Nothing Special   »   [go: up one dir, main page]

WO2015053159A1 - Resin composition, resin molded article, and method for producing resin molded article - Google Patents

Resin composition, resin molded article, and method for producing resin molded article Download PDF

Info

Publication number
WO2015053159A1
WO2015053159A1 PCT/JP2014/076358 JP2014076358W WO2015053159A1 WO 2015053159 A1 WO2015053159 A1 WO 2015053159A1 JP 2014076358 W JP2014076358 W JP 2014076358W WO 2015053159 A1 WO2015053159 A1 WO 2015053159A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
resin composition
group
molded product
Prior art date
Application number
PCT/JP2014/076358
Other languages
French (fr)
Japanese (ja)
Inventor
庄司 英和
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014196765A external-priority patent/JP5706033B1/en
Priority claimed from JP2014196764A external-priority patent/JP5706032B1/en
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN201480043194.1A priority Critical patent/CN105452526B/en
Publication of WO2015053159A1 publication Critical patent/WO2015053159A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1136Conversion of insulating material into conductive material, e.g. by pyrolysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam

Definitions

  • the present invention relates to a resin composition for laser direct structuring. Furthermore, it is related with the manufacturing method of the resin molded product formed by shape
  • LDS laser direct structuring
  • the flame retardancy tends to be inferior.
  • the flame retardancy is also affected by the type of LDS additive.
  • the LDS additive is necessary for forming the plating, but can be a foreign matter in the resin molded product.
  • the present invention aims to solve such problems of the prior art, and maintains various plating properties while maintaining various plating properties such as flexural modulus, flexural strength, Charpy impact strength and deflection temperature under load. It aims at providing the resin composition excellent in the flame retardance.
  • ⁇ 1> Laser direct structuring additive 5 to 20 containing 0.5 to 10 parts by mass of elastomer, copper and chromium with respect to 100 parts by mass of resin component 40 to 95% by mass and glass fiber 5 to 60% by mass Including at least one flame retardant selected from 5 parts by mass, a phosphazene compound and a condensed phosphate ester, and 0.1 to 1 part by mass of polytetrafluoroethylene,
  • a resin composition for laser direct structuring wherein the resin component comprises 65 to 90% by mass of a polycarbonate resin and 35 to 10% by mass of a styrene resin.
  • the glass fiber has an oblateness ratio of 1.5 or less indicated by a major axis / minor axis ratio (D2 / D1) where the major axis of the cross section perpendicular to the length direction is D2 and the minor axis is D1.
  • D2> or ⁇ 3> The resin composition for laser direct structuring as described in ⁇ 3>.
  • the flatness indicated by the ratio of major axis / minor axis (D2 / D1) when the major axis of the cross section perpendicular to the length direction is D2 and the minor axis is D1 exceeds 1.5.
  • the flame retardant contains a condensed phosphate ester,
  • the glass fiber has a flatness ratio of more than 1.5 and not more than 8.0 expressed by a ratio of major axis / minor axis (D2 / D1) where D2 is a major axis of a cross section perpendicular to the length direction and D1 is a minor axis.
  • ⁇ 7> The resin composition for laser direct structuring according to any one of ⁇ 1> to ⁇ 6>, wherein the laser direct structuring additive is a spinel structure.
  • ⁇ 8> The resin composition for laser direct structuring according to any one of ⁇ 1> to ⁇ 7>, wherein the elastomer is a siloxane copolymer elastomer.
  • ⁇ 10> The resin molded product according to ⁇ 9>, wherein the evaluation of the UL-94 test of the resin molded product at an average thickness of 1.6 mm is V-0.
  • ⁇ 11> The resin molded product according to ⁇ 9> or ⁇ 10>, which has a plating layer on the surface of the resin molded product.
  • ⁇ 12> The resin molded product according to ⁇ 11>, wherein the plated layer has performance as an antenna.
  • ⁇ 13> The resin molded product according to any one of ⁇ 9> to ⁇ 12>, which is a portable electronic device part.
  • ⁇ 14> The surface of a resin molded product obtained by molding the resin composition for laser direct structuring according to any one of ⁇ 1> to ⁇ 8> is irradiated with a laser, and then a metal is applied to form a plating layer.
  • the manufacturing method of the resin molded product with a plating layer including forming.
  • ⁇ 15> The method for producing a resin molded article with a plating layer according to ⁇ 14>, wherein the plating layer is a copper plating layer.
  • a method for manufacturing a portable electronic device component having an antenna including the method for manufacturing a resin-molded article with a plated layer according to ⁇ 14> or ⁇ 15>.
  • the present invention it is possible to provide a resin composition excellent in various mechanical properties such as bending elastic modulus, bending strength, Charpy impact strength and deflection temperature under load and flame retardancy while maintaining plating properties. .
  • FIG. 1 indicates a resin molded product
  • 2 indicates a laser
  • 3 indicates a portion irradiated with the laser
  • 4 indicates a plating solution
  • 5 indicates a plating layer.
  • the resin composition of the present invention is a laser direct structuring containing 0.5 to 10 parts by weight of an elastomer, copper and chromium with respect to 100 parts by weight of a component containing 40 to 95% by weight of a resin component and 5 to 60% by weight of glass fiber. Containing 5 to 20 parts by mass of an additive, 5 to 30 parts by mass of a flame retardant selected from a phosphazene compound and a condensed phosphate ester, and 0.1 to 1 part by mass of polytetrafluoroethylene, It contains 65 to 90% by mass of polycarbonate resin and 35 to 10% by mass of styrene resin. By using such a resin composition for LDS, higher plating properties can be achieved.
  • a preferred first embodiment of the resin composition of the present invention is an aspect in which the flame retardant contains a phosphazene compound.
  • the flame retardant contains a condensed phosphate ester
  • the glass fiber has a major axis D2 and a minor axis D1 in a cross section perpendicular to the length direction.
  • the aspect ratio indicated by the ratio of major axis / minor axis (D2 / D1) is more than 1.5 and not more than 8.0.
  • the resin composition of the present invention contains a resin component.
  • the resin component contains 65 to 90% by weight of polycarbonate resin and 35 to 10% by weight of styrene resin, 65 to 85% by weight of polycarbonate resin and 35 to 15% by weight of styrene resin. Is more preferable.
  • the resin component may contain other resin components. However, the other resin is preferably 5% by mass or less of the total resin components. Only one type of resin component may be used, or two or more types may be used in combination.
  • the polycarbonate resin used in the present invention is not particularly limited, and any of aromatic polycarbonate, aliphatic polycarbonate, and aromatic-aliphatic polycarbonate can be used. Of these, an aromatic polycarbonate is preferable, and a thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic dihydroxy compound with phosgene or a diester of carbonic acid is more preferable.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound, or a polymer containing both terminal phenolic OH groups having a siloxane structure or Oligomers and the like can be used.
  • polycarbonate resins used in the present invention include polycarbonate resins derived from 2,2-bis (4-hydroxyphenyl) propane; 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxy compounds A polycarbonate copolymer derived from
  • the molecular weight of the polycarbonate resin is preferably 14,000 to 30,000 in terms of viscosity average molecular weight converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent, and 15,000 to 28,000. More preferably, it is 16,000 to 26,000. It is preferable for the viscosity average molecular weight to be in the above range since the mechanical strength becomes better and the moldability becomes better.
  • the method for producing the polycarbonate resin is not particularly limited, and the present invention also uses a polycarbonate resin produced by any method such as the phosgene method (interfacial polymerization method) and the melting method (transesterification method). can do. Moreover, in this invention, after passing through the manufacturing process of a general melting method, you may use the polycarbonate resin manufactured through the process of adjusting the amount of OH groups of a terminal group.
  • the polycarbonate resin used in the present invention may be not only a polycarbonate resin as a virgin raw material but also a polycarbonate resin regenerated from a used product, a so-called material recycled polycarbonate resin.
  • the resin composition of the present invention may contain only one type of polycarbonate resin, or may contain two or more types.
  • the resin composition of the present invention contains a styrene resin in addition to the polycarbonate resin as a resin component.
  • Styrenic resin is a styrene polymer composed of styrene monomers, a copolymer of styrene monomers and other copolymerizable vinyl monomers, or styrene in the presence of a rubbery polymer. It means at least one polymer selected from the group consisting of a copolymer obtained by polymerizing a monomer or a styrene monomer and another copolymerizable vinyl monomer. Among these, it is preferable to use a styrene monomer or a copolymer of a styrene monomer and another copolymerizable vinyl monomer in the presence of a rubbery polymer.
  • styrenic monomer examples include styrene derivatives such as styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, ethylvinylbenzene, dimethylstyrene, pt-butylstyrene, bromostyrene, and dibromostyrene.
  • styrene is preferable.
  • these can also be used individually or in mixture of 2 or more types.
  • vinylcyan compounds such as acrylonitrile and methacrylonitrile, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, octyl acrylate and cyclohexyl acrylate, methacrylic acid such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate and cyclohexyl methacrylate Acrylic esters, phenyl acrylate, benzyl acrylate, etc.
  • Methacrylic acid aryl esters such as acid aryl esters, phenyl methacrylate and benzyl methacrylate, epoxy group-containing acrylic acid esters or methacrylic acid esters such as glycidyl acrylate and glycidyl methacrylate, maleimides such as N, N-methylmaleimide and N-phenylmaleimide Examples thereof include ⁇ -, ⁇ -unsaturated carboxylic acids such as acrylic monomers, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid and itaconic acid, or anhydrides thereof.
  • rubbery polymers that can be copolymerized with styrene monomers include polybutadiene, polyisoprene, styrene-butadiene random copolymers and block copolymers, acrylonitrile-butadiene random copolymers and block copolymers, acrylonitrile.
  • styrene resins include, for example, styrene resin, high impact polystyrene (HIPS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-acrylonitrile-butadiene.
  • HIPS high impact polystyrene
  • AS resin acrylonitrile-styrene copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • methyl methacrylate-acrylonitrile-butadiene methyl methacrylate-acrylonitrile-butadiene.
  • MABS resin acrylonitrile-styrene-acrylic rubber copolymer
  • ASA resin acrylonitrile-ethylenepropylene rubber-styrene copolymer
  • AES resin acrylonitrile-ethylenepropylene rubber-styrene copolymer
  • MS resin styrene-methyl methacrylate copolymer
  • acrylonitrile-styrene copolymer AS resin
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • ASA resin acrylonitrile-styrene-acrylic rubber copolymer
  • AES resin acrylonitrile-ethylenepropylene rubber-styrene A copolymer
  • ABS resin an acrylonitrile-butadiene-styrene copolymer
  • ASA resin acrylonitrile-styrene-acrylic rubber copolymer
  • ABS resin acrylonitrile-ethylenepropylene rubber-styrene copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • ABS resin acrylonitrile-ethylenepropylene rubber-styrene copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • ABS resin acrylonitrile-butadiene-
  • the styrene resin is produced by a method such as emulsion polymerization, solution polymerization, bulk polymerization, suspension polymerization or bulk / suspension polymerization.
  • the styrene resin or styrene random copolymer is used.
  • those produced by bulk polymerization, suspension polymerization, or bulk / suspension polymerization are suitable.
  • a styrene-based graft copolymer bulk polymerization, bulk / suspension polymerization or Those produced by emulsion polymerization are preferred.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • ABS resin thermoplastic graft copolymer obtained by graft copolymerization of acrylonitrile and styrene with a butadiene rubber component, and a copolymer of acrylonitrile and styrene. It is a mixture of
  • the butadiene rubber component is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and particularly preferably 13 to 25% by mass in 100% by mass of the ABS resin component.
  • the rubber particle diameter is preferably 0.1 to 5 ⁇ m, more preferably 0.2 to 3 ⁇ m, further 0.3 to 1.5 ⁇ m, and particularly preferably 0.4 to 0.9 ⁇ m.
  • the rubber particle size distribution may be either a single distribution or a plurality of distributions of two or more peaks.
  • the resin composition of the present invention may contain only one type of styrenic resin, or may contain two or more types.
  • 40% by mass or more of the total composition is preferably a resin component, more preferably 50% by mass or more is a resin component, and 60% by mass or more is a resin component. Is more preferable.
  • the resin composition of the present invention contains glass fibers.
  • a glass fiber consists of glass compositions, such as A glass, C glass, and E glass, and E glass (an alkali free glass) is especially preferable.
  • Glass fiber refers to a fiber having a fiber-like outer shape with a cross-sectional shape cut at right angles to the length direction and having a perfect circle or polygonal shape.
  • the form of the glass fiber is “glass roving” in which single fibers or a plurality of twisted strands are continuously wound, “chopped strand” trimmed to a length of 1 to 10 mm, and pulverized to a length of about 10 to 500 ⁇ m. Any of "Mildo fiber” etc. may be sufficient.
  • Such glass fibers are commercially available from Asahi Fiber Glass Co., Ltd. under the trade names “Glasslon Chopped Strand” and “Glasslon Milled Fiber”, and are easily available. Glass fibers having different forms can be used in combination.
  • the glass fiber either a circular cross-sectional shape or a modified cross-sectional shape is preferable.
  • the cross-sectional shape is distinguished by the flatness indicated by the long diameter / short diameter ratio (D2 / D1) when the long diameter of the cross section perpendicular to the length direction of the fiber is D2 and the short diameter is D1.
  • the flatness in the present invention is the average flatness.
  • glass fibers having a flatness ratio of more than 1.5 and not more than 8.0 are preferable, glass fibers having a flatness ratio of 2.0 to 6.0 are more preferable, and a flatness ratio of 2.0 to 6.0 is preferable.
  • 4.0 glass fiber is more preferred.
  • the major axis D2 is preferably 18-30 ⁇ m
  • the minor axis D1 is preferably 5-12 ⁇ m.
  • a glass fiber with a flatness ratio of 1.5 or less is preferable, a glass fiber with a flatness ratio of 1.3 or less is more preferable, a glass fiber with a flatness ratio of 1.1 or less is more preferable, and the flatness ratio is 1 glass fiber is particularly preferred.
  • the glass fiber may be surface-treated with a silane coupling agent such as ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, and the like.
  • a silane coupling agent such as ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, and the like.
  • the amount is usually 0.01 to 1% by mass of the glass fiber.
  • a lubricant such as a fatty acid amide compound, silicone oil, an antistatic agent such as a quaternary ammonium salt, a resin having a film forming ability such as an epoxy resin or a urethane resin, a resin having a film forming ability and a heat What was surface-treated with a mixture of a stabilizer, a flame retardant, etc. can also be used.
  • the compounding amount of the glass fiber in the resin composition of the present invention is 5 to 60% by mass, preferably 15 to 60% by mass, preferably 15 to 55% by mass when the total amount of the resin component and the glass fiber is 100% by mass. % Is more preferable, and 20 to 50% by mass is further preferable. By setting it as such a range, higher plating property can be achieved.
  • the resin composition of the present invention may contain only one type of glass fiber, or may contain two or more types. When two or more types are included, the total amount falls within the above range. In the resin composition of the present invention, it is usually preferable that the resin component and the glass fiber occupy 70% by mass or more of the total components.
  • the resin composition of the present invention contains an elastomer. By containing the elastomer, the impact resistance of the resin composition can be improved.
  • the elastomer used in the present invention include methyl methacrylate-butadiene-styrene copolymer (MBS resin), methyl methacrylate-butadiene rubber copolymer (MB resin), and styrene-butadiene triblock called SBS and SEBS.
  • Copolymer and its hydrogenated product styrene-isoprene triblock copolymer called SPS and SEPS and its hydrogenated product, olefinic thermoplastic elastomer called TPO, polyester elastomer, siloxane Examples thereof include rubber, acrylate rubber, and siloxane copolymer elastomer.
  • elastomer elastomers described in paragraph numbers 0075 to 0088 of JP2012-251061A, elastomers described in paragraph numbers 0101 to 0107 of JP2012-1777047A, and the like can be used. It is incorporated herein.
  • MBS resin, MB resin or siloxane copolymer elastomer is particularly preferably used, and siloxane copolymer elastomer is more preferable.
  • the elastomer used in the present invention is preferably a graft copolymer obtained by graft copolymerizing a rubber component with a monomer component copolymerizable therewith.
  • the production method of the graft copolymer may be any production method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, and the copolymerization method may be single-stage graft or multi-stage graft.
  • the rubber component generally has a glass transition temperature of 0 ° C. or lower, preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • Specific examples of the rubber component include polybutadiene rubber, polyisoprene rubber, polybutyl acrylate and poly (2-ethylhexyl acrylate), polyalkyl acrylate rubber such as butyl acrylate / 2-ethyl hexyl acrylate copolymer, and polyorganosiloxane rubber.
  • Silicone rubber butadiene-acrylic composite rubber, IPN (Interpenetrating Polymer Network) type composite rubber composed of polyorganosiloxane rubber and polyalkylacrylate rubber, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-butene rubber, ethylene-octene rubber, etc. And ethylene- ⁇ -olefin rubber, ethylene-acrylic rubber, fluororubber, and the like. These may be used alone or in admixture of two or more.
  • IPN Interpenetrating Polymer Network
  • polybutadiene rubber polyalkyl acrylate rubber, polyorganosiloxane rubber, IPN composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber, and styrene-butadiene rubber are preferable. .
  • monomer components that can be graft copolymerized with the rubber component include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, (meth) acrylic acid compounds, glycidyl (meth) acrylates, and the like.
  • These monomer components may be used alone or in combination of two or more.
  • aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, and (meth) acrylic acid compounds are preferable from the viewpoint of mechanical properties and surface appearance, and (meth) acrylic acid esters are more preferable.
  • Specific examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, and the like. be able to.
  • the graft copolymer obtained by copolymerizing the rubber component is preferably a core / shell type graft copolymer type from the viewpoint of impact resistance and surface appearance.
  • a rubber component selected from polybutadiene-containing rubber, polybutyl acrylate-containing rubber, polyorganosiloxane rubber, IPN type composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber is used as a core layer, and around it.
  • a core / shell type graft copolymer comprising a shell layer formed by copolymerizing (meth) acrylic acid ester is particularly preferred.
  • the core / shell type graft copolymer preferably contains 40% by mass or more of a rubber component, and more preferably contains 60% by mass or more. Moreover, what contains 10 mass% or more of (meth) acrylic acid is preferable.
  • the core / shell type in the present invention does not necessarily have to be clearly distinguishable between the core layer and the shell layer, and widely includes compounds obtained by graft polymerization of a rubber component around the core portion. It is the purpose.
  • these core / shell type graft copolymers include methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS), methyl methacrylate-butadiene copolymer.
  • MB methyl methacrylate-acrylic rubber copolymer
  • MA methyl methacrylate-acrylic rubber-styrene copolymer
  • MAS methyl methacrylate-acrylic / butadiene rubber copolymer
  • methacrylate-acrylic / butadiene rubber- Styrene copolymer methyl methacrylate- (acryl / silicone IPN rubber) copolymer
  • Polyorganosiloxane polyalkyl (meth) silicone containing acrylate - acrylic composite rubber and methyl methacrylate - butadiene copolymer (MB) is particularly preferred.
  • Such rubbery polymers may be used alone or in combination of two or more.
  • elastomers examples include “Paraloid (registered trademark, the same applies hereinafter) EXL2602”, “Paraloid EXL2603”, “Paraloid EXL2655”, “Paraloid EXL2311”, “Paraloid EXL2313” manufactured by Rohm and Haas Japan. , “Paraloid EXL2315”, “Paraloid KM330”, “Paraloid KM336P”, “Paraloid KCZ201”, “Metabrene (registered trademark, the same applies hereinafter) C-223A”, “Metabrene E-901”, “Metabrene S” manufactured by Mitsubishi Rayon Co., Ltd.
  • the blending amount of the elastomer is 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, and further preferably 1.5 to 5 parts by mass with respect to 100 parts by mass of the component including the resin component and the glass fiber.
  • the resin composition of the present invention may contain only one type of elastomer or two or more types. When two or more types are included, the total amount falls within the above range.
  • the resin composition of the present invention includes an LDS additive containing copper and chromium.
  • LDS additive containing copper and chromium, flame retardancy and plating properties can be improved.
  • the LDS additive in the present invention is obtained by adding 4 parts by mass of an additive considered to be an LDS additive to 100 parts by mass of polycarbonate resin (manufactured by Mitsubishi Engineering Plastics, Iupilon (registered trademark), S-3000F) at 1064 nm.
  • YAG laser is used to print by laser irradiation under any of the conditions of output 2.6 to 13 W, speed 1 to 2 m / s, frequency 10 to 50 ⁇ s, and then test This refers to a compound capable of forming a plating when a piece is degreased with sulfuric acid, treated with THP alkaline acti and THP alkaline acce manufactured by Kizai, and then plated with a SEL copper manufactured by Kizai.
  • the LDS additive used in the present invention may be a synthetic product or a commercial product. Moreover, as long as the commercially available product satisfies the requirements for the LDS additive in the present invention, it may be a material sold for other uses as well as those marketed as LDS additives.
  • the LDS additive in the present invention is not particularly limited as long as it contains copper and chromium.
  • the LDS additive in the present invention preferably contains 10 to 30% by mass of copper. Further, it is preferable to contain 15 to 50% by mass of chromium.
  • the LDS additive in the present invention is preferably an oxide containing copper and chromium.
  • the LDS additive in the present invention is preferably a spinel structure.
  • a spinel structure is one of the typical crystal structure types found in double oxide AB 2 O 4 type compounds (A and B are metal elements). That is, in the present invention, a spinel structure which is an oxide containing copper and chromium is more preferable.
  • the LDS additive may contain a trace amount of other metals in addition to copper and chromium.
  • other metals include antimony, tin, lead, indium, iron, cobalt, nickel, zinc, cadmium, silver, bismuth, arsenic, manganese, magnesium, calcium, and the like. These metals may exist as oxides. The content of these metals is preferably 0.001% by mass or less.
  • the particle size of the LDS additive is preferably 0.01 to 50 ⁇ m, more preferably 0.05 to 30 ⁇ m.
  • the blending amount of the LDS additive is 5 to 20 parts by mass, preferably 6 to 15 parts by mass, and more preferably 8 to 13 parts by mass with respect to 100 parts by mass of the component including the resin component and the glass fiber.
  • the resin composition of the present invention may contain only one type of LDS additive, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
  • the resin composition of the present invention contains at least one flame retardant selected from phosphazene compounds and condensed phosphate esters.
  • the blending amount of the flame retardant is 5 to 30 parts by weight, preferably 6 to 25 parts by weight, more preferably 10 to 20 parts by weight, with respect to 100 parts by weight of the component including the resin component and the glass fiber. Part is particularly preferred.
  • the resin composition of the present invention may contain only one type of at least one flame retardant selected from phosphazene compounds and condensed phosphate esters, or may contain two or more types.
  • an embodiment that includes only one or two or more phosphazene compounds and does not include a condensed phosphate ester an embodiment that includes only one or two or more condensed phosphate esters, and does not include a hofphazene compound,
  • the aspect containing 2 or more types of phosphazene compounds and 1 type, or 2 or more types of condensed phosphate ester is mentioned. When 2 or more types of flame retardants are included, the total amount is in the above range.
  • the resin composition of the present invention contains a phosphazene compound.
  • a phosphazene compound is an organic compound having —P ⁇ N— bond in the molecule, preferably a cyclic phosphazene compound represented by the following general formula (1), a chain phosphazene represented by the following general formula (2) A compound, and at least one selected from the group consisting of a crosslinked phosphazene compound in which at least one phosphazene compound selected from the group consisting of the following general formula (1) and the following general formula (2) is crosslinked by a crosslinking group It is a compound of this.
  • a is an integer of 3 to 25, R 1 and R 2 may be the same or different, and an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group, A hydroxy group, an aryl group or an alkylaryl group is shown.
  • R 3 and R 4 may be the same or different, and an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group, A hydroxy group, an aryl group or an alkylaryl group is shown.
  • R 5 is selected from —N ⁇ P (OR 3 ) 3 groups, —N ⁇ P (OR 4 ) 3 groups, —N ⁇ P (O) OR 3 groups, and —N ⁇ P (O) OR 4 groups.
  • R 6 represents at least one type, and R 6 represents —P (OR 3 ) 4 group, —P (OR 4 ) 4 group, —P (O) (OR 3 ) 2 group, —P (O) (OR 4 ) 2 At least one selected from the group is shown.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, and a decyl group.
  • An alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group and a hexyl group.
  • Particularly preferred are alkyl groups having 1 to 4 carbon atoms such as ethyl group and propyl group.
  • cycloalkyl group examples include a cycloalkyl group having 5 to 14 carbon atoms such as a cyclopentyl group and a cyclohexyl group, among which a cycloalkyl group having 5 to 8 carbon atoms is preferable.
  • alkenyl group examples include alkenyl groups having 2 to 8 carbon atoms such as vinyl group and allyl group.
  • cycloalkenyl group examples include cycloalkenyl groups having 5 to 12 carbon atoms such as cyclopentyl group and cyclohexyl group. Is mentioned.
  • alkynyl group examples include alkynyl groups having 2 to 8 carbon atoms such as ethynyl group and propynyl group, and aryl such as ethynylbenzene group.
  • aryl group examples include aryl groups having 6 to 20 carbon atoms such as a phenyl group, a methylphenyl (ie, tolyl) group, a dimethylphenyl (ie, xylyl) group, a trimethylphenyl group, and a naphthyl group.
  • a phenyl group having 6 to 10 carbon atoms is preferable, and a phenyl group is particularly preferable.
  • alkylaryl group examples include aralkyl groups having 6 to 20 carbon atoms such as benzyl group, phenethyl group, and phenylpropyl group. Among them, aralkyl groups having 7 to 10 carbon atoms are preferable, and benzyl group is particularly preferable. .
  • R 1 and R 2 in the general formula (1) and R 3 and R 4 in the general formula (2) are an aryl group and an arylalkyl group are preferable.
  • R 1 , R 2 , R 3 and R 4 are more preferably aryl groups, and particularly preferably phenyl groups.
  • Examples of the cyclic and / or chain phosphazene compounds represented by the general formulas (1) and (2) include, for example, (polyoxyphosphazene, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene, etc.
  • (Poly) xylyloxyphosphazenes such as tolyloxyphosphazene, o, m-xylyloxyphosphazene, o, p-xylyloxyphosphazene, m, p-xylyloxyphosphazene, o, m, p-trimethylphenyloxy
  • phenoxytolyloxyphosphazenes such as phosphazene, phenoxy o-tolyloxyphosphazene, phenoxy m-tolyloxyphosphazene, phenoxy p-tolyloxyphosphazene, phenoxy o, m-xylyloxyphosphazene, phenoxy o, p-ki Examples include (poly) phenoxytolyloxyxylyloxyphosphazene, phenoxy o, m, p-trimethylphenyloxyphosphazene, etc., preferably cycl
  • cyclic phosphazene compound represented by the general formula (1) cyclic phenoxyphosphazene in which R 1 and R 2 are phenyl groups is particularly preferable.
  • examples of such cyclic phenoxyphosphazene compounds include hexachlorocyclotriphosphazene, octachlorochloromethane, and a mixture of cyclic and linear chlorophosphazene obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C.
  • Examples include compounds such as phenoxycyclotriphosphazene, octaphenoxycyclotetraphosphazene, and decaffenoxycyclopentaphosphazene obtained by removing a cyclic chlorophosphazene such as cyclotetraphosphazene and decachlorocyclopentaphosphazene and then substituting with a phenoxy group.
  • the cyclic phenoxyphosphazene compound is preferably a compound in which a in the general formula (1) is an integer of 3 to 8, and may be a mixture of compounds having different a.
  • chain phosphazene compound represented by the general formula (2) chain phenoxyphosphazene in which R 3 and R 4 are phenyl groups is particularly preferable.
  • a chain phenoxyphosphazene compound is obtained by, for example, subjecting hexachlorocyclotriphosphazene obtained by the above method to reversion polymerization at a temperature of 220 to 250 ° C., and obtaining a linear dichlorophosphazene having a polymerization degree of 3 to 10,000. Examples include compounds obtained by substitution with a phenoxy group.
  • b in the linear phenoxyphosphazene compound is preferably 3 to 1000, more preferably 3 to 100, and still more preferably 3 to 25.
  • bridged phosphazene compound examples include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (that is, a bisphenol S residue), and a crosslinked structure of 2,2- (4,4′-diphenylene) isopropylidene group.
  • Compounds having a crosslinked structure of 4,4′-diphenylene group such as compounds having a crosslinked structure of 4,4′-oxydiphenylene group, and compounds having a crosslinked structure of 4,4′-thiodiphenylene group Etc.
  • crosslinked phosphazene compound a crosslinked phenoxyphosphazene compound in which a cyclic phenoxyphosphazene compound in which R 1 and R 2 are phenyl groups in the general formula (1) is crosslinked by the above-mentioned crosslinking group, or the above general formula (2)
  • a crosslinked phenoxyphosphazene compound in which a chain phenoxyphosphazene compound in which R 3 and R 4 are phenyl groups is crosslinked by the crosslinking group is preferable from the viewpoint of flame retardancy, and the cyclic phenoxyphosphazene compound is crosslinked by the crosslinking group.
  • a crosslinked phenoxyphosphazene compound is more preferable.
  • the content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (1) and / or the all phenyl groups in the chain phenoxyphosphazene compound represented by the general formula (2) and Based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%.
  • the crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.
  • the phosphazene compound is a crosslinked phenoxy obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (1) and the cyclic phenoxyphosphazene compound represented by the general formula (1) with a crosslinking group.
  • at least one selected from the group consisting of phosphazene compounds is preferable.
  • the resin composition of the present invention contains a condensed phosphate ester. Flame retardance can be improved by blending the condensed phosphate ester.
  • the condensed phosphate ester is preferably represented by the following general formula (1).
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an organic group, except that R 1 , R 2 , R 3 and R 4 are all hydrogen atoms.
  • X represents a divalent organic group, p is 0 or 1, q represents an integer of 1 or more, and r represents 0 or an integer of 1 or more.
  • examples of the organic group include an alkyl group, a cycloalkyl group, and an aryl group, which may or may not have a substituent, and the substituent includes an alkyl group, an alkoxy group, and an alkylthio group.
  • a group in which these substituents are combined, or a group in which these substituents are combined by combining with an oxygen atom, a sulfur atom, a nitrogen atom, or the like may be used.
  • the divalent organic group refers to a divalent or higher group formed by removing one carbon atom from the above organic group. Examples thereof include an alkylene group, a phenylene group, a substituted phenylene group, and a polynuclear phenylene group derived from bisphenols.
  • condensed phosphate ester represented by the general formula (1) include, for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, Tricresyl phenyl phosphate, octyl diphenyl phosphate, diisopropyl phenyl phosphate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) phosphate, bis (2,3-dibromopropyl) Phosphate, bis (2,3-dibromopropyl) -2,3-dichlorophosphate, bis (chloropropyl) monooctyl phosphate, bisphenol A tetraphenyl phosphate DOO, bisphenol A tetra cresyl diphosphate,
  • condensed phosphate esters examples include “CR733S” (resorcinol bis (diphenyl phosphate)), “CR741” (bisphenol A bis (diphenyl phosphate)), “PX-200” from Daihachi Chemical Industry Co., Ltd. (Resorcinol bis (dixylenyl phosphate)), “Adekastab FP-700” (2,2-bis (p-hydroxyphenyl) propane / trichlorophosphine oxide polycondensate (polymerization degree 1 to 4) from Asahi Denka Kogyo Co., Ltd. It is sold under the trade name such as 3) phenol condensate and is readily available.
  • the resin composition of the present invention contains polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • polytetrafluoroethylene having fibril forming ability is preferable.
  • Polytetrafluoroethylene having fibril-forming ability is classified as type 3 according to the ASTM standard. Examples of polytetrafluoroethylene having fibril-forming ability include Teflon (registered trademark) 6-J manufactured by Mitsui / Dupont Fluorochemical Co., Ltd., and Polyflon F201L, FA500B, and FA500C manufactured by Daikin Chemical Industries, Ltd. .
  • aqueous dispersion of polytetrafluoroethylene examples include Fluon D-1 manufactured by Daikin Chemical Industries, Ltd. and a polytetrafluoroethylene compound having a multilayer structure obtained by polymerizing a vinyl monomer. Any type can be used for the resin composition of the present invention.
  • a specific coated polytetrafluoroethylene (hereinafter referred to as coated polytetrafluoroethylene and coated with an organic polymer) is used. May be abbreviated).
  • the specific coated polytetrafluoroethylene is one in which the content ratio of polytetrafluoroethylene in the coated polytetrafluoroethylene falls within the range of 40 to 95% by mass, of which 43 to 80% by mass, and further 45 It is preferable that the amount is ⁇ 70% by mass, particularly 47 to 60% by mass.
  • the specific coated polytetrafluoroethylene for example, Metablene A-3800, A-3700, KA-5503 manufactured by Mitsubishi Rayon Co., Ltd., PolyPTS AD001 manufactured by PIC Co., etc. can be used.
  • the blending amount of polytetrafluoroethylene is 0.1 to 1 part by weight, more preferably 0.2 to 0.8 part by weight, with respect to 100 parts by weight of the component containing the resin component and glass fiber. 0.6 parts by weight is particularly preferred.
  • the amount added corresponds to the amount of pure polytetrafluoroethylene.
  • the blending amount of polytetrafluoroethylene is less than 0.1 parts by mass, the flame retardant effect is insufficient. On the other hand, when it exceeds 1 part by mass, the appearance of the molded product may be deteriorated.
  • the resin composition of the present invention may contain only one type of polytetrafluoroethylene or two or more types. When two or more types are included, the total amount falls within the above range.
  • the resin composition of the present invention preferably contains an organic phosphorus stabilizer.
  • an organic phosphorus stabilizer By blending the organophosphorus stabilizer, the polycarbonate resin by the LDS additive is hardly decomposed, and the effect of the present invention is more effectively exhibited.
  • the organophosphorous stabilizer the description in paragraphs 0073 to 0095 of JP2009-35691A can be referred to, and the contents thereof are incorporated in the present specification.
  • a more preferable organophosphorus stabilizer is a compound represented by the following general formula (3).
  • R is an alkyl group or an aryl group, which may be the same or different.
  • M is an integer of 0 to 2.
  • R is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and an alkyl group having 2 to 25 carbon atoms, a phenyl group, a nonylphenyl group, a stearylphenyl group, 2,4- More preferred are a ditert-butylphenyl group, a 2,4-ditert-butylmethylphenyl group, and a tolyl group.
  • phosphate esters represented by the following general formula (3 ') are preferred.
  • R ′ is an alkyl group having 2 to 25 carbon atoms, which may be the same or different.
  • m ′ is 1 or 2.
  • examples of the alkyl group include octyl group, 2-ethylhexyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group, tetradecyl group, hexadecyl group, octadecyl group and the like.
  • a tetradecyl group, a hexadecyl group and an octadecyl group are preferable, and an octadecyl group is particularly preferable.
  • phosphate esters examples include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyldiphenyl phosphate, tetrakis (2,4-di-). tert-butylphenyl) -4,4-diphenylene phosphonite, monostearyl acid phosphate, distearyl acid phosphate and the like.
  • R ′ is an alkyl group or an aryl group, and each may be the same or different.
  • R ′ is preferably an alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R ′ is an alkyl group, an alkyl group having 1 to 30 carbon atoms is preferable.
  • R ′ is an aryl group, an aryl group having 6 to 30 carbon atoms is preferable.
  • phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinonyl phosphite, tridecyl phosphite, trioctyl phosphite , Trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tricyclohexyl phosphite, monobutyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol phosphite Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4
  • the amount of the phosphorus stabilizer is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the component containing the resin component and the glass fiber. -1.0 part by mass is more preferable, 0.08-0.5 part by mass is more preferable, and 0.08-0.3 part by mass is particularly preferable.
  • disassembly of polycarbonate resin by an LDS additive can be suppressed more effectively, By making it 5 mass parts or less, the adhesive strength of glass fiber and a polycarbonate is raised, The strength can be further improved.
  • the resin composition of the present invention may contain only one type of organophosphorous stabilizer or two or more types. When two or more types are included, the total amount is preferably within the above range.
  • monostearyl acid phosphate and / or distearyl acid phosphate as an organophosphorus stabilizer is preferably 5 parts by mass or less, more preferably 1 part by mass or less based on 100 parts by mass of the resin component and glass fiber.
  • 0.5 parts by mass or less is more preferable, 0.3 parts by mass or less is particularly preferable, and 0.25 parts by mass or less is more preferable.
  • 0.01 mass part or more is preferable, 0.05 mass part or more is more preferable, and 0.08 or more is further more preferable.
  • the resin composition of the present invention may contain an antioxidant.
  • an antioxidant a phenolic antioxidant is preferable, and more specifically, 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3- (3 ′, 5′-di- t-butyl-4′-hydroxyphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (3,5-di-t-butyl- 4-hydroxybenzyl) isocyanurate, 4,4′-butylidenebis- (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-hydroxy-5-methylphenyl) propionate And 3,9-bis ⁇ 2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethyl Tileth
  • the resin composition of the present invention contains an antioxidant
  • the blending amount of the antioxidant is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component containing the resin component and the glass fiber. 0.05 to 3 parts by mass is more preferable.
  • the resin composition of the present invention may contain only one kind of antioxidant or two or more kinds. When two or more types are included, the total amount falls within the above range.
  • the resin composition of the present invention may contain a release agent.
  • the release agent is preferably at least one compound selected from aliphatic carboxylic acids, aliphatic carboxylic acid esters, and aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15000. Among these, at least one compound selected from aliphatic carboxylic acids and aliphatic carboxylic acid esters is more preferably used.
  • aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid.
  • the term “aliphatic carboxylic acid” is used to include alicyclic carboxylic acids.
  • mono- or dicarboxylic acids having 6 to 36 carbon atoms are preferable, and aliphatic saturated monocarboxylic acids having 6 to 36 carbon atoms are more preferable.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, valeric acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellic acid, and tetrariacontanoic acid. , Montanic acid, glutaric acid, adipic acid, azelaic acid and the like.
  • the same aliphatic carboxylic acid as that described above can be used.
  • the alcohol component constituting the aliphatic carboxylic acid ester examples include saturated or unsaturated monohydric alcohols and saturated or unsaturated polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Of these alcohols, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable.
  • the aliphatic alcohol also includes an alicyclic alcohol.
  • these alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol.
  • Etc. These aliphatic carboxylic acid esters may contain an aliphatic carboxylic acid and / or alcohol as impurities, and may be a mixture of a plurality of compounds.
  • aliphatic carboxylic acid ester examples include beeswax (mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, octyldodecyl behenate, glycerin monopalmitate, glycerin monostearate, glycerin Examples thereof include distearate, glycerin tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, and pentaerythritol tetrastearate.
  • the compounding amount of the release agent is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component containing the resin component and the glass fiber. 0.05 to 3 parts by mass is more preferable.
  • the resin composition of the present invention may contain only one type of release agent, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
  • the resin composition of the present invention may contain other components without departing from the spirit of the present invention.
  • Other components include stabilizers other than phosphorus stabilizers, ultraviolet absorbers, inorganic fillers, fluorescent whitening agents, anti-dripping agents, antistatic agents, antifogging agents, lubricants, antiblocking agents, fluidity improvers, Plasticizers, dispersants, antibacterial agents and the like can be mentioned. Two or more of these may be used in combination.
  • descriptions in JP2007-314766A, JP2008-127485A, JP2009-51989A, JP2012-72338A, and the like can be referred to, and the contents thereof are described in the present specification. Embedded in the book.
  • the method for producing the resin composition of the present invention is not particularly defined, and a wide variety of known methods for producing a thermoplastic resin composition can be adopted. Specifically, each component is mixed in advance using various mixers such as a tumbler or Henschel mixer, and then melt kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. By doing so, a resin composition can be produced.
  • various mixers such as a tumbler or Henschel mixer, and then melt kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc.
  • the phosphazene compound is preferably blended as a master batch or as a specific granular phosphazene.
  • the first embodiment is obtained by melt-kneading 40 to 65% by mass of an aromatic polycarbonate resin (A) having a mass average molecular weight of 15000 to 55000 and 35 to 60% by mass of an aromatic phosphazene compound (B).
  • Examples of the flame retardant masterbatch are characterized in that the sum of the component (A) and the component (B) is 95 to 100% by mass.
  • a second embodiment is a flame retardant masterbatch obtained by melting and kneading an aromatic polycarbonate resin (A) having a mass average molecular weight of 5,000 to 55,000 and an aromatic phosphazene compound (B) in a pressure kneader. is there.
  • a second embodiment is a flame retardant masterbatch obtained by melting and kneading an aromatic polycarbonate resin (A) having a mass average molecular weight of 5,000 to 55,000 and an aromatic phosphazene compound (B) in a pressure kneader. is there.
  • a total of 100 parts by mass of the aromatic polycarbonate resin (A) 85 to 20% by mass and the aromatic phosphazene compound (B) 15 to 80% by mass, and the fluoropolymer (C) is 0.005 to 2%. It is a flame retardant masterbatch obtained by melt-kneading a mass part. By setting it as such a structure, the workability at the time of melt-kneading with resin is excellent, and also when it mix
  • the proportion on the sieve having an opening of 400 ⁇ m is 55% by mass or more, and the bulk density is 0.3 to 1.5 g / ml, which is added to the resin as a granular phosphazene compound.
  • the phosphazene compound is finely powdered at room temperature, but has the property of solidifying against compression and shearing. If this is done, the phosphazene compound adheres to the extruder screw when melt-kneaded with a thermoplastic resin in an extruder. However, the use of the granular phosphazene compound makes it difficult to cause problems such as sticking to the extruder screw.
  • a polycarbonate resin particle (B) having a ratio of passing through a sieve having an opening of 1000 ⁇ m is 30% by mass or more, and a mass ratio of (A) / (B) is 85/15 to 5 / 95, and is blended into the resin as a granular phosphazene compound characterized by having a bulk density of 0.4 to 1.5 g / ml.
  • the method for producing a resin molded product from the resin composition of the present invention is not particularly limited, and a molding method generally employed for thermoplastic resins, that is, a general injection molding method, an ultra-high speed injection molding method, Injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, molding method using rapid heating mold, foam molding (including supercritical fluid), insert Molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method and the like can be employed.
  • a molding method using a hot runner method can also be selected.
  • the resin molded product with a plated layer of the present invention includes forming a plated layer by applying a metal to the surface of a resin molded product formed by molding the resin composition of the present invention after laser irradiation.
  • FIG. 1 is a schematic view showing a process of forming plating on the surface of a resin molded product 1 by a laser direct structuring technique.
  • the resin molded product 1 is a flat substrate.
  • the resin molded product 1 is not necessarily a flat substrate, and may be a resin molded product having a partially or entirely curved surface.
  • the resin molded product is not limited to the final product, and includes various parts.
  • the resin molded product in the present invention is preferably used for parts of portable electronic devices, vehicles and medical devices, and electronic parts including other electric circuits.
  • the resin molded product of the present invention has both high impact resistance, rigidity, and excellent heat resistance, as well as low anisotropy and low warpage, so that it can be used in electronic notebooks, portable computers, etc. It is extremely effective as an internal structure and casing such as a PDA, a pager, a mobile phone, and a PHS.
  • the resin molded product is suitable for flat plate-like parts having an average thickness excluding ribs of 1.2 mm or less (the lower limit is not particularly defined, for example, 0.4 mm or more). Particularly suitable as a housing. Further, it is suitable for applications in which the evaluation of the UL-94 test of resin molded products having an average thickness of 1.6 mm is required to be V-0.
  • the resin molded product 1 is irradiated with a laser 2.
  • the laser here is not particularly defined, and can be appropriately selected from known lasers such as a YAG laser, an excimer laser, and electromagnetic radiation, and a YAG laser is preferable.
  • the wavelength of the laser is not particularly defined. A preferred wavelength range is 200 nm to 1200 nm. Particularly preferred is 800 to 1200 nm.
  • the resin molded product 1 is activated only in the portion 3 irradiated with the laser. In this activated state, the resin molded product 1 is applied to the plating solution 4.
  • the plating solution 4 is not particularly defined, and a wide variety of known plating solutions can be used.
  • a metal component in which copper, nickel, gold, silver, and palladium are mixed is preferable, and copper is more preferable.
  • the method of applying the resin molded product 1 to the plating solution 4 is not particularly defined, but for example, a method of introducing the resin molded product 1 into a solution containing the plating solution.
  • the plating layer 5 is formed only in the portion irradiated with the laser.
  • a circuit interval having a width of 1 mm or less and further 150 ⁇ m or less (the lower limit is not particularly defined, but for example, 30 ⁇ m or more) can be formed.
  • Such a circuit is preferably used as an antenna of a portable electronic device component.
  • a plating layer (preferably a copper plating layer) provided on the surface of the resin molded product of the present invention (preferably a portable electronic device component) is an antenna. Resin molded products possessing the performance as described above.
  • 3PA-820 manufactured by Nitto Boseki Co., Ltd., glass fiber having a flat cross section with a diameter of 28 ⁇ m and a short diameter of 7 ⁇ m (flatness ratio 4)
  • 3PL-820 manufactured by Nitto Boseki Co., Ltd., glass fiber having a flat cross section with a diameter of 20 ⁇ m and a short diameter of 10 ⁇ m (flatness ratio 2)
  • ⁇ Phosphazene compound> FP-100 Phenoxyphosphazene compound manufactured by Fushimi Pharmaceutical Co., Ltd.
  • ⁇ PTFE> 6-J Fluoropolymer having a fibril forming ability manufactured by Mitsui DuPont Fluorochemicals
  • the flame retardancy of each resin composition was evaluated by conditioning the test piece for UL test obtained by the above-mentioned method for 48 hours in a temperature-controlled room at a temperature of 23 ° C. and a humidity of 50%, and US Underwriters Laboratories.
  • the test was conducted in accordance with the UL94 test (combustion test of plastic materials for equipment parts) defined by (UL).
  • UL94V is a method for evaluating flame retardancy from the afterflame time and drip properties after indirect flame of a burner for 10 seconds on a test piece of a predetermined size held vertically, V-0, V- In order to have flame retardancy of 1 and V-2, it is necessary to satisfy the criteria shown in the following table.
  • the afterflame time is the length of time for which the test piece continues to burn with flame after the ignition source is moved away.
  • the cotton ignition by the drip is determined by whether or not the labeling cotton, which is about 300 mm below the lower end of the test piece, is ignited by a drip from the test piece. Further, when any one of the five samples did not satisfy the above criteria, it was evaluated as NR (not rated) as not satisfying V-2.
  • test piece After printing with laser irradiation under various conditions combined, the test piece was degreased with sulfuric acid, treated with THP Alkali Acti and THP Alkali Acce manufactured by Kizai Co., Ltd., and then plated with a SEL copper manufactured by Kizai Co., Ltd. went.
  • the test pieces after the plating treatment were visually judged and classified into the following five stages. 5: Among various laser conditions, the condition where the plating is clearly mounted is 75 to 100%.
  • the condition where the plating is clearly placed is 50 to 74% 3: Among various laser conditions, the condition where the plating is clearly mounted is 30 to 49% 2: 10 to 29% of the various laser conditions are clearly plated 1: Under various laser conditions, the condition where the plating is clearly placed is less than 10%.
  • the composition of the present invention when used, while maintaining the plating property, it has various mechanical properties such as bending elastic modulus, bending strength, Charpy impact strength and deflection temperature under load, and flame retardancy. Excellent test pieces were obtained (Examples 2-1 to 2-12).
  • the compounding amount of the LDS additive when the compounding amount of the LDS additive was small (Comparative Example 2-1), the flame retardancy was excellent, but the plating property was inferior.
  • the blending amount of the polycarbonate resin when the blending amount of the polycarbonate resin was small (Comparative Example 2-2), the plating property was excellent but the flame retardancy was inferior. It was also found that the warpage was particularly small when glass fibers having a flat cross section were used (Examples 2-7 to 2-12).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a resin composition having superior fire retardance and mechanical characteristics such as flexural modulus of elasticity, flexural strength, Charpy impact strength, and deflection temperature under load while maintaining platability. The resin composition, which is for laser direct structuring, contains, for every 100 parts by mass of components including 40-95 mass% of a resin component and 5-60 mass% of fiberglass, 0.5-10 parts by mass of an elastomer, 5-20 parts by mass of a laser direct structuring additive containing copper and chromium, 5-30 parts by mass of at least one fire retardant selected from a phosphazene compound and a condensed phosphate ester, and 0.1-1 parts by mass of polytetrafluoroethylene. The resin component contains 65-90 mass% of a polycarbonate resin and 35-10 mass% of a styrene resin.

Description

樹脂組成物、樹脂成形品、および樹脂成形品の製造方法Resin composition, resin molded product, and method for producing resin molded product
 本発明は、レーザーダイレクトストラクチャリング用樹脂組成物に関する。さらに、前記樹脂組成物を成形してなる樹脂成形品および、前記樹脂成形品の表面に、メッキ層を形成したメッキ層付樹脂成形品の製造方法に関する。 The present invention relates to a resin composition for laser direct structuring. Furthermore, it is related with the manufacturing method of the resin molded product formed by shape | molding the said resin composition, and the resin molded product with a plating layer which formed the plating layer on the surface of the said resin molded product.
 近年、スマートフォンを含む携帯電話の開発に伴い、携帯電話の内部にアンテナを製造する方法が種々検討されている。特に、携帯電話に3次元設計ができるアンテナを製造する方法が求められている。このような3次元アンテナを形成する技術の1つとして、レーザーダイレクトストラクチャリング(以下、「LDS」ということがある)技術が注目されている。LDS技術は、例えば、LDS添加剤を含む樹脂成形品の表面にレーザーを照射し、レーザーを照射した部分のみを活性化させ、前記活性化させた部分に金属を適用することによってメッキ層を形成する技術である。この技術の特徴は、接着剤などを使わずに、樹脂基材表面に直接にアンテナ等の金属構造体を製造できる点にある。かかるLDS技術は、例えば、特許文献1~4等に開示されている。 In recent years, with the development of mobile phones including smartphones, various methods for manufacturing antennas inside mobile phones have been studied. In particular, there is a need for a method of manufacturing an antenna that can be three-dimensionally designed for a mobile phone. As one of the techniques for forming such a three-dimensional antenna, a laser direct structuring (hereinafter, also referred to as “LDS”) technique has attracted attention. LDS technology, for example, irradiates the surface of a resin molded product containing an LDS additive with a laser, activates only the portion irradiated with the laser, and forms a plating layer by applying metal to the activated portion. Technology. A feature of this technique is that a metal structure such as an antenna can be manufactured directly on the surface of the resin base material without using an adhesive or the like. Such LDS technology is disclosed in, for example, Patent Documents 1 to 4.
国際公開WO2011/095632号パンフレットInternational publication WO2011 / 095632 pamphlet 国際公開WO2011/076729号パンフレットInternational Publication WO2011 / 076729 Pamphlet 国際公開WO2011/076730号パンフレットInternational Publication WO2011 / 077630 Pamphlet 国際公開WO2012/128219号パンフレットInternational Publication WO2012 / 128219 Pamphlet
 ここで、機械的特性を向上させるためにガラス繊維を配合しようとすると、難燃性が劣る傾向にある。また、本発明者が検討したところ、LDS添加剤の種類によっても、難燃性に影響が出ることが分かった。特に、LDS添加剤は、メッキの形成には必要であるが、樹脂成形品中の異物となりえる。本発明はかかる従来技術の問題点を解決することを目的としたものであって、メッキ性を維持しつつ、曲げ弾性率、曲げ強度、シャルピー衝撃強度や荷重たわみ温度などの各種機械的特性および難燃性に優れた樹脂組成物を提供することを目的とする。 Here, if glass fiber is added to improve mechanical properties, the flame retardancy tends to be inferior. In addition, as a result of examination by the present inventors, it was found that the flame retardancy is also affected by the type of LDS additive. In particular, the LDS additive is necessary for forming the plating, but can be a foreign matter in the resin molded product. The present invention aims to solve such problems of the prior art, and maintains various plating properties while maintaining various plating properties such as flexural modulus, flexural strength, Charpy impact strength and deflection temperature under load. It aims at providing the resin composition excellent in the flame retardance.
 かかる状況のもと、本発明者が鋭意検討を行った結果、下記の手段<1>により、好ましくは<2>~<16>により、上記課題は解決された。
<1>樹脂成分40~95質量%およびガラス繊維5~60質量%を含む成分100質量部に対し、エラストマー0.5~10質量部、銅およびクロムを含むレーザーダイレクトストラクチャリング添加剤5~20質量部、ホスファゼン化合物および縮合リン酸エステルから選択される少なくとも1種の難燃剤5~30質量部およびポリテトラフルオロエチレン0.1~1質量部を含み、
前記樹脂成分が、ポリカーボネート樹脂65~90質量%とスチレン系樹脂35~10質量%を含むレーザーダイレクトストラクチャリング用樹脂組成物。
<2>前記難燃剤が、ホスファゼン化合物を含む、<1>に記載のレーザーダイレクトストラクチャリング用樹脂組成物。
<3>前記ホスファゼン化合物が、フェノキシホスファゼンである、<2>に記載のレーザーダイレクトストラクチャリング用樹脂組成物。
<4>前記ガラス繊維は、長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が1.5以下である、<2>または<3>に記載のレーザーダイレクトストラクチャリング用樹脂組成物。
<5>前記ガラス繊維は、長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が1.5を超え8.0以下である、<2>または<3>に記載のレーザーダイレクトストラクチャリング用樹脂組成物。
<6>前記難燃剤が、縮合リン酸エステルを含み、
前記ガラス繊維は、長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が1.5を超え8.0以下である、<1>に記載のレーザーダイレクトストラクチャリング用樹脂組成物。
<7>前記レーザーダイレクトストラクチャリング添加剤が、スピネル構造体である、<1>~<6>のいずれかに記載のレーザーダイレクトストラクチャリング用樹脂組成物。
<8>前記エラストマーが、シロキサン共重合エラストマーである、<1>~<7>のいずれかに記載のレーザーダイレクトストラクチャリング用樹脂組成物。
<9><1>~<8>のいずれかに記載のレーザーダイレクトストラクチャリング用樹脂組成物を成形してなる樹脂成形品。
<10>平均厚さ1.6mmにおける樹脂成形品のUL-94試験の評価がV-0である、<9>に記載の樹脂成形品。
<11>前記樹脂成形品の表面にメッキ層を有する、<9>または<10>に記載の樹脂成形品。
<12>前記メッキ層がアンテナとしての性能を保有する、<11>に記載の樹脂成形品。
<13>携帯電子機器部品である、<9>~<12>のいずれかに記載の樹脂成形品。
<14><1>~<8>のいずれかに記載のレーザーダイレクトストラクチャリング用樹脂組成物を成形してなる樹脂成形品の表面に、レーザーを照射後、金属を適用して、メッキ層を形成することを含む、メッキ層付樹脂成形品の製造方法。
<15>前記メッキ層が銅メッキ層である、<14>に記載のメッキ層付樹脂成形品の製造方法。
<16><14>または<15>に記載のメッキ層付樹脂成形品の製造方法を含む、アンテナを有する携帯電子機器部品の製造方法。
Under such circumstances, as a result of intensive studies by the present inventor, the above problem has been solved by the following means <1>, preferably <2> to <16>.
<1> Laser direct structuring additive 5 to 20 containing 0.5 to 10 parts by mass of elastomer, copper and chromium with respect to 100 parts by mass of resin component 40 to 95% by mass and glass fiber 5 to 60% by mass Including at least one flame retardant selected from 5 parts by mass, a phosphazene compound and a condensed phosphate ester, and 0.1 to 1 part by mass of polytetrafluoroethylene,
A resin composition for laser direct structuring, wherein the resin component comprises 65 to 90% by mass of a polycarbonate resin and 35 to 10% by mass of a styrene resin.
<2> The resin composition for laser direct structuring according to <1>, wherein the flame retardant includes a phosphazene compound.
<3> The resin composition for laser direct structuring according to <2>, wherein the phosphazene compound is phenoxyphosphazene.
<4> The glass fiber has an oblateness ratio of 1.5 or less indicated by a major axis / minor axis ratio (D2 / D1) where the major axis of the cross section perpendicular to the length direction is D2 and the minor axis is D1. <2> or <3> The resin composition for laser direct structuring as described in <3>.
<5> In the glass fiber, the flatness indicated by the ratio of major axis / minor axis (D2 / D1) when the major axis of the cross section perpendicular to the length direction is D2 and the minor axis is D1 exceeds 1.5. The resin composition for laser direct structuring according to <2> or <3>, which is 0.0 or less.
<6> The flame retardant contains a condensed phosphate ester,
The glass fiber has a flatness ratio of more than 1.5 and not more than 8.0 expressed by a ratio of major axis / minor axis (D2 / D1) where D2 is a major axis of a cross section perpendicular to the length direction and D1 is a minor axis. The resin composition for laser direct structuring according to <1>.
<7> The resin composition for laser direct structuring according to any one of <1> to <6>, wherein the laser direct structuring additive is a spinel structure.
<8> The resin composition for laser direct structuring according to any one of <1> to <7>, wherein the elastomer is a siloxane copolymer elastomer.
<9> A resin molded product obtained by molding the resin composition for laser direct structuring according to any one of <1> to <8>.
<10> The resin molded product according to <9>, wherein the evaluation of the UL-94 test of the resin molded product at an average thickness of 1.6 mm is V-0.
<11> The resin molded product according to <9> or <10>, which has a plating layer on the surface of the resin molded product.
<12> The resin molded product according to <11>, wherein the plated layer has performance as an antenna.
<13> The resin molded product according to any one of <9> to <12>, which is a portable electronic device part.
<14> The surface of a resin molded product obtained by molding the resin composition for laser direct structuring according to any one of <1> to <8> is irradiated with a laser, and then a metal is applied to form a plating layer. The manufacturing method of the resin molded product with a plating layer including forming.
<15> The method for producing a resin molded article with a plating layer according to <14>, wherein the plating layer is a copper plating layer.
<16> A method for manufacturing a portable electronic device component having an antenna, including the method for manufacturing a resin-molded article with a plated layer according to <14> or <15>.
 本発明により、メッキ性を維持しつつ、曲げ弾性率、曲げ強度、シャルピー衝撃強度や荷重たわみ温度などの各種機械的特性および難燃性に優れた樹脂組成物を提供することが可能になった。 According to the present invention, it is possible to provide a resin composition excellent in various mechanical properties such as bending elastic modulus, bending strength, Charpy impact strength and deflection temperature under load and flame retardancy while maintaining plating properties. .
樹脂成形品の表面にメッキを設ける工程を示す概略図である。図1中、1は樹脂成形品を、2はレーザーを、3はレーザーが照射された部分を、4はメッキ液を、5はメッキ層をそれぞれ示している。It is the schematic which shows the process of providing plating on the surface of a resin molded product. In FIG. 1, 1 indicates a resin molded product, 2 indicates a laser, 3 indicates a portion irradiated with the laser, 4 indicates a plating solution, and 5 indicates a plating layer.
 以下において、本発明の内容について詳細に説明する。尚、本願明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。また、本明細書中において、“(メタ)アクリレート”はアクリレートおよびメタクリレートを表し、“(メタ)アクリル”はアクリルおよびメタクリルを表す。 Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the present specification, “(meth) acrylate” represents acrylate and methacrylate, and “(meth) acryl” represents acryl and methacryl.
 本発明の樹脂組成物は、樹脂成分40~95質量%およびガラス繊維5~60質量%を含む成分100質量部に対し、エラストマー0.5~10質量部、銅およびクロムを含むレーザーダイレクトストラクチャリング添加剤5~20質量部、ホスファゼン化合物および縮合リン酸エステルから選択される少なくとも1種の難燃剤5~30質量部およびポリテトラフルオロエチレン0.1~1質量部を含み、前記樹脂成分が、ポリカーボネート樹脂65~90質量%とスチレン系樹脂35~10質量%を含むことを特徴とする。このようなLDS用樹脂組成物を用いることにより、より高いメッキ性が達成できる。
 本発明の樹脂組成物の好ましい第一の実施形態は、前記難燃剤が、ホスファゼン化合物を含む態様である。
 本発明の樹脂組成物の好ましい第二の実施形態は、前記難燃剤が、縮合リン酸エステルを含み、前記ガラス繊維は、長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が1.5を超え8.0以下である態様である。
 以下、本発明の樹脂組成物の詳細について説明する。
The resin composition of the present invention is a laser direct structuring containing 0.5 to 10 parts by weight of an elastomer, copper and chromium with respect to 100 parts by weight of a component containing 40 to 95% by weight of a resin component and 5 to 60% by weight of glass fiber. Containing 5 to 20 parts by mass of an additive, 5 to 30 parts by mass of a flame retardant selected from a phosphazene compound and a condensed phosphate ester, and 0.1 to 1 part by mass of polytetrafluoroethylene, It contains 65 to 90% by mass of polycarbonate resin and 35 to 10% by mass of styrene resin. By using such a resin composition for LDS, higher plating properties can be achieved.
A preferred first embodiment of the resin composition of the present invention is an aspect in which the flame retardant contains a phosphazene compound.
In a second preferred embodiment of the resin composition of the present invention, the flame retardant contains a condensed phosphate ester, and the glass fiber has a major axis D2 and a minor axis D1 in a cross section perpendicular to the length direction. The aspect ratio indicated by the ratio of major axis / minor axis (D2 / D1) is more than 1.5 and not more than 8.0.
Hereinafter, details of the resin composition of the present invention will be described.
<樹脂成分>
 本発明の樹脂組成物は、樹脂成分を含む。
 本発明の樹脂組成物において、樹脂成分は、ポリカーボネート樹脂65~90質量%とスチレン系樹脂35~10質量%を含み、ポリカーボネート樹脂65~85質量%とスチレン系樹脂35~15質量%を含むことがより好ましい。樹脂成分は、他の樹脂成分を含んでいてもよい。しかしながら、前記他の樹脂は全樹脂成分の5質量%以下であることが好ましい。樹脂成分は、1種類のみを用いてもよいし、2種類以上を併用してもよい。
<Resin component>
The resin composition of the present invention contains a resin component.
In the resin composition of the present invention, the resin component contains 65 to 90% by weight of polycarbonate resin and 35 to 10% by weight of styrene resin, 65 to 85% by weight of polycarbonate resin and 35 to 15% by weight of styrene resin. Is more preferable. The resin component may contain other resin components. However, the other resin is preferably 5% by mass or less of the total resin components. Only one type of resin component may be used, or two or more types may be used in combination.
<<ポリカーボネート樹脂>>
 本発明で用いるポリカーボネート樹脂としては特に制限されず、芳香族ポリカーボネート、脂肪族ポリカーボネート、芳香族-脂肪族ポリカーボネートのいずれも用いることができる。中でも芳香族ポリカーボネートが好ましく、さらに、芳香族ジヒドロキシ化合物をホスゲンまたは炭酸のジエステルと反応させることによって得られる熱可塑性芳香族ポリカーボネート重合体または共重合体がより好ましい。
<< Polycarbonate resin >>
The polycarbonate resin used in the present invention is not particularly limited, and any of aromatic polycarbonate, aliphatic polycarbonate, and aromatic-aliphatic polycarbonate can be used. Of these, an aromatic polycarbonate is preferable, and a thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic dihydroxy compound with phosgene or a diester of carbonic acid is more preferable.
 芳香族ジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-P-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニルなどが挙げられ、好ましくはビスフェノールAが挙げられる。さらに、難燃性が高い組成物を調製する目的で、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物、またはシロキサン構造を有する両末端フェノール性OH基含有のポリマーもしくはオリゴマー等を、使用することができる。 As aromatic dihydroxy compounds, 2,2-bis (4-hydroxyphenyl) propane (= bisphenol A), tetramethylbisphenol A, bis (4-hydroxyphenyl) -P-diisopropylbenzene, hydroquinone, resorcinol, 4,4 -Dihydroxydiphenyl and the like are preferable, and bisphenol A is preferable. Furthermore, for the purpose of preparing a composition having a high flame retardancy, a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound, or a polymer containing both terminal phenolic OH groups having a siloxane structure or Oligomers and the like can be used.
 本発明で用いるポリカーボネート樹脂の好ましい例には、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導されるポリカーボネート樹脂;2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導されるポリカーボネート共重合体;が含まれる。 Preferred examples of polycarbonate resins used in the present invention include polycarbonate resins derived from 2,2-bis (4-hydroxyphenyl) propane; 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxy compounds A polycarbonate copolymer derived from
 ポリカーボネート樹脂の分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算した粘度平均分子量で、14,000~30,000であるのが好ましく、15,000~28,000であるのがより好ましく、16,000~26,000であるのがさらに好ましい。粘度平均分子量が前記範囲であると、機械的強度がより良好となり、且つ成形性もより良好となるので好ましい。 The molecular weight of the polycarbonate resin is preferably 14,000 to 30,000 in terms of viscosity average molecular weight converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent, and 15,000 to 28,000. More preferably, it is 16,000 to 26,000. It is preferable for the viscosity average molecular weight to be in the above range since the mechanical strength becomes better and the moldability becomes better.
 ポリカーボネート樹脂の製造方法については、特に限定されるものではなく、本発明には、ホスゲン法(界面重合法)、および溶融法(エステル交換法)等の、いずれの方法で製造したポリカーボネート樹脂も使用することができる。また、本発明では、一般的な溶融法の製造工程を経た後に、末端基のOH基量を調整する工程を経て製造されたポリカーボネート樹脂を使用してもよい。 The method for producing the polycarbonate resin is not particularly limited, and the present invention also uses a polycarbonate resin produced by any method such as the phosgene method (interfacial polymerization method) and the melting method (transesterification method). can do. Moreover, in this invention, after passing through the manufacturing process of a general melting method, you may use the polycarbonate resin manufactured through the process of adjusting the amount of OH groups of a terminal group.
 さらに、本発明で用いるポリカーボネート樹脂は、バージン原料としてのポリカーボネート樹脂のみならず、使用済みの製品から再生されたポリカーボネート樹脂、いわゆるマテリアルリサイクルされたポリカーボネート樹脂であってもよい。 Furthermore, the polycarbonate resin used in the present invention may be not only a polycarbonate resin as a virgin raw material but also a polycarbonate resin regenerated from a used product, a so-called material recycled polycarbonate resin.
 その他、本発明で用いるポリカーボネート樹脂については、例えば、特開2012-072338号公報の段落番号0018~0066の記載を参酌でき、その内容は本願明細書に組み込まれる。 In addition, with respect to the polycarbonate resin used in the present invention, for example, the description in paragraph numbers 0018 to 0066 of JP2012-072338A can be referred to, and the contents thereof are incorporated in the present specification.
 本発明の樹脂組成物は、ポリカーボネート樹脂を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。 The resin composition of the present invention may contain only one type of polycarbonate resin, or may contain two or more types.
<<スチレン系樹脂>>
 本発明の樹脂組成物は、樹脂成分として、ポリカーボネート樹脂の他にスチレン系樹脂を含む。
<< Styrenic resin >>
The resin composition of the present invention contains a styrene resin in addition to the polycarbonate resin as a resin component.
 スチレン系樹脂とは、スチレン系単量体からなるスチレン系重合体、スチレン系単量体と他の共重合可能なビニル系単量体との共重合体、ゴム質重合体の存在下でスチレン系単量体又はスチレン系単量体と他の共重合可能なビニル系単量体とを重合させた共重合体からなる群より選ばれる少なくとも1種の重合体を言う。これらの中でも、ゴム質重合体の存在下にスチレン系単量体を又はスチレン系単量体と他の共重合可能なビニル系単量体との共重合体を用いることが好ましい。 Styrenic resin is a styrene polymer composed of styrene monomers, a copolymer of styrene monomers and other copolymerizable vinyl monomers, or styrene in the presence of a rubbery polymer. It means at least one polymer selected from the group consisting of a copolymer obtained by polymerizing a monomer or a styrene monomer and another copolymerizable vinyl monomer. Among these, it is preferable to use a styrene monomer or a copolymer of a styrene monomer and another copolymerizable vinyl monomer in the presence of a rubbery polymer.
 スチレン系単量体の具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、エチルビニルベンゼン、ジメチルスチレン、p-t-ブチルスチレン、ブロモスチレン、ジブロモスチレン等のスチレン誘導体が挙げられ、中でもスチレンが好ましい。尚、これらは単独で、又は2種以上を混合して使用することもできる。 Specific examples of the styrenic monomer include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, divinylbenzene, ethylvinylbenzene, dimethylstyrene, pt-butylstyrene, bromostyrene, and dibromostyrene. Among them, styrene is preferable. In addition, these can also be used individually or in mixture of 2 or more types.
 上記のスチレン系単量体と共重合可能なビニル系単量体としては、アクリロニトリル、メタクリロニトリル等のビニルシアン化合物、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、へキシルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、シクロヘキシルアクリレート等のアクリル酸アルキルエステル、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、へキシルメタクリレート、2-エチルヘキシルメタクリレート、オクチルメタクリレート、シクロヘキシルメタクリレート等のメタクリル酸アルキルエステル、フェニルアクリレート、ベンジルアクリレート等のアクリル酸アリールエステル、フェニルメタクリレート、ベンジルメタクリレート等のメタクリル酸アリールエステル、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基含有アクリル酸エステル又はメタクリル酸エステル、マレイミド、N,N-メチルマレイミド、N-フェニルマレイミド等のマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等のα,β-不飽和カルボン酸又はその無水物等が挙げられる。 As vinyl monomers copolymerizable with the above styrenic monomers, vinylcyan compounds such as acrylonitrile and methacrylonitrile, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, octyl acrylate and cyclohexyl acrylate, methacrylic acid such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate and cyclohexyl methacrylate Acrylic esters, phenyl acrylate, benzyl acrylate, etc. Methacrylic acid aryl esters such as acid aryl esters, phenyl methacrylate and benzyl methacrylate, epoxy group-containing acrylic acid esters or methacrylic acid esters such as glycidyl acrylate and glycidyl methacrylate, maleimides such as N, N-methylmaleimide and N-phenylmaleimide Examples thereof include α-, β-unsaturated carboxylic acids such as acrylic monomers, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid and itaconic acid, or anhydrides thereof.
 さらにスチレン系単量体と共重合可能なゴム質重合体としては、ポリブタジエン、ポリイソプレン、スチレン-ブタジエンランダム共重合体及びブロック共重合体、アクリロニトリル-ブタジエンランダム共重合体及びブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリル酸アルキルエステル又はメタクリル酸アルキルエステルとブタジエンとの共重合体、ポリブタジエン-ポリイソプレンジエン系共重合体、エチレン-イソプレンランダム共重合体及びブロック共重合体、エチレン-ブテンランダム共重合体及びブロック共重合体等のエチレンとα-オレフィンとの共重合体、エチレン-メタクリレート共重合体、エチレン-ブチルアクリレート共重合体等のエチレンとα,β-不飽和カルボン酸エステルとの共重合体、エチレン-酢酸ビニル共重合体、エチレン-プロピレン-ヘキサジエン共重合体等のエチレン-プロピレン-非共役ジエンターポリマー、アクリル系ゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレート又はメタクリレートゴムとからなる複合ゴム等が挙げられる。 Further, rubbery polymers that can be copolymerized with styrene monomers include polybutadiene, polyisoprene, styrene-butadiene random copolymers and block copolymers, acrylonitrile-butadiene random copolymers and block copolymers, acrylonitrile. -Butadiene copolymers, copolymers of alkyl acrylates or alkyl methacrylates and butadiene, polybutadiene-polyisoprene diene copolymers, ethylene-isoprene random copolymers and block copolymers, ethylene-butene randoms Copolymers of ethylene and α-olefins such as copolymers and block copolymers, ethylene-methacrylate copolymers, ethylene-butyl acrylate copolymers and the like of ethylene and α, β-unsaturated carboxylic acid esters Copolymer, Ethylene-propylene-non-conjugated diene terpolymers such as tylene-vinyl acetate copolymer, ethylene-propylene-hexadiene copolymer, acrylic rubber, composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate or methacrylate rubber, etc. Can be mentioned.
 この様なスチレン系樹脂は、例えば、スチレン樹脂、高衝撃ポリスチレン(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)、スチレン-メチルメタクリレート共重合体(MS樹脂)、スチレン-無水マレイン酸共重合体等が挙げられる。 Such styrene resins include, for example, styrene resin, high impact polystyrene (HIPS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-acrylonitrile-butadiene. -Styrene copolymer (MABS resin), acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), acrylonitrile-ethylenepropylene rubber-styrene copolymer (AES resin), styrene-methyl methacrylate copolymer (MS resin) ), Styrene-maleic anhydride copolymer and the like.
 これらの中でも、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)が好ましく、より好ましくはアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)であり、特に好ましいのはアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)である。 Among these, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), acrylonitrile-ethylenepropylene rubber-styrene A copolymer (AES resin) is preferred, more preferably an acrylonitrile-butadiene-styrene copolymer (ABS resin), an acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), an acrylonitrile-ethylenepropylene rubber-styrene copolymer A combination (AES resin) is preferable, and an acrylonitrile-butadiene-styrene copolymer (ABS resin) is particularly preferable.
 上記のスチレン系樹脂は、乳化重合、溶液重合、塊状重合、懸濁重合あるいは塊状・懸濁重合等の方法により製造されるが、本発明においては、スチレン系重合体、又はスチレン系ランダム共重合体あるいはブロック共重合体の場合は、塊状重合、懸濁重合又は塊状・懸濁重合により製造されたものが好適であり、スチレン系グラフト共重合体の場合は塊状重合、塊状・懸濁重合あるいは乳化重合によって製造されたものが好適である。 The styrene resin is produced by a method such as emulsion polymerization, solution polymerization, bulk polymerization, suspension polymerization or bulk / suspension polymerization. In the present invention, the styrene resin or styrene random copolymer is used. In the case of a polymer or block copolymer, those produced by bulk polymerization, suspension polymerization, or bulk / suspension polymerization are suitable. In the case of a styrene-based graft copolymer, bulk polymerization, bulk / suspension polymerization or Those produced by emulsion polymerization are preferred.
 本発明において、特に好適に用いられるアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)とは、ブタジエンゴム成分にアクリロニトリルとスチレンをグラフト共重合した熱可塑性グラフト共重合体とアクリロニトリルとスチレンの共重合体の混合物である。ブタジエンゴム成分は、ABS樹脂成分100質量%中、5~40質量%であることが好ましく、中でも10~35質量%、特に13~25質量%であることが好ましい。またゴム粒子径は0.1~5μmであることが好ましく、中でも0.2~3μm、さらに0.3~1.5μm、特に0.4~0.9μmであることが好ましい。ゴム粒子径の分布は、単一分布でも二山以上の複数の分布を有するもののいずれであってもよい。 In the present invention, acrylonitrile-butadiene-styrene copolymer (ABS resin) which is particularly preferably used is a thermoplastic graft copolymer obtained by graft copolymerization of acrylonitrile and styrene with a butadiene rubber component, and a copolymer of acrylonitrile and styrene. It is a mixture of The butadiene rubber component is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and particularly preferably 13 to 25% by mass in 100% by mass of the ABS resin component. The rubber particle diameter is preferably 0.1 to 5 μm, more preferably 0.2 to 3 μm, further 0.3 to 1.5 μm, and particularly preferably 0.4 to 0.9 μm. The rubber particle size distribution may be either a single distribution or a plurality of distributions of two or more peaks.
 本発明の樹脂組成物は、スチレン系樹脂を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。 The resin composition of the present invention may contain only one type of styrenic resin, or may contain two or more types.
 本発明の樹脂組成物は、組成物の合計の40質量%以上が樹脂成分であることが好ましく、50質量%以上が樹脂成分であることがより好ましく、60質量%以上が樹脂成分であることがさらに好ましい。 In the resin composition of the present invention, 40% by mass or more of the total composition is preferably a resin component, more preferably 50% by mass or more is a resin component, and 60% by mass or more is a resin component. Is more preferable.
<ガラス繊維>
 本発明の樹脂組成物は、ガラス繊維を含む。
 ガラス繊維は、Aガラス、Cガラス、Eガラスなどのガラス組成からなり、特に、Eガラス(無アルカリガラス)が好ましい。
 ガラス繊維とは、長さ方向に直角に切断した断面形状が真円状、多角形状で繊維状外嵌を呈するものをいう。
 ガラス繊維の形態は、単繊維や複数本撚り合わせたものを連続的に巻き取った「ガラスロービング」、長さ1~10mmに切りそろえた「チョップドストランド」、長さ10~500μm程度に粉砕した「ミルドファイバー」などのいずれであってもよい。かかるガラス繊維としては、旭ファイバーグラス社より、「グラスロンチョップドストランド」や「グラスロンミルドファイバー」の商品名で市販されており、容易に入手可能である。ガラス繊維は、形態が異なるものを併用することもできる。
<Glass fiber>
The resin composition of the present invention contains glass fibers.
A glass fiber consists of glass compositions, such as A glass, C glass, and E glass, and E glass (an alkali free glass) is especially preferable.
Glass fiber refers to a fiber having a fiber-like outer shape with a cross-sectional shape cut at right angles to the length direction and having a perfect circle or polygonal shape.
The form of the glass fiber is “glass roving” in which single fibers or a plurality of twisted strands are continuously wound, “chopped strand” trimmed to a length of 1 to 10 mm, and pulverized to a length of about 10 to 500 μm. Any of "Mildo fiber" etc. may be sufficient. Such glass fibers are commercially available from Asahi Fiber Glass Co., Ltd. under the trade names “Glasslon Chopped Strand” and “Glasslon Milled Fiber”, and are easily available. Glass fibers having different forms can be used in combination.
 また、本発明ではガラス繊維として、円形断面形状のものおよび異形断面形状のもののいずれも好ましい。ここで、断面形状は、繊維の長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率で区別される。本発明における扁平率は、平均扁平率とする。
 本発明では、低そり性の観点から、扁平率1.5を超え8.0以下のガラス繊維が好ましく、扁平率2.0~6.0のガラス繊維がより好ましく、扁平率2.0~4.0のガラス繊維がさらに好ましい。かかる扁平ガラスについては、特開2011-195820号公報の段落番号0065~0072の記載を参酌でき、この内容は本願明細書に組み込まれる。
 本発明では、長径D2は、18~30μmが好ましく、短径D1は、5~12μmが好ましい。
 一方、ウェルド強度の向上という観点から、扁平率1.5以下のガラス繊維が好ましく、扁平率1.3以下のガラス繊維がより好ましく、扁平率1.1以下のガラス繊維がさらに好ましく、扁平率1のガラス繊維が特に好ましい。
In the present invention, as the glass fiber, either a circular cross-sectional shape or a modified cross-sectional shape is preferable. Here, the cross-sectional shape is distinguished by the flatness indicated by the long diameter / short diameter ratio (D2 / D1) when the long diameter of the cross section perpendicular to the length direction of the fiber is D2 and the short diameter is D1. The flatness in the present invention is the average flatness.
In the present invention, from the viewpoint of low warpage, glass fibers having a flatness ratio of more than 1.5 and not more than 8.0 are preferable, glass fibers having a flatness ratio of 2.0 to 6.0 are more preferable, and a flatness ratio of 2.0 to 6.0 is preferable. 4.0 glass fiber is more preferred. Regarding such flat glass, the description of paragraph numbers 0065 to 0072 of JP-A-2011-195820 can be referred to, and the contents thereof are incorporated in the present specification.
In the present invention, the major axis D2 is preferably 18-30 μm, and the minor axis D1 is preferably 5-12 μm.
On the other hand, from the viewpoint of improving the weld strength, a glass fiber with a flatness ratio of 1.5 or less is preferable, a glass fiber with a flatness ratio of 1.3 or less is more preferable, a glass fiber with a flatness ratio of 1.1 or less is more preferable, and the flatness ratio is 1 glass fiber is particularly preferred.
 ガラス繊維は、例えば、γ-メタクリルオキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のシランカップリング剤等で表面処理されていてもよく、その付着量は、通常、ガラス繊維の質量の0.01~1質量%である。さらに必要に応じて、脂肪酸アミド化合物、シリコーンオイル等の潤滑剤、第4級アンモニウム塩等の帯電防止剤、エポキシ樹脂、ウレタン樹脂等の被膜形成能を有する樹脂、被膜形成能を有する樹脂と熱安定剤、難燃剤等の混合物で表面処理されたものを用いることもできる。 The glass fiber may be surface-treated with a silane coupling agent such as γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and the like. The amount is usually 0.01 to 1% by mass of the glass fiber. Furthermore, if necessary, a lubricant such as a fatty acid amide compound, silicone oil, an antistatic agent such as a quaternary ammonium salt, a resin having a film forming ability such as an epoxy resin or a urethane resin, a resin having a film forming ability and a heat What was surface-treated with a mixture of a stabilizer, a flame retardant, etc. can also be used.
 本発明の樹脂組成物におけるガラス繊維の配合量は、樹脂成分とガラス繊維の合計量を100質量%としたとき、5~60質量%であり、15~60質量%が好ましく、15~55質量%がより好ましく、20~50質量%がさらに好ましい。このような範囲とすることにより、より高いメッキ性を達成可能となる。
 本発明の樹脂組成物は、ガラス繊維を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。
 本発明の樹脂組成物では、通常、樹脂成分とガラス繊維で、全成分の70質量%以上を占めることが好ましい。
The compounding amount of the glass fiber in the resin composition of the present invention is 5 to 60% by mass, preferably 15 to 60% by mass, preferably 15 to 55% by mass when the total amount of the resin component and the glass fiber is 100% by mass. % Is more preferable, and 20 to 50% by mass is further preferable. By setting it as such a range, higher plating property can be achieved.
The resin composition of the present invention may contain only one type of glass fiber, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
In the resin composition of the present invention, it is usually preferable that the resin component and the glass fiber occupy 70% by mass or more of the total components.
<エラストマー>
 本発明の樹脂組成物は、エラストマーを含む。エラストマーを含有することで、樹脂組成物の耐衝撃性を改良することができる。本発明に用いるエラストマーとしては、メタクリル酸メチル-ブタジエン-スチレン共重合体(MBS樹脂)、メチルメタクリレート-ブタジエンゴム共重合体(MB樹脂)、SBS、SEBSと呼ばれているスチレン-ブタジエン系トリブロック共重合体とその水添物、SPS、SEPSと呼ばれているスチレン-イソプレン系トリブロック共重合体とその水添物、TPOと呼ばれているオレフィン系熱可塑性エラストマー、ポリエステル系エラストマー、シロキサン系ゴム、アクリレート系ゴム、シロキサン共重合エラストマー等が挙げられる。エラストマーとしては、特開2012-251061号公報の段落番号0075~0088に記載のエラストマー、特開2012-177047号公報の段落番号0101~0107に記載のエラストマー等を用いることができ、これらの内容は本願明細書に組み込まれる。本発明で特に好ましくは、MBS樹脂、MB樹脂またはシロキサン共重合エラストマーが用いられ、シロキサン共重合エラストマーがより好ましい。
<Elastomer>
The resin composition of the present invention contains an elastomer. By containing the elastomer, the impact resistance of the resin composition can be improved. Examples of the elastomer used in the present invention include methyl methacrylate-butadiene-styrene copolymer (MBS resin), methyl methacrylate-butadiene rubber copolymer (MB resin), and styrene-butadiene triblock called SBS and SEBS. Copolymer and its hydrogenated product, styrene-isoprene triblock copolymer called SPS and SEPS and its hydrogenated product, olefinic thermoplastic elastomer called TPO, polyester elastomer, siloxane Examples thereof include rubber, acrylate rubber, and siloxane copolymer elastomer. As the elastomer, elastomers described in paragraph numbers 0075 to 0088 of JP2012-251061A, elastomers described in paragraph numbers 0101 to 0107 of JP2012-1777047A, and the like can be used. It is incorporated herein. In the present invention, MBS resin, MB resin or siloxane copolymer elastomer is particularly preferably used, and siloxane copolymer elastomer is more preferable.
 本発明に用いるエラストマーは、ゴム成分にこれと共重合可能な単量体成分とをグラフト共重合したグラフト共重合体が好ましい。グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。 The elastomer used in the present invention is preferably a graft copolymer obtained by graft copolymerizing a rubber component with a monomer component copolymerizable therewith. The production method of the graft copolymer may be any production method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, and the copolymerization method may be single-stage graft or multi-stage graft.
 ゴム成分は、ガラス転移温度が通常0℃以下、中でも-20℃以下が好ましく、更には-30℃以下が好ましい。ゴム成分の具体例としては、ポリブタジエンゴム、ポリイソプレンゴム、ポリブチルアクリレートやポリ(2-エチルヘキシルアクリレート)、ブチルアクリレート・2-エチルヘキシルアクリレート共重合体などのポリアルキルアクリレートゴム、ポリオルガノシロキサンゴムなどのシリコーン系ゴム、ブタジエン-アクリル複合ゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN(Interpenetrating Polymer Network)型複合ゴム、スチレン-ブタジエンゴム、エチレン-プロピレンゴムやエチレン-ブテンゴム、エチレン-オクテンゴムなどのエチレン-α-オレフィン系ゴム、エチレン-アクリルゴム、フッ素ゴムなど挙げることができる。これらは、単独でも2種以上を混合して使用してもよい。これらの中でも、機械的特性や表面外観の面から、ポリブタジエンゴム、ポリアルキルアクリレートゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴム、スチレン-ブタジエンゴムが好ましい。 The rubber component generally has a glass transition temperature of 0 ° C. or lower, preferably −20 ° C. or lower, more preferably −30 ° C. or lower. Specific examples of the rubber component include polybutadiene rubber, polyisoprene rubber, polybutyl acrylate and poly (2-ethylhexyl acrylate), polyalkyl acrylate rubber such as butyl acrylate / 2-ethyl hexyl acrylate copolymer, and polyorganosiloxane rubber. Silicone rubber, butadiene-acrylic composite rubber, IPN (Interpenetrating Polymer Network) type composite rubber composed of polyorganosiloxane rubber and polyalkylacrylate rubber, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-butene rubber, ethylene-octene rubber, etc. And ethylene-α-olefin rubber, ethylene-acrylic rubber, fluororubber, and the like. These may be used alone or in admixture of two or more. Among these, in terms of mechanical properties and surface appearance, polybutadiene rubber, polyalkyl acrylate rubber, polyorganosiloxane rubber, IPN composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber, and styrene-butadiene rubber are preferable. .
 ゴム成分とグラフト共重合可能な単量体成分の具体例としては、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)などが挙げられる。これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。これらの中でも、機械的特性や表面外観の面から、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物が好ましく、より好ましくは(メタ)アクリル酸エステル化合物である。(メタ)アクリル酸エステル化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル等を挙げることができる。 Specific examples of monomer components that can be graft copolymerized with the rubber component include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, (meth) acrylic acid compounds, glycidyl (meth) acrylates, and the like. Epoxy group-containing (meth) acrylic acid ester compounds; maleimide compounds such as maleimide, N-methylmaleimide and N-phenylmaleimide; α, β-unsaturated carboxylic acid compounds such as maleic acid, phthalic acid and itaconic acid and their anhydrides (For example, maleic anhydride, etc.). These monomer components may be used alone or in combination of two or more. Among these, aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, and (meth) acrylic acid compounds are preferable from the viewpoint of mechanical properties and surface appearance, and (meth) acrylic acid esters are more preferable. A compound. Specific examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, and the like. be able to.
 ゴム成分を共重合したグラフト共重合体は、耐衝撃性や表面外観の点からコア/シェル型グラフト共重合体タイプのものが好ましい。なかでもポリブタジエン含有ゴム、ポリブチルアクリレート含有ゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴムから選ばれる少なくとも1種のゴム成分をコア層とし、その周囲に(メタ)アクリル酸エステルを共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が特に好ましい。上記コア/シェル型グラフト共重合体において、ゴム成分を40質量%以上含有するものが好ましく、60質量%以上含有するものがさらに好ましい。また、(メタ)アクリル酸は、10質量%以上含有するものが好ましい。尚、本発明におけるコア/シェル型とは必ずしもコア層とシェル層が明確に区別できるものでは無なくてもよく、コアとなる部分の周囲にゴム成分をグラフト重合して得られる化合物を広く含む趣旨である。 The graft copolymer obtained by copolymerizing the rubber component is preferably a core / shell type graft copolymer type from the viewpoint of impact resistance and surface appearance. Among them, at least one rubber component selected from polybutadiene-containing rubber, polybutyl acrylate-containing rubber, polyorganosiloxane rubber, IPN type composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber is used as a core layer, and around it. A core / shell type graft copolymer comprising a shell layer formed by copolymerizing (meth) acrylic acid ester is particularly preferred. The core / shell type graft copolymer preferably contains 40% by mass or more of a rubber component, and more preferably contains 60% by mass or more. Moreover, what contains 10 mass% or more of (meth) acrylic acid is preferable. The core / shell type in the present invention does not necessarily have to be clearly distinguishable between the core layer and the shell layer, and widely includes compounds obtained by graft polymerization of a rubber component around the core portion. It is the purpose.
 これらコア/シェル型グラフト共重合体の好ましい具体例としては、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS)、メチルメタクリレート-ブタジエン共重合体(MB)、メチルメタクリレート-アクリルゴム共重合体(MA)、メチルメタクリレート-アクリルゴム-スチレン共重合体(MAS)、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体、メチルメタクリレート-(アクリル・シリコーンIPNゴム)共重合体、ポリオルガノシロキサンとポリアルキル(メタ)アクリレートとを含むシリコーン-アクリル複合ゴム等が挙げられ、ポリオルガノシロキサンとポリアルキル(メタ)アクリレートとを含むシリコーン-アクリル複合ゴムおよびメチルメタクリレート-ブタジエン共重合体(MB)が特に好ましい。このようなゴム性重合体は、1種を単独で用いても2種以上を併用してもよい。 Preferred examples of these core / shell type graft copolymers include methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS), methyl methacrylate-butadiene copolymer. Copolymer (MB), methyl methacrylate-acrylic rubber copolymer (MA), methyl methacrylate-acrylic rubber-styrene copolymer (MAS), methyl methacrylate-acrylic / butadiene rubber copolymer, methyl methacrylate-acrylic / butadiene rubber- Styrene copolymer, methyl methacrylate- (acryl / silicone IPN rubber) copolymer, silicone-acrylic composite rubber containing polyorganosiloxane and polyalkyl (meth) acrylate Polyorganosiloxane polyalkyl (meth) silicone containing acrylate - acrylic composite rubber and methyl methacrylate - butadiene copolymer (MB) is particularly preferred. Such rubbery polymers may be used alone or in combination of two or more.
 このようなエラストマーとしては、例えば、ローム・アンド・ハース・ジャパン社製の「パラロイド(登録商標、以下同じ)EXL2602」、「パラロイドEXL2603」、「パラロイドEXL2655」、「パラロイドEXL2311」、「パラロイドEXL2313」、「パラロイドEXL2315」、「パラロイドKM330」、「パラロイドKM336P」、「パラロイドKCZ201」、三菱レイヨン社製の「メタブレン(登録商標、以下同じ)C-223A」、「メタブレンE-901」、「メタブレンS-2001」、「メタブレンSRK-200」、「メタブレンS-2030」カネカ社製の「カネエース(登録商標、以下同じ)M-511」、「カネエースM-600」、「カネエースM-400」、「カネエースM-580」、「カネエースM-711」、「カネエースMR-01」、宇部興産製の「UBESTA XPA」等が挙げられる。 Examples of such elastomers include “Paraloid (registered trademark, the same applies hereinafter) EXL2602”, “Paraloid EXL2603”, “Paraloid EXL2655”, “Paraloid EXL2311”, “Paraloid EXL2313” manufactured by Rohm and Haas Japan. , “Paraloid EXL2315”, “Paraloid KM330”, “Paraloid KM336P”, “Paraloid KCZ201”, “Metabrene (registered trademark, the same applies hereinafter) C-223A”, “Metabrene E-901”, “Metabrene S” manufactured by Mitsubishi Rayon Co., Ltd. -2001 "," Metabrene SRK-200 "," Metabrene S-2030 "" Kane Ace (registered trademark, the same applies hereinafter) M-511 "," Kane Ace M-600 "," Kane Ace M-400 "," Kane Ace M-400 "," Kane Ace -580 "," Kane Ace M-711 "," Kane Ace MR-01 ", manufactured by Ube Industries, Ltd. of" UBESTA XPA ", and the like.
 エラストマーの配合量は、樹脂成分およびガラス繊維を含む成分100質量部に対し、0.5~10質量部であり、1~8質量部がより好ましく、1.5~5質量部がさらに好ましい。本発明の樹脂組成物は、エラストマーを1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。 The blending amount of the elastomer is 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, and further preferably 1.5 to 5 parts by mass with respect to 100 parts by mass of the component including the resin component and the glass fiber. The resin composition of the present invention may contain only one type of elastomer or two or more types. When two or more types are included, the total amount falls within the above range.
<レーザーダイレクトストラクチャリング添加剤(LDS添加剤)>
 本発明の樹脂組成物は、銅およびクロムを含むLDS添加剤を含む。銅およびクロムを含むLDS添加剤を用いることで、難燃性およびメッキ性を向上させることができる。
 本発明におけるLDS添加剤は、ポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、ユーピロン(登録商標)、S-3000F)100質量部に対し、LDS添加剤と考えられる添加剤を4質量部添加し、1064nmのYAGレーザーを用い、出力2.6~13Wの範囲のいずれか、速度1~2m/sのいずれか、周波数10~50μsの範囲のいずれかの条件でレーザー照射により印字し、続いて、試験片を硫酸にて脱脂後、キザイ社製THPアルカリアクチ及びTHPアルカリアクセで処理後、キザイ社製SELカッパ―にてメッキ処理を適用したときに、メッキを形成できる化合物をいう。本発明で用いるLDS添加剤は、合成品であってもよいし、市販品を用いてもよい。また、市販品はLDS添加剤として市販されているものの他、本発明におけるLDS添加剤の要件を満たす限り、他の用途として販売されている物質であってもよい。
<Laser direct structuring additive (LDS additive)>
The resin composition of the present invention includes an LDS additive containing copper and chromium. By using an LDS additive containing copper and chromium, flame retardancy and plating properties can be improved.
The LDS additive in the present invention is obtained by adding 4 parts by mass of an additive considered to be an LDS additive to 100 parts by mass of polycarbonate resin (manufactured by Mitsubishi Engineering Plastics, Iupilon (registered trademark), S-3000F) at 1064 nm. YAG laser is used to print by laser irradiation under any of the conditions of output 2.6 to 13 W, speed 1 to 2 m / s, frequency 10 to 50 μs, and then test This refers to a compound capable of forming a plating when a piece is degreased with sulfuric acid, treated with THP alkaline acti and THP alkaline acce manufactured by Kizai, and then plated with a SEL copper manufactured by Kizai. The LDS additive used in the present invention may be a synthetic product or a commercial product. Moreover, as long as the commercially available product satisfies the requirements for the LDS additive in the present invention, it may be a material sold for other uses as well as those marketed as LDS additives.
 本発明におけるLDS添加剤は、銅およびクロムを含んでいれば特に限定されない。本発明におけるLDS添加剤としては、銅を10~30質量%含むことが好ましい。また、クロムを15~50質量%含むことが好ましい。
 本発明におけるLDS添加剤は、銅およびクロムを含む酸化物であることが好ましい。
The LDS additive in the present invention is not particularly limited as long as it contains copper and chromium. The LDS additive in the present invention preferably contains 10 to 30% by mass of copper. Further, it is preferable to contain 15 to 50% by mass of chromium.
The LDS additive in the present invention is preferably an oxide containing copper and chromium.
 本発明におけるLDS添加剤は、スピネル構造体が好ましい。スピネル構造体とは、複酸化物でAB24型の化合物(AとBは金属元素)にみられる代表的結晶構造型の一つである。すなわち、本発明では、銅およびクロムを含む酸化物である、スピネル構造体がより好ましい。 The LDS additive in the present invention is preferably a spinel structure. A spinel structure is one of the typical crystal structure types found in double oxide AB 2 O 4 type compounds (A and B are metal elements). That is, in the present invention, a spinel structure which is an oxide containing copper and chromium is more preferable.
 LDS添加剤は、銅およびクロムの他に、他の金属を微量含んでいてもよい。他の金属としては、アンチモン、スズ、鉛、インジウム、鉄、コバルト、ニッケル、亜鉛、カドミウム、銀、ビスマス、ヒ素、マンガン、マグネシウム、カルシウムなどが例示される。これら金属は酸化物として存在していてもよい。これら金属の含有量は、それぞれ0.001質量%以下が好ましい。 The LDS additive may contain a trace amount of other metals in addition to copper and chromium. Examples of other metals include antimony, tin, lead, indium, iron, cobalt, nickel, zinc, cadmium, silver, bismuth, arsenic, manganese, magnesium, calcium, and the like. These metals may exist as oxides. The content of these metals is preferably 0.001% by mass or less.
 LDS添加剤の粒子径は、0.01~50μmであることが好ましく、0.05~30μmであることがより好ましい。このような構成とすることにより、メッキを適応した際のメッキ表面状態の均一性が良好になる傾向にある。 The particle size of the LDS additive is preferably 0.01 to 50 μm, more preferably 0.05 to 30 μm. By adopting such a configuration, the uniformity of the plating surface state tends to be good when plating is applied.
 LDS添加剤の配合量は、樹脂成分およびガラス繊維を含む成分100質量部に対し、5~20質量部であり、6~15質量部が好ましく、8~13質量部がより好ましい。配合量が20質量部以上配合すると、衝撃性が低下したり、樹脂成分中のポリカーボネート樹脂が分解したり、難燃性が劣ってしまう。
 本発明の樹脂組成物は、LDS添加剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。
The blending amount of the LDS additive is 5 to 20 parts by mass, preferably 6 to 15 parts by mass, and more preferably 8 to 13 parts by mass with respect to 100 parts by mass of the component including the resin component and the glass fiber. When the blending amount is 20 parts by mass or more, the impact property is lowered, the polycarbonate resin in the resin component is decomposed, or the flame retardancy is inferior.
The resin composition of the present invention may contain only one type of LDS additive, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
<難燃剤>
本発明の樹脂組成物は、ホスファゼン化合物および縮合リン酸エステルから選択される少なくとも1種の難燃剤を含む。
 難燃剤の配合量は、樹脂成分およびガラス繊維を含む成分100質量部に対し、5~30質量部であり、6~25質量部が好ましく、10~20質量部がより好ましく、8~18質量部が特に好ましい。
 本発明の樹脂組成物は、ホスファゼン化合物および縮合リン酸エステルから選択される少なくとも1種の難燃剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。
 具体的には、1種又は2種以上のホフファゼン化合物のみ含み、縮合リン酸エステルを含まない態様、1種又は2種以上の縮合リン酸エステルのみ含み、ホフファゼン化合物を含まない態様、1種又は2種以上のホフファゼン化合物と1種又は2種以上の縮合リン酸エステルを含む態様が挙げられる。
 難燃剤を2種類以上含む場合は、合計量が上記範囲となる。
<Flame Retardant>
The resin composition of the present invention contains at least one flame retardant selected from phosphazene compounds and condensed phosphate esters.
The blending amount of the flame retardant is 5 to 30 parts by weight, preferably 6 to 25 parts by weight, more preferably 10 to 20 parts by weight, with respect to 100 parts by weight of the component including the resin component and the glass fiber. Part is particularly preferred.
The resin composition of the present invention may contain only one type of at least one flame retardant selected from phosphazene compounds and condensed phosphate esters, or may contain two or more types.
Specifically, an embodiment that includes only one or two or more phosphazene compounds and does not include a condensed phosphate ester, an embodiment that includes only one or two or more condensed phosphate esters, and does not include a hofphazene compound, The aspect containing 2 or more types of phosphazene compounds and 1 type, or 2 or more types of condensed phosphate ester is mentioned.
When 2 or more types of flame retardants are included, the total amount is in the above range.
<<ホスファゼン化合物>>
 本発明の樹脂組成物は、ホスファゼン化合物を含む。ホスファゼン化合物を配合させることで、難燃性を向上させることができる。
 ホスファゼン化合物は、分子中に-P=N-結合を有する有機化合物であり、好ましくは、下記一般式(1)で表される環状ホスファゼン化合物、下記一般式(2)で表される鎖状ホスファゼン化合物、ならびに、下記一般式(1)及び下記一般式(2)からなる群より選択される少なくとも一種のホスファゼン化合物が架橋基によって架橋されてなる架橋ホスファゼン化合物からなる群より選択される少なくとも1種の化合物である。
<< Phosphazene Compound >>
The resin composition of the present invention contains a phosphazene compound. By blending a phosphazene compound, flame retardancy can be improved.
The phosphazene compound is an organic compound having —P═N— bond in the molecule, preferably a cyclic phosphazene compound represented by the following general formula (1), a chain phosphazene represented by the following general formula (2) A compound, and at least one selected from the group consisting of a crosslinked phosphazene compound in which at least one phosphazene compound selected from the group consisting of the following general formula (1) and the following general formula (2) is crosslinked by a crosslinking group It is a compound of this.
Figure JPOXMLDOC01-appb-C000001
 式(1)中、aは3~25の整数であり、R1及びR2は、同一又は異なっていてもよく、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリロキシ基、アミノ基、ヒドロキシ基、アリール基又はアルキルアリール基を示す。
Figure JPOXMLDOC01-appb-C000001
In the formula (1), a is an integer of 3 to 25, R 1 and R 2 may be the same or different, and an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group, A hydroxy group, an aryl group or an alkylaryl group is shown.
Figure JPOXMLDOC01-appb-C000002
 式(2)中、bは3~10000の整数であり、R3及びR4は、同一又は異なっていてもよく、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリロキシ基、アミノ基、ヒドロキシ基、アリール基又はアルキルアリール基を示す。
 R5は、-N=P(OR33基、-N=P(OR43基、-N=P(O)OR3基、-N=P(O)OR4基から選ばれる少なくとも1種を示し、R6は、-P(OR34基、-P(OR44基、-P(O)(OR32基、-P(O)(OR42基から選ばれる少なくとも1種を示す。
Figure JPOXMLDOC01-appb-C000002
In the formula (2), b is an integer of 3 to 10000, R 3 and R 4 may be the same or different, and an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group, A hydroxy group, an aryl group or an alkylaryl group is shown.
R 5 is selected from —N═P (OR 3 ) 3 groups, —N═P (OR 4 ) 3 groups, —N═P (O) OR 3 groups, and —N═P (O) OR 4 groups. R 6 represents at least one type, and R 6 represents —P (OR 3 ) 4 group, —P (OR 4 ) 4 group, —P (O) (OR 3 ) 2 group, —P (O) (OR 4 ) 2 At least one selected from the group is shown.
 上記式(1)及び式(2)中、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等が挙げられるが、通常メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基等の炭素数1~6のアルキル基が好ましく、メチル基、エチル基、プロピル基等の炭素数1~4のアルキル基が特に好ましい。 In the above formulas (1) and (2), examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, and a decyl group. An alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group and a hexyl group. Particularly preferred are alkyl groups having 1 to 4 carbon atoms such as ethyl group and propyl group.
 シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数5~14のシクロアルキル基が挙げられるが、中でも炭素数5~8のシクロアルキル基が好ましい。 Examples of the cycloalkyl group include a cycloalkyl group having 5 to 14 carbon atoms such as a cyclopentyl group and a cyclohexyl group, among which a cycloalkyl group having 5 to 8 carbon atoms is preferable.
 アルケニル基としては、例えば、ビニル基、アリル基等の炭素数2~8のアルケニル基が挙げられ、シクロアルケニル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数5~12のシクロアルケニル基が挙げられる。 Examples of the alkenyl group include alkenyl groups having 2 to 8 carbon atoms such as vinyl group and allyl group. Examples of the cycloalkenyl group include cycloalkenyl groups having 5 to 12 carbon atoms such as cyclopentyl group and cyclohexyl group. Is mentioned.
 アルキニル基としては、例えば、エチニル基、プロピニル基等の炭素数2~8のアルキニル基やエチニルベンゼン基等のアリール等も挙げられる。 Examples of the alkynyl group include alkynyl groups having 2 to 8 carbon atoms such as ethynyl group and propynyl group, and aryl such as ethynylbenzene group.
 上記アリール基としては、例えば、フェニル基、メチルフェニル(即ち、トリル)基、ジメチルフェニル(即ち、キシリル)基、トリメチルフェニル基、ナフチル基等の炭素数6~20のアリール基が挙げられるが、なかでも炭素数6~10のアリール基が好ましく、フェニル基が特に好ましい。 Examples of the aryl group include aryl groups having 6 to 20 carbon atoms such as a phenyl group, a methylphenyl (ie, tolyl) group, a dimethylphenyl (ie, xylyl) group, a trimethylphenyl group, and a naphthyl group. Of these, an aryl group having 6 to 10 carbon atoms is preferable, and a phenyl group is particularly preferable.
 アルキルアリール基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基等の炭素数6~20のアラルキル基が挙げられるが、なかでも炭素数7~10のアラルキル基が好ましく、ベンジル基が特に好ましい。 Examples of the alkylaryl group include aralkyl groups having 6 to 20 carbon atoms such as benzyl group, phenethyl group, and phenylpropyl group. Among them, aralkyl groups having 7 to 10 carbon atoms are preferable, and benzyl group is particularly preferable. .
 なかでも、上記一般式(1)におけるR1及びR2、上記一般式(2)におけるR3及びR4が、アリール基、アリールアルキル基であるものが好ましい。このような芳香族ホスファゼンを用いることで、樹脂組成物の熱安定性を効果的に高めることができる。このような観点より、上記R1、R2、R3及びR4は、アリール基であることがより好ましく、フェニル基であることが特に好ましい。 Among these, those in which R 1 and R 2 in the general formula (1) and R 3 and R 4 in the general formula (2) are an aryl group and an arylalkyl group are preferable. By using such an aromatic phosphazene, the thermal stability of the resin composition can be effectively increased. From such a viewpoint, R 1 , R 2 , R 3 and R 4 are more preferably aryl groups, and particularly preferably phenyl groups.
 一般式(1)及び(2)で表される環状及び/又は鎖状ホスファゼン化合物としては、例えば、フェノキシホスファゼン、o-トリルオキシホスファゼン、m-トリルオキシホスファゼン、p-トリルオキシホスファゼン等の(ポリ)トリルオキシホスファゼン、o,m-キシリルオキシホスファゼン、o,p-キシリルオキシホスファゼン、m,p-キシリルオキシホスファゼン等の(ポリ)キシリルオキシホスファゼン、o,m,p-トリメチルフェニルオキシホスファゼン、フェノキシo-トリルオキシホスファゼン、フェノキシm-トリルオキシホスファゼン、フェノキシp-トリルオキシホスファゼン等の(ポリ)フェノキシトリルオキシホスファゼン、フェノキシo,m-キシリルオキシホスファゼン、フェノキシo,p-キシリルオキシホスファゼン、フェノキシm,p-キシリルオキシホスファゼン等(ポリ)フェノキシトリルオキシキシリルオキシホスファゼン、フェノキシo,m,p-トリメチルフェニルオキシホスファゼン等が例示でき、好ましくは環状及び/又は鎖状フェノキシホスファゼン等である。 Examples of the cyclic and / or chain phosphazene compounds represented by the general formulas (1) and (2) include, for example, (polyoxyphosphazene, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene, etc. ) (Poly) xylyloxyphosphazenes such as tolyloxyphosphazene, o, m-xylyloxyphosphazene, o, p-xylyloxyphosphazene, m, p-xylyloxyphosphazene, o, m, p-trimethylphenyloxy (Poly) phenoxytolyloxyphosphazenes such as phosphazene, phenoxy o-tolyloxyphosphazene, phenoxy m-tolyloxyphosphazene, phenoxy p-tolyloxyphosphazene, phenoxy o, m-xylyloxyphosphazene, phenoxy o, p-ki Examples include (poly) phenoxytolyloxyxylyloxyphosphazene, phenoxy o, m, p-trimethylphenyloxyphosphazene, etc., preferably cyclic and / or chain phenoxy Such as phosphazene.
 一般式(1)で表される環状ホスファゼン化合物としては、R1及びR2がフェニル基である環状フェノキシホスファゼンが特に好ましい。このような環状フェノキシホスファゼン化合物としては、例えば、塩化アンモニウムと五塩化リンとを120~130℃の温度で反応させて得られる環状及び直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後にフェノキシ基で置換して得られる、フェノキシシクロトリホスファゼン、オクタフェノキシシクロテトラホスファゼン、デカフェノキシシクロペンタホスファゼン等の化合物が挙げられる。また、環状フェノキシホスファゼン化合物は、一般式(1)中のaが3~8の整数である化合物が好ましく、aの異なる化合物の混合物であってもよい。 As the cyclic phosphazene compound represented by the general formula (1), cyclic phenoxyphosphazene in which R 1 and R 2 are phenyl groups is particularly preferable. Examples of such cyclic phenoxyphosphazene compounds include hexachlorocyclotriphosphazene, octachlorochloromethane, and a mixture of cyclic and linear chlorophosphazene obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C. Examples include compounds such as phenoxycyclotriphosphazene, octaphenoxycyclotetraphosphazene, and decaffenoxycyclopentaphosphazene obtained by removing a cyclic chlorophosphazene such as cyclotetraphosphazene and decachlorocyclopentaphosphazene and then substituting with a phenoxy group. . The cyclic phenoxyphosphazene compound is preferably a compound in which a in the general formula (1) is an integer of 3 to 8, and may be a mixture of compounds having different a.
 上記aの平均は、3~5であることが好ましく、3~4であることがより好ましい。また、なかでも、a=3のものが50質量%以上、a=4のものが10~40質量%、a=5以上のものが合わせて30質量%以下である化合物の混合物が好ましい。 The average a is preferably 3 to 5, more preferably 3 to 4. Of these, a mixture of compounds in which a = 3 is 50% by mass or more, a = 4 is 10 to 40% by mass, and a = 5 or more is 30% by mass or less in total.
 一般式(2)で表される鎖状ホスファゼン化合物としては、R3及びR4がフェニル基である鎖状フェノキシホスファゼンが特に好ましい。このような鎖状フェノキシホスファゼン化合物は、例えば、上記の方法で得られるヘキサクロロシクロトリホスファゼンを220~250℃の温度で開還重合し、得られた重合度3~10000の直鎖状ジクロロホスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。直鎖状フェノキシホスファゼン化合物の、一般式(2)中のbは、好ましくは3~1000、より好ましくは3~100、さらに好ましくは3~25である。 As the chain phosphazene compound represented by the general formula (2), chain phenoxyphosphazene in which R 3 and R 4 are phenyl groups is particularly preferable. Such a chain phenoxyphosphazene compound is obtained by, for example, subjecting hexachlorocyclotriphosphazene obtained by the above method to reversion polymerization at a temperature of 220 to 250 ° C., and obtaining a linear dichlorophosphazene having a polymerization degree of 3 to 10,000. Examples include compounds obtained by substitution with a phenoxy group. In the general formula (2), b in the linear phenoxyphosphazene compound is preferably 3 to 1000, more preferably 3 to 100, and still more preferably 3 to 25.
 架橋ホスファゼン化合物としては、例えば、4,4'-スルホニルジフェニレン(すなわち、ビスフェノールS残基)の架橋構造を有する化合物、2,2-(4,4'-ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4'-オキシジフェニレン基の架橋構造を有する化合物、4,4'-チオジフェニレン基の架橋構造を有する化合物等の、4,4'-ジフェニレン基の架橋構造を有する化合物等が挙げられる。 Examples of the bridged phosphazene compound include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (that is, a bisphenol S residue), and a crosslinked structure of 2,2- (4,4′-diphenylene) isopropylidene group. Compounds having a crosslinked structure of 4,4′-diphenylene group, such as compounds having a crosslinked structure of 4,4′-oxydiphenylene group, and compounds having a crosslinked structure of 4,4′-thiodiphenylene group Etc.
 また、架橋ホスファゼン化合物としては、一般式(1)においてR1、R2がフェニル基である環状フェノキシホスファゼン化合物が上記架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物、又は、上記一般式(2)においてR3、R4がフェニル基である鎖状フェノキシホスファゼン化合物が上記架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物が難燃性の点から好ましく、環状フェノキシホスファゼン化合物が上記架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物がより好ましい。
 また、架橋フェノキシホスファゼン化合物中のフェニレン基の含有量は、一般式(1)で表される環状ホスファゼン化合物及び/又は一般式(2)で表される鎖状フェノキシホスファゼン化合物中の全フェニル基及びフェニレン基数を基準として、通常50~99.9%、好ましくは70~90%である。また、架橋フェノキシホスファゼン化合物は、その分子内にフリーの水酸基を有しない化合物であることが特に好ましい。
In addition, as the crosslinked phosphazene compound, a crosslinked phenoxyphosphazene compound in which a cyclic phenoxyphosphazene compound in which R 1 and R 2 are phenyl groups in the general formula (1) is crosslinked by the above-mentioned crosslinking group, or the above general formula (2) In the above, a crosslinked phenoxyphosphazene compound in which a chain phenoxyphosphazene compound in which R 3 and R 4 are phenyl groups is crosslinked by the crosslinking group is preferable from the viewpoint of flame retardancy, and the cyclic phenoxyphosphazene compound is crosslinked by the crosslinking group. A crosslinked phenoxyphosphazene compound is more preferable.
The content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (1) and / or the all phenyl groups in the chain phenoxyphosphazene compound represented by the general formula (2) and Based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%. The crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.
 本発明においては、ホスファゼン化合物は、上記一般式(1)で表される環状フェノキシホスファゼン化合物、及び、上記一般式(1)で表される環状フェノキシホスファゼン化合物が架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物よる成る群から選択される少なくとも1種であることが、樹脂組成物の難燃性及び機械的特性の点から好ましい。 In the present invention, the phosphazene compound is a crosslinked phenoxy obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (1) and the cyclic phenoxyphosphazene compound represented by the general formula (1) with a crosslinking group. In view of the flame retardancy and mechanical properties of the resin composition, at least one selected from the group consisting of phosphazene compounds is preferable.
<<縮合リン酸エステル>>
 本発明の樹脂組成物は、縮合リン酸エステルを含む。縮合リン酸エステルを配合させることで、難燃性を向上させることができる。
 縮合リン酸エステルとしては、下記の一般式(1)で表されるものであるのが好ましい。
<< Condensed phosphate ester >>
The resin composition of the present invention contains a condensed phosphate ester. Flame retardance can be improved by blending the condensed phosphate ester.
The condensed phosphate ester is preferably represented by the following general formula (1).
一般式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、R1、R2、R3およびR4は、それぞれ独立して水素原子または有機基を表す。ただし、R1、R2、R3およびR4が全て水素原子の場合を除く。Xは2価の有機基を表し、pは0または1であり、qは1以上の整数、rは0または1以上の整数を表す。)
General formula (1)
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an organic group, except that R 1 , R 2 , R 3 and R 4 are all hydrogen atoms. X represents a divalent organic group, p is 0 or 1, q represents an integer of 1 or more, and r represents 0 or an integer of 1 or more.)
 上記の一般式(1)において、有機基とは、例えば、置換基を有する、または有しないアルキル基、シクロアルキル基、アリール基が挙げられ、上記置換基は、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ハロゲン原子、ハロゲン化アリール基等が挙げられる。またこれらの置換基を組み合わせた基、あるいはこれらの置換基を酸素原子、イオウ原子、窒素原子などにより結合して組み合わせた基などでもよい。また2価の有機基とは、上記の有機基から炭素原子1個を除いてできる2価以上の基をいう。例えば、アルキレン基、フェニレン基、置換フェニレン基、ビスフェノール類から誘導されるような多核フェニレン基などが挙げられる。 In the above general formula (1), examples of the organic group include an alkyl group, a cycloalkyl group, and an aryl group, which may or may not have a substituent, and the substituent includes an alkyl group, an alkoxy group, and an alkylthio group. Aryl group, aryloxy group, arylthio group, halogen atom, halogenated aryl group and the like. Further, a group in which these substituents are combined, or a group in which these substituents are combined by combining with an oxygen atom, a sulfur atom, a nitrogen atom, or the like may be used. The divalent organic group refers to a divalent or higher group formed by removing one carbon atom from the above organic group. Examples thereof include an alkylene group, a phenylene group, a substituted phenylene group, and a polynuclear phenylene group derived from bisphenols.
 上記の一般式(1)で示される縮合リン酸エステルの具体例としては、例えば、トリメチルフォスフェート、トリエチルフォスフェート、トリブチルフォスフェート、トリオクチルフォスフェート、トリフェニルフォスフェート、トリクレジルフォスフェート、トリクレジルフェニルフォスフェート、オクチルジフェニルフォスフェート、ジイソプロピルフェニルフォスフェート、トリス(クロルエチル)フォスフェート、トリス(ジクロルプロピル)フォスフェート、トリス(クロルプロピル)フォスフェート、ビス(2,3-ジブロモプロピル)フォスフェート、ビス(2,3-ジブロモプロピル)-2,3-ジクロルフォスフェート、ビス(クロルプロピル)モノオクチルフォスフェート、ビスフェノールAテトラフェニルフォスフェート、ビスフェノールAテトラクレジルジフォスフェート、ビスフェノールAテトラキシリルジフォスフェート、ヒドロキノンテトラフェニルジフォスフェート、ヒドロキノンテトラクレジルフォスフェート、ヒドロキノンテトラキシリルジフォスフェート等の種々のものが例示される。
 また、市販の縮合リン酸エステルとしては、例えば、大八化学工業(株)より「CR733S」(レゾルシノールビス(ジフェニルホスフェート))、「CR741」(ビスフェノールAビス(ジフェニルホスフェート))、「PX-200」(レゾルシノールビス(ジキシレニルホスフェート))、旭電化工業(株)より「アデカスタブFP-700」(2,2-ビス(p-ヒドロキシフェニル)プロパン・トリクロロホスフィンオキシド重縮合物(重合度1~3)のフェノール縮合物)といった商品名で販売されており、容易に入手可能である。
Specific examples of the condensed phosphate ester represented by the general formula (1) include, for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, Tricresyl phenyl phosphate, octyl diphenyl phosphate, diisopropyl phenyl phosphate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) phosphate, bis (2,3-dibromopropyl) Phosphate, bis (2,3-dibromopropyl) -2,3-dichlorophosphate, bis (chloropropyl) monooctyl phosphate, bisphenol A tetraphenyl phosphate DOO, bisphenol A tetra cresyl diphosphate, bisphenol A tetra xylylene distearate phosphate, hydroquinone tetraphenyl diphosphate, hydroquinone tetra cresyl phosphate, various ones such as hydroquinone tetra xylylene distearate phosphate are exemplified.
Examples of commercially available condensed phosphate esters include “CR733S” (resorcinol bis (diphenyl phosphate)), “CR741” (bisphenol A bis (diphenyl phosphate)), “PX-200” from Daihachi Chemical Industry Co., Ltd. (Resorcinol bis (dixylenyl phosphate)), “Adekastab FP-700” (2,2-bis (p-hydroxyphenyl) propane / trichlorophosphine oxide polycondensate (polymerization degree 1 to 4) from Asahi Denka Kogyo Co., Ltd. It is sold under the trade name such as 3) phenol condensate and is readily available.
<ポリテトラフルオロエチレン>
 本発明の樹脂組成物は、ポリテトラフルオロエチレン(PTFE)を含有する。ポリテトラフルオロエチレンとしては、フィブリル形成能を有するポリテトラフルオロエチレンが好ましい。フィブリル形成能を有するポリテトラフルオロエチレンはASTM規格でタイプ3に分類される。フィブリル形成能を有するポリテトラフルオロエチレンとしては、例えば三井・デュポンフロロケミカル(株)製のテフロン(登録商標)6-Jや、ダイキン化学工業(株)製のポリフロンF201L、FA500B、FA500Cが挙げられる。また、ポリテトラフルオロエチレンの水性分散液として、ダイキン化学工業(株)製のフルオンD-1や、ビニル系単量体を重合してなる多層構造を有するポリテトラフルオロエチレン化合物が挙げられる。いずれのタイプも本発明の樹脂組成物に用いることができる。
<Polytetrafluoroethylene>
The resin composition of the present invention contains polytetrafluoroethylene (PTFE). As polytetrafluoroethylene, polytetrafluoroethylene having fibril forming ability is preferable. Polytetrafluoroethylene having fibril-forming ability is classified as type 3 according to the ASTM standard. Examples of polytetrafluoroethylene having fibril-forming ability include Teflon (registered trademark) 6-J manufactured by Mitsui / Dupont Fluorochemical Co., Ltd., and Polyflon F201L, FA500B, and FA500C manufactured by Daikin Chemical Industries, Ltd. . Examples of the aqueous dispersion of polytetrafluoroethylene include Fluon D-1 manufactured by Daikin Chemical Industries, Ltd. and a polytetrafluoroethylene compound having a multilayer structure obtained by polymerizing a vinyl monomer. Any type can be used for the resin composition of the present invention.
 ポリテトラフルオロエチレンを含有した樹脂組成物を射出成形した成形品の外観をより向上させるためには、有機系重合体で被覆された特定の被覆ポリテトラフルオロエチレン(以下、被覆ポリテトラフルオロエチレンと略記することがある)を使用することができる。特定の被覆ポリテトラフルオロエチレンとは、被覆ポリテトラフルオロエチレン中のポリテトラフルオロエチレンの含有比率が40~95質量%の範囲内となるものであり、中でも、43~80質量%、更には45~70質量%、特には47~60質量%となるものが好ましい。特定の被覆ポリテトラフルオロエチレンとしては、例えば三菱レイヨン社製のメタブレンA-3800、A-3700、KA-5503や、PIC社製のPoly TS AD001等が使用できる。 In order to further improve the appearance of a molded article obtained by injection molding a resin composition containing polytetrafluoroethylene, a specific coated polytetrafluoroethylene (hereinafter referred to as coated polytetrafluoroethylene and coated with an organic polymer) is used. May be abbreviated). The specific coated polytetrafluoroethylene is one in which the content ratio of polytetrafluoroethylene in the coated polytetrafluoroethylene falls within the range of 40 to 95% by mass, of which 43 to 80% by mass, and further 45 It is preferable that the amount is ˜70% by mass, particularly 47 to 60% by mass. As the specific coated polytetrafluoroethylene, for example, Metablene A-3800, A-3700, KA-5503 manufactured by Mitsubishi Rayon Co., Ltd., PolyPTS AD001 manufactured by PIC Co., etc. can be used.
 ポリテトラフルオロエチレンの配合量は、樹脂成分およびガラス繊維を含む成分100質量部に対し、0.1~1質量部であり、0.2~0.8質量部がより好ましく、0.3~0.6質量部が特に好ましい。なお、被覆ポリテトラフルオロエチレンの場合、添加量はポリテトラフルオロエチレン純分の量に相当する。ポリテトラフルオロエチレンの配合量が0.1質量部未満の場合には、難燃効果としては不十分であり、一方、1質量部を超えると成形品外観の低下が起こる場合がある。
 本発明の樹脂組成物は、ポリテトラフルオロエチレンを1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。
The blending amount of polytetrafluoroethylene is 0.1 to 1 part by weight, more preferably 0.2 to 0.8 part by weight, with respect to 100 parts by weight of the component containing the resin component and glass fiber. 0.6 parts by weight is particularly preferred. In the case of coated polytetrafluoroethylene, the amount added corresponds to the amount of pure polytetrafluoroethylene. When the blending amount of polytetrafluoroethylene is less than 0.1 parts by mass, the flame retardant effect is insufficient. On the other hand, when it exceeds 1 part by mass, the appearance of the molded product may be deteriorated.
The resin composition of the present invention may contain only one type of polytetrafluoroethylene or two or more types. When two or more types are included, the total amount falls within the above range.
<有機リン系安定剤>
 本発明の樹脂組成物は、有機リン系安定剤を含むことが好ましい。有機リン系安定剤を配合することで、LDS添加剤によるポリカーボネート樹脂を分解しにくくし、本発明の効果がより効果的に発揮される。有機リン系安定剤としては、特開2009-35691号公報の段落番号0073~0095の記載を参酌でき、これらの内容は本願明細書に組み込まれる。より好ましい有機リン系安定剤としては、下記一般式(3)で表される化合物である。
<Organic phosphorus stabilizer>
The resin composition of the present invention preferably contains an organic phosphorus stabilizer. By blending the organophosphorus stabilizer, the polycarbonate resin by the LDS additive is hardly decomposed, and the effect of the present invention is more effectively exhibited. As the organophosphorous stabilizer, the description in paragraphs 0073 to 0095 of JP2009-35691A can be referred to, and the contents thereof are incorporated in the present specification. A more preferable organophosphorus stabilizer is a compound represented by the following general formula (3).
一般式(3)
O=P(OH)m(OR)3-m・・・(3)
(一般式(3)中、Rはアルキル基またはアリール基であり、それぞれ同一であっても異なっていてもよい。mは0~2の整数である。)
 Rは炭素数1~30のアルキル基または、炭素数6~30のアリール基であることが好ましく、炭素数2~25のアルキル基、フェニル基、ノニルフェニル基、ステアリルフェニル基、2,4-ジtert-ブチルフェニル基、2,4-ジtert-ブチルメチルフェニル基、トリル基がより好ましい。
General formula (3)
O = P (OH) m (OR) 3-m (3)
(In general formula (3), R is an alkyl group or an aryl group, which may be the same or different. M is an integer of 0 to 2.)
R is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and an alkyl group having 2 to 25 carbon atoms, a phenyl group, a nonylphenyl group, a stearylphenyl group, 2,4- More preferred are a ditert-butylphenyl group, a 2,4-ditert-butylmethylphenyl group, and a tolyl group.
 中でも、下記一般式(3’)で表されるリン酸エステルが好ましい。 Of these, phosphate esters represented by the following general formula (3 ') are preferred.
O=P(OH)m'(OR’)3-m'・・・(3’)
 一般式(3’)中、R’は炭素数2~25のアルキル基であり、それぞれ同一であっても異なっていてもよい。m’は1または2である。ここで、アルキル基としては、オクチル基、2-エチルヘキシル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基などが挙げられ、テトラデシル基、ヘキサデシル基およびオクタデシル基が好ましく、オクタデシル基が特に好ましい。
O = P (OH) m ′ (OR ′) 3-m ′ (3 ′)
In general formula (3 ′), R ′ is an alkyl group having 2 to 25 carbon atoms, which may be the same or different. m ′ is 1 or 2. Here, examples of the alkyl group include octyl group, 2-ethylhexyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group, tetradecyl group, hexadecyl group, octadecyl group and the like. A tetradecyl group, a hexadecyl group and an octadecyl group are preferable, and an octadecyl group is particularly preferable.
 リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4-ジフェニレンホスフォナイト、モノステアリルアシッドホスフェート、ジステアリルアシッドホスフェート等が挙げられる。 Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyldiphenyl phosphate, tetrakis (2,4-di-). tert-butylphenyl) -4,4-diphenylene phosphonite, monostearyl acid phosphate, distearyl acid phosphate and the like.
 亜リン酸エステルとしては、下記一般式(4)で表される化合物も好ましい。
一般式(4)
Figure JPOXMLDOC01-appb-C000004
(一般式(4)中、R'は、アルキル基またはアリール基であり、各々同一でも異なっていてもよい。)
 R'は炭素数1~25のアルキル基または、炭素数6~12のアリール基であることが好ましい。R’がアルキル基である場合、炭素数1~30のアルキル基が好ましい。R’がアリール基である場合、炭素数6~30のアリール基が好ましい。
As the phosphite, a compound represented by the following general formula (4) is also preferable.
General formula (4)
Figure JPOXMLDOC01-appb-C000004
(In general formula (4), R ′ is an alkyl group or an aryl group, and each may be the same or different.)
R ′ is preferably an alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 12 carbon atoms. When R ′ is an alkyl group, an alkyl group having 1 to 30 carbon atoms is preferable. When R ′ is an aryl group, an aryl group having 6 to 30 carbon atoms is preferable.
 亜リン酸エステルとしては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリノニルホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリシクロヘキシルホスファイト、モノブチルジフエニルホスファイト、モノオクチルジフエニルホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の亜リン酸のトリエステル、ジエステル、モノエステル等が挙げられる。 Examples of phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinonyl phosphite, tridecyl phosphite, trioctyl phosphite , Trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tricyclohexyl phosphite, monobutyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol phosphite Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, etc. Triesters of acid, diesters, monoesters, and the like.
 本発明の樹脂組成物がリン系安定剤を含む場合、リン系安定剤の配合量は、樹脂成分およびガラス繊維を含む成分100質量部に対し、0.01~5質量が好ましく、0.05~1.0質量部がより好ましく、0.08~0.5質量部がさらに好ましく、0.08~0.3質量部が特に好ましい。0.01質量部以上とすることで、LDS添加剤によるポリカーボネート樹脂の分解をより効果的に抑制させることができ、5質量部以下とすることで、ガラス繊維とポリカーボネートとの密着強度を上げ、強度をより向上させることができる。 When the resin composition of the present invention contains a phosphorus stabilizer, the amount of the phosphorus stabilizer is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the component containing the resin component and the glass fiber. -1.0 part by mass is more preferable, 0.08-0.5 part by mass is more preferable, and 0.08-0.3 part by mass is particularly preferable. By setting it as 0.01 mass part or more, decomposition | disassembly of polycarbonate resin by an LDS additive can be suppressed more effectively, By making it 5 mass parts or less, the adhesive strength of glass fiber and a polycarbonate is raised, The strength can be further improved.
 本発明の樹脂組成物は、有機リン系安定剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となることが好ましい。 The resin composition of the present invention may contain only one type of organophosphorous stabilizer or two or more types. When two or more types are included, the total amount is preferably within the above range.
 本発明では、特に、有機リン系安定剤として、モノステアリルアシッドホスフェートおよび/またはジステアリルアシッドホスフェートを、樹脂成分およびガラス繊維100質量部に対し、5質量部以下が好ましく、1質量部以下がより好ましく、0.5質量部以下がさらに好ましく、0.3質量部以下が特に好ましく、0.25質量部以下が一層好ましい。また、下限値としては、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.08以上がさらに好ましい。
0.01質量部以上とすることにより、ポリカーボネート樹脂の分解を顕著に抑制でき、0.5質量部以下とすることにより、ガラス繊維との密着性を向上させ、機械的強度を顕著に向上させることができる。
In the present invention, monostearyl acid phosphate and / or distearyl acid phosphate as an organophosphorus stabilizer is preferably 5 parts by mass or less, more preferably 1 part by mass or less based on 100 parts by mass of the resin component and glass fiber. Preferably, 0.5 parts by mass or less is more preferable, 0.3 parts by mass or less is particularly preferable, and 0.25 parts by mass or less is more preferable. Moreover, as a lower limit, 0.01 mass part or more is preferable, 0.05 mass part or more is more preferable, and 0.08 or more is further more preferable.
By setting it as 0.01 mass part or more, decomposition | disassembly of polycarbonate resin can be suppressed notably, By making it 0.5 mass part or less, adhesiveness with glass fiber is improved and mechanical strength is improved notably. be able to.
<酸化防止剤>
 本発明の樹脂組成物は、酸化防止剤を含んでいてもよい。酸化防止剤としては、フェノール系酸化防止剤が好ましく、より具体的には、2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、トリス(3,5-ジ-t-ブチル-4―ヒドロキシベンジル)イソシアヌレート、4,4'-ブチリデンビス-(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-ヒドロキシ-5-メチルフェニル)プロピオネート]、および3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等が挙げられる。中でも、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンが好ましい。
 本発明の樹脂組成物が酸化防止剤を含む場合、酸化防止剤の配合量は、樹脂成分およびガラス繊維を含む成分100質量部に対し、0.01~5質量部であることが好ましく、0.05~3質量部がより好ましい。本発明の樹脂組成物は、酸化防止剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。
<Antioxidant>
The resin composition of the present invention may contain an antioxidant. As the antioxidant, a phenolic antioxidant is preferable, and more specifically, 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3- (3 ′, 5′-di- t-butyl-4′-hydroxyphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (3,5-di-t-butyl- 4-hydroxybenzyl) isocyanurate, 4,4′-butylidenebis- (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-hydroxy-5-methylphenyl) propionate And 3,9-bis {2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethyl Tilethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane and the like. Among them, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane is preferable.
When the resin composition of the present invention contains an antioxidant, the blending amount of the antioxidant is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component containing the resin component and the glass fiber. 0.05 to 3 parts by mass is more preferable. The resin composition of the present invention may contain only one kind of antioxidant or two or more kinds. When two or more types are included, the total amount falls within the above range.
<離型剤>
 本発明の樹脂組成物は、離型剤を含んでいてもよい。離型剤は、脂肪族カルボン酸、脂肪族カルボン酸エステル、および数平均分子量200~15000の脂肪族炭化水素化合物から選ばれる少なくとも1種の化合物が好ましい。中でも、脂肪族カルボン酸、および脂肪族カルボン酸エステルから選ばれる少なくとも1種の化合物がより好ましく用いられる。
<Release agent>
The resin composition of the present invention may contain a release agent. The release agent is preferably at least one compound selected from aliphatic carboxylic acids, aliphatic carboxylic acid esters, and aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15000. Among these, at least one compound selected from aliphatic carboxylic acids and aliphatic carboxylic acid esters is more preferably used.
 脂肪族カルボン酸としては、飽和または不飽和の脂肪族モノカルボン酸、ジカルボン酸またはトリカルボン酸を挙げることができる。本明細書では、脂肪族カルボン酸の用語は、脂環式カルボン酸も包含する意味で用いる。脂肪族カルボン酸の中でも、炭素数6~36のモノまたはジカルボン酸が好ましく、炭素数6~36の脂肪族飽和モノカルボン酸がより好ましい。このような脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、吉草酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、グルタル酸、アジピン酸、アゼライン酸等を挙げることができる。 Examples of the aliphatic carboxylic acid include saturated or unsaturated aliphatic monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid. In the present specification, the term “aliphatic carboxylic acid” is used to include alicyclic carboxylic acids. Among the aliphatic carboxylic acids, mono- or dicarboxylic acids having 6 to 36 carbon atoms are preferable, and aliphatic saturated monocarboxylic acids having 6 to 36 carbon atoms are more preferable. Specific examples of such aliphatic carboxylic acids include palmitic acid, stearic acid, valeric acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellic acid, and tetrariacontanoic acid. , Montanic acid, glutaric acid, adipic acid, azelaic acid and the like.
 脂肪族カルボン酸エステルを構成する脂肪族カルボン酸成分としては、前記脂肪族カルボン酸と同じものが使用できる。一方、脂肪族カルボン酸エステルを構成するアルコール成分としては、飽和または不飽和の1価アルコール、飽和または不飽和の多価アルコール等を挙げることができる。これらのアルコールは、フッ素原子、アリール基等の置換基を有していてもよい。これらのアルコールのうち、炭素数30以下の1価または多価の飽和アルコールが好ましく、さらに炭素数30以下の脂肪族飽和1価アルコールまたは多価アルコールが好ましい。ここで脂肪族アルコールは、脂環式アルコールも包含する。これらのアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等を挙げることができる。これらの脂肪族カルボン酸エステルは、不純物として脂肪族カルボン酸および/またはアルコールを含有していてもよく、複数の化合物の混合物であってもよい。脂肪族カルボン酸エステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸オクチルドデシル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレートを挙げることができる。 As the aliphatic carboxylic acid component constituting the aliphatic carboxylic acid ester, the same aliphatic carboxylic acid as that described above can be used. On the other hand, examples of the alcohol component constituting the aliphatic carboxylic acid ester include saturated or unsaturated monohydric alcohols and saturated or unsaturated polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Of these alcohols, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable. Here, the aliphatic alcohol also includes an alicyclic alcohol. Specific examples of these alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol. Etc. These aliphatic carboxylic acid esters may contain an aliphatic carboxylic acid and / or alcohol as impurities, and may be a mixture of a plurality of compounds. Specific examples of the aliphatic carboxylic acid ester include beeswax (mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, octyldodecyl behenate, glycerin monopalmitate, glycerin monostearate, glycerin Examples thereof include distearate, glycerin tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, and pentaerythritol tetrastearate.
 本発明の樹脂組成物が離型剤を含む場合、離型剤の配合量は、樹脂成分およびガラス繊維を含む成分100質量部に対し、0.01~5質量部であることが好ましく、0.05~3質量部がより好ましい。本発明の樹脂組成物は、離型剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。 When the resin composition of the present invention contains a release agent, the compounding amount of the release agent is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component containing the resin component and the glass fiber. 0.05 to 3 parts by mass is more preferable. The resin composition of the present invention may contain only one type of release agent, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
 本発明の樹脂組成物は、本発明の趣旨を逸脱しない範囲で、他の成分を含んでいてもよい。他の成分としては、リン系安定剤以外の安定剤、紫外線吸収剤、無機フィラー、蛍光増白剤、滴下防止剤、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、防菌剤などが挙げられる。これらは2種以上を併用してもよい。
 これらの成分については、特開2007-314766号公報、特開2008-127485号公報および特開2009-51989号公報、特開2012-72338号公報等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
The resin composition of the present invention may contain other components without departing from the spirit of the present invention. Other components include stabilizers other than phosphorus stabilizers, ultraviolet absorbers, inorganic fillers, fluorescent whitening agents, anti-dripping agents, antistatic agents, antifogging agents, lubricants, antiblocking agents, fluidity improvers, Plasticizers, dispersants, antibacterial agents and the like can be mentioned. Two or more of these may be used in combination.
Regarding these components, descriptions in JP2007-314766A, JP2008-127485A, JP2009-51989A, JP2012-72338A, and the like can be referred to, and the contents thereof are described in the present specification. Embedded in the book.
 本発明の樹脂組成物の製造方法は、特に定めるものではなく、公知の熱可塑性樹脂組成物の製造方法を広く採用できる。具体的には、各成分を、タンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練することによって樹脂組成物を製造することができる。 The method for producing the resin composition of the present invention is not particularly defined, and a wide variety of known methods for producing a thermoplastic resin composition can be adopted. Specifically, each component is mixed in advance using various mixers such as a tumbler or Henschel mixer, and then melt kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. By doing so, a resin composition can be produced.
 また、例えば、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明の樹脂組成物を製造することもできる。
 さらに、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明の樹脂組成物を製造することもできる。
Also, for example, without mixing each component in advance, or by mixing only a part of the components in advance, and supplying to an extruder using a feeder and melt-kneading to produce the resin composition of the present invention You can also.
Furthermore, for example, a resin composition obtained by mixing some components in advance, supplying them to an extruder and melt-kneading is used as a master batch, and this master batch is mixed with the remaining components again and melt-kneaded. The resin composition of the present invention can also be produced.
 本発明では、ホスファゼン化合物をマスターバッチとして、また、特定の顆粒状ホスファゼンとして配合することが好ましい。具体的には、以下の態様が例示される。
(第一の態様)
 第一の態様としては、質量平均分子量15000~55000の芳香族ポリカーボネート樹脂(A)40~65質量%と芳香族ホスファゼン化合物(B)35~60質量%とを溶融混練することによって得られることを特徴とする難燃剤マスターバッチであって、(A)成分と(B)成分の合計が95~100質量%であることを特徴とする難燃剤マスターバッチが例示される。このような構成とすることにより、樹脂と溶融混練する際の作業性にも優れ、さらには熱可塑性樹脂に配合した際に、難燃性、機械物性に優れる難燃剤マスターバッチが得られる。
(第二の態様)
 第二の態様としては、質量平均分子量5,000~55,000の芳香族ポリカーボネート樹脂(A)と芳香族ホスファゼン化合物(B)を加圧ニーダーにて溶融混練して得られる難燃剤マスターバッチである。このような構成とすることにより、難燃性と機械物性を効果的に且つ安定的に発現させることができる難燃剤マスターバッチが得られる。
In the present invention, the phosphazene compound is preferably blended as a master batch or as a specific granular phosphazene. Specifically, the following aspects are illustrated.
(First aspect)
The first embodiment is obtained by melt-kneading 40 to 65% by mass of an aromatic polycarbonate resin (A) having a mass average molecular weight of 15000 to 55000 and 35 to 60% by mass of an aromatic phosphazene compound (B). Examples of the flame retardant masterbatch are characterized in that the sum of the component (A) and the component (B) is 95 to 100% by mass. By setting it as such a structure, the workability at the time of melt-kneading with resin is excellent, and also when it mix | blends with a thermoplastic resin, the flame retardant masterbatch excellent in a flame retardance and a mechanical physical property is obtained.
(Second embodiment)
A second embodiment is a flame retardant masterbatch obtained by melting and kneading an aromatic polycarbonate resin (A) having a mass average molecular weight of 5,000 to 55,000 and an aromatic phosphazene compound (B) in a pressure kneader. is there. By setting it as such a structure, the flame retardant masterbatch which can express a flame retardance and a mechanical physical property effectively and stably is obtained.
(第三の態様)
 第三の態様としては、芳香族ポリカーボネート樹脂(A)85~20質量%と芳香族ホスファゼン化合物(B)15~80質量%の合計100質量部と、フルオロポリマー(C)を0.005~2質量部とを溶融混練することによって得られることを特徴とする難燃剤マスターバッチである。この様な構成とすることにより、樹脂と溶融混練する際の作業性にも優れ、さらには熱可塑性樹脂に配合した際に、難燃性、機械物性に優れる難燃剤マスターバッチが得られる。
(Third embodiment)
As a third embodiment, a total of 100 parts by mass of the aromatic polycarbonate resin (A) 85 to 20% by mass and the aromatic phosphazene compound (B) 15 to 80% by mass, and the fluoropolymer (C) is 0.005 to 2%. It is a flame retardant masterbatch obtained by melt-kneading a mass part. By setting it as such a structure, the workability at the time of melt-kneading with resin is excellent, and also when it mix | blends with a thermoplastic resin, the flame retardant masterbatch excellent in a flame retardance and a mechanical physical property is obtained.
(第四の態様)
 第四の態様としては、目開き400μmの篩上の割合が55質量%以上で、嵩密度が0.3~1.5g/mlであることを特徴とする顆粒状ホスファゼン化合物として樹脂に配合する態様である。ホスファゼン化合物は、常温で微粉状であるが、圧縮やせん断に対して固化する性質を有しており、このままでは熱可塑性樹脂と共に押出機にて溶融混練する際、押出機スクリュウへホスファゼン化合物が固着する等の不具合を生じやすいが、顆粒状ホスファゼン化合物とすることにより、押出機スクリュウへの固着等の不具合を起こしにくくできる。
(Fourth aspect)
As a fourth aspect, the proportion on the sieve having an opening of 400 μm is 55% by mass or more, and the bulk density is 0.3 to 1.5 g / ml, which is added to the resin as a granular phosphazene compound. It is an aspect. The phosphazene compound is finely powdered at room temperature, but has the property of solidifying against compression and shearing. If this is done, the phosphazene compound adheres to the extruder screw when melt-kneaded with a thermoplastic resin in an extruder. However, the use of the granular phosphazene compound makes it difficult to cause problems such as sticking to the extruder screw.
(第五の態様)
 ホスファゼン化合物(A)に、目開き1000μmの篩を通過する割合が30質量%以上であるポリカーボネート樹脂粉粒体(B)を、(A)/(B)の質量比が85/15~5/95で混合してなり、嵩密度が0.4~1.5g/mlであることを特徴とする顆粒状ホスファゼン化合物として樹脂に配合する態様である。このような構成とすることにより、生産性に優れ、熱可塑性樹脂と溶融混練する際の作業性にも優れる。
(Fifth aspect)
To the phosphazene compound (A), a polycarbonate resin particle (B) having a ratio of passing through a sieve having an opening of 1000 μm is 30% by mass or more, and a mass ratio of (A) / (B) is 85/15 to 5 / 95, and is blended into the resin as a granular phosphazene compound characterized by having a bulk density of 0.4 to 1.5 g / ml. By adopting such a configuration, the productivity is excellent, and the workability at the time of melt-kneading with the thermoplastic resin is also excellent.
 本発明の樹脂組成物から樹脂成形品を製造する方法は、特に限定されるものではなく、熱可塑性樹脂について一般に採用されている成形法、すなわち一般的な射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシストなどの中空成形法、断熱金型を用いた成形法、急速加熱金型を用いた成形法、発泡成形(超臨界流体も含む)、インサ-ト成形、IMC(インモ-ルドコ-ティング成形)成形法、押出成形法、シ-ト成形法、熱成形法、回転成形法、積層成形法、プレス成形法等を採用することができる。また、ホットランナ-方式を用いた成形法を選択することもできる。 The method for producing a resin molded product from the resin composition of the present invention is not particularly limited, and a molding method generally employed for thermoplastic resins, that is, a general injection molding method, an ultra-high speed injection molding method, Injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, molding method using rapid heating mold, foam molding (including supercritical fluid), insert Molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method and the like can be employed. A molding method using a hot runner method can also be selected.
 本発明のメッキ層付樹脂成形品は、本発明の樹脂組成物を成形してなる樹脂成形品の表面に、レーザーを照射後、金属を適用して、メッキ層を形成することを含む。
 以下、本発明の樹脂組成物を成形した樹脂成形品の表面にメッキ層を設ける工程を図1に従って説明する。図1は、レーザーダイレクトストラクチャリング技術によって、樹脂成形品1の表面にメッキを形成する工程を示す概略図である。図1では、樹脂成形品1は、平坦な基板となっているが、必ずしも平坦な基板である必要はなく、一部または全部が曲面している樹脂成形品であってもよい。また、樹脂成形品は、最終製品に限らず、各種部品も含む趣旨である。本発明における樹脂成形品としては、携帯電子機器、車両および医療機器の部品や、その他の電気回路を含む電子部品に用いることが好ましい。特に、本発明の樹脂成形品は、高い耐衝撃性と剛性、優れた耐熱性を併せ持つうえ、異方性が小さく、反りが小さいものとすることができるため、電子手帳、携帯用コンピューター等のPDA、ポケットベル、携帯電話、PHSなどの内部構造物および筐体として極めて有効である。特に樹脂成形品がリブを除く平均肉厚が1.2mm以下(下限値は特に定めるものではないが、例えば、0.4mm以上)である平板形状の部品に適しており、中でも携帯電子機器の筐体として特に適している。
 また、平均厚さ1.6mmにおける樹脂成形品のUL-94試験の評価がV-0であることが求められる用途に適している。
The resin molded product with a plated layer of the present invention includes forming a plated layer by applying a metal to the surface of a resin molded product formed by molding the resin composition of the present invention after laser irradiation.
Hereafter, the process of providing a plating layer on the surface of the resin molded product which shape | molded the resin composition of this invention is demonstrated according to FIG. FIG. 1 is a schematic view showing a process of forming plating on the surface of a resin molded product 1 by a laser direct structuring technique. In FIG. 1, the resin molded product 1 is a flat substrate. However, the resin molded product 1 is not necessarily a flat substrate, and may be a resin molded product having a partially or entirely curved surface. Further, the resin molded product is not limited to the final product, and includes various parts. The resin molded product in the present invention is preferably used for parts of portable electronic devices, vehicles and medical devices, and electronic parts including other electric circuits. In particular, the resin molded product of the present invention has both high impact resistance, rigidity, and excellent heat resistance, as well as low anisotropy and low warpage, so that it can be used in electronic notebooks, portable computers, etc. It is extremely effective as an internal structure and casing such as a PDA, a pager, a mobile phone, and a PHS. In particular, the resin molded product is suitable for flat plate-like parts having an average thickness excluding ribs of 1.2 mm or less (the lower limit is not particularly defined, for example, 0.4 mm or more). Particularly suitable as a housing.
Further, it is suitable for applications in which the evaluation of the UL-94 test of resin molded products having an average thickness of 1.6 mm is required to be V-0.
 再び図1に戻り、樹脂成形品1にレーザー2を照射する。ここでのレーザーとは、特に定めるものではなく、YAGレーザー、エキシマレーザー、電磁線等の公知のレーザーから適宜選択することができ、YAGレーザーが好ましい。また、レーザーの波長も特に定めるものではない。好ましい波長範囲は、200nm~1200nmである。特に好ましくは800~1200nmである。
 レーザーが照射されると、レーザーが照射された部分3のみ、樹脂成形品1が活性化される。この活性化された状態で、樹脂成形品1をメッキ液4に適用する。メッキ液4としては、特に定めるものではなく、公知のメッキ液を広く採用することができ、金属成分として銅、ニッケル、金、銀、パラジウムが混合されているものが好ましく、銅がより好ましい。
 樹脂成形品1をメッキ液4に適用する方法についても、特に定めるものではないが、例えば、メッキ液を配合した液中に投入する方法が挙げられる。メッキ液を適用後の樹脂成形品は、レーザー照射した部分のみ、メッキ層5が形成される。
 本発明の方法では、1mm以下、さらには、150μm以下の幅の回路間隔(下限値は特に定めるものではないが、例えば、30μm以上)を形成することができる。かかる回路は携帯電子機器部品のアンテナとして好ましく用いられる。すなわち、本発明の樹脂成形品の好ましい実施形態の一例として、本発明の樹脂成形品(好ましくは、携帯電子機器部品)の表面に設けられたメッキ層(好ましくは、銅メッキ層)が、アンテナとしての性能を保有する樹脂成形品が挙げられる。
Returning again to FIG. 1, the resin molded product 1 is irradiated with a laser 2. The laser here is not particularly defined, and can be appropriately selected from known lasers such as a YAG laser, an excimer laser, and electromagnetic radiation, and a YAG laser is preferable. Further, the wavelength of the laser is not particularly defined. A preferred wavelength range is 200 nm to 1200 nm. Particularly preferred is 800 to 1200 nm.
When the laser is irradiated, the resin molded product 1 is activated only in the portion 3 irradiated with the laser. In this activated state, the resin molded product 1 is applied to the plating solution 4. The plating solution 4 is not particularly defined, and a wide variety of known plating solutions can be used. A metal component in which copper, nickel, gold, silver, and palladium are mixed is preferable, and copper is more preferable.
The method of applying the resin molded product 1 to the plating solution 4 is not particularly defined, but for example, a method of introducing the resin molded product 1 into a solution containing the plating solution. In the resin molded product after applying the plating solution, the plating layer 5 is formed only in the portion irradiated with the laser.
In the method of the present invention, a circuit interval having a width of 1 mm or less and further 150 μm or less (the lower limit is not particularly defined, but for example, 30 μm or more) can be formed. Such a circuit is preferably used as an antenna of a portable electronic device component. That is, as an example of a preferred embodiment of the resin molded product of the present invention, a plating layer (preferably a copper plating layer) provided on the surface of the resin molded product of the present invention (preferably a portable electronic device component) is an antenna. Resin molded products possessing the performance as described above.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
<樹脂成分>
S-3000F:三菱エンジニアリングプラスチックス社製、ポリカーボネート樹脂
AT-08:日本エイアンドエル製、ABS樹脂
<Resin component>
S-3000F: Mitsubishi Engineering Plastics, polycarbonate resin AT-08: Nippon A & L, ABS resin
<ガラス繊維>
T-187:日本電気硝子社製、直径が13μm、カット長3mmの円形断面を有するガラス繊維(扁平率1)
3PA-820:日東紡績社製、直径28μm、短径7μmの扁平断面を有するガラス繊維(扁平率4)
3PL-820:日東紡績社製、直径20μm、短径10μmの扁平断面を有するガラス繊維(扁平率2)
<Glass fiber>
T-187: manufactured by Nippon Electric Glass Co., Ltd., glass fiber having a circular cross section with a diameter of 13 μm and a cut length of 3 mm (flatness ratio 1)
3PA-820: manufactured by Nitto Boseki Co., Ltd., glass fiber having a flat cross section with a diameter of 28 μm and a short diameter of 7 μm (flatness ratio 4)
3PL-820: manufactured by Nitto Boseki Co., Ltd., glass fiber having a flat cross section with a diameter of 20 μm and a short diameter of 10 μm (flatness ratio 2)
<LDS添加剤>
Black1G:シェパードジャパン社製、スピネル構造体の銅クロム酸化物
<LDS additive>
Black 1G: Copper chrome oxide of spinel structure manufactured by Shepard Japan
<エラストマー>
S-2030:三菱レイヨン社製、メタクリル酸メチル/アクリル酸メチル/ジメチルシロキサンの共重合体
M711:カネカ社製、ブタジエン系のコアと、アクリル系のシェルとからなるコア/シェル型エラストマー
<Elastomer>
S-2030: Mitsubishi Rayon Co., Ltd. Methyl Methacrylate / Methyl Acrylate / Dimethylsiloxane Copolymer M711: Kaneka Co., Ltd. Core / shell type elastomer comprising a butadiene core and an acrylic shell
<ホスファゼン化合物>
FP-100:伏見製薬社製、フェノキシホスファゼン化合物
<Phosphazene compound>
FP-100: Phenoxyphosphazene compound manufactured by Fushimi Pharmaceutical Co., Ltd.
<縮合リン酸エステル>
PX-200:大八化学工業社製、レゾルシノールビス-2,6-キシレニルホスフェート
FP-700:旭電化工業(株)製、アデカスタブFP-700、2,2-ビス(p-ヒドロキシフェニル)プロパン・トリクロロホスフィンオキシド重縮合物(重合度1~3)のフェノール縮合物
<Condensed phosphate ester>
PX-200: manufactured by Daihachi Chemical Industry Co., Ltd., resorcinol bis-2,6-xylenyl phosphate FP-700: manufactured by Asahi Denka Kogyo Co., Ltd., ADK STAB FP-700, 2,2-bis (p-hydroxyphenyl) Phenol condensate of propane / trichlorophosphine oxide polycondensate (degree of polymerization 1 to 3)
<PTFE>
6-J:三井デュポンフロロケミカル社製、フィブリル形成能を有するフルオロポリマー
<PTFE>
6-J: Fluoropolymer having a fibril forming ability manufactured by Mitsui DuPont Fluorochemicals
<リン系安定剤>
AX-71:ADEKA社製、(モノおよびジステアリルアシッドフォスフェート)の略等モルの混合物
<酸化防止剤>
Irg1076:Irganox1076、BASF社製、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート
<離型剤>
VPG861:コグニスオレオケミカルズジャパン社製、ペンタエリスリトールテトラステアレート
<Phosphorus stabilizer>
AX-71: ADEKA, (mono and distearyl acid phosphate) mixture of approximately equimolar <antioxidant>
Irg1076: Irganox 1076, manufactured by BASF, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate <release agent>
VPG861: manufactured by Cognis Oleochemicals Japan, pentaerythritol tetrastearate
<コンパウンド>
 後述する表に示す組成となるように、各成分をそれぞれ秤量し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製(TEX30HSST)に供給し、スクリュー回転数200rpm、吐出量20kg/時間、バレル温度280℃の条件で混練し、ストランド状に押出された溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化し、樹脂組成物のペレットを得た。
<Compound>
Each component was weighed so as to have the composition shown in the table to be described later, mixed with a tumbler for 20 minutes, then supplied to Nippon Steel Works (TEX30HSST) equipped with 1 vent, screw rotation speed 200 rpm, discharge The molten resin, which was kneaded under the conditions of an amount of 20 kg / hour and a barrel temperature of 280 ° C. and extruded into a strand, was rapidly cooled in a water tank and pelletized using a pelletizer to obtain pellets of a resin composition.
<難燃性(UL-94試験)>
 上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、日本製鋼所社製のJ50-EP型射出成形機を用いて、シリンダー温度290℃、金型温度80℃の条件で射出成形し、長さ125mm、幅13mm、平均厚さ1.6mmのUL試験用試験片を成形した。
<Flame retardance (UL-94 test)>
After drying the pellets obtained by the above-mentioned production method at 120 ° C. for 5 hours, using a J50-EP type injection molding machine manufactured by Nippon Steel Works under the conditions of a cylinder temperature of 290 ° C. and a mold temperature of 80 ° C. A test piece for UL test having a length of 125 mm, a width of 13 mm, and an average thickness of 1.6 mm was formed by injection molding.
 各樹脂組成物の難燃性の評価は、上述の方法で得られたUL試験用試験片を温度23℃、湿度50%の恒温室の中で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)に準拠して行なった。UL94Vとは、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間やドリップ性から難燃性を評価する方法であり、V-0、V-1及びV-2の難燃性を有するためには、以下の表に示す基準を満たすことが必要となる。 The flame retardancy of each resin composition was evaluated by conditioning the test piece for UL test obtained by the above-mentioned method for 48 hours in a temperature-controlled room at a temperature of 23 ° C. and a humidity of 50%, and US Underwriters Laboratories. The test was conducted in accordance with the UL94 test (combustion test of plastic materials for equipment parts) defined by (UL). UL94V is a method for evaluating flame retardancy from the afterflame time and drip properties after indirect flame of a burner for 10 seconds on a test piece of a predetermined size held vertically, V-0, V- In order to have flame retardancy of 1 and V-2, it is necessary to satisfy the criteria shown in the following table.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ここで残炎時間とは、着火源を遠ざけた後の、試験片の有炎燃焼を続ける時間の長さである。また、ドリップによる綿着火とは、試験片の下端から約300mm下にある標識用の綿が、試験片からの滴下(ドリップ)物によって着火されるかどうかによって決定される。さらに、5試料のうち、1つでも上記基準を満たさないものがある場合、V-2を満足しないとしてNR(not rated)と評価した。 Here, the afterflame time is the length of time for which the test piece continues to burn with flame after the ignition source is moved away. The cotton ignition by the drip is determined by whether or not the labeling cotton, which is about 300 mm below the lower end of the test piece, is ignited by a drip from the test piece. Further, when any one of the five samples did not satisfy the above criteria, it was evaluated as NR (not rated) as not satisfying V-2.
<曲げ弾性率および曲げ強度>
 上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、日精樹脂工業製、SG75-MIIを用いて、シリンダー温度300℃、金型温度100℃、成形サイクル50秒の条件で射出成形し、4mm厚さのISO引張り試験片を成形した。
 ISO178に準拠して、上記ISO引張り試験片(4mm厚)を用いて、23℃の温度で曲げ弾性率(単位:MPa)および曲げ強度(単位:MPa)を測定した。
<Bending elastic modulus and bending strength>
After the pellets obtained by the above-mentioned production method were dried at 120 ° C. for 5 hours, using SG75-MII manufactured by Nissei Plastic Industry, the cylinder temperature was 300 ° C., the mold temperature was 100 ° C., and the molding cycle was 50 seconds. Injection molding was performed to form a 4 mm thick ISO tensile test piece.
Based on ISO178, the bending elastic modulus (unit: MPa) and bending strength (unit: MPa) were measured at a temperature of 23 ° C. using the above ISO tensile test piece (4 mm thickness).
<シャルピー衝撃強度>
 上記で得られたISO引張り試験片(4mm厚)を用い、ISO179に準拠し、23℃の条件で、ノッチ有シャルピー衝撃強度を測定した。
<Charpy impact strength>
Using the ISO tensile test piece (4 mm thickness) obtained above, the Charpy impact strength with notch was measured under the condition of 23 ° C. in accordance with ISO 179.
<荷重たわみ温度(DTUL)>
 上記で得られたISO引張り試験片(4mm厚)を用い、ISO75-1及びISO75-2に準拠して荷重1.80MPaの条件で荷重たわみ温度を測定した。
<Load deflection temperature (DTUL)>
Using the ISO tensile test piece (4 mm thickness) obtained above, the deflection temperature under load was measured under the condition of a load of 1.80 MPa in accordance with ISO75-1 and ISO75-2.
<メッキ性(LDS活性)-Plating Index>
 上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、日精樹脂工業製、SG75-MIIを用いて、シリンダー温度280℃、金型温度80℃、成形サイクル50秒の条件で射出成形し、3mm厚さのプレートを成形した。
 上記で得られた3mm厚のプレートに1064nmのYAGレーザーを用い、出力2.6~13Wの範囲のいずれか、速度1~2m/sのいずれか、周波数10~50μsの範囲のいずれかの条件から組み合わされた各種条件でレーザー照射により印字し、続いて、試験片を硫酸にて脱脂後、キザイ社製THPアルカリアクチ及びTHPアルカリアクセで処理後、キザイ社製SELカッパ―にてメッキ処理を行った。メッキ処理後の試験片を目視にて判定し、下記5段階に分類した。
5:各種レーザー条件中、明瞭にメッキが載った条件が75~100%
4:各種レーザー条件中、明瞭にメッキが載った条件が50~74%
3:各種レーザー条件中、明瞭にメッキが載った条件が30~49%
2:各種レーザー条件中、明瞭にメッキが載った条件が10~29%
1:各種レーザー条件中、明瞭にメッキが載った条件が10%に満たない
<Plating property (LDS activity)-Placing Index>
After the pellets obtained by the above-mentioned production method were dried at 120 ° C. for 5 hours, using SG75-MII manufactured by Nissei Plastic Industry, the cylinder temperature was 280 ° C., the mold temperature was 80 ° C., and the molding cycle was 50 seconds. Injection molding was performed to form a 3 mm thick plate.
A 1064 nm YAG laser was used for the 3 mm-thick plate obtained above, and the output was any of 2.6 to 13 W, the speed was 1 to 2 m / s, and the frequency was 10 to 50 μs. After printing with laser irradiation under various conditions combined, the test piece was degreased with sulfuric acid, treated with THP Alkali Acti and THP Alkali Acce manufactured by Kizai Co., Ltd., and then plated with a SEL copper manufactured by Kizai Co., Ltd. went. The test pieces after the plating treatment were visually judged and classified into the following five stages.
5: Among various laser conditions, the condition where the plating is clearly mounted is 75 to 100%.
4: Among various laser conditions, the condition where the plating is clearly placed is 50 to 74%
3: Among various laser conditions, the condition where the plating is clearly mounted is 30 to 49%
2: 10 to 29% of the various laser conditions are clearly plated
1: Under various laser conditions, the condition where the plating is clearly placed is less than 10%.
<反り>
 上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、日精樹脂工業製、NEX80を用いて、シリンダー温度280℃、金型温度100℃、成形サイクル40秒の条件で射出成形し、サイド1点ゲートで充填される0.8mm厚さ×直径100mmの円板を成形した。成形後平板上に試験片を置き、反りによって平板から最も浮き上がっている高さを測定し、反り量(mm)とした。
<Warpage>
The pellets obtained by the above-described production method were dried at 120 ° C. for 5 hours, and then injection molded using NEX80 manufactured by Nissei Plastic Industry under the conditions of a cylinder temperature of 280 ° C., a mold temperature of 100 ° C., and a molding cycle of 40 seconds. Then, a disk of 0.8 mm thickness × diameter 100 mm filled with one side gate was formed. After molding, a test piece was placed on the flat plate, and the height of the most lifted from the flat plate due to warpage was measured to obtain the amount of warpage (mm).
 結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記表から明らかなとおり、本発明の組成物を用いた場合(実施例1-1~1-9)、メッキ性を維持しつつ、曲げ弾性率、曲げ強度、シャルピー衝撃強度や荷重たわみ温度などの各種機械的特性および難燃性に優れた試験片が得られた。これに対し、難燃剤の配合量が少ない場合(比較例1-1)、難燃性が劣っていた。また、LDS添加剤の配合量が少ない場合(比較例1-2)、メッキ性が劣っていた。また、難燃剤とLDS添加剤を必要な量配合しても、ABS樹脂の割合が多い場合(比較例1-3)、難燃性が劣ることが分かった。また、扁平断面を有するガラス繊維を用いた場合(実施例1-4、1-7~1-9)、反りが特に小さいことが分かった。 As is apparent from the above table, when the composition of the present invention is used (Examples 1-1 to 1-9), the bending elastic modulus, bending strength, Charpy impact strength, deflection temperature under load, etc. are maintained while maintaining plating properties. Test pieces excellent in various mechanical properties and flame retardancy were obtained. On the other hand, when the amount of the flame retardant was small (Comparative Example 1-1), the flame retardancy was poor. Further, when the amount of the LDS additive was small (Comparative Example 1-2), the plating property was inferior. Further, it was found that even when the necessary amounts of the flame retardant and the LDS additive were blended, the flame retardancy was inferior when the proportion of the ABS resin was large (Comparative Example 1-3). It was also found that the warpage was particularly small when glass fibers having a flat cross section were used (Examples 1-4, 1-7 to 1-9).
 上記表から明らかなとおり、本発明の組成物を用いた場合は、メッキ性を維持しつつ、曲げ弾性率、曲げ強度、シャルピー衝撃強度や荷重たわみ温度などの各種機械的特性および難燃性に優れた試験片が得られた(実施例2-1~2-12)。これに対し、LDS添加剤の配合量が少ない場合(比較例2-1)、難燃性には優れているが、メッキ性が劣っていた。一方、ポリカーボネート樹脂の配合量が少ない場合(比較例2-2)、メッキ性には優れているが難燃性は劣っていた。また、扁平断面を有するガラス繊維を用いた場合(実施例2-7~2-12)、反りが特に小さいことが分かった。 As is apparent from the above table, when the composition of the present invention is used, while maintaining the plating property, it has various mechanical properties such as bending elastic modulus, bending strength, Charpy impact strength and deflection temperature under load, and flame retardancy. Excellent test pieces were obtained (Examples 2-1 to 2-12). On the other hand, when the compounding amount of the LDS additive was small (Comparative Example 2-1), the flame retardancy was excellent, but the plating property was inferior. On the other hand, when the blending amount of the polycarbonate resin was small (Comparative Example 2-2), the plating property was excellent but the flame retardancy was inferior. It was also found that the warpage was particularly small when glass fibers having a flat cross section were used (Examples 2-7 to 2-12).

Claims (16)

  1. 樹脂成分40~95質量%およびガラス繊維5~60質量%を含む成分100質量部に対し、
    エラストマー0.5~10質量部、銅およびクロムを含むレーザーダイレクトストラクチャリング添加剤5~20質量部、ホスファゼン化合物および縮合リン酸エステルから選択される少なくとも1種の難燃剤5~30質量部およびポリテトラフルオロエチレン0.1~1質量部を含み、
    前記樹脂成分が、ポリカーボネート樹脂65~90質量%とスチレン系樹脂35~10質量%を含むレーザーダイレクトストラクチャリング用樹脂組成物。
    For 100 parts by mass of the component containing 40 to 95% by mass of the resin component and 5 to 60% by mass of the glass fiber,
    0.5 to 10 parts by weight of an elastomer, 5 to 20 parts by weight of a laser direct structuring additive containing copper and chromium, 5 to 30 parts by weight of at least one flame retardant selected from phosphazene compounds and condensed phosphates, and poly Containing 0.1-1 part by weight of tetrafluoroethylene,
    A resin composition for laser direct structuring, wherein the resin component comprises 65 to 90% by mass of a polycarbonate resin and 35 to 10% by mass of a styrene resin.
  2. 前記難燃剤が、ホスファゼン化合物を含む、請求項1に記載のレーザーダイレクトストラクチャリング用樹脂組成物。 The resin composition for laser direct structuring according to claim 1, wherein the flame retardant comprises a phosphazene compound.
  3. 前記ホスファゼン化合物が、フェノキシホスファゼンである、請求項2に記載のレーザーダイレクトストラクチャリング用樹脂組成物。 The resin composition for laser direct structuring according to claim 2, wherein the phosphazene compound is phenoxyphosphazene.
  4. 前記ガラス繊維は、長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が1.5以下である、請求項2または3に記載のレーザーダイレクトストラクチャリング用樹脂組成物。 The flatness indicated by the major axis / minor axis ratio (D2 / D1) when the major axis of the cross section perpendicular to the length direction is D2 and the minor axis is D1 is 1.5 or less. 2. The resin composition for laser direct structuring according to 2 or 3.
  5. 前記ガラス繊維は、長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が1.5を超え8.0以下である、請求項2または3に記載のレーザーダイレクトストラクチャリング用樹脂組成物。 The glass fiber has a flatness ratio of more than 1.5 and not more than 8.0 expressed by a ratio of major axis / minor axis (D2 / D1) where D2 is a major axis of a cross section perpendicular to the length direction and D1 is a minor axis. The resin composition for laser direct structuring according to claim 2 or 3, wherein
  6. 前記難燃剤が、縮合リン酸エステルを含み、
    前記ガラス繊維は、長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が1.5を超え8.0以下である、請求項1に記載のレーザーダイレクトストラクチャリング用樹脂組成物。
    The flame retardant comprises a condensed phosphate ester;
    The glass fiber has a flatness ratio of more than 1.5 and not more than 8.0 expressed by a ratio of major axis / minor axis (D2 / D1) where D2 is a major axis of a cross section perpendicular to the length direction and D1 is a minor axis. The resin composition for laser direct structuring according to claim 1, wherein
  7. 前記レーザーダイレクトストラクチャリング添加剤が、スピネル構造体である、請求項1~6のいずれか1項に記載のレーザーダイレクトストラクチャリング用樹脂組成物。 The resin composition for laser direct structuring according to any one of claims 1 to 6, wherein the laser direct structuring additive is a spinel structure.
  8. 前記エラストマーが、シロキサン共重合エラストマーである、請求項1~7のいずれか1項に記載のレーザーダイレクトストラクチャリング用樹脂組成物。 The resin composition for laser direct structuring according to any one of claims 1 to 7, wherein the elastomer is a siloxane copolymer elastomer.
  9. 請求項1~8のいずれか1項に記載のレーザーダイレクトストラクチャリング用樹脂組成物を成形してなる樹脂成形品。 A resin molded product obtained by molding the resin composition for laser direct structuring according to any one of claims 1 to 8.
  10. 平均厚さ1.6mmにおける樹脂成形品のUL-94試験の評価がV-0である、請求項9に記載の樹脂成形品。 The resin molded product according to claim 9, wherein the evaluation of the UL-94 test of the resin molded product at an average thickness of 1.6 mm is V-0.
  11. 前記樹脂成形品の表面にメッキ層を有する、請求項9または10に記載の樹脂成形品。 The resin molded product according to claim 9 or 10, which has a plating layer on a surface of the resin molded product.
  12. 前記メッキ層がアンテナとしての性能を保有する、請求項11に記載の樹脂成形品。 The resin molded product according to claim 11, wherein the plating layer retains performance as an antenna.
  13. 携帯電子機器部品である、請求項9~12のいずれか1項に記載の樹脂成形品。 The resin molded product according to any one of claims 9 to 12, which is a portable electronic device part.
  14. 請求項1~8のいずれか1項に記載のレーザーダイレクトストラクチャリング用樹脂組成物を成形してなる樹脂成形品の表面に、レーザーを照射後、金属を適用して、メッキ層を形成することを含む、メッキ層付樹脂成形品の製造方法。 A plating layer is formed by applying a metal to a surface of a resin molded product obtained by molding the resin composition for laser direct structuring according to any one of claims 1 to 8 after irradiating a laser. The manufacturing method of the resin molded product with a plating layer containing.
  15. 前記メッキ層が銅メッキ層である、請求項14に記載のメッキ層付樹脂成形品の製造方法。 The manufacturing method of the resin molded product with a plating layer of Claim 14 whose said plating layer is a copper plating layer.
  16. 請求項14または15に記載のメッキ層付樹脂成形品の製造方法を含む、アンテナを有する携帯電子機器部品の製造方法。 A method for manufacturing a portable electronic device part having an antenna, comprising the method for manufacturing a resin molded product with a plated layer according to claim 14 or 15.
PCT/JP2014/076358 2013-10-07 2014-10-02 Resin composition, resin molded article, and method for producing resin molded article WO2015053159A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480043194.1A CN105452526B (en) 2013-10-07 2014-10-02 The manufacture method of resin combination, synthetic resin and synthetic resin

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013-210000 2013-10-07
JP2013210000 2013-10-07
JP2013-210001 2013-10-07
JP2013210001 2013-10-07
JP2013218211 2013-10-21
JP2013-218211 2013-10-21
JP2013218212 2013-10-21
JP2013-218212 2013-10-21
JP2014-196765 2014-09-26
JP2014-196764 2014-09-26
JP2014196765A JP5706033B1 (en) 2013-10-07 2014-09-26 Resin composition, resin molded product, and method for producing resin molded product
JP2014196764A JP5706032B1 (en) 2013-10-07 2014-09-26 Resin composition, resin molded product, and method for producing resin molded product

Publications (1)

Publication Number Publication Date
WO2015053159A1 true WO2015053159A1 (en) 2015-04-16

Family

ID=52812975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076358 WO2015053159A1 (en) 2013-10-07 2014-10-02 Resin composition, resin molded article, and method for producing resin molded article

Country Status (1)

Country Link
WO (1) WO2015053159A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107177180A (en) * 2016-03-10 2017-09-19 汉达精密电子(昆山)有限公司 Glass fiber-reinforced polycarbonate resin combination and products thereof
EP3216833A4 (en) * 2014-12-01 2018-06-13 LG Chem, Ltd. Polycarbonate resin composition and preparation method therefor
JP2018145304A (en) * 2017-03-06 2018-09-20 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536947A (en) * 2007-08-17 2010-12-02 ミツビシ ケミカル ヨーロッパ ゲーエムベーハー Aromatic polycarbonate composition
JP2013144768A (en) * 2011-12-14 2013-07-25 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition, resin molding, and process for producing resin molding having plating layer attached thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536947A (en) * 2007-08-17 2010-12-02 ミツビシ ケミカル ヨーロッパ ゲーエムベーハー Aromatic polycarbonate composition
JP2013144768A (en) * 2011-12-14 2013-07-25 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition, resin molding, and process for producing resin molding having plating layer attached thereto

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3216833A4 (en) * 2014-12-01 2018-06-13 LG Chem, Ltd. Polycarbonate resin composition and preparation method therefor
US10077360B2 (en) 2014-12-01 2018-09-18 Lg Chem, Ltd. Polycarbonate resin composition and method of preparing the same
CN107177180A (en) * 2016-03-10 2017-09-19 汉达精密电子(昆山)有限公司 Glass fiber-reinforced polycarbonate resin combination and products thereof
JP2018145304A (en) * 2017-03-06 2018-09-20 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded article

Similar Documents

Publication Publication Date Title
JP5615992B1 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5579909B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5620035B1 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5675919B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5675920B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5925912B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5579908B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP6239960B2 (en) Thermoplastic resin composition for laser direct structuring, resin molded product, and method for producing resin molded product
WO2017110458A1 (en) Composition for forming laser direct structuring layer, kit, and method for manufacturing resin molded article having plating layer
WO2014185217A1 (en) Resin composition for laser direct structuring use, resin molded article, and method for producing resin molded article having plated layer attached thereto
JP5766864B2 (en) Resin composition, resin molded product, and method for producing resin molded product
JP5847907B2 (en) Resin composition, resin molded product, and method for producing resin molded product
JP5917742B2 (en) Resin composition, resin molded product, and method for producing resin molded product
WO2015053159A1 (en) Resin composition, resin molded article, and method for producing resin molded article
JP5706033B1 (en) Resin composition, resin molded product, and method for producing resin molded product
JP5599914B1 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP6310240B2 (en) Thermoplastic resin composition for laser direct structuring, resin molded product, and method for producing resin molded product
JP5599929B1 (en) Resin composition, resin molded product, and method for producing resin molded product
JP5599928B1 (en) Resin composition, resin molded product, and method for producing resin molded product
JP5706032B1 (en) Resin composition, resin molded product, and method for producing resin molded product
CN105452526A (en) Resin composition, resin molded article, and method for producing resin molded article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043194.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851899

Country of ref document: EP

Kind code of ref document: A1