Nothing Special   »   [go: up one dir, main page]

WO2015052819A1 - Information processing system, position identification method, and position identification program - Google Patents

Information processing system, position identification method, and position identification program Download PDF

Info

Publication number
WO2015052819A1
WO2015052819A1 PCT/JP2013/077675 JP2013077675W WO2015052819A1 WO 2015052819 A1 WO2015052819 A1 WO 2015052819A1 JP 2013077675 W JP2013077675 W JP 2013077675W WO 2015052819 A1 WO2015052819 A1 WO 2015052819A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
information processing
power
signal strength
control unit
Prior art date
Application number
PCT/JP2013/077675
Other languages
French (fr)
Japanese (ja)
Inventor
達彦 根岸
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2015541388A priority Critical patent/JP5954501B2/en
Priority to PCT/JP2013/077675 priority patent/WO2015052819A1/en
Publication of WO2015052819A1 publication Critical patent/WO2015052819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/122Shortest path evaluation by minimising distances, e.g. by selecting a route with minimum of number of hops
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Definitions

  • the present invention relates to an information processing system, a position specifying method, and a position specifying program.
  • the node is an information processing apparatus having a CPU, a memory controller and memory, a storage controller and storage, a wireless LAN (Local Area Network) controller, a baseband, an RF (Radio Frequency) unit, and an interconnect.
  • a CPU Central Processing Unit
  • memory controller and memory
  • storage controller and storage
  • wireless LAN Local Area Network
  • baseband a baseband
  • RF Radio Frequency
  • each node performs wireless communication with other nodes using a wireless LAN. For this reason, each node has a routing table in which a destination node of a frame transmitted by wireless communication is associated with a next node that is a next transmission destination node.
  • FIG. 11 is a diagram for explaining the routing of a frame using the routing table.
  • FIG. 11 shows a case where the node A transmits a frame to the node O.
  • each node can perform wireless communication with nodes adjacent to the upper, lower, left, right, upper left, upper right, lower left, and lower right.
  • next node F is stored in the routing table of the node A in association with the destination node O. Therefore, the node A transmits a frame for the destination node O to the node F.
  • next node K is stored in the routing table of the node F in association with the destination node O. Therefore, the node F transmits a frame for the destination node O to the node K.
  • next node O is stored in the routing table of the node K in association with the destination node O. Therefore, the node K transmits a frame to the destination node O.
  • the position of each node is specified using a radio wave arrival time difference method, a radio wave reception intensity method, etc. that each node observes when receiving a long-distance wireless signal.
  • the position of the node can be estimated using a radio wave arrival time difference method, a radio wave reception intensity method, or the like.
  • the present invention aims to accurately specify the position of each node in a housing.
  • the information processing system disclosed in the present application includes a plurality of information processing devices mounted on a casing. Then, the information processing system wirelessly supplies power to a predetermined number of information processing devices, and receives the identifier for identifying each information processing device and the wireless signal strength from each information processing device that has supplied the power. It has a supply part.
  • the information processing system includes a specifying unit that specifies the position of each information processing device in the housing based on the identifier and the signal strength.
  • the position of each node in the housing can be accurately specified.
  • FIG. 1 is a front view illustrating the information processing system according to the embodiment.
  • FIG. 2 is a side view illustrating the information processing system according to the embodiment.
  • FIG. 3 is a diagram illustrating the configuration of the node.
  • FIG. 4 is a diagram illustrating a configuration of a power transmitter that performs wireless power feeding and a power receiver that receives wireless power feeding.
  • FIG. 5 is a diagram illustrating an example of a packet transmitted from the communication control unit to the power transmitter.
  • FIG. 6 is a diagram illustrating a functional configuration of the overall control unit.
  • FIG. 7 is a diagram for explaining an example of creating routing table information.
  • FIG. 8 is a diagram for explaining another example of creation of routing table information.
  • FIG. 9 is a flowchart illustrating a flow of a routing table creation process.
  • FIG. 10 is a diagram illustrating a hardware configuration of the overall control unit.
  • FIG. 11 is a diagram for explaining frame routing using a routing table.
  • FIG. 1 is a front view illustrating the information processing system according to the embodiment
  • FIG. 2 is a side view illustrating the information processing system according to the embodiment.
  • the information processing system 10 includes a network switch 11 and 32 nodes 20.
  • 32 nodes 20 are shown here, but the information processing system 10 can have an arbitrary number of nodes 20.
  • the network switch 11 and the node 20 are accommodated in the slot of the housing 1, and the node 20 can be removed from the slot of the housing 1.
  • the network switch 11 is used for the node 20 to communicate with an external network.
  • the network switch 11 communicates with the node 20 wirelessly, and includes a normal wireless antenna 11a and a management wireless antenna 11b.
  • the normal radio antenna 11 a is a radio (hereinafter referred to as “normal radio”) antenna used by the OS and application operating on the node 20 for communication with other nodes 20 and the network switch 11.
  • the management radio radio antenna 11 b is a radio (hereinafter referred to as “management radio”) antenna used for management of the node 20 or the like.
  • the management radio is slower than the normal radio, but can communicate over a long distance, and can communicate between the farthest nodes or between the network switch 11 and the nodes.
  • the network switch 11 includes an overall control unit 40 that controls the node 20 and the network switch 11.
  • the overall control unit 40 assigns a node ID, which is an identifier for uniquely identifying each node 20, to each node 20.
  • the node ID is generated by the overall control unit 40 from the MAC (Media Access Control) address of the node 20.
  • the overall control unit 40 has an MPU and is realized by executing firmware in the MPU.
  • the node 20 includes a normal radio antenna 20a, a management radio antenna 20b, and a radio power feeding antenna 20c.
  • the normal radio antenna 20a is an antenna used for normal radio.
  • the management radio radio antenna 20b is an antenna used for management radio.
  • the wireless power feeding antenna 20 c is an antenna for the node 20 to receive wireless power feeding from the housing 1. That is, there are no wired connectors or wired communication lines that connect the nodes or between the node 20 and the housing 1, and power feeding and communication are performed wirelessly.
  • FIG. 3 is a diagram illustrating the configuration of the node 20.
  • the node 20 includes a CPU 21, a memory controller 22, a memory 23, a storage controller 24, a storage 25, a wireless LAN controller 26, a baseband and RF unit 27, and an interconnect 28.
  • the node 20 includes a control unit 29 and a power receiver 30.
  • the CPU 21 is a central processing unit that reads and executes a program stored in the memory 23.
  • the memory controller 22 is a control device that controls writing of data into the memory 23, reading of programs and data from the memory 23.
  • the memory 23 is a RAM (Random Access Memory) that stores programs and data.
  • the storage controller 24 is a control device that controls the writing of data to the storage 25 and the reading of programs and data from the storage 25.
  • the storage 25 is a magnetic disk device that stores programs and data.
  • the wireless LAN controller 26 is a control device that controls communication using a wireless LAN that is normally used for radio and management radio.
  • the baseband and RF unit 27 performs wireless communication under the control of the wireless LAN controller 26.
  • the interconnect 28 is a device that interconnects the CPU 21, the memory controller 22, the storage controller 24, the wireless LAN controller 26, and the control unit 29.
  • the control unit 29 controls the node 20 using management radio.
  • the control unit 29 has an MPU (Micro Processing Unit), and is realized by executing firmware in the MPU. Further, the control unit 29 has a routing table that associates the MAC address of the destination node with the MAC address of the next node, and routes a frame transmitted from the node 20 to another node 20.
  • the power receiver 30 receives wireless power feeding from the housing 1 and supplies power in the node.
  • FIG. 4 is a diagram showing a configuration of a power transmitter 50 that performs wireless power feeding and a power receiver 30 that receives wireless power feeding.
  • the power transmitter 50 is disposed in the housing 1 and includes an inverter 51, a primary coil 52, a current sense 53, and a communication control unit 54.
  • the inverter 51 converts the DC input into AC and drives the primary coil 52.
  • the primary coil 52 forms a resonance circuit together with the capacitor.
  • the current sense 53 receives the packet transmitted from the power receiver 30 by measuring the current of the primary coil 52 and notifies the communication control unit 54 of the received packet.
  • the communication control unit 54 receives and decodes the message from the power receiver 30, and executes power control based on the decoded message and the current of the primary coil 52.
  • the communication control unit 54 controls power feeding by operating the AC frequency output from the inverter 51.
  • the communication control unit 54 performs power supply control based on an instruction from the overall control unit 40 included in the network switch 11 and notifies the overall control unit 40 of the control state.
  • the communication control unit 54 communicates with the communication control unit 35 of the power receiver 30.
  • One power transmitter 50 supplies power to n nodes 20.
  • one power transmitter 50 supplies power to eight nodes 20. Therefore, in the information processing system 10 according to the embodiment, the four power transmitters 50 are arranged in the housing 1. Since the nodes 20 are arranged in four stages in the housing, the power transmitter 50 is arranged at the left end of each stage and supplies power to the eight nodes 20 in each stage.
  • one power transmitter 50 supplies power to eight nodes 20 here, one power transmitter 50 can supply power to an arbitrary number of nodes 20 within a range where wireless power supply is possible.
  • the power transmitter 50 is arranged at the left end of each stage, but the power transmitter 50 can be arranged at other places such as the right end of each stage.
  • the power receiver 30 includes a secondary coil 31, an adjustment circuit 32, an output circuit breaker 33, a communication modulator 34, and a communication control unit 35.
  • the secondary coil 31 constitutes a resonance circuit together with the capacitor, and receives power from the power transmitter 50.
  • the adjustment circuit 32 adjusts the AC waveform of the power received from the secondary coil 31.
  • the adjustment circuit 32 can also smooth the output.
  • the adjustment circuit 32 supplies power to the output circuit breaker 33, the communication modulator 34, and the communication control unit 35.
  • the output circuit breaker 33 interrupts the output current when the power receiver 30 does not supply power.
  • the output circuit breaker 33 prevents the current from flowing backward when the power receiver 30 does not supply power.
  • the communication modulator 34 transmits a communication signal to the power transmitter 50 based on an instruction from the communication control unit 35.
  • the communication control unit 35 operates the communication modulator 34 and transmits a packet to the communication control unit 54 of the power transmitter 50.
  • FIG. 5 is a diagram illustrating an example of a packet that the communication control unit 35 transmits to the power transmitter 50.
  • FIG. 5 is a signal strength packet indicating the degree of coupling between the primary coil 52 and the secondary coil 31 as a signal strength value.
  • the signal strength packet transmits the signal strength from the power receiver 30 to the power transmitter 50 for the purpose of setting the primary coil 52 that provides optimal power transmission to the power transmitter 50 using free positioning.
  • the communication control unit 35 transmits the signal strength value to the power transmitter 50 using 8-bit data.
  • the power receiver 30 determines the signal strength value from the rectified voltage, the open circuit voltage, the received power, and the like.
  • the communication control unit 35 controls the output circuit breaker 33 and monitors and controls the power receiver 30 and the load 60.
  • the communication control unit 35 performs power reception control based on an instruction from the control unit 29 and notifies the control unit 29 of the control state.
  • FIG. 6 is a diagram illustrating a functional configuration of the overall control unit 40.
  • the overall control unit 40 includes a power supply instruction unit 41, a signal strength acquisition unit 42, a position specifying unit 43, a mapping information creation unit 44, and a routing table creation unit 45.
  • the power supply instruction unit 41 instructs the power transmitter 50 to supply power, and instructs execution of ping as part of the power supply instruction.
  • ping is a power signal transmitted to select the power receiver 30 to which the power transmitter 50 supplies power.
  • the power receiver 30 that has received the ping transmits a node ID for identifying the node and a signal strength value of the received power signal to the power transmitter 50.
  • the signal strength acquisition unit 42 acquires the node ID and the signal strength value transmitted from the power receiver 30 from the power transmitter 50. Since the signal strength acquisition unit 42 receives the eight node IDs and signal strength values received by each power transmitter 50 from the four power transmitters 50, the signal strength acquisition unit 42 acquires a total of 32 node IDs and signal strength values.
  • the position specifying unit 43 specifies the position of each node 20 in the housing based on the arrangement position of the power transmitter 50 and the 32 node IDs and signal intensity values acquired by the signal intensity acquisition unit 42. Specifically, the position specifying unit 43 associates the eight node IDs received by each power transmitter 50 with each stage of the housing 1. Then, the position specifying unit 43 associates node IDs from the left slot of the housing 1 in descending order of the signal strength value.
  • the position specifying unit 43 notifies each node 20 of the specified position by management radio.
  • the position specifying unit 43 can notify each node 20 of the specified position via the power transmitter 50 and the power receiver 30.
  • the mapping information creating unit 44 creates mapping information for associating the slot position with the node ID based on the position specified by the position specifying unit 43 for the node 20 in the housing.
  • the routing table creation unit 45 creates routing table information of each node 20 based on the mapping information created by the mapping information creation unit 44, and sends the routing table information to the control unit 29 of each node 20 by managed radio. Send.
  • the control unit 29 that has received the routing table information writes the information in its own routing table.
  • FIG. 7 is a diagram for explaining an example of creating routing table information.
  • each node 20 transmits a frame only to nodes 20 adjacent in the vertical and horizontal directions using short-range radio.
  • short-range radio is one of normal radio.
  • the routing table creation unit 45 creates routing information so as to transfer a frame to the node 20 adjacent in the horizontal direction first, and then transfer the frame to the node 20 adjacent in the vertical direction.
  • the routing table creation unit 45 when a frame is transmitted from the transmission source node A to the destination node O, the routing table creation unit 45 performs routing of the node A so as to transfer a frame whose destination is the node O to the node B. Create information. Further, the routing table creation unit 45 creates the routing information of the node B so as to transfer the frame whose destination is the node O to the node C.
  • the routing table creation unit 45 creates the routing information of the node C so as to transfer the frame whose destination is the node O to the node G. Further, the routing table creation unit 45 creates the routing information of the node G so as to transfer the frame whose destination is the node O to the node K. Further, the routing table creation unit 45 creates the routing information of the node K so as to transfer the frame whose destination is the node O to the node O.
  • the routing table creation unit 45 can create the routing table information by specifying the frame transfer destination for each node 20 for each destination node.
  • FIG. 8 is a diagram for explaining another example of creating routing table information.
  • node A, node D, node M, and node P can communicate with both short-range radio and long-range radio.
  • other nodes can communicate only by short-range radio.
  • the long-range radio is one of the normal radios.
  • Node A, Node D, Node M, and Node P transmit frames to the destination node by long-distance radio when the destination node has a long-distance radio function. Further, the node A, the node D, the node M, and the node P transfer a frame based on the number of hops to the destination node when the destination node does not have a long-distance wireless function. That is, the node A, the node D, the node M, and the node P transfer the frame using the short-range radio when the hop number is within the predetermined threshold, and when the hop number is not within the predetermined threshold, The frame is transmitted to the node closest to the destination node and having the long-distance communication function.
  • other nodes having only short-range wireless functions transfer frames based on the number of hops to the destination node. That is, the other nodes transfer frames using short-range radio when the number of hops is within a predetermined threshold, and when the number of hops is not within the predetermined threshold, the other nodes are closest and have a long-range communication function. The frame is transferred to the node having it.
  • the routing table creation unit 45 transfers the frame whose destination is the node O to the node P by long-distance radio. Create routing information for node A.
  • the routing table creation unit 45 creates the routing information of the node P so that the frame whose destination is the node O is transferred to the node O by short-range radio.
  • FIG. 9 is a flowchart illustrating a flow of a routing table creation process. As shown in FIG. 9, based on an instruction from the overall control unit 40, the power transmitter 50 arranged in the housing 1 executes ping (step S1).
  • the power transmitter 50 waits for a response from the power receiver 30 of the node 20 (step S2), and determines whether a response from the power receiver 30 has been detected (step S3). As a result, when a response from the power receiver 30 is not detected, the power transmitter 50 returns to step S2 and waits for a response from the power receiver 30.
  • the power transmitter 50 receives the node ID and the signal strength value transmitted by the power receiver 30 (step S4). Then, the power transmitter 50 determines whether or not the node ID and the signal strength value have been received from the power receivers 30 of all the nodes 20 assigned to itself (step S5), and has received the node ID and the signal strength value. If there is no power receiver 30, the process returns to step S ⁇ b> 2 and waits for a response from the power receiver 30.
  • step S1 to step S5 is performed by each power transmitter 50.
  • the overall control unit 40 identifies the position of each node 20 based on the node IDs and signal strength values (step S6).
  • the overall control unit 40 notifies each node 20 of the specified position by management radio (step S7), and creates mapping information (step S8). Then, the overall control unit 40 creates routing table information based on the mapping information and transmits it to each node 20 (step S9).
  • each node 20 can automatically set the routing table.
  • FIG. 10 is a diagram illustrating a hardware configuration of the overall control unit 40. As shown in FIG. 10, the overall control unit 40 includes an MPU 46, a flash memory 47, and a RAM 48.
  • the MPU 46 is an arithmetic processing unit that reads a program from the flash memory 47 and executes it.
  • the flash memory 47 is a nonvolatile memory that stores a program.
  • the RAM 48 is a memory that stores intermediate results of the program.
  • the power transmitter 50 arranged in the housing 1 executes ping and receives the node ID and the signal strength value from the power receiver 30 of each node 20. Then, the overall control unit 40 acquires the node ID and the signal strength value from the power transmitter 50, and specifies the position of each node 20 based on the acquired node ID and the signal strength value. Therefore, the information processing system 10 can automatically grasp the node arrangement in the housing.
  • the overall control unit 40 creates routing table information based on the identified node arrangement and transmits it to each node 20. Therefore, the information processing system 10 can automatically set the routing table of each node 20.
  • each power transmitter 50 supplies power to eight nodes 20.
  • the present invention is not limited to this, and each power transmitter 50 supplies power to one node 20.
  • the overall control unit can specify the position of each node in the housing from the node ID received by each power transmitter and the position of each transmitter. Therefore, the information processing system 10 can automatically grasp the node arrangement in the housing without using the signal intensity value.
  • the present invention is not limited to this, and only one transmitter 50 can be used.
  • the overall control unit can specify the position of each node in the housing from the signal intensity value. Therefore, the information processing system 10 can automatically grasp the node arrangement in the housing without using the position of the transmitter.
  • each power transmitter 50 receives the node ID and the signal strength value.
  • the present invention is not limited to this, and can be similarly applied to the case where the node ID and the signal strength value are received using other communication means such as a management radio.
  • the present invention is not limited to this, and the same applies to the case where the nodes 20 are arranged three-dimensionally. it can.
  • the network switch 11 includes the overall control unit 40
  • the present invention is not limited to this, and for example, the overall control unit is disposed in the housing 1. The same can be applied to the case where the overall control unit is arranged at another location.
  • the present invention is not limited to this, and the same applies to the case where the node ID is generated from other information. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A power transmitter (50) inside a housing (1) sends out a ping and receives a node ID and a signal strength from a power receiver (30) in each of a number of nodes (20). An overall control unit (40) obtains said node IDs and signal strengths from the power transmitter (50) and identifies the position of each node (20) on the basis of the obtained node IDs and signal strengths. On the basis of the identified node layout, the overall control unit (40) creates routing-table information and transmits same to each node (20).

Description

情報処理システム、位置特定方法及び位置特定プログラムInformation processing system, position specifying method, and position specifying program
 本発明は、情報処理システム、位置特定方法及び位置特定プログラムに関する。 The present invention relates to an information processing system, a position specifying method, and a position specifying program.
 1個の筐体内に、多数のノードと、外部ネットワークと通信するためのネットワークスイッチとを収容する情報処理システムがある。ここで、ノードとは、CPU、メモリーコントローラとメモリー、ストレージコントローラとストレージ、無線LAN(Local Area Network)コントローラ、ベースバンドとRF(Radio Frequency)部及びインターコネクトを有する情報処理装置である。 There is an information processing system that accommodates a large number of nodes and a network switch for communicating with an external network in one casing. Here, the node is an information processing apparatus having a CPU, a memory controller and memory, a storage controller and storage, a wireless LAN (Local Area Network) controller, a baseband, an RF (Radio Frequency) unit, and an interconnect.
 各ノードは、他のノードと無線LANを用いて無線通信を行う。このため、各ノードは、無線通信で送信されるフレームの宛先ノードと次の送信先ノードであるネクストノードを対応付けたルーティングテーブルを有する。 Each node performs wireless communication with other nodes using a wireless LAN. For this reason, each node has a routing table in which a destination node of a frame transmitted by wireless communication is associated with a next node that is a next transmission destination node.
 図11は、ルーティングテーブルを用いたフレームのルーティングを説明するための図である。図11は、ノードAがノードOへフレームを送信する場合を示している。また、各ノードは上、下、左、右、左上、右上、左下及び右下に隣接するノードと無線通信が行える。 FIG. 11 is a diagram for explaining the routing of a frame using the routing table. FIG. 11 shows a case where the node A transmits a frame to the node O. Further, each node can perform wireless communication with nodes adjacent to the upper, lower, left, right, upper left, upper right, lower left, and lower right.
 図11に示すように、ノードAのルーティングテーブルには、宛先ノードOに対応付けてネクストノードFが記憶されている。したがって、ノードAは、宛先ノードOへのフレームをノードFに送信する。また、ノードFのルーティングテーブルには、宛先ノードOに対応付けてネクストノードKが記憶されている。したがって、ノードFは、宛先ノードOへのフレームをノードKに送信する。また、ノードKのルーティングテーブルには、宛先ノードOに対応付けてネクストノードOが記憶されている。したがって、ノードKは、宛先ノードOへフレームを送信する。 As shown in FIG. 11, the next node F is stored in the routing table of the node A in association with the destination node O. Therefore, the node A transmits a frame for the destination node O to the node F. Further, the next node K is stored in the routing table of the node F in association with the destination node O. Therefore, the node F transmits a frame for the destination node O to the node K. Further, the next node O is stored in the routing table of the node K in association with the destination node O. Therefore, the node K transmits a frame to the destination node O.
 ルーティングテーブルを作成するためには、筐体内の各ノードの位置を特定することが必要になる。筐体内の各ノードの位置が正しく特定されず、ルーティングテーブルに誤ったルーティング先が登録されると、ノード間で通信が行えない。 In order to create a routing table, it is necessary to specify the position of each node in the chassis. If the position of each node in the case is not correctly specified and an incorrect routing destination is registered in the routing table, communication between nodes cannot be performed.
 なお、サーバモジュール、スイッチモジュール、マネージメントモジュール等を一つの筐体内に収容するブレードサーバにおいて、バックプレーンボードを用いることなく、筐体内の通信を無線を用いて行う従来技術がある(例えば、特許文献1参照)。また、筐体内のノードの位置の特定に関連する従来技術として、モバイル・ノードが、複数の静的ノードから受信された受信信号強度を比較し、どの静的ノードが最も近くにあるかを推定して自己の位置を推定する技術がある(例えば、特許文献2参照)。また、無線給電の方式に関する規格としてQiシステムがある(例えば、非特許文献1参照)。 In a blade server that accommodates a server module, a switch module, a management module, and the like in a single casing, there is a conventional technique that performs wireless communication within the casing without using a backplane board (for example, Patent Documents). 1). Also, as a conventional technology related to the location of the node in the enclosure, the mobile node compares the received signal strength received from multiple static nodes and estimates which static node is closest Thus, there is a technique for estimating its own position (see, for example, Patent Document 2). Further, there is a Qi system as a standard regarding a wireless power feeding method (for example, see Non-Patent Document 1).
特開2005-184659号公報JP 2005-184659 A 特表2012-507736号公報Special table 2012-507736 gazette
 各ノードが長距離無線信号受信時に観測する電波到達時間差方式、電波受信強度方式などを用いて各ノードの位置を特定することが考えられる。ノードの位置が数百m~数Kmのように離れている場合には、電波到達時間差方式、電波受信強度方式などを用いてノードの位置を推定することが可能である。 It is conceivable that the position of each node is specified using a radio wave arrival time difference method, a radio wave reception intensity method, etc. that each node observes when receiving a long-distance wireless signal. When the position of the node is a few hundred meters to several kilometers away, the position of the node can be estimated using a radio wave arrival time difference method, a radio wave reception intensity method, or the like.
 しかしながら、例えば、高さ2m以内、幅1m以内の筐体内に数百個のノードを配置している場合には、各ノード間の距離が短すぎて、電波到達時間差方式、電波受信強度方式では、各ノードの位置を推定することはできないという問題がある。 However, for example, when hundreds of nodes are arranged in a case with a height of 2 m or less and a width of 1 m or less, the distance between the nodes is too short. There is a problem that the position of each node cannot be estimated.
 本発明は、1つの側面では、筐体内の各ノードの位置を正確に特定することを目的とする。 In one aspect, the present invention aims to accurately specify the position of each node in a housing.
 本願の開示する情報処理システムは、1つの態様において、複数の情報処理装置を筐体に搭載する。そして、情報処理システムは、無線で所定の数の情報処理装置に電力を供給し、該電力を供給した各情報処理装置から各情報処理装置を識別する識別子及び前記無線の信号強度を受信する電力供給部を有する。また、情報処理システムは、前記識別子及び前記信号強度に基づいて筐体内の各情報処理装置の位置を特定する特定部を有する。 In one aspect, the information processing system disclosed in the present application includes a plurality of information processing devices mounted on a casing. Then, the information processing system wirelessly supplies power to a predetermined number of information processing devices, and receives the identifier for identifying each information processing device and the wireless signal strength from each information processing device that has supplied the power. It has a supply part. In addition, the information processing system includes a specifying unit that specifies the position of each information processing device in the housing based on the identifier and the signal strength.
 1実施態様によれば、筐体内の各ノードの位置を正確に特定することができる。 According to one embodiment, the position of each node in the housing can be accurately specified.
図1は、実施例に係る情報処理システムを示す正面図である。FIG. 1 is a front view illustrating the information processing system according to the embodiment. 図2は、実施例に係る情報処理システムを示す側面図である。FIG. 2 is a side view illustrating the information processing system according to the embodiment. 図3は、ノードの構成を示す図である。FIG. 3 is a diagram illustrating the configuration of the node. 図4は、無線給電を行うパワートランスミッタと無線給電を受けるパワーレシーバの構成を示す図である。FIG. 4 is a diagram illustrating a configuration of a power transmitter that performs wireless power feeding and a power receiver that receives wireless power feeding. 図5は、通信制御部がパワートランスミッタに送信するパケットの一例を示す図である。FIG. 5 is a diagram illustrating an example of a packet transmitted from the communication control unit to the power transmitter. 図6は、全体制御部の機能構成を示す図である。FIG. 6 is a diagram illustrating a functional configuration of the overall control unit. 図7は、ルーティングテーブルの情報の作成例を説明するための図である。FIG. 7 is a diagram for explaining an example of creating routing table information. 図8は、ルーティングテーブルの情報の他の作成例を説明するための図である。FIG. 8 is a diagram for explaining another example of creation of routing table information. 図9は、ルーティングテーブルの作成処理のフローを示すフローチャートである。FIG. 9 is a flowchart illustrating a flow of a routing table creation process. 図10は、全体制御部のハードウェア構成を示す図である。FIG. 10 is a diagram illustrating a hardware configuration of the overall control unit. 図11は、ルーティングテーブルを用いたフレームのルーティングを説明するための図である。FIG. 11 is a diagram for explaining frame routing using a routing table.
 以下に、本願の開示する情報処理システム、位置特定方法及び位置特定プログラムの実施例を図面に基づいて詳細に説明する。なお、この実施例は開示の技術を限定するものではない。 Hereinafter, embodiments of an information processing system, a position specifying method, and a position specifying program disclosed in the present application will be described in detail with reference to the drawings. Note that this embodiment does not limit the disclosed technology.
 まず、実施例に係る情報処理システムを図1及び図2を用いて説明する。図1は、実施例に係る情報処理システムを示す正面図であり、図2は、実施例に係る情報処理システムを示す側面図である。 First, an information processing system according to an embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a front view illustrating the information processing system according to the embodiment, and FIG. 2 is a side view illustrating the information processing system according to the embodiment.
 図1に示すように、情報処理システム10は、ネットワークスイッチ11と、32個のノード20とを有する。なお、ここでは説明の便宜上、32個のノード20を示したが、情報処理システム10は、任意の数のノード20を有することができる。また、図2に示すように、ネットワークスイッチ11及びノード20は筐体1のスロットに収容され、ノード20は筐体1のスロットから取り外すことが可能である。 As shown in FIG. 1, the information processing system 10 includes a network switch 11 and 32 nodes 20. For convenience of explanation, 32 nodes 20 are shown here, but the information processing system 10 can have an arbitrary number of nodes 20. As shown in FIG. 2, the network switch 11 and the node 20 are accommodated in the slot of the housing 1, and the node 20 can be removed from the slot of the housing 1.
 ネットワークスイッチ11は、ノード20が外部ネットワークと通信するために用いられる。ネットワークスイッチ11は、ノード20と無線で通信を行い、通常無線用無線アンテナ11aと、管理無線用無線アンテナ11bとを有する。 The network switch 11 is used for the node 20 to communicate with an external network. The network switch 11 communicates with the node 20 wirelessly, and includes a normal wireless antenna 11a and a management wireless antenna 11b.
 通常無線用無線アンテナ11aは、ノード20で動作するOSやアプリケーションが他のノード20やネットワークスイッチ11との通信に使用する無線(以下、「通常無線」と呼ぶ)のアンテナである。 The normal radio antenna 11 a is a radio (hereinafter referred to as “normal radio”) antenna used by the OS and application operating on the node 20 for communication with other nodes 20 and the network switch 11.
 管理無線用無線アンテナ11bは、ノード20の管理などで用いられる無線(以下、「管理無線」と呼ぶ)のアンテナである。管理無線は、通常無線と比較して、低速であるが、遠距離の通信が可能であり、最も遠いノード同士やネットワークスイッチ11とノード間でも通信が可能である。 The management radio radio antenna 11 b is a radio (hereinafter referred to as “management radio”) antenna used for management of the node 20 or the like. The management radio is slower than the normal radio, but can communicate over a long distance, and can communicate between the farthest nodes or between the network switch 11 and the nodes.
 また、ネットワークスイッチ11は、ノード20及びネットワークスイッチ11を制御する全体制御部40を有する。全体制御部40は、各ノード20を一意に識別する識別子であるノードIDを各ノード20に割り当てる。ノードIDは、ノード20が有するMAC(Media Access Control)アドレスから全体制御部40により生成される。全体制御部40は、MPUを有し、MPUでファームウェアを実行することにより実現される。 In addition, the network switch 11 includes an overall control unit 40 that controls the node 20 and the network switch 11. The overall control unit 40 assigns a node ID, which is an identifier for uniquely identifying each node 20, to each node 20. The node ID is generated by the overall control unit 40 from the MAC (Media Access Control) address of the node 20. The overall control unit 40 has an MPU and is realized by executing firmware in the MPU.
 ノード20は、通常無線用無線アンテナ20aと、管理無線用無線アンテナ20bと、無線給電用アンテナ20cとを有する。通常無線用無線アンテナ20aは、通常無線で用いられるアンテナである。管理無線用無線アンテナ20bは、管理無線で用いられるアンテナである。 The node 20 includes a normal radio antenna 20a, a management radio antenna 20b, and a radio power feeding antenna 20c. The normal radio antenna 20a is an antenna used for normal radio. The management radio radio antenna 20b is an antenna used for management radio.
 無線給電用アンテナ20cは、ノード20が筐体1から無線給電を受けるためのアンテナである。すなわち、ノード間やノード20と筐体1との間を接続する有線のコネクタ及び有線の通信線はなく、給電及び通信は無線により行われる。 The wireless power feeding antenna 20 c is an antenna for the node 20 to receive wireless power feeding from the housing 1. That is, there are no wired connectors or wired communication lines that connect the nodes or between the node 20 and the housing 1, and power feeding and communication are performed wirelessly.
 次に、ノード20の構成について説明する。図3は、ノード20の構成を示す図である。図3に示すように、ノード20は、CPU21と、メモリーコントローラ22と、メモリー23と、ストレージコントローラ24と、ストレージ25と、無線LANコントローラ26と、ベースバンド及びRF部27と、インターコネクト28とを有する。また、ノード20は、制御部29と、パワーレシーバ30とを有する。 Next, the configuration of the node 20 will be described. FIG. 3 is a diagram illustrating the configuration of the node 20. As shown in FIG. 3, the node 20 includes a CPU 21, a memory controller 22, a memory 23, a storage controller 24, a storage 25, a wireless LAN controller 26, a baseband and RF unit 27, and an interconnect 28. Have. The node 20 includes a control unit 29 and a power receiver 30.
 CPU21は、メモリー23に記憶されたプログラムを読み出して実行する中央処理装置である。メモリーコントローラ22は、メモリー23へのデータの書き込み、メモリー23からのプログラム及びデータの読み出しを制御する制御装置である。メモリー23は、プログラムやデータを記憶するRAM(Random Access Memory)である。 The CPU 21 is a central processing unit that reads and executes a program stored in the memory 23. The memory controller 22 is a control device that controls writing of data into the memory 23, reading of programs and data from the memory 23. The memory 23 is a RAM (Random Access Memory) that stores programs and data.
 ストレージコントローラ24は、ストレージ25へのデータの書き込み、ストレージ25からのプログラム及びデータの読み出しを制御する制御装置である。ストレージ25は、プログラムやデータを記憶する磁気ディスク装置である。 The storage controller 24 is a control device that controls the writing of data to the storage 25 and the reading of programs and data from the storage 25. The storage 25 is a magnetic disk device that stores programs and data.
 無線LANコントローラ26は、通常無線及び管理無線で用いられる無線LANによる通信を制御する制御装置である。ベースバンド及びRF部27は、無線LANコントローラ26の制御のもとで無線通信を行う。 The wireless LAN controller 26 is a control device that controls communication using a wireless LAN that is normally used for radio and management radio. The baseband and RF unit 27 performs wireless communication under the control of the wireless LAN controller 26.
 インターコネクト28は、CPU21、メモリーコントローラ22、ストレージコントローラ24、無線LANコントローラ26及び制御部29を相互に接続する装置である。 The interconnect 28 is a device that interconnects the CPU 21, the memory controller 22, the storage controller 24, the wireless LAN controller 26, and the control unit 29.
 制御部29は、管理無線を用いてノード20を制御する。制御部29は、MPU(Micro Processing Unit)を有し、MPUでファームウェアを実行することにより実現される。また、制御部29は、宛先ノードのMACアドレスとネクストノードのMACアドレスを対応付けるルーティングテーブルを有し、ノード20が他のノード20に送信するフレームをルーティングする。パワーレシーバ30は、筐体1から無線給電を受信し、ノード内に電力を供給する。 The control unit 29 controls the node 20 using management radio. The control unit 29 has an MPU (Micro Processing Unit), and is realized by executing firmware in the MPU. Further, the control unit 29 has a routing table that associates the MAC address of the destination node with the MAC address of the next node, and routes a frame transmitted from the node 20 to another node 20. The power receiver 30 receives wireless power feeding from the housing 1 and supplies power in the node.
 次に、無線給電について説明する。図4は、無線給電を行うパワートランスミッタ50と無線給電を受けるパワーレシーバ30の構成を示す図である。図4に示すように、パワートランスミッタ50は、筐体1に配置され、インバータ51と、プライマリーコイル52と、カレントセンス53と、通信制御部54とを有する。 Next, wireless power feeding will be described. FIG. 4 is a diagram showing a configuration of a power transmitter 50 that performs wireless power feeding and a power receiver 30 that receives wireless power feeding. As shown in FIG. 4, the power transmitter 50 is disposed in the housing 1 and includes an inverter 51, a primary coil 52, a current sense 53, and a communication control unit 54.
 インバータ51は、直流入力を交流に変換し、プライマリーコイル52を駆動する。プライマリーコイル52は、キャパシタとともに共振回路を構成する。カレントセンス53は、プライマリーコイル52の電流を測定することによりパワーレシーバ30から送信されるパケットを受信し、受信したパケットを通信制御部54に通知する。 The inverter 51 converts the DC input into AC and drives the primary coil 52. The primary coil 52 forms a resonance circuit together with the capacitor. The current sense 53 receives the packet transmitted from the power receiver 30 by measuring the current of the primary coil 52 and notifies the communication control unit 54 of the received packet.
 通信制御部54は、パワーレシーバ30からメッセージを受け取って解読し、解読したメッセージ及びプライマリーコイル52の電流に基づいて電力制御を実行する。通信制御部54は、インバータ51が出力する交流の周波数を操作することにより給電の制御を行う。 The communication control unit 54 receives and decodes the message from the power receiver 30, and executes power control based on the decoded message and the current of the primary coil 52. The communication control unit 54 controls power feeding by operating the AC frequency output from the inverter 51.
 また、通信制御部54は、ネットワークスイッチ11に含まれる全体制御部40からの指示に基づいて給電制御を行い、制御状態について全体制御部40に通知する。また、通信制御部54は、パワーレシーバ30の通信制御部35と通信を行う。 Further, the communication control unit 54 performs power supply control based on an instruction from the overall control unit 40 included in the network switch 11 and notifies the overall control unit 40 of the control state. The communication control unit 54 communicates with the communication control unit 35 of the power receiver 30.
 1つのパワートランスミッタ50は、n個のノード20に給電する。例えば、実施例に係る情報処理システム10では、1つのパワートランスミッタ50が8個のノード20に給電する。したがって、実施例に係る情報処理システム10では、4個のパワートランスミッタ50が筐体1に配置される。筐体内には4段でノード20が配置されるため、パワートランスミッタ50は各段の左端に配置され、それぞれ各段の8個のノード20に給電する。 One power transmitter 50 supplies power to n nodes 20. For example, in the information processing system 10 according to the embodiment, one power transmitter 50 supplies power to eight nodes 20. Therefore, in the information processing system 10 according to the embodiment, the four power transmitters 50 are arranged in the housing 1. Since the nodes 20 are arranged in four stages in the housing, the power transmitter 50 is arranged at the left end of each stage and supplies power to the eight nodes 20 in each stage.
 なお、ここでは、1つのパワートランスミッタ50が8個のノード20に給電することとしたが、1つのパワートランスミッタ50は、無線給電が可能な範囲で任意の個数のノード20に給電することができる。また、ここでは、パワートランスミッタ50を各段の左端に配置することとしたが、パワートランスミッタ50は各段の右端など他の場所に配置することもできる。 Although one power transmitter 50 supplies power to eight nodes 20 here, one power transmitter 50 can supply power to an arbitrary number of nodes 20 within a range where wireless power supply is possible. . Here, the power transmitter 50 is arranged at the left end of each stage, but the power transmitter 50 can be arranged at other places such as the right end of each stage.
 パワーレシーバ30は、セカンダリーコイル31と、調整回路32と、出力遮断器33と、通信変調器34と、通信制御部35とを有する。セカンダリーコイル31は、キャパシタとともに共振回路を構成し、パワートランスミッタ50からの給電を受ける。 The power receiver 30 includes a secondary coil 31, an adjustment circuit 32, an output circuit breaker 33, a communication modulator 34, and a communication control unit 35. The secondary coil 31 constitutes a resonance circuit together with the capacitor, and receives power from the power transmitter 50.
 調整回路32は、セカンダリーコイル31から受け取った電力の交流波形を調整する。また、調整回路32は、出力の平滑化を行うこともできる。調整回路32は、出力遮断器33、通信変調器34及び通信制御部35に電力を供給する。 The adjustment circuit 32 adjusts the AC waveform of the power received from the secondary coil 31. The adjustment circuit 32 can also smooth the output. The adjustment circuit 32 supplies power to the output circuit breaker 33, the communication modulator 34, and the communication control unit 35.
 出力遮断器33は、パワーレシーバ30が電力を供給しない場合に、出力電流を遮断する。また、出力遮断器33は、パワーレシーバ30が電力を供給しない場合に、電流が逆流することを防ぐ。 The output circuit breaker 33 interrupts the output current when the power receiver 30 does not supply power. The output circuit breaker 33 prevents the current from flowing backward when the power receiver 30 does not supply power.
 通信変調器34は、通信制御部35の指示に基づいてパワートランスミッタ50に通信信号を送信する。通信制御部35は、通信変調器34を操作し、パワートランスミッタ50の通信制御部54にパケットを送信する。 The communication modulator 34 transmits a communication signal to the power transmitter 50 based on an instruction from the communication control unit 35. The communication control unit 35 operates the communication modulator 34 and transmits a packet to the communication control unit 54 of the power transmitter 50.
 図5は、通信制御部35がパワートランスミッタ50に送信するパケットの一例を示す図である。図5は、プライマリーコイル52とセカンダリーコイル31のカップリング度合いを信号強度値として示す信号強度パケットである。信号強度パケットは、フリーポジショニングを使用するパワートランスミッタ50に最適な電力伝送を提供するプライマリーコイル52の設定を目的として、信号強度をパワーレシーバ30からパワートランスミッタ50に伝えるものである。 FIG. 5 is a diagram illustrating an example of a packet that the communication control unit 35 transmits to the power transmitter 50. FIG. 5 is a signal strength packet indicating the degree of coupling between the primary coil 52 and the secondary coil 31 as a signal strength value. The signal strength packet transmits the signal strength from the power receiver 30 to the power transmitter 50 for the purpose of setting the primary coil 52 that provides optimal power transmission to the power transmitter 50 using free positioning.
 図5に示すように、通信制御部35は、8ビットのデータで信号強度値をパワートランスミッタ50に送信する。なお、パワーレシーバ30は、整流された電圧、開回路電圧、受信パワーなどから信号強度値を決定する。 As shown in FIG. 5, the communication control unit 35 transmits the signal strength value to the power transmitter 50 using 8-bit data. The power receiver 30 determines the signal strength value from the rectified voltage, the open circuit voltage, the received power, and the like.
 また、通信制御部35は、出力遮断器33を制御し、パワーレシーバ30及び負荷60を監視制御する。また、通信制御部35は、制御部29からの指示に基づいて受電制御を行い、制御状態について制御部29に通知する。 Further, the communication control unit 35 controls the output circuit breaker 33 and monitors and controls the power receiver 30 and the load 60. The communication control unit 35 performs power reception control based on an instruction from the control unit 29 and notifies the control unit 29 of the control state.
 次に、全体制御部40の構成について説明する。図6は、全体制御部40の機能構成を示す図である。図6に示すように、全体制御部40は、給電指示部41と、信号強度取得部42と、位置特定部43と、マッピング情報作成部44と、ルーティングテーブル作成部45とを有する。 Next, the configuration of the overall control unit 40 will be described. FIG. 6 is a diagram illustrating a functional configuration of the overall control unit 40. As shown in FIG. 6, the overall control unit 40 includes a power supply instruction unit 41, a signal strength acquisition unit 42, a position specifying unit 43, a mapping information creation unit 44, and a routing table creation unit 45.
 給電指示部41は、パワートランスミッタ50に給電を指示し、給電指示の一部としてpingの実行を指示する。ここで、pingは、パワートランスミッタ50が給電するパワーレシーバ30を選択するために送信する電力信号である。pingを受信したパワーレシーバ30は、自ノードを識別するノードIDと受信した電力信号の信号強度値をパワートランスミッタ50に送信する。 The power supply instruction unit 41 instructs the power transmitter 50 to supply power, and instructs execution of ping as part of the power supply instruction. Here, ping is a power signal transmitted to select the power receiver 30 to which the power transmitter 50 supplies power. The power receiver 30 that has received the ping transmits a node ID for identifying the node and a signal strength value of the received power signal to the power transmitter 50.
 信号強度取得部42は、パワーレシーバ30が送信したノードIDと信号強度値をパワートランスミッタ50から取得する。信号強度取得部42は、各パワートランスミッタ50が受信した8個のノードID及び信号強度値を4つのパワートランスミッタ50から受け取るため、合計32個のノードIDと信号強度値を取得する。 The signal strength acquisition unit 42 acquires the node ID and the signal strength value transmitted from the power receiver 30 from the power transmitter 50. Since the signal strength acquisition unit 42 receives the eight node IDs and signal strength values received by each power transmitter 50 from the four power transmitters 50, the signal strength acquisition unit 42 acquires a total of 32 node IDs and signal strength values.
 位置特定部43は、パワートランスミッタ50の配置位置と信号強度取得部42が取得した32個のノードID及び信号強度値とに基づいて、各ノード20の筐体内での位置を特定する。具体的には、位置特定部43は、各パワートランスミッタ50が受信した8個のノードIDを筐体1の各段に対応付ける。そして、位置特定部43は、信号強度値の大きい順に筐体1の左のスロットからノードIDを対応付ける。 The position specifying unit 43 specifies the position of each node 20 in the housing based on the arrangement position of the power transmitter 50 and the 32 node IDs and signal intensity values acquired by the signal intensity acquisition unit 42. Specifically, the position specifying unit 43 associates the eight node IDs received by each power transmitter 50 with each stage of the housing 1. Then, the position specifying unit 43 associates node IDs from the left slot of the housing 1 in descending order of the signal strength value.
 また、位置特定部43は、特定した位置を各ノード20に管理無線で通知する。あるいは、位置特定部43は、特定した位置をパワートランスミッタ50及びパワーレシーバ30を介して各ノード20に通知することもできる。 Also, the position specifying unit 43 notifies each node 20 of the specified position by management radio. Alternatively, the position specifying unit 43 can notify each node 20 of the specified position via the power transmitter 50 and the power receiver 30.
 マッピング情報作成部44は、筐体内のノード20について位置特定部43により特定された位置に基づいて、スロット位置とノードIDとを対応付けるマッピング情報を作成する。 The mapping information creating unit 44 creates mapping information for associating the slot position with the node ID based on the position specified by the position specifying unit 43 for the node 20 in the housing.
 ルーティングテーブル作成部45は、マッピング情報作成部44により作成されたマッピング情報に基づいて、各ノード20のルーティングテーブルの情報を作成し、管理無線でルーティングテーブルの情報を各ノード20の制御部29に送信する。ルーティングテーブルの情報を受信した制御部29は、自身のルーティングテーブルに情報を書き込む。 The routing table creation unit 45 creates routing table information of each node 20 based on the mapping information created by the mapping information creation unit 44, and sends the routing table information to the control unit 29 of each node 20 by managed radio. Send. The control unit 29 that has received the routing table information writes the information in its own routing table.
 図7は、ルーティングテーブルの情報の作成例を説明するための図である。図7において、各ノード20は、短距離無線を用いて縦方向及び横方向に隣接するノード20にしかフレームを送信しないものとする。ここで、短距離無線は、通常無線の1つである。ルーティングテーブル作成部45は、先に横方向に隣接するノード20にフレームを転送し、次に縦方向に隣接するノード20にフレームを転送するようにルーティング情報を作成する。 FIG. 7 is a diagram for explaining an example of creating routing table information. In FIG. 7, it is assumed that each node 20 transmits a frame only to nodes 20 adjacent in the vertical and horizontal directions using short-range radio. Here, short-range radio is one of normal radio. The routing table creation unit 45 creates routing information so as to transfer a frame to the node 20 adjacent in the horizontal direction first, and then transfer the frame to the node 20 adjacent in the vertical direction.
 例えば、図7に示すように、送信元ノードAから宛先ノードOにフレームを送信する場合、ルーティングテーブル作成部45は、宛先がノードOであるフレームをノードBに転送するようにノードAのルーティング情報を作成する。また、ルーティングテーブル作成部45は、宛先がノードOであるフレームをノードCに転送するようにノードBのルーティング情報を作成する。 For example, as illustrated in FIG. 7, when a frame is transmitted from the transmission source node A to the destination node O, the routing table creation unit 45 performs routing of the node A so as to transfer a frame whose destination is the node O to the node B. Create information. Further, the routing table creation unit 45 creates the routing information of the node B so as to transfer the frame whose destination is the node O to the node C.
 また、ルーティングテーブル作成部45は、宛先がノードOであるフレームをノードGに転送するようにノードCのルーティング情報を作成する。また、ルーティングテーブル作成部45は、宛先がノードOであるフレームをノードKに転送するようにノードGのルーティング情報を作成する。また、ルーティングテーブル作成部45は、宛先がノードOであるフレームをノードOに転送するようにノードKのルーティング情報を作成する。 Further, the routing table creation unit 45 creates the routing information of the node C so as to transfer the frame whose destination is the node O to the node G. Further, the routing table creation unit 45 creates the routing information of the node G so as to transfer the frame whose destination is the node O to the node K. Further, the routing table creation unit 45 creates the routing information of the node K so as to transfer the frame whose destination is the node O to the node O.
 このように、ルーティングテーブル作成部45は、各宛先ノードについてフレームの転送先を各ノード20について特定することにより、ルーティングテーブルの情報を作成することができる。 As described above, the routing table creation unit 45 can create the routing table information by specifying the frame transfer destination for each node 20 for each destination node.
 図8は、ルーティングテーブルの情報の他の作成例を説明するための図である。図8において、ノードA、ノードD、ノードM及びノードPは、短距離無線と長距離無線の両方で通信することができる。一方、その他のノードは、短距離無線でしか通信することができない。ここで、長距離無線も通常無線の1つである。 FIG. 8 is a diagram for explaining another example of creating routing table information. In FIG. 8, node A, node D, node M, and node P can communicate with both short-range radio and long-range radio. On the other hand, other nodes can communicate only by short-range radio. Here, the long-range radio is one of the normal radios.
 ノードA、ノードD、ノードM及びノードPは、宛先ノードが長距離無線の機能を有する場合には、宛先ノードに長距離無線でフレームを送信する。また、ノードA、ノードD、ノードM及びノードPは、宛先ノードが長距離無線の機能を有しない場合には、宛先ノードまでのホップ数に基づいて、フレームを転送する。すなわち、ノードA、ノードD、ノードM及びノードPは、ホップ数が所定の閾値以内である場合には短距離無線を用いてフレームを転送し、ホップ数が所定の閾値以内でない場合には、宛先ノードに最も近く、長距離通信機能を有するノードにフレームを送信する。 Node A, Node D, Node M, and Node P transmit frames to the destination node by long-distance radio when the destination node has a long-distance radio function. Further, the node A, the node D, the node M, and the node P transfer a frame based on the number of hops to the destination node when the destination node does not have a long-distance wireless function. That is, the node A, the node D, the node M, and the node P transfer the frame using the short-range radio when the hop number is within the predetermined threshold, and when the hop number is not within the predetermined threshold, The frame is transmitted to the node closest to the destination node and having the long-distance communication function.
 一方、短距離無線の機能しか有しないその他のノードは、宛先ノードまでのホップ数に基づいて、フレームを転送する。すなわち、その他のノードは、ホップ数が所定の閾値以内である場合には短距離無線を用いてフレームを転送し、ホップ数が所定の閾値以内でない場合には、最も近く、長距離通信機能を有するノードにフレームを転送する。 On the other hand, other nodes having only short-range wireless functions transfer frames based on the number of hops to the destination node. That is, the other nodes transfer frames using short-range radio when the number of hops is within a predetermined threshold, and when the number of hops is not within the predetermined threshold, the other nodes are closest and have a long-range communication function. The frame is transferred to the node having it.
 例えば、図8に示すように、送信元ノードAから宛先ノードOにフレームを送信する場合、ルーティングテーブル作成部45は、宛先がノードOであるフレームをノードPに長距離無線で転送するようにノードAのルーティング情報を作成する。また、ルーティングテーブル作成部45は、宛先がノードOであるフレームをノードOに短距離無線で転送するようにノードPのルーティング情報を作成する。 For example, as shown in FIG. 8, when a frame is transmitted from the transmission source node A to the destination node O, the routing table creation unit 45 transfers the frame whose destination is the node O to the node P by long-distance radio. Create routing information for node A. In addition, the routing table creation unit 45 creates the routing information of the node P so that the frame whose destination is the node O is transferred to the node O by short-range radio.
 次に、ルーティングテーブルの作成処理のフローについて説明する。図9は、ルーティングテーブルの作成処理のフローを示すフローチャートである。図9に示すように、全体制御部40の指示に基づいて、筐体1に配置されたパワートランスミッタ50が、pingを実行する(ステップS1)。 Next, the flow of the routing table creation process will be described. FIG. 9 is a flowchart illustrating a flow of a routing table creation process. As shown in FIG. 9, based on an instruction from the overall control unit 40, the power transmitter 50 arranged in the housing 1 executes ping (step S1).
 そして、パワートランスミッタ50は、ノード20のパワーレシーバ30からの応答を待ち(ステップS2)、パワーレシーバ30からの応答を検出したか否かを判定する(ステップS3)。その結果、パワーレシーバ30からの応答を検出しない場合には、パワートランスミッタ50は、ステップS2に戻って、パワーレシーバ30からの応答を待つ。 Then, the power transmitter 50 waits for a response from the power receiver 30 of the node 20 (step S2), and determines whether a response from the power receiver 30 has been detected (step S3). As a result, when a response from the power receiver 30 is not detected, the power transmitter 50 returns to step S2 and waits for a response from the power receiver 30.
 一方、パワーレシーバ30からの応答を検出した場合には、パワーレシーバ30が送信したノードID及び信号強度値をパワートランスミッタ50が受信する(ステップS4)。そして、パワートランスミッタ50は、自分に割り当てられた全ノード20のパワーレシーバ30からノードID及び信号強度値を受信したか否かを判定し(ステップS5)、ノードID及び信号強度値を受信していないパワーレシーバ30がある場合には、ステップS2に戻って、パワーレシーバ30からの応答を待つ。 On the other hand, when the response from the power receiver 30 is detected, the power transmitter 50 receives the node ID and the signal strength value transmitted by the power receiver 30 (step S4). Then, the power transmitter 50 determines whether or not the node ID and the signal strength value have been received from the power receivers 30 of all the nodes 20 assigned to itself (step S5), and has received the node ID and the signal strength value. If there is no power receiver 30, the process returns to step S <b> 2 and waits for a response from the power receiver 30.
 なお、ステップS1~ステップS5の処理は、各パワートランスミッタ50により行われる。そして、全ノード20のパワーレシーバ30からノードID及び信号強度値を受信すると、全体制御部40が、ノードID及び信号強度値に基づいて各ノード20の位置を特定する(ステップS6)。 Note that the processing of step S1 to step S5 is performed by each power transmitter 50. When the node IDs and signal strength values are received from the power receivers 30 of all the nodes 20, the overall control unit 40 identifies the position of each node 20 based on the node IDs and signal strength values (step S6).
 そして、全体制御部40が、特定した位置を管理無線により各ノード20に通知し(ステップS7)、マッピング情報を作成する(ステップS8)。そして、全体制御部40が、マッピング情報に基づいて、ルーティングテーブルの情報を作成して各ノード20に送信する(ステップS9)。 Then, the overall control unit 40 notifies each node 20 of the specified position by management radio (step S7), and creates mapping information (step S8). Then, the overall control unit 40 creates routing table information based on the mapping information and transmits it to each node 20 (step S9).
 このように、全体制御部40が、ルーティングテーブルの情報を作成して各ノード20に送信するので、各ノード20は、自動でルーティングテーブルを設定することができる。 Thus, since the overall control unit 40 creates routing table information and transmits it to each node 20, each node 20 can automatically set the routing table.
 なお、全体制御部40の機能はファームウェアにより実現される。そこで、ファームウェアにより実現される全体制御部40のハードウェア構成について説明する。図10は、全体制御部40のハードウェア構成を示す図である。図10に示すように、全体制御部40は、MPU46と、フラッシュメモリー47と、RAM48とを有する。 The functions of the overall control unit 40 are realized by firmware. Therefore, the hardware configuration of the overall control unit 40 realized by firmware will be described. FIG. 10 is a diagram illustrating a hardware configuration of the overall control unit 40. As shown in FIG. 10, the overall control unit 40 includes an MPU 46, a flash memory 47, and a RAM 48.
 MPU46は、フラッシュメモリー47からプログラムを読み出して実行する演算処理装置である。フラッシュメモリー47は、プログラムを記憶する不揮発性メモリーである。RAM48は、プログラムの途中結果などを記憶するメモリーである。 The MPU 46 is an arithmetic processing unit that reads a program from the flash memory 47 and executes it. The flash memory 47 is a nonvolatile memory that stores a program. The RAM 48 is a memory that stores intermediate results of the program.
 上述してきたように、実施例では、筐体1に配置されたパワートランスミッタ50が、pingを実行し、各ノード20のパワーレシーバ30からノードID及び信号強度値を受信する。そして、全体制御部40が、パワートランスミッタ50からノードID及び信号強度値を取得し、取得したノードID及び信号強度値に基づいて各ノード20の位置を特定する。したがって、情報処理システム10は、筐体内のノード配置を自動で把握することができる。 As described above, in the embodiment, the power transmitter 50 arranged in the housing 1 executes ping and receives the node ID and the signal strength value from the power receiver 30 of each node 20. Then, the overall control unit 40 acquires the node ID and the signal strength value from the power transmitter 50, and specifies the position of each node 20 based on the acquired node ID and the signal strength value. Therefore, the information processing system 10 can automatically grasp the node arrangement in the housing.
 また、全体制御部40は、特定したノード配置に基づいて、ルーティングテーブルの情報を作成し、各ノード20に送信する。したがって、情報処理システム10は、自動で各ノード20のルーティングテーブルの設定を行うことができる。 Further, the overall control unit 40 creates routing table information based on the identified node arrangement and transmits it to each node 20. Therefore, the information processing system 10 can automatically set the routing table of each node 20.
 なお、実施例では、各パワートランスミッタ50が8個のノード20に給電する場合について説明したが、本発明はこれに限定されるものではなく、各パワートランスミッタ50が1個のノード20に給電することもできる。その場合、全体制御部は、各パワートランスミッタが受信したノードIDと各トランスミッタの位置から、筐体内の各ノードの位置を特定することができる。したがって、情報処理システム10は、信号強度値を用いることなく、筐体内のノード配置を自動で把握することができる。 In the embodiment, the case where each power transmitter 50 supplies power to eight nodes 20 has been described. However, the present invention is not limited to this, and each power transmitter 50 supplies power to one node 20. You can also In this case, the overall control unit can specify the position of each node in the housing from the node ID received by each power transmitter and the position of each transmitter. Therefore, the information processing system 10 can automatically grasp the node arrangement in the housing without using the signal intensity value.
 また、実施例では、4つのパワートランスミッタ50を用いる場合について説明したが、本発明はこれに限定されるものではなく、1つのトランスミッタ50だけを用いることもできる。その場合、全体制御部は、信号強度値から、筐体内の各ノードの位置を特定することができる。したがって、情報処理システム10は、トランスミッタの位置を用いることなく、筐体内のノード配置を自動で把握することができる。 In the embodiment, the case where four power transmitters 50 are used has been described. However, the present invention is not limited to this, and only one transmitter 50 can be used. In this case, the overall control unit can specify the position of each node in the housing from the signal intensity value. Therefore, the information processing system 10 can automatically grasp the node arrangement in the housing without using the position of the transmitter.
 また、実施例では、各パワートランスミッタ50がノードID及び信号強度値を受信する場合について説明した。しかしながら、本発明はこれに限定されるものではなく、例えば、管理無線など、他の通信手段を用いてノードID及び信号強度値を受信する場合に同様に適用することができる。 In the embodiment, the case where each power transmitter 50 receives the node ID and the signal strength value has been described. However, the present invention is not limited to this, and can be similarly applied to the case where the node ID and the signal strength value are received using other communication means such as a management radio.
 また、本実施例では、ノード20を2次元に配置する場合について説明したが、本発明はこれに限定されるものではなく、ノード20を3次元に配置する場合にも同様に適用することができる。 In this embodiment, the case where the nodes 20 are arranged two-dimensionally has been described. However, the present invention is not limited to this, and the same applies to the case where the nodes 20 are arranged three-dimensionally. it can.
 また、本実施例では、ネットワークスイッチ11に全体制御部40が含まれる場合について説明したが、本発明はこれに限定されるものではなく、例えば、全体制御部を筐体1に配置するなど、全体制御部を他の場所に配置する場合にも同様に適用することができる。 In the present embodiment, the case where the network switch 11 includes the overall control unit 40 has been described. However, the present invention is not limited to this, and for example, the overall control unit is disposed in the housing 1. The same can be applied to the case where the overall control unit is arranged at another location.
 また、本実施例では、共振回路を用いて無線電力を供給する場合について説明したが、本発明はこれに限定されるものではなく、他の方法を用いて無線電力を供給する場合にも同様に適用することができる。 In this embodiment, the case where wireless power is supplied using a resonance circuit has been described. However, the present invention is not limited to this, and the same applies to the case where wireless power is supplied using other methods. Can be applied to.
 また、本実施例では、MACアドレスからノードIDが生成される場合について説明したが、本発明はこれに限定されるものではなく、他の情報からノードIDが生成される場合にも同様に適用することができる。 In the present embodiment, the case where the node ID is generated from the MAC address has been described. However, the present invention is not limited to this, and the same applies to the case where the node ID is generated from other information. can do.
  1  筐体
 10  情報処理システム
 11  ネットワークスイッチ
 11a,20a  通常無線用無線アンテナ
 11b,20b  管理無線用無線アンテナ
 20  ノード
 20c  無線給電用アンテナ
 21  CPU
 22  メモリーコントローラ
 23  メモリー
 24  ストレージコントローラ
 25  ストレージ
 26  無線LANコントローラ
 27  ベースバンド及びRF部
 28  インターコネクト
 29  制御部
 30  パワーレシーバ
 31  セカンダリーコイル
 32  調整回路
 33  出力遮断器
 34  通信変調器
 35  通信制御部
 40  全体制御部
 41  給電指示部
 42  信号強度取得部
 43  位置特定部
 44  マッピング情報作成部
 45  ルーティングテーブル作成部
 46  MPU
 47  フラッシュメモリー
 48  RAM
 50  パワートランスミッタ
 51  インバータ
 52  プライマリーコイル
 53  カレントセンス
 60  負荷
DESCRIPTION OF SYMBOLS 1 Case 10 Information processing system 11 Network switch 11a, 20a Radio | wireless antenna for normal radio | wireless 11b, 20b Radio antenna for management radio | wireless 20 Node 20c Radio feed antenna 21 CPU
DESCRIPTION OF SYMBOLS 22 Memory controller 23 Memory 24 Storage controller 25 Storage 26 Wireless LAN controller 27 Baseband and RF part 28 Interconnect 29 Control part 30 Power receiver 31 Secondary coil 32 Adjustment circuit 33 Output circuit breaker 34 Communication modulator 35 Communication control part 40 Overall control part 41 Power Supply Instruction Unit 42 Signal Strength Acquisition Unit 43 Position Identification Unit 44 Mapping Information Creation Unit 45 Routing Table Creation Unit 46 MPU
47 Flash memory 48 RAM
50 Power transmitter 51 Inverter 52 Primary coil 53 Current sense 60 Load

Claims (5)

  1.  複数の情報処理装置を筐体に搭載した情報処理システムにおいて、
     無線で所定の数の情報処理装置に電力を供給し、該電力を供給した各情報処理装置から各情報処理装置を識別する識別子及び前記無線の信号強度を受信する電力供給部と、
     前記識別子及び前記信号強度に基づいて筐体内の各情報処理装置の位置を特定する特定部と
     を有することを特徴とする情報処理システム。
    In an information processing system in which a plurality of information processing devices are mounted in a housing,
    A power supply unit that wirelessly supplies power to a predetermined number of information processing devices, receives an identifier for identifying each information processing device from each information processing device that has supplied the power, and the wireless signal strength;
    An information processing system comprising: a specifying unit that specifies a position of each information processing device in the housing based on the identifier and the signal strength.
  2.  前記電力供給部は、複数あり、
     前記特定部は、前記識別子、前記信号強度及び各電力供給部の位置に基づいて筐体内の各情報処理装置の位置を特定することを特徴とする請求項1に記載の情報処理システム。
    There are a plurality of the power supply units,
    The information processing system according to claim 1, wherein the specifying unit specifies a position of each information processing device in a housing based on the identifier, the signal strength, and a position of each power supply unit.
  3.  外部ネットワークに接続するネットワークスイッチを備え、
     前記特定部は前記ネットワークスイッチの一部として含まれることを特徴とする請求項1または2に記載の情報処理システム。
    It has a network switch that connects to an external network,
    The information processing system according to claim 1, wherein the specifying unit is included as a part of the network switch.
  4.  複数の情報処理装置の筐体内の位置を特定する位置特定方法において、
     無線で所定の数の情報処理装置に無線給電装置が電力を供給し、
     該電力を供給した各情報処理装置から各情報処理装置を識別する識別子及び前記無線の信号強度を前記無線給電装置が受信し、
     前記複数の情報処理装置を制御する制御部が前記識別子及び前記信号強度に基づいて筐体内の各情報処理装置の位置を特定する
     処理を実行することを特徴とする位置特定方法。
    In a position specifying method for specifying positions in a housing of a plurality of information processing devices,
    The wireless power feeder supplies power to a predetermined number of information processing devices wirelessly,
    The wireless power supply apparatus receives an identifier for identifying each information processing apparatus from each information processing apparatus that has supplied the power and the wireless signal strength,
    A position specifying method, wherein a control unit that controls the plurality of information processing devices executes a process of specifying a position of each information processing device in a housing based on the identifier and the signal strength.
  5.  複数の情報処理装置の筐体内の位置をコンピュータに特定させる位置特定プログラムにおいて、
     無線で所定の数の情報処理装置に電力を供給する無線給電装置に給電を指示し、
     前記無線給電装置により電力を供給された各情報処理装置から各情報処理装置を識別する識別子及び前記無線の信号強度を該無線給電装置を介して受信し、
     前記識別子及び前記信号強度に基づいて筐体内の各情報処理装置の位置を特定する
     処理を前記コンピュータに実行させることを特徴とする位置特定プログラム。
    In a position specifying program for causing a computer to specify positions in a housing of a plurality of information processing apparatuses,
    Instructing the wireless power feeder to supply power to a predetermined number of information processing devices wirelessly,
    Receiving an identifier for identifying each information processing device from each information processing device supplied with power by the wireless power feeding device and the wireless signal strength via the wireless power feeding device;
    A position specifying program that causes the computer to execute a process of specifying the position of each information processing device in a housing based on the identifier and the signal strength.
PCT/JP2013/077675 2013-10-10 2013-10-10 Information processing system, position identification method, and position identification program WO2015052819A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015541388A JP5954501B2 (en) 2013-10-10 2013-10-10 Information processing system, position specifying method, and position specifying program
PCT/JP2013/077675 WO2015052819A1 (en) 2013-10-10 2013-10-10 Information processing system, position identification method, and position identification program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077675 WO2015052819A1 (en) 2013-10-10 2013-10-10 Information processing system, position identification method, and position identification program

Publications (1)

Publication Number Publication Date
WO2015052819A1 true WO2015052819A1 (en) 2015-04-16

Family

ID=52812666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077675 WO2015052819A1 (en) 2013-10-10 2013-10-10 Information processing system, position identification method, and position identification program

Country Status (2)

Country Link
JP (1) JP5954501B2 (en)
WO (1) WO2015052819A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220264A (en) * 2003-01-14 2004-08-05 Mitsubishi Electric Corp Electronic equipment
JP2006260327A (en) * 2005-03-18 2006-09-28 Fujitsu Ltd Blade-type computer, blade management device, and blade management program
JP2008536348A (en) * 2005-02-22 2008-09-04 スカイフック ワイヤレス,インク. Continuous data optimization in positioning systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473038B2 (en) * 2001-01-05 2002-10-29 Motorola, Inc. Method and apparatus for location estimation
JP4934441B2 (en) * 2007-01-22 2012-05-16 株式会社日立製作所 Wireless node position estimation method, system, and processing apparatus therefor
JP5364749B2 (en) * 2011-03-24 2013-12-11 株式会社東芝 Wireless system and position estimator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220264A (en) * 2003-01-14 2004-08-05 Mitsubishi Electric Corp Electronic equipment
JP2008536348A (en) * 2005-02-22 2008-09-04 スカイフック ワイヤレス,インク. Continuous data optimization in positioning systems
JP2006260327A (en) * 2005-03-18 2006-09-28 Fujitsu Ltd Blade-type computer, blade management device, and blade management program

Also Published As

Publication number Publication date
JP5954501B2 (en) 2016-07-20
JPWO2015052819A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2016058367A1 (en) Smart home control system
KR102429535B1 (en) Method for registration of internet of things deivce and the appratus thereof
PH12015501768A1 (en) Systems and methods for discovering devices in a neighborhood aware network
US20130028152A1 (en) Wireless access point with modular network elements
US10064238B2 (en) Power socket terminal network, terminal and method
US9820048B2 (en) Technologies for location-dependent wireless speaker configuration
CN114008993B (en) Method, apparatus and system for session establishment in a wireless communication network
US20200091778A1 (en) Wireless transmission system and method thereof for power and data transmission
JP2015073339A5 (en) Power transmission control device, power transmission control method, and program
JP5962211B2 (en) POSITION INFORMATION MANAGEMENT SYSTEM, POSITION INFORMATION MANAGEMENT METHOD, AND MANAGEMENT SERVER
CN103428807A (en) Communication relay node selection method, communication center node and wireless communication network
WO2016086588A1 (en) Method for configuring rru device, rru device, intermediate device and computer storage medium
JP5954501B2 (en) Information processing system, position specifying method, and position specifying program
EP3082376A1 (en) Network device discovery method, network device and network device discovery system
US20150078382A1 (en) Information processing device, communication method, and computer-readable storage medium storing communication program
US20170195172A1 (en) Assembly of electronic devices intended to be connected to at least one computer network and method of transferring digital data in this assembly
US20160113056A1 (en) Communicating arbitrary attributes using a predefined characteristic
JP2017228989A (en) Peripheral device repeater and image display system
WO2020229320A1 (en) Real-time location of an object using multiple electrical devices
JP2014121122A (en) Power control server, power control program, and power control system
JP6005308B1 (en) Wireless communication apparatus, wireless communication terminal, wireless communication method, and wireless communication program
US10049069B2 (en) Information processing apparatus, information processing method, and recording medium
US11159602B2 (en) Updating electrical devices with limited communication capability in integrated networks
US20220015022A1 (en) Communication device, communication method, and computer-readable storage medium
KR20240035278A (en) Electronic device for managing thred networks and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895418

Country of ref document: EP

Kind code of ref document: A1