WO2015056121A1 - Metal-electrowinning or -electrorefining process comprising the application of an electrical power signal formed of an alternating current superimposed on a direct current - Google Patents
Metal-electrowinning or -electrorefining process comprising the application of an electrical power signal formed of an alternating current superimposed on a direct current Download PDFInfo
- Publication number
- WO2015056121A1 WO2015056121A1 PCT/IB2014/064876 IB2014064876W WO2015056121A1 WO 2015056121 A1 WO2015056121 A1 WO 2015056121A1 IB 2014064876 W IB2014064876 W IB 2014064876W WO 2015056121 A1 WO2015056121 A1 WO 2015056121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electro
- obtaining
- less
- copper
- metals
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/12—Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
Definitions
- the invention relates to the electro-obtaining (EW) and electro-refining (ER) process.
- the invention comprises the joint application of alternating current (AC) and direct current (DC) in the electro-obtaining and electro-refining processes.
- the recovery of copper from Cu 2+ solutions in the combined LX-SX-EW process solvent leaching-electro-obtaining has been carried out industrially and commercially for more than thirty years.
- the chemical quality of the cathodes obtained by ER and EW reaches a degree of copper purity of "five nines" (99.999%), with extremely low levels of impurities such as lead, oxygen, sulfur, hydrogen, carbon, arsenic, antimony and bismuth.
- more than 90% of the production of cathodes in most of the ER and EW plants is "high grade", that is, with a quality superior to the Grade A classification defined by the London Metal Exchange LME.
- the production capacity of electrolytic copper in Chile exceeds 5.0 million metric tons per year.
- the ER and EW plants of Cu aim to maximize the production of metal cathodes with high chemical and physical purity, and with the lowest consumption specific energy
- external electrical energy is applied, setting the production based on the level of DC current imposed.
- This process is carried out in aqueous and strongly acidic medium (> 180 gpl H 2 S0 4 ), with permanent stainless steel cathodes or starting Cu sheets, and impure copper anodes (ER), or rolled anodes of an alloy Pb-Ca-Sn in the case of EW.
- the main electrochemical reactions are presented in Table 1
- the EW and ER copper plants operate with DC design current density levels of the order of 300 A / m 2 , with 92-97% of current efficiency, and with specific energy consumption around 250-350 kWh / ton in the case of an ER of Cu and 91 -93% of current efficiency and 1 .800 - 2,300 kWh / ton in Cu EW.
- the operating variables that are externally manipulable such as the concentration of the cupric ion in solution, the temperature of the electrolyte and the flow of electrolyte to cell, must be set according to the imposed DC current.
- the range in which each of these variables moves is as follows: Table 2
- g / ton corresponds to grams of the additive per ton of copper produced.
- This technology has been applied for 20 years in copper EW and ER plants worldwide, and has allowed significant benefits such as operating with higher current density, reaching levels of up to 400 A / m 2 in some plants, and with Higher productivity rates.
- EMEW process which considers the design of more compact and closed cells for electro-obtaining copper.
- copper electro-deposition is performed in closed cylindrical cells, with stainless steel tubular cathodes and DSA anodes (titanium anodes coated by titanium and ruthenium oxides).
- the cells have operated at current densities greater than 600 A / m 2.
- the operational key of this technology lies in the high mass flow with which it works.
- This cell has been used industrially to treat diluted solutions of Cu 2+ , obtaining High quality chemical cathodes without environmental contamination due to acid mist.
- its massive application is still unfeasible, since it requires a total change of the technology currently in use, which implies a high cost and also for technical problems not yet fully resolved.
- the objective of the present invention is to have an electro-refining process that allows obtaining cathodes of greater purity and quality.
- Another objective that the present invention intends to implement is to have an electro-obtaining process that allows obtaining cathodes of greater purity and quality.
- Another objective of the present invention is to have an electro-refining process that allows obtaining cathodes of greater purity and quality while reducing production costs.
- another objective of the present invention is to have an electro-obtaining process that allows obtaining cathodes of greater purity and quality while reducing production costs.
- the present invention corresponds to a process of electro-obtaining and electro-refining of noble minerals, such as copper, which comprises applying an alternating current superimposed on the level of a direct current.
- Figure 1 shows an electrical power signal of a conventional electro-obtaining process (DC signal).
- Figure 2 shows the electrical power signal of the process of the present invention (AC signal superimposed on a DC signal).
- Figures 3 to 26 show images of the cathode plates obtained experimentally, in conventional processes and in processes according to the present invention, visualized by microscope analysis.
- Figures 27 to 30 show images of the cathode plates obtained experimentally, in conventional processes and in processes according to the present invention, visualized by analysis of the plate metallography.
- Figure 31 shows the process diagram of the pilot test plant.
- Figures 32 to 36 show images of cathodes obtained in the pilot tests.
- the present invention corresponds to a process of electro-obtaining (EW) and electro-refining (ER) of metals, in particular noble metals, such as copper, which comprises applying an electrical power signal formed by an alternating current superimposed on the level of A direct current.
- the alternating signal is of defined frequency and variable amplitude from 25 to 600 A / m 2
- the electro-obtaining and electro-refining process of the present invention is based on a conventional electro-obtaining and electro-refining process, respectively, which does not require changes in cell technology or in trans-rectifiers, only It has been modified in the application of an alternating current superimposed on a direct current and in the working ranges of some operating conditions, which have allowed to obtain products of similar physical-chemical quality and of better physical-chemical quality, and where it was possible to reduce operating costs, through the following ways:
- the electro-obtaining and electro-refining processes are carried out in aqueous and strongly acidic medium, between approximately 180 and 200 gpl (grams per liter) of H 2 S0 4 .
- Figure 1 represents the direct current signal applied in a conventional electro-obtaining and electro-refining process
- Figure 2 represents the alternating current signal that is superimposed on the direct current signal, according to the process of The present invention.
- the electro-obtaining process of the present invention comprises applying an alternating current (AC) in a range of 400 to 600 A / m 2 superimposed on a direct current (DC) in the range of 240 to 600 A / m 2 , preferably in the range of 240 to 450 A / m 2 , more preferably in the range of 250 to 500 A / m 2 and where the frequency (f) of the overlapping alternating current is greater than or equal to 5,000 Hz and less than or equal to than 10,000 Hz; and includes establishing the following operating conditions in commercial cells:
- the EW process according to the present invention can work under the same operating conditions of the conventional process, however preferably, the temperature value is at least 5 ° C less and the concentration value is at least 3 gpl less that the temperature and concentration values, respectively, of the conventional process.
- the flocculant used is guar gum and the grain tuner is dextrin (DXG).
- DXG dextrin
- cobalt sulfate has the function of inhibiting anodic corrosion.
- a surfactant or antifoam is added, such as FC-1 .100.
- Table 3 Comparison of the operating variables of a conventional electro-obtaining process versus the electro-obtaining process of the present invention.
- Electrolyte Temperature Range Electrolyte Temperature Range in Commercial Cells in Commercial Cells
- Grain Tuner Grain Tuner (Guar + DXG) 200 - 300 g / ton of Cu ° (Guar + DXG) ⁇ 200 g / ton of Cu °
- the electro-obtaining process of the present invention reduces the density of direct current to be applied, the temperature ranges, the concentration of incoming copper to the cells and the amounts to be added of additives.
- the new operational values of the electro-obtaining process of the present invention make it possible to reduce the specific energy consumption and positively affect the following variables:
- the emission of acid mist decreases when operating the electrolyte of cells with lower temperature, with respect to the Environmental Standard in the CAMP Ship (concentration of acid mist emitted by the cells to the environment in a Cu EW ship) ⁇ 0.50 ( mg / m 3 ) of air, measured at an atmospheric pressure CAMP ⁇ 0.45 mg / m 3 at 3,000 meters above sea level.
- the electro-refining process comprises applying an alternating current (AC) in a range of 400 to 600 A / m 2 superimposed on a direct current (DC) in the range of 240 to 600 A / m 2 , preferably in the range of 240 to 450 A / m 2 , more preferably in the range of 250 to 500 A / m 2 and where the frequency (f) of the overlapping alternating current is greater than or equal to 5,000 Hz and less than or equal to 10,000 Hz; and includes establishing the following operating conditions in commercial cells:
- the ER process according to the present invention can work under the same operating conditions of the conventional process, however preferably the temperature value is at least 5 ° C less and the concentration value is at least 3 gpl less than the temperature and concentration values, respectively, of the conventional process.
- the flocculant is avitone and the grain tuner is cola and thiourea and the percentages to be added of each, with respect to the aggregate total are 30% avitone, 30% tail and 40% tail.
- Table 4 Comparison of the operating variables of a conventional electro-refining process versus the electro-refining process of the present invention.
- the electro-refining process of the present invention reduces the density of direct current to be applied, the temperature ranges, the concentration of incoming copper to the cells and the amounts to be added of additives.
- the new operational values of the process of electro-refining of the present invention allow to reduce the specific energy consumption and positively affect the following variables:
- Table 5 Operational conditions in experimental tests in a conventional process versus the process of the present invention, the values of direct current, alternating current and frequency in 5 and 10 hours of application are evaluated.
- the cathode samples obtained at 5 hours of reaction were analyzed by means of a scanning electron microscope (SEM) (Scanning Electron Microscope). From each test performed, one of the cathodes obtained with the SEM microscope was analyzed and the cathodes were observed in two different magnification values, at 300 and 1,200.
- Figures 3 and 4 represent the analysis performed at a cathode obtained with the conditions of test 1, measured at 300 and 1,200, respectively. All things being equal, figures 5 and 6 represent test 2, figures 7 and 8 represent test 3, figures 9 and 10 represent test 4, figures 1 1 and 12 represent test 5, and Figures 13 and 14 represent test 6.
- Figures 3, 4 and 9, 10 correspond to tests 1 and 4, respectively, which represent the use of DC signals, according to the conventional procedure.
- the crystalline growth structure makes it possible to clearly appreciate the separation of the grains that highlight the interstitial spaces between them. These interstitial spaces impact the entrapment of impurities in cathodic deposits.
- figures 5, 6; 7, 8; 1 1, 12 and 13, 14 corresponding to tests 2, 3, 5 and 6, respectively, it is observed that said interstitial spaces decrease as the frequency of the AC signal superimposed on the DC level increases, that is to say when applying a AC signal superimposed on a DC signal is less likely to trap impurities in cathodic deposits, as interstitial spaces decrease.
- Figures 7 and 8 where it can be seen that the interstitial spaces are smaller with respect to those of Figures 5 and 6, and in turn the interstitial spaces of Figures 5 and 6 are smaller with respect to those of the Figures 3 and 4.
- Figures 7 and 8 correspond to a frequency of 10,000 Hz
- Figures 5 and 6 correspond to a frequency of 5,000 Hz
- Figures 3 and 4 without AC signal.
- Figures 13 and 14 it can be seen that the interstitial spaces are smaller with respect to those of Figures 1 1 and 12, and in turn the interstitial spaces of Figures 1 1 and 12 are smaller with respect to those of Figures 9 and 10.
- Figures 13 and 14 correspond to a frequency of 10,000 Hz
- Figures 1 1 and 12 correspond to a frequency of 5,000 Hz
- Figures 9 and 10 without AC signal.
- Table 6 Operational conditions in experimental tests in a conventional process versus the process of the present invention, the values of direct current, alternating current and frequency in 10 hours of application are evaluated.
- the cathode samples obtained at 10 hours of reaction were analyzed by a scanning electron microscope. From each test performed, one of the cathodes obtained with the SEM microscope was analyzed and the cathodes were observed in three different magnification values, at 20, at 300 and at 1,200.
- Figures 15, 16 and 17 represent the analysis performed at a cathode obtained with the conditions of test 7, measured at 20, at 300 and at 1,200, respectively. All things being equal, figures 18, 19 and 20 represent test 8; Figures 21, 22 and 23 represent test 9; and Figures 24, 25 and 26 represent test 10.
- Figures 15, 16 and 17 correspond to test 7, which represents the use of DC signals, according to the conventional procedure.
- test 7 represents the use of DC signals, according to the conventional procedure.
- a deposit with abundant nodules is observed (figure 15), unlike the results obtained by superimposing AC signals on the DC level (figures 18 to 26). It is observed that the nodulation disappears and the texture becomes more even as the frequency and signal amplitude increases.
- the metallographic analysis, performed on the samples obtained indicates that the internal structure of the deposits is remarkably different in terms of grain morphology and type of crystal growth, depending on whether DC or DC current signals are used. + AC.
- the deposits obtained with DC signals are characterized by having a fine, spongy and messy grain structure without preferential orientation, approaching a crystalline structure type UD (Fl ) (small grains, without consistent structure) in the Fisher classification.
- the deposits obtained with DC + AC signals are characterized by a continuous crystalline growth with a clear field orientation, approaching a TC structure (FT) (crystalline structure of grain oriented in the body) in the Fisher classification which make boast a better chemical quality for cathodes, however operate with current densities that exceed 400 A / m 2 .
- Figures 15 and 18 show the images of a cathode sample obtained by the conventional process, with respect to a cathode sample obtained by the process of the present invention, respectively. Furthermore, in Figures 18, 21 and 24 it can be clearly seen, as the crystalline structure has a more continuous growth as the amplitude and frequency of the AC signal superimposed on the DC level increase.
- the electrical circuit is composed of a transfo-rectifier (1) for the generation of the DC signal and an electrical equipment (2) to generate the AC signal from the DC signal that feeds EW cells.
- the electric current that leaves the trans-rectifier (1) feeds the anodes of cell 1 (3), then passes to the electrolyte and then to the cathode of said cell 1, then said current leaves the cathode towards the equipotential rod. Then from said equipotential rod, the current feeds the anodes of cell 2 (4), then going to the electrolyte and cathode of said cell 2, then it goes back to the transfounder (1) thus closing the electrical circuit of the system.
- the rich electrolyte from the solvent extraction process (8) passes through filters and is transported in 1 m3 so-containers to the rich electrolyte receiving ponds of the pilot plant (9 and 10);
- the rich electrolyte passes to the gray pond (1 1), which is responsible for having the rich electrolyte (7) inside the pilot plant, the transfer of rich electrolyte is done every 3 to 4 hours, depending on consumption of electrolyte inside the pilot plant;
- the rich electrolyte is fed from the gray pond (1 1) to the rich side recirculation pond (12), there it is mixed with the poor electrolyte (6) from the poor side recirculation pond (13) to form the mixture of incoming electrolyte (5) to the cells, with a defined copper concentration (usually 43 g / l);
- the incoming electrolyte (5) feeds in parallel to the two electrolysis cells (3 and 4), the outgoing electrolyte of the cells corresponds to the poor electrolyte (6) and this is divided into two flows, one that returns to the recirculation pond poor side (13) and another that will discard (14);
- the discards are accumulated in a pool (sink) (15) of the pilot plant and subsequently said discards are transported in containers to the stack (16).
- Table 7 shows the operational values or experimental conditions of the long-term tests for the conventional process and the process according to the present invention.
- Table 8 shows the operational values or experimental conditions of the short duration tests, for the conventional process and the process according to the present invention.
- Table 7 Long comparative tests, for the conventional process and the process according to the present invention.
- Table 8 Comparative short tests, for the conventional process and the process according to the present invention.
- the cathodes obtained in the long tests were subjected to chemical analyzes, in order to evaluate the sulfur content present in each cathode, the results obtained from the long-term tests can be seen in Table 9.
- Said Table 9 shows the results of the chemical analyzes performed on the cathode samples, in relation to evaluating the ppm of sulfur present in the cathodes obtained.
- the sulfur concentration is lower in the cathodes obtained with the tests performed according to the process of the present invention, which is beneficial, since it decreases the formation of nodules on the surface of the sheet .
- the cathodes obtained in the short tests were also subjected to chemical analysis, in order to evaluate the sulfur content present in each cathode, the results obtained from the short duration tests can be seen in Table 10.
- Said Table 10 shows the results of chemical analyzes made to the cathode samples, in relation to evaluating the ppm of sulfur present in the cathodes obtained, additionally for comparative purposes, Table 10 also includes the average values obtained in the long-term tests.
- Figures 33 to 36 you can see the morphology of the copper deposit in the cathodes.
- Figures 33 and 34 correspond to the AC + DC process, for a long duration test.
- Figure 33 represents cathode C1 and figure 34 to cathode C3.
- the crystalline structure obtained is of the TC type, that is, crystals oriented in the field, without crystalline imperfections.
- Figures 35 and 36 correspond to the DC process, for a long-term test.
- Figure 35 represents cathode C1
- Figure 36 represents cathode C3.
- the crystalline structure obtained is of the BR type, that is to say crystals of irregular size and of disorderly growth from the base. It is also observed a significant number of imperfections and porosities throughout the region of the analyzed samples.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
The invention relates to a process of electrowinning or electrorefining of metals, in particular noble metals, such as copper, that is carried out in an aqueous and strongly acidic medium and comprises the application of an electrical feed signal formed of an alternating current superimposed on a direct current, where the alternating current (AC) is in a range between 400 and 600 A/m2 and is superimposed on a direct current (DC) in the range between 240 and 600 A/m2, and where the frequency (f) is greater than or equal to 5,000 Hz and less than or equal to 10,000 Hz. The electrowinning process operates in a temperature range between 15 and 52°C, in a Cu2+ concentration range of between 33 and 43 gpl, having a dosage of flocculation additives and a grain refiner of less than 200g/ton of copper produced (Cu°), and having a concentration of CoSo4 less than 170 ppm of Cu2+ in the electrolyte bath. The electrorefining process operates in a temperature range between 40 and 60°C, in a range of concentration of Cu2+ between 40 and 56 gpl, and having a dosage of flocculation additives with a grain refiner of less than 100g/ton of Cu°.
Description
PROCESO DE ELECTRO-OBTENCION O ELECTRO-REFINACION DE METALES, QUE COMPRENDE APLICAR UNA SEÑAL ELECTRICA DE ALIMENTACION FORMADA POR UNA CORRIENTE ALTERNA SUPERPUESTA AL NIVEL DE UNA CORRIENTE CONTINUA ELECTRO-OBTAINING OR ELECTRO-REFINING METALS PROCESS, WHICH INCLUDES APPLYING AN ELECTRIC POWER SIGNAL FORMED BY AN ALTERNATE CURRENT SUPERPOSED TO THE LEVEL OF A CONTINUOUS CURRENT
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
Campo de la Invención Field of the Invention
La invención se relaciona con los proceso de electro-obtención (EW) y electro-refinación (ER). The invention relates to the electro-obtaining (EW) and electro-refining (ER) process.
La invención comprende la aplicación conjunta de corriente alterna (AC) y corriente continua (DC) en los procesos de electro-obtención y electro-refinación. Antecedentes de la Invención The invention comprises the joint application of alternating current (AC) and direct current (DC) in the electro-obtaining and electro-refining processes. Background of the Invention
La refinación electrolítica de cobre o electro-refinación (ER), a partir de ánodos impuros provenientes de la fusión y conversión de concentrados de cobre, es un proceso de electrólisis convencional que se aplica industrialmente desde hace más de un siglo. Por otra parte, la recuperación de cobre desde soluciones de Cu2+ en el proceso combinado LX-SX-EW (lixiviación-extracción por solvente-electro- obtención) se ha realizado industrial y comercialmente desde hace más de treinta años. Copper electrolytic refining or electro-refining (ER), from impure anodes from the fusion and conversion of copper concentrates, is a conventional electrolysis process that has been industrially applied for more than a century. On the other hand, the recovery of copper from Cu 2+ solutions in the combined LX-SX-EW process (solvent leaching-electro-obtaining) has been carried out industrially and commercially for more than thirty years.
La calidad química de los cátodos obtenidos por ER y EW alcanza un grado de pureza de cobre de "cinco nueves" (99,999%), con niveles extremadamente bajos de impurezas tales como plomo, oxígeno, azufre, hidrógeno, carbono, arsénico, antimonio y bismuto. Por lo general más del 90% de la producción de cátodos en la mayoría de las plantas de ER y EW, es "high grade", es decir, con una calidad superior a la clasificación de Grado A definida por la Bolsa de Metales de Londres, LME. Actualmente, la capacidad producción de cobre electrolítico en Chile supera los 5,0 millones de toneladas métricas por año. The chemical quality of the cathodes obtained by ER and EW reaches a degree of copper purity of "five nines" (99.999%), with extremely low levels of impurities such as lead, oxygen, sulfur, hydrogen, carbon, arsenic, antimony and bismuth. In general, more than 90% of the production of cathodes in most of the ER and EW plants is "high grade", that is, with a quality superior to the Grade A classification defined by the London Metal Exchange LME. Currently, the production capacity of electrolytic copper in Chile exceeds 5.0 million metric tons per year.
Las plantas de ER y EW de Cu tienen por objetivo maximizar la producción de cátodos del metal con elevada pureza química y física, y con el menor consumo
específico de energía. En estos procesos se aplica energía eléctrica externa, fijando la producción en base al nivel de corriente continua DC impuesta. Este proceso se lleva a cabo en medio acuoso y fuertemente ácido (> 180 gpl H2S04), con cátodos permanentes de acero inoxidable o láminas de Cu de partida, y ánodos impuros de cobre (ER), o ánodos laminados de una aleación Pb-Ca-Sn en el caso de la EW. Las reacciones electroquímicas principales se presentan en la Tabla 1 The ER and EW plants of Cu aim to maximize the production of metal cathodes with high chemical and physical purity, and with the lowest consumption specific energy In these processes, external electrical energy is applied, setting the production based on the level of DC current imposed. This process is carried out in aqueous and strongly acidic medium (> 180 gpl H 2 S0 4 ), with permanent stainless steel cathodes or starting Cu sheets, and impure copper anodes (ER), or rolled anodes of an alloy Pb-Ca-Sn in the case of EW. The main electrochemical reactions are presented in Table 1
Tabla 1 Reacciones principales en ER y EW de Cu Table 1 Main reactions in ER and Cu EW
Para poder conciliar producción, consumo específico de energía y calidad química de los cátodos, las plantas de EW y ER de cobre operan con niveles de densidad de corriente eléctrica DC de diseño del orden de 300 A/m2, con 92-97% de eficiencia de corriente, y con consumos específicos de energía entorno de 250-350 kWh/ton en el caso de una ER de Cu y 91 -93% de eficiencia de corriente y 1 .800 - 2.300 kWh/ton en EW de Cu. Las variables de operación que son manipulables externamente tales como la concentración del ion cúprico en solución, la temperatura del electrolito y el flujo de electrolito a celda, deben fijarse en función de la corriente DC impuesta. El rango en que se mueve cada una de estas variables es el siguiente:
Tabla 2 In order to reconcile production, specific energy consumption and chemical quality of the cathodes, the EW and ER copper plants operate with DC design current density levels of the order of 300 A / m 2 , with 92-97% of current efficiency, and with specific energy consumption around 250-350 kWh / ton in the case of an ER of Cu and 91 -93% of current efficiency and 1 .800 - 2,300 kWh / ton in Cu EW. The operating variables that are externally manipulable such as the concentration of the cupric ion in solution, the temperature of the electrolyte and the flow of electrolyte to cell, must be set according to the imposed DC current. The range in which each of these variables moves is as follows: Table 2
Donde g/ton, corresponde a gramos del aditivo por tonelada de cobre producido. Where g / ton corresponds to grams of the additive per ton of copper produced.
Descripción de lo conocido en la materia. Description of what is known in the field.
Los procesos industriales de electro-refinación (ER), y de electro-obtención (EW) de cobre, se caracterizan por operar con niveles continuos de corriente eléctrica e involucrar reacciones electroquímicas de reducción catódica y de oxidación anódica, que ocurren a nivel de inferíase electrodo-solución sobre los cátodos y sobre los ánodos respectivamente. Industrial processes of electro-refining (ER), and electro-obtaining (EW) of copper, are characterized by operating with continuous levels of electric current and involving electrochemical reactions of cathodic reduction and anodic oxidation, which occur at the inferred level. electrode-solution on the cathodes and on the anodes respectively.
Problemas técnicos que inciden en los consumos de energía y en la calidad catódica de Cu, por el uso de señales de corriente actualmente en uso.
Las variables más importantes que inciden en la producción y en la calidad catódica son las siguientes: Technical problems that affect energy consumption and the cathodic quality of Cu, due to the use of current signals currently in use. The most important variables that affect production and cathodic quality are the following:
• Corriente impuesta • Current imposed
• Temperatura del electrolito • Electrolyte temperature
• Concentración de iones en el electrolito • Ion concentration in the electrolyte
• Flujo de electrolito a celda • Electrolyte flow to cell
• Comportamiento electroquímico de los electrodos (cátodos y ánodos) • Electrochemical behavior of electrodes (cathodes and anodes)
En los procesos industriales de electrólisis de Cu, la clave para mantener o incrementar la producción a igual capacidad instalada, es aumentar la densidad de corriente DC. Sin embargo, con los diseños actuales de celdas y la tecnología vigente, todo aumento indiscriminado de la densidad de corriente para aumentar producción, trae como consecuencia un deterioro de la calidad físico-química del producto. Aumentan los consumos de energía (Voltaje de celdas y Temperatura de electrolito), resultando necesario incrementar además la concentración de Cu2+; el flujo de electrolito y la dosificación de aditivos con el propósito de no deteriorar la calidad físico-química de los cátodos. Como consecuencia de lo anterior, aumenta el costo de producción de cátodos y los consumos de energía a expensas de un aumento de producción. En el proceso de EW de Cu se incrementa además la emisión de neblina ácida al ambiente y en ER de Cu los riesgos de pasivación anódica. In industrial Cu electrolysis processes, the key to maintaining or increasing production at the same installed capacity is to increase the DC current density. However, with current cell designs and current technology, any indiscriminate increase in current density to increase production results in a deterioration of the physical-chemical quality of the product. Increase energy consumption (cell voltage and electrolyte temperature), resulting in a further increase in the concentration of Cu 2+ ; the electrolyte flow and the dosage of additives in order not to deteriorate the physical-chemical quality of the cathodes. As a consequence of the above, the cost of production of cathodes and energy consumption increases at the expense of an increase in production. In the EW process of Cu, the emission of acid mist into the environment is also increased and in ER of Cu the risks of anodic passivation.
Desarrollos tecnológicos recientes. Recent technological developments.
Los desarrollos tecnológicos más importantes que han permitido ir mejorando el proceso de electro-obtención de cobre desde el punto de vista de la producción y de la calidad catódica, son los siguientes: The most important technological developments that have allowed to improve the process of electro-obtaining copper from the point of view of production and cathodic quality, are the following:
Tecnología de cátodos permanentes. Permanent cathode technology.
Esta tecnología se aplica desde hace 20 años en plantas de EW y ER de cobre a nivel mundial, y ha permitido beneficios importantes como por ejemplo operar con mayor densidad de corriente, alcanzando niveles de hasta 400 A/m2 en algunas plantas, y con mayores índices de productividad. This technology has been applied for 20 years in copper EW and ER plants worldwide, and has allowed significant benefits such as operating with higher current density, reaching levels of up to 400 A / m 2 in some plants, and with Higher productivity rates.
Barras equipotenciales interceldas.
Nuevos diseños de barras interceldas, como por ejemplo la de Asturiana de Cinc utilizadas en plantas de EW de Cu (Compañía Minera Doña Inés de Collahuasi y CODELCO Norte Planta RT, en Chile), que han permitido reducir el voltaje hasta 10 mV/celda, con respecto a un diseño base triangular o barra hueso. Considerando que la distribución de la corriente en los electrodos de las celdas es de tipo paralelo, nuevos diseños de barras que se encuentran en proceso de patente industrial, (Outokumpu, Optibar), consideran un mejor control de la calidad de la distribución de la corriente en las celdas de electrólisis, mejorando por esta vía los indicadores de control de los procesos. Equipotential intercell bars. New designs of intercell bars, such as that of Asturiana de Cinc used in plants of EW of Cu (Mining Company Doña Inés de Collahuasi and CODELCO Norte Planta RT, in Chile), which have allowed reducing the voltage up to 10 mV / cell, with respect to a triangular base design or bone bar. Considering that the distribution of the current in the electrodes of the cells is of the parallel type, new designs of bars that are in process of industrial patent, (Outokumpu, Optibar), consider a better control of the quality of the distribution of the current in electrolysis cells, improving process control indicators in this way.
Ánodos Insolubles de Ti/MeO en EW de Cu. Insoluble Ti / MeO anodes in Cu EW.
Se han desarrollado varios tipos de ánodos que consideran la incorporación de óxidos de metales nobles sobre un sustrato de Ti (óxidos de Ru, Ir, etc.), con el propósito de catalizar la reacción de oxidación del agua, logrando reducir el consumo de energía por reducción del potencial de celda, sobre 250 mV. Estos ánodos se encuentran actualmente en prueba en algunas plantas industriales en el mundo. La tecnología de ánodos base Ti, denominada inicialmente como ánodos "DSA" (traducido del inglés "Ánodos Dimensionalmente Estables") fue desarrollada en la década de 1970-1980 para plantas de electrólisis de producción de Cloro- Soda. Allí han dado excelente resultado en reemplazo de ánodos de grafito. Sin embargo, la aplicación en procesos de electrólisis de cobre no ha sido del todo exitosa pues en medios fuertemente ácidos como la EW de Cu deteriora más rápidamente las películas de óxidos de metales nobles perdiendo de esta forma sus propiedades catalizadoras para la reacción de oxidación del agua en el tiempo. Several types of anodes have been developed that consider the incorporation of noble metal oxides on a Ti substrate (Ru, Ir oxides, etc.), in order to catalyze the oxidation reaction of water, reducing energy consumption. by reduction of cell potential, over 250 mV. These anodes are currently under test in some industrial plants in the world. Ti base anode technology, initially referred to as "DSA" anodes (translated from English "Dimensionally Stable Anodes") was developed in the 1970-1980 for Chloro-Soda production electrolysis plants. There they have given excellent results in graphite anode replacement. However, the application in copper electrolysis processes has not been completely successful because in strongly acidic media such as Cu EW, the metal oxide oxides films deteriorate more rapidly, thus losing their catalytic properties for the oxidation reaction of the Water in time.
Nuevo Procesos de Electrólisis. New Electrolysis Processes.
Una innovación tecnológica interesante es el denominado proceso EMEW el que considera el diseño de celdas más compactas y cerradas, para electro- obtención de cobre. En esta tecnología, la electro-depositación de cobre se realiza en celdas cilindricas cerradas, con cátodos tubulares de acero inoxidable y ánodos DSA (ánodos de titanio recubiertos por óxidos de titanio y de rutenio). Las celdas han operado a densidades de corriente superiores a 600 A/m2 La clave operacional de esta tecnología radica en el elevado flujo másico con la que trabaja. Esta celda se ha utilizado industrialmente para tratar soluciones diluidas de Cu2+, obteniendo
cátodos de alta calidad química y sin contaminación ambiental por neblina ácida. Sin embargo su aplicación masiva es inviable aún, pues requiere de un cambio total de la tecnología actualmente en uso, lo que implica un alto costo y además por problemas técnicos aún no resueltos totalmente. An interesting technological innovation is the so-called EMEW process which considers the design of more compact and closed cells for electro-obtaining copper. In this technology, copper electro-deposition is performed in closed cylindrical cells, with stainless steel tubular cathodes and DSA anodes (titanium anodes coated by titanium and ruthenium oxides). The cells have operated at current densities greater than 600 A / m 2. The operational key of this technology lies in the high mass flow with which it works. This cell has been used industrially to treat diluted solutions of Cu 2+ , obtaining High quality chemical cathodes without environmental contamination due to acid mist. However, its massive application is still unfeasible, since it requires a total change of the technology currently in use, which implies a high cost and also for technical problems not yet fully resolved.
Control de la neblina ácida en plantas de EW de Cu. Acid mist control in Cu EW plants.
A densidades de corriente superiores a 200 A/m2, la generación de neblina ácida es muy importante en las celdas de electro-obtención de cobre, por lo que se toman las medidas adecuadas para su control. El uso de campanas o cubiertas ventiladas emplazadas encima de la celda (SAME y OUTOTEC), y el aire forzado en la nave (proceso DESOM), han dado buenos resultados operacionales, así como también el uso de agentes químicos tensoactivos antiespumantes, como el FC 1 100 de 3M y el extracto de "quillay" patentado recientemente por una empresa chilena. Estos aditivos se agregan en pequeñas cantidades al electrolito, (< 5 ppm), para mitigar la emisión de neblina ácida al ambiente. At current densities greater than 200 A / m 2 , the generation of acid mist is very important in the electro-obtaining copper cells, so that appropriate measures are taken for its control. The use of ventilated hoods or covers located above the cell (SAME and OUTOTEC), and the forced air in the ship (DESOM process), have given good operational results, as well as the use of anti-foaming surfactants, such as FC 1 100 of 3M and the quillay extract recently patented by a Chilean company. These additives are added in small quantities to the electrolyte, (<5 ppm), to mitigate the emission of acid mist into the environment.
Incremento de la corriente de operación en plantas de EW de Cu. Increase in operating current in Cu EW plants.
Las técnicas utilizadas para aumentar la densidad de corriente de operación en las plantas de electro-obtención de cobre han sido principalmente dos: The techniques used to increase the operating current density in copper electro-obtaining plants have been mainly two:
• vibración ultrasónica; • ultrasonic vibration;
• Agitación de la solución mediante inyección de aire. • Stirring the solution by air injection.
De las alternativas planteadas, sólo la agitación del electrolito mediante inyección de aire, ha tenido posibilidades de aplicación en la electro-obtención de cobre. Of the proposed alternatives, only the agitation of the electrolyte by means of air injection has had possibilities of application in the electro-obtaining of copper.
Hasta el momento las alternativas de solución al problema técnico que implica un aumento de producción por aumento de la corriente continua se sustentan en abordar el problema desde el punto de vista hidrodinámico, es decir, aplicando "agitación" del electrolito en torno de los electrodos: cátodos y ánodos. Esto se observa de manera extrema en el proceso EMEW en el que el flujo circulante es extremadamente alto, pero la estructura física de las celdas está diseñada para operar con un alto flujo específico y completamente diferente a las instalaciones industriales de gran escala para EW de cobre. Cabe señalar que esta tecnología no ha sido probada en ER de Cu por los problemas de diseño de ánodos de Cu impuro y la alta probabilidad de pasivación anódica.
Otra tecnología para mejorar los procesos de EW de Cu, se refiere a la inyección de aire con difusores instalados en las paredes de las celdas. Si bien es cierto que se han logrado mejoras importantes en la calidad fisicoquímica del cobre electro-obtenido, no hay impacto en los consumos de energía ni en la emisión de neblina ácida al ambiente. Esta mejora operacional es impracticable en ER de Cu por cuanto incide en el movimiento de sólidos que provienen de la disolución anódica del cobre impuro (barro anódico), con impacto negativo en la calidad físico- química del producto. So far the alternatives for solving the technical problem that implies an increase in production due to an increase in direct current are based on addressing the problem from the hydrodynamic point of view, that is, by applying "agitation" of the electrolyte around the electrodes: cathodes and anodes. This is observed extremely in the EMEW process in which the circulating flow is extremely high, but the physical structure of the cells is designed to operate with a high specific flow and completely different from large-scale industrial installations for copper EW. . It should be noted that this technology has not been tested in ER of Cu because of the design problems of impure Cu anodes and the high probability of anodic passivation. Another technology to improve Cu EW processes refers to the injection of air with diffusers installed in the cell walls. While it is true that significant improvements have been made in the physicochemical quality of electro-obtained copper, there is no impact on energy consumption or the emission of acid mist into the environment. This operational improvement is impracticable in Cu ER because it affects the movement of solids that come from the anodic dissolution of impure copper (anodic mud), with a negative impact on the physical-chemical quality of the product.
Como se ha visto, aún existe la necesidad de poder disponer de procesos de electro-obtención y electro-refinación que permitan mejorar la hidrodinámica en las celdas; disminuir los costos de energía y disponer de cátodos de mejor calidad. As we have seen, there is still a need to have electro-obtaining and electro-refining processes that allow hydrodynamics to be improved in the cells; reduce energy costs and have better quality cathodes.
El objetivo que pretende implementar la presente invención es disponer de un proceso de electro-refinación que permita obtener cátodos de mayor pureza y calidad. The objective of the present invention is to have an electro-refining process that allows obtaining cathodes of greater purity and quality.
Otro objetivo que pretende implementar la presente invención es disponer de un proceso de electro-obtención que permita obtener cátodos de mayor pureza y calidad. Another objective that the present invention intends to implement is to have an electro-obtaining process that allows obtaining cathodes of greater purity and quality.
Aún más, otro objetivo de la presente invención es disponer de un proceso de electro-refinación que permita obtener cátodos de mayor pureza y calidad reduciendo los costos de producción. Furthermore, another objective of the present invention is to have an electro-refining process that allows obtaining cathodes of greater purity and quality while reducing production costs.
A la vez, otro objetivo de la presente invención es disponer de un proceso de electro-obtención que permita obtener cátodos de mayor pureza y calidad reduciendo los costos de producción. At the same time, another objective of the present invention is to have an electro-obtaining process that allows obtaining cathodes of greater purity and quality while reducing production costs.
Resumen de la Invención Summary of the Invention
La presente invención corresponde a un proceso de electro-obtención y electro-refinación de minerales nobles, tal como cobre, que comprende aplicar una corriente alterna superpuesta al nivel de una corriente continua. The present invention corresponds to a process of electro-obtaining and electro-refining of noble minerals, such as copper, which comprises applying an alternating current superimposed on the level of a direct current.
Breve Descripción de los Dibujos Brief Description of the Drawings
La invención será descrita a continuación con referencia a los dibujos anexos, en los cuales: The invention will be described below with reference to the accompanying drawings, in which:
La figura 1 muestra una señal eléctrica de alimentación de un proceso convencional de electro-obtención (señal DC).
La figura 2 muestra la señal eléctrica de alimentación del proceso de la presente invención (señal AC superpuesta a una señal DC). Figure 1 shows an electrical power signal of a conventional electro-obtaining process (DC signal). Figure 2 shows the electrical power signal of the process of the present invention (AC signal superimposed on a DC signal).
Las figuras 3 a 26 muestran imágenes de las placas de cátodo obtenidas experimentalmente, en procesos convencionales y en procesos de acuerdo a la presente invención, visualizadas por análisis en microscopio. Figures 3 to 26 show images of the cathode plates obtained experimentally, in conventional processes and in processes according to the present invention, visualized by microscope analysis.
Las figuras 27 a 30 muestran imágenes de las placas de cátodo obtenidas experimentalmente, en procesos convencionales y en procesos de acuerdo a la presente invención, visualizadas por análisis de la metalografía de la placa. Figures 27 to 30 show images of the cathode plates obtained experimentally, in conventional processes and in processes according to the present invention, visualized by analysis of the plate metallography.
La figura 31 , muestra el diagrama de proceso de la planta de las pruebas piloto. Figure 31 shows the process diagram of the pilot test plant.
Las figuras 32 a 36 muestran imágenes de cátodos obtenidos en las pruebas piloto. Figures 32 to 36 show images of cathodes obtained in the pilot tests.
Descripción Detallada de la Invención Detailed description of the invention
La presente invención corresponde a un proceso de electro-obtención (EW) y electro-refinación (ER) de metales, en particular metales nobles, tal como cobre, que comprende aplicar una señal eléctrica de alimentación formada por una corriente alterna superpuesta al nivel de una corriente continua. La señal alterna es de frecuencia definida y amplitud variable de 25 a 600 A/m2 The present invention corresponds to a process of electro-obtaining (EW) and electro-refining (ER) of metals, in particular noble metals, such as copper, which comprises applying an electrical power signal formed by an alternating current superimposed on the level of A direct current. The alternating signal is of defined frequency and variable amplitude from 25 to 600 A / m 2
El proceso de electro-obtención y electro-refinación de la presente invención se basa en un proceso convencional de electro-obtención y electro-refinación, respectivamente, el cual no necesita cambios en la tecnología de las celdas ni en los transfo-rectificadores, sólo ha sido modificado en la aplicación de una corriente alterna superpuesta a una corriente continua y en los rangos de trabajo de algunas condiciones de operación, las que han permitido obtener productos de similar calidad físico-química y de mejor calidad físico-química, y donde ha sido posible reducir los costos de operación, a través de las siguientes vías: The electro-obtaining and electro-refining process of the present invention is based on a conventional electro-obtaining and electro-refining process, respectively, which does not require changes in cell technology or in trans-rectifiers, only It has been modified in the application of an alternating current superimposed on a direct current and in the working ranges of some operating conditions, which have allowed to obtain products of similar physical-chemical quality and of better physical-chemical quality, and where it was possible to reduce operating costs, through the following ways:
• Reducción del consumo de energía eléctrica por disminución del potencial eléctrico de celda. • Reduction of electrical energy consumption due to a decrease in the cell's electrical potential.
• Reducción del consumo de energía en el calentamiento de grandes volúmenes de soluciones. • Reduction of energy consumption in heating large volumes of solutions.
• Reducción de la concentración de cobre en el electrolito circulante, reduciendo inventarios tanto en ER como en EW de Cu.
• Disminución de los costos de operación de los procesos de extracción por solventes en EW de Cu. • Reduction of the concentration of copper in the circulating electrolyte, reducing inventories in both ER and Cu EW. • Reduction in operating costs of solvent extraction processes in Cu EW.
• Reducción del consumo energético para bombear grandes volúmenes de soluciones. • Reduction of energy consumption to pump large volumes of solutions.
• Disponibilidad de aumentar la producción de cobre a igual capacidad instalada. • Availability to increase copper production to the same installed capacity.
• Disminución de costos de inversión para plantas nuevas. • Reduction of investment costs for new plants.
Los procesos de electro-obtención y electro-refinación se realizan en medio acuoso y fuertemente ácido, entre aproximadamente 180 y 200 gpl (gramos por litro) de H2S04. The electro-obtaining and electro-refining processes are carried out in aqueous and strongly acidic medium, between approximately 180 and 200 gpl (grams per liter) of H 2 S0 4 .
La figura 1 representa la señal de corriente continua aplicada en un proceso convencional de electro-obtención y de electro-refinación, en contraste la figura 2 representa la señal de corriente alterna que está superpuesta a la señal de corriente continua, de acuerdo al proceso de la presente invención. Figure 1 represents the direct current signal applied in a conventional electro-obtaining and electro-refining process, in contrast Figure 2 represents the alternating current signal that is superimposed on the direct current signal, according to the process of The present invention.
El proceso de electro-obtención de la presente invención comprende aplicar una corriente alterna (AC) en un rango de 400 a 600 A/m2 superpuesta a una corriente continua (DC) en el rango de 240 a 600 A/m2, preferentemente en el rango de 240 a 450 A/m2, más preferentemente en el rango de 250 a 500 A/m2 y donde la frecuencia (f) de la corriente alterna que se superpone es mayor o igual que 5.000 Hz y menor o igual que 10.000 Hz; y comprende establecer las siguientes condiciones de operación en las celdas comerciales: The electro-obtaining process of the present invention comprises applying an alternating current (AC) in a range of 400 to 600 A / m 2 superimposed on a direct current (DC) in the range of 240 to 600 A / m 2 , preferably in the range of 240 to 450 A / m 2 , more preferably in the range of 250 to 500 A / m 2 and where the frequency (f) of the overlapping alternating current is greater than or equal to 5,000 Hz and less than or equal to than 10,000 Hz; and includes establishing the following operating conditions in commercial cells:
- rango de temperatura desde 15 a 52°C, - temperature range from 15 to 52 ° C,
- concentración de Cu2+ en un rango desde 33 a 43 gpl, - concentration of Cu 2+ in a range from 33 to 43 gpl,
- dosificación de aditivos floculantes y afinador de grano menor a 200g/ton de cobre producido (Cu°), y - dosage of flocculant additives and grain tuner less than 200g / ton of copper produced (Cu °), and
- concentración de (sulfato de cobalto) CoS04 menor a 170 ppm de Cu2+ en el baño electrolito. - concentration of (cobalt sulfate) CoS0 4 less than 170 ppm of Cu 2+ in the electrolyte bath.
El proceso de EW de acuerdo a la presente invención puede trabajar en las mismas condiciones de operación del proceso convencional, sin embargo preferentemente, el valor de la temperatura es al menos 5°C menos y el valor de la concentración es al menos 3 gpl menos que los valores de la temperatura y de la concentración, respectivamente, del proceso convencional.
Donde, generalmente, en los proceso convencionales el floculante utilizado es goma guar y el afinador de grano es dextrina (DXG). Por su parte, el sulfato de cobalto tiene la función de inhibir la corrosión anódica. Adicionalmente, se agrega un tensoactivo o antiespumante, tal como FC-1 .100. The EW process according to the present invention can work under the same operating conditions of the conventional process, however preferably, the temperature value is at least 5 ° C less and the concentration value is at least 3 gpl less that the temperature and concentration values, respectively, of the conventional process. Where, in conventional processes, the flocculant used is guar gum and the grain tuner is dextrin (DXG). For its part, cobalt sulfate has the function of inhibiting anodic corrosion. Additionally, a surfactant or antifoam is added, such as FC-1 .100.
En la Tabla 3, es posible observar un cuadro comparativo de las condiciones de operación de un proceso convencional de electro-obtención versus el proceso de electro-obtención de la presente invención. In Table 3, it is possible to observe a comparative table of the operating conditions of a conventional electro-obtaining process versus the electro-obtaining process of the present invention.
Tabla 3: Comparación de las variables de operación de un proceso convencional de electro-obtención versus el proceso de electro-obtención de la presente invención. Table 3: Comparison of the operating variables of a conventional electro-obtaining process versus the electro-obtaining process of the present invention.
Proceso Convencional Proceso EW de Cu de la Conventional Process Cu Process EW of the
EW de Cu presente invención Cu EW present invention
Densidad de corriente continua menor que 450 A/m2 Direct current density less than 450 A / m 2
Rango de Consumo Específico de Rango de Consumo Específico de Energía (CEE) [1 .800-2.000] (kWh/t Energía (CEE) <1 .700 (kWh/t Cu) Specific Consumption Range of Specific Energy Consumption Range (CEE) [1 .800-2,000] (kWh / t Energy (CEE) <1 .700 (kWh / t Cu)
Cu) Cu)
Condiciones Operacionales Operational Conditions
Rango de Temperatura del electrolito Rango de Temperatura del electrolito en las Celdas Comerciales en las Celdas Comerciales Electrolyte Temperature Range Electrolyte Temperature Range in Commercial Cells in Commercial Cells
(T [48 - 52] ° C T) [40-46] ° C (T [48 - 52] ° C T) [40-46] ° C
Concentración de Cobre Entrante a Concentración de Cobre Entrante a Celdas Comerciales Celdas Comerciales 38 < Cu2 + < 43 gpl 35 < Cu2 + < 42 gpl Incoming Copper Concentration to Incoming Copper Concentration to Commercial Cells Commercial Cells 38 <Cu 2 + <43 gpl 35 <Cu 2 + <42 gpl
Dosificación de Aditivos Floculante y Dosificación de Aditivos Floculante y Dosage of Flocculant Additives and Dosage of Flocculant Additives and
Afinador de Grano Afinador de Grano (Guar + DXG) 200 - 300 g/ton de Cu° (Guar + DXG) < 200 g/ton de Cu° Grain Tuner Grain Tuner (Guar + DXG) 200 - 300 g / ton of Cu ° (Guar + DXG) <200 g / ton of Cu °
Concentración de CoS04 : Concentración de CoS04 : Concentration cos 0 4: concentration cos 0 4:
Co2+ < 200 ppm en el electrolito Co2+ < 100 ppm en el electrolito
Como se puede ver en la Tabla 3, el proceso de electro-obtención de la presente invención logra disminuir la densidad de corriente continua a aplicar, los rangos de temperatura, la concentración de cobre entrante a las celdas y las cantidades a agregar de aditivos. Los nuevos valores operacionales del proceso de electro-obtención de la presente invención, permiten disminuir el consumo específico de energía y afectar positivamente las siguientes variables: Co 2+ <200 ppm in the electrolyte Co 2+ <100 ppm in the electrolyte As can be seen in Table 3, the electro-obtaining process of the present invention reduces the density of direct current to be applied, the temperature ranges, the concentration of incoming copper to the cells and the amounts to be added of additives. The new operational values of the electro-obtaining process of the present invention make it possible to reduce the specific energy consumption and positively affect the following variables:
- La emisión de neblina ácida disminuye al operar el electrolito de celdas con menor temperatura, respecto a la Norma Ambiental en la Nave CAMP (concentración de neblina ácida emitida por las celdas al ambiente en una nave de EW de Cu) < 0,50 (mg/m3) de aire, medida a una presión atmosférica CAMP < 0,45 mg/m3 a 3.000 metros sobre el nivel del mar.- The emission of acid mist decreases when operating the electrolyte of cells with lower temperature, with respect to the Environmental Standard in the CAMP Ship (concentration of acid mist emitted by the cells to the environment in a Cu EW ship) <0.50 ( mg / m 3 ) of air, measured at an atmospheric pressure CAMP <0.45 mg / m 3 at 3,000 meters above sea level.
- Aumenta la vida útil estimada de los ánodos de Pb-Ca-Sn sobre 5 años, respecto a los procesos convencionales en que la vida útil de los ánodos es alrededor de 4 a 5 años. - Increases the estimated useful life of the anodes of Pb-Ca-Sn over 5 years, compared to conventional processes in which the useful life of the anodes is around 4 to 5 years.
- Aumenta la producción de cátodos grado "A", se espera que sea mayor o igual al 90%, respecto al proceso convencional que es alrededor del 80%. - Increases the production of cathodes grade "A", is expected to be greater than or equal to 90%, compared to the conventional process that is about 80%.
El proceso de electro-refinación comprende aplicar una corriente alterna (AC) en un rango de 400 a 600 A/m2 superpuesta a una corriente continua (DC) en el rango de 240 a 600 A/m2, preferentemente en el rango de 240 a 450 A/m2, más preferentemente en el rango de 250 a 500 A/m2 y donde la frecuencia (f) de la corriente alterna que se superpone es mayor o igual que 5.000 Hz y menor o igual que 10.000 Hz; y comprende establecer las siguientes condiciones de operación en las celdas comerciales: The electro-refining process comprises applying an alternating current (AC) in a range of 400 to 600 A / m 2 superimposed on a direct current (DC) in the range of 240 to 600 A / m 2 , preferably in the range of 240 to 450 A / m 2 , more preferably in the range of 250 to 500 A / m 2 and where the frequency (f) of the overlapping alternating current is greater than or equal to 5,000 Hz and less than or equal to 10,000 Hz; and includes establishing the following operating conditions in commercial cells:
- rango de temperatura desde 40 a 60°C, - temperature range from 40 to 60 ° C,
- concentración de Cu2+ en un rango desde 40 a 56 gpl, y - concentration of Cu 2+ in a range from 40 to 56 gpl, and
- dosificación de aditivos floculantes y afinador de grano menor a 100g/ton de - dosage of flocculant additives and grain tuner less than 100g / ton of
Cu°. Cu °
El proceso de ER de acuerdo a la presente invención puede trabajar en las mismas condiciones de operación del proceso convencional, sin embargo preferentemente el valor de la temperatura es al menos 5°C menos y el valor de la concentración es al menos 3 gpl menos que los valores de la temperatura y de la concentración, respectivamente, del proceso convencional.
Donde, generalmente, en los procesos convencionales el floculante es avitone y el afinador de grano es cola y tiourea y los porcentajes a agregar de cada uno, respecto al total agregado son 30% avitone, 30% cola y 40% cola. The ER process according to the present invention can work under the same operating conditions of the conventional process, however preferably the temperature value is at least 5 ° C less and the concentration value is at least 3 gpl less than the temperature and concentration values, respectively, of the conventional process. Where, generally, in conventional processes the flocculant is avitone and the grain tuner is cola and thiourea and the percentages to be added of each, with respect to the aggregate total are 30% avitone, 30% tail and 40% tail.
En la Tabla 4, es posible observar un cuadro comparativo de las condiciones de operación de un proceso convencional de electro-refinación versus el proceso de electro-refinación de la presente invención. In Table 4, it is possible to observe a comparative table of the operating conditions of a conventional electro-refining process versus the electro-refining process of the present invention.
Tabla 4: Comparación de las variables de operación de un proceso convencional de electro-refinación versus el proceso de electro-refinación de la presente invención. Table 4: Comparison of the operating variables of a conventional electro-refining process versus the electro-refining process of the present invention.
Como se puede ver en la Tabla 4, el proceso de electro-refinación de la presente invención logra disminuir la densidad de corriente continua a aplicar, los rangos de temperatura, la concentración de cobre entrante a las celdas y las cantidades a agregar de aditivos. Los nuevos valores operacionales del proceso de
electro-refinación de la presente invención, permiten disminuir el consumo específico de energía y afectar positivamente las siguientes variables: As can be seen in Table 4, the electro-refining process of the present invention reduces the density of direct current to be applied, the temperature ranges, the concentration of incoming copper to the cells and the amounts to be added of additives. The new operational values of the process of electro-refining of the present invention, allow to reduce the specific energy consumption and positively affect the following variables:
- Aumenta la producción de cátodos grado "A", se espera que sea mayor o igual al 90%, respecto al proceso convencional que es alrededor del 80%. RESULTADOS EXPERIMENTALES - Increases the production of cathodes grade "A", is expected to be greater than or equal to 90%, compared to the conventional process that is about 80%. EXPERIMENTAL RESULTS
En las Tablas 5 y 6 se listan ejemplos de aplicación de diferentes señales de corriente continua, de acuerdo al proceso convencional y diferentes señales de corriente alterna superpuesta a una corriente continua y diferentes valores de frecuencia aplicados en procesos de acuerdo a la presente invención, en tiempos de aplicación de 5 y 10 horas de permanencia en la reacción electrolítica. Examples of application of different direct current signals are listed in Tables 5 and 6, according to the conventional process and different alternating current signals superimposed on a direct current and different frequency values applied in processes according to the present invention, in application times of 5 and 10 hours of permanence in the electrolytic reaction.
Tabla 5: Condiciones operacionales en pruebas experimentales en un proceso convencional versus el proceso de la presente invención, se evalúan los valores de corriente continua, corriente alterna y frecuencia en 5 y 10 horas de aplicación. Table 5: Operational conditions in experimental tests in a conventional process versus the process of the present invention, the values of direct current, alternating current and frequency in 5 and 10 hours of application are evaluated.
Las muestras de cátodos obtenidas a las 5 horas de reacción fueron analizadas mediante un microscopio electrónico de barrido (SEM) (Scanning Electron Microscope). De cada prueba realizada, se analizó uno de los cátodos obtenidos con el microscopio SEM y los cátodos fueron observados en dos valores de aumento diferentes, a 300 y a 1 .200. Las figuras 3 y 4 representan el análisis realizado a un cátodo obtenido con las condiciones de la prueba 1 , medido a 300 y a
1 .200, respectivamente. En igualdad de condiciones, las figuras 5 y 6 representan a la prueba 2, las figuras 7 y 8 representan a la prueba 3, las figuras 9 y 10 representan a la prueba 4, las figuras 1 1 y 12 representan a la prueba 5, y las figuras 13 y 14 representan a la prueba 6. The cathode samples obtained at 5 hours of reaction were analyzed by means of a scanning electron microscope (SEM) (Scanning Electron Microscope). From each test performed, one of the cathodes obtained with the SEM microscope was analyzed and the cathodes were observed in two different magnification values, at 300 and 1,200. Figures 3 and 4 represent the analysis performed at a cathode obtained with the conditions of test 1, measured at 300 and 1,200, respectively. All things being equal, figures 5 and 6 represent test 2, figures 7 and 8 represent test 3, figures 9 and 10 represent test 4, figures 1 1 and 12 represent test 5, and Figures 13 and 14 represent test 6.
Las figuras 3, 4 y 9, 10 corresponden a las pruebas 1 y 4, respectivamente, las cuales representan el uso de señales DC, de acuerdo al procedimiento convencional. En dichas figuras se observa que la estructura de crecimiento cristalino permite apreciar con claridad la separación de los granos que destacan los espacios intersticiales entre sí. Dichos espacios intersticiales impactan en el atrapamiento de impurezas en los depósitos catódicos. En cambio en las figuras 5, 6; 7, 8; 1 1 , 12 y 13, 14 correspondientes a las pruebas 2, 3, 5 y 6, respectivamente, se observa que dichos espacios intersticiales disminuyen en la medida que aumenta la frecuencia de la señal AC superpuesta al nivel DC, es decir al aplicar una señal AC superpuesta a una señal DC existe menor probabilidad de atrapar impurezas en los depósitos catódicos, ya que los espacios intersticiales disminuyen. Figures 3, 4 and 9, 10 correspond to tests 1 and 4, respectively, which represent the use of DC signals, according to the conventional procedure. In these figures it is observed that the crystalline growth structure makes it possible to clearly appreciate the separation of the grains that highlight the interstitial spaces between them. These interstitial spaces impact the entrapment of impurities in cathodic deposits. Instead in figures 5, 6; 7, 8; 1 1, 12 and 13, 14 corresponding to tests 2, 3, 5 and 6, respectively, it is observed that said interstitial spaces decrease as the frequency of the AC signal superimposed on the DC level increases, that is to say when applying a AC signal superimposed on a DC signal is less likely to trap impurities in cathodic deposits, as interstitial spaces decrease.
Lo anterior se aprecia claramente en las figuras 7 y 8 donde se puede ver que los espacios intersticiales son menores respecto a los de las figuras 5 y 6, y a su vez los espacios intersticiales de las figuras 5 y 6 son menores respecto a los de las figuras 3 y 4. Las figuras 7 y 8 corresponden a una frecuencia de 10.000 Hz, las figuras 5 y 6 corresponden a una frecuencia de 5.000 Hz y las figuras 3 y 4 sin señal AC. The above is clearly seen in Figures 7 and 8 where it can be seen that the interstitial spaces are smaller with respect to those of Figures 5 and 6, and in turn the interstitial spaces of Figures 5 and 6 are smaller with respect to those of the Figures 3 and 4. Figures 7 and 8 correspond to a frequency of 10,000 Hz, Figures 5 and 6 correspond to a frequency of 5,000 Hz and Figures 3 and 4 without AC signal.
De la misma manera, en las figuras 13 y 14 se puede ver que los espacios intersticiales son menores respecto a los de las figuras 1 1 y 12, y a su vez los espacios intersticiales de las figuras 1 1 y 12 son menores respecto a los de las figuras 9 y 10. Las figuras 13 y 14 corresponden a una frecuencia de 10.000 Hz, las figuras 1 1 y 12 corresponden a una frecuencia de 5.000 Hz y las figuras 9 y 10 sin señal AC. In the same way, in Figures 13 and 14 it can be seen that the interstitial spaces are smaller with respect to those of Figures 1 1 and 12, and in turn the interstitial spaces of Figures 1 1 and 12 are smaller with respect to those of Figures 9 and 10. Figures 13 and 14 correspond to a frequency of 10,000 Hz, Figures 1 1 and 12 correspond to a frequency of 5,000 Hz and Figures 9 and 10 without AC signal.
Tabla 6: Condiciones operacionales en pruebas experimentales en un proceso convencional versus el proceso de la presente invención, se evalúan los valores de corriente continua, corriente alterna y frecuencia en 10 horas de aplicación.
Table 6: Operational conditions in experimental tests in a conventional process versus the process of the present invention, the values of direct current, alternating current and frequency in 10 hours of application are evaluated.
Al igual que en el caso de la pruebas 1 a 6, las muestras de cátodos obtenidas a las 10 horas de reacción fueron analizadas mediante un microscopio electrónico de barrido. De cada prueba realizada, se analizó uno de los cátodos obtenidos con el microscopio SEM y los cátodos fueron observados en tres valores de aumento diferentes, a 20, a 300 y a 1 .200. Las figuras 15, 16 y 17 representan el análisis realizado a un cátodo obtenido con las condiciones de la prueba 7, medido a 20, a 300 y a 1 .200, respectivamente. En igualdad de condiciones, las figuras 18, 19 y 20 representan a la prueba 8; las figuras 21 , 22 y 23 representan a la prueba 9; y las figuras 24, 25 y 26 representan a la prueba 10. As in the case of tests 1 to 6, the cathode samples obtained at 10 hours of reaction were analyzed by a scanning electron microscope. From each test performed, one of the cathodes obtained with the SEM microscope was analyzed and the cathodes were observed in three different magnification values, at 20, at 300 and at 1,200. Figures 15, 16 and 17 represent the analysis performed at a cathode obtained with the conditions of test 7, measured at 20, at 300 and at 1,200, respectively. All things being equal, figures 18, 19 and 20 represent test 8; Figures 21, 22 and 23 represent test 9; and Figures 24, 25 and 26 represent test 10.
Las figuras 15, 16 y 17 corresponden a la prueba 7, la cual representa el uso de señales DC, de acuerdo al procedimiento convencional. En dichas figuras se observa un depósito con abundantes nodulos (figura 15) a diferencia de los resultados obtenidos al superponer señales AC sobre el nivel DC (figuras 18 a 26). Se observa que la nodulación desaparece y la textura se hace más pareja en la medida que la frecuencia y la amplitud de señal aumenta. Figures 15, 16 and 17 correspond to test 7, which represents the use of DC signals, according to the conventional procedure. In these figures a deposit with abundant nodules is observed (figure 15), unlike the results obtained by superimposing AC signals on the DC level (figures 18 to 26). It is observed that the nodulation disappears and the texture becomes more even as the frequency and signal amplitude increases.
Lo anterior se aprecia claramente en las figuras 24, 25 y 26 donde se puede ver la poca nodulación y la textura más pareja respecto a las figuras 21 , 22 y 23; y a su vez las figuras 21 , 22 y 23 tienen menor nodulación y textura más pareja respecto a las figuras 18, 19, 20, las que igualmente tienen menor nodulación y textura más pareja respecto a las figuras 15, 16 y 17. Las figuras 24, 25 y 26 corresponden a una frecuencia de 10.000 Hz, las figuras 18, 19, 20, 21 , 22, 23 corresponden a una frecuencia de 5.000 Hz y las figuras 15, 16 y 17 son sin señal AC.
A mayor abundamiento, en la figura 15, que corresponde a aplicar sólo corriente continua, de acuerdo al proceso convencional, se puede ver la nodulación en el centro y en los bordes, mostrando un marcado crecimiento preferencial en los bordes. En cambio en la figura 18, donde se ha aplicado una corriente alterna superpuesta en una corriente continua, de acuerdo al proceso de la presente invención, se puede ver que el depósito de cobre es muy parejo y prácticamente sin nodulación, y no hay crecimiento preferencial en los bordes. The above is clearly seen in Figures 24, 25 and 26 where you can see the small nodulation and the more even texture with respect to Figures 21, 22 and 23; and in turn, figures 21, 22 and 23 have less nodulation and more even texture with respect to figures 18, 19, 20, which also have less nodulation and more even texture with respect to figures 15, 16 and 17. Figures 24 , 25 and 26 correspond to a frequency of 10,000 Hz, Figures 18, 19, 20, 21, 22, 23 correspond to a frequency of 5,000 Hz and Figures 15, 16 and 17 are without AC signal. In greater abundance, in Figure 15, which corresponds to applying only direct current, according to the conventional process, the nodulation can be seen in the center and at the edges, showing a marked preferential growth at the edges. In contrast, in Figure 18, where an alternating current superimposed on a direct current has been applied, according to the process of the present invention, it can be seen that the copper deposit is very even and practically without nodulation, and there is no preferential growth on the edges
Adicionalmente, las placas de cátodo se analizaron mediante metalografía, con el fin de observar las variaciones de su estructura cristalina. Las figuras 27, 28, 29 y 30, representan a las pruebas 7, 8, 9 y 10, respectivamente. Como se puede ver las figuras 28, 29 y 30 muestran un claro mejoramiento de la estructura cristalina en la medida que la amplitud y la frecuencia de la señal AC superpuesta al nivel DC aumentan, respecto de la figura 27 que es sin señal AC. Additionally, the cathode plates were analyzed by metallography, in order to observe the variations of their crystalline structure. Figures 27, 28, 29 and 30, represent tests 7, 8, 9 and 10, respectively. As can be seen, figures 28, 29 and 30 show a clear improvement of the crystalline structure as the amplitude and frequency of the AC signal superimposed on the DC level increase, with respect to Figure 27 which is without AC signal.
De las pruebas realizadas se puede concluir que la superficie de los depósitos de cobre de los cátodos obtenidos con señales de corriente continua presentan una abundante presencia de nodulos y crecimiento preferencial en los bordes, en cambio los cátodos obtenidos con señales de corriente alterna superpuesta a una corriente continua evidencian una clara diferencia en cuanto al tipo de depósito, ya que su superficie de depósito de cobre es más pareja y sin crecimiento preferencial en los bordes. From the tests carried out, it can be concluded that the surface of the copper deposits of the cathodes obtained with direct current signals have an abundant presence of nodules and preferential growth at the edges, instead the cathodes obtained with alternating current signals superimposed on a Direct current shows a clear difference in the type of deposit, since its copper deposit surface is more even and without preferential growth at the edges.
A su vez, el análisis metalográfico, realizado a las muestras obtenidas, indica que la estructura interna de los depósitos es notablemente diferente en cuanto a la morfología de grano y al tipo de crecimiento de los cristales, según se empleen señales de corriente DC o DC+AC. In turn, the metallographic analysis, performed on the samples obtained, indicates that the internal structure of the deposits is remarkably different in terms of grain morphology and type of crystal growth, depending on whether DC or DC current signals are used. + AC.
A elevadas densidades de corriente con proceso convencional (i>400 A/m2), los depósitos obtenidos con señales DC se caracterizan por tener una estructura de grano fina, esponjosa y desordenada sin orientación preferencial, acercándose a una estructura cristalina tipo UD (Fl) (granos de pequeño tamaño, sin estructura coherente) en la clasificación de Fisher. Los depósitos obtenidos con señales DC+AC en cambio, se caracterizan por un crecimiento cristalino continuo con una clara orientación de campo, acercándose a una estructura TC (FT) (estructura cristalina de granos orientados en el cuerpo) en la clasificación de Fisher lo que hace
presumir una mejor calidad química para los cátodos, no obstante operar con densidades de corriente que superan los 400 A/m2. En las figuras 15 y 18 se pueden ver las imágenes de una muestra de cátodo obtenida por el proceso convencional, respecto de una muestra de cátodo obtenida por el proceso de la presente invención, respectivamente. Además, en las figuras 18, 21 y 24 se puede ver claramente, como la estructura cristalina tiene un crecimiento más continuo a medida que la que la amplitud y la frecuencia de la señal AC superpuesta al nivel DC aumentan. At high current densities with conventional process (i> 400 A / m 2 ), the deposits obtained with DC signals are characterized by having a fine, spongy and messy grain structure without preferential orientation, approaching a crystalline structure type UD (Fl ) (small grains, without consistent structure) in the Fisher classification. The deposits obtained with DC + AC signals, on the other hand, are characterized by a continuous crystalline growth with a clear field orientation, approaching a TC structure (FT) (crystalline structure of grain oriented in the body) in the Fisher classification which make boast a better chemical quality for cathodes, however operate with current densities that exceed 400 A / m 2 . Figures 15 and 18 show the images of a cathode sample obtained by the conventional process, with respect to a cathode sample obtained by the process of the present invention, respectively. Furthermore, in Figures 18, 21 and 24 it can be clearly seen, as the crystalline structure has a more continuous growth as the amplitude and frequency of the AC signal superimposed on the DC level increase.
Pruebas realizadas en terreno (pruebas piloto) de acuerdo a un proceso de electro- obtención según la presente invención Field tests (pilot tests) according to an electro-obtaining process according to the present invention
Se realizaron pruebas de larga duración a 350 A/m2 con proceso convencional y con proceso de acuerdo a la presente invención, pero manteniendo las condiciones de operación de acuerdo al proceso convencional. Long-term tests were performed at 350 A / m 2 with conventional process and process according to the present invention, but maintaining the operating conditions according to the conventional process.
Se realizaron pruebas de corta duración, con proceso convencional y con proceso de acuerdo a la presente invención, pero modificando las condiciones de operación del proceso convencional (temperatura °C, concentración de Cu2+ (g/l), y flujo entrante a celdas (l/min/m2)). Short duration tests were carried out, with conventional process and with process according to the present invention, but modifying the operating conditions of the conventional process (temperature ° C, concentration of Cu 2+ (g / l), and incoming flow to cells (l / min / m 2 )).
Las pruebas metalúrgicas incluyeron: Metallurgical tests included:
Proceso de siembra de placas Plate Sowing Process
Controles durante la siembra Controls during planting
Cosecha de cátodos Cathode harvest
Despegue de cátodos Cathode takeoff
Preparación y envío de muestras Sample preparation and shipment
En la figura 31 se puede ver el esquema de la planta piloto con visualización de las dos celdas que lo conforman y del circuito eléctrico. In figure 31 you can see the scheme of the pilot plant with visualization of the two cells that comprise it and the electrical circuit.
El circuito eléctrico, visualizado a través de la línea segmentada, se compone de un transfo-rectificador (1 ) para la generación de la señal DC y un equipo eléctrico (2) para generar la señal AC a partir de la señal DC que alimenta a las celdas de EW. La corriente eléctrica que sale del transfo-rectificador (1 ) alimenta a los ánodos de la celda 1 (3), pasa después al electrolito y luego al cátodo de dicha celda 1 , posteriormente dicha corriente sale del cátodo hacia la barra equipotencial. Luego desde dicha barra equipotencial, la corriente alimenta los ánodos de la celda 2 (4),
pasando después al electrolito y al cátodo de dicha celda 2, a continuación pasa nuevamente al transfo-rectificador (1 ) cerrando así el circuito eléctrico del sistema. The electrical circuit, visualized through the segmented line, is composed of a transfo-rectifier (1) for the generation of the DC signal and an electrical equipment (2) to generate the AC signal from the DC signal that feeds EW cells. The electric current that leaves the trans-rectifier (1) feeds the anodes of cell 1 (3), then passes to the electrolyte and then to the cathode of said cell 1, then said current leaves the cathode towards the equipotential rod. Then from said equipotential rod, the current feeds the anodes of cell 2 (4), then going to the electrolyte and cathode of said cell 2, then it goes back to the transfounder (1) thus closing the electrical circuit of the system.
Paralelamente, el circuito hidráulico se representa con las líneas continuas y opera con la siguiente secuencia: In parallel, the hydraulic circuit is represented with the continuous lines and operates with the following sequence:
- El electrolito rico proveniente del proceso de extracción por solvente (8) pasa a través de filtros y es transportado en ¡so-contenedores de 1 m3 hacia los estanques de recepción de electrolito rico de la planta piloto (9 y 10); - The rich electrolyte from the solvent extraction process (8) passes through filters and is transported in 1 m3 so-containers to the rich electrolyte receiving ponds of the pilot plant (9 and 10);
- Luego, el electrolito rico pasa al estanque gris (1 1 ), el cual es el encargado de disponer del electrolito rico (7) dentro de la planta piloto, el traspaso de electrolito rico se realiza cada 3 a 4 horas, dependiendo del consumo de electrolito dentro de la planta piloto; - Then, the rich electrolyte passes to the gray pond (1 1), which is responsible for having the rich electrolyte (7) inside the pilot plant, the transfer of rich electrolyte is done every 3 to 4 hours, depending on consumption of electrolyte inside the pilot plant;
- A continuación, se alimenta el electrolito rico desde el estanque gris (1 1 ) al estanque de recirculación lado rico (12), ahí se mezcla con el electrolito pobre (6) proveniente del estanque de recirculación lado pobre (13) para formar la mezcla de electrolito entrante (5) a las celdas, con una concentración de cobre definida (generalmente 43 g/l); - Next, the rich electrolyte is fed from the gray pond (1 1) to the rich side recirculation pond (12), there it is mixed with the poor electrolyte (6) from the poor side recirculation pond (13) to form the mixture of incoming electrolyte (5) to the cells, with a defined copper concentration (usually 43 g / l);
- El electrolito entrante (5) alimenta en paralelo a las dos celdas de electrólisis (3 y 4), el electrolito saliente de las celdas corresponde al electrolito pobre (6) y este se divide en dos flujos, uno que retorna al estanque de recirculación lado pobre (13) y otro que va a descarte (14); - The incoming electrolyte (5) feeds in parallel to the two electrolysis cells (3 and 4), the outgoing electrolyte of the cells corresponds to the poor electrolyte (6) and this is divided into two flows, one that returns to the recirculation pond poor side (13) and another that will discard (14);
- Los descartes son acumulados en una piscina (sumidero) (15) de la planta piloto y posteriormente dichos descartes son transportados en ¡so- contenedores hacia la pila (16). - The discards are accumulated in a pool (sink) (15) of the pilot plant and subsequently said discards are transported in containers to the stack (16).
En la Tabla 7 se muestras los valores operacionales o condiciones experimentales de las pruebas de larga duración, para el proceso convencional y el proceso de acuerdo a la presente invención. Table 7 shows the operational values or experimental conditions of the long-term tests for the conventional process and the process according to the present invention.
En la Tabla 8 se muestran los valores operacionales o condiciones experimentales de las pruebas de corta duración, para el proceso convencional y el proceso de acuerdo a la presente invención. Table 8 shows the operational values or experimental conditions of the short duration tests, for the conventional process and the process according to the present invention.
Tabla 7: Pruebas largas comparativas, para el proceso convencional y el proceso de acuerdo a la presente invención.
Table 7: Long comparative tests, for the conventional process and the process according to the present invention.
Las pruebas de larga duración, como se indicó, son realizadas con las mismas condiciones operacionales que trabajan en la planta. Se realizaron dos pruebas para cada tipo de proceso y atendido que la planta piloto consta de dos celdas, significa que en cada prueba se obtienen dos cátodos, por tanto finalmente se obtuvieron 4 cátodos por cada tipo de proceso. Long-term tests, as indicated, are performed with the same operational conditions that work in the plant. Two tests were performed for each type of process and given that the pilot plant consists of two cells, it means that in each test two cathodes are obtained, therefore finally 4 cathodes were obtained for each type of process.
Tabla 8: Pruebas cortas comparativas, para el proceso convencional y el proceso de acuerdo a la presente invención. Table 8: Comparative short tests, for the conventional process and the process according to the present invention.
(*) Significa cond ición inicial a condición final en la prueba realizada.
Las pruebas de corta duración, como se indicó, son realizadas con modificación de las condiciones operación que se tienen en la planta. En las pruebas 5-6 se varía la temperatura del electrolito en la celda y en las pruebas 7-8A se varía la concentración de Cu entrante, la temperatura del electrolito, el flujo electrolito y el flujo específico. ( * ) Means initial condition to final condition in the test performed. The short duration tests, as indicated, are carried out with modification of the operating conditions in the plant. In tests 5-6 the temperature of the electrolyte in the cell is varied and in tests 7-8A the concentration of incoming Cu, the temperature of the electrolyte, the electrolyte flow and the specific flow are varied.
Los cátodos obtenidos en las pruebas largas fueron sometidos a análisis químicos, con el fin de evaluar el contenido de azufre presente en cada cátodo, los resultados obtenidos de las pruebas de larga duración, se pueden ver en la Tabla 9. Dicha Tabla 9 muestra los resultados de los análisis químicos realizados a las muestras de cátodos, en relación a evaluar los ppm de azufre presentes en los cátodos obtenidos. The cathodes obtained in the long tests were subjected to chemical analyzes, in order to evaluate the sulfur content present in each cathode, the results obtained from the long-term tests can be seen in Table 9. Said Table 9 shows the results of the chemical analyzes performed on the cathode samples, in relation to evaluating the ppm of sulfur present in the cathodes obtained.
Tabla 9: Concentración de azufre en los cátodos obtenidos en las pruebas largas. Table 9: Sulfur concentration in the cathodes obtained in the long tests.
Como se puede ver en la Tabla 9, la concentración de azufre es menor en los cátodos obtenidos con las pruebas realizadas de acuerdo al proceso de la presente invención, lo cual es beneficioso, ya que disminuye la formación de nodulos en la superficie de la lámina. As can be seen in Table 9, the sulfur concentration is lower in the cathodes obtained with the tests performed according to the process of the present invention, which is beneficial, since it decreases the formation of nodules on the surface of the sheet .
Los cátodos obtenidos en las pruebas cortas también fueron sometidos a análisis químicos, con el fin de evaluar el contenido de azufre presente en cada cátodo, los resultados obtenidos de las pruebas de corta duración, se pueden ver en la Tabla 10. Dicha Tabla 10 muestra los resultados de los análisis químicos
realizados a las muestras de cátodos, en relación a evaluar los ppm de azufre presentes en los cátodos obtenidos, adicionalmente para efectos comparativos, la Tabla 10 también incluye los valores promedios obtenidos en las pruebas de larga duración. The cathodes obtained in the short tests were also subjected to chemical analysis, in order to evaluate the sulfur content present in each cathode, the results obtained from the short duration tests can be seen in Table 10. Said Table 10 shows the results of chemical analyzes made to the cathode samples, in relation to evaluating the ppm of sulfur present in the cathodes obtained, additionally for comparative purposes, Table 10 also includes the average values obtained in the long-term tests.
Tabla 10: Concentración de azufre "S" en los cátodos obtenidos en las pruebas largas y cortas, para proceso convencional (DC) y proceso de acuerdo a la presente invención (AC+DC). Table 10: Concentration of sulfur "S" in the cathodes obtained in the long and short tests, for conventional process (DC) and process according to the present invention (AC + DC).
En la Tabla 10 se puede ver que la calidad química de los cátodos obtenidos en las pruebas DC es inferior, ya que el contenido de azufre es en promedio 2 a 4 veces superior al contenido de azufre en las pruebas AC+DC. In Table 10 it can be seen that the chemical quality of the cathodes obtained in the DC tests is lower, since the sulfur content is on average 2 to 4 times higher than the sulfur content in the AC + DC tests.
Por su parte la calidad física, confirma lo anterior, ya que las muestras obtenidas de las pruebas DC presentan mayor formación de nodulos en la superficie de las láminas de cobre y esa mayor cantidad de nodulos y de imperfecciones va asociada al mayor contenido de azufre en el cuerpo de los cátodos. En la figura 32 se puede ver una imagen comparativa de un cátodo, que muestra las imperfecciones antes descritas, donde la muestra superior corresponde al cátodo C2 con proceso AC+DC y la muestra inferior al cátodo C2 con proceso DC. On the other hand, the physical quality confirms the above, since the samples obtained from the DC tests show greater formation of nodules on the surface of the copper sheets and that greater amount of nodules and imperfections is associated with the higher sulfur content in The body of the cathodes. In Figure 32 a comparative image of a cathode can be seen, showing the imperfections described above, where the upper sample corresponds to the cathode C2 with the AC + DC process and the lower sample to the cathode C2 with the DC process.
En las figuras 33 a 36 se puede ver la morfología del depósito de cobre en los cátodos. Las figuras 33 y 34 corresponden al proceso AC+DC, para una prueba de larga duración. La figura 33 representa al cátodo C1 y la figura 34 al cátodo C3. La estructura cristalina obtenida es del tipo TC, es decir cristales orientados en el campo, sin imperfecciones cristalinas. In figures 33 to 36 you can see the morphology of the copper deposit in the cathodes. Figures 33 and 34 correspond to the AC + DC process, for a long duration test. Figure 33 represents cathode C1 and figure 34 to cathode C3. The crystalline structure obtained is of the TC type, that is, crystals oriented in the field, without crystalline imperfections.
Por su parte, las figuras 35 y 36 corresponden al proceso DC, para una prueba de larga duración. La figura 35 representa al cátodo C1 y la figura 36 al cátodo C3. La estructura cristalina obtenida es del tipo BR, es decir cristales de tamaño irregular y de crecimiento desordenado desde la base. Además se observa
un número importante de imperfecciones y porosidades en toda la región de las muestras analizadas. For their part, Figures 35 and 36 correspond to the DC process, for a long-term test. Figure 35 represents cathode C1 and Figure 36 represents cathode C3. The crystalline structure obtained is of the BR type, that is to say crystals of irregular size and of disorderly growth from the base. It is also observed a significant number of imperfections and porosities throughout the region of the analyzed samples.
Finalmente, todas las pruebas mostraron que existe una disminución del potencial de celda al operar con señales DC (350 A) + AC (60 A de amplitud y 9.999 Hz de frecuencia). La disminución de potencial (voltaje) osciló entre 22 y 44 mV por celda. Se pudo demostrar que es posible mejorar estos valores si se considera en el diseño del sistema eléctrico, una mayor amplitud de la señal alterna.
Finally, all tests showed that there is a decrease in cell potential when operating with DC (350 A) + AC (60 A amplitude and 9,999 Hz frequency) signals. The potential decrease (voltage) ranged between 22 and 44 mV per cell. It was possible to demonstrate that it is possible to improve these values if one considers in the design of the electrical system, a greater amplitude of the alternating signal.
Claims
1 . Proceso de electro-obtención o electro-refinación de metales, en particular metales nobles, tal como cobre, que se realiza en medio acuoso y fuertemente ácido, CARACTERIZADO porque comprende aplicar una señal eléctrica de alimentación formada por una corriente alterna superpuesta al nivel de una corriente continua, donde la corriente alterna (AC) está en un rango de 400 a 600 A/m2 y es superpuesta a una corriente continua (DC) en el rango de 240 a 600 A/m2 y donde la frecuencia (f) es mayor o igual que 5.000 Hz y menor o igual que 10.000 Hz. one . Electro-obtaining or electro-refining process of metals, in particular noble metals, such as copper, which is carried out in aqueous and strongly acidic medium, CHARACTERIZED because it comprises applying an electrical power signal formed by an alternating current superimposed on the level of a direct current, where the alternating current (AC) is in a range of 400 to 600 A / m 2 and is superimposed on a direct current (DC) in the range of 240 to 600 A / m 2 and where the frequency (f) is greater than or equal to 5,000 Hz and less than or equal to 10,000 Hz.
2. El proceso de electro-obtención o electro-refinación de metales, en particular metales nobles, tal como cobre, de acuerdo a la reivindicación 1 , CARACTERIZADO porque en los procesos de electro-obtención las condiciones de operación en las celdas comerciales son: 2. The electro-obtaining or electro-refining process of metals, in particular noble metals, such as copper, according to claim 1, CHARACTERIZED because in the electro-obtaining processes the operating conditions in commercial cells are:
- rango de temperatura desde 15 a 52°C, - temperature range from 15 to 52 ° C,
- concentración de Cu2+ en un rango desde 33 a 43 gpl, - concentration of Cu 2+ in a range from 33 to 43 gpl,
- dosificación de aditivos floculante y afinador de grano menor a 200g/Ton de cobre producido (Cu°), y - dosage of flocculant additives and grain tuner less than 200g / Ton of copper produced (Cu °), and
- concentración de CoSo4 menor a 170 ppm de Cu2+ en el baño electrolito. - CoSo4 concentration of less than 170 ppm of Cu 2+ in the electrolyte bath.
3. El proceso de electro-obtención o electro-refinación de metales, en particular metales nobles, tal como cobre, de acuerdo a la reivindicación 2, CARACTERIZADO porque preferentemente el valor de la temperatura es al menos 5°C menos y el valor de la concentración es al menos 3 gpl menos que los valores de la temperatura y de la concentración, respectivamente, de un proceso de electro- obtención convencional. 3. The electro-obtaining or electro-refining process of metals, in particular noble metals, such as copper, according to claim 2, CHARACTERIZED because preferably the temperature value is at least 5 ° C less and the value of the concentration is at least 3 gpl less than the temperature and concentration values, respectively, of a conventional electro-obtaining process.
4. El proceso de electro-obtención o electro-refinación de metales, en particular metales nobles, tal como cobre, de acuerdo con cualquiera de las
reivindicaciones 2 a 3, CARACTERIZADO porque en el proceso de electro-obtención el consumo específico de energía es menor que 1 .700 (kWh/t Cu) si se trabaja con una señal de corriente continua menor que 450 A/m2 4. The electro-obtaining or electro-refining process of metals, in particular noble metals, such as copper, in accordance with any of the claims 2 to 3, CHARACTERIZED because in the electro-obtaining process the specific energy consumption is less than 1 .700 (kWh / t Cu) if working with a direct current signal less than 450 A / m 2
5. El proceso de electro-obtención o electro-refinación de metales, en particular metales nobles, tal como cobre, de acuerdo a la reivindicación 1 , CARACTERIZADO porque en los procesos de electro-refinación las condiciones de operación en las celdas comerciales son: 5. The electro-obtaining or electro-refining process of metals, in particular noble metals, such as copper, according to claim 1, CHARACTERIZED because in the electro-refining processes the operating conditions in the commercial cells are:
- rango de temperatura desde 40 a 60°C, - temperature range from 40 to 60 ° C,
- concentración de Cu2+ en un rango desde 40 a 56 gpl, y - concentration of Cu 2+ in a range from 40 to 56 gpl, and
- dosificación de aditivos floculante y afinador de grano menor a 100g/Ton de - dosage of flocculant additives and grain tuner less than 100g / Ton of
Cu°. Cu °
6. El proceso de electro-obtención o electro-refinación de metales, en particular metales nobles, tal como cobre, de acuerdo a la reivindicación 5, CARACTERIZADO porque preferentemente el valor de la temperatura es al menos 5°C menos y el valor de la concentración es al menos 3 gpl menos que los valores de la temperatura y de la concentración, respectivamente, de un proceso de electro- refinación convencional. 6. The electro-obtaining or electro-refining process of metals, in particular noble metals, such as copper, according to claim 5, CHARACTERIZED because preferably the temperature value is at least 5 ° C less and the value of the concentration is at least 3 gpl less than the temperature and concentration values, respectively, of a conventional electro-refining process.
7. El proceso de electro-obtención o electro-refinación de metales, en particular metales nobles, tal como cobre, de acuerdo con cualquiera de las reivindicaciones 5 a 6, CARACTERIZADO porque en el proceso de electro-refinación el consumo específico de energía es menor que 250 (kWh/t Cu) si se trabaja con una señal de corriente continua menor que 350 A/m2. 7. The electro-obtaining or electro-refining process of metals, in particular noble metals, such as copper, according to any of claims 5 to 6, CHARACTERIZED because in the electro-refining process the specific energy consumption is less than 250 (kWh / t Cu) if working with a direct current signal less than 350 A / m 2 .
8. El proceso de electro-obtención o electro-refinación de metales, en particular metales nobles, tal como cobre, de acuerdo con cualquiera de las reivindicaciones 1 a 7, CARACTERIZADO porque la señal de corriente alterna tiene una amplitud variable en el rango desde 25 a 600 A/m2.
8. The electro-obtaining or electro-refining process of metals, in particular noble metals, such as copper, according to any of claims 1 to 7, CHARACTERIZED because the alternating current signal has a variable amplitude in the range from 25 to 600 A / m 2 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CL2772-2013 | 2013-09-26 | ||
CL2013002772A CL2013002772A1 (en) | 2013-09-26 | 2013-09-26 | Electro-obtaining or electro-refining process of metals, which comprises applying an electrical supply signal formed by an alternating current (ac) of 400 to 600 a / m2 and a frequency greater than or equal to 5,000 Hz and less than or equal to 10,000 hz superimposed on a direct current (dc) in the range of 240 to 600 a / m2. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015056121A1 true WO2015056121A1 (en) | 2015-04-23 |
Family
ID=52827727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2014/064876 WO2015056121A1 (en) | 2013-09-26 | 2014-09-26 | Metal-electrowinning or -electrorefining process comprising the application of an electrical power signal formed of an alternating current superimposed on a direct current |
Country Status (2)
Country | Link |
---|---|
CL (1) | CL2013002772A1 (en) |
WO (1) | WO2015056121A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023180604A1 (en) | 2022-03-21 | 2023-09-28 | Prado Pueo Felix | Electrorefining installation with interconnectable intercell bars |
WO2023180605A1 (en) | 2022-03-21 | 2023-09-28 | Prado Pueo Felix | Electrowinning system with interconnectable intercell bars |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4159231A (en) * | 1978-08-04 | 1979-06-26 | The United States Of America As Represented By The Secretary Of The Interior | Method of producing a lead dioxide coated cathode |
US20110024301A1 (en) * | 2005-11-14 | 2011-02-03 | Hecker Electronica De Potencia Y Procesos S.A. | Process for optimizing the process of copper electro-winning and electro-refining by superimposing a sinusoidal current over a continuous current |
US20120067719A1 (en) * | 2009-04-23 | 2012-03-22 | Ingenieria Y Desarrollo Tecnologico S.A. | System for the superposition of alternating current in electrolysis processes |
-
2013
- 2013-09-26 CL CL2013002772A patent/CL2013002772A1/en unknown
-
2014
- 2014-09-26 WO PCT/IB2014/064876 patent/WO2015056121A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4159231A (en) * | 1978-08-04 | 1979-06-26 | The United States Of America As Represented By The Secretary Of The Interior | Method of producing a lead dioxide coated cathode |
US20110024301A1 (en) * | 2005-11-14 | 2011-02-03 | Hecker Electronica De Potencia Y Procesos S.A. | Process for optimizing the process of copper electro-winning and electro-refining by superimposing a sinusoidal current over a continuous current |
US20120067719A1 (en) * | 2009-04-23 | 2012-03-22 | Ingenieria Y Desarrollo Tecnologico S.A. | System for the superposition of alternating current in electrolysis processes |
Non-Patent Citations (1)
Title |
---|
"Study of the Copper Electrorefining Feasibility by AC/DC Electrolysis", ENGINEERING SCIENCE PAPER;, 28 April 2012 (2012-04-28), Retrieved from the Internet <URL:http://www.engpapers.com/66046.html> * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023180604A1 (en) | 2022-03-21 | 2023-09-28 | Prado Pueo Felix | Electrorefining installation with interconnectable intercell bars |
WO2023180605A1 (en) | 2022-03-21 | 2023-09-28 | Prado Pueo Felix | Electrowinning system with interconnectable intercell bars |
Also Published As
Publication number | Publication date |
---|---|
CL2013002772A1 (en) | 2014-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Fundamental study of lead recovery from cerussite concentrate with methanesulfonic acid (MSA) | |
Lu et al. | Electrolytic manganese metal production from manganese carbonate precipitate | |
Awe et al. | Electrowinning of antimony from model sulphide alkaline solutions | |
BRPI0911653B1 (en) | ELECTROCHEMICAL PROCESS FOR RECOVERY OF METAL IRON AND SULFURIC ACID VALUES FROM IRON-RICH SULPHATE RESIDUES, MINING WASTE AND STRAPPING LIQUIDS | |
CN103014779B (en) | A kind of multistage ore pulp decomposes Winning cell and decomposes electrodeposition process integration | |
JP2014501850A (en) | Electrical recovery of gold and silver from thiosulfate solutions | |
US11408083B2 (en) | Filter press device for electrodeposition of metal from solutions, which is made up of separating elements conformed by ion exchange membranes forming a plurality of anolyte and catholyte chambers, wherein the electrodes are connected in series with automatic detachment of the metal product | |
FI58166C (en) | FOERFARANDE FOER ELEKTROLYTISK AOTERVINNING AV NICKEL | |
WO2015056121A1 (en) | Metal-electrowinning or -electrorefining process comprising the application of an electrical power signal formed of an alternating current superimposed on a direct current | |
Moats et al. | Mesh-on-lead anodes for copper electrowinning | |
Youcai et al. | Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution | |
JP5544153B2 (en) | Electrolytic extraction of zinc | |
US9932683B2 (en) | Method for metal electrowinning and an electrowinning cell | |
Yang et al. | The separation and electrowinning of bismuth from a bismuth glance concentrate using a membrane cell | |
CA2865989C (en) | Anode and method of operating an electrolysis cell | |
AU2004217809B2 (en) | Method for copper electrowinning in hydrochloric solution | |
Padhy et al. | Electrodeposition of manganese metal: role of quaternary ammonium salts on current efficiency, morphology and polarisation behaviour | |
KR101766607B1 (en) | High purity cobalt chloride and manufacturing method therefor | |
WO2016063207A1 (en) | Voltage-controlled method for electrowinning high-quality copper for low-temperature solutions with a low copper concentration, with application of alternating current | |
GB543294A (en) | Electrolytic production of nickel | |
Ipinza et al. | Anodic slimes formation in copper electrowinning | |
Chen et al. | Characterization of the liberator cell sludges from three copper electrorefineries | |
Hodjaoglu | Electrochemical recovery of copper in the presence of contaminant ferrous ions | |
Pacholewska | Effect of nitrate ion NO sub 3 exp- on zinc electrocrystallization from sulphate electrolyte | |
Prabaharan et al. | Eco-Friendly and Efficient Electrowinning for High Purity Cobalt Metal Using Anode Bag Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14853776 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14853776 Country of ref document: EP Kind code of ref document: A1 |