサヘッド(例えば、センサヘッド2)でのみピックアップされるので、センサ出力として観測される。これにより、一様磁気雑音を除去して信号を検出する事ができるようになり、対雑音性能を向上させることができる。 Moreover, as shown in FIG. 1, each end of the
In this way, uniform magnetic noise that reaches from a distance is picked up similarly by both the sensor heads 1 and 2 and does not appear in the sensor output. However, since a local magnetic field such as a cardiac magnetic field is picked up only by one sensor head (for example, sensor head 2), it is observed as a sensor output. As a result, uniform magnetic noise can be removed and a signal can be detected, and the anti-noise performance can be improved.
フラックスゲートセンサ回路3は、同期検波回路30(PSD:Phase Sensitive Detector)、平滑回路31(smoothing filter)、誤差増幅器32(Error Amplifier)、及び、ローパスフィルタ33を有して負帰還回路(非特許文献10参照)を構成する。
センサヘッド1、2からのセンサ出力V2-V1は、コンデンサC、同期検波回路30(PSD:Phase Sensitive Detector)及び平滑回路31(smoothing filter)を通じて、センサ出力V2-V1に応じた一定電圧となって、誤差増幅器32(Error Amplifier)に送られる。その後、誤差増幅器32への入力(センサ出力V2-V1)が0になるように、帰還抵抗Rfを通して帰還電流ifが検出コイル11、12に流れる。このときに帰還抵抗Rf間に生じる電圧の変位(勾配磁界検出信号Vo)がセンサ出力V2-V1に相当する。なお、同期検波回路30で生じるスイッチングリプルを低減するため、勾配磁界検出信号Voは、ローパスフィルタ33を介して出力される。
負帰還電流ifは、センサヘッド1においては磁性コア110への入力磁界Hを強める方向に磁界n・ifを生成し、センサヘッド2においては入力磁界H+lGを打ち消す方向に磁界n・ifを生成する。 Thefluxgate sensor circuit 3 includes a synchronous detection circuit 30 (PSD: Phase Sensitive Detector), a smoothing circuit 31 (smoothing filter), an error amplifier 32 (Error Amplifier), and a low-pass filter 33, and is a negative feedback circuit (non-patented). Reference 10).
Sensor output V 2 -V 1 from the sensor head 1 and 2, capacitor C, the synchronous detection circuit 30: through (PSD Phase Sensitive Detector) and a smoothing circuit 31 (smoothing filter), corresponding to the sensor output V 2 -V 1 It becomes a constant voltage and is sent to an error amplifier 32 (Error Amplifier). Thereafter, the feedback current if flows through the detection coils 11 and 12 through the feedback resistor Rf so that the input to the error amplifier 32 (sensor output V 2 −V 1 ) becomes zero. The voltage displacement (gradient magnetic field detection signal Vo) generated between the feedback resistors Rf at this time corresponds to the sensor output V 2 −V 1 . Note that the gradient magnetic field detection signal Vo is output via the low-pass filter 33 in order to reduce the switching ripple generated in the synchronous detection circuit 30.
A negative feedback current i f, to generate a magnetic field n · i f in the direction of strengthening the input field H of themagnetic core 110 in the sensor head 1, in the sensor head 2 input field H + field in a direction to cancel the lG n · i f Is generated.
センサヘッド1、2からのセンサ出力V2-V1は、コンデンサC、同期検波回路30(PSD:Phase Sensitive Detector)及び平滑回路31(smoothing filter)を通じて、センサ出力V2-V1に応じた一定電圧となって、誤差増幅器32(Error Amplifier)に送られる。その後、誤差増幅器32への入力(センサ出力V2-V1)が0になるように、帰還抵抗Rfを通して帰還電流ifが検出コイル11、12に流れる。このときに帰還抵抗Rf間に生じる電圧の変位(勾配磁界検出信号Vo)がセンサ出力V2-V1に相当する。なお、同期検波回路30で生じるスイッチングリプルを低減するため、勾配磁界検出信号Voは、ローパスフィルタ33を介して出力される。
負帰還電流ifは、センサヘッド1においては磁性コア110への入力磁界Hを強める方向に磁界n・ifを生成し、センサヘッド2においては入力磁界H+lGを打ち消す方向に磁界n・ifを生成する。 The
Sensor output V 2 -V 1 from the
A negative feedback current i f, to generate a magnetic field n · i f in the direction of strengthening the input field H of the
ここで、上述した負帰還構成のフラックスゲートセンサ回路3を用いた場合に、一様磁界Hの環境下で磁界勾配Gを検出すると仮定する。すると、センサヘッド1において検出される磁界の大きさΔH1と、センサヘッド2において検出される磁界の大きさΔH2は、次のように表される。ここで、以下の各式において“l”は2つのセンサヘッド1、2間の離間距離lであり、“n”は検出コイル11、12の巻き線密度n、“if”はフラックスゲートセンサ回路3からセンサヘッド1、2への帰還電流ifを表している。
Here, it is assumed that the magnetic field gradient G is detected in the environment of the uniform magnetic field H when the above-described negative feedback configuration fluxgate sensor circuit 3 is used. Then, the magnitude ΔH1 of the magnetic field detected by the sensor head 1 and the magnitude of the magnetic field ΔH2 detected by the sensor head 2 are expressed as follows. Here, in each of the following equations, “l” is the separation distance 1 between the two sensor heads 1 and 2, “n” is the winding density n of the detection coils 11 and 12, and “ if ” is the fluxgate sensor. The feedback current if from the circuit 3 to the sensor heads 1 and 2 is shown.
センサヘッド1とセンサヘッド2との検出感度は所定の係数Kで等しいとすると、センサヘッド1の検出電圧V1とセンサヘッド2の検出電圧V2とは、式(1)、(2)より次式で表される。
Assuming that the detection sensitivities of the sensor head 1 and the sensor head 2 are equal by a predetermined coefficient K, the detection voltage V1 of the sensor head 1 and the detection voltage V2 of the sensor head 2 are the following from the equations (1) and (2) It is expressed by a formula.
式(3)、(4)より、フラックスゲートセンサ回路3へ印加される検出コイル11、12のセンサ出力V2-V1は次式のようになる。
From the expressions (3) and (4), the sensor outputs V 2 -V 1 of the detection coils 11 and 12 applied to the fluxgate sensor circuit 3 are as follows.
この時点で、一様磁界Hは除去されている事がわかる。負帰還構成のフラックスゲートセンサ回路3では、このセンサ出力V2-V1を0にするように負帰還電流ifが流れる。これにより、負帰還電流は次のように導出される。
At this point, it can be seen that the uniform magnetic field H has been removed. In the flux gate sensor circuit 3 having the negative feedback configuration, the negative feedback current if flows so that the sensor output V 2 -V 1 is zero. Thereby, the negative feedback current is derived as follows.
このとき、勾配磁界センサ4の最終出力である勾配磁界検出信号Voは、帰還抵抗Rfにかかる電圧Rf・ifより与えられるので、勾配磁界検出信号Voは、離間距離l及び磁界勾配G(lG)に比例するが、一様磁界Hの影響は受けないことがわかる。このように、2つのセンサヘッド1、2をグラディオメータとすることで一様磁界Hを打ち消して、勾配磁界Gの検出が出来るということが式からも確認できる。外部磁気雑音は一様磁界Hに、心磁界等の局所磁界は磁界勾配Gに相当すると見なせるため、本実施形態に係る勾配磁界センサ4を使用する事で外部磁気雑音の影響を無くした信号検出が可能となる。
In this case, the gradient magnetic field detection signal Vo, which is the final output of the gradient magnetic field sensor 4, so given from the voltage R f · i f according to the feedback resistor R f, the gradient magnetic field detection signal Vo, the distance l and a magnetic field gradient G Although it is proportional to (1G), it can be seen that it is not affected by the uniform magnetic field H. Thus, it can be confirmed from the formula that the gradient magnetic field G can be detected by canceling the uniform magnetic field H by using the two sensor heads 1 and 2 as a gradiometer. Since the external magnetic noise can be regarded as a uniform magnetic field H, and the local magnetic field such as a cardiac magnetic field is equivalent to the magnetic field gradient G, signal detection that eliminates the influence of the external magnetic noise by using the gradient magnetic field sensor 4 according to this embodiment. Is possible.
図2は、第1の実施形態に係る勾配磁界センサの調整方法を説明する図である。
次に、第1の実施形態に係る勾配磁界センサ4の感度の調整方法について、図2を参照しながら説明する。
第1の実施形態に係る勾配磁界センサ4によれば、一様磁界Hの影響をなくす事ができることを式(5)で示したが、この式(5)が成り立つのはセンサヘッド1とセンサヘッド2で感度(係数K)が完全に等しい場合である。センサヘッド1、2の感度が異なると、一様磁界Hは完全には打ち消されず、勾配磁界検出信号Voに影響を与える。実際のセンサヘッド1、2の感度は、磁性コア110、120の励磁条件を同じにしても製作時に生じる個体差によって、センサヘッド1、2で若干異なる。 FIG. 2 is a diagram illustrating a method for adjusting the gradient magnetic field sensor according to the first embodiment.
Next, a method for adjusting the sensitivity of the gradient magnetic field sensor 4 according to the first embodiment will be described with reference to FIG.
According to the gradient magnetic field sensor 4 according to the first embodiment, the expression (5) indicates that the influence of the uniform magnetic field H can be eliminated. However, the expression (5) is satisfied because thesensor head 1 and the sensor This is a case where the sensitivity (coefficient K) is completely equal in the head 2. If the sensitivities of the sensor heads 1 and 2 are different, the uniform magnetic field H is not completely canceled and affects the gradient magnetic field detection signal Vo. The actual sensitivities of the sensor heads 1 and 2 slightly differ between the sensor heads 1 and 2 due to individual differences that occur at the time of manufacture even if the excitation conditions of the magnetic cores 110 and 120 are the same.
次に、第1の実施形態に係る勾配磁界センサ4の感度の調整方法について、図2を参照しながら説明する。
第1の実施形態に係る勾配磁界センサ4によれば、一様磁界Hの影響をなくす事ができることを式(5)で示したが、この式(5)が成り立つのはセンサヘッド1とセンサヘッド2で感度(係数K)が完全に等しい場合である。センサヘッド1、2の感度が異なると、一様磁界Hは完全には打ち消されず、勾配磁界検出信号Voに影響を与える。実際のセンサヘッド1、2の感度は、磁性コア110、120の励磁条件を同じにしても製作時に生じる個体差によって、センサヘッド1、2で若干異なる。 FIG. 2 is a diagram illustrating a method for adjusting the gradient magnetic field sensor according to the first embodiment.
Next, a method for adjusting the sensitivity of the gradient magnetic field sensor 4 according to the first embodiment will be described with reference to FIG.
According to the gradient magnetic field sensor 4 according to the first embodiment, the expression (5) indicates that the influence of the uniform magnetic field H can be eliminated. However, the expression (5) is satisfied because the
本実施形態においては、磁性コア110、120への励磁電流を調整する方法が有効である。本実施形態に係る勾配磁界センサ4は、基本波型直交フラックスゲートをなすため、磁性コア110、120に対し、交流電源VEXによる交流電圧、及び、直流電源Eによる直流電圧をバイアスして、センサヘッド1、2を励磁している。基本波型直交フラックスゲートにおいては、励磁用交流電流(交流電源VEXの交流電圧の印加により流れる電流)を一定とした場合、センサヘッド1、2の感度(係数K)は、励磁用直流電流(直流電源Eの直流電圧の印加により流れる電流)に対し、単調減少の関係を有することが知られている。
そこで、本実施形態に係る勾配磁界センサ4のうち、図1に示す交流電源VEX及び直流電源Eは、実際には、図2に示すような回路構成とされる。 In the present embodiment, a method of adjusting the excitation current to the magnetic cores 110 and 120 is effective. Since the gradient magnetic field sensor 4 according to the present embodiment forms a fundamental wave type orthogonal flux gate, the magnetic cores 110 and 120 are biased with an AC voltage by the AC power supply VEX and a DC voltage by the DC power supply E, The heads 1 and 2 are excited. In the fundamental wave type orthogonal flux gate, when the alternating current for excitation (current flowing through application of the alternating voltage of the AC power supply VEX) is constant, the sensitivity (coefficient K) of the sensor heads 1 and 2 is the direct current for excitation ( It is known to have a monotonically decreasing relationship with respect to a current that flows when a DC voltage is applied from the DC power source E).
Therefore, in the gradient magnetic field sensor 4 according to the present embodiment, the AC power supply VEX and the DC power supply E shown in FIG. 1 are actually configured as shown in FIG.
そこで、本実施形態に係る勾配磁界センサ4のうち、図1に示す交流電源VEX及び直流電源Eは、実際には、図2に示すような回路構成とされる。 In the present embodiment, a method of adjusting the excitation current to the
Therefore, in the gradient magnetic field sensor 4 according to the present embodiment, the AC power supply VEX and the DC power supply E shown in FIG. 1 are actually configured as shown in FIG.
図2に示すような回路構成によれば、交流電源VEXによる交流電圧は、抵抗R1を通じて、直列接続された磁性コア110、120の各々に印加される。これにより、磁性コア110、120には、抵抗R2、R3に基づく共通の交流電流Iac(励磁用交流電流)が流れる。また、直流電源Eによる直流電圧も、直列接続された磁性コア110、120の各々に印加され、これにより、磁性コア110、120には、抵抗R2、R3に基づく共通の直流電流Idc1(励磁用直流電流)が流れる。
また、直流電源E’(実際には、バッテリー等)が出力する直流電圧は、可変抵抗Rvを通じて磁性コア120にのみ印加される。これにより、磁性コア110には、可変抵抗Rvに基づく直流電流Idc2(励磁用直流電流)が更に流れる。
このように、直流電源E’及び可変抵抗Rvは、センサヘッド1の磁性コア110に印加される励磁用直流電流を、センサヘッド2に対し独立に変更可能とする励磁調整部として機能する。ただし、図2に示す回路構成は、センサヘッド1(センサヘッド2)の磁性コア110(120)に印加される励磁用直流電流を独立に変更可能とする手段の一例であって、図2に示す回路構成には限定されない。他の回路構成例については後述する(図15参照)。 According to the circuit configuration shown in FIG. 2, the AC voltage from the AC power supply VEX is applied to each of the magnetic cores 110 and 120 connected in series through the resistor R1. As a result, a common alternating current Iac (excitation alternating current) based on the resistors R2 and R3 flows through the magnetic cores 110 and 120. A DC voltage from the DC power source E is also applied to each of the magnetic cores 110 and 120 connected in series, whereby a common DC current Idc1 (excitation for excitation) is applied to the magnetic cores 110 and 120 based on the resistors R2 and R3. DC current) flows.
Further, the DC voltage output from the DC power source E ′ (actually, a battery or the like) is applied only to themagnetic core 120 through the variable resistor Rv. As a result, a direct current Idc2 (exciting direct current) based on the variable resistance Rv further flows in the magnetic core 110.
As described above, the DC power supply E ′ and the variable resistor Rv function as an excitation adjusting unit that can change the excitation DC current applied to themagnetic core 110 of the sensor head 1 independently of the sensor head 2. However, the circuit configuration shown in FIG. 2 is an example of a unit that can independently change the exciting direct current applied to the magnetic core 110 (120) of the sensor head 1 (sensor head 2). It is not limited to the circuit configuration shown. Other circuit configuration examples will be described later (see FIG. 15).
また、直流電源E’(実際には、バッテリー等)が出力する直流電圧は、可変抵抗Rvを通じて磁性コア120にのみ印加される。これにより、磁性コア110には、可変抵抗Rvに基づく直流電流Idc2(励磁用直流電流)が更に流れる。
このように、直流電源E’及び可変抵抗Rvは、センサヘッド1の磁性コア110に印加される励磁用直流電流を、センサヘッド2に対し独立に変更可能とする励磁調整部として機能する。ただし、図2に示す回路構成は、センサヘッド1(センサヘッド2)の磁性コア110(120)に印加される励磁用直流電流を独立に変更可能とする手段の一例であって、図2に示す回路構成には限定されない。他の回路構成例については後述する(図15参照)。 According to the circuit configuration shown in FIG. 2, the AC voltage from the AC power supply VEX is applied to each of the
Further, the DC voltage output from the DC power source E ′ (actually, a battery or the like) is applied only to the
As described above, the DC power supply E ′ and the variable resistor Rv function as an excitation adjusting unit that can change the excitation DC current applied to the
勾配磁界センサ4のオペレータは、可変抵抗Rvの抵抗値を所望に設定することで、センサヘッド2の励磁を独立して調整することができる。即ち、センサヘッド2の感度(係数K)がセンサヘッド1の感度よりも大きいときは、直流電流Idc2を大きくする(可変抵抗Rvの抵抗値を減少させる)ことで、センサヘッド1、2の感度を同一とすることができる。反対に、センサヘッド1の感度(係数K)がセンサヘッド2の感度よりも大きいときは、直流電流Idc2を小さくする(可変抵抗Rvの抵抗値を増加させる)ことで、センサヘッド1、2の感度を同一とすることができる。
The operator of the gradient magnetic field sensor 4 can independently adjust the excitation of the sensor head 2 by setting the resistance value of the variable resistor Rv as desired. That is, when the sensitivity (coefficient K) of the sensor head 2 is larger than the sensitivity of the sensor head 1, the sensitivity of the sensor heads 1 and 2 is increased by increasing the DC current Idc2 (decreasing the resistance value of the variable resistor Rv). Can be the same. On the contrary, when the sensitivity (coefficient K) of the sensor head 1 is larger than the sensitivity of the sensor head 2, the direct current Idc2 is decreased (the resistance value of the variable resistor Rv is increased), thereby Sensitivity can be the same.
図3、図4、図5は、ぞれぞれ、第1の実施形態に係るセンサヘッドの構成を説明する第1の図、第2の図、第3の図である。
図3は、センサヘッド1の構成例を示す写真である。図3に示すように、検出コイル11、12の延在方向の長さ(センサヘッド長L)は、例えば30mmとされる。また、検出コイル11、12の延直径は、例えば3mmとされる。
図4は、2つのセンサヘッド1、2の配置例を示している。本実施形態においては、センサヘッド1、2は、図4に示すように、同軸線上(Z軸線上、図1参照)に離間距離lをもって配される。離間距離lは、具体的には、センサヘッド1、2各々の中心位置間の距離であって、例えば50mmとされる。
図5は、2つのセンサヘッド1、2のホルダーの例を示している。図5に示すように、2つのセンサヘッド1、2を精確に同一軸線上(図4参照)に配置できるように、プラスチックカバー内にセンサヘッド1、2の2個を格納している。なお、本実施形態においては、図5左側に配される突起にはセンサヘッド1が格納されており、図5右側のプラスチックカバー本体には、センサヘッド2が格納されている。 3, 4, and 5 are a first diagram, a second diagram, and a third diagram illustrating the configuration of the sensor head according to the first embodiment, respectively.
FIG. 3 is a photograph showing a configuration example of thesensor head 1. As shown in FIG. 3, the length of the detection coils 11 and 12 in the extending direction (sensor head length L) is, for example, 30 mm. Further, the extension diameter of the detection coils 11 and 12 is, for example, 3 mm.
FIG. 4 shows an arrangement example of the two sensor heads 1 and 2. In the present embodiment, as shown in FIG. 4, the sensor heads 1 and 2 are arranged on the coaxial line (on the Z-axis, see FIG. 1) with a separation distance l. Specifically, the separation distance l is a distance between the center positions of the sensor heads 1 and 2 and is, for example, 50 mm.
FIG. 5 shows an example of a holder for two sensor heads 1 and 2. As shown in FIG. 5, two sensor heads 1 and 2 are stored in a plastic cover so that the two sensor heads 1 and 2 can be accurately arranged on the same axis (see FIG. 4). In this embodiment, the sensor head 1 is stored in the protrusion arranged on the left side of FIG. 5, and the sensor head 2 is stored in the plastic cover body on the right side of FIG.
図3は、センサヘッド1の構成例を示す写真である。図3に示すように、検出コイル11、12の延在方向の長さ(センサヘッド長L)は、例えば30mmとされる。また、検出コイル11、12の延直径は、例えば3mmとされる。
図4は、2つのセンサヘッド1、2の配置例を示している。本実施形態においては、センサヘッド1、2は、図4に示すように、同軸線上(Z軸線上、図1参照)に離間距離lをもって配される。離間距離lは、具体的には、センサヘッド1、2各々の中心位置間の距離であって、例えば50mmとされる。
図5は、2つのセンサヘッド1、2のホルダーの例を示している。図5に示すように、2つのセンサヘッド1、2を精確に同一軸線上(図4参照)に配置できるように、プラスチックカバー内にセンサヘッド1、2の2個を格納している。なお、本実施形態においては、図5左側に配される突起にはセンサヘッド1が格納されており、図5右側のプラスチックカバー本体には、センサヘッド2が格納されている。 3, 4, and 5 are a first diagram, a second diagram, and a third diagram illustrating the configuration of the sensor head according to the first embodiment, respectively.
FIG. 3 is a photograph showing a configuration example of the
FIG. 4 shows an arrangement example of the two
FIG. 5 shows an example of a holder for two
交流電源VEXは、例えば、100kHzで実効値12mAの交流電流(励磁用交流電流)が流れるように調整される。また、直流電源Eは、約40mAの直流電流が流れるように調整される。
The AC power supply VEX is adjusted so that, for example, an AC current having an effective value of 12 mA (excitation AC current) flows at 100 kHz. The direct current power source E is adjusted so that a direct current of about 40 mA flows.
図6A、図6Bは、それぞれ、第1の実施形態に係る勾配磁界センサの評価方法を説明する第1の図、第2の図である。
勾配磁界センサ4の評価には、三組の円形コイルを組み合わせたヘルムホルツコイル5(非特許文献11参照)を使用している。ヘルムホルツコイル5は、左右のコイルで同じ向きに励磁電流ieを流すと一様磁界を発生させる事ができる(図6A)。本評価例では、例えば、3.5mAの励磁電流ieで、1.0μTの一様磁界を発生させることができる。
一方、励磁電流ieを逆向きに電流を流すと、ヘルムホルツコイル5間の中心の磁界を0とした磁界勾配を発生させる事ができる(図6B)。3.5mAの励磁電流ieで、2.25μT/mの磁界勾配を発生させることができる。
なお、評価において、一様磁界の環境ノイズ成分を除去するため、ヘルムホルツコイル5には、例えば、5Hzの交流電流を流して評価を行う。また、地磁気の影響を避けるため、センサヘッド1、2の延在方向(Z軸、図1参照)が東西を向くように配置している。
実際に、ヘルムホルツコイルを用いて勾配磁界を発生させて、勾配磁界に対する勾配磁界センサ4の感度を測定した結果、離間距離l=5cmにおいて5.98mV/(μT/m)を得ることができる。 6A and 6B are a first diagram and a second diagram, respectively, for explaining the evaluation method of the gradient magnetic field sensor according to the first embodiment.
The evaluation of the gradient magnetic field sensor 4 uses a Helmholtz coil 5 (see Non-Patent Document 11) in which three sets of circular coils are combined. TheHelmholtz coil 5 can generate a uniform magnetic field when the exciting current ie flows in the same direction between the left and right coils (FIG. 6A). In this evaluation example, for example, a uniform magnetic field of 1.0 μT can be generated with an excitation current ie of 3.5 mA.
On the other hand, when the current is passed in the opposite direction, the magnetic field gradient with the central magnetic field between theHelmholtz coils 5 set to 0 can be generated (FIG. 6B). A magnetic field gradient of 2.25 μT / m can be generated with an excitation current ie of 3.5 mA.
In the evaluation, in order to remove the environmental noise component of the uniform magnetic field, theHelmholtz coil 5 is evaluated by flowing an alternating current of 5 Hz, for example. Further, in order to avoid the influence of geomagnetism, the sensor heads 1 and 2 are arranged so that the extending direction (Z axis, see FIG. 1) faces east and west.
Actually, a gradient magnetic field is generated using a Helmholtz coil, and the sensitivity of the gradient magnetic field sensor 4 to the gradient magnetic field is measured. As a result, 5.98 mV / (μT / m) can be obtained at a separation distance of 1 = 5 cm.
勾配磁界センサ4の評価には、三組の円形コイルを組み合わせたヘルムホルツコイル5(非特許文献11参照)を使用している。ヘルムホルツコイル5は、左右のコイルで同じ向きに励磁電流ieを流すと一様磁界を発生させる事ができる(図6A)。本評価例では、例えば、3.5mAの励磁電流ieで、1.0μTの一様磁界を発生させることができる。
一方、励磁電流ieを逆向きに電流を流すと、ヘルムホルツコイル5間の中心の磁界を0とした磁界勾配を発生させる事ができる(図6B)。3.5mAの励磁電流ieで、2.25μT/mの磁界勾配を発生させることができる。
なお、評価において、一様磁界の環境ノイズ成分を除去するため、ヘルムホルツコイル5には、例えば、5Hzの交流電流を流して評価を行う。また、地磁気の影響を避けるため、センサヘッド1、2の延在方向(Z軸、図1参照)が東西を向くように配置している。
実際に、ヘルムホルツコイルを用いて勾配磁界を発生させて、勾配磁界に対する勾配磁界センサ4の感度を測定した結果、離間距離l=5cmにおいて5.98mV/(μT/m)を得ることができる。 6A and 6B are a first diagram and a second diagram, respectively, for explaining the evaluation method of the gradient magnetic field sensor according to the first embodiment.
The evaluation of the gradient magnetic field sensor 4 uses a Helmholtz coil 5 (see Non-Patent Document 11) in which three sets of circular coils are combined. The
On the other hand, when the current is passed in the opposite direction, the magnetic field gradient with the central magnetic field between the
In the evaluation, in order to remove the environmental noise component of the uniform magnetic field, the
Actually, a gradient magnetic field is generated using a Helmholtz coil, and the sensitivity of the gradient magnetic field sensor 4 to the gradient magnetic field is measured. As a result, 5.98 mV / (μT / m) can be obtained at a separation distance of 1 = 5 cm.
図7は、第1の実施形態に係る勾配磁界センサの評価結果を説明する第1の図である。
具体的には、図7に示すグラフは、横軸に、センサヘッド2にのみ流れる直流電流Idc2を示しており、縦軸に、当該直流電流Idc2に応じた抑圧比(Suppression ratio)を示している。ここで、「抑圧比」は、1μTの一様磁界に対して、本実施形態に係る勾配磁界センサ4(グラディオメータ)として観測した場合と、センサヘッド2を取り外してマグネトメータとして観測した場合と、の勾配磁界検出信号Voの比としている。 FIG. 7 is a first diagram illustrating an evaluation result of the gradient magnetic field sensor according to the first embodiment.
Specifically, in the graph shown in FIG. 7, the horizontal axis indicates the direct current Idc2 that flows only to thesensor head 2, and the vertical axis indicates the suppression ratio (Suppression ratio) corresponding to the direct current Idc2. Yes. Here, the “suppression ratio” refers to a case where the gradient magnetic field sensor 4 (gradiometer) according to the present embodiment is observed with respect to a uniform magnetic field of 1 μT, and a case where the sensor head 2 is removed and observed as a magnetometer. The gradient magnetic field detection signal Vo is a ratio.
具体的には、図7に示すグラフは、横軸に、センサヘッド2にのみ流れる直流電流Idc2を示しており、縦軸に、当該直流電流Idc2に応じた抑圧比(Suppression ratio)を示している。ここで、「抑圧比」は、1μTの一様磁界に対して、本実施形態に係る勾配磁界センサ4(グラディオメータ)として観測した場合と、センサヘッド2を取り外してマグネトメータとして観測した場合と、の勾配磁界検出信号Voの比としている。 FIG. 7 is a first diagram illustrating an evaluation result of the gradient magnetic field sensor according to the first embodiment.
Specifically, in the graph shown in FIG. 7, the horizontal axis indicates the direct current Idc2 that flows only to the
図7に示す測定結果には、勾配磁界センサ4に用いるセンサヘッド2として試作された3つのセンサヘッド(センサヘッドHead1、Head2、Head3)の各々につき、可変抵抗R2によるセンサヘッド2への直流電流Idc2(図2参照)を調整した結果、一様磁界に対するセンサヘッド1、2の応答がどのように変化するかが示されている。
図7に示す測定においては、5HzのFFT(Fast Fourier Transform)処理により勾配磁界検出信号Voの出力強度(振幅)のみを取得している。図7に示す通り、試作したいずれのセンサヘッドHead1~Head3もV字状の特性を示しており、直流電流Idc2を、2mA以内の調整レンジで、センサヘッドHead1~Head3の各々に対応する値に調整することで、抑圧比を最小化することができる。 The measurement result shown in FIG. 7 shows that each of the three sensor heads (sensor heads Head1, Head2, Head3) prototyped as thesensor head 2 used for the gradient magnetic field sensor 4 has a direct current to the sensor head 2 by the variable resistor R2. It is shown how the response of the sensor heads 1 and 2 to the uniform magnetic field changes as a result of adjusting Idc2 (see FIG. 2).
In the measurement shown in FIG. 7, only the output intensity (amplitude) of the gradient magnetic field detection signal Vo is acquired by FFT (Fast Fourier Transform) processing at 5 Hz. As shown in FIG. 7, all of the prototyped sensor heads Head1 to Head3 have V-shaped characteristics, and the DC current Idc2 is adjusted to a value corresponding to each of the sensor heads Head1 to Head3 within an adjustment range within 2 mA. By adjusting, the suppression ratio can be minimized.
図7に示す測定においては、5HzのFFT(Fast Fourier Transform)処理により勾配磁界検出信号Voの出力強度(振幅)のみを取得している。図7に示す通り、試作したいずれのセンサヘッドHead1~Head3もV字状の特性を示しており、直流電流Idc2を、2mA以内の調整レンジで、センサヘッドHead1~Head3の各々に対応する値に調整することで、抑圧比を最小化することができる。 The measurement result shown in FIG. 7 shows that each of the three sensor heads (sensor heads Head1, Head2, Head3) prototyped as the
In the measurement shown in FIG. 7, only the output intensity (amplitude) of the gradient magnetic field detection signal Vo is acquired by FFT (Fast Fourier Transform) processing at 5 Hz. As shown in FIG. 7, all of the prototyped sensor heads Head1 to Head3 have V-shaped characteristics, and the DC current Idc2 is adjusted to a value corresponding to each of the sensor heads Head1 to Head3 within an adjustment range within 2 mA. By adjusting, the suppression ratio can be minimized.
図8は、第1の実施形態に係る勾配磁界センサの評価結果を説明する第2の図である。
具体的には、図8は、図7に示すセンサヘッドHead1を用いた場合における勾配磁界検出信号Voの波形を示している。図7に示す通り、センサヘッドHead1における直流電流Idc2の最適条件は、Idc2=0.28mAである。この場合において、図8によれば、勾配磁界検出信号Voの振幅が最小化していることがわかる。Idc2=0.28mAにおける出力信号Voの振幅は、Idc2=0mA(調整なし)の場合に比べて、一様磁界に基づく勾配磁界検出信号Voの出力強度を1/42にまで低減できることがわかる。 FIG. 8 is a second diagram for explaining the evaluation result of the gradient magnetic field sensor according to the first embodiment.
Specifically, FIG. 8 shows the waveform of the gradient magnetic field detection signal Vo when the sensor head Head1 shown in FIG. 7 is used. As shown in FIG. 7, the optimum condition of the direct current Idc2 in the sensor head Head1 is Idc2 = 0.28 mA. In this case, FIG. 8 shows that the amplitude of the gradient magnetic field detection signal Vo is minimized. It can be seen that the output signal Vo amplitude at Idc2 = 0.28 mA can reduce the output intensity of the gradient magnetic field detection signal Vo based on the uniform magnetic field to 1/42 as compared with the case of Idc2 = 0 mA (no adjustment).
具体的には、図8は、図7に示すセンサヘッドHead1を用いた場合における勾配磁界検出信号Voの波形を示している。図7に示す通り、センサヘッドHead1における直流電流Idc2の最適条件は、Idc2=0.28mAである。この場合において、図8によれば、勾配磁界検出信号Voの振幅が最小化していることがわかる。Idc2=0.28mAにおける出力信号Voの振幅は、Idc2=0mA(調整なし)の場合に比べて、一様磁界に基づく勾配磁界検出信号Voの出力強度を1/42にまで低減できることがわかる。 FIG. 8 is a second diagram for explaining the evaluation result of the gradient magnetic field sensor according to the first embodiment.
Specifically, FIG. 8 shows the waveform of the gradient magnetic field detection signal Vo when the sensor head Head1 shown in FIG. 7 is used. As shown in FIG. 7, the optimum condition of the direct current Idc2 in the sensor head Head1 is Idc2 = 0.28 mA. In this case, FIG. 8 shows that the amplitude of the gradient magnetic field detection signal Vo is minimized. It can be seen that the output signal Vo amplitude at Idc2 = 0.28 mA can reduce the output intensity of the gradient magnetic field detection signal Vo based on the uniform magnetic field to 1/42 as compared with the case of Idc2 = 0 mA (no adjustment).
図9は、第1の実施形態に係る勾配磁界センサの評価結果を説明する第3の図である。
図9に示す表は、試作した3つのセンサヘッドHead1、Head2、Head3における、未調整時(Idc2=0)の場合の抑圧比の逆数(1/Supp.ratio)と、各センサヘッドHead1~Head3の最適条件に設定したときの抑圧比の逆数と、をまとめている。
図9によれば、より調和した組が、より少ない直流電流Idc2を要することが分かる。また、直流電流Idc2未調整であっても抑圧比は、1/60~1/150となる。 FIG. 9 is a third diagram illustrating the evaluation result of the gradient magnetic field sensor according to the first embodiment.
The table shown in FIG. 9 shows the reciprocal of the suppression ratio (1 / Supp.ratio) when the three sensor heads Head1, Head2, and Head3 are not adjusted (Idc2 = 0), and the sensor heads Head1 to Head3. And the reciprocal of the suppression ratio when the optimal condition is set.
According to FIG. 9, it can be seen that a more harmonious set requires less DC current Idc2. Even if the DC current Idc2 is not adjusted, the suppression ratio is 1/60 to 1/150.
図9に示す表は、試作した3つのセンサヘッドHead1、Head2、Head3における、未調整時(Idc2=0)の場合の抑圧比の逆数(1/Supp.ratio)と、各センサヘッドHead1~Head3の最適条件に設定したときの抑圧比の逆数と、をまとめている。
図9によれば、より調和した組が、より少ない直流電流Idc2を要することが分かる。また、直流電流Idc2未調整であっても抑圧比は、1/60~1/150となる。 FIG. 9 is a third diagram illustrating the evaluation result of the gradient magnetic field sensor according to the first embodiment.
The table shown in FIG. 9 shows the reciprocal of the suppression ratio (1 / Supp.ratio) when the three sensor heads Head1, Head2, and Head3 are not adjusted (Idc2 = 0), and the sensor heads Head1 to Head3. And the reciprocal of the suppression ratio when the optimal condition is set.
According to FIG. 9, it can be seen that a more harmonious set requires less DC current Idc2. Even if the DC current Idc2 is not adjusted, the suppression ratio is 1/60 to 1/150.
<第2の実施形態>
次に、第2の実施形態に係る勾配磁界センサ4の場合について説明する。
図10は、第2の実施形態に係るセンサヘッドの構成を説明する図である。
第2の実施形態に係る勾配磁界センサ4において、センサヘッド1、2は、図10に示すように、離間距離l(50mm)をもって、各々の延在方向が互いに平行となるように配されている。 <Second Embodiment>
Next, the case of the gradient magnetic field sensor 4 according to the second embodiment will be described.
FIG. 10 is a diagram illustrating the configuration of the sensor head according to the second embodiment.
In the gradient magnetic field sensor 4 according to the second embodiment, as shown in FIG. 10, the sensor heads 1 and 2 are arranged with a separation distance l (50 mm) so that their extending directions are parallel to each other. Yes.
次に、第2の実施形態に係る勾配磁界センサ4の場合について説明する。
図10は、第2の実施形態に係るセンサヘッドの構成を説明する図である。
第2の実施形態に係る勾配磁界センサ4において、センサヘッド1、2は、図10に示すように、離間距離l(50mm)をもって、各々の延在方向が互いに平行となるように配されている。 <Second Embodiment>
Next, the case of the gradient magnetic field sensor 4 according to the second embodiment will be described.
FIG. 10 is a diagram illustrating the configuration of the sensor head according to the second embodiment.
In the gradient magnetic field sensor 4 according to the second embodiment, as shown in FIG. 10, the sensor heads 1 and 2 are arranged with a separation distance l (50 mm) so that their extending directions are parallel to each other. Yes.
図11、図12、図13は、それぞれ、第2の実施形態に係る勾配磁界センサの評価結果を説明する第1の図、第2の図、第3の図である。
図11に示すグラフは、図7と同様、横軸に、センサヘッド2にのみ流れる直流電流Idc2を示しており、縦軸に、当該直流電流Idc2の変化に応じた抑圧比(Suppression ratio)を示している。 11, FIG. 12, and FIG. 13 are a first diagram, a second diagram, and a third diagram, respectively, for explaining the evaluation results of the gradient magnetic field sensor according to the second embodiment.
In the graph shown in FIG. 11, the horizontal axis indicates the DC current Idc2 that flows only through thesensor head 2 as in FIG. 7, and the vertical axis indicates the suppression ratio (Suppression ratio) corresponding to the change in the DC current Idc2. Show.
図11に示すグラフは、図7と同様、横軸に、センサヘッド2にのみ流れる直流電流Idc2を示しており、縦軸に、当該直流電流Idc2の変化に応じた抑圧比(Suppression ratio)を示している。 11, FIG. 12, and FIG. 13 are a first diagram, a second diagram, and a third diagram, respectively, for explaining the evaluation results of the gradient magnetic field sensor according to the second embodiment.
In the graph shown in FIG. 11, the horizontal axis indicates the DC current Idc2 that flows only through the
図11に示す特性は、図7とは若干異なるものの、センサヘッド1、2の延在方向が平行に配された場合(第2の実施形態)であっても、同一軸線上に配された場合(第1の実施形態)と同様の調整レンジで高い抑圧比を得られることが分かる。
また、一様磁界と直流電流Idc2との依存性を調査したところ、その依存性は高くないことが判明されている。例えば、一様磁界が1μT~5μTの範囲では、高い抑圧比を得るための直流電流Idc2は、5%の上昇に留まる。 Although the characteristics shown in FIG. 11 are slightly different from those in FIG. 7, even when the extending directions of the sensor heads 1 and 2 are arranged in parallel (second embodiment), they are arranged on the same axis. It can be seen that a high suppression ratio can be obtained in the same adjustment range as in the case (first embodiment).
Further, when the dependency between the uniform magnetic field and the direct current Idc2 is investigated, it has been found that the dependency is not high. For example, when the uniform magnetic field is in the range of 1 μT to 5 μT, the direct current Idc2 for obtaining a high suppression ratio remains only 5%.
また、一様磁界と直流電流Idc2との依存性を調査したところ、その依存性は高くないことが判明されている。例えば、一様磁界が1μT~5μTの範囲では、高い抑圧比を得るための直流電流Idc2は、5%の上昇に留まる。 Although the characteristics shown in FIG. 11 are slightly different from those in FIG. 7, even when the extending directions of the sensor heads 1 and 2 are arranged in parallel (second embodiment), they are arranged on the same axis. It can be seen that a high suppression ratio can be obtained in the same adjustment range as in the case (first embodiment).
Further, when the dependency between the uniform magnetic field and the direct current Idc2 is investigated, it has been found that the dependency is not high. For example, when the uniform magnetic field is in the range of 1 μT to 5 μT, the direct current Idc2 for obtaining a high suppression ratio remains only 5%.
図12は、試作した3つのセンサヘッドHead1、Head2、Head3における、未調整時(Idc2=0)の場合の抑圧比の逆数(1/Supp.ratio)と、各センサヘッドHead1~Head3の最適条件に設定したときの抑圧比の逆数と、をまとめている。
図12に示す通り、第2の実施形態に係る勾配磁界センサ4も、第1の実施形態と同様の範囲の抑圧比が得られることが分かる。これは、本実施形態に係る勾配磁界センサ4が、離れた場所から来る磁気ノイズに対する耐性が高いことを意味している。特に、本実施形態の場合、離間距離lを1cm以下まで小さくすることによって、磁気小片のような小さい磁気源をも感知することができる。ただし、この場合において、センサヘッド1、2は、当該磁気小片に対し1cmから5mm以下の範囲に配置される必要がある。 FIG. 12 shows the reciprocal of the suppression ratio (1 / Supp.ratio) when the three sensor heads Head1, Head2, and Head3 are not adjusted (Idc2 = 0) and the optimum conditions for each of the sensor heads Head1 to Head3. And the reciprocal of the suppression ratio when set to.
As can be seen from FIG. 12, the gradient magnetic field sensor 4 according to the second embodiment can also obtain a suppression ratio in the same range as in the first embodiment. This means that the gradient magnetic field sensor 4 according to the present embodiment is highly resistant to magnetic noise coming from a remote place. In particular, in the case of this embodiment, a small magnetic source such as a magnetic piece can be sensed by reducing the separation distance l to 1 cm or less. However, in this case, the sensor heads 1 and 2 need to be arranged in a range of 1 cm to 5 mm or less with respect to the magnetic piece.
図12に示す通り、第2の実施形態に係る勾配磁界センサ4も、第1の実施形態と同様の範囲の抑圧比が得られることが分かる。これは、本実施形態に係る勾配磁界センサ4が、離れた場所から来る磁気ノイズに対する耐性が高いことを意味している。特に、本実施形態の場合、離間距離lを1cm以下まで小さくすることによって、磁気小片のような小さい磁気源をも感知することができる。ただし、この場合において、センサヘッド1、2は、当該磁気小片に対し1cmから5mm以下の範囲に配置される必要がある。 FIG. 12 shows the reciprocal of the suppression ratio (1 / Supp.ratio) when the three sensor heads Head1, Head2, and Head3 are not adjusted (Idc2 = 0) and the optimum conditions for each of the sensor heads Head1 to Head3. And the reciprocal of the suppression ratio when set to.
As can be seen from FIG. 12, the gradient magnetic field sensor 4 according to the second embodiment can also obtain a suppression ratio in the same range as in the first embodiment. This means that the gradient magnetic field sensor 4 according to the present embodiment is highly resistant to magnetic noise coming from a remote place. In particular, in the case of this embodiment, a small magnetic source such as a magnetic piece can be sensed by reducing the separation distance l to 1 cm or less. However, in this case, the sensor heads 1 and 2 need to be arranged in a range of 1 cm to 5 mm or less with respect to the magnetic piece.
図13は、第2の実施形態に係る勾配磁界センサ4において、試作した3つのセンサヘッドHead1~Head3のノイズスペクトル密度を計測した結果である(離間距離l=5cm)。
FIG. 13 shows the result of measuring the noise spectral density of the three prototype sensor heads Head1 to Head3 in the gradient magnetic field sensor 4 according to the second embodiment (separation distance l = 5 cm).
以上のように、上述の第1の実施形態及び第2の実施形態に係る勾配磁界センサ4によれば、一様磁界の影響を大幅に低減可能することができる。例えば、一方のセンサヘッドに対する励磁用直流電流(直流電流Idc2)を適切に調整することで、最大で抑圧比1/40000を得ることができる。また、このような調整は、センサ出力(勾配磁界検出信号Vo)をモニタリングしながら励磁用直流電流(具体的には、可変抵抗Rv(図2参照))を変化させるだけでよいので、極めて簡素に行うことができる。
以上より、上述の実施形態に係る勾配磁界センサ4によれば、容易かつ高感度に微弱磁界を測定できる。 As described above, according to the gradient magnetic field sensor 4 according to the first embodiment and the second embodiment described above, the influence of the uniform magnetic field can be greatly reduced. For example, by appropriately adjusting the exciting direct current (DC current Idc2) for one sensor head, a suppression ratio of 1/40000 can be obtained at the maximum. Such adjustment is extremely simple because it is only necessary to change the exciting DC current (specifically, the variable resistor Rv (see FIG. 2)) while monitoring the sensor output (gradient magnetic field detection signal Vo). Can be done.
As described above, according to the gradient magnetic field sensor 4 according to the above-described embodiment, a weak magnetic field can be measured easily and with high sensitivity.
以上より、上述の実施形態に係る勾配磁界センサ4によれば、容易かつ高感度に微弱磁界を測定できる。 As described above, according to the gradient magnetic field sensor 4 according to the first embodiment and the second embodiment described above, the influence of the uniform magnetic field can be greatly reduced. For example, by appropriately adjusting the exciting direct current (DC current Idc2) for one sensor head, a suppression ratio of 1/40000 can be obtained at the maximum. Such adjustment is extremely simple because it is only necessary to change the exciting DC current (specifically, the variable resistor Rv (see FIG. 2)) while monitoring the sensor output (gradient magnetic field detection signal Vo). Can be done.
As described above, according to the gradient magnetic field sensor 4 according to the above-described embodiment, a weak magnetic field can be measured easily and with high sensitivity.
図14は、対比例に係る勾配磁界センサの機能構成を示す図である。
従来の勾配磁界検出法の一例としては、図14に示す勾配磁界センサ9のように、2つの独立したセンサヘッド1、2を離間距離lで配置し、各々の検出電圧の差から勾配磁界を、作動アンプを通じた減算によって求める。
この方法の場合、フラックスゲートセンサ回路3をセンサヘッド1、2ごとに用意する必要があるため回路規模が2倍程度になるばかりでなく、センサヘッド1、2の感度が整合しておかないと勾配磁界のみならず、その点での磁界の一部まで検出することになり、信号磁界が微弱であれば雑音磁界の影響が大きく計測できなくなる。また、H>>l・G(H:一様磁界、G:離間距離l方向の磁界勾配)であると、センサヘッド1、2は大きな一様磁界Hに対してその出力が飽和しないよう感度を小さく設定しなければならない。その結果、l・Gの計測は高感度に計測できないことになる。
上述の各実施形態に係る勾配磁界センサ4は、フラックスゲートセンサ回路3の前段、即ち、センサヘッド1、2の段階で一様磁界Hをキャンセルすることで上記課題を解決している。また、勾配磁界センサ4は、図1に示す通り、フラックスゲートセンサ回路3を一つのみ有する態様であるため、回路規模の縮小化を図ることができる。 FIG. 14 is a diagram illustrating a functional configuration of the gradient magnetic field sensor according to the proportionality.
As an example of a conventional gradient magnetic field detection method, as in the gradientmagnetic field sensor 9 shown in FIG. 14, two independent sensor heads 1 and 2 are arranged at a separation distance l, and the gradient magnetic field is determined from the difference between the detected voltages. Find by subtraction through working amplifier.
In the case of this method, it is necessary to prepare thefluxgate sensor circuit 3 for each of the sensor heads 1 and 2, so that not only the circuit scale is doubled but also the sensitivity of the sensor heads 1 and 2 is not matched. Not only the gradient magnetic field but also a part of the magnetic field at that point is detected. If the signal magnetic field is weak, the influence of the noise magnetic field becomes large and measurement becomes impossible. Further, if H >> l · G (H: uniform magnetic field, G: magnetic field gradient in the direction of the separation distance l), the sensor heads 1 and 2 are sensitive so that the output is not saturated with respect to the large uniform magnetic field H. Must be set small. As a result, l · G cannot be measured with high sensitivity.
The gradient magnetic field sensor 4 according to each of the above-described embodiments solves the above problem by canceling the uniform magnetic field H at the previous stage of thefluxgate sensor circuit 3, that is, at the stage of the sensor heads 1 and 2. Since the gradient magnetic field sensor 4 has only one fluxgate sensor circuit 3 as shown in FIG. 1, the circuit scale can be reduced.
従来の勾配磁界検出法の一例としては、図14に示す勾配磁界センサ9のように、2つの独立したセンサヘッド1、2を離間距離lで配置し、各々の検出電圧の差から勾配磁界を、作動アンプを通じた減算によって求める。
この方法の場合、フラックスゲートセンサ回路3をセンサヘッド1、2ごとに用意する必要があるため回路規模が2倍程度になるばかりでなく、センサヘッド1、2の感度が整合しておかないと勾配磁界のみならず、その点での磁界の一部まで検出することになり、信号磁界が微弱であれば雑音磁界の影響が大きく計測できなくなる。また、H>>l・G(H:一様磁界、G:離間距離l方向の磁界勾配)であると、センサヘッド1、2は大きな一様磁界Hに対してその出力が飽和しないよう感度を小さく設定しなければならない。その結果、l・Gの計測は高感度に計測できないことになる。
上述の各実施形態に係る勾配磁界センサ4は、フラックスゲートセンサ回路3の前段、即ち、センサヘッド1、2の段階で一様磁界Hをキャンセルすることで上記課題を解決している。また、勾配磁界センサ4は、図1に示す通り、フラックスゲートセンサ回路3を一つのみ有する態様であるため、回路規模の縮小化を図ることができる。 FIG. 14 is a diagram illustrating a functional configuration of the gradient magnetic field sensor according to the proportionality.
As an example of a conventional gradient magnetic field detection method, as in the gradient
In the case of this method, it is necessary to prepare the
The gradient magnetic field sensor 4 according to each of the above-described embodiments solves the above problem by canceling the uniform magnetic field H at the previous stage of the
<第1、第2の実施形態の変形例>
図15は、各実施形態の変形例に係る勾配磁界センサの調整方法を説明する図である。
図2において、第1、第2の実施形態に係る勾配磁界センサ4は、磁性コア110、磁性コア120の少なくとも一方に印加される励磁用直流電流を、独立に変更可能とする励磁調整部(直流電源E’、可変抵抗Rv)を有することを説明した。
一方、第1、第2の実施形態の変形例として、例えば、図15に示すような回路構成により、励磁調整部を実現してもよい。 <Modification of the first and second embodiments>
FIG. 15 is a diagram illustrating a method for adjusting a gradient magnetic field sensor according to a modification of each embodiment.
In FIG. 2, the gradient magnetic field sensor 4 according to the first and second embodiments includes an excitation adjustment unit that can independently change the excitation DC current applied to at least one of themagnetic core 110 and the magnetic core 120. It has been described that the DC power supply E ′ and the variable resistor Rv) are included.
On the other hand, as a modification of the first and second embodiments, for example, an excitation adjustment unit may be realized with a circuit configuration as shown in FIG.
図15は、各実施形態の変形例に係る勾配磁界センサの調整方法を説明する図である。
図2において、第1、第2の実施形態に係る勾配磁界センサ4は、磁性コア110、磁性コア120の少なくとも一方に印加される励磁用直流電流を、独立に変更可能とする励磁調整部(直流電源E’、可変抵抗Rv)を有することを説明した。
一方、第1、第2の実施形態の変形例として、例えば、図15に示すような回路構成により、励磁調整部を実現してもよい。 <Modification of the first and second embodiments>
FIG. 15 is a diagram illustrating a method for adjusting a gradient magnetic field sensor according to a modification of each embodiment.
In FIG. 2, the gradient magnetic field sensor 4 according to the first and second embodiments includes an excitation adjustment unit that can independently change the excitation DC current applied to at least one of the
On the other hand, as a modification of the first and second embodiments, for example, an excitation adjustment unit may be realized with a circuit configuration as shown in FIG.
具体的には、図15に示すように、磁性コア110には、交流電源VEXに基づく交流電流Iac2(励磁用交流電流)と、直流電源E1に基づく直流電流Idc2(励磁用直流電流)と、が流れる。交流電流Iac2は、交流電源VEXからバッファアンプBuf、可変抵抗Rv1及びコンデンサを介して磁性コア110に流れる。一方、直流電流Idc2は、直流電源E1から可変抵抗Rv2を介して磁性コア110に流れる。
これにより、勾配磁界センサ4のオペレータは、可変抵抗Rv1の抵抗値に基づいて交流電流Iac2を独立して変更することができ、また、可変抵抗Rv2の抵抗値に基づいて直流電流Idc2を独立して変更することができる。 Specifically, as shown in FIG. 15, themagnetic core 110 includes an alternating current Iac2 (exciting alternating current) based on the alternating current power supply VEX, a direct current Idc2 (exciting direct current) based on the direct current power supply E1, and Flows. The AC current Iac2 flows from the AC power supply VEX to the magnetic core 110 through the buffer amplifier Buf, the variable resistor Rv1, and the capacitor. On the other hand, the direct current Idc2 flows from the direct current power source E1 to the magnetic core 110 via the variable resistor Rv2.
Thereby, the operator of the gradient magnetic field sensor 4 can independently change the alternating current Iac2 based on the resistance value of the variable resistor Rv1, and can independently change the direct current Idc2 based on the resistance value of the variable resistor Rv2. Can be changed.
これにより、勾配磁界センサ4のオペレータは、可変抵抗Rv1の抵抗値に基づいて交流電流Iac2を独立して変更することができ、また、可変抵抗Rv2の抵抗値に基づいて直流電流Idc2を独立して変更することができる。 Specifically, as shown in FIG. 15, the
Thereby, the operator of the gradient magnetic field sensor 4 can independently change the alternating current Iac2 based on the resistance value of the variable resistor Rv1, and can independently change the direct current Idc2 based on the resistance value of the variable resistor Rv2. Can be changed.
また、磁性コア120には、磁性コア110と共通の交流電源VEXに基づく交流電流Iac1(励磁用交流電流)と、直流電源E2に基づく直流電流Idc1(励磁用直流電流)と、が流れる。交流電流Iac1は、交流電源VEXからバッファアンプBuf、可変抵抗Rv3及びコンデンサを介して磁性コア120に流れる。一方、直流電流Idc1は、直流電源E2から可変抵抗Rv4を介して磁性コア120に流れる。
これにより、勾配磁界センサ4のオペレータは、可変抵抗Rv3の抵抗値に基づいて交流電流Iac1を独立して変更することができ、また、可変抵抗Rv4の抵抗値に基づいて直流電流Idc1を独立して変更することができる。 In addition, an AC current Iac1 (excitation AC current) based on the AC power supply VEX common to themagnetic core 110 and a DC current Idc1 (excitation DC current) based on the DC power supply E2 flow through the magnetic core 110. The AC current Iac1 flows from the AC power supply VEX to the magnetic core 120 through the buffer amplifier Buf, the variable resistor Rv3, and the capacitor. On the other hand, the direct current Idc1 flows from the direct current power source E2 to the magnetic core 120 via the variable resistor Rv4.
Thereby, the operator of the gradient magnetic field sensor 4 can independently change the AC current Iac1 based on the resistance value of the variable resistor Rv3, and can independently change the DC current Idc1 based on the resistance value of the variable resistor Rv4. Can be changed.
これにより、勾配磁界センサ4のオペレータは、可変抵抗Rv3の抵抗値に基づいて交流電流Iac1を独立して変更することができ、また、可変抵抗Rv4の抵抗値に基づいて直流電流Idc1を独立して変更することができる。 In addition, an AC current Iac1 (excitation AC current) based on the AC power supply VEX common to the
Thereby, the operator of the gradient magnetic field sensor 4 can independently change the AC current Iac1 based on the resistance value of the variable resistor Rv3, and can independently change the DC current Idc1 based on the resistance value of the variable resistor Rv4. Can be changed.
本変形例に係る勾配磁界センサ4によれば、センサヘッド1に流れる交流電流Iac2、直流電流Idc2、及び、センサヘッド2に流れる交流電流Iac1、直流電流Idc1の各々を、全て独立して調整することができる。このように、励磁用交流電流、励磁用直流電流の調整を一般化することで、励磁用交流電流及び励磁用直流電流(即ち、可変抵抗Rv1~Rv4の抵抗値)の多様な組み合わせに基づいて、抑圧比を一層低減することができる。
According to the gradient magnetic field sensor 4 according to this modification, all of the AC current Iac2, the DC current Idc2, and the AC current Iac1 and DC current Idc1 flowing through the sensor head 1 are independently adjusted. be able to. Thus, by generalizing the adjustment of the excitation AC current and the excitation DC current, based on various combinations of the excitation AC current and the excitation DC current (that is, the resistance values of the variable resistors Rv1 to Rv4). The suppression ratio can be further reduced.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof, as long as they are included in the scope and gist of the invention.
上述の勾配磁界センサによれば、容易かつ高感度に微弱磁界を測定することができる。
The above-mentioned gradient magnetic field sensor can measure a weak magnetic field easily and with high sensitivity.
1 センサヘッド(第1センサヘッド)
2 センサヘッド(第2センサヘッド)
11 検出コイル(第1検出コイル)
12 検出コイル(第2検出コイル)
110 磁性コア(第1磁性コア)
120 磁性コア(第2磁性コア)
3 フラックスゲートセンサ回路(センサ回路)
30 同期検波回路
31 平滑回路
32 誤差増幅器
33 ローパスフィルタ
4 勾配磁界センサ
5 ヘルムホルツコイル
9 勾配磁界センサ
Rv、Rv1、Rv2、Rv3、Rv4 可変抵抗(励磁調整部) 1 Sensor head (first sensor head)
2 Sensor head (second sensor head)
11 Detection coil (first detection coil)
12 Detection coil (second detection coil)
110 Magnetic core (first magnetic core)
120 Magnetic core (second magnetic core)
3 Fluxgate sensor circuit (sensor circuit)
30Synchronous detection circuit 31 Smoothing circuit 32 Error amplifier 33 Low-pass filter 4 Gradient magnetic field sensor 5 Helmholtz coil 9 Gradient magnetic field sensor Rv, Rv1, Rv2, Rv3, Rv4 Variable resistance (excitation adjustment unit)
2 センサヘッド(第2センサヘッド)
11 検出コイル(第1検出コイル)
12 検出コイル(第2検出コイル)
110 磁性コア(第1磁性コア)
120 磁性コア(第2磁性コア)
3 フラックスゲートセンサ回路(センサ回路)
30 同期検波回路
31 平滑回路
32 誤差増幅器
33 ローパスフィルタ
4 勾配磁界センサ
5 ヘルムホルツコイル
9 勾配磁界センサ
Rv、Rv1、Rv2、Rv3、Rv4 可変抵抗(励磁調整部) 1 Sensor head (first sensor head)
2 Sensor head (second sensor head)
11 Detection coil (first detection coil)
12 Detection coil (second detection coil)
110 Magnetic core (first magnetic core)
120 Magnetic core (second magnetic core)
3 Fluxgate sensor circuit (sensor circuit)
30
Claims (4)
- 第1磁性コアと、当該第1磁性コアに巻かれた第1検出コイルと、を有し、当該第1磁性コアに励磁用交流電流及び励磁用直流電流が印加され、延在方向の磁界に応じた検出電圧を出力する第1センサヘッドと、
第2磁性コアと、当該第2磁性コアに巻かれた第2検出コイルと、を有し、当該第2磁性コアに励磁用交流電流及び励磁用直流電流が印加され、延在方向の磁界に応じた検出電圧を出力する第2センサヘッドと、
前記第1センサヘッドが出力する検出電圧と、前記第2センサヘッドが出力する検出電圧と、の合成電圧が入力され、当該合成電圧に応じた勾配磁界検出信号を出力するセンサ回路と、
を備え、
前記第1センサヘッド及び前記第2センサヘッドは、
互いに離間されながら、各々の延在方向が同一軸線上又は平行となるように配置されるとともに、同一方向の磁界に対して出力する前記検出電圧が互いに打ち消し合うように接続されている
勾配磁界センサ。 A first magnetic core and a first detection coil wound around the first magnetic core, wherein an exciting alternating current and an exciting direct current are applied to the first magnetic core, and an extension direction magnetic field is applied to the first magnetic core; A first sensor head that outputs a corresponding detection voltage;
A second magnetic core and a second detection coil wound around the second magnetic core, wherein an excitation AC current and an excitation DC current are applied to the second magnetic core, and an extension magnetic field is applied to the second magnetic core. A second sensor head for outputting a corresponding detection voltage;
A sensor circuit that receives a combined voltage of a detection voltage output from the first sensor head and a detection voltage output from the second sensor head and outputs a gradient magnetic field detection signal corresponding to the combined voltage;
With
The first sensor head and the second sensor head are
Gradient magnetic field sensors are arranged so that their extending directions are on the same axis or parallel to each other while being spaced apart from each other, and are connected so that the detection voltages output to the magnetic field in the same direction cancel each other. . - 前記第1検出コイル及び前記第2検出コイルは、各々の一端が結線され、前記第1検出コイルの他端がグラウンドに接続され、前記第2検出コイルの他端が前記センサ回路に接続されている
請求項1に記載の勾配磁界センサ。 One end of each of the first detection coil and the second detection coil is connected, the other end of the first detection coil is connected to the ground, and the other end of the second detection coil is connected to the sensor circuit. The gradient magnetic field sensor according to claim 1. - 前記第1磁性コア、前記第2磁性コアの少なくとも一方に印加される前記励磁用直流電流を、独立に変更可能とする励磁調整部を更に備える
請求項1又は請求項2に記載の勾配磁界センサ。 The gradient magnetic field sensor according to claim 1, further comprising an excitation adjustment unit that can independently change the exciting DC current applied to at least one of the first magnetic core and the second magnetic core. . - 前記センサ回路は、
帰還抵抗を有する負帰還回路であって、前記合成電圧に応じて当該帰還抵抗間に生ずる電圧の変位を前記勾配磁界検出信号として出力する
請求項1から請求項3の何れか一項に記載の勾配磁界センサ。 The sensor circuit is
4. The negative feedback circuit having a feedback resistor, wherein a displacement of a voltage generated between the feedback resistors in accordance with the combined voltage is output as the gradient magnetic field detection signal. 5. Gradient magnetic field sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015543883A JP6472140B2 (en) | 2013-10-22 | 2014-10-22 | Gradient magnetic field sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-219016 | 2013-10-22 | ||
JP2013219016 | 2013-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015060344A1 true WO2015060344A1 (en) | 2015-04-30 |
Family
ID=52992934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078090 WO2015060344A1 (en) | 2013-10-22 | 2014-10-22 | Magnetic field gradient sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6472140B2 (en) |
WO (1) | WO2015060344A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018230262A1 (en) * | 2017-06-16 | 2018-12-20 | 朝日インテック株式会社 | Ultra high-sensitivity micro magnetic sensor |
JP2019002688A (en) * | 2017-06-09 | 2019-01-10 | 笹田磁気計測研究所株式会社 | Gradient magnetic field sensor |
JP2019020346A (en) * | 2017-07-21 | 2019-02-07 | 朝日インテック株式会社 | Ultra-micro sensitive magnetic sensor |
JP2019060717A (en) * | 2017-09-26 | 2019-04-18 | 笹田磁気計測研究所株式会社 | Sensor head module and magnetometric sensor |
JP2021085801A (en) * | 2019-11-29 | 2021-06-03 | 協立電機株式会社 | Magnetic detection device |
WO2022014438A1 (en) * | 2020-07-17 | 2022-01-20 | Tdk株式会社 | Gradient magnetic field sensor and magnetic matter detection device |
CN115327449A (en) * | 2022-07-22 | 2022-11-11 | 三峡大学 | AMR vector magnetic gradiometer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4814275U (en) * | 1971-06-26 | 1973-02-17 | ||
JPS6457183A (en) * | 1987-08-28 | 1989-03-03 | Hoxan Kk | Pickup coil for squid fluxmeter |
JP2002277522A (en) * | 2001-03-21 | 2002-09-25 | Sangaku Renkei Kiko Kyushu:Kk | Magnetic field sensor |
JP2003215220A (en) * | 2002-01-21 | 2003-07-30 | Sangaku Renkei Kiko Kyushu:Kk | Magnetic field sensor |
JP2013057645A (en) * | 2011-09-09 | 2013-03-28 | Kyushu Univ | Magnetic sensor |
-
2014
- 2014-10-22 WO PCT/JP2014/078090 patent/WO2015060344A1/en active Application Filing
- 2014-10-22 JP JP2015543883A patent/JP6472140B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4814275U (en) * | 1971-06-26 | 1973-02-17 | ||
JPS6457183A (en) * | 1987-08-28 | 1989-03-03 | Hoxan Kk | Pickup coil for squid fluxmeter |
JP2002277522A (en) * | 2001-03-21 | 2002-09-25 | Sangaku Renkei Kiko Kyushu:Kk | Magnetic field sensor |
JP2003215220A (en) * | 2002-01-21 | 2003-07-30 | Sangaku Renkei Kiko Kyushu:Kk | Magnetic field sensor |
JP2013057645A (en) * | 2011-09-09 | 2013-03-28 | Kyushu Univ | Magnetic sensor |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019002688A (en) * | 2017-06-09 | 2019-01-10 | 笹田磁気計測研究所株式会社 | Gradient magnetic field sensor |
AU2018284779B2 (en) * | 2017-06-16 | 2021-09-09 | Asahi Intecc Co., Ltd. | Ultra high-sensitivity micro magnetic sensor |
KR102393394B1 (en) | 2017-06-16 | 2022-05-02 | 아사히 인텍크 가부시키가이샤 | Ultra-sensitive micro magnetic sensor |
WO2018230262A1 (en) * | 2017-06-16 | 2018-12-20 | 朝日インテック株式会社 | Ultra high-sensitivity micro magnetic sensor |
JP7262885B2 (en) | 2017-06-16 | 2023-04-24 | 朝日インテック株式会社 | Ultra-sensitive micro magnetic sensor |
KR20200007886A (en) * | 2017-06-16 | 2020-01-22 | 아사히 인텍크 가부시키가이샤 | Ultra High Sensitivity Micro Magnetic Sensor |
CN110832336A (en) * | 2017-06-16 | 2020-02-21 | 朝日英达科株式会社 | Ultrasensitive micromagnetic sensor |
RU2746978C1 (en) * | 2017-06-16 | 2021-04-22 | Асахи Интекк Ко., Лтд. | Super high sensitivity magnetic microsensor |
US10989768B2 (en) | 2017-06-16 | 2021-04-27 | Asahi Intecc Co., Ltd. | Ultra high-sensitivity micro magnetic sensor |
JP2019002851A (en) * | 2017-06-16 | 2019-01-10 | 朝日インテック株式会社 | Ultra-high sensitive micro magnetic sensor |
CN110832336B (en) * | 2017-06-16 | 2022-02-25 | 朝日英达科株式会社 | Ultrasensitive micromagnetic sensor |
JP2019020346A (en) * | 2017-07-21 | 2019-02-07 | 朝日インテック株式会社 | Ultra-micro sensitive magnetic sensor |
JP7262886B2 (en) | 2017-07-21 | 2023-04-24 | 朝日インテック株式会社 | Ultra-compact high-sensitivity magnetic sensor |
JP7002112B2 (en) | 2017-09-26 | 2022-01-20 | 笹田磁気計測研究所株式会社 | Sensor head module and magnetic sensor |
JP2019060717A (en) * | 2017-09-26 | 2019-04-18 | 笹田磁気計測研究所株式会社 | Sensor head module and magnetometric sensor |
JP2021085801A (en) * | 2019-11-29 | 2021-06-03 | 協立電機株式会社 | Magnetic detection device |
WO2022014438A1 (en) * | 2020-07-17 | 2022-01-20 | Tdk株式会社 | Gradient magnetic field sensor and magnetic matter detection device |
JP7496258B2 (en) | 2020-07-17 | 2024-06-06 | Tdk株式会社 | Gradient magnetic field sensor and magnetic object detection device |
US20230258744A1 (en) * | 2020-07-17 | 2023-08-17 | Tdk Corporation | Gradient magnetic field sensor and magnetic matter detection device |
CN115327449A (en) * | 2022-07-22 | 2022-11-11 | 三峡大学 | AMR vector magnetic gradiometer |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015060344A1 (en) | 2017-03-09 |
JP6472140B2 (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6472140B2 (en) | Gradient magnetic field sensor | |
KR101654662B1 (en) | Magnetoresistive sensor and gradiometer | |
US10809321B2 (en) | Magnetic sensor and testing device | |
KR101965977B1 (en) | Apparatus for measuring current | |
Silva et al. | High sensitivity giant magnetoimpedance (GMI) magnetic transducer: magnitude versus phase sensing | |
Malátek et al. | Off-diagonal GMI sensor with stress-annealed amorphous ribbon | |
Grosz et al. | A high-resolution planar Hall effect magnetometer for ultra-low frequencies | |
Can et al. | Design of ring core fluxgate magnetometer as attitude control sensor for low and high orbit satellites | |
JP2019132719A (en) | Magnetic detector | |
Fernandez et al. | Equivalent magnetic noise of micro-patterned multilayer thin films based GMI microsensor | |
Elrefai et al. | Gradiometer and magnetometer integration using a pair of fundamental mode orthogonal fluxgate sensor heads | |
Ripka et al. | Sensitivity and noise of wire-core transverse fluxgate | |
JP6421379B2 (en) | Magnetic field sensor | |
Sasada et al. | Fundamental mode orthogonal fluxgate gradiometer | |
Hrakova et al. | Sensitivity and noise of parallel fluxgate sensor with amorphous wire cores | |
Tsukada et al. | Hybrid magnetic sensor combined with a tunnel magnetoresistive sensor and high-temperature superconducting magnetic-field-focusing plates | |
WO2018211833A1 (en) | Magnetic field measuring device | |
Ripka et al. | Multiwire parallel fluxgate sensors | |
Khosravi et al. | Comparison of a designed scalar proton precession magnetometer with a scalar calibrated 3-axis fluxgate magnetometer | |
Vyhnanek et al. | Experimental comparison of the low-frequency noise of small-size magnetic sensors | |
Mosahebfard et al. | Design, fabrication and characterisation of a three-axis, ring-core fluxgate magnetometer | |
Portalier et al. | Evaluation of the Imaginary Part of the Magnetic Susceptibility, $\chi^{\prime\prime} $, and Application to the Estimation of the Low Frequency, 1/$ f $, Excess Noise in GMI Sensors | |
Liu et al. | Enhanced Limit-of-Detection of Current Sensor Based on Tunneling Magnetoresistive Effect with Multi-chips Differential Design | |
Esper et al. | Offset reduction in GMI-based device by using double-frequency bias-current modulation | |
Butta et al. | Orthogonal fluxgate gradiometer with multiple coil pairs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14856439 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015543883 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14856439 Country of ref document: EP Kind code of ref document: A1 |