WO2015052875A1 - Semiconductor apparatus - Google Patents
Semiconductor apparatus Download PDFInfo
- Publication number
- WO2015052875A1 WO2015052875A1 PCT/JP2014/004719 JP2014004719W WO2015052875A1 WO 2015052875 A1 WO2015052875 A1 WO 2015052875A1 JP 2014004719 W JP2014004719 W JP 2014004719W WO 2015052875 A1 WO2015052875 A1 WO 2015052875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- wiring layer
- relaxation
- insulating
- teos
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
- H01L23/53295—Stacked insulating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05075—Plural internal layers
- H01L2224/0508—Plural internal layers being stacked
- H01L2224/05085—Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present disclosure relates to a semiconductor device.
- semiconductor devices are configured by bonding wires or the like to electrode pads provided on the surface.
- stress may act on the interlayer insulating film below the electrode pad through the electrode pad, and there is a problem that a crack or the like is generated in the interlayer insulating film depending on the stress.
- Patent Document 1 a semiconductor device shown in Patent Document 1 below is known.
- an electrode pad is disposed via an organic SOG layer and a reinforcing insulating layer stacked on an internal wiring layer, and via a via provided below the electrode pad covered with a passivation layer.
- the electrode pad and the internal wiring layer are configured to be electrically connected. For this reason, even when stress is applied through the electrode pad during bonding, the organic SOG layer is protected by the high-strength reinforcing insulating layer, so that the occurrence of cracks in the organic SOG layer is prevented.
- an internal wiring layer may have to be disposed below the portion of the electrode pad where the pressing force acts during bonding or inspection using a probe.
- the configuration disclosed in Patent Document 1 cannot be adopted, and the internal wiring layer may be plastically deformed due to the pressing force, and other insulation is caused by the elastically deformed internal wiring layer.
- the layer can crack.
- An object of the present disclosure is to provide a semiconductor device capable of suppressing generation of cracks in an insulating layer stacked on an internal wiring layer even when the internal wiring layer located below the electrode pad is plastically deformed.
- a semiconductor device in the first aspect of the present disclosure, includes an internal wiring layer, a plurality of insulating layers stacked on the internal wiring layer, and disposed above the plurality of insulating layers, at least a part of which is disposed. An electrode pad facing at least a part of the internal wiring layer via the plurality of insulating layers.
- the Young's modulus of the adjacent insulating layer laminated on the internal wiring layer is smaller than the Young's modulus of the other insulating layers.
- the breaking strength of the adjacent insulating layer is greater than the breaking strength of the other insulating layer.
- the Young's modulus of the adjacent insulating layer in contact with the internal wiring layer is Since it is relatively small, the stress generated in the adjacent insulating layer due to strain due to plastic deformation of the internal wiring layer is reduced. For this reason, the stress transmitted to another insulating layer via this adjacent insulating layer can be reduced.
- the adjacent insulating layer is configured such that the breaking strength of the adjacent insulating layer is higher than that of the other insulating layers, the occurrence of cracks in the adjacent insulating layer itself due to plastic deformation of the internal wiring layer can also be suppressed. Therefore, even when the internal wiring layer located below the electrode pad is plastically deformed, the occurrence of cracks in the insulating layer laminated on the internal wiring layer can be suitably suppressed.
- FIG. 1 is a cross-sectional view showing the semiconductor device according to the first embodiment.
- FIG. 2 is a graph showing stress-strain characteristics of an elastic material and an elastic-plastic material
- FIG. 3A is a cross-sectional view showing a state in which the relaxation layer is formed on the third wiring layer
- FIG. 3B is a simulation result of stress distribution in the configuration of FIG.
- FIG. 4A is a cross-sectional view showing a state in which the relaxation layer is formed between the first TEOS layer and the P-SiN layer
- 4B is a simulation result of stress distribution in the configuration of FIG. 4A.
- FIG. 5A is a cross-sectional view showing a state in which the relaxation layer is formed between the P-SiN layer and the second TEOS layer
- FIG. 5B is a simulation result of stress distribution in the configuration of FIG.
- FIG. 6A is a cross-sectional view showing a state in which the relaxation layer is formed between the second TEOS layer and the electrode pad
- 6B is a simulation result of stress distribution in the configuration of FIG. 6A.
- FIG. 7A is a cross-sectional view showing a state in which a relaxation layer is not formed
- FIG. 7B is a simulation result of stress distribution in the configuration of FIG.
- FIG. 8 is a graph summarizing the stress simulation results of FIGS. 3A to 7B.
- FIG. 9 is a simulation result of stress distribution when the Young's modulus of the relaxation layer shown in FIG. 3A is set to 40 GPa.
- FIG. 10 is a simulation result of stress distribution when the Young's modulus of the relaxation layer shown in FIG. 3A is set to 70 GPa.
- FIG. 11 is a simulation result of stress distribution when the Young's modulus of the relaxation layer shown in FIG. 3A is set to 100 GPa.
- FIG. 12 is a graph showing the relationship between the Young's modulus of the relaxation layer and the maximum principal stress in the first TEOS layer, the P—SiN layer, and the relaxation layer;
- FIG. 13A is a cross-sectional view illustrating a state where the first TEOS layer is formed on the third wiring layer;
- FIG. 13A is a cross-sectional view illustrating a state where the first TEOS layer is formed on the third wiring layer;
- FIG. 13A is a cross-sectional view illustrating a state where the first TEOS
- FIG. 13B is a cross-sectional view illustrating a state in which the relaxation layer and the first TEOS layer are formed in this order on the third wiring layer
- FIG. 14A is a cross-sectional view showing a state in which a first TEOS layer, a relaxation layer, and a second TEOS layer are formed in this order on a third wiring layer
- FIG. 14B is a cross-sectional view illustrating a state in which the first TEOS layer and the relaxation layer 34 are formed in this order on the third wiring layer.
- FIG. 15 is a cross-sectional view showing a state in which the relaxation layer and the first TEOS layer are formed in this order on the third wiring layer.
- FIG. 16A is a cross-sectional view showing a state in which a relaxation layer and a P-SiN layer are formed in this order on the third wiring layer
- FIG. 16B is a cross-sectional view showing a state in which a P—SiN layer, a relaxation layer, and a P—SiN layer are formed in this order on the third wiring layer
- FIG. 17A is a cross-sectional view showing a state in which a relaxation layer, a first TEOS layer, and a P-SiN layer are formed in this order on the third wiring layer;
- FIG. 17B is a cross-sectional view showing a state in which the first TEOS layer, the relaxation layer, and the P-SiN layer are formed in this order on the third wiring layer;
- FIG. 18 is a graph showing the result of simulating the maximum principal stress acting on each layer when the distance between the third wiring layer and the relaxation layer is changed,
- FIG. 19 is a graph showing a simulation result of the maximum principal stress acting on the relaxation layer, the first TEOS layer, and the P-SiN layer when the thickness of the first TEOS layer is changed in the configuration shown in FIG. 3A.
- FIG. 20 is a cross-sectional view showing the main parts of a semiconductor device according to a modification of the present embodiment.
- the semiconductor device 10 is a device that is employed as an electronic control device for a vehicle, for example, and is configured by laminating a plurality of wiring layers and insulating layers on a semiconductor substrate 11 made of silicon. .
- the semiconductor device 10 includes three wiring layers (a first wiring layer 21, a second wiring layer 22, and a third wiring layer 23) as a plurality of wiring layers arranged on the inner layer side.
- These wiring layers 21 to 23 are mainly composed of aluminum, copper or the like.
- Each of the wiring layers 21 to 23 constitutes a predetermined wiring pattern by being electrically connected to the electrode pad 25 and the like disposed on the surface via the via 24 and the like.
- the electrode pad 25 is mainly composed of aluminum or copper.
- the third wiring layer 23 which is the uppermost layer of each wiring layer, corresponds to an example of an “internal wiring layer”, and a part of the third wiring layer 23 extends in the vertical direction via a part of the electrode pad 25 and a plurality of insulating layers. It arrange
- the semiconductor device 10 has three insulating layers (first insulating layer 31, second insulating layer 32, and third insulating layer 33) as a plurality of insulating layers, and a Young's modulus lower than those of the insulating layers 31 to 33.
- a relaxation layer 34 is provided as an insulating layer.
- the relaxation layer 34 is configured such that its breaking strength is greater than the breaking strength of the third insulating layer 33.
- the first insulating layer 31 is disposed so as to be interposed between the first wiring layer 21 and the second wiring layer 22, and the second insulating layer 32 is disposed between the second wiring layer 22 and the third wiring layer 23. It arrange
- the third insulating layer 33 and the relaxing layer 34 are interposed between the third wiring layer 23 and the electrode pad 25, and are disposed on the third wiring layer 23 by laminating the relaxing layer 34 and the third insulating layer 33 in this order. ing.
- the constituent materials and thicknesses of the insulating layers 31 to 33 and the relaxing layer 34 will be described later. Further, the relaxing layer 34 may correspond to an example of “adjacent insulating layer”.
- FIG. 2 shows the relationship between stress and strain acting on the outside (stress-strain diagram) for elastic materials such as silicon and silicon oxide and elastic-plastic materials such as aluminum and copper.
- the slope of the graph corresponds to the Young's modulus.
- the strain increases in proportion to the stress acting from the outside.
- the Young's modulus decreases in the plastic property region that has undergone plastic deformation. The strain (deformation degree) increases with respect to the stress acting from the outside.
- the third wiring layer 23 is made of an elastic-plastic material mainly composed of aluminum or copper, when the probe is pressed against the electrode pad 25 (indicated by reference numeral N in FIG. 1 or the like) When the third wiring layer 23 positioned below is plastically deformed by the pressing force and the strain increases, the strain on the insulating layer and the like on the third wiring layer 23 also increases. When the strain becomes large in this way, a crack may occur in the insulating layer or the like on the third wiring layer 23.
- the inspection using the probe is usually performed a plurality of times, if the probe is pressed many times against the same part of the electrode pad 25 and the thickness of the part of the electrode pad 25 becomes thin, the third wiring layer 23 As a result, the pressing force acting on the second wiring layer 23 increases, and the possibility of cracks occurring in the insulating layer on the third wiring layer 23 increases.
- the lowermost relaxation layer 34 is configured to have a lower Young's modulus and higher fracture strength than the other insulating layers (the third insulating layer 33 in the example of FIG. 1) laminated on the relaxation layer 34. did.
- FIGS. 3A to 6B two layers mainly composed of tetraethoxysilane (hereinafter referred to as first TEOS layer 35 and second TEOS layer 36) and silicon nitride mainly disposed between both TEOS layers 35 and 37 are used.
- first TEOS layer 35 and second TEOS layer 36 two layers mainly composed of tetraethoxysilane
- silicon nitride mainly disposed between both TEOS layers 35 and 37 are used.
- a layer configured as follows hereinafter referred to as a P-SiN layer 37
- FIG. 3A to FIG. 8 show the simulation results regarding the stress distribution when the pressing force acts on the electrode pad 25 using the positions of the relaxation layers 34 with respect to both the TEOS layers 35 and 36 and the P-SiN layer 37 as parameters. It explains using.
- FIG. 3A is a cross-sectional view showing a state in which the relaxation layer 34 is formed on the third wiring layer 23, and FIG. 3B is a simulation result of stress distribution in the configuration of FIG. 3A.
- FIG. 4A is a cross-sectional view showing a state in which the relaxation layer 34 is formed between the first TEOS layer 35 and the P—SiN layer 37
- FIG. 4B is a simulation result of stress distribution in the configuration of FIG. 4A.
- FIG. 5A is a cross-sectional view showing a state in which the relaxation layer 34 is formed between the P-SiN layer 37 and the second TEOS layer 36
- FIG. 5B is a simulation result of stress distribution in the configuration of FIG. 5A.
- FIG. 6A is a cross-sectional view illustrating a state in which the relaxation layer 34 is formed between the second TEOS layer 36 and the electrode pad 25, and FIG. 6B is a simulation result of stress distribution in the configuration of FIG. 6A.
- FIG. 7A is a cross-sectional view illustrating a state where the relaxation layer 34 is not formed
- FIG. 7B is a simulation result of stress distribution in the configuration of FIG. 7A.
- the configuration on the lower layer side than the third wiring layer 23 is common in FIGS. 3A to 7B and the simulation described later, and on the semiconductor substrate 11 made of silicon, the first wiring layer 21, the first insulating layer 31, The second wiring layer 22, the second insulating layer 32, and the third wiring layer 23 are stacked in this order with a predetermined thickness.
- FIG. 8 is a graph summarizing the stress simulation results of FIGS. 3A to 7B.
- the results shown in FIGS. 3A and 3B correspond to FIG. 8E, and the results shown in FIGS. 4A and 4B are shown in FIG. 8 (d), the results shown in FIGS. 5A and 5B correspond to FIG. 8 (c), the results shown in FIGS. 6A and 6B correspond to FIG. 8 (b), and FIGS. 7A and 7B
- the result shown corresponds to FIG.
- the fracture limit stress of the TEOS layer and the P-SiN layer shown in FIG. 8 is based on the amount of warpage when the result of a known three-point bending test is modeled by simulation and fractured (cracked) with a single film. It is an estimated value.
- the maximum principal stress acting on the first TEOS layer 35 is shown as Sa1
- the maximum principal stress acting on the P-SiN layer 37 is shown as Sa2
- the maximum principal stress acting on the relaxation layer 34 is shown as
- the maximum principal stress Sa1 acting on the first TEOS layer 35 is compared with the configuration in which the relaxation layer 34 is not provided (FIGS. 7A to 7B).
- the maximum principal stress Sa2 acting on the P—SiN layer 37 is small.
- the maximum principal stress Sa1 acting on the first TEOS layer 35 is 24% in the configurations of FIGS. 3A and 3B and 10 in the configurations of FIGS. 4A and 4B with respect to the fracture limit stress of the TEOS layer. %, 16% in the configuration of FIGS. 5A and 5B, and 15% in the configuration of FIGS. 6A and 6B. That is, the stress acting on the first TEOS layer 35, the P-SiN layer 37, and the like can be reduced by providing the relaxation layer 34.
- the maximum principal stress of the first TEOS layer 35 is the smallest when the relaxation layer 34 is disposed on the third wiring layer 23 as shown in FIG. 3A (FIG. 8). (See (e)).
- the relaxation layer 34 when the relaxation layer 34 is disposed on the third wiring layer 23 as shown in FIG. 3A, or as shown in FIG. 4A, the first TEOS layer 35 and the P-SiN layer 37 are provided.
- the maximum principal stress of the P-SiN layer 37 is the smallest (see FIGS. 8D and 8E).
- the relaxing layer 34 on the third wiring layer 23
- the stress acting on the insulating layers 35 to 37 stacked on the relaxing layer 34 is more preferably reduced. Generation of cracks can be effectively suppressed.
- the maximum principal stress of the first TEOS layer 35 is less than the fracture limit stress of the first TEOS layer 35, and the maximum principal stress of the P-SiN layer 37 is all P-SiN layer 37. From this, it can be seen that the occurrence of cracks in each of the insulating layers 35 to 37 is effectively suppressed.
- FIG. 9 shows a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 40 GPa.
- FIG. 10 is a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 70 GPa.
- FIG. 11 shows a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 100 GPa.
- FIG. 9 shows a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 40 GPa.
- FIG. 10 is a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 70 GPa.
- FIG. 11 shows a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 100 GPa.
- FIG. 12 is a graph showing the relationship between the Young's modulus of the relaxation layer 34 and the maximum principal stress in the first TEOS layer 35, the P—SiN layer 37, and the relaxation layer 34, and is obtained from the simulation results of FIGS. It summarizes the maximum principal stress.
- the maximum principal stress acting on the first TEOS layer 35 is illustrated as Sb1
- the maximum principal stress acting on the P-SiN layer 37 is represented as Sb2
- the maximum principal stress acting on the relaxation layer 34 is illustrated as Sb3.
- the simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 is set to 150 GPa is also included.
- the maximum principal stress Sb1 of the first TEOS layer 35 is less than the fracture limit stress even when the Young's modulus of the relaxation layer 34 is changed, and decreases as the Young's modulus of the relaxation layer 34 increases.
- the maximum principal stress Sb2 of the P—SiN layer 37 is less than the fracture limit stress even when the Young's modulus of the relaxation layer 34 is changed, and decreases as the Young's modulus of the relaxation layer 34 increases.
- the maximum principal stress Sb3 of the relaxation layer 34 is less than the fracture limit stress of the first TEOS layer 35. Therefore, it is preferable to set the Young's modulus of the relaxing layer 34 to about 80 GPa or less.
- FIG. 13A is a cross-sectional view showing a state in which the first TEOS layer 35 (thickness 1 ⁇ m) is formed on the third wiring layer 23, and FIG. 13B shows the relaxation layer 34 and the first wiring layer 23 on the third wiring layer 23. It is sectional drawing which shows the state formed in order of 1TEOS layer 35 (thickness 1um).
- FIG. 14A is a cross-sectional view showing a state in which the first TEOS layer 35 (thickness 0.5 ⁇ m), the relaxation layer 34, and the second TEOS layer 36 (thickness 0.5 ⁇ m) are formed in this order on the third wiring layer 23.
- FIG. 14B is a cross-sectional view showing a state in which the first TEOS layer 35 (thickness 1 ⁇ m) and the relaxation layer 34 are formed in this order on the third wiring layer 23.
- FIG. 15 is a cross-sectional view showing a state in which the relaxing layer 34 and the first TEOS layer 35 (thickness 2 ⁇ m) are formed in this order on the third wiring layer 23.
- FIG. 16A is a cross-sectional view showing a state in which a relaxation layer 34 and a P-SiN layer 37 (thickness 1 ⁇ m) are formed in this order on the third wiring layer 23, and FIG. 16B shows the state on the third wiring layer 23.
- FIG. 6 is a cross-sectional view showing a state in which a P—SiN layer 37a (thickness 0.5 ⁇ m), a relaxation layer 34, and a P—SiN layer 37b (thickness 0.5 ⁇ m) are formed in this order.
- FIG. 17A is a cross-sectional view showing a state in which the relaxation layer 34, the first TEOS layer 35 (thickness 0.5 ⁇ m), and the P-SiN layer 37 (thickness 0.5 ⁇ m) are formed in this order on the third wiring layer 23.
- FIG. 17B shows a state in which the first TEOS layer 35 (thickness 0.5 ⁇ m), the relaxation layer 34, and the P-SiN layer 37 (thickness 0.5 ⁇ m) are formed in this order on the third wiring layer 23. It is sectional drawing shown.
- FIG. 18 is a graph showing the result of simulating the maximum principal stress at the position where a crack occurs when the distance between the third wiring layer 23 and the relaxation layer 34 is changed.
- the result of FIG. 14A is P2
- the result of FIG. 14B is P3
- the result of FIG. 15 is P4
- the result of FIG. 16A is P5
- the result of FIG. 16B is P6, and the result of FIG.
- the result of FIG. 17B is shown by P8.
- the maximum principal stress at the position where the crack is generated increases as the relaxation layer 34 moves away from the third wiring layer 23, while the crack increases as the distance between the third wiring layer 23 and the relaxation layer 34 decreases. It can be seen that the maximum principal stress at the position where the occurrence occurs is small. For this reason, the distance between the third wiring layer 23 and the relaxation layer 34 is 0 (zero), that is, the configuration in which the relaxation layer 34 is formed immediately above the third wiring layer 23 (P1, P4, P5, P7 in FIG. 18). In the reference), the maximum principal stress at the position where the crack is generated becomes the smallest regardless of the type and thickness of the insulating film disposed on the relaxing layer 34.
- FIG. 19 shows a simulation result of the maximum principal stress acting on the relaxation layer 34, the first TEOS layer 35, and the P-SiN layer 37 when the thickness of the first TEOS layer 35 is changed in the configuration shown in FIG. 3A. It is a graph.
- the maximum principal stress acting on the first TEOS layer 35 is illustrated as Sc1
- the maximum principal stress acting on the P-SiN layer 37 is represented as Sc2
- the maximum principal stress acting on the relaxation layer 34 is illustrated as Sc3.
- the maximum principal stress Sc3 acting on the relaxation layer 34 and the maximum principal stress Sc1 acting on the first TEOS layer 35 are not significantly changed.
- the maximum principal stress Sc2 acting on the P—SiN layer 37 is less than the fracture limit stress of the P—SiN layer 37. That is, in the configuration in which the first TEOS layer 35 is disposed on the relaxing layer 34, even if the thickness of the first TEOS layer 35 changes in the range of about 0.2 ⁇ m to 1 ⁇ m, cracks are generated in the insulating layers 35 to 37. It can be effectively suppressed.
- the relaxation layer 34 formed on the third wiring layer 23 is replaced with another insulation layered on the relaxation layer 34 based on the above-described simulation results and the like.
- a material having a lower Young's modulus (for example, 80 GPa) and higher fracture strength than the layer (the third insulating layer 33 in the example of FIG. 1) for example, a material mainly composed of spin-on-glass (SOG).
- the third insulating layer 33 composed of two or more insulating layers is configured as shown in FIG. 3A, that is, the first TEOS layer 35, the P-SiN layer 37, and the second TEOS layer 36.
- a plurality of insulating layers are stacked on the third wiring layer 23, and at least a part of the electrode pad 25 is a plurality of insulating layers. Is opposed to at least a part of the third wiring layer 23.
- the Young's modulus of the relaxing layer 34 (adjacent insulating layer) in contact with the third wiring layer 23 is smaller than the Young's modulus of the other insulating layer (33), and the breaking strength of the relaxing layer 34 is other than that. It is comprised so that it may become larger than the destructive strength of an insulating layer (33).
- the Young of the relaxation layer 34 in contact with the third wiring layer 23 is used. Since the rate is relatively small, the stress generated in the relaxation layer 34 due to strain due to plastic deformation of the third wiring layer 23 is reduced. For this reason, the stress transmitted to the other insulating layer through the relaxing layer 34 can be reduced.
- the relaxation strength of the relaxation layer 34 is configured to be greater than the breakdown strength of the other insulating layers, it is possible to suppress the occurrence of cracks in the relaxation layer 34 due to plastic deformation of the third wiring layer 23. it can. Therefore, even when the third wiring layer 23 located below the electrode pad 25 is plastically deformed, the occurrence of cracks in the insulating layer laminated on the third wiring layer 23 can be suitably suppressed.
- a plurality of insulating layers are disposed between the relaxing layer 34 and the electrode pad 25, and the first TEOS layer 35, the P-SiN layer 37, the second TEOS layer 36, and the electrode pad 25 are stacked on the relaxing layer 34 in this order.
- the stress acting on the first TEOS layer 35, the P-SiN layer 37, and the like is more preferably reduced, and the occurrence of cracks in the insulating layers 34 to 37 can be preferably suppressed.
- the relaxation layer 34 is not limited to a material mainly composed of spin-on-glass (SOG), and is laminated on the relaxation layer 34 such as a material mainly composed of a borazine compound or porous silica.
- the material may have a lower Young's modulus and higher fracture strength than other insulating layers.
- another insulating layer formed on the relaxing layer 34 for example, an insulating layer mainly composed of at least one of silicon nitride and tetraethoxysilane, or an insulating layer in which two or more of these layers are stacked is adopted. be able to. Even if it is such a structure, there can exist an effect similar to the said embodiment.
- FIG. 20 is a cross-sectional view showing the main part of the semiconductor device 10 according to a modification of the present embodiment.
- the third wiring layer 23 and the electrode pad 25 are not limited to being electrically connected via the via 24, but are electrically connected via a plurality of vias 24a as illustrated in FIG. 20, for example. May be. Even if it is such a structure, there can exist an effect similar to the said embodiment.
- the semiconductor device according to the present disclosure is not limited to being employed in an electronic control device for a vehicle, and is a semiconductor device having other functions as long as the semiconductor device has a multilayer substrate on which electrode pads are arranged. Even an apparatus can be employed.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Wire Bonding (AREA)
Abstract
This semiconductor apparatus is provided with an internal wiring layer (23), a plurality of insulating layers (33, 34) laminated onto the internal wiring layer, and an electrode pad (25) arranged above the plurality of insulating layers such that at least a portion thereof faces at least a portion of the internal wiring layer, with the plurality of insulating layers therebetween. Of the plurality of insulating layers, the adjacent insulating layer (34) which is laminated onto the internal wiring layer has a Young's modulus lower than the Young's modulus of the other insulating layer (33). The breakdown strength of the adjacent insulating layer is greater than the breakdown strength of the other insulating layer.
Description
本開示は、2013年10月10日に出願された日本出願番号2013-212444号に基づくもので、ここにその記載内容を援用する。
This disclosure is based on Japanese Patent Application No. 2013-212444 filed on October 10, 2013, the contents of which are incorporated herein by reference.
本開示は、半導体装置に関するものである。
The present disclosure relates to a semiconductor device.
従来、半導体装置は、表面に設けられる電極パッドにワイヤ等がボンディング接続されて構成されている。このボンディング時には電極パッドを介して当該電極パッドの下層の層間絶縁膜に応力が作用する場合があり、その応力によっては層間絶縁膜にクラック等が生じてしまうという問題がある。この問題に対応する技術として、下記特許文献1に示す半導体装置が知られている。
Conventionally, semiconductor devices are configured by bonding wires or the like to electrode pads provided on the surface. At the time of bonding, stress may act on the interlayer insulating film below the electrode pad through the electrode pad, and there is a problem that a crack or the like is generated in the interlayer insulating film depending on the stress. As a technique for dealing with this problem, a semiconductor device shown in Patent Document 1 below is known.
特許文献1に開示される半導体装置は、内部配線層上に積層される有機SOG層および補強絶縁層を介して電極パッドが配置され、パッシベーション層により覆われる電極パッドの下方に設けられるヴィアを介して電極パッドと内部配線層とが電気的に接続されるように構成されている。このため、ボンディング時に電極パッドを介して応力が作用する場合でも、有機SOG層が硬度の高い補強絶縁層により保護されるため、有機SOG層でのクラック発生が防止される。
In the semiconductor device disclosed in Patent Document 1, an electrode pad is disposed via an organic SOG layer and a reinforcing insulating layer stacked on an internal wiring layer, and via a via provided below the electrode pad covered with a passivation layer. The electrode pad and the internal wiring layer are configured to be electrically connected. For this reason, even when stress is applied through the electrode pad during bonding, the organic SOG layer is protected by the high-strength reinforcing insulating layer, so that the occurrence of cracks in the organic SOG layer is prevented.
ところで、基板の小型化による制約等のため、電極パッドのうちボンディング時やプローブを利用した検査時に押圧力が作用する部位の下方に内部配線層を配置しなければならない場合がある。この場合には、上記特許文献1に開示される構成を採用することができず、上記押圧力のために内部配線層が塑性変形する場合があり、この弾性変形した内部配線層により他の絶縁層にクラックが生じる可能性がある。
By the way, due to the limitation due to the downsizing of the substrate, an internal wiring layer may have to be disposed below the portion of the electrode pad where the pressing force acts during bonding or inspection using a probe. In this case, the configuration disclosed in Patent Document 1 cannot be adopted, and the internal wiring layer may be plastically deformed due to the pressing force, and other insulation is caused by the elastically deformed internal wiring layer. The layer can crack.
本開示は、電極パッドの下方に位置する内部配線層が塑性変形する場合でもこの内部配線層上に積層される絶縁層におけるクラック発生を抑制し得る半導体装置を提供することを目的とする。
An object of the present disclosure is to provide a semiconductor device capable of suppressing generation of cracks in an insulating layer stacked on an internal wiring layer even when the internal wiring layer located below the electrode pad is plastically deformed.
本開示の第一の態様において、半導体装置は、内部配線層と、前記内部配線層上に積層される複数の絶縁層と、前記複数の絶縁層の上方に配置されて、その少なくとも一部が前記複数の絶縁層を介して前記内部配線層の少なくとも一部と対向する電極パッドと、を備える。前記複数の絶縁層は、前記内部配線層上に積層される隣接絶縁層のヤング率が他の絶縁層のヤング率よりも小さい。前記隣接絶縁層の破壊強度が前記他の絶縁層の破壊強度よりも大きい。
In the first aspect of the present disclosure, a semiconductor device includes an internal wiring layer, a plurality of insulating layers stacked on the internal wiring layer, and disposed above the plurality of insulating layers, at least a part of which is disposed. An electrode pad facing at least a part of the internal wiring layer via the plurality of insulating layers. In the plurality of insulating layers, the Young's modulus of the adjacent insulating layer laminated on the internal wiring layer is smaller than the Young's modulus of the other insulating layers. The breaking strength of the adjacent insulating layer is greater than the breaking strength of the other insulating layer.
上記の半導体装置において、電極パッドに対して上記押圧力が作用することでこの作用部位の下方に位置する内部配線層が塑性変形する場合でも、この内部配線層に接する隣接絶縁層のヤング率が比較的小さいため、内部配線層の塑性変形による歪に起因して隣接絶縁層に生じる応力が小さくなる。このため、この隣接絶縁層を介して他の絶縁層に伝わる応力を低減することができる。特に、隣接絶縁層の破壊強度が他の絶縁層の破壊強度よりも大きくなるように構成されるため、内部配線層の塑性変形に起因する隣接絶縁層自体のクラック発生も抑制することができる。したがって、電極パッドの下方に位置する内部配線層が塑性変形する場合でもこの内部配線層上に積層される絶縁層におけるクラック発生を好適に抑制することができる。
In the semiconductor device described above, even when the internal wiring layer located below the action site is plastically deformed by the pressing force acting on the electrode pad, the Young's modulus of the adjacent insulating layer in contact with the internal wiring layer is Since it is relatively small, the stress generated in the adjacent insulating layer due to strain due to plastic deformation of the internal wiring layer is reduced. For this reason, the stress transmitted to another insulating layer via this adjacent insulating layer can be reduced. In particular, since the adjacent insulating layer is configured such that the breaking strength of the adjacent insulating layer is higher than that of the other insulating layers, the occurrence of cracks in the adjacent insulating layer itself due to plastic deformation of the internal wiring layer can also be suppressed. Therefore, even when the internal wiring layer located below the electrode pad is plastically deformed, the occurrence of cracks in the insulating layer laminated on the internal wiring layer can be suitably suppressed.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る半導体装置を示す断面図であり、
図2は、弾性材料および弾塑性材料の応力-歪み特性を示すグラフであり、
図3Aは、緩和層が第3配線層上に形成された状態を示す断面図であり、
図3Bは、図3Aの構成における応力分布のシミュレーション結果であり、
図4Aは、緩和層が第1TEOS層およびP-SiN層間に形成された状態を示す断面図であり、
図4Bは、図4Aの構成における応力分布のシミュレーション結果であり、
図5Aは、緩和層がP-SiN層および第2TEOS層間に形成された状態を示す断面図であり、
図5Bは、図5Aの構成における応力分布のシミュレーション結果であり、
図6Aは、緩和層が第2TEOS層および電極パッド間に形成された状態を示す断面図であり、
図6Bは、図6Aの構成における応力分布のシミュレーション結果であり、
図7Aは、緩和層が形成されていない状態を示す断面図であり、
図7Bは、図7Aの構成における応力分布のシミュレーション結果であり、
図8は、図3A~図7Bの応力シミュレーション結果をまとめたグラフであり、
図9は、図3Aに示す緩和層のヤング率が40GPaに設定された場合の応力分布のシミュレーション結果であり、
図10は、図3Aに示す緩和層のヤング率が70GPaに設定された場合の応力分布のシミュレーション結果であり、
図11は、図3Aに示す緩和層のヤング率が100GPaに設定された場合の応力分布のシミュレーション結果であり、
図12は、緩和層のヤング率と、第1TEOS層、P-SiN層および緩和層における最大主応力との関係を示すグラフであり、
図13Aは、第3配線層上に第1TEOS層が形成された状態を示す断面図であり、
図13Bは、第3配線層上に緩和層、第1TEOS層の順で形成された状態を示す断面図であり、
図14Aは、第3配線層上に第1TEOS層、緩和層、第2TEOS層の順で形成された状態を示す断面図であり、
図14Bは、第3配線層上に第1TEOS層、緩和層34の順で形成された状態を示す断面図であり、
図15は、第3配線層上に緩和層、第1TEOS層の順で形成された状態を示す断面図であり、
図16Aは、第3配線層上に緩和層、P-SiN層の順で形成された状態を示す断面図であり、
図16Bは、第3配線層上にP-SiN層、緩和層、P-SiN層の順で形成された状態を示す断面図であり、
図17Aは、第3配線層上に緩和層、第1TEOS層、P-SiN層の順で形成された状態を示す断面図であり、
図17Bは、第3配線層上に第1TEOS層、緩和層、P-SiN層の順で形成された状態を示す断面図であり、
図18は、第3配線層と緩和層との間の距離を変化させたときに各層に作用する最大主応力をシミュレーションした結果を示すグラフであり、
図19は、図3Aに示す構成において、第1TEOS層の厚さを変化させたときの緩和層、第1TEOS層およびP-SiN層に作用する最大主応力をシミュレーションした結果を示すグラフであり、
図20は、本実施形態の変形例に係る半導体装置の要部を示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a cross-sectional view showing the semiconductor device according to the first embodiment. FIG. 2 is a graph showing stress-strain characteristics of an elastic material and an elastic-plastic material, FIG. 3A is a cross-sectional view showing a state in which the relaxation layer is formed on the third wiring layer; FIG. 3B is a simulation result of stress distribution in the configuration of FIG. FIG. 4A is a cross-sectional view showing a state in which the relaxation layer is formed between the first TEOS layer and the P-SiN layer, 4B is a simulation result of stress distribution in the configuration of FIG. 4A. FIG. 5A is a cross-sectional view showing a state in which the relaxation layer is formed between the P-SiN layer and the second TEOS layer; FIG. 5B is a simulation result of stress distribution in the configuration of FIG. FIG. 6A is a cross-sectional view showing a state in which the relaxation layer is formed between the second TEOS layer and the electrode pad; 6B is a simulation result of stress distribution in the configuration of FIG. 6A. FIG. 7A is a cross-sectional view showing a state in which a relaxation layer is not formed, FIG. 7B is a simulation result of stress distribution in the configuration of FIG. FIG. 8 is a graph summarizing the stress simulation results of FIGS. 3A to 7B. FIG. 9 is a simulation result of stress distribution when the Young's modulus of the relaxation layer shown in FIG. 3A is set to 40 GPa. FIG. 10 is a simulation result of stress distribution when the Young's modulus of the relaxation layer shown in FIG. 3A is set to 70 GPa. FIG. 11 is a simulation result of stress distribution when the Young's modulus of the relaxation layer shown in FIG. 3A is set to 100 GPa. FIG. 12 is a graph showing the relationship between the Young's modulus of the relaxation layer and the maximum principal stress in the first TEOS layer, the P—SiN layer, and the relaxation layer; FIG. 13A is a cross-sectional view illustrating a state where the first TEOS layer is formed on the third wiring layer; FIG. 13B is a cross-sectional view illustrating a state in which the relaxation layer and the first TEOS layer are formed in this order on the third wiring layer; FIG. 14A is a cross-sectional view showing a state in which a first TEOS layer, a relaxation layer, and a second TEOS layer are formed in this order on a third wiring layer; FIG. 14B is a cross-sectional view illustrating a state in which the first TEOS layer and the relaxation layer 34 are formed in this order on the third wiring layer. FIG. 15 is a cross-sectional view showing a state in which the relaxation layer and the first TEOS layer are formed in this order on the third wiring layer. FIG. 16A is a cross-sectional view showing a state in which a relaxation layer and a P-SiN layer are formed in this order on the third wiring layer; FIG. 16B is a cross-sectional view showing a state in which a P—SiN layer, a relaxation layer, and a P—SiN layer are formed in this order on the third wiring layer; FIG. 17A is a cross-sectional view showing a state in which a relaxation layer, a first TEOS layer, and a P-SiN layer are formed in this order on the third wiring layer; FIG. 17B is a cross-sectional view showing a state in which the first TEOS layer, the relaxation layer, and the P-SiN layer are formed in this order on the third wiring layer; FIG. 18 is a graph showing the result of simulating the maximum principal stress acting on each layer when the distance between the third wiring layer and the relaxation layer is changed, FIG. 19 is a graph showing a simulation result of the maximum principal stress acting on the relaxation layer, the first TEOS layer, and the P-SiN layer when the thickness of the first TEOS layer is changed in the configuration shown in FIG. 3A. FIG. 20 is a cross-sectional view showing the main parts of a semiconductor device according to a modification of the present embodiment.
[第1実施形態]
以下、本開示に係る半導体装置を具現化した第1実施形態について、図面を参照して説明する。 [First Embodiment]
Hereinafter, a first embodiment of a semiconductor device according to the present disclosure will be described with reference to the drawings.
以下、本開示に係る半導体装置を具現化した第1実施形態について、図面を参照して説明する。 [First Embodiment]
Hereinafter, a first embodiment of a semiconductor device according to the present disclosure will be described with reference to the drawings.
本実施形態に係る半導体装置10は、例えば、車両用の電子制御装置として採用される装置であって、シリコンからなる半導体基板11上に複数の配線層や絶縁層が積層されて構成されている。
The semiconductor device 10 according to the present embodiment is a device that is employed as an electronic control device for a vehicle, for example, and is configured by laminating a plurality of wiring layers and insulating layers on a semiconductor substrate 11 made of silicon. .
本実施形態では、半導体装置10は、図1に示すように、内層側に配置される複数の配線層として3つの配線層(第1配線層21、第2配線層22、第3配線層23)を備えており、これら各配線層21~23は、アルミニウムまたは銅等を主体として構成されている。各配線層21~23は、ビア24等を介して表面に配置される電極パッド25等と電気的に接続されることで所定の配線パターンを構成している。電極パッド25は、アルミニウムまたは銅等を主体として構成されている。なお、各配線層の最上層である第3配線層23は、「内部配線層」の一例に相当し、その一部が電極パッド25の一部と複数の絶縁層を介して上下方向にて対向するように配置されている。
In the present embodiment, as shown in FIG. 1, the semiconductor device 10 includes three wiring layers (a first wiring layer 21, a second wiring layer 22, and a third wiring layer 23) as a plurality of wiring layers arranged on the inner layer side. These wiring layers 21 to 23 are mainly composed of aluminum, copper or the like. Each of the wiring layers 21 to 23 constitutes a predetermined wiring pattern by being electrically connected to the electrode pad 25 and the like disposed on the surface via the via 24 and the like. The electrode pad 25 is mainly composed of aluminum or copper. The third wiring layer 23, which is the uppermost layer of each wiring layer, corresponds to an example of an “internal wiring layer”, and a part of the third wiring layer 23 extends in the vertical direction via a part of the electrode pad 25 and a plurality of insulating layers. It arrange | positions so that it may oppose.
また、半導体装置10は、複数の絶縁層として、3つの絶縁層(第1絶縁層31、第2絶縁層32、第3絶縁層33)と、これら絶縁層31~33よりもヤング率が低い絶縁層として緩和層34とを備えている。特に、緩和層34は、その破壊強度が第3絶縁層33の破壊強度よりも大きくなるように構成されている。
In addition, the semiconductor device 10 has three insulating layers (first insulating layer 31, second insulating layer 32, and third insulating layer 33) as a plurality of insulating layers, and a Young's modulus lower than those of the insulating layers 31 to 33. A relaxation layer 34 is provided as an insulating layer. In particular, the relaxation layer 34 is configured such that its breaking strength is greater than the breaking strength of the third insulating layer 33.
第1絶縁層31は、第1配線層21と第2配線層22との間に介在するように配置され、第2絶縁層32は、第2配線層22と第3配線層23との間に介在するように配置されている。第3絶縁層33および緩和層34は、第3配線層23と電極パッド25との間に介在し、第3配線層23上に緩和層34、第3絶縁層33の順に積層されて配置されている。なお、各絶縁層31~33および緩和層34の構成材料や厚み等については後述する。また、緩和層34は、「隣接絶縁層」の一例に相当し得る。
The first insulating layer 31 is disposed so as to be interposed between the first wiring layer 21 and the second wiring layer 22, and the second insulating layer 32 is disposed between the second wiring layer 22 and the third wiring layer 23. It arrange | positions so that it may interpose. The third insulating layer 33 and the relaxing layer 34 are interposed between the third wiring layer 23 and the electrode pad 25, and are disposed on the third wiring layer 23 by laminating the relaxing layer 34 and the third insulating layer 33 in this order. ing. The constituent materials and thicknesses of the insulating layers 31 to 33 and the relaxing layer 34 will be described later. Further, the relaxing layer 34 may correspond to an example of “adjacent insulating layer”.
次に、本開示の特徴的構成について、図面を参照して説明する。
Next, a characteristic configuration of the present disclosure will be described with reference to the drawings.
シリコンや酸化シリコンなどの弾性材料とアルミニウムや銅などの弾塑性材料とについて、外部から作用する応力と歪みとの関係(応力-歪み線図)を図2に示す。なお、図2において、グラフの傾きがヤング率に相当する。図2に示すように、弾性材料では、外部から作用する応力に比例して歪みが大きくなる。一方、弾塑性材料では、弾性特性の領域では、外部から作用する応力に比例して歪みが大きくなるが、塑性変形してしまった塑性特性の領域では、ヤング率(傾き)が小さくなることから、外部から作用する応力に対して歪み(変形度合い)が大きくなる。
FIG. 2 shows the relationship between stress and strain acting on the outside (stress-strain diagram) for elastic materials such as silicon and silicon oxide and elastic-plastic materials such as aluminum and copper. In FIG. 2, the slope of the graph corresponds to the Young's modulus. As shown in FIG. 2, in the elastic material, the strain increases in proportion to the stress acting from the outside. On the other hand, in the elastic-plastic material, the strain increases in proportion to the externally acting stress in the elastic property region, but the Young's modulus (slope) decreases in the plastic property region that has undergone plastic deformation. The strain (deformation degree) increases with respect to the stress acting from the outside.
第3配線層23はアルミニウムまたは銅等を主体とする弾塑性材料から構成されるため、電極パッド25に対してプローブ(図1等にて符号Nにて示す)を押し付けて検査する際にその押圧力により下方に位置する第3配線層23が塑性変形して歪みが大きくなると、この第3配線層23上の絶縁層等も歪みが大きくなる。このように歪みが大きくなると、第3配線層23上の絶縁層等にクラックが発生する場合がある。特に、プローブを用いた検査は通常複数回行われるため、電極パッド25の同一の部位に何度もプローブが押し付けられたためにその電極パッド25の部位の厚さが薄くなると、第3配線層23に作用する押圧力が大きくなり、第3配線層23上の絶縁層等にクラックが発生する可能性が高くなってしまう。
Since the third wiring layer 23 is made of an elastic-plastic material mainly composed of aluminum or copper, when the probe is pressed against the electrode pad 25 (indicated by reference numeral N in FIG. 1 or the like) When the third wiring layer 23 positioned below is plastically deformed by the pressing force and the strain increases, the strain on the insulating layer and the like on the third wiring layer 23 also increases. When the strain becomes large in this way, a crack may occur in the insulating layer or the like on the third wiring layer 23. In particular, since the inspection using the probe is usually performed a plurality of times, if the probe is pressed many times against the same part of the electrode pad 25 and the thickness of the part of the electrode pad 25 becomes thin, the third wiring layer 23 As a result, the pressing force acting on the second wiring layer 23 increases, and the possibility of cracks occurring in the insulating layer on the third wiring layer 23 increases.
そこで、本実施形態では、第3配線層23上の絶縁層に対する塑性変形した第3配線層23の歪みの影響を抑制するため、第3配線層23上に積層される複数の絶縁層のうち、最下層の緩和層34を、当該緩和層34上に積層される他の絶縁層(図1の例では第3絶縁層33)よりも低いヤング率であって破壊強度が高くなるように構成した。
Therefore, in the present embodiment, in order to suppress the influence of the distortion of the plastically deformed third wiring layer 23 on the insulating layer on the third wiring layer 23, among the plurality of insulating layers stacked on the third wiring layer 23 The lowermost relaxation layer 34 is configured to have a lower Young's modulus and higher fracture strength than the other insulating layers (the third insulating layer 33 in the example of FIG. 1) laminated on the relaxation layer 34. did.
以下、このように第3配線層23上に緩和層34を形成する理由について、図3A~図8を用いて詳述する。図3A~図6Bでは、テトラエトキシシランを主体として構成される2つの層(以下、第1TEOS層35および第2TEOS層36という)と、両TEOS層35,37間に位置して窒化シリコンを主体として構成される層(以下、P-SiN層37という)と、緩和層34とが、第3配線層23と電極パッド25との間に所定の厚さで積層される場合について説明する。そして、両TEOS層35,36およびP-SiN層37に対する緩和層34の位置をパラメータとして、電極パッド25に上記押圧力が作用する場合の応力分布に関してシミュレーションした結果について、図3A~図8を用いて説明する。
Hereinafter, the reason why the relaxation layer 34 is formed on the third wiring layer 23 will be described in detail with reference to FIGS. 3A to 8. In FIGS. 3A to 6B, two layers mainly composed of tetraethoxysilane (hereinafter referred to as first TEOS layer 35 and second TEOS layer 36) and silicon nitride mainly disposed between both TEOS layers 35 and 37 are used. A case where a layer configured as follows (hereinafter referred to as a P-SiN layer 37) and a relaxation layer 34 are laminated with a predetermined thickness between the third wiring layer 23 and the electrode pad 25 will be described. FIG. 3A to FIG. 8 show the simulation results regarding the stress distribution when the pressing force acts on the electrode pad 25 using the positions of the relaxation layers 34 with respect to both the TEOS layers 35 and 36 and the P-SiN layer 37 as parameters. It explains using.
なお、図3Aは、緩和層34が第3配線層23上に形成された状態を示す断面図であり、図3Bは、図3Aの構成における応力分布のシミュレーション結果である。図4Aは、緩和層34が第1TEOS層35およびP-SiN層37間に形成された状態を示す断面図であり、図4Bは、図4Aの構成における応力分布のシミュレーション結果である。図5Aは、緩和層34がP-SiN層37および第2TEOS層36間に形成された状態を示す断面図であり、図5Bは、図5Aの構成における応力分布のシミュレーション結果である。図6Aは、緩和層34が第2TEOS層36および電極パッド25間に形成された状態を示す断面図であり、図6Bは、図6Aの構成における応力分布のシミュレーション結果である。図7Aは、緩和層34が形成されていない状態を示す断面図であり、図7Bは、図7Aの構成における応力分布のシミュレーション結果である。なお、第3配線層23よりも下層側の構成は、図3A~図7Bおよび後述するシミュレーションでは共通であり、シリコンからなる半導体基板11上に、第1配線層21、第1絶縁層31、第2配線層22、第2絶縁層32、第3配線層23がこの順に所定の厚さで積層された構成となっている。
3A is a cross-sectional view showing a state in which the relaxation layer 34 is formed on the third wiring layer 23, and FIG. 3B is a simulation result of stress distribution in the configuration of FIG. 3A. FIG. 4A is a cross-sectional view showing a state in which the relaxation layer 34 is formed between the first TEOS layer 35 and the P—SiN layer 37, and FIG. 4B is a simulation result of stress distribution in the configuration of FIG. 4A. FIG. 5A is a cross-sectional view showing a state in which the relaxation layer 34 is formed between the P-SiN layer 37 and the second TEOS layer 36, and FIG. 5B is a simulation result of stress distribution in the configuration of FIG. 5A. 6A is a cross-sectional view illustrating a state in which the relaxation layer 34 is formed between the second TEOS layer 36 and the electrode pad 25, and FIG. 6B is a simulation result of stress distribution in the configuration of FIG. 6A. FIG. 7A is a cross-sectional view illustrating a state where the relaxation layer 34 is not formed, and FIG. 7B is a simulation result of stress distribution in the configuration of FIG. 7A. The configuration on the lower layer side than the third wiring layer 23 is common in FIGS. 3A to 7B and the simulation described later, and on the semiconductor substrate 11 made of silicon, the first wiring layer 21, the first insulating layer 31, The second wiring layer 22, the second insulating layer 32, and the third wiring layer 23 are stacked in this order with a predetermined thickness.
また、図8は、図3A~図7Bの応力シミュレーション結果をまとめたグラフであり、図3Aと図3Bに示す結果が図8(e)に相当し、図4Aと図4Bに示す結果が図8(d)に相当し、図5Aと図5Bに示す結果が図8(c)に相当し、図6Aと図6Bに示す結果が図8(b)に相当し、図7Aと図7Bに示す結果が図8(a)に相当する。また、図8に示すTEOS層およびP-SiN層の破壊限界応力は、公知の3点曲げ試験の結果をシミュレーションでモデル化して単膜で破壊(クラック発生)した時の反り量に基づいて、推定した値である。なお、図8では、第1TEOS層35に作用する最大主応力をSa1、P-SiN層37に作用する最大主応力をSa2、緩和層34に作用する最大主応力をSa3として図示している。
8 is a graph summarizing the stress simulation results of FIGS. 3A to 7B. The results shown in FIGS. 3A and 3B correspond to FIG. 8E, and the results shown in FIGS. 4A and 4B are shown in FIG. 8 (d), the results shown in FIGS. 5A and 5B correspond to FIG. 8 (c), the results shown in FIGS. 6A and 6B correspond to FIG. 8 (b), and FIGS. 7A and 7B The result shown corresponds to FIG. Further, the fracture limit stress of the TEOS layer and the P-SiN layer shown in FIG. 8 is based on the amount of warpage when the result of a known three-point bending test is modeled by simulation and fractured (cracked) with a single film. It is an estimated value. In FIG. 8, the maximum principal stress acting on the first TEOS layer 35 is shown as Sa1, the maximum principal stress acting on the P-SiN layer 37 is shown as Sa2, and the maximum principal stress acting on the relaxation layer 34 is shown as Sa3.
図3B~図7Bからわかるように、第3配線層23上の層により大きな応力が作用している。そして、緩和層34を設けた構成(図3A~図6B)では、緩和層34を設けない構成(図7Aから図7B)と比較して、第1TEOS層35に作用する最大主応力Sa1と、P-SiN層37に作用する最大主応力Sa2が小さくなっている。図8からわかるように、第1TEOS層35に作用する最大主応力Sa1は、TEOS層の破壊限界応力に対して、図3Aと図3Bの構成で24%、図4Aと図4Bの構成で10%、図5Aと図5Bの構成で16%、図6Aと図6Bの構成で15%低減されている。すなわち、緩和層34を設けることにより第1TEOS層35やP-SiN層37等に作用する応力を低減することができる。
As can be seen from FIGS. 3B to 7B, a large stress is applied to the layer on the third wiring layer 23. In the configuration in which the relaxation layer 34 is provided (FIGS. 3A to 6B), the maximum principal stress Sa1 acting on the first TEOS layer 35 is compared with the configuration in which the relaxation layer 34 is not provided (FIGS. 7A to 7B). The maximum principal stress Sa2 acting on the P—SiN layer 37 is small. As can be seen from FIG. 8, the maximum principal stress Sa1 acting on the first TEOS layer 35 is 24% in the configurations of FIGS. 3A and 3B and 10 in the configurations of FIGS. 4A and 4B with respect to the fracture limit stress of the TEOS layer. %, 16% in the configuration of FIGS. 5A and 5B, and 15% in the configuration of FIGS. 6A and 6B. That is, the stress acting on the first TEOS layer 35, the P-SiN layer 37, and the like can be reduced by providing the relaxation layer 34.
特に、緩和層34を設けた構成では、図3Aに示すように第3配線層23上に緩和層34を配置した場合に、第1TEOS層35の最大主応力が最も小さくなっている(図8(e)参照)。また、緩和層34を設けた構成では、図3Aに示すように第3配線層23上に緩和層34を配置した場合、または、図4Aに示すように第1TEOS層35およびP-SiN層37間に緩和層34を配置した場合に、P-SiN層37の最大主応力が最も小さくなっている(図8(d),(e)参照)。
In particular, in the configuration in which the relaxation layer 34 is provided, the maximum principal stress of the first TEOS layer 35 is the smallest when the relaxation layer 34 is disposed on the third wiring layer 23 as shown in FIG. 3A (FIG. 8). (See (e)). Further, in the configuration in which the relaxation layer 34 is provided, when the relaxation layer 34 is disposed on the third wiring layer 23 as shown in FIG. 3A, or as shown in FIG. 4A, the first TEOS layer 35 and the P-SiN layer 37 are provided. When the relaxation layer 34 is disposed between them, the maximum principal stress of the P-SiN layer 37 is the smallest (see FIGS. 8D and 8E).
すなわち、第3配線層23上に緩和層34を配置することで、緩和層34上に積層される各絶縁層35~37に作用する応力がより好適に低減され、これら各絶縁層35~37についてクラックの発生を効果的に抑制することができる。
That is, by disposing the relaxing layer 34 on the third wiring layer 23, the stress acting on the insulating layers 35 to 37 stacked on the relaxing layer 34 is more preferably reduced. Generation of cracks can be effectively suppressed.
また、緩和層34を設けた構成では、第1TEOS層35の最大主応力がいずれも第1TEOS層35の破壊限界応力未満となり、P-SiN層37の最大主応力がいずれもP-SiN層37の破壊限界応力未満となっていることからも、各絶縁層35~37についてクラックの発生が効果的に抑制されていることがわかる。
In the configuration in which the relaxation layer 34 is provided, the maximum principal stress of the first TEOS layer 35 is less than the fracture limit stress of the first TEOS layer 35, and the maximum principal stress of the P-SiN layer 37 is all P-SiN layer 37. From this, it can be seen that the occurrence of cracks in each of the insulating layers 35 to 37 is effectively suppressed.
次に、図3Aに示す位置に緩和層34が形成される場合において、この緩和層34のヤング率をパラメータとして、電極パッド25に上記押圧力が作用する場合の応力分布に関してシミュレーションした結果について、図9~図12を用いて説明する。なお、図9は、図3Aに示す緩和層34のヤング率が40GPaに設定された場合の応力分布のシミュレーション結果である。図10は、図3Aに示す緩和層34のヤング率が70GPaに設定された場合の応力分布のシミュレーション結果である。図11は、図3Aに示す緩和層34のヤング率が100GPaに設定された場合の応力分布のシミュレーション結果である。図12は、緩和層34のヤング率と、第1TEOS層35、P-SiN層37および緩和層34における最大主応力との関係を示すグラフであり、図9~図11のシミュレーション結果から求められる最大主応力をまとめたものである。なお、図12では、第1TEOS層35に作用する最大主応力をSb1、P-SiN層37に作用する最大主応力をSb2、緩和層34に作用する最大主応力をSb3として図示しており、緩和層34のヤング率が150GPaに設定された場合の応力分布のシミュレーション結果も含めている。
Next, in the case where the relaxation layer 34 is formed at the position shown in FIG. 3A, the simulation result regarding the stress distribution when the pressing force acts on the electrode pad 25 using the Young's modulus of the relaxation layer 34 as a parameter. This will be described with reference to FIGS. FIG. 9 shows a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 40 GPa. FIG. 10 is a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 70 GPa. FIG. 11 shows a simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 shown in FIG. 3A is set to 100 GPa. FIG. 12 is a graph showing the relationship between the Young's modulus of the relaxation layer 34 and the maximum principal stress in the first TEOS layer 35, the P—SiN layer 37, and the relaxation layer 34, and is obtained from the simulation results of FIGS. It summarizes the maximum principal stress. In FIG. 12, the maximum principal stress acting on the first TEOS layer 35 is illustrated as Sb1, the maximum principal stress acting on the P-SiN layer 37 is represented as Sb2, and the maximum principal stress acting on the relaxation layer 34 is illustrated as Sb3. The simulation result of the stress distribution when the Young's modulus of the relaxation layer 34 is set to 150 GPa is also included.
図12からわかるように、第1TEOS層35の最大主応力Sb1は、緩和層34のヤング率を変化させても破壊限界応力未満となり、緩和層34のヤング率が大きくなるほど小さくなる。また、P-SiN層37の最大主応力Sb2は、緩和層34のヤング率を変化させても破壊限界応力未満となり、緩和層34のヤング率が大きくなるほど小さくなる。特に、緩和層34のヤング率が約80GPa以下の領域では緩和層34の最大主応力Sb3が第1TEOS層35の破壊限界応力未満となるため、第1TEOS層35に対するクラックの発生を確実に抑制するためにも、緩和層34のヤング率を約80GPa以下に設定することが好ましい。
As can be seen from FIG. 12, the maximum principal stress Sb1 of the first TEOS layer 35 is less than the fracture limit stress even when the Young's modulus of the relaxation layer 34 is changed, and decreases as the Young's modulus of the relaxation layer 34 increases. Further, the maximum principal stress Sb2 of the P—SiN layer 37 is less than the fracture limit stress even when the Young's modulus of the relaxation layer 34 is changed, and decreases as the Young's modulus of the relaxation layer 34 increases. In particular, in the region where the Young's modulus of the relaxation layer 34 is about 80 GPa or less, the maximum principal stress Sb3 of the relaxation layer 34 is less than the fracture limit stress of the first TEOS layer 35. Therefore, it is preferable to set the Young's modulus of the relaxing layer 34 to about 80 GPa or less.
次に、第3配線層23と緩和層34との間の距離を変化させたときに各層に作用する最大主応力に関してシミュレーションした結果について、図13A~図18を用いて説明する。以下の説明では、緩和層34の厚さが0.5umに設定されたシミュレーション結果について説明する。なお、図13Aは、第3配線層23上に第1TEOS層35(厚さ1um)が形成された状態を示す断面図であり、図13Bは、第3配線層23上に緩和層34、第1TEOS層35(厚さ1um)の順で形成された状態を示す断面図である。図14Aは、第3配線層23上に第1TEOS層35(厚さ0.5um)、緩和層34、第2TEOS層36(厚さ0.5um)の順で形成された状態を示す断面図であり、図14Bは、第3配線層23上に第1TEOS層35(厚さ1um)、緩和層34の順で形成された状態を示す断面図である。図15は、第3配線層23上に緩和層34、第1TEOS層35(厚さ2um)の順で形成された状態を示す断面図である。図16Aは、第3配線層23上に緩和層34、P-SiN層37(厚さ1um)の順で形成された状態を示す断面図であり、図16Bは、第3配線層23上にP-SiN層37a(厚さ0.5um)、緩和層34、P-SiN層37b(厚さ0.5um)の順で形成された状態を示す断面図である。図17Aは、第3配線層23上に緩和層34、第1TEOS層35(厚さ0.5um)、P-SiN層37(厚さ0.5um)の順で形成された状態を示す断面図であり、図17Bは、第3配線層23上に第1TEOS層35(厚さ0.5um)、緩和層34、P-SiN層37(厚さ0.5um)の順で形成された状態を示す断面図である。
Next, a simulation result regarding the maximum principal stress acting on each layer when the distance between the third wiring layer 23 and the relaxation layer 34 is changed will be described with reference to FIGS. 13A to 18. In the following description, a simulation result in which the thickness of the relaxation layer 34 is set to 0.5 μm will be described. 13A is a cross-sectional view showing a state in which the first TEOS layer 35 (thickness 1 μm) is formed on the third wiring layer 23, and FIG. 13B shows the relaxation layer 34 and the first wiring layer 23 on the third wiring layer 23. It is sectional drawing which shows the state formed in order of 1TEOS layer 35 (thickness 1um). FIG. 14A is a cross-sectional view showing a state in which the first TEOS layer 35 (thickness 0.5 μm), the relaxation layer 34, and the second TEOS layer 36 (thickness 0.5 μm) are formed in this order on the third wiring layer 23. FIG. 14B is a cross-sectional view showing a state in which the first TEOS layer 35 (thickness 1 μm) and the relaxation layer 34 are formed in this order on the third wiring layer 23. FIG. 15 is a cross-sectional view showing a state in which the relaxing layer 34 and the first TEOS layer 35 (thickness 2 μm) are formed in this order on the third wiring layer 23. FIG. 16A is a cross-sectional view showing a state in which a relaxation layer 34 and a P-SiN layer 37 (thickness 1 μm) are formed in this order on the third wiring layer 23, and FIG. 16B shows the state on the third wiring layer 23. FIG. 6 is a cross-sectional view showing a state in which a P—SiN layer 37a (thickness 0.5 μm), a relaxation layer 34, and a P—SiN layer 37b (thickness 0.5 μm) are formed in this order. FIG. 17A is a cross-sectional view showing a state in which the relaxation layer 34, the first TEOS layer 35 (thickness 0.5 μm), and the P-SiN layer 37 (thickness 0.5 μm) are formed in this order on the third wiring layer 23. FIG. 17B shows a state in which the first TEOS layer 35 (thickness 0.5 μm), the relaxation layer 34, and the P-SiN layer 37 (thickness 0.5 μm) are formed in this order on the third wiring layer 23. It is sectional drawing shown.
また、図18は、第3配線層23と緩和層34との間の距離を変化させたときにクラックが発生する位置の最大主応力をシミュレーションした結果を示すグラフであり、図13Aの結果をP0、図13Bの結果をP1、図14Aの結果をP2、図14Bの結果をP3、図15の結果をP4、図16Aの結果をP5、図16Bの結果をP6、図17Aの結果をP7、図17Bの結果をP8にて示す。
FIG. 18 is a graph showing the result of simulating the maximum principal stress at the position where a crack occurs when the distance between the third wiring layer 23 and the relaxation layer 34 is changed. The result of FIG. P0, the result of FIG. 13B is P1, the result of FIG. 14A is P2, the result of FIG. 14B is P3, the result of FIG. 15 is P4, the result of FIG. 16A is P5, the result of FIG. 16B is P6, and the result of FIG. The result of FIG. 17B is shown by P8.
図18に示すように、緩和層34が第3配線層23から離れるほどクラックが発生する位置の最大主応力が大きくなり、一方、第3配線層23と緩和層34との距離が小さくなるほどクラックが発生する位置の最大主応力が小さくなることがわかる。このため、第3配線層23と緩和層34との距離が0(ゼロ)、すなわち、第3配線層23の直上に緩和層34が形成される構成(図18のP1,P4,P5,P7参照)では、緩和層34上に配置されている絶縁膜の種類や厚さにかかわらず、クラックが発生する位置の最大主応力が最も小さくなる。
As shown in FIG. 18, the maximum principal stress at the position where the crack is generated increases as the relaxation layer 34 moves away from the third wiring layer 23, while the crack increases as the distance between the third wiring layer 23 and the relaxation layer 34 decreases. It can be seen that the maximum principal stress at the position where the occurrence occurs is small. For this reason, the distance between the third wiring layer 23 and the relaxation layer 34 is 0 (zero), that is, the configuration in which the relaxation layer 34 is formed immediately above the third wiring layer 23 (P1, P4, P5, P7 in FIG. 18). In the reference), the maximum principal stress at the position where the crack is generated becomes the smallest regardless of the type and thickness of the insulating film disposed on the relaxing layer 34.
次に、図3Aに示す構成において、第1TEOS層35の厚さと、緩和層34、第1TEOS層35およびP-SiN層37に作用する最大主応力との関係について、図19を用いて説明する。図19は、図3Aに示す構成において、第1TEOS層35の厚さを変化させたときの緩和層34、第1TEOS層35およびP-SiN層37に作用する最大主応力をシミュレーションした結果を示すグラフである。なお、図19では、第1TEOS層35に作用する最大主応力をSc1、P-SiN層37に作用する最大主応力をSc2、緩和層34に作用する最大主応力をSc3として図示している。
Next, in the configuration shown in FIG. 3A, the relationship between the thickness of the first TEOS layer 35 and the maximum principal stress acting on the relaxation layer 34, the first TEOS layer 35, and the P-SiN layer 37 will be described with reference to FIG. . FIG. 19 shows a simulation result of the maximum principal stress acting on the relaxation layer 34, the first TEOS layer 35, and the P-SiN layer 37 when the thickness of the first TEOS layer 35 is changed in the configuration shown in FIG. 3A. It is a graph. In FIG. 19, the maximum principal stress acting on the first TEOS layer 35 is illustrated as Sc1, the maximum principal stress acting on the P-SiN layer 37 is represented as Sc2, and the maximum principal stress acting on the relaxation layer 34 is illustrated as Sc3.
図19からわかるように、第1TEOS層35の厚さを変化させても、緩和層34に作用する最大主応力Sc3や第1TEOS層35に作用する最大主応力Sc1は、大きく変化していない。また、第1TEOS層35の厚さが約0.2um以上では、P-SiN層37に作用する最大主応力Sc2がP-SiN層37の破壊限界応力未満となる。すなわち、緩和層34上に第1TEOS層35が配置される構成では、この第1TEOS層35の厚さが0.2um~1um程度で変化しても、各絶縁層35~37についてクラックの発生を効果的に抑制することができる。
As can be seen from FIG. 19, even when the thickness of the first TEOS layer 35 is changed, the maximum principal stress Sc3 acting on the relaxation layer 34 and the maximum principal stress Sc1 acting on the first TEOS layer 35 are not significantly changed. When the thickness of the first TEOS layer 35 is about 0.2 μm or more, the maximum principal stress Sc2 acting on the P—SiN layer 37 is less than the fracture limit stress of the P—SiN layer 37. That is, in the configuration in which the first TEOS layer 35 is disposed on the relaxing layer 34, even if the thickness of the first TEOS layer 35 changes in the range of about 0.2 μm to 1 μm, cracks are generated in the insulating layers 35 to 37. It can be effectively suppressed.
このため、本実施形態に係る半導体装置10では、上述した各シミュレーション結果等に基づいて、第3配線層23上に形成される緩和層34を、当該緩和層34上に積層される他の絶縁層(図1の例では第3絶縁層33)よりも低いヤング率(例えば、80GPa)であって破壊強度が高くなる材料、例えば、スピンオングラス(SOG)を主体とする材料よりに構成した。特に、図8からわかるように、2層以上の絶縁層からなる第3絶縁層33として、図3Aに示すような構成、すなわち、第1TEOS層35、P-SiN層37、第2TEOS層36の順で積層する絶縁構造を採用することで、第1TEOS層35やP-SiN層37等に作用する応力がより好適に低減することができる。
Therefore, in the semiconductor device 10 according to the present embodiment, the relaxation layer 34 formed on the third wiring layer 23 is replaced with another insulation layered on the relaxation layer 34 based on the above-described simulation results and the like. A material having a lower Young's modulus (for example, 80 GPa) and higher fracture strength than the layer (the third insulating layer 33 in the example of FIG. 1), for example, a material mainly composed of spin-on-glass (SOG). In particular, as can be seen from FIG. 8, the third insulating layer 33 composed of two or more insulating layers is configured as shown in FIG. 3A, that is, the first TEOS layer 35, the P-SiN layer 37, and the second TEOS layer 36. By adopting an insulating structure in which layers are stacked in order, the stress acting on the first TEOS layer 35, the P-SiN layer 37, and the like can be more preferably reduced.
以上説明したように、本実施形態に係る半導体装置10では、第3配線層23上に複数の絶縁層(33,34)が積層されており、電極パッド25の少なくとも一部が複数の絶縁層を介して第3配線層23の少なくとも一部と対向している。そして、複数の絶縁層は、第3配線層23に接する緩和層34(隣接絶縁層)のヤング率が他の絶縁層(33)のヤング率よりも小さく、緩和層34の破壊強度が他の絶縁層(33)の破壊強度よりも大きくなるように構成されている。
As described above, in the semiconductor device 10 according to the present embodiment, a plurality of insulating layers (33, 34) are stacked on the third wiring layer 23, and at least a part of the electrode pad 25 is a plurality of insulating layers. Is opposed to at least a part of the third wiring layer 23. In the plurality of insulating layers, the Young's modulus of the relaxing layer 34 (adjacent insulating layer) in contact with the third wiring layer 23 is smaller than the Young's modulus of the other insulating layer (33), and the breaking strength of the relaxing layer 34 is other than that. It is comprised so that it may become larger than the destructive strength of an insulating layer (33).
これにより、電極パッド25に対して上記押圧力が作用することでこの作用部位の下方に位置する第3配線層23が塑性変形する場合でも、この第3配線層23に接する緩和層34のヤング率が比較的小さいため、第3配線層23の塑性変形による歪に起因して緩和層34に生じる応力が小さくなる。このため、この緩和層34を介して他の絶縁層に伝わる応力を低減することができる。特に、緩和層34の破壊強度が他の絶縁層の破壊強度よりも大きくなるように構成されるため、第3配線層23の塑性変形に起因する緩和層34自体のクラック発生も抑制することができる。したがって、電極パッド25の下方に位置する第3配線層23が塑性変形する場合でもこの第3配線層23上に積層される絶縁層におけるクラック発生を好適に抑制することができる。
As a result, even if the third wiring layer 23 located below the acting portion is plastically deformed by the pressing force acting on the electrode pad 25, the Young of the relaxation layer 34 in contact with the third wiring layer 23 is used. Since the rate is relatively small, the stress generated in the relaxation layer 34 due to strain due to plastic deformation of the third wiring layer 23 is reduced. For this reason, the stress transmitted to the other insulating layer through the relaxing layer 34 can be reduced. In particular, since the relaxation strength of the relaxation layer 34 is configured to be greater than the breakdown strength of the other insulating layers, it is possible to suppress the occurrence of cracks in the relaxation layer 34 due to plastic deformation of the third wiring layer 23. it can. Therefore, even when the third wiring layer 23 located below the electrode pad 25 is plastically deformed, the occurrence of cracks in the insulating layer laminated on the third wiring layer 23 can be suitably suppressed.
特に、緩和層34と電極パッド25との間に複数の絶縁層が配置され、緩和層34上に第1TEOS層35、P-SiN層37、第2TEOS層36、電極パッド25の順で積層されることで、第1TEOS層35やP-SiN層37等に作用する応力がより好適に低減され、各絶縁層34~37におけるクラック発生を好適に抑制することができる。
In particular, a plurality of insulating layers are disposed between the relaxing layer 34 and the electrode pad 25, and the first TEOS layer 35, the P-SiN layer 37, the second TEOS layer 36, and the electrode pad 25 are stacked on the relaxing layer 34 in this order. As a result, the stress acting on the first TEOS layer 35, the P-SiN layer 37, and the like is more preferably reduced, and the occurrence of cracks in the insulating layers 34 to 37 can be preferably suppressed.
なお、本開示は上記実施形態に限定されるものではなく、例えば、以下のように具体化してもよい。
(1)緩和層34は、スピンオングラス(SOG)を主体とする材料よりに構成することに限らず、例えば、ボラジン系化合物または多孔質シリカを主体とする材料など、当該緩和層34上に積層される他の絶縁層よりも低いヤング率であって破壊強度が高くなる材料よりに構成してもよい。また、緩和層34上に形成される他の絶縁層として、例えば、窒化シリコンもしくはテトラエトキシシランの少なくともいずれかを主体として構成される絶縁層、またはこれらを2層以上積層した絶縁層を採用することができる。このような構成であっても、上記実施形態と同様の効果を奏することができる。
(2)図20は、本実施形態の変形例に係る半導体装置10の要部を示す断面図である。 In addition, this indication is not limited to the said embodiment, For example, you may actualize as follows.
(1) Therelaxation layer 34 is not limited to a material mainly composed of spin-on-glass (SOG), and is laminated on the relaxation layer 34 such as a material mainly composed of a borazine compound or porous silica. The material may have a lower Young's modulus and higher fracture strength than other insulating layers. Further, as another insulating layer formed on the relaxing layer 34, for example, an insulating layer mainly composed of at least one of silicon nitride and tetraethoxysilane, or an insulating layer in which two or more of these layers are stacked is adopted. be able to. Even if it is such a structure, there can exist an effect similar to the said embodiment.
(2) FIG. 20 is a cross-sectional view showing the main part of thesemiconductor device 10 according to a modification of the present embodiment.
(1)緩和層34は、スピンオングラス(SOG)を主体とする材料よりに構成することに限らず、例えば、ボラジン系化合物または多孔質シリカを主体とする材料など、当該緩和層34上に積層される他の絶縁層よりも低いヤング率であって破壊強度が高くなる材料よりに構成してもよい。また、緩和層34上に形成される他の絶縁層として、例えば、窒化シリコンもしくはテトラエトキシシランの少なくともいずれかを主体として構成される絶縁層、またはこれらを2層以上積層した絶縁層を採用することができる。このような構成であっても、上記実施形態と同様の効果を奏することができる。
(2)図20は、本実施形態の変形例に係る半導体装置10の要部を示す断面図である。 In addition, this indication is not limited to the said embodiment, For example, you may actualize as follows.
(1) The
(2) FIG. 20 is a cross-sectional view showing the main part of the
第3配線層23と電極パッド25とは、ビア24を介して電気的に接続されることに限らず、例えば、図20に例示するように、複数のビア24aを介して電気的に接続されてもよい。このような構成であっても、上記実施形態と同様の効果を奏することができる。
(3)本開示に係る半導体装置は、車両用の電子制御装置に採用されることに限らず、電極パッドが表面に配置される多層基板を有する半導体装置であれば、他の機能を有する半導体装置であっても採用することができる。 Thethird wiring layer 23 and the electrode pad 25 are not limited to being electrically connected via the via 24, but are electrically connected via a plurality of vias 24a as illustrated in FIG. 20, for example. May be. Even if it is such a structure, there can exist an effect similar to the said embodiment.
(3) The semiconductor device according to the present disclosure is not limited to being employed in an electronic control device for a vehicle, and is a semiconductor device having other functions as long as the semiconductor device has a multilayer substrate on which electrode pads are arranged. Even an apparatus can be employed.
(3)本開示に係る半導体装置は、車両用の電子制御装置に採用されることに限らず、電極パッドが表面に配置される多層基板を有する半導体装置であれば、他の機能を有する半導体装置であっても採用することができる。 The
(3) The semiconductor device according to the present disclosure is not limited to being employed in an electronic control device for a vehicle, and is a semiconductor device having other functions as long as the semiconductor device has a multilayer substrate on which electrode pads are arranged. Even an apparatus can be employed.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
Claims (4)
- 内部配線層(23)と、
前記内部配線層上に積層される複数の絶縁層(33,34)と、
前記複数の絶縁層の上方に配置されて、その少なくとも一部が前記複数の絶縁層を介して前記内部配線層の少なくとも一部と対向する電極パッド(25)と、
を備え、
前記複数の絶縁層は、前記内部配線層上に積層される隣接絶縁層(34)のヤング率が他の絶縁層(33)のヤング率よりも小さく、
前記隣接絶縁層の破壊強度が前記他の絶縁層の破壊強度よりも大きい半導体装置。 An internal wiring layer (23);
A plurality of insulating layers (33, 34) stacked on the internal wiring layer;
An electrode pad (25) disposed above the plurality of insulating layers, at least a portion of which is opposed to at least a portion of the internal wiring layer via the plurality of insulating layers;
With
In the plurality of insulating layers, the Young's modulus of the adjacent insulating layer (34) laminated on the internal wiring layer is smaller than the Young's modulus of the other insulating layer (33),
A semiconductor device in which the breaking strength of the adjacent insulating layer is larger than the breaking strength of the other insulating layer. - 前記隣接絶縁層は、スピンオングラス、ボラジン系化合物および多孔質シリカの少なくともいずれか一つを主体として構成されており、
前記他の絶縁層は、窒化シリコンおよびテトラエトキシシランの少なくともいずれか一つを主体として構成される請求項1に記載の半導体装置。 The adjacent insulating layer is mainly composed of at least one of spin-on-glass, borazine-based compound and porous silica,
The semiconductor device according to claim 1, wherein the other insulating layer is mainly composed of at least one of silicon nitride and tetraethoxysilane. - 前記他の絶縁層は、2層以上の絶縁層(35~37)からなり、
前記隣接絶縁層上に積層されるテトラエトキシシランを主体とする層上に、窒化シリコンを主体とする層が積層されて構成される請求項1または2に記載の半導体装置。 The other insulating layer is composed of two or more insulating layers (35 to 37),
3. The semiconductor device according to claim 1, wherein a layer mainly composed of silicon nitride is laminated on a layer mainly composed of tetraethoxysilane laminated on the adjacent insulating layer. - 前記内部配線層は、アルミニウムおよび銅の少なくともいずれか一つを主体として構成される請求項1~3のいずれか一項に記載の半導体装置。
The semiconductor device according to any one of claims 1 to 3, wherein the internal wiring layer is mainly composed of at least one of aluminum and copper.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-212444 | 2013-10-10 | ||
JP2013212444A JP6028704B2 (en) | 2013-10-10 | 2013-10-10 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015052875A1 true WO2015052875A1 (en) | 2015-04-16 |
Family
ID=52812711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004719 WO2015052875A1 (en) | 2013-10-10 | 2014-09-11 | Semiconductor apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6028704B2 (en) |
WO (1) | WO2015052875A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003179063A (en) * | 1997-04-24 | 2003-06-27 | Sharp Corp | Semiconductor device |
JP2005142553A (en) * | 2003-10-15 | 2005-06-02 | Toshiba Corp | Semiconductor device |
WO2010125682A1 (en) * | 2009-04-30 | 2010-11-04 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
JP2012114483A (en) * | 2012-03-23 | 2012-06-14 | Fujitsu Ltd | Semiconductor device and method of manufacturing the same |
-
2013
- 2013-10-10 JP JP2013212444A patent/JP6028704B2/en not_active Expired - Fee Related
-
2014
- 2014-09-11 WO PCT/JP2014/004719 patent/WO2015052875A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003179063A (en) * | 1997-04-24 | 2003-06-27 | Sharp Corp | Semiconductor device |
JP2005142553A (en) * | 2003-10-15 | 2005-06-02 | Toshiba Corp | Semiconductor device |
WO2010125682A1 (en) * | 2009-04-30 | 2010-11-04 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
JP2012114483A (en) * | 2012-03-23 | 2012-06-14 | Fujitsu Ltd | Semiconductor device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6028704B2 (en) | 2016-11-16 |
JP2015076535A (en) | 2015-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4671814B2 (en) | Semiconductor device | |
JP4913329B2 (en) | Semiconductor device | |
JP2009129953A (en) | Semiconductor device | |
JP2005252230A (en) | Semiconductor device | |
WO2011061883A1 (en) | Semiconductor device | |
US10546827B2 (en) | Flip chip | |
JP2011009713A (en) | Semiconductor device | |
JP2009064848A (en) | Semiconductor apparatus | |
JP6301763B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP4645398B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2006019636A (en) | Semiconductor apparatus | |
JP5472557B1 (en) | Composite electronic component and electronic device including the same | |
JP6028704B2 (en) | Semiconductor device | |
KR100741910B1 (en) | Semiconductor chip including an enhanced structural strength of chip pad structure | |
JP2009176833A (en) | Semiconductor device and its manufacturing method | |
JP2009212332A (en) | Semiconductor device and semiconductor manufacturing method | |
TWI423329B (en) | Passivation structure and fabricating method thereof | |
JP2006324265A (en) | Semiconductor device | |
JP2011091130A (en) | Semiconductor device | |
JP5485132B2 (en) | Semiconductor device | |
JP2005005564A (en) | Pad structure | |
US9691714B2 (en) | Semiconductor device and method for manufacturing semiconductor device | |
JP6718143B2 (en) | Semiconductor device | |
JP4525143B2 (en) | Semiconductor device | |
JP5553923B2 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14852100 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14852100 Country of ref document: EP Kind code of ref document: A1 |