Nothing Special   »   [go: up one dir, main page]

WO2015041380A1 - Harmonic imaging method and ultrasound medical device for same - Google Patents

Harmonic imaging method and ultrasound medical device for same Download PDF

Info

Publication number
WO2015041380A1
WO2015041380A1 PCT/KR2013/008446 KR2013008446W WO2015041380A1 WO 2015041380 A1 WO2015041380 A1 WO 2015041380A1 KR 2013008446 W KR2013008446 W KR 2013008446W WO 2015041380 A1 WO2015041380 A1 WO 2015041380A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
reflected signal
harmonic
analysis result
Prior art date
Application number
PCT/KR2013/008446
Other languages
French (fr)
Korean (ko)
Inventor
구자운
장선엽
손건호
강승범
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Publication of WO2015041380A1 publication Critical patent/WO2015041380A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present embodiment relates to a harmonic image forming method and an ultrasonic medical device therefor.
  • the ultrasound imaging system transmits ultrasound to an object, receives a reflection signal reflected within the object, and converts the received reflection signal into an electrical signal to form an ultrasound image.
  • Harmonic Imaging has been proposed as part of increasing the resolution of ultrasound images in ultrasound imaging systems.
  • the reflected signal reflected from the human body includes a fundamental frequency component and a harmonic component.
  • Most of the harmonic components are second harmonic components with twice the intensity of the fundamental frequency. In general, in harmonic image formation, only the second harmonic component is separated to form an ultrasound image.
  • Harmonic components have a narrow beam width and low side lobes compared to the fundamental frequency. Accordingly, the ultrasound image formed of the harmonic component improves the resolution and the contrast of the ultrasound image formed of the fundamental frequency component.
  • the pulse inversion method used to extract harmonic components there is a problem in that the frame rate is lowered.
  • the present embodiment is a technique for generating and processing an N-th harmonic image and transmitting a plane wave having a phase difference, and synthesizing a corresponding reflected signal in a pipe-line manner to frame rate. It is a main object to provide a harmonic image forming method capable of improving) and an ultrasonic medical device therefor.
  • a transducer for transmitting a plane wave (Plane Wave) to the object and receiving a reflected signal corresponding to the plane wave from the object;
  • a transmitter for causing the plane wave to have a phase difference of 360 ° / N (N is a natural number of 2 or more), and the plane wave to be sequentially transmitted to the object;
  • a harmonic acquiring unit for generating an N-th harmonic component by synthesizing only the most recent N signals among the received reflection signals in a pipe-line manner;
  • a signal processor configured to process the N-th harmonic component into data for displaying.
  • a method of forming a harmonic image by an ultrasonic medical apparatus comprising: a transmission control process of setting a phase to have a phase difference of 360 ° / N (N is a natural number of two or more); A receiving step of sequentially transmitting a plane wave having a phase difference of 360 ° / N to an object and receiving a reflected signal corresponding to the plane wave from the object; A harmonic acquisition process of generating N-th harmonic components by synthesizing the most recent N signals sequentially received from the reflected signals in a pipe-line manner; And a signal processing process of processing the N-th harmonic component as data for displaying the harmonic image.
  • a plane wave having a phase difference is transmitted, and the corresponding reflected signal is synthesized in a pipe-line manner to improve the frame rate. It has an effect.
  • the frame rate is improved compared to the conventional harmonic image acquisition method of the pulse inversion method.
  • harmonic image processing using planar waves having a phase difference, which is different from existing harmonic image processing apparatuses, image quality is improved compared to existing equipments, and it has an effect of providing differentiated harmonic image processing with a fast frame rate. .
  • FIG. 1 is a block diagram schematically showing the ultrasound medical apparatus according to the present embodiment.
  • FIG. 2 is a block diagram schematically illustrating a harmonic acquisition unit according to the present embodiment.
  • FIG. 3 is a flowchart illustrating a harmonic image forming method according to the present embodiment.
  • FIG. 4 is a flowchart illustrating a phase correction method according to the present embodiment.
  • FIG. 5 is a diagram for describing a method for obtaining N-th harmonic according to the present embodiment.
  • FIG. 1 is a block diagram schematically showing the ultrasound medical apparatus according to the present embodiment.
  • the ultrasound medical apparatus 100 may include a transducer 110, a transmission / reception switch 122, a transmitter 132, a receiver 134, an analog-to-digital converter 140, a beamformer 150, The harmonic acquiring unit 160, the signal processor 170, and the scan converter 180 are included. Components of the ultrasound medical apparatus 100 according to the present embodiment are not necessarily limited thereto.
  • the transducer 110 converts an electrical analog signal into ultrasonic waves and transmits the ultrasonic wave to an object, and converts a signal reflected from the object (hereinafter, referred to as a reflection signal) into an electrical analog signal.
  • the transducer 110 is formed by combining a plurality of transducer elements.
  • the transducer 110 converts acoustic energy into an electrical signal and converts electrical energy into acoustic energy.
  • the transducer 110 may be implemented as an array transducer, and transmits an ultrasonic wave to an object and receives a reflected signal reflected from the object by using the transducer element in the array transducer.
  • the transducer 110 may include a plurality of transducer elements (eg, 128), and output ultrasonic waves in response to a voltage applied from the transmitter 132. In this case, only some transducer elements of the plurality of transducer elements may be used for ultrasonic transmission. For example, even when the transducer 110 includes 128 transducer elements, only 64 transducer elements may transmit ultrasonic waves to form one transmission scanline during the ultrasonic transmission. The transducer 110 can be used for both reception and transmission.
  • the transducer 110 may be implemented as a plurality of 1D (Dimension), 1.25D, 1.5D, 1.75D or 2D array transducer.
  • the transducer 110 transmits the focused ultrasound to the object along the transmission scan line by appropriately delaying an input time of pulses input to each transducer element under the control of the beamformer 150.
  • the reflected signal reflected from the object corresponding to the ultrasonic wave is input to the transducer 110 with different reception times, and the transducer 110 outputs the reflected signal input from the object to the beamformer 150.
  • the transducer 110 according to the present embodiment transmits a plane wave to an object and receives a reflection signal corresponding to the plane wave from the object.
  • the reflected signal is a signal corresponding to the plane wave, and may be subjected to high-speed imaging by software.
  • the transmission / reception switch 122 performs a function of switching the transmitter 132 and the receiver 134 so that the transducer 110 alternately performs transmission or reception. In addition, the transmission and reception switch 122 serves to prevent the voltage output from the transmitter 132 does not affect the receiver 134.
  • the transmitter 132 applies a voltage pulse to the transducer 110 so that ultrasonic waves are output from each transducer element of the transducer 110.
  • the transmitter 132 according to the present exemplary embodiment applies a voltage pulse to the transducer 110 so that a plane wave is output from each transducer element of the transducer 110.
  • the transmitter 132 sets the phase so that the plane wave output from the transducer 110 has a phase difference of 360 ° / N (N is a natural number of 2 or more).
  • the transmitter 132 transmits the plane wave including the phase having a phase difference of 360 ° / N by the transducer 110 to the object in sequence.
  • the transmitter 132 when N is set to 2, the transmitter 132 is set to have a phase of 0 ° and a phase of 180 ° so that the plane wave of the transducer 110 has a phase difference of 180 °.
  • the transmitter 132 sets a phase of 0 °, a phase of 120 °, and a phase of 240 ° such that the plane wave of the transducer 110 has a phase difference of 120 °.
  • the receiver 134 receives the reflected signal from which the ultrasonic wave output from each transducer element of the transducer 110 is reflected from the object, and amplifies, aliases, and noise components of the received reflected signal.
  • a post-processed signal such as removal and correction of attenuation generated while the ultrasound passes through the body, is transmitted to the analog-to-digital converter 140.
  • the analog-to-digital converter 140 converts the analog reflection signal received from the receiver 134 into a digital signal and transmits the converted signal to the beam forming unit 156.
  • the reflection signal received by the analog-to-digital converter 140 from the transducer 110 is in the form of an analog, which is a voltage of a continuous signal.
  • the analog signal must first be converted into a digital signal before being processed by the scan converter 180. Therefore, the analog-to-digital converter 140 converts each analog signal into a combination of 0's and 1's.
  • the analog-to-digital converter 140 represents an analog signal in the form of 0's and 1's in order to digitally represent the signal, and the digital signal is stored in the memory of the scan converting unit 180 via the signal processing unit 170. .
  • the analog-to-digital converter 140 converts the reflected signal into a digital signal.
  • the transmission / reception switch 122, the transmitter 132, the receiver 134, and the analog to digital converter 140 may be implemented as a front end 120.
  • the beamformer 150 converts the electrical signal suitable for the transducer 110 into an electrical signal suitable for each transducer element. In addition, the beamformer 150 delays or sums the electric signals converted by each transducer element to calculate the output value of the corresponding transducer element.
  • the beamformer 150 includes a transmit beamformer, a receive beamformer, and a beam former 156.
  • the transmission beamformer corresponds to the transmission focus delay unit 152
  • the reception beamformer corresponds to the reception focus delay unit 154.
  • the beamformer 150 according to the present embodiment generates the first delay time required to focus the ultrasound to the enlarged region or the second delay time required to focus the plane wave on the object, and then the first delay time or the second delay time.
  • a combined signal is generated by combining each of the applied digital signals into one signal.
  • the beamformer 150 may be connected to the analog-to-digital converter 140 and the signal processor 170 in a full parallel path by software for high-speed imaging.
  • the transmission focus delay unit 152 applies an appropriate delay to each electric digital signal in consideration of the time to reach each transducer element from the object (diagnosis object). For example, the transmission focus delay unit 152 adjusts and electronically focuses the beam when the transducer 110 is an array type transducer. For example, since the array transducers are electronically focused according to different depths, the transmission focusing delay unit 152 focuses the beam on the transmitting side by continuously giving a pulse delay time to each of the array transducer elements. As a result, the transmission focus delay unit 152 may adjust the direction of the beam with respect to the array-type transducer that is scanned electronically.
  • the reception focusing delay unit 154 generates a delay time required for focusing or beamforming the digital signal converted by the analog-to-digital converter 140.
  • the reception focusing delay unit 154 provides a time delay for focusing the reflected signal received from the transducer 110 and adjusts the dynamic focusing of the reflected signal.
  • the beam forming unit 156 may form a receive focusing signal by summing the electrical digital signals converted by the analog to digital converter 140.
  • the beam forming unit 156 combines the digitized signal into one signal.
  • the reflected signal of the same phase is combined in the beam forming unit 156, and various signal processing methods are applied in the signal processing unit 170 and then output from the display unit provided through the scan converter 180.
  • the beam forming unit 156 applies dynamic delay amounts (determined according to the position to be focused) to the signals received from the analog-to-digital converter 140 and synthesizes the delayed signals by synthesizing the delayed signals. Do this.
  • the beamformer 156 combines the reflected signals received from each of the transducer elements into one signal for later signal processing.
  • the beam forming unit 156 generates a combined signal in which one signal is combined with reflection signals received from all the transducer elements in order to produce a single reflection signal for each reflector (object).
  • the generated combination signal is transmitted to the signal processing unit 170 by the beam forming unit 156 and finally to a digitalizing device that converts the digital signal into a digital form for storing image data.
  • the harmonic acquisition unit 160 synthesizes only the most recent N signals among the sequentially received reflection signals in a pipe-line manner to generate an N-th harmonic component.
  • 'pipe-line' refers to the continuous, somewhat overlapping movement of instructions to the processor (or the arithmetic steps taken by the processor to perform the instructions). For example, using a 'pipe-line', the processor may fetch the next instruction while performing an arithmetic operation, and put the instruction into a buffer near the processor until the next instruction operation can be performed. Thus, the step of getting instructions continues endlessly, resulting in an increase in the number of instructions that can be executed in a given time.
  • the harmonic acquisition unit 160 synthesizes the most recent N signals among the reflected signals sequentially received to generate the Nth harmonic component, the fundamental frequency component is lost and only the Nth harmonic component remains. For example, when N is 2, only the second harmonic component remains, and when N is 3, only the third harmonic component remains.
  • the harmonic acquisition unit 160 has a sum of phase differences (180 ° + 180 °, 120 ° + 120 ° + 120 °, etc.) included in the reflected signal in a pipe-line manner. It is possible to generate an N-th harmonic component to form a frame by forming 360 °.
  • the harmonic acquisition unit 160 synthesizes the correction data according to the transmission of the N plane waves when the first frame is formed. For example, the harmonic acquiring unit 160 generates the Nth harmonic component by synthesizing the N reflected signals after the transducer 110 transmits the plane wave and waits until the number of received reflected signals becomes N.
  • the harmonic acquisition unit 160 synthesizes the correction data generated for each plane wave newly transmitted by the transducer 110 after the first frame is formed in the receiving order Allow a new frame to form. For example, after the first frame is formed, the harmonic acquiring unit 160 combines the reflection signal received each time the transducer 110 transmits a new plane wave with the reflection signal received in the most recent N signals. Only Nth harmonic components can be generated by synthesizing Bay.
  • the harmonic acquiring unit 160 stores reflection signals sequentially received in the N memories, generates a phase analysis result of analyzing phase components included in the stored reflection signal, and based on the generated phase analysis result. Phase shift is performed to generate correction data. Thereafter, the harmonic acquisition unit 160 generates an Nth harmonic component for synthesizing the most recent N data among the generated correction data in a pipe-line manner to form a frame.
  • the harmonic acquisition unit 160 checks whether or not a phase difference between phases included in each of the reflected signals stored in the memory 220 occurs by 360 ° / N. If the difference occurs by 360 ° / N, the harmonic acquisition unit 160 recognizes that a phase difference equal to the phase difference of 360 ° / N set by the transmitter 132 is generated and phases the reflected signal stored in the memory 220. A phase analysis result is generated to cause the shift to be not performed, and correction data without the phase shift is generated based on the generated phase analysis result.
  • the harmonic acquisition unit 160 recognizes that the phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 occurred in the memory 220 A phase analysis result for right shifting the stored reflection signal by a phase corresponding to the unit sample time is generated, and based on the generated phase analysis result, right-shifted correction data is generated by the phase corresponding to the unit sample time.
  • the unit sample time may be 25 ns in a 40 MHz sampling system.
  • the signal processor 170 changes the reflected signal of the received scan line focused by the beam forming unit 156 into baseband signals and detects an envelope by using a quadrature demodulator. Get data for the scanline.
  • the signal processor 170 processes the data generated by the beamformer 150 into a digital signal.
  • the signal processor 170 according to the present exemplary embodiment processes the Nth harmonic component as data for displaying.
  • the signal processor 170 may process the corresponding data in parallel in software in order to perform high-speed imaging of the reflected signal corresponding to the plane wave. For example, the signal processor 170 compares an input data string with a comparison data string for high speed image processing, generates a comparison result data string, extracts a representative bit from each comparison result data constituting the comparison result data string, A representative bit string is generated by the bits, and a plurality of operation data strings corresponding to the bit patterns that can be represented by the representative bit string are stored in a table, and a specific operation data string selected among the plurality of operation data strings according to the representative bit string is selected. Can be used to generate a data stream of emissions by performing data operations on the input data stream. As described above, parallel processing is performed for high-speed imaging of the signal processing unit 170, but the architecture (architecture) is a multi-core CPU (Central Processing Unit) and GPU (Graphic Processing Unit) at the same time thousands of channels You can do parallel processing in.
  • the scan converter 180 records the data obtained by the signal processor 170 in a memory, matches the scanning direction of the data with the pixel direction of the display unit (eg, the monitor), and maps the data to the pixel position of the display unit. .
  • the scan converter 180 converts the ultrasound image data into a data format used in a display unit of a predetermined scan line display format.
  • the memory of the scan converter 180 may be recognized as a matrix of elements configured in a multi-bit storage unit for the ultrasound image data received from a preset location.
  • the digitized element is called a pixel.
  • the memory of the scan converter 180 is a matrix of such pixels.
  • the ultrasound image data output on the display unit is actually present in the form of a matrix of digital numbers in the memory of the scan converter 180.
  • the reflected signal is embedded at the position (address) of the pixel according to the position of the object.
  • the scan converter 180 uses the delay time of the reflected signal and the beam coordinates of the transducer 110 to calculate the correct pixel address.
  • the scan converter 180 is used on at least 8 bits to express the value of the reflection signal on each pixel position. For example, 8 bits have 256 amplitude levels in each position.
  • the memory of the scan converter 180 is continuously updated with new reflection signal information as the ultrasound beam forms an ultrasound image of a region of interest (ROI).
  • ROI region of interest
  • the reflected signal may be stored in the memory not only for image recording but also for storing photographs and digital information.
  • the memory of the scan converter 180 is output by transferring pixel values to a digital-to-analog converter (DAC) that supplies a signal necessary to adjust the brightness intensity of the display unit.
  • DAC digital-to-analog converter
  • the beamformer 150, the harmonic acquirer 160, the signal processor 170, and the scan converter 180 may be implemented as a host 190.
  • the host 190 may be implemented including a CPU and a GPU.
  • the front end processor 120 and the host 190 may be connected to, for example, a Peripheral Component Interconnect (PCI) interface.
  • PCI Peripheral Component Interconnect
  • the ultrasound medical apparatus 100 may further include a user input unit, and the user input unit receives an instruction by a user's manipulation or input.
  • the user command may be a setting command for controlling the ultrasound medical apparatus 100.
  • FIG. 2 is a block diagram schematically illustrating a harmonic acquisition unit according to the present embodiment.
  • the harmonic acquisition unit 160 includes a phase analyzer 210, a memory 220, a phase shifter 230, and a synthesizer 240.
  • the components of the harmonic acquisition unit 160 according to the present embodiment are not necessarily limited thereto.
  • the phase analyzer 210 generates a phase analysis result of analyzing the phase component included in the reflected signal.
  • the phase analysis 210 may use a Fast Fourier Transform (FFT) to analyze the phase component included in the reflected signal.
  • FFT Fast Fourier Transform
  • the phase analyzer 210 determines that the phase difference between the phases included in each of the reflected signals stored in the memory 220 is increased. Check whether there is a difference of 360 ⁇ / N.
  • the phase analyzer 210 recognizes that a phase difference equal to the phase difference of 360 ° / N set by the transmitter 132 is generated and phases the reflected signal stored in the memory 220. Generate a phase analysis result that causes the shift to fail.
  • the phase analysis unit 210 recognizes that the phase difference is not the same as the phase difference of 360 ° / N set by the transmitter 132 and the memory 220 A phase analysis result is generated to shift the reflected signal stored in the right side by a phase corresponding to the unit sample time.
  • the phase analyzer 210 stores the first reflection signal stored in the first storage area of the memory 220 and the N-th storage area of the memory 220.
  • a phase analysis result is generated such that a phase shift is not performed on the first reflected signal and the N reflected signals.
  • the phase analyzer 210 may have a phase difference between the first reflection signal stored in the first storage area of the memory 220 and the phase included in the N reflection signal stored in the Nth storage area of the memory 220 greater than 360 ° / N.
  • phase analyzer 210 may have a phase difference of 360 ° / N between a first reflection signal stored in the first storage area of the memory 220 and a phase included in the N reflection signal stored in the Nth storage area of the memory 220. If it is less than, it is recognized that a phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 and the phase analysis result to the right to shift the N-th reflected signal by a phase corresponding to the unit sample time Create
  • the phase analyzer 210 has a phase difference of 360 ° between an N-1 reflected signal stored in the N-1th storage area of the memory 220 and a phase included in the N reflected signal stored in the Nth storage area of the memory 220.
  • a phase analysis result is generated such that a phase shift is not performed on the N-1th reflected signal and the Nth reflected signal.
  • the phase analyzer 210 has a phase difference between the N-1 reflected signal stored in the N-1th storage area of the memory 220 and the phase included in the N reflected signal stored in the Nth storage area of the memory 220.
  • phase analyzer 210 may determine a phase difference between an N-1 reflected signal stored in the N-1th storage area of the memory 220 and a phase included in the N reflected signal stored in the Nth storage area of the memory 220.
  • phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 is generated so that the N-th reflected signal is shifted right by a phase corresponding to the unit sample time. Generate phase analysis results.
  • the memory 220 is a storage unit that stores sequentially received reflection signals.
  • the memory 220 may be physically implemented as one storage module and internally allocate N storage areas.
  • the memory 220 allocates a first storage area storing a first reflected signal corresponding to the first plane wave to an Nth storage area storing an Nth reflected signal corresponding to the Nth plane wave.
  • the memory 220 may allocate the same number of storage areas as the N set in the transmitter.
  • the memory 220 is not necessarily limited to one physical storage module.
  • the transmitter 132 sets the phase of 0 °, the phase of 120 °, and the phase of 240 ° so that the plane wave of the transducer 110 has a phase difference of 120 °.
  • 220 includes a first storage area, a second storage area (N-first memory area), and a third storage area (N-th storage area).
  • the first reflected signal corresponding to the first plane wave having the phase of 0 ° is stored in the first storage area
  • the second reflected signal corresponding to the second plane wave having the phase of 120 ° is stored in the second storage area (first And a third reflected signal corresponding to the third plane wave having a phase of 240 degrees, is stored in the third storage region (N-th storage region).
  • the first plane wave having a phase of 0 ° again after all of the data (reflection signal) is stored in the first storage region, the second storage region (N-first storage region), and the third storage region (N-th storage region).
  • the newly received first reflection signal may be updated and stored in the first storage area.
  • the phase shift unit 230 generates correction data of performing or not performing a phase shift based on the phase analysis result.
  • the phase shift unit 230 confirms the phase analysis result received from the phase analysis unit 210, and when the check result and the phase analysis result include the phase shift non-execution information, the phase shift unit does not have a phase shift based on the phase analysis result. Generate the correction data performed.
  • the phase shift unit 230 when the phase shift information is included in the phase analysis result as a result of the check, the phase shift unit 230 generates correction data shifted right by a phase corresponding to the unit sample time based on the phase shift information.
  • the phase shift unit 230 basically performs a right shift when shifting the reflected signal stored in the memory 220.
  • the phase shift unit 230 includes a phase analysis result received from the phase analyzer 210 included in the first reflection signal and the Nth reflection signal.
  • correction data is generated by shifting the right reflection signal by one phase corresponding to the unit sample time.
  • the phase shift unit 230 is the N-th reflection signal when the phase analysis result received from the phase analyzer 210 generates a phase difference between a phase included in the first reflection signal and the N-th reflection signal to be less than 360 ° / N. Is generated by correcting the right shift by a phase corresponding to the unit sample time.
  • the phase shift unit 230 may be a reflection signal having a phase analysis result of the phase analyzer 210 having a 0 ° phase and 360 degrees. Calculate the phase difference of the reflected signal with ⁇ / N phase, and generate the correction data by shifting the reflected signal with 360 ⁇ / N phase by the phase corresponding to the unit sample time when the phase difference occurs more than 360 ⁇ / N do.
  • the phase shifter 230 calculates a phase difference between the reflection signal having the phase analysis unit 210 and the reflection signal having the 360 ° / N phase, and the phase difference is less than 360 ° / N.
  • the correction data is generated by shifting a reflected signal having a 0 ° phase by a phase corresponding to a unit sample time.
  • the combiner 240 generates an N-th harmonic component for synthesizing the most recent N pieces of correction data in a pipe-line manner to form one frame.
  • the synthesizing unit 240 synthesizes correction data according to transmission of N plane waves at the time of initial frame formation, and then synthesizes correction data generated for each newly transmitted plane wave in order of reception so that a new frame is formed.
  • the transmitter 132 sets a phase of 0 °, a phase of 120 °, and a phase of 240 ° such that the plane wave of the transducer 110 has a phase difference of 120 °, and thus has a phase of 0 °.
  • the first reflection signal corresponding to the first plane wave is 'A 1 '
  • the second reflection signal corresponding to the second plane wave having a phase of 120 ° is assumed to be 'B 1 ', and has a phase of 240 °.
  • the third reflected signal corresponding to the third plane wave is 'C 1 '.
  • the synthesis unit 240 performs the order 'A 1 + B 1 + C 1 ' such that the sum (120 ° + 120 ° + 120 °) of the phase difference included in the first to third reflected signals is 360 °.
  • the reflected signal may be synthesized to form a first frame.
  • the synthesis unit ( 240 may form the second frame by synthesizing the reflected signals in the order of 'B 1 + C 1 + A 2 ' such that the sum of phase differences (120 ° + 120 ° + 120 °) is 360 °.
  • the synthesis unit 240 has a sum of phase difference (120 ° + 120 ° + 120 °) of 360 °.
  • the third frame may be formed by synthesizing the reflected signals in the order of 'C 1 + A 2 + B 2 ' to form a.
  • FIG. 3 is a flowchart illustrating a harmonic image forming method according to the present embodiment.
  • the ultrasound medical apparatus 100 sets the phase so that the plane wave output from the transducer 110 has a phase difference of 360 ° / N (N is a natural number of 2 or more) (S310). For example, in step S310, when N is set to 2, the ultrasound medical apparatus 100 sets the phase of 0 ° and the phase of 180 ° so that the plane wave of the transducer 110 has a phase difference of 180 °, and N is 3. When set to 0, the phase of 0 °, the phase of 120 °, and the phase of 240 ° are set so that the plane wave of the transducer 110 has a phase difference of 120 °.
  • the ultrasound medical apparatus 100 outputs a plane wave having a phase difference of 360 ° / N to the object using the transducer 110 (S320).
  • the ultrasound medical apparatus 100 receives the reflected signals corresponding to the plane waves from the object by using the transducer 110 and stores them in the N memories 220 (S330).
  • the memory 220 sequentially stores the N memory 220 sequentially storing the sequentially received reflection signals.
  • the memory 220 may include a first storage area storing a first reflected signal corresponding to the first plane wave and an Nth storage area storing an Nth reflected signal corresponding to the Nth plane wave.
  • the transmitter 132 sets the phase of 0 °, the phase of 120 °, and the phase of 240 ° so that the plane wave of the transducer 110 has a phase difference of 120 °.
  • the 220 includes a first storage area, a second storage area (N-first storage area), and a third storage area (N-th storage area).
  • the first reflected signal corresponding to the first plane wave having the phase of 0 ° is stored in the first storage area
  • the second reflected signal corresponding to the second plane wave having the phase of 120 ° is stored in the second storage area
  • first And a third reflected signal corresponding to the third plane wave having a phase of 240 degrees is stored in the third storage region (N-th storage region).
  • the ultrasound medical apparatus 100 generates a phase analysis result of analyzing a phase component included in the reflected signal, and generates correction data in which phase shift is performed when phase shift is necessary based on the phase analysis result (S340).
  • the ultrasound medical apparatus 100 checks whether a phase difference between phases included in each of the reflected signals stored in the memory 220 occurs by 360 ° / N. As a result of the check, if the difference occurs by 360 ° / N, the ultrasound medical apparatus 100 recognizes that a phase difference equal to the phase difference of 360 ° / N set by the transmitter 132 occurs and phases the reflected signal stored in the memory 220. A phase analysis result is generated to cause the shift to be not performed, and correction data without the phase shift is generated based on the generated phase analysis result.
  • the ultrasound medical apparatus 100 recognizes that the phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 occurred in the memory 220 A phase analysis result for right shifting the stored reflection signal by a phase corresponding to the unit sample time is generated, and based on the generated phase analysis result, right-shifted correction data is generated by the phase corresponding to the unit sample time.
  • the ultrasound medical apparatus 100 generates N-th harmonic components by synthesizing only the most recent N signals sequentially among received correction data (or reflected signals) in a pipe-line manner, and displays N-th harmonic components as data.
  • Process (S350) The ultrasound medical apparatus 100 generates N-th harmonic components by synthesizing only the most recent N signals sequentially among received correction data (or reflected signals) in a pipe-line manner, and displays N-th harmonic components as data.
  • steps S310 to S350 are described as being sequentially executed, but are not necessarily limited thereto.
  • steps S310 to S350 are described as being sequentially executed, but are not necessarily limited thereto.
  • steps S310 to S350 are described as being sequentially executed, but are not necessarily limited thereto.
  • steps S310 to S350 are described as being sequentially executed, but are not necessarily limited thereto.
  • FIG. 3 is not limited to the time series order.
  • the harmonic image forming method according to the present embodiment described in FIG. 3 may be implemented in a program and recorded on a computer-readable recording medium.
  • the computer-readable recording medium having recorded thereon a program for implementing the harmonic image forming method according to the present embodiment includes all kinds of recording devices storing data that can be read by a computer system.
  • FIG. 4 is a flowchart illustrating a phase correction method according to the present embodiment.
  • N is a natural number of 3 or more, and the ultrasound medical apparatus 100 will be described with reference to a method of correcting phase.
  • the ultrasound medical apparatus 100 calculates a phase difference between the first reflection signal stored in the first storage area of the memory 220 and the phase included in the second reflection signal stored in the second storage area of the memory 220 (S410).
  • the ultrasound medical apparatus 100 may have a phase difference between the first reflection signal stored in the first storage area of the memory 220 and the phase included in the second reflection signal stored in the second storage area of the memory 220 equal to 360 ° / N.
  • Check whether or not (S412). As a result of checking in step S412, the phase difference between the first reflection signal stored in the first storage region of the memory 220 and the phase included in the second reflection signal stored in the second storage region of the memory 220 is equal to 360 ° / N.
  • the ultrasound medical apparatus 100 After performing the phase shift on the first reflected signal and the second reflected signal, the ultrasound medical apparatus 100 performs the second reflected signal stored in the N-1 storage area of the memory 220 and the second reflected signal of the memory 220. The phase difference between the phases included in the two reflected signals stored in the two storage areas is calculated (S414).
  • the ultrasound medical apparatus 100 has a phase difference of 360 ° between an N-1 reflected signal stored in the N-1th storage area of the memory 220 and a phase included in the N reflected signal stored in the Nth storage area of the memory 220.
  • Check whether or not equal to / N (S416).
  • the phase difference between the N-1th reflected signal stored in the N-1st storage area of the memory 220 and the phase included in the N reflected signal stored in the Nth storage area of the memory 220 is 360 ° / If it is equal to N, the ultrasound medical apparatus 100 generates a phase analysis result for performing a phase shift on the N-th reflected signal and the N-reflected signal and considers that phase correction is completed (S418).
  • step S412 the phase difference between the first reflection signal stored in the first storage region of the memory 220 and the phase included in the N-1 reflection signal stored in the N-1 storage region of the memory 220 is 360 ° / If not equal to N, the ultrasound medical apparatus 100 includes the first reflection signal stored in the first storage area of the memory 220 and the N-1 reflection signal stored in the N-1 storage area of the memory 220. It is checked whether the phase difference between the phases exceeds 360 ° / N (S420).
  • a phase difference between a phase included in the first reflection signal stored in the first storage area of the memory 220 and the second reflection signal stored in the second storage area of the memory 220 is less than 360 ° / N.
  • the ultrasound medical apparatus 100 recognizes that a phase difference that is not equal to the phase difference of 360 ° / N set by the transmitter 132 is generated and causes the second reflected signal to be shifted right by a phase corresponding to the unit sample time. (S422). The process then returns to step S410.
  • step S420 the phase difference between the first reflection signal stored in the first storage region of the memory 220 and the phase included in the second reflection signal stored in the second storage region of the memory 220 is 360 ° / N
  • the ultrasound medical apparatus 100 recognizes that a phase difference that is not equal to the phase difference of 360 ° / N set by the transmitter 132 is generated, and the first reflected signal is right by a phase corresponding to the unit sample time. To shift (S424). The process then returns to step S410.
  • the ultrasound medical apparatus 100 includes the N-1 reflected signal stored in the N-1th storage area of the memory 220 and the N reflected signal stored in the Nth storage area of the memory 220. It is checked whether or not the phase difference between the phases exceeds 360 ° / N (S430).
  • step S430 the phase difference between the N-1 th reflection signal stored in the N-1 th storage area of the memory 220 and the phase included in the N reflection signal stored in the N th storage area of the memory 220 is 360 ° / If less than N, the ultrasound medical apparatus 100 recognizes that a phase difference that is not equal to the phase difference of 360 ° / N set by the transmitter 132 is generated, and the N-th reflected signal is converted by the phase corresponding to the unit sample time. The right shift is made (S432). The process then returns to step S414.
  • the ultrasound medical apparatus 100 recognizes that a phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 is generated, and the N-1 reflected signal is converted into a unit sample time. The right shift is performed by a phase corresponding to S S434. The process then returns to step S414.
  • steps S410 to S434 are sequentially executed, but the present disclosure is not limited thereto.
  • FIG. 4 is not limited to time-series order as it would be applicable to changing the steps described in FIG. 4 or executing one or more steps in parallel.
  • phase correction method according to the present embodiment described in FIG. 4 may be implemented in a program and recorded on a computer-readable recording medium.
  • the computer-readable recording medium having recorded thereon a program for implementing the phase correction method according to the present embodiment includes all kinds of recording devices that store data that can be read by a computer system.
  • FIG. 5 is a diagram for describing a method for obtaining N-th harmonic according to the present embodiment.
  • N is 3 for convenience of description. Since N is 3 in the transmitter 132 of the ultrasound medical apparatus 100, the phase of 0 °, the phase of 120 °, and the phase of 240 ° are set such that the plane wave of the transducer 110 has a phase difference of 120 °. Accordingly, the transducer 110 of the ultrasound medical apparatus 100 transmits a first plane wave having a phase of 0 ° to the object and receives a first reflected signal corresponding to the first plane wave.
  • the first reflected signal is referred to as 'A 1 '
  • the ultrasound medical apparatus 100 stores 'A 1 ' in the first storage area of the memory 220.
  • the transducer 110 of the ultrasound medical apparatus 100 transmits a second plane wave having a phase of 120 ° to the object, and receives a second reflected signal corresponding to the second plane wave.
  • the second reflected signal is referred to as 'B 1 '
  • the ultrasound medical apparatus 100 stores 'B 1 ' in the second (N-1) storage area of the memory 220.
  • the transducer 110 of the ultrasound medical apparatus 100 transmits a third plane wave having a phase of 240 ° to the object, and receives a third reflected signal corresponding to the third plane wave.
  • the third reflected signal is referred to as 'C 1 '
  • the ultrasound medical apparatus 100 stores 'C 1 ' in the third (N) storage area.
  • the synthesizer 240 of the ultrasound medical apparatus 100 combines the most recent three (N) signals among the reflected signals in the order of 'A 1 + B 1 + C 1 ' to form a first frame.
  • the transducer 110 of the ultrasound medical apparatus 100 transmits a new first plane wave having a phase of 0 ° to the object and receives a first reflected signal corresponding to the new first plane wave.
  • the new first reflected signal is referred to as 'A 2 '
  • the ultrasound medical apparatus 100 reflects the received reflected signal.
  • a second frame is formed by synthesizing the last three (N) signals in the order of 'B 1 + C 1 + A 2 ' in a form of combining with a signal.
  • the transducer 110 of the ultrasound medical apparatus 100 transmits a new second plane wave having a phase of 120 ° to the object and receives a second reflected signal corresponding to the new second plane wave.
  • the new second reflected signal is referred to as 'B 2 '
  • the ultrasound medical apparatus 100 reflects the received reflected signal.
  • a third frame may be formed by synthesizing the last three (N) signals in the order of 'C 1 + A 2 + B 2 ' in a form of combining with a signal.
  • the synthesis unit 240 of the ultrasound medical apparatus 100 is' A 1 + B so that the sum (120 ⁇ + 120 ⁇ + 120 ⁇ ) of the phase difference included in the first reflected signal to the third reflected signal is 360 ° Synthesizing the reflected signal in the order 1 + C 1 'to form a first frame, synthesizing the reflected signal in the order' B 1 + C 1 + A 2 'to form a second frame, and' C 1 + A 2 + The reflected signal may be synthesized in the order of B 2 ′ to form a third frame.
  • the reflection signals are synthesized in the order of 'A 1 + B 1 + C 1 ' to form a first frame, and then new reflection signals A 2 , B 2 and C 2 are received.
  • the second frame is formed by synthesizing the reflection signals in the order of 'A 2 + B 2 + C 2 '. Will fall.
  • the ultrasound medical apparatus 100 waits until the reflection signals of A 1 , B 1 , and C 1 are received only when the first frame is formed, and then the reflection signals of A 1 , B 1 , and C 1 are received.
  • the reflection signal is synthesized in the order of 'A 1 + B 1 + C 1 ' to form a first frame.
  • the ultrasound medical apparatus 100 receives a reflected signal, eg, A 2 , which is received every time a new plane wave is transmitted, the ultrasound medical apparatus 100 combines with the previously received reflection signals B 1 and C 1 to B 1 + C 1 + A.
  • the Nth harmonic component can be generated by synthesizing 2 with the most recent N signals.
  • the ultrasound medical apparatus 100 transmits a plane wave having a phase of 360 ° / N from the transducer 110 to an object to be inspected or inside the body (object) at regular intervals,
  • the reflection signal corresponding to the plane wave from the (object) is received in a pipe-line manner at a predetermined interval every PRF (Pulse Repetition Frequency) and stored in the memory 220.
  • PRF Pulse Repetition Frequency
  • a reflection signal (third reflection signal) having a third phase of 240 ° obtained by the ultrasound medical apparatus 100 may be a first 0 ° reflection signal ( Combined with A) and the second 120 ° reflected signal (B) (A 1 + B 1 + C 1 ), the first third harmonic component is produced.
  • a 1 previously stored in the memory 220 is discarded in real time, and B 1 and C 1 remain.
  • the ultrasound medical apparatus 100 undergoes a process of adding existing B 1 and C 1 data and A 2 obtained in real time (B 1 + C 1 + A 2 ) when acquiring a new A 2 from the next scan line. You can get four frames.
  • the ultrasound medical apparatus 100 includes a phase analyzer 210 capable of analyzing the phase of the received reflected signal (RF data), and has a phase difference of 360 ° using the phase analysis of the phase analyzer 210. If it does not occur as much as / N, you can finely control the phase of each waveform so that the analyzed harmonics come out best.
  • a phase analyzer 210 capable of analyzing the phase of the received reflected signal (RF data), and has a phase difference of 360 ° using the phase analysis of the phase analyzer 210. If it does not occur as much as / N, you can finely control the phase of each waveform so that the analyzed harmonics come out best.
  • transducer 122 transmission and reception switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

A harmonic imaging method and an ultrasound medical device for the same are disclosed. As a technique for generating and image-processing an N-th order harmonic image, provided are a harmonic imaging method capable of improving a frame rate by transmitting plane waves having a phase difference and synthesizing reflected signals corresponding to the plane waves by using a pipeline method, and an ultrasound medical device for the same.

Description

고조파 영상 형성 방법과 그를 위한 초음파 의료 장치Harmonic Image Forming Method And Ultrasound Medical Device For Him
본 실시예는 고조파 영상 형성 방법과 그를 위한 초음파 의료 장치에 관한 것이다.The present embodiment relates to a harmonic image forming method and an ultrasonic medical device therefor.
이하에 기술되는 내용은 단순히 본 실시예와 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아님을 밝혀둔다.It should be noted that the contents described below merely provide background information related to the present embodiment and do not constitute a prior art.
초음파 영상 시스템은 대상체에 초음파를 송신한 후 대상체 내에서 반사되는 반사 신호를 수신하고, 수신된 반사 신호를 전기적 신호로 변환하여 초음파 영상을 형성한다. 초음파 영상 시스템에서 초음파 영상의 해상도를 높이기 위한 일환으로 고조파 영상 형성(Harmonic Imaging)이 제시되었다. 특정 주파수의 초음파 펄스를 송신하고 반사 신호를 수신할 때, 인체에서 반사되는 반사 신호에는 기본 주파수(Fundamental Frequency) 성분과 고조파 성분(Harmonic Component)이 포함된다. 고조파 성분의 대부분은 기본 주파수 보다 세기(Intensity)가 2배인 2차 고조파 성분이다. 일반적으로 고조파 영상 형성에서는 이러한 2차 고조파 성분만을 분리하여 초음파 영상을 형성한다.The ultrasound imaging system transmits ultrasound to an object, receives a reflection signal reflected within the object, and converts the received reflection signal into an electrical signal to form an ultrasound image. Harmonic Imaging has been proposed as part of increasing the resolution of ultrasound images in ultrasound imaging systems. When transmitting an ultrasonic pulse of a specific frequency and receiving a reflected signal, the reflected signal reflected from the human body includes a fundamental frequency component and a harmonic component. Most of the harmonic components are second harmonic components with twice the intensity of the fundamental frequency. In general, in harmonic image formation, only the second harmonic component is separated to form an ultrasound image.
고조파 성분은 기본 주파수에 비해 빔 폭(Beam Width)이 좁고, 사이드 로브(Side Lobe)가 낮다. 이에 따라, 고조파 성분으로 형성된 초음파 영상은 기본 주파수 성분으로 형성된 초음파 영상에 위해 해상도가 개선되고 명암대비도 좋아진다. 하지만, 고조파 성분을 추출하기 위해 이용되는 펄스 인버전(Pulse Inversion) 방식의 경우 프레임 레이트(Frame Rate)가 낮아지는 문제점이 있다.Harmonic components have a narrow beam width and low side lobes compared to the fundamental frequency. Accordingly, the ultrasound image formed of the harmonic component improves the resolution and the contrast of the ultrasound image formed of the fundamental frequency component. However, in the case of the pulse inversion method used to extract harmonic components, there is a problem in that the frame rate is lowered.
본 실시예는 N차 고조파 이미지를 생성하여 영상 처리하기 위한 기술로써 위상차를 갖는 평면파(Plane Wave)를 송신하고, 그에 대응하는 반사 신호를 파이프-라인(PipeLine) 방식으로 합성하여 프레임 레이트(Frame Rate)를 향상시킬 수 있는 고조파 영상 형성 방법과 그를 위한 초음파 의료 장치를 제공하는 데 주된 목적이 있다.The present embodiment is a technique for generating and processing an N-th harmonic image and transmitting a plane wave having a phase difference, and synthesizing a corresponding reflected signal in a pipe-line manner to frame rate. It is a main object to provide a harmonic image forming method capable of improving) and an ultrasonic medical device therefor.
본 실시예의 일 측면에 의하면, 대상체로 평면파(Plane Wave)를 송신하고 상기 대상체로부터 상기 평면파에 대응하는 반사 신호를 수신하는 트랜스듀서(Transducer); 상기 평면파가 360˚/ N(N은 2이상의 자연수)의 위상차(Phase Difference)을 갖도록 하며, 상기 평면파가 순차적으로 상기 대상체로 송신되도록 하는 송신부; 순차적으로 수신되는 상기 반사 신호 중 가장 최근 N 개의 신호만을 파이프-라인(PipeLine) 방식으로 합성하여 N차 고조파 성분(Harmonic Component)을 생성하는 고조파 획득부; 및 상기 N차 고조파 성분을 디스플레이(Display)하기 위한 데이터로 처리하는 신호 처리부를 포함하는 것을 특징으로 하는 초음파 의료 장치를 제공한다.According to an aspect of the present embodiment, a transducer for transmitting a plane wave (Plane Wave) to the object and receiving a reflected signal corresponding to the plane wave from the object; A transmitter for causing the plane wave to have a phase difference of 360 ° / N (N is a natural number of 2 or more), and the plane wave to be sequentially transmitted to the object; A harmonic acquiring unit for generating an N-th harmonic component by synthesizing only the most recent N signals among the received reflection signals in a pipe-line manner; And a signal processor configured to process the N-th harmonic component into data for displaying.
또한, 본 실시에의 다른 측면에 의하면, 초음파 의료 장치가 고조파 이미지를 형성하는 방법에 있어서, 360˚/ N(N은 2이상의 자연수)의 위상차를 갖도록 위상을 설정하는 송신 제어 과정; 대상체로 상기 360˚/ N의 위상차를 갖는 평면파를 순차적으로 송신하고 상기 대상체로부터 상기 평면파에 대응하는 반사 신호를 수신하는 수신 과정; 순차적으로 수신되는 상기 반사 신호 중 가장 최근 N 개의 신호를 파이프-라인 방식으로 합성하여 N차 고조파 성분을 생성하는 고조파 획득 과정; 및 상기 N차 고조파 성분을 디스플레이하기 위한 데이터로 처리하는 신호 처리 과정을 포함하는 것을 특징으로 하는 고조파 영상 형성 방법을 제공한다.According to another aspect of the present invention, there is provided a method of forming a harmonic image by an ultrasonic medical apparatus, comprising: a transmission control process of setting a phase to have a phase difference of 360 ° / N (N is a natural number of two or more); A receiving step of sequentially transmitting a plane wave having a phase difference of 360 ° / N to an object and receiving a reflected signal corresponding to the plane wave from the object; A harmonic acquisition process of generating N-th harmonic components by synthesizing the most recent N signals sequentially received from the reflected signals in a pipe-line manner; And a signal processing process of processing the N-th harmonic component as data for displaying the harmonic image.
이상에서 설명한 바와 같이 본 실시예에 의하면 N차 고조파 이미지를 생성하여 영상 처리하기 위한 기술로서 위상차를 갖는 평면파를 송신하고, 그에 대응하는 반사 신호를 파이프-라인방식으로 합성하여 프레임 레이트를 향상시킬 수 있는 효과가 있다.As described above, according to the present embodiment, as a technique for generating and processing an N-th harmonic image, a plane wave having a phase difference is transmitted, and the corresponding reflected signal is synthesized in a pipe-line manner to improve the frame rate. It has an effect.
또한, 본 실시예에 의하면 기존 펄스 인버전(Pulse Inversion) 방식의 고조파 영상 획득방식에 비해 프레임 레이트가 향상되는 효과가 있다. 기존 고조파 영상 처리 장치와 차별되게 위상차를 갖는 평면파를 이용한 고조파 영상 처리를 구현함으로써 기존 장비에 비해 이미지 퀄리티(Quality)가 향상되고 빠른 프레임 레이트를 가진 차별화된 고조파 영상 처리를 제공할 수 있는 효과를 가진다.In addition, according to the present embodiment, there is an effect that the frame rate is improved compared to the conventional harmonic image acquisition method of the pulse inversion method. By implementing harmonic image processing using planar waves having a phase difference, which is different from existing harmonic image processing apparatuses, image quality is improved compared to existing equipments, and it has an effect of providing differentiated harmonic image processing with a fast frame rate. .
도 1은 본 실시예에 따른 초음파 의료 장치를 개략적으로 나타낸 블럭 구성도이다.1 is a block diagram schematically showing the ultrasound medical apparatus according to the present embodiment.
도 2는 본 실시예에 따른 고조파 획득부를 개략적으로 나타낸 블럭 구성도이다.2 is a block diagram schematically illustrating a harmonic acquisition unit according to the present embodiment.
도 3은 본 실시예에 따른 고조파 영상 형성 방법을 설명하기 위한 순서도이다.3 is a flowchart illustrating a harmonic image forming method according to the present embodiment.
도 4는 본 실시예에 따른 위상 보정 방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a phase correction method according to the present embodiment.
도 5는 본 실시예에 따른 N차 고조파 획득 방법을 설명하기 위한 도면이다.5 is a diagram for describing a method for obtaining N-th harmonic according to the present embodiment.
이하, 본 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, the present embodiment will be described in detail with reference to the accompanying drawings.
도 1은 본 실시예에 따른 초음파 의료 장치를 개략적으로 나타낸 블럭 구성도이다.1 is a block diagram schematically showing the ultrasound medical apparatus according to the present embodiment.
본 실시예에 따른 초음파 의료 장치(100)는 트랜스듀서(Transducer)(110), 송수신 스위치(122), 송신부(132), 수신부(134), 아날로그 디지털 컨버터(140), 빔포머(150), 고조파 획득부(160), 신호 처리부(170) 및 주사 변환부(180)를 포함한다. 본 실시예에 따른 초음파 의료 장치(100)의 구성 요소는 반드시 이에 한정되는 것은 아니다.The ultrasound medical apparatus 100 according to the present embodiment may include a transducer 110, a transmission / reception switch 122, a transmitter 132, a receiver 134, an analog-to-digital converter 140, a beamformer 150, The harmonic acquiring unit 160, the signal processor 170, and the scan converter 180 are included. Components of the ultrasound medical apparatus 100 according to the present embodiment are not necessarily limited thereto.
트랜스듀서(110)는 전기적 아날로그 신호를 초음파로 변환하여 대상체에 전송하고, 대상체로부터 반사된 신호(이하, 반사 신호라 한다)를 전기적 아날로그 신호로 변환한다. 일반적으로 트랜스듀서(110)는 복수 개의 트랜스듀서 엘리먼트(Transducer Element)가 결합되어 형성된다. 이러한, 트랜스듀서(110)는 음향 에너지를 전기적 신호로 변환하고, 전기적 에너지를 음향 에너지로 변환한다. 또한, 트랜스듀서(110)는 배열형 트랜스듀서(Transducer Array)로 구현될 수 있으며, 배열형 트랜스듀서 내의 트랜스듀서 엘리먼트를 이용하여 대상체로 초음파를 송신하고 대상체로부터 반사되는 반사 신호를 수신한다.The transducer 110 converts an electrical analog signal into ultrasonic waves and transmits the ultrasonic wave to an object, and converts a signal reflected from the object (hereinafter, referred to as a reflection signal) into an electrical analog signal. In general, the transducer 110 is formed by combining a plurality of transducer elements. The transducer 110 converts acoustic energy into an electrical signal and converts electrical energy into acoustic energy. In addition, the transducer 110 may be implemented as an array transducer, and transmits an ultrasonic wave to an object and receives a reflected signal reflected from the object by using the transducer element in the array transducer.
트랜스듀서(110)는 다수(예컨대, 128개)의 트랜스듀서 엘리먼트를 포함할 수 있으며, 송신부(132)로부터 인가된 전압에 응답하여 초음파를 출력한다. 이때, 다수의 트랜스듀서 엘리먼트 중에서 일부의 트랜스듀서 엘리먼트만이 초음파 송신에 이용될 수 있다. 예컨대, 128개의 트랜스듀서 엘리먼트를 포함하고 있는 트랜스듀서(110)라 하여도, 초음파 송신 시 64개의 트랜스듀서 엘리먼트만이 초음파를 송신하여 하나의 송신 스캔라인(ScanLine)을 형성할 수 있다. 이러한 트랜스듀서(110)는 수신용 및 송신용으로 모두 사용할 수 있다. 이러한, 트랜스듀서(110)는 다수의 1D(Dimension), 1.25D, 1.5D, 1.75D 또는 2D의 배열형 트랜스듀서로 구현될 수 있다.The transducer 110 may include a plurality of transducer elements (eg, 128), and output ultrasonic waves in response to a voltage applied from the transmitter 132. In this case, only some transducer elements of the plurality of transducer elements may be used for ultrasonic transmission. For example, even when the transducer 110 includes 128 transducer elements, only 64 transducer elements may transmit ultrasonic waves to form one transmission scanline during the ultrasonic transmission. The transducer 110 can be used for both reception and transmission. The transducer 110 may be implemented as a plurality of 1D (Dimension), 1.25D, 1.5D, 1.75D or 2D array transducer.
또한, 트랜스듀서(110)는 빔포머(150)의 제어에 따라 각 트랜스듀서 엘리먼트에 입력되는 펄스(Pulse)들의 입력 시간을 적절하게 지연시킴으로써 집속된 초음파를 송신 스캔 라인을 따라 대상체로 송신한다. 한편, 대상체로부터 초음파에 대응하여 반사된 반사 신호는 트랜스듀서(110)에 서로 다른 수신 시간을 가지면서 입력되며, 트랜스듀서(110)는 대상체로부터 입력된 반사 신호를 빔포머(150)로 출력한다. 본 실시예에 따른 트랜스듀서(110)는 대상체로 평면파를 송신하고 대상체로부터 평면파에 대응하는 반사 신호를 수신한다. 이때, 반사 신호는 평면파에 대응되는 신호로서, 소프트웨어적으로 고속 이미징 처리될 수 있다. Also, the transducer 110 transmits the focused ultrasound to the object along the transmission scan line by appropriately delaying an input time of pulses input to each transducer element under the control of the beamformer 150. On the other hand, the reflected signal reflected from the object corresponding to the ultrasonic wave is input to the transducer 110 with different reception times, and the transducer 110 outputs the reflected signal input from the object to the beamformer 150. . The transducer 110 according to the present embodiment transmits a plane wave to an object and receives a reflection signal corresponding to the plane wave from the object. In this case, the reflected signal is a signal corresponding to the plane wave, and may be subjected to high-speed imaging by software.
송수신 스위치(122)는 트랜스듀서(110)가 송신 또는 수신을 번갈아가며 수행할 수 있도록 송신부(132)와 수신부(134)를 스위칭하는 기능을 수행한다. 또한, 송수신 스위치(122)는 송신부(132)에서 출력되는 전압이 수신부(134)에 영향을 주지 않도록 하는 역할을 수행한다.The transmission / reception switch 122 performs a function of switching the transmitter 132 and the receiver 134 so that the transducer 110 alternately performs transmission or reception. In addition, the transmission and reception switch 122 serves to prevent the voltage output from the transmitter 132 does not affect the receiver 134.
송신부(132)는 트랜스듀서(110)에 전압 펄스를 인가하여, 트랜스듀서(110)의 각각의 트랜스듀서 엘리먼트에서 초음파가 출력되도록 한다. 본 실시예에 따른 송신부(132)는 트랜스듀서(110)에 전압 펄스를 인가하여, 트랜스듀서(110)의 각각의 트랜스듀서 엘리먼트에서 평면파가 출력되도록 한다. 이때, 송신부(132)는 트랜스듀서(110)에서 출력되는 평면파가 360˚/ N(N은 2이상의 자연수)의 위상차(Phase Difference)을 갖도록 위상을 설정한다. 송신부(132)는 트랜스듀서(110)에 의해 360˚/ N의 위상차를 갖는 위상을 포함한 평면파가 순차적으로 대상체에 송신되도록 한다. 예컨대, 송신부(132)는 N이 2로 설정되는 경우 트랜스듀서(110)의 평면파가 180˚의 위상차를 갖도록 0˚의 위상과 180˚의 위상을 갖도록 설정한다. 또한, 송신부(132)는 N이 3으로 설정되는 경우 트랜스듀서(110)의 평면파가 120˚의 위상차를 갖도록 0˚의 위상, 120˚의 위상, 240˚의 위상을 설정한다.The transmitter 132 applies a voltage pulse to the transducer 110 so that ultrasonic waves are output from each transducer element of the transducer 110. The transmitter 132 according to the present exemplary embodiment applies a voltage pulse to the transducer 110 so that a plane wave is output from each transducer element of the transducer 110. At this time, the transmitter 132 sets the phase so that the plane wave output from the transducer 110 has a phase difference of 360 ° / N (N is a natural number of 2 or more). The transmitter 132 transmits the plane wave including the phase having a phase difference of 360 ° / N by the transducer 110 to the object in sequence. For example, when N is set to 2, the transmitter 132 is set to have a phase of 0 ° and a phase of 180 ° so that the plane wave of the transducer 110 has a phase difference of 180 °. In addition, when N is set to 3, the transmitter 132 sets a phase of 0 °, a phase of 120 °, and a phase of 240 ° such that the plane wave of the transducer 110 has a phase difference of 120 °.
수신부(134)는 트랜스듀서(110)의 각각의 트랜스듀서 엘리먼트에서 출력된 초음파가 대상체에서 반사되어 돌아오는 반사 신호를 수신하고, 수신된 반사 신호에 대한 증폭, 에일리어싱(Aliasing) 현상 및 잡음 성분의 제거, 초음파가 신체 내부를 통과하면서 발생하는 감쇄의 보정 등의 수행한 후처리된 신호를 아날로그 디지털 컨버터(140)로 전송한다.The receiver 134 receives the reflected signal from which the ultrasonic wave output from each transducer element of the transducer 110 is reflected from the object, and amplifies, aliases, and noise components of the received reflected signal. A post-processed signal, such as removal and correction of attenuation generated while the ultrasound passes through the body, is transmitted to the analog-to-digital converter 140.
아날로그 디지털 컨버터(140)는 수신부(134)로부터 수신된 아날로그 반사 신호를 디지털 신호로 변환한 후 빔 형성부(156)로 전송한다. 아날로그 디지털 컨버터(140)가 트랜스듀서(110)로부터 수신한 반사 신호는 아날로그 형식을 띄고 있는데, 아날로그 신호는 연속적인 신호의 전압 형태이다. 이때, 아날로그 신호는 주사 변환부(180)에 의해 처리되기 전에 먼저 디지털 신호로 전환되어야 한다. 따라서, 아날로그 디지털 컨버터(140)에서 각각의 아날로그 형태의 반사 신호를 0과 1의 조합으로 바꾸어 주는 것이다. 예컨대, 아날로그 디지털 컨버터(140)는 신호를 디지털로 표현하기 위해, 아날로그 신호를 0과 1의 형태로 나타내며 이러한 디지털 신호는 신호 처리부(170)를 경유하여 주사 변환부(180)의 메모리에 저장된다. 또한, 아날로그 디지털 컨버터(140)는 반사 신호를 디지털 신호로 전환한다.The analog-to-digital converter 140 converts the analog reflection signal received from the receiver 134 into a digital signal and transmits the converted signal to the beam forming unit 156. The reflection signal received by the analog-to-digital converter 140 from the transducer 110 is in the form of an analog, which is a voltage of a continuous signal. In this case, the analog signal must first be converted into a digital signal before being processed by the scan converter 180. Therefore, the analog-to-digital converter 140 converts each analog signal into a combination of 0's and 1's. For example, the analog-to-digital converter 140 represents an analog signal in the form of 0's and 1's in order to digitally represent the signal, and the digital signal is stored in the memory of the scan converting unit 180 via the signal processing unit 170. . In addition, the analog-to-digital converter 140 converts the reflected signal into a digital signal.
여기서, 송수신 스위치(122), 송신부(132), 수신부(134) 및 아날로그 디지털 컨버터(140)는 전단 처리부(Front End)(120)로 구현될 수 있다.Here, the transmission / reception switch 122, the transmitter 132, the receiver 134, and the analog to digital converter 140 may be implemented as a front end 120.
빔포머(150)는 트랜스듀서(110)에 적합한 전기신호를 지연시켜서 각 트랜스듀서 엘리먼트에 맞는 전기신호로 변환한다. 또한, 빔포머(150)는 각 트랜스듀서 엘리먼트에서 변환한 전기신호를 지연 또는 합산하여 해당 트랜스듀서 엘리먼트의 출력값으로 산출한다. 빔포머(150)는 송신 빔포머, 수신 빔포머 및 빔 형성부(156)를 포함한다. 여기서, 송신 빔포머는 송신 집속 지연부(152)에 해당하며, 수신 빔포머는 수신 집속 지연부(154)에 해당한다. 본 실시예에 따른 빔포머(150)는 확대 영역으로 초음파를 집속하는데 필요한 제 1 지연시간을 생성하거나 대상체로 평면파를 집속하는데 필요한 제 2 지연시간을 생성한 후 제 1 지연시간 또는 제 2 지연시간이 적용된 디지털 신호 각각을 하나의 신호로 조합한 조합 신호를 생성한다. 한편, 빔포머(150)는 소트프웨어적으로 고속 이미징 처리를 위해 아날로그 디지털 컨버터(140) 및 신호 처리부(170)와 전 병렬 경로(Full Parallel Path)로 연결될 수 있다.The beamformer 150 converts the electrical signal suitable for the transducer 110 into an electrical signal suitable for each transducer element. In addition, the beamformer 150 delays or sums the electric signals converted by each transducer element to calculate the output value of the corresponding transducer element. The beamformer 150 includes a transmit beamformer, a receive beamformer, and a beam former 156. Here, the transmission beamformer corresponds to the transmission focus delay unit 152 and the reception beamformer corresponds to the reception focus delay unit 154. The beamformer 150 according to the present embodiment generates the first delay time required to focus the ultrasound to the enlarged region or the second delay time required to focus the plane wave on the object, and then the first delay time or the second delay time. A combined signal is generated by combining each of the applied digital signals into one signal. On the other hand, the beamformer 150 may be connected to the analog-to-digital converter 140 and the signal processor 170 in a full parallel path by software for high-speed imaging.
송신 집속 지연부(152)는 대상체(진단 대상)로부터 트랜스듀서 엘리먼트 각각에 도달하는 시간을 고려하여 각각의 전기적 디지털 신호에 적절한 지연을 가한다. 예컨대, 송신 집속 지연부(152)는 트랜스듀서(110)가 배열형 트랜스듀서일 경우, 빔을 조정하고 전자적으로 초점을 맞추도록 한다. 예컨대, 배열형 트랜스듀서가 서로 다른 깊이에 따라 전자적으로 집속하므로, 송신 집속 지연부(152)는 배열형 트랜스듀서 엘리먼트 각각에 펄스 지연시간을 연속적으로 줌으로써 송신측에 빔을 집속한다. 결과적으로 송신 집속 지연부(152)는 전자적으로 주사되는 배열형 트랜스듀서의 대해 빔의 방향을 조절할 수 있다. 수신 집속 지연부(154)는 아날로그 디지털 컨버터(140)에서 변환한 디지털 신호를 집속 또는 빔포밍하는데 필요한 지연시간을 생성한다. 예컨대, 수신 집속 지연부(154)는 트랜스듀서(110)로부터 수신된 반사 신호를 집속하기 위한 시간 지연을 제공하며, 반사 신호의 동적 집속(Dynamic Focusing)을 조절한다.The transmission focus delay unit 152 applies an appropriate delay to each electric digital signal in consideration of the time to reach each transducer element from the object (diagnosis object). For example, the transmission focus delay unit 152 adjusts and electronically focuses the beam when the transducer 110 is an array type transducer. For example, since the array transducers are electronically focused according to different depths, the transmission focusing delay unit 152 focuses the beam on the transmitting side by continuously giving a pulse delay time to each of the array transducer elements. As a result, the transmission focus delay unit 152 may adjust the direction of the beam with respect to the array-type transducer that is scanned electronically. The reception focusing delay unit 154 generates a delay time required for focusing or beamforming the digital signal converted by the analog-to-digital converter 140. For example, the reception focusing delay unit 154 provides a time delay for focusing the reflected signal received from the transducer 110 and adjusts the dynamic focusing of the reflected signal.
빔 형성부(156)는 아날로그 디지털 컨버터(140)에 의해 변환된 전기적 디지털 신호를 합산하여 수신 집속 신호(Receive Focusing Signal)를 형성할 수 있다. 빔 형성부(156)는 디지털화된 신호를 하나의 신호로 조합한다. 이때, 동일한 위상의 반사 신호는 빔 형성부(156)에서 결합되고 신호 처리부(170)에서 다양한 신호 처리 방식이 적용된 후 주사 변환부(180)를 통해서 구비된 디스플레이부에서 출력된다. 빔 형성부(156)는 아날로그 디지털 컨버터(140)로부터 수신된 신호에 서로 다른 지연량(Amount Of Delay)(수신 집속(Focusing)을 하려는 위치에 따라 결정됨)을 적용하고 지연된 신호를 합성함으로써 동적 집속을 수행한다. 예컨대, 빔 형성부(156)는 트랜스듀서 엘리먼트 각각으로부터 수신된 반사 신호를 이후에 있을 신호 처리를 위해 하나의 신호로 조합한다. 빔 형성부(156)는 각 반사체(대상체)에 대해 단일 반사 신호를 만들기 위해서 모든 트랜스듀서 엘리먼트로부터 수신된 반사 신호를 하나의 신호를 조합한 조합 신호를 생성한다. 이렇게 생성된 조합 신호는 빔 형성부(156)에 의해 신호 처리부(170)로 전송되고, 최종적으로 영상 데이터 저장을 위하여 디지털 형태로 바꾸어 주는 디지털화 장치(Digitalizing Device)로 전송된다.The beam forming unit 156 may form a receive focusing signal by summing the electrical digital signals converted by the analog to digital converter 140. The beam forming unit 156 combines the digitized signal into one signal. At this time, the reflected signal of the same phase is combined in the beam forming unit 156, and various signal processing methods are applied in the signal processing unit 170 and then output from the display unit provided through the scan converter 180. The beam forming unit 156 applies dynamic delay amounts (determined according to the position to be focused) to the signals received from the analog-to-digital converter 140 and synthesizes the delayed signals by synthesizing the delayed signals. Do this. For example, the beamformer 156 combines the reflected signals received from each of the transducer elements into one signal for later signal processing. The beam forming unit 156 generates a combined signal in which one signal is combined with reflection signals received from all the transducer elements in order to produce a single reflection signal for each reflector (object). The generated combination signal is transmitted to the signal processing unit 170 by the beam forming unit 156 and finally to a digitalizing device that converts the digital signal into a digital form for storing image data.
본 실시예에 따른 고조파 획득부(160)는 순차적으로 수신되는 반사 신호 중 가장 최근 N 개의 신호만을 파이프-라인(PipeLine) 방식으로 합성하여 N차 고조파 성분(Harmonic Component)을 생성한다. 여기서, '파이프-라인'이란 프로세서로 가는 명령어의 움직임(또는 명령어를 수행하기 위해 프로세서에 의해 취해진 산술적인 단계)이 연속적이고, 다소 겹치는 것을 말한다. 예컨대, '파이프-라인'을 이용하는 경우 프로세서가 산술 연산을 수행하는 동안에 다음 명령어를 가져올 수 있으며, 가져온 명령어를 다음 명령어 연산이 수행될 수 있을 때까지 프로세서 근처의 버퍼에 가져다 놓는다. 따라서, 명령어를 가져오는 단계는 끊임없이 지속되며, 그 결과, 주어진 시간 동안에 수행될 수 있는 명령어의 수가 증가하게 된다.The harmonic acquisition unit 160 according to the present embodiment synthesizes only the most recent N signals among the sequentially received reflection signals in a pipe-line manner to generate an N-th harmonic component. Here, 'pipe-line' refers to the continuous, somewhat overlapping movement of instructions to the processor (or the arithmetic steps taken by the processor to perform the instructions). For example, using a 'pipe-line', the processor may fetch the next instruction while performing an arithmetic operation, and put the instruction into a buffer near the processor until the next instruction operation can be performed. Thus, the step of getting instructions continues endlessly, resulting in an increase in the number of instructions that can be executed in a given time.
또한, 고조파 획득부(160)는 N차 고조파 성분의 생성을 위해 순차적으로 수신되는 반사 신호 중 가장 최근 N 개의 신호를 합성하게 되면, 기본 주파수 성분이 없어지게 되고 N차 고조파 성분만이 남게된다. 예를 들어, N이 2인 경우 2차 고조파 성분만이 남게되는 것이며, N이 3인 경우 3차 고조파 성분만이 남게되는 것이다.In addition, when the harmonic acquisition unit 160 synthesizes the most recent N signals among the reflected signals sequentially received to generate the Nth harmonic component, the fundamental frequency component is lost and only the Nth harmonic component remains. For example, when N is 2, only the second harmonic component remains, and when N is 3, only the third harmonic component remains.
또한, 위상차를 기준으로 예를들어 설명하자면, 고조파 획득부(160)는 파이프-라인 방식으로 반사 신호에 포함된 위상차의 합(180˚ + 180˚, 120˚ + 120˚ + 120˚ 등)이 360˚를 이루어 하나의 프레임을 형성하도록 하는 N차 고조파 성분을 생성할 수 있다. For example, based on the phase difference, the harmonic acquisition unit 160 has a sum of phase differences (180 ° + 180 °, 120 ° + 120 ° + 120 °, etc.) included in the reflected signal in a pipe-line manner. It is possible to generate an N-th harmonic component to form a frame by forming 360 °.
고조파 획득부(160)가 최초 프레임을 형성하는 과정에 대해 설명하자면, 고조파 획득부(160)는 최초 프레임 형성 시 N 개의 평면파를 송신에 따른 보정 데이터를 합성한다. 예컨대, 고조파 획득부(160)는 트랜스듀서(110)가 평면파를 송신하고 수신되는 반사 신호의 개수가 N 개가 될 때가지 대기한 후 N 개의 반사 신호를 합성하여 N차 고조파 성분을 생성하는 것이다. 이후 고조파 획득부(160)가 프레임을 형성하는 과정에 대해 설명하자면, 고조파 획득부(160)는 최초 프레임 형성 이후 트랜스듀서(110)가 새롭게 송신하는 평면파마다 생성되는 보정 데이터를 수신 순서대로 합성하여 새로운 프레임이 형성되도록 한다. 예컨대, 고조파 획득부(160)는 최초 프레임이 형성된 이후에는 트랜스듀서(110)가 새로운 평면파를 송신할 때마다 수신되는 반사 신호를 기존에 수신한 반사 신호와 결합하는 형태로 가장 최근의 N 개의 신호만을 합성하여 N차 고조파 성분을 생성할 수 있다.Referring to the process of forming the first frame by the harmonic acquisition unit 160, the harmonic acquisition unit 160 synthesizes the correction data according to the transmission of the N plane waves when the first frame is formed. For example, the harmonic acquiring unit 160 generates the Nth harmonic component by synthesizing the N reflected signals after the transducer 110 transmits the plane wave and waits until the number of received reflected signals becomes N. Next, the process of forming the frame by the harmonic acquisition unit 160, the harmonic acquisition unit 160 synthesizes the correction data generated for each plane wave newly transmitted by the transducer 110 after the first frame is formed in the receiving order Allow a new frame to form. For example, after the first frame is formed, the harmonic acquiring unit 160 combines the reflection signal received each time the transducer 110 transmits a new plane wave with the reflection signal received in the most recent N signals. Only Nth harmonic components can be generated by synthesizing Bay.
이러한, 고조파 획득부(160)가 반사 신호에 포함된 위상을 보정하는 과정에 대해 설명한다. 고조파 획득부(160)는 구비된 N 개의 메모리에 순차적으로 수신되는 반사 신호를 각각 저장하고, 저장된 반사 신호에 포함된 위상 성분을 분석한 위상 분석 결과를 생성하며, 생성된 위상 분석 결과에 근거하여 위상 시프트(Phase Shift)가 수행된 보정 데이터를 생성한다. 이후 고조파 획득부(160)는 생성된 보정 데이터 중 가장 최근 N 개의 데이터를 파이프-라인 방식으로 합성하여 하나의 프레임을 형성하도록 하는 N차 고조파 성분을 생성한다.The process of correcting the phase included in the reflected signal by the harmonic obtaining unit 160 will be described. The harmonic acquiring unit 160 stores reflection signals sequentially received in the N memories, generates a phase analysis result of analyzing phase components included in the stored reflection signal, and based on the generated phase analysis result. Phase shift is performed to generate correction data. Thereafter, the harmonic acquisition unit 160 generates an Nth harmonic component for synthesizing the most recent N data among the generated correction data in a pipe-line manner to form a frame.
이하, 고조파 획득부(160)가 반사 신호에 포함된 위상을 보정하기 위해 위상차를 확인하는 과정에 대해 설명한다. 고조파 획득부(160)는 메모리(220)에 저장된 반사 신호 각각에 포함된 위상 간의 위상차가 360˚/ N 만큼 차이가 발생하는지의 여부를 확인한다. 확인 결과 360˚/ N만큼 차이가 발생하는 경우 고조파 획득부(160)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일한 위상차가 발생한 것으로 인식하여 메모리(220)에 저장된 반사 신호에 위상 시프트가 미수행되도록 하는 위상 분석 결과를 생성하며, 생성된 위상 분석 결과에 근거하여 위상 시프트가 미수행된 보정 데이터를 생성한다. 한편, 확인 결과 360˚/ N만큼 차이가 미발생하는 경우 고조파 획득부(160)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 메모리(220)에 저장된 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 위상 분석 결과를 생성하며, 생성된 위상 분석 결과에 근거하여 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 보정 데이터를 생성한다. 예들 들어서, 단위 샘플 시간은 40 MHz 샘플링 시스템에서는 25 ns일 수 있다.Hereinafter, a process of checking the phase difference by the harmonic obtaining unit 160 to correct the phase included in the reflected signal will be described. The harmonic acquisition unit 160 checks whether or not a phase difference between phases included in each of the reflected signals stored in the memory 220 occurs by 360 ° / N. If the difference occurs by 360 ° / N, the harmonic acquisition unit 160 recognizes that a phase difference equal to the phase difference of 360 ° / N set by the transmitter 132 is generated and phases the reflected signal stored in the memory 220. A phase analysis result is generated to cause the shift to be not performed, and correction data without the phase shift is generated based on the generated phase analysis result. On the other hand, if the difference does not occur by 360 ° / N as a result of the check, the harmonic acquisition unit 160 recognizes that the phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 occurred in the memory 220 A phase analysis result for right shifting the stored reflection signal by a phase corresponding to the unit sample time is generated, and based on the generated phase analysis result, right-shifted correction data is generated by the phase corresponding to the unit sample time. For example, the unit sample time may be 25 ns in a 40 MHz sampling system.
신호 처리부(170)는 빔 형성부(156)에서 집속된 수신 스캔라인의 반사 신호를 기저 대역 신호(Baseband Signals)로 변화시키고 직교 복조기(Quadrature Demodulator)를 사용해서 포락선(Envelope)을 검출하여 하나의 스캔라인에 대한 데이터를 얻는다. 또한, 신호 처리부(170)는 빔포머(150)에 의해 생성된 데이터를 디지털 신호로 처리한다. 본 실시예에 따른 신호 처리부(170)는 N차 고조파 성분을 디스플레이(Display)하기 위한 데이터로 처리한다.The signal processor 170 changes the reflected signal of the received scan line focused by the beam forming unit 156 into baseband signals and detects an envelope by using a quadrature demodulator. Get data for the scanline. In addition, the signal processor 170 processes the data generated by the beamformer 150 into a digital signal. The signal processor 170 according to the present exemplary embodiment processes the Nth harmonic component as data for displaying.
신호 처리부(170)는 평면파에 대응하는 반사 신호를 고속 이미징 처리하기 위해 해당 데이터를 소프트웨어적으로 병렬 처리할 수 있다. 예컨대, 신호 처리부(170)는 고속 이미지 처리를 위해 입력 데이터 열과 비교 데이터 열을 비교하고, 비교 결과 데이터 열을 생성하고, 비교 결과 데이터 열을 구성하는 각 비교 결과 데이터로부터 대표 비트를 추출하고, 대표 비트에 의해서 대표 비트열을 생성하며, 대표 비트열이 나타낼 수 있는 비트 패턴에 대응한 복수의 조작 데이터 열을 테이블에 저장하며, 복수의 조작 데이터 열중에서 대표 비트열에 따라 선택된 특정의 조작 데이터 열을 이용하고, 입력 데이터 열에 대한 데이터 연산을 실행해 배출량 데이터 열을 생성할 수 있다. 전술한 바와 같이, 신호 처리부(170)의 고속 이미징 처리를 위해 소프트웨어적인 병렬 처리를 수행하나, 아키텍쳐(Architecture)로는 멀티 코어의 CPU(Central Processing Unit) 및 GPU(Graphic Processing Unit)가 동시에 수천 개의 채널에서 병렬 처리를 수행할 수 있다.The signal processor 170 may process the corresponding data in parallel in software in order to perform high-speed imaging of the reflected signal corresponding to the plane wave. For example, the signal processor 170 compares an input data string with a comparison data string for high speed image processing, generates a comparison result data string, extracts a representative bit from each comparison result data constituting the comparison result data string, A representative bit string is generated by the bits, and a plurality of operation data strings corresponding to the bit patterns that can be represented by the representative bit string are stored in a table, and a specific operation data string selected among the plurality of operation data strings according to the representative bit string is selected. Can be used to generate a data stream of emissions by performing data operations on the input data stream. As described above, parallel processing is performed for high-speed imaging of the signal processing unit 170, but the architecture (architecture) is a multi-core CPU (Central Processing Unit) and GPU (Graphic Processing Unit) at the same time thousands of channels You can do parallel processing in.
주사 변환부(180)는 신호 처리부(170)에서 얻어진 데이터를 메모리에 기록하고, 데이터의 주사 방향을 디스플레이부(예컨대, 모니터)의 픽셀 방향과 일치시키며, 해당 데이터를 디스플레이부의 픽셀 위치로 매핑시킨다. 주사 변환부(180)는 초음파 영상 데이터를 소정의 스캔라인 표시형식의 디스플레이부에서 사용되는 데이터 형식으로 변환한다.The scan converter 180 records the data obtained by the signal processor 170 in a memory, matches the scanning direction of the data with the pixel direction of the display unit (eg, the monitor), and maps the data to the pixel position of the display unit. . The scan converter 180 converts the ultrasound image data into a data format used in a display unit of a predetermined scan line display format.
주사 변환부(180)의 메모리는 기 설정된 위치로부터 수신된 초음파 영상 데이터에 대해 멀티 비트(Multi-Bit) 저장 단위로 구성된 각 요소들의 매트릭스(Matrix)로 인식될 수 있다. 여기서, 디지털화된 요소를 픽셀이라 한다. 예컨대, 주사 변환부(180)의 메모리는 이러한 픽셀들의 매트릭스이다. 디스플레이부 상에 출력되는 초음파 영상 데이터는 실제로 주사 변환부(180)의 메모리 내에 디지털 숫자들의 매트릭스 형태로 존재한다. 예컨대, 초음파 이미지 형성이 이루어지는 동안, 반사 신호는 대상체의 위치에 따라 픽셀의 위치(주소)에 끼워 넣어진다. 주사 변환부(180)는 정확한 픽셀 주소를 산출하기 위해 반사 신호의 지연 시간과 트랜스듀서(110)의 빔 좌표를 이용한다. The memory of the scan converter 180 may be recognized as a matrix of elements configured in a multi-bit storage unit for the ultrasound image data received from a preset location. Here, the digitized element is called a pixel. For example, the memory of the scan converter 180 is a matrix of such pixels. The ultrasound image data output on the display unit is actually present in the form of a matrix of digital numbers in the memory of the scan converter 180. For example, during the ultrasonic image formation, the reflected signal is embedded at the position (address) of the pixel according to the position of the object. The scan converter 180 uses the delay time of the reflected signal and the beam coordinates of the transducer 110 to calculate the correct pixel address.
이때, 주사 변환부(180)는 각 픽셀 위치 상에 반사 신호의 값을 표현하기 위해 최소 8비트 상에서 이용된다. 예컨대, 8비트가 각 위치에 256개의 진폭 레벨들을 갖는다. 이러한, 주사 변환부(180)의 메모리는 초음파 빔이 관심 영역(ROI: Region Of Interest)을 초음파 이미지를 형성해 감에 따라 연속적으로 새로운 반사 신호 정보로 업데이트된다. 한편, 주사 변환부(180)의 영상 정지 기능은 반사 신호가 영상 기록뿐 아니라 사진, 디지털 정보 저장을 위해 메모리 상에 저장될 수 있다. 주사 변환부(180)의 메모리는 디스플레이부의 휘도 세기를 조절하는데 필요한 신호를 공급하는 디지털-아날로그 변환기(DAC)로 픽셀 값들을 전달함으로써 출력된다. In this case, the scan converter 180 is used on at least 8 bits to express the value of the reflection signal on each pixel position. For example, 8 bits have 256 amplitude levels in each position. The memory of the scan converter 180 is continuously updated with new reflection signal information as the ultrasound beam forms an ultrasound image of a region of interest (ROI). On the other hand, in the image stop function of the scan converter 180, the reflected signal may be stored in the memory not only for image recording but also for storing photographs and digital information. The memory of the scan converter 180 is output by transferring pixel values to a digital-to-analog converter (DAC) that supplies a signal necessary to adjust the brightness intensity of the display unit.
또한, 빔포머(150), 고조파 획득부(160), 신호 처리부(170) 및 주사 변환부(180)는 호스트(Host)(190)로 구현될 수 있다. 이때, 호스트(190)는 CPU 및 GPU를 포함하여 구현될 수 있다. 전단 처리부(120)와 호스트(190)는 예컨대, PCI(Peripheral Component Interconnect) 인터페이스로 연결될 수 있다.In addition, the beamformer 150, the harmonic acquirer 160, the signal processor 170, and the scan converter 180 may be implemented as a host 190. In this case, the host 190 may be implemented including a CPU and a GPU. The front end processor 120 and the host 190 may be connected to, for example, a Peripheral Component Interconnect (PCI) interface.
한편, 초음파 의료 장치(100)는 사용자 입력부를 추가로 포함할 수 있으며, 사용자 입력부는 사용자의 조작 또는 입력에 의한 명령(Instruction)을 입력받는다. 여기서, 사용자 명령은 초음파 의료 장치(100)를 제어하기 위한 설정 명령 등이 될 수 있다.Meanwhile, the ultrasound medical apparatus 100 may further include a user input unit, and the user input unit receives an instruction by a user's manipulation or input. Here, the user command may be a setting command for controlling the ultrasound medical apparatus 100.
도 2는 본 실시예에 따른 고조파 획득부를 개략적으로 나타낸 블럭 구성도이다.2 is a block diagram schematically illustrating a harmonic acquisition unit according to the present embodiment.
본 실시예에 따른 고조파 획득부(160)는 위상 분석부(210), 메모리(220), 위상 시프트부(230) 및 합성부(240)를 포함한다. 본 실시예에 따른 고조파 획득부(160)의 구성요소는 반드시 이에 한정되는 것은 아니다.The harmonic acquisition unit 160 according to the present embodiment includes a phase analyzer 210, a memory 220, a phase shifter 230, and a synthesizer 240. The components of the harmonic acquisition unit 160 according to the present embodiment are not necessarily limited thereto.
위상 분석부(210)는 반사 신호에 포함된 위상 성분을 분석한 위상 분석 결과를 생성한다. 여기서, 위상 분석(210)는 반사 신호에 포함된 위상 성분을 분석하기 위해 고속 푸리에 변환(FFT: Fast Fourier Transform)을 이용할 수 있다. 위상 분석부(210)가 반사 신호에 포함된 위상을 보정하기 위해 위상차를 확인하는 과정에 대해 설명하자면, 위상 분석부(210)는 메모리(220)에 저장된 반사 신호 각각에 포함된 위상 간의 위상차가 360˚/ N 만큼 차이가 발생하는지의 여부를 확인한다. 확인 결과 360˚/ N만큼 차이가 발생하는 경우 위상 분석부(210)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일한 위상차가 발생한 것으로 인식하여 메모리(220)에 저장된 반사 신호에 위상 시프트가 미수행되도록 하는 위상 분석 결과를 생성한다. 한편, 확인 결과 360˚/ N만큼 차이가 미발생하는 경우, 위상 분석부(210)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 메모리(220)에 저장된 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 위상 분석 결과를 생성한다.The phase analyzer 210 generates a phase analysis result of analyzing the phase component included in the reflected signal. Here, the phase analysis 210 may use a Fast Fourier Transform (FFT) to analyze the phase component included in the reflected signal. Referring to the process of checking the phase difference to correct the phase included in the reflected signal by the phase analyzer 210, the phase analyzer 210 determines that the phase difference between the phases included in each of the reflected signals stored in the memory 220 is increased. Check whether there is a difference of 360˚ / N. As a result of the check, if the difference occurs by 360 ° / N, the phase analyzer 210 recognizes that a phase difference equal to the phase difference of 360 ° / N set by the transmitter 132 is generated and phases the reflected signal stored in the memory 220. Generate a phase analysis result that causes the shift to fail. On the other hand, if the difference does not occur by 360 ° / N as a result of the check, the phase analysis unit 210 recognizes that the phase difference is not the same as the phase difference of 360 ° / N set by the transmitter 132 and the memory 220 A phase analysis result is generated to shift the reflected signal stored in the right side by a phase corresponding to the unit sample time.
보다 구체적으로 위상 분석부(210)의 동작에 대해 설명하자면, 위상 분석부(210)는 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N 만큼 차이가 발생하는 경우, 제 1 반사 신호와 N 반사 신호에 위상 시프트가 미수행되도록 하는 위상 분석 결과를 생성한다. 위상 분석부(210)는 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N를 초과하여 발생하는 경우, 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 제 1 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 위상 분석 결과를 생성한다. 또한, 위상 분석부(210)는 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N 미만으로 발생하는 경우, 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 제 N 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 위상 분석 결과를 생성한다.In more detail, the operation of the phase analyzer 210 is described. The phase analyzer 210 stores the first reflection signal stored in the first storage area of the memory 220 and the N-th storage area of the memory 220. When the phase difference between the phases included in the N reflected signals is different by 360 ° / N, a phase analysis result is generated such that a phase shift is not performed on the first reflected signal and the N reflected signals. The phase analyzer 210 may have a phase difference between the first reflection signal stored in the first storage area of the memory 220 and the phase included in the N reflection signal stored in the Nth storage area of the memory 220 greater than 360 ° / N. And a phase difference that is not equal to the phase difference of 360 ° / N set by the transmitter 132 to generate a phase analysis result for right shifting the first reflected signal by a phase corresponding to the unit sample time. do. In addition, the phase analyzer 210 may have a phase difference of 360 ° / N between a first reflection signal stored in the first storage area of the memory 220 and a phase included in the N reflection signal stored in the Nth storage area of the memory 220. If it is less than, it is recognized that a phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 and the phase analysis result to the right to shift the N-th reflected signal by a phase corresponding to the unit sample time Create
이하, N을 3이상의 자연수로 가정하여 위상 분석부(210)의 동작에 대해 설명한다. 위상 분석부(210)는 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N 만큼 차이가 발생하는 경우, 제 N-1 반사 신호와 N 반사 신호에 위상 시프트가 미수행되도록 하는 위상 분석 결과를 생성한다. 한편, 위상 분석부(210)는 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N를 초과하여 발생하는 경우, 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 제 N-1 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 위상 분석 결과를 생성한다. 또한, 위상 분석부(210)는 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N 미만으로 발생하는 경우, 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 제 N 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 위상 분석 결과를 생성한다.Hereinafter, the operation of the phase analyzer 210 will be described assuming N as a natural number of 3 or more. The phase analyzer 210 has a phase difference of 360 ° between an N-1 reflected signal stored in the N-1th storage area of the memory 220 and a phase included in the N reflected signal stored in the Nth storage area of the memory 220. When a difference occurs by / N, a phase analysis result is generated such that a phase shift is not performed on the N-1th reflected signal and the Nth reflected signal. On the other hand, the phase analyzer 210 has a phase difference between the N-1 reflected signal stored in the N-1th storage area of the memory 220 and the phase included in the N reflected signal stored in the Nth storage area of the memory 220. If it occurs more than 360 ° / N, it is recognized that a phase difference that is not equal to the phase difference of 360 ° / N set by the transmitter 132 is generated, and the N-1 reflected signal is right by the phase corresponding to the unit sample time. Generate a phase analysis result that causes the shift. In addition, the phase analyzer 210 may determine a phase difference between an N-1 reflected signal stored in the N-1th storage area of the memory 220 and a phase included in the N reflected signal stored in the Nth storage area of the memory 220. If it occurs less than 360 ° / N, it is recognized that a phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 is generated so that the N-th reflected signal is shifted right by a phase corresponding to the unit sample time. Generate phase analysis results.
메모리(220)는 순차적으로 수신되는 반사 신호를 각각 저장하는 저장부이다. 이러한, 메모리(220)는 물리적으로 하나의 저장 모듈로 구현될 수 있으며, 내부적으로 N개의 저장 영역을 할당할 수 있다. 다시 말해, 메모리(220)는 최초 평면파에 대응하는 제 1 반사 신호를 저장하는 제 1 저장 영역 내지 제 N 평면파에 대응하는 제 N 반사 신호를 저장하는 제 N 저장 영역을 할당한다. 예컨대, 메모리(220)는 송신부(132)에서 360˚/ N의 위상차를 설정하므로, 송신부에서 설정된 N개와 동일한 개수의 저장 영역을 할당할 수 있다. 여기서, 메모리(220)는 반드시 하나의 물리적인 저장 모듈로 한정되는 것은 아니다.The memory 220 is a storage unit that stores sequentially received reflection signals. The memory 220 may be physically implemented as one storage module and internally allocate N storage areas. In other words, the memory 220 allocates a first storage area storing a first reflected signal corresponding to the first plane wave to an Nth storage area storing an Nth reflected signal corresponding to the Nth plane wave. For example, since the memory 220 sets the phase difference of 360 ° / N in the transmitter 132, the memory 220 may allocate the same number of storage areas as the N set in the transmitter. Here, the memory 220 is not necessarily limited to one physical storage module.
예컨대, N을 3으로 가정하는 경우, 송신부(132)는 트랜스듀서(110)의 평면파가 120˚의 위상차를 갖도록 0˚의 위상, 120˚의 위상, 240˚의 위상을 설정하게 되는 것이며, 메모리(220)는 제 1 저장 영역, 제 2 저장 영역(제 N - 1 메모리 영역) 및 제 3 저장 영역(제 N 저장 영역)을 포함한다. 여기서, 0˚의 위상을 갖는 제 1 평면파에 대응한 제 1 반사 신호는 제 1 저장 영역에 저장되고, 120˚의 위상을 갖는 제 2 평면파에 대응한 제 2 반사 신호는 제 2 저장 영역(제 N - 1 저장 영역)에 저장되고, 240˚의 위상을 갖는 제 3 평면파에 대응한 제 3 반사 신호는 제 3 저장 영역(제 N 저장 영역)에 저장된다. 이때, 제 1 저장 영역, 제 2 저장 영역(제 N - 1 저장 영역) 및 제 3 저장 영역(제 N 저장 영역)에 데이터(반사 신호)가 모두 저장된 후 다시 0˚의 위상을 갖는 제 1 평면파에 대응한 제 1 반사 신호가 수신되는 경우, 새롭게 수신되는 제 1 반사 신호를 제 1 저장 영역에 갱신하여 저장할 수 있다.For example, when N is assumed to be 3, the transmitter 132 sets the phase of 0 °, the phase of 120 °, and the phase of 240 ° so that the plane wave of the transducer 110 has a phase difference of 120 °. 220 includes a first storage area, a second storage area (N-first memory area), and a third storage area (N-th storage area). Here, the first reflected signal corresponding to the first plane wave having the phase of 0 ° is stored in the first storage area, and the second reflected signal corresponding to the second plane wave having the phase of 120 ° is stored in the second storage area (first And a third reflected signal corresponding to the third plane wave having a phase of 240 degrees, is stored in the third storage region (N-th storage region). At this time, the first plane wave having a phase of 0 ° again after all of the data (reflection signal) is stored in the first storage region, the second storage region (N-first storage region), and the third storage region (N-th storage region). When the first reflection signal corresponding to the second reflection signal is received, the newly received first reflection signal may be updated and stored in the first storage area.
위상 시프트부(230)는 위상 분석 결과에 근거하여 위상 시프트를 수행 또는 미수행한 보정 데이터를 생성한다. 위상 시프트부(230)는 위상 분석부(210)로부터 수신된 위상 분석 결과를 확인하고, 확인 결과, 위상 분석 결과에 위상 시프트 미수행 정보가 포함되는 경우, 위상 분석 결과에 근거하여 위상 시프트가 미수행된 보정 데이터를 생성한다. 또한, 확인 결과, 위상 분석 결과에 위상 시프트 정보가 포함된 경우, 위상 시프트부(230)는 위상 시프트 정보에 근거하여 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 보정 데이터를 생성한다. 위상 시프트부(230)는 메모리(220)에 저장된 반사 신호를 시프트할 때 기본적으로 우측 시프트를 수행한다.The phase shift unit 230 generates correction data of performing or not performing a phase shift based on the phase analysis result. The phase shift unit 230 confirms the phase analysis result received from the phase analysis unit 210, and when the check result and the phase analysis result include the phase shift non-execution information, the phase shift unit does not have a phase shift based on the phase analysis result. Generate the correction data performed. In addition, when the phase shift information is included in the phase analysis result as a result of the check, the phase shift unit 230 generates correction data shifted right by a phase corresponding to the unit sample time based on the phase shift information. The phase shift unit 230 basically performs a right shift when shifting the reflected signal stored in the memory 220.
위상 시프트부(230)가 위상 시프트를 수행하는 과정에 대해 설명하자면, 위상 시프트부(230)는 위상 분석부(210)로부터 수신된 위상 분석 결과가 제 1 반사 신호와 제 N 반사 신호에 포함된 위상 간의 위상차가 360˚ / N을 초과하여 발생하는 경우 1 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 보정 데이터를 생성한다. 위상 시프트부(230)는 위상 분석부(210)로부터 수신된 위상 분석 결과가 제 1 반사 신호와 제 N 반사 신호에 포함된 위상 간의 위상차가 360˚ / N을 미만으로 발생하는 경우 제 N 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 보정 데이터를 생성한다.Referring to the process of the phase shift unit 230 performs the phase shift, the phase shift unit 230 includes a phase analysis result received from the phase analyzer 210 included in the first reflection signal and the Nth reflection signal. When the phase difference between phases exceeds 360 ° / N, correction data is generated by shifting the right reflection signal by one phase corresponding to the unit sample time. The phase shift unit 230 is the N-th reflection signal when the phase analysis result received from the phase analyzer 210 generates a phase difference between a phase included in the first reflection signal and the N-th reflection signal to be less than 360 ° / N. Is generated by correcting the right shift by a phase corresponding to the unit sample time.
위상을 갖는 반사 신호를 기준으로 위상 시프트부(230)의 동작을 예를들어 설명하자면, 위상 시프트부(230)는 위상 분석부(210)의 위상 분석 결과가 0˚ 위상을 갖는 반사 신호와 360˚ / N 위상을 갖는 반사 신호의 위상차를 산출하고, 위상차가 360˚/ N를 초과하여 발생하는 경우 360˚ / N 위상을 갖는 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 시프트한 보정 데이터를 생성한다. 또한, 위상 시프트부(230)는 위상 분석부(210)의 위상 분석 결과가 0˚ 위상을 갖는 반사 신호와 360˚ / N 위상을 갖는 반사 신호의 위상차를 산출하고, 위상차가 360˚/ N 미만으로 발생하는 경우 0˚ 위상을 갖는 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 시프트한 보정 데이터를 생성한다.For example, the operation of the phase shift unit 230 based on the reflected signal having a phase will be described. For example, the phase shift unit 230 may be a reflection signal having a phase analysis result of the phase analyzer 210 having a 0 ° phase and 360 degrees. Calculate the phase difference of the reflected signal with ˚ / N phase, and generate the correction data by shifting the reflected signal with 360 ˚ / N phase by the phase corresponding to the unit sample time when the phase difference occurs more than 360˚ / N do. In addition, the phase shifter 230 calculates a phase difference between the reflection signal having the phase analysis unit 210 and the reflection signal having the 360 ° / N phase, and the phase difference is less than 360 ° / N. When generated as is, the correction data is generated by shifting a reflected signal having a 0 ° phase by a phase corresponding to a unit sample time.
합성부(240)는 보정 데이터 중 가장 최근 N 개의 데이터를 파이프-라인 방식으로 합성하여 하나의 프레임을 형성하도록 하는 N차 고조파 성분을 생성한다. 합성부(240)는 최초 프레임 형성 시 N 개의 평면파를 송신에 따른 보정 데이터를 합성하고, 이후 새롭게 송신되는 평면파마다 생성되는 보정 데이터를 수신 순서대로 합성하여 새로운 프레임이 형성되도록 한다.The combiner 240 generates an N-th harmonic component for synthesizing the most recent N pieces of correction data in a pipe-line manner to form one frame. The synthesizing unit 240 synthesizes correction data according to transmission of N plane waves at the time of initial frame formation, and then synthesizes correction data generated for each newly transmitted plane wave in order of reception so that a new frame is formed.
이하 합성부(240)의 합성 과정을 N이 3인 경우로 가정하여 설명한다. 송신부(132)는 N이 3인 경우, 트랜스듀서(110)의 평면파가 120˚의 위상차를 갖도록 0˚의 위상, 120˚의 위상, 240˚의 위상을 설정하게 되므로, 0˚의 위상을 갖는 제 1 평면파에 대응한 제 1 반사 신호를 'A1'라 가정하고, 120˚의 위상을 갖는 제 2 평면파에 대응한 제 2 반사 신호를 'B1'라 가정하고, 240˚의 위상을 갖는 제 3 평면파에 대응한 제 3 반사 신호를 'C1'라 가정한다. 이후, 합성부(240)는 제 1 반사 신호 내지 제 3 반사 신호에 포함된 위상차의 합(120˚ + 120˚ + 120˚)이 360˚를 이루도록 'A1 + B1 + C1' 순서로 반사 신호를 합성하여 제 1 프레임을 형성할 수 있다. 이후 0˚의 위상을 갖는 새로운 제 1 평면파에 대응하는 새로운 제 1 반사 신호를 'A2'이라 가정(A1과 A2는 각각 다른 시간에 수신한 동일한 위상을 갖는 데이터)하면, 합성부(240)는 위상차의 합(120˚ + 120˚ + 120˚)이 360˚를 이루도록 'B1 + C1 + A2'순서로 반사 신호를 합성하여 제 2 프레임을 형성할 수 있다. 또한 120˚의 위상을 갖는 새로운 제 2 평면파에 대응하는 새로운 제 2 반사 신호를 'B2'이라 가정하면, 합성부(240)는 위상차의 합(120˚ + 120˚ + 120˚)이 360˚를 이루도록 'C1 + A2 + B2' 순서로 반사 신호를 합성하여 제 3 프레임을 형성할 수 있다.Hereinafter, the synthesis process of the synthesis unit 240 will be described on the assumption that N is 3. When N is 3, the transmitter 132 sets a phase of 0 °, a phase of 120 °, and a phase of 240 ° such that the plane wave of the transducer 110 has a phase difference of 120 °, and thus has a phase of 0 °. Assuming that the first reflection signal corresponding to the first plane wave is 'A 1 ', the second reflection signal corresponding to the second plane wave having a phase of 120 ° is assumed to be 'B 1 ', and has a phase of 240 °. Assume that the third reflected signal corresponding to the third plane wave is 'C 1 '. Thereafter, the synthesis unit 240 performs the order 'A 1 + B 1 + C 1 ' such that the sum (120 ° + 120 ° + 120 °) of the phase difference included in the first to third reflected signals is 360 °. The reflected signal may be synthesized to form a first frame. Subsequently, assuming that a new first reflected signal corresponding to a new first plane wave having a phase of 0 ° is 'A 2 ' (A 1 and A 2 are data having the same phase received at different times, respectively), the synthesis unit ( 240 may form the second frame by synthesizing the reflected signals in the order of 'B 1 + C 1 + A 2 ' such that the sum of phase differences (120 ° + 120 ° + 120 °) is 360 °. In addition, assuming that a new second reflected signal corresponding to a new second plane wave having a phase of 120 ° is 'B 2 ', the synthesis unit 240 has a sum of phase difference (120 ° + 120 ° + 120 °) of 360 °. The third frame may be formed by synthesizing the reflected signals in the order of 'C 1 + A 2 + B 2 ' to form a.
도 3은 본 실시예에 따른 고조파 영상 형성 방법을 설명하기 위한 순서도이다.3 is a flowchart illustrating a harmonic image forming method according to the present embodiment.
초음파 의료 장치(100)는 트랜스듀서(110)에서 출력하는 평면파가 360˚/ N(N은 2이상의 자연수)의 위상차를 갖도록 위상을 설정한다(S310). 예컨대, 단계 S310에서 초음파 의료 장치(100)는 N이 2로 설정되는 경우 트랜스듀서(110)의 평면파가 180˚의 위상차를 갖도록 0˚의 위상과 180˚의 위상을 설정하는 것이며, N이 3으로 설정되는 경우 트랜스듀서(110)의 평면파가 120˚의 위상차를 갖도록 0˚의 위상, 120˚의 위상, 240˚의 위상을 설정하는 것이다. 초음파 의료 장치(100)는 트랜스듀서(110)를 이용하여 대상체로 360˚/ N의 위상차를 갖는 평면파를 출력한다(S320).The ultrasound medical apparatus 100 sets the phase so that the plane wave output from the transducer 110 has a phase difference of 360 ° / N (N is a natural number of 2 or more) (S310). For example, in step S310, when N is set to 2, the ultrasound medical apparatus 100 sets the phase of 0 ° and the phase of 180 ° so that the plane wave of the transducer 110 has a phase difference of 180 °, and N is 3. When set to 0, the phase of 0 °, the phase of 120 °, and the phase of 240 ° are set so that the plane wave of the transducer 110 has a phase difference of 120 °. The ultrasound medical apparatus 100 outputs a plane wave having a phase difference of 360 ° / N to the object using the transducer 110 (S320).
초음파 의료 장치(100)는 트랜스듀서(110)를 이용하여 대상체로부터 평면파에 대응하는 반사 신호를 수신하여 N개의 메모리(220)에 저장한다(S330). S330에서 메모리(220)는 순차적으로 수신되는 반사 신호를 각각 저장하는 N개의 메모리(220) 내에 순차 저장한다. 예컨대, 메모리(220)는 최초 평면파에 대응하는 제 1 반사 신호를 저장하는 제 1 저장 영역 내지 N 번째 평면파에 대응하는 제 N 반사 신호를 저장하는 제 N 저장 영역을 포함한다. 예컨대, N을 3으로 가정하는 경우, 송신부(132)는 트랜스듀서(110)의 평면파가 120˚의 위상차를 갖도록 0˚의 위상, 120˚의 위상, 240˚의 위상을 설정하게 되는 것이며, 메모리(220)는 제 1 저장 영역, 제 2 저장 영역(제 N - 1 저장 영역) 및 제 3 저장 영역(제 N 저장 영역)을 포함한다. 여기서, 0˚의 위상을 갖는 제 1 평면파에 대응한 제 1 반사 신호는 제 1 저장 영역에 저장되고, 120˚의 위상을 갖는 제 2 평면파에 대응한 제 2 반사 신호는 제 2 저장 영역(제 N - 1 저장 영역)에 저장되고, 240˚의 위상을 갖는 제 3 평면파에 대응한 제 3 반사 신호는 제 3 저장 영역(제 N 저장 영역)에 저장된다. The ultrasound medical apparatus 100 receives the reflected signals corresponding to the plane waves from the object by using the transducer 110 and stores them in the N memories 220 (S330). In operation S330, the memory 220 sequentially stores the N memory 220 sequentially storing the sequentially received reflection signals. For example, the memory 220 may include a first storage area storing a first reflected signal corresponding to the first plane wave and an Nth storage area storing an Nth reflected signal corresponding to the Nth plane wave. For example, when N is assumed to be 3, the transmitter 132 sets the phase of 0 °, the phase of 120 °, and the phase of 240 ° so that the plane wave of the transducer 110 has a phase difference of 120 °. 220 includes a first storage area, a second storage area (N-first storage area), and a third storage area (N-th storage area). Here, the first reflected signal corresponding to the first plane wave having the phase of 0 ° is stored in the first storage area, and the second reflected signal corresponding to the second plane wave having the phase of 120 ° is stored in the second storage area (first And a third reflected signal corresponding to the third plane wave having a phase of 240 degrees, is stored in the third storage region (N-th storage region).
초음파 의료 장치(100)는 반사 신호에 포함된 위상 성분을 분석한 위상 분석 결과를 생성하고, 위상 분석 결과에 근거하여 위상 시프트가 필요한 경우 위상 시프트가 수행된 보정 데이터를 생성한다(S340). 단계 S340에서 초음파 의료 장치(100)는 메모리(220)에 저장된 반사 신호 각각에 포함된 위상 간의 위상차가 360˚/ N 만큼 차이가 발생하는지의 여부를 확인한다. 확인 결과 360˚/ N만큼 차이가 발생하는 경우 초음파 의료 장치(100)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일한 위상차가 발생한 것으로 인식하여 메모리(220)에 저장된 반사 신호에 위상 시프트가 미수행되도록 하는 위상 분석 결과를 생성하며, 생성된 위상 분석 결과에 근거하여 위상 시프트가 미수행된 보정 데이터를 생성한다. 한편, 확인 결과 360˚/ N만큼 차이가 미발생하는 경우 초음파 의료 장치(100)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 메모리(220)에 저장된 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 위상 분석 결과를 생성하며, 생성된 위상 분석 결과에 근거하여 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 보정 데이터를 생성한다.The ultrasound medical apparatus 100 generates a phase analysis result of analyzing a phase component included in the reflected signal, and generates correction data in which phase shift is performed when phase shift is necessary based on the phase analysis result (S340). In operation S340, the ultrasound medical apparatus 100 checks whether a phase difference between phases included in each of the reflected signals stored in the memory 220 occurs by 360 ° / N. As a result of the check, if the difference occurs by 360 ° / N, the ultrasound medical apparatus 100 recognizes that a phase difference equal to the phase difference of 360 ° / N set by the transmitter 132 occurs and phases the reflected signal stored in the memory 220. A phase analysis result is generated to cause the shift to be not performed, and correction data without the phase shift is generated based on the generated phase analysis result. On the other hand, if the difference does not occur by 360 ° / N as a result of the check, the ultrasound medical apparatus 100 recognizes that the phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 occurred in the memory 220 A phase analysis result for right shifting the stored reflection signal by a phase corresponding to the unit sample time is generated, and based on the generated phase analysis result, right-shifted correction data is generated by the phase corresponding to the unit sample time.
초음파 의료 장치(100)는 순차적으로 수신되는 보정 데이터(또는 반사 신호) 중 가장 최근 N 개의 신호만을 파이프-라인 방식으로 합성하여 N차 고조파 성분을 생성하고, N차 고조파 성분을 디스플레이하기 위한 데이터로 처리한다(S350).The ultrasound medical apparatus 100 generates N-th harmonic components by synthesizing only the most recent N signals sequentially among received correction data (or reflected signals) in a pipe-line manner, and displays N-th harmonic components as data. Process (S350).
도 3에서는 단계 S310 내지 단계 S350을 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 예컨대, 도 3에 기재된 단계를 변경하여 실행하거나 하나 이상의 단계를 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 3은 시계열적인 순서로 한정되는 것은 아니다.In FIG. 3, steps S310 to S350 are described as being sequentially executed, but are not necessarily limited thereto. For example, since the steps described in FIG. 3 may be applied by changing or executing one or more steps in parallel, FIG. 3 is not limited to the time series order.
전술한 바와 같이 도 3에 기재된 본 실시예에 따른 고조파 영상 형성 방법은 프로그램으로 구현되고 컴퓨터로 읽을 수 있는 기록매체에 기록될 수 있다. 본 실시예에 따른 고조파 영상 형성 방법을 구현하기 위한 프로그램이 기록되고 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다.As described above, the harmonic image forming method according to the present embodiment described in FIG. 3 may be implemented in a program and recorded on a computer-readable recording medium. The computer-readable recording medium having recorded thereon a program for implementing the harmonic image forming method according to the present embodiment includes all kinds of recording devices storing data that can be read by a computer system.
도 4는 본 실시예에 따른 위상 보정 방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a phase correction method according to the present embodiment.
이하, 도 4에서는 설명의 편의상 N이 3이상의 자연수인 것으로 가정하여 초음파 의료 장치(100)가 위상을 보정하는 방법에 대해 설명하도록 한다.In FIG. 4, for convenience of explanation, it is assumed that N is a natural number of 3 or more, and the ultrasound medical apparatus 100 will be described with reference to a method of correcting phase.
초음파 의료 장치(100)는 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 2 저장 영역에 저장된 2 반사 신호에 포함된 위상 간의 위상차를 산출한다(S410). 초음파 의료 장치(100)는 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 2 저장 영역에 저장된 2 반사 신호에 포함된 위상 간의 위상차가 360˚/ N과 동일한 지의 여부를 확인한다(S412). 단계 S412의 확인 결과, 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 2 저장 영역에 저장된 2 반사 신호에 포함된 위상 간의 위상차가 360˚/ N과 동일한 경우, 초음파 의료 장치(100)는 제 1 반사 신호와 제 2 반사 신호에 위상 시프트가 미수행되도록 한 후 메모리(220)의 제 N-1 저장 영역에 저장된 제 2 반사 신호와 메모리(220)의 제 2 저장 영역에 저장된 2 반사 신호에 포함된 위상 간의 위상차를 산출한다(S414).The ultrasound medical apparatus 100 calculates a phase difference between the first reflection signal stored in the first storage area of the memory 220 and the phase included in the second reflection signal stored in the second storage area of the memory 220 (S410). The ultrasound medical apparatus 100 may have a phase difference between the first reflection signal stored in the first storage area of the memory 220 and the phase included in the second reflection signal stored in the second storage area of the memory 220 equal to 360 ° / N. Check whether or not (S412). As a result of checking in step S412, the phase difference between the first reflection signal stored in the first storage region of the memory 220 and the phase included in the second reflection signal stored in the second storage region of the memory 220 is equal to 360 ° / N. After performing the phase shift on the first reflected signal and the second reflected signal, the ultrasound medical apparatus 100 performs the second reflected signal stored in the N-1 storage area of the memory 220 and the second reflected signal of the memory 220. The phase difference between the phases included in the two reflected signals stored in the two storage areas is calculated (S414).
초음파 의료 장치(100)는 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N과 동일한 지의 여부를 확인한다(S416). 단계 S416의 확인 결과, 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N과 동일한 경우, 초음파 의료 장치(100)는 제 N-1 반사 신호와 N 반사 신호에 위상 시프트가 미수행되도록 하는 위상 분석 결과를 생성하고 위상 보정이 완료된 것으로 간주한다(S418).The ultrasound medical apparatus 100 has a phase difference of 360 ° between an N-1 reflected signal stored in the N-1th storage area of the memory 220 and a phase included in the N reflected signal stored in the Nth storage area of the memory 220. Check whether or not equal to / N (S416). As a result of confirming in step S416, the phase difference between the N-1th reflected signal stored in the N-1st storage area of the memory 220 and the phase included in the N reflected signal stored in the Nth storage area of the memory 220 is 360 ° / If it is equal to N, the ultrasound medical apparatus 100 generates a phase analysis result for performing a phase shift on the N-th reflected signal and the N-reflected signal and considers that phase correction is completed (S418).
단계 S412의 확인 결과, 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 N-1 저장 영역에 저장된 N-1 반사 신호에 포함된 위상 간의 위상차가 360˚/ N과 미동일한 경우, 초음파 의료 장치(100)는 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 N-1 저장 영역에 저장된 N-1 반사 신호에 포함된 위상 간의 위상차가 360˚/ N를 초과하여 발생하는지의 여부를 확인한다(S420). As a result of checking in step S412, the phase difference between the first reflection signal stored in the first storage region of the memory 220 and the phase included in the N-1 reflection signal stored in the N-1 storage region of the memory 220 is 360 ° / If not equal to N, the ultrasound medical apparatus 100 includes the first reflection signal stored in the first storage area of the memory 220 and the N-1 reflection signal stored in the N-1 storage area of the memory 220. It is checked whether the phase difference between the phases exceeds 360 ° / N (S420).
단계 S420의 확인 결과, 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 2 저장 영역에 저장된 2 반사 신호에 포함된 위상 간의 위상차가 360˚/ N 미만으로 발생하는 경우, 초음파 의료 장치(100)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 제 2 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 한다(S422). 이후 단계 S410으로 돌아간다. 한편, 단계 S420의 확인 결과, 메모리(220)의 제 1 저장 영역에 저장된 제 1 반사 신호와 메모리(220)의 제 2 저장 영역에 저장된 2 반사 신호에 포함된 위상 간의 위상차가 360˚/ N를 초과하여 발생하는 경우, 초음파 의료 장치(100)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 제 1 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 한다(S424). 이후 단계 S410으로 돌아간다.As a result of checking in S420, a phase difference between a phase included in the first reflection signal stored in the first storage area of the memory 220 and the second reflection signal stored in the second storage area of the memory 220 is less than 360 ° / N. In this case, the ultrasound medical apparatus 100 recognizes that a phase difference that is not equal to the phase difference of 360 ° / N set by the transmitter 132 is generated and causes the second reflected signal to be shifted right by a phase corresponding to the unit sample time. (S422). The process then returns to step S410. On the other hand, as a result of confirming in step S420, the phase difference between the first reflection signal stored in the first storage region of the memory 220 and the phase included in the second reflection signal stored in the second storage region of the memory 220 is 360 ° / N In the event of excessive occurrence, the ultrasound medical apparatus 100 recognizes that a phase difference that is not equal to the phase difference of 360 ° / N set by the transmitter 132 is generated, and the first reflected signal is right by a phase corresponding to the unit sample time. To shift (S424). The process then returns to step S410.
단계 S416의 확인 결과, 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N과 미동일한 경우, 초음파 의료 장치(100)는 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N를 초과하여 발생하는지의 여부를 확인한다(S430).As a result of confirming in step S416, the phase difference between the N-1th reflected signal stored in the N-1st storage area of the memory 220 and the phase included in the N reflected signal stored in the Nth storage area of the memory 220 is 360 ° / If not equal to N, the ultrasound medical apparatus 100 includes the N-1 reflected signal stored in the N-1th storage area of the memory 220 and the N reflected signal stored in the Nth storage area of the memory 220. It is checked whether or not the phase difference between the phases exceeds 360 ° / N (S430).
단계 S430의 확인 결과, 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N 미만으로 발생하는 경우, 초음파 의료 장치(100)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 제 N 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 한다(S432). 이후 단계 S414로 돌아간다. 한편, 단계 S430의 확인 결과, 메모리(220)의 제 N-1 저장 영역에 저장된 제 N-1 반사 신호와 메모리(220)의 제 N 저장 영역에 저장된 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N를 초과하여 발생하는 경우, 초음파 의료 장치(100)는 송신부(132)에서 설정한 360˚/ N의 위상차와 동일하지 않은 위상차가 발생한 것으로 인식하여 제 N-1 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 한다(S434). 이후 단계 S414로 돌아간다.As a result of checking in step S430, the phase difference between the N-1 th reflection signal stored in the N-1 th storage area of the memory 220 and the phase included in the N reflection signal stored in the N th storage area of the memory 220 is 360 ° / If less than N, the ultrasound medical apparatus 100 recognizes that a phase difference that is not equal to the phase difference of 360 ° / N set by the transmitter 132 is generated, and the N-th reflected signal is converted by the phase corresponding to the unit sample time. The right shift is made (S432). The process then returns to step S414. On the other hand, as a result of confirming in step S430, the phase difference between the N-1 reflected signal stored in the N-1th storage area of the memory 220 and the phase included in the N reflected signal stored in the Nth storage area of the memory 220 is 360 In the case of more than ˚ / N, the ultrasound medical apparatus 100 recognizes that a phase difference that is not the same as the phase difference of 360 ° / N set by the transmitter 132 is generated, and the N-1 reflected signal is converted into a unit sample time. The right shift is performed by a phase corresponding to S S434. The process then returns to step S414.
도 4에서는 단계 S410 내지 단계 S434을 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 예컨대, 도 4에 기재된 단계를 변경하여 실행하거나 하나 이상의 단계를 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 4는 시계열적인 순서로 한정되는 것은 아니다.In FIG. 4, steps S410 to S434 are sequentially executed, but the present disclosure is not limited thereto. For example, FIG. 4 is not limited to time-series order as it would be applicable to changing the steps described in FIG. 4 or executing one or more steps in parallel.
전술한 바와 같이 도 4에 기재된 본 실시예에 따른 위상 보정 방법은 프로그램으로 구현되고 컴퓨터로 읽을 수 있는 기록매체에 기록될 수 있다. 본 실시예에 따른 위상 보정 방법을 구현하기 위한 프로그램이 기록되고 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다.As described above, the phase correction method according to the present embodiment described in FIG. 4 may be implemented in a program and recorded on a computer-readable recording medium. The computer-readable recording medium having recorded thereon a program for implementing the phase correction method according to the present embodiment includes all kinds of recording devices that store data that can be read by a computer system.
도 5는 본 실시예에 따른 N차 고조파 획득 방법을 설명하기 위한 도면이다.5 is a diagram for describing a method for obtaining N-th harmonic according to the present embodiment.
도 5에서는 설명의 편의상 N이 3인 경우로 가정하여 설명한다. 초음파 의료 장치(100)의 송신부(132)는 N이 3이므로, 트랜스듀서(110)의 평면파가 120˚의 위상차를 갖도록 0˚의 위상, 120˚의 위상, 240˚의 위상을 설정하게 된다. 따라서, 초음파 의료 장치(100)의 트랜스듀서(110)는 0˚의 위상을 갖는 제 1 평면파를 대상체로 송신하고 제 1 평면파에 대응하는 제 1 반사 신호를 수신한다. 여기서, 제 1 반사 신호를 'A1'이라 칭하며, 초음파 의료 장치(100)는 'A1'을 메모리(220)의 제 1 저장 영역에 저장한다. In FIG. 5, it is assumed that N is 3 for convenience of description. Since N is 3 in the transmitter 132 of the ultrasound medical apparatus 100, the phase of 0 °, the phase of 120 °, and the phase of 240 ° are set such that the plane wave of the transducer 110 has a phase difference of 120 °. Accordingly, the transducer 110 of the ultrasound medical apparatus 100 transmits a first plane wave having a phase of 0 ° to the object and receives a first reflected signal corresponding to the first plane wave. Here, the first reflected signal is referred to as 'A 1 ', and the ultrasound medical apparatus 100 stores 'A 1 ' in the first storage area of the memory 220.
또한, 초음파 의료 장치(100)의 트랜스듀서(110)는 120˚의 위상을 갖는 제 2 평면파를 대상체로 송신하고, 제 2 평면파에 대응하는 제 2 반사 신호를 수신한다. 여기서, 제 2 반사 신호를 'B1'이라 칭하며, 초음파 의료 장치(100)는 'B1'을 메모리(220)의 제 2(N-1) 저장 영역에 저장한다. 또한, 초음파 의료 장치(100)의 트랜스듀서(110)는 240˚의 위상을 갖는 제 3 평면파를 대상체로 송신하고, 제 3 평면파에 대응하는 제 3 반사 신호를 수신한다. 여기서, 제 3 반사 신호를 'C1'이라 칭하며, 초음파 의료 장치(100)는 'C1'을 제 3(N) 저장 영역에 저장한다. 초음파 의료 장치(100)의 합성부(240)는 반사 신호 중 가장 최근 3 개(N 개)의 신호를 'A1 + B1 + C1' 순서로 합성하여 제 1 프레임을 형성한다.In addition, the transducer 110 of the ultrasound medical apparatus 100 transmits a second plane wave having a phase of 120 ° to the object, and receives a second reflected signal corresponding to the second plane wave. Here, the second reflected signal is referred to as 'B 1 ', and the ultrasound medical apparatus 100 stores 'B 1 ' in the second (N-1) storage area of the memory 220. In addition, the transducer 110 of the ultrasound medical apparatus 100 transmits a third plane wave having a phase of 240 ° to the object, and receives a third reflected signal corresponding to the third plane wave. Here, the third reflected signal is referred to as 'C 1 ', and the ultrasound medical apparatus 100 stores 'C 1 ' in the third (N) storage area. The synthesizer 240 of the ultrasound medical apparatus 100 combines the most recent three (N) signals among the reflected signals in the order of 'A 1 + B 1 + C 1 ' to form a first frame.
이후 초음파 의료 장치(100)의 트랜스듀서(110)는 0˚의 위상을 갖는 새로운 제 1 평면파를 대상체로 송신하고 새로운 제 1 평면파에 대응하는 제 1 반사 신호를 수신한다. 여기서, 새로운 제 1 반사 신호를 'A2'이라 칭하며, 'A2'을 메모리(220)의 제 1 저장 영역에 저장한 후 초음파 의료 장치(100)는 수신되는 반사 신호를 기존에 수신한 반사 신호와 결합하는 형태로 최근 3 개(N 개)의 신호를 'B1 + C1 + A2' 순서로 합성하여 제 2 프레임을 형성한다.Thereafter, the transducer 110 of the ultrasound medical apparatus 100 transmits a new first plane wave having a phase of 0 ° to the object and receives a first reflected signal corresponding to the new first plane wave. Here, the new first reflected signal is referred to as 'A 2 ', and after storing 'A 2 ' in the first storage area of the memory 220, the ultrasound medical apparatus 100 reflects the received reflected signal. A second frame is formed by synthesizing the last three (N) signals in the order of 'B 1 + C 1 + A 2 ' in a form of combining with a signal.
이후 초음파 의료 장치(100)의 트랜스듀서(110)는 120˚의 위상을 갖는 새로운 제 2 평면파를 대상체로 송신하고 새로운 제 2 평면파에 대응하는 제 2 반사 신호를 수신한다. 여기서, 새로운 제 2 반사 신호를 'B2'라 칭하며, 'B2'를 메모리(220)의 제 2 저장 영역에 저장한 후 초음파 의료 장치(100)는 수신되는 반사 신호를 기존에 수신한 반사 신호와 결합하는 형태로 최근 3 개(N 개)의 신호를 'C1 + A2 + B2' 순서로 합성하여 제 3 프레임을 형성할 수 있다.Thereafter, the transducer 110 of the ultrasound medical apparatus 100 transmits a new second plane wave having a phase of 120 ° to the object and receives a second reflected signal corresponding to the new second plane wave. Here, the new second reflected signal is referred to as 'B 2 ', and after storing 'B 2 ' in the second storage area of the memory 220, the ultrasound medical apparatus 100 reflects the received reflected signal. A third frame may be formed by synthesizing the last three (N) signals in the order of 'C 1 + A 2 + B 2 ' in a form of combining with a signal.
한편, 초음파 의료 장치(100)의 합성부(240)는 제 1 반사 신호 내지 제 3 반사 신호에 포함된 위상차의 합(120˚ + 120˚ + 120˚)이 360˚를 이루도록 'A1 + B1 + C1' 순서로 반사 신호를 합성하여 제 1 프레임을 형성하고, 'B1 + C1 + A2' 순서로 반사 신호를 합성하여 제 2 프레임을 형성하고, 'C1 + A2 + B2' 순서로 반사 신호를 합성하여 제 3 프레임을 형성할 수 있다.On the other hand, the synthesis unit 240 of the ultrasound medical apparatus 100 is' A 1 + B so that the sum (120˚ + 120˚ + 120˚) of the phase difference included in the first reflected signal to the third reflected signal is 360 ° Synthesizing the reflected signal in the order 1 + C 1 'to form a first frame, synthesizing the reflected signal in the order' B 1 + C 1 + A 2 'to form a second frame, and' C 1 + A 2 + The reflected signal may be synthesized in the order of B 2 ′ to form a third frame.
일반적인 펄스 인버전(Pulse Inversion) 방식의 경우 'A1 + B1 + C1' 순서로 반사 신호를 합성하여 제 1 프레임을 형성한 후 다시 새로운 반사 신호인 A2, B2, C2가 수신될 때까지 대기한 후 A2, B2, C2의 반사 신호가 모두 수신되면 'A2 + B2 + C2' 순서로 반사 신호를 합성하여 제 2 프레임을 형성하는 방식이므로, 프레임 레이트가 떨어지게 된다. 다만, 본 실시예에 따른 초음파 의료 장치(100)가 최초 프레임 형성 시에만 A1, B1, C1의 반사 신호가 수신될 때까지 대기한 후 A1, B1, C1의 반사 신호가 모두 수신되면 'A1 + B1 + C1' 순서로 반사 신호를 합성하여 제 1 프레임을 형성한다. 예컨대, 초음파 의료 장치(100)는 새로운 평면파를 송신할 때마다 수신되는 반사 신호 예컨대 A2를 수신하는 경우 기존에 수신한 반사 신호 B1, C1와 결합하는 형태로 B1 + C1 + A2를 가장 최근의 N 개의 신호만을 합성하여 N차 고조파 성분을 생성할 수 있다.In the general pulse inversion method, the reflection signals are synthesized in the order of 'A 1 + B 1 + C 1 ' to form a first frame, and then new reflection signals A 2 , B 2 and C 2 are received. After waiting until the reflection signal of A 2 , B 2 , C 2 is received, the second frame is formed by synthesizing the reflection signals in the order of 'A 2 + B 2 + C 2 '. Will fall. However, the ultrasound medical apparatus 100 according to the present embodiment waits until the reflection signals of A 1 , B 1 , and C 1 are received only when the first frame is formed, and then the reflection signals of A 1 , B 1 , and C 1 are received. When all are received, the reflection signal is synthesized in the order of 'A 1 + B 1 + C 1 ' to form a first frame. For example, when the ultrasound medical apparatus 100 receives a reflected signal, eg, A 2 , which is received every time a new plane wave is transmitted, the ultrasound medical apparatus 100 combines with the previously received reflection signals B 1 and C 1 to B 1 + C 1 + A. The Nth harmonic component can be generated by synthesizing 2 with the most recent N signals.
본 실시예에 따른 초음파 의료 장치(100)는 트랜스듀서(110)로부터 360˚ / N의 위상을 가지는 평면파를 일정 간격으로 피검사 대상 또는 신체내부(대상체)로 송신하고, 피검사 대상 또는 신체내부(대상체)로부터 평면파에 대응하는 반사 신호를 매 PRF(Pulse Repetition Frequency)마다 일정 간격으로 파이프-라인 방식으로 수신하여 메모리(220)에 저장한다. 도 5에서 예를들어 3차 고조파를 획득하기 위해서 초음파 의료 장치(100)에 의해 세 번째 획득한 240˚의 위상을 갖는 반사 신호(제 3 반사 신호)는 첫 번째로 획득한 0˚ 반사 신호(A)와 두 번째로 획득한 120˚ 반사 신호(B)와 합쳐(A1+B1+C1)져서 첫 번째 3차 고조파 성분이 생성된다. 그리고 두 번째 3차 고조파 성분 생성 과정에서는 실시간으로 메모리(220)에 기저장된 A1이 버려지고 B1와 C1가 남는다. 초음파 의료 장치(100)는 다음 스캔라인에서 새로운 A2를 획득시에 기존 B1과 C1 데이터와 실시간으로 구해진 A2가 더해지는 과정(B1+C1+A2)을 거쳐 매 PRF마다 한 개의 프레임을 얻을 수 있다. 또한, 초음파 의료 장치(100)는 수신된 반사 신호(RF 데이터)의 위상을 분석할 수 있는 위상 분석부(210)를 구비하며, 위상 분석부(210)의 위상 분석을 이용하여 위상차가 360˚ / N만큼 발생하지 않는 경우, 분석된 고조파가 가장 잘 나올 수 있도록 각 파형의 위상을 세밀하게 제어할 수 있다.The ultrasound medical apparatus 100 according to the present exemplary embodiment transmits a plane wave having a phase of 360 ° / N from the transducer 110 to an object to be inspected or inside the body (object) at regular intervals, The reflection signal corresponding to the plane wave from the (object) is received in a pipe-line manner at a predetermined interval every PRF (Pulse Repetition Frequency) and stored in the memory 220. In FIG. 5, for example, in order to acquire third harmonics, a reflection signal (third reflection signal) having a third phase of 240 ° obtained by the ultrasound medical apparatus 100 may be a first 0 ° reflection signal ( Combined with A) and the second 120 ° reflected signal (B) (A 1 + B 1 + C 1 ), the first third harmonic component is produced. In the second third harmonic generation process, A 1 previously stored in the memory 220 is discarded in real time, and B 1 and C 1 remain. The ultrasound medical apparatus 100 undergoes a process of adding existing B 1 and C 1 data and A 2 obtained in real time (B 1 + C 1 + A 2 ) when acquiring a new A 2 from the next scan line. You can get four frames. In addition, the ultrasound medical apparatus 100 includes a phase analyzer 210 capable of analyzing the phase of the received reflected signal (RF data), and has a phase difference of 360 ° using the phase analysis of the phase analyzer 210. If it does not occur as much as / N, you can finely control the phase of each waveform so that the analyzed harmonics come out best.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which the present embodiment belongs may make various modifications and changes without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical idea of the present embodiment but to describe the present invention, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of the present embodiment should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present embodiment.
(부호의 설명)(Explanation of the sign)
100: 초음파 의료 장치100: ultrasound medical device
110: 트랜스듀서 122: 송수신 스위치110: transducer 122: transmission and reception switch
132: 송신부 134: 수신부132: transmitter 134: receiver
140: 아날로그 디지털 컨버터 150: 빔포머140: analog to digital converter 150: beamformer
160: 고조파 획득부 170: 신호 처리부160: harmonic acquisition unit 170: signal processing unit
180: 주사 변환부 210: 위상 분석부180: scan conversion unit 210: phase analysis unit
220: 메모리 230: 위상 시프트부220: memory 230: phase shift unit
240: 합성부240: synthesis section
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 09월 17일 한국에 출원한 특허출원번호 제 10-2013-0112050 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under Patent Application No. 10-2013-0112050, filed with Korea on September 17, 2013, pursuant to Article 119 (a) (35 USC § 119 (a)). All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (12)

  1. 대상체로 평면파(Plane Wave)를 송신하고 상기 대상체로부터 상기 평면파에 대응하는 반사 신호를 수신하는 트랜스듀서(Transducer);A transducer for transmitting a plane wave to an object and receiving a reflected signal corresponding to the plane wave from the object;
    상기 평면파가 360˚/ N(N은 2이상의 자연수)의 위상차(Phase Difference)을 갖도록 하며, 상기 평면파가 순차적으로 상기 대상체로 송신되도록 하는 송신부;A transmitter for causing the plane wave to have a phase difference of 360 ° / N (N is a natural number of 2 or more), and the plane wave to be sequentially transmitted to the object;
    순차적으로 수신되는 상기 반사 신호 중 가장 최근 N 개의 신호만을 파이프-라인(PipeLine) 방식으로 합성하여 N차 고조파 성분(Harmonic Component)을 생성하는 고조파 획득부; 및A harmonic acquiring unit for generating an N-th harmonic component by synthesizing only the most recent N signals among the received reflection signals in a pipe-line manner; And
    상기 N차 고조파 성분을 디스플레이(Display)하기 위한 데이터로 처리하는 신호 처리부Signal processing unit for processing the N-th harmonic components as data for display
    를 포함하는 것을 특징으로 하는 초음파 의료 장치.Ultrasound medical device comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 고조파 획득부는,The harmonic acquisition unit,
    순차적으로 수신되는 상기 반사 신호를 각각 저장하는 N개의 영역을 할당하는 메모리;A memory for allocating N regions each of which sequentially stores the reflected signals;
    상기 반사 신호에 포함된 위상 성분을 분석한 위상 분석 결과를 생성하는 위상 분석부;A phase analyzer configured to generate a phase analysis result of analyzing phase components included in the reflected signal;
    상기 위상 분석 결과에 근거하여 위상 시프트(Phase Shift)를 수행 또는 미수행한 보정 데이터를 생성하는 위상 시프트부; 및A phase shift unit configured to generate correction data of performing or not performing a phase shift based on the phase analysis result; And
    상기 보정 데이터 중 가장 최근 N 개의 데이터를 파이프-라인 방식으로 합성하여 하나의 프레임을 형성하도록 하는 N차 고조파 성분을 생성하는 합성부Synthesis unit for generating the N-th harmonic component to form a frame by synthesizing the most recent N of the correction data in a pipe-line method
    를 포함하는 것을 특징으로 하는 초음파 의료 장치.Ultrasound medical device comprising a.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 합성부는,The synthesis unit,
    최초 프레임 형성 시 N 개의 상기 평면파를 송신에 따른 상기 보정 데이터를 합성하고, 이후 새롭게 송신되는 상기 평면파마다 생성되는 상기 보정 데이터를 수신 순서대로 합성하여 새로운 프레임이 형성되도록 하는 것을 특징으로 하는 초음파 의료 장치.Ultrasonic medical device characterized in that to synthesize the correction data according to the transmission of the N plane waves when the first frame is formed, and then to synthesize the correction data generated for each newly transmitted plane wave in order of reception to form a new frame .
  4. 제 2 항에 있어서,The method of claim 2,
    상기 위상 분석부는 상기 반사 신호 각각에 포함된 위상 간의 위상차가 360˚/ N 만큼 차이가 발생하는지의 여부를 확인하고, 확인 결과 360˚/ N만큼 차이가 발생하는 경우 해당 반사 신호에 위상 시프트가 미수행되도록 하는 상기 위상 분석 결과를 생성하며, The phase analyzer determines whether a phase difference between phases included in each of the reflected signals occurs by 360 ° / N, and if the difference occurs by 360 ° / N as a result of the checking, a phase shift is not applied to the reflected signal. Generate the phase analysis result to be performed,
    상기 위상 시프트부는 상기 위상 분석 결과에 근거하여 상기 위상 시프트가 미수행된 상기 보정 데이터를 생성하는 것을 특징으로 하는 초음파 의료 장치.And the phase shift unit generates the correction data without performing the phase shift based on the phase analysis result.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 위상 분석부는 상기 반사 신호 각각에 포함된 위상 간의 위상차가 360˚/ N 만큼 차이가 발생하는지의 여부를 확인하고, 확인 결과 360˚/ N만큼의 차이가 미발생하는 경우 해당 반사 신호를 단위 샘플(Sample) 시간에 대응되는 위상만큼 우측 시프트(Right Shift)되도록 하는 상기 위상 분석 결과를 생성하며, The phase analyzer determines whether a phase difference between phases included in each of the reflected signals is different by 360 ° / N, and if the difference is not generated by 360 ° / N as a result of the checking, unit samples the reflected signal. (Sample) to generate the phase analysis result to the right (Right Shift) by a phase corresponding to the time,
    상기 위상 시프트부는 상기 위상 분석 결과에 근거하여 상기 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 상기 보정 데이터를 생성하는 것을 특징으로 하는 초음파 의료 장치.And the phase shift unit generates the correction data shifted right by a phase corresponding to the unit sample time based on the phase analysis result.
  6. 제 2 항에 있어서,The method of claim 2,
    상기 메모리는,The memory,
    최초 평면파에 대응하는 제 1 반사 신호를 저장하는 제 1 저장 영역; 및A first storage region storing a first reflected signal corresponding to the first plane wave; And
    제 N 평면파에 대응하는 제 N 반사 신호를 저장하는 제 N 저장 영역Nth storage area for storing the Nth reflected signal corresponding to the Nth plane wave
    을 포함하는 것을 특징으로 하는 초음파 의료 장치.Ultrasound medical device comprising a.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 위상 분석부는 상기 제 1 반사 신호와 상기 제 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N 만큼 차이가 발생하는 경우, 상기 제 1 반사 신호와 상기 제 N 반사 신호에 위상 시프트가 미수행되도록 하는 상기 위상 분석 결과를 생성하며, When the phase difference between the phase included in the first reflected signal and the Nth reflected signal is different by 360 ° / N, the phase analyzer may not perform a phase shift on the first reflected signal and the Nth reflected signal. Generate the phase analysis result,
    상기 위상 시프트부는 상기 위상 분석 결과에 근거하여 상기 위상 시프트가 미수행된 상기 보정 데이터를 생성하는 것을 특징으로 하는 초음파 의료 장치.And the phase shift unit generates the correction data without performing the phase shift based on the phase analysis result.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 위상 분석부는 상기 제 1 반사 신호와 상기 제 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N를 초과하여 발생하는 경우, 상기 제 1 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 상기 위상 분석 결과를 생성하며, When the phase difference between the first reflection signal and the phase included in the N-th reflection signal is greater than 360 ° / N, the phase analyzer may shift the first reflection signal right by a phase corresponding to a unit sample time. Generating the phase analysis result,
    상기 위상 시프트부는 상기 위상 분석 결과에 근거하여 상기 제 1 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 상기 보정 데이터를 생성하는 것을 특징으로 하는 초음파 의료 장치.And the phase shift unit generates the correction data by right shifting the first reflection signal by a phase corresponding to a unit sample time based on the phase analysis result.
  9. 제 6 항에 있어서,The method of claim 6,
    상기 위상 분석부는 상기 제 1 반사 신호와 상기 제 N 반사 신호에 포함된 위상 간의 위상차가 360˚/ N 미만으로 발생하는 경우, 상기 제 N 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 상기 위상 분석 결과를 생성하며, When the phase difference between the first reflection signal and the phase included in the N-th reflection signal is less than 360 ° / N, the phase analyzer causes the N-th reflection signal to be shifted right by a phase corresponding to a unit sample time. Generating the phase analysis result,
    상기 위상 시프트부는 상기 위상 분석 결과에 근거하여 상기 N 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 상기 보정 데이터를 생성하는 것을 특징으로 하는 초음파 의료 장치.And the phase shift unit generates the correction data by right shifting the N reflected signal by a phase corresponding to a unit sample time based on the phase analysis result.
  10. 초음파 의료 장치가 고조파 이미지를 형성하는 방법에 있어서,In the ultrasonic medical device to form a harmonic image,
    360˚/ N(N은 2이상의 자연수)의 위상차를 갖도록 위상을 설정하는 송신 제어 과정;A transmission control process of setting a phase to have a phase difference of 360 ° / N (N is a natural number of 2 or more);
    대상체로 상기 360˚/ N의 위상차를 갖는 평면파를 순차적으로 송신하고 상기 대상체로부터 상기 평면파에 대응하는 반사 신호를 수신하는 수신 과정;A receiving step of sequentially transmitting a plane wave having a phase difference of 360 ° / N to an object and receiving a reflected signal corresponding to the plane wave from the object;
    순차적으로 수신되는 상기 반사 신호 중 가장 최근 N 개의 신호를 파이프-라인 방식으로 합성하여 N차 고조파 성분을 생성하는 고조파 획득 과정; 및A harmonic acquisition process of generating N-th harmonic components by synthesizing the most recent N signals sequentially received from the reflected signals in a pipe-line manner; And
    상기 N차 고조파 성분을 디스플레이하기 위한 데이터로 처리하는 신호 처리 과정Signal processing process for processing the N-th harmonic components as data for display
    을 포함하는 것을 특징으로 하는 고조파 영상 형성 방법.Harmonic image forming method comprising a.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 고조파 획득 과정은,The harmonic acquisition process,
    순차적으로 수신되는 상기 반사 신호를 N개의 저장 영역에 각각 저장하는 저장 과정;A storage process of sequentially storing the reflected signals received in the N storage areas;
    상기 반사 신호 각각에 포함된 위상 간의 위상차가 360˚/ N과 동일한 경우, 해당 반사 신호에 위상 시프트가 미수행되도록 하는 상기 위상 분석 결과를 생성하는 위상 분석 과정;A phase analysis process of generating a phase analysis result of performing a phase shift on a corresponding reflected signal when a phase difference between phases included in each of the reflected signals is equal to 360 ° / N;
    상기 위상 분석 결과에 근거하여 위상 시프트가 미수행된 상기 보정 데이터를 생성하는 위상 시프트 과정; 및Generating a phase shift correction data based on the phase analysis result; And
    상기 보정 데이터 중 가장 최근 N 개의 데이터를 파이프-라인 방식으로 합성하여 하나의 프레임을 형성하도록 하는 N차 고조파 성분을 생성하는 합성 과정Synthesis process of generating N-th harmonic components to form one frame by synthesizing the most recent N data among the correction data in a pipe-line manner
    을 포함하는 것을 특징으로 하는 초음파 의료 장치.Ultrasound medical device comprising a.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 고조파 획득 과정은,The harmonic acquisition process,
    순차적으로 수신되는 상기 반사 신호를 N개의 저장 영역에 각각 저장하는 저장 과정;A storage process of sequentially storing the reflected signals received in the N storage areas;
    상기 반사 신호 각각에 포함된 위상 간의 위상차가 360˚/ N과 미동일한 경우 해당 반사 신호를 단위 샘플 시간에 대응되는 위상만큼 우측 시프트되도록 하는 상기 위상 분석 결과를 생성하는 위상 분석 과정;A phase analysis process of generating a phase analysis result of causing a right shift of the reflected signal by a phase corresponding to a unit sample time when a phase difference between phases included in each of the reflected signals is not equal to 360 ° / N;
    상기 위상 분석 결과에 근거하여 단위 샘플 시간에 대응되는 위상만큼 우측 시프트한 상기 보정 데이터를 생성하는 위상 시프트 과정; 및A phase shift process of generating the correction data shifted right by a phase corresponding to a unit sample time based on the phase analysis result; And
    상기 보정 데이터 중 가장 최근 N 개의 데이터를 파이프-라인 방식으로 합성하여 하나의 프레임을 형성하도록 하는 N차 고조파 성분을 생성하는 합성 과정Synthesis process of generating N-th harmonic components to form one frame by synthesizing the most recent N data among the correction data in a pipe-line manner
    을 포함하는 것을 특징으로 하는 초음파 의료 장치.Ultrasound medical device comprising a.
PCT/KR2013/008446 2013-09-17 2013-09-17 Harmonic imaging method and ultrasound medical device for same WO2015041380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0112050 2013-09-17
KR1020130112050A KR101510678B1 (en) 2013-09-17 2013-09-17 Method for Forming Harmonic Image, Ultrasound Medical Apparatus Therefor

Publications (1)

Publication Number Publication Date
WO2015041380A1 true WO2015041380A1 (en) 2015-03-26

Family

ID=52689022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008446 WO2015041380A1 (en) 2013-09-17 2013-09-17 Harmonic imaging method and ultrasound medical device for same

Country Status (2)

Country Link
KR (1) KR101510678B1 (en)
WO (1) WO2015041380A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102438119B1 (en) 2015-10-16 2022-08-31 삼성전자주식회사 Ultrasound apparatus and ultrasound imaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114758A1 (en) * 2001-12-19 2003-06-19 Jensen Seth E. Combined fundamental and harmonic ultrasonic imaging at low MI or deeper depths
JP2004121848A (en) * 2002-09-30 2004-04-22 Koninkl Philips Electronics Nv System and method for performing continuous depth harmonic imaging using transmitted and nonlinearly generated secondary harmonic
KR20050058365A (en) * 2002-08-21 2005-06-16 코닌클리케 필립스 일렉트로닉스 엔.브이. System and method for improved harmonic imaging
KR20070014957A (en) * 2005-07-28 2007-02-01 지멘스 메디컬 솔루션즈 유에스에이, 인크. Medical diagnostic ultrasound transducer system for harmonics
KR20130084455A (en) * 2012-01-17 2013-07-25 서강대학교산학협력단 Adaptive dynamic quadrature demodulation apparatus for ultrasound harmonic imaging and demodulation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625663B2 (en) 2004-08-18 2011-02-02 株式会社東芝 Ultrasonic diagnostic equipment
JP5322522B2 (en) 2008-07-11 2013-10-23 株式会社東芝 Ultrasonic diagnostic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114758A1 (en) * 2001-12-19 2003-06-19 Jensen Seth E. Combined fundamental and harmonic ultrasonic imaging at low MI or deeper depths
KR20050058365A (en) * 2002-08-21 2005-06-16 코닌클리케 필립스 일렉트로닉스 엔.브이. System and method for improved harmonic imaging
JP2004121848A (en) * 2002-09-30 2004-04-22 Koninkl Philips Electronics Nv System and method for performing continuous depth harmonic imaging using transmitted and nonlinearly generated secondary harmonic
KR20070014957A (en) * 2005-07-28 2007-02-01 지멘스 메디컬 솔루션즈 유에스에이, 인크. Medical diagnostic ultrasound transducer system for harmonics
KR20130084455A (en) * 2012-01-17 2013-07-25 서강대학교산학협력단 Adaptive dynamic quadrature demodulation apparatus for ultrasound harmonic imaging and demodulation method thereof

Also Published As

Publication number Publication date
KR20150032058A (en) 2015-03-25
KR101510678B1 (en) 2015-04-17

Similar Documents

Publication Publication Date Title
WO2015080317A1 (en) Method and apparatus for compounding ultrasonic images
US20190133557A1 (en) Ultrasound system with high frequency detail
WO2015137543A1 (en) Software-based ultrasound imaging system
JPS61191345A (en) Ultrasonic diagnostic apparatus
WO2014007100A1 (en) Ultrasonic diagnosis device and ultrasonic image acquisition method
US6514205B1 (en) Medical digital ultrasonic imaging apparatus capable of storing and reusing radio-frequency (RF) ultrasound pulse echoes
JPS61191347A (en) Ultrasonic diagnostic apparatus
WO2019054711A1 (en) Deep learning based medical ultrasonic image classification method and apparatus using smart device
JP2005270423A (en) Ultrasonic diagnosis apparatus
WO2015041380A1 (en) Harmonic imaging method and ultrasound medical device for same
WO2014178457A1 (en) Image enlargement method and ultrasound medical device for same
WO2015080318A1 (en) Beamforming method and apparatus using unfocused ultrasonic waves
JP7005206B2 (en) Ultrasound diagnostic equipment and ultrasound imaging program
WO2015080315A1 (en) Ultrasonic diagnostic apparatus and method
WO2017171210A1 (en) Novel ultrasonic doppler imaging device using plane wave synthesis and control method therefor
JPH0515532A (en) Phasing adder by software processing
JP6838174B2 (en) Ultrasonic probe and processing method
WO2015080316A1 (en) Data processing method and apparatus for reconstructing ultrasonic image
TW201317573A (en) Multi-channel apparatus and hardware phase shift correction method therefor
KR102528546B1 (en) Ultrasonic image data transferring method and device to a host computer system
CN103126720B (en) The ultrasonic imaging method of many spread speeds and device
CN112650707A (en) Multichannel photoacoustic signal delay device, multichannel photoacoustic signal delay system, signal processing method, terminal and medium
WO2016159417A1 (en) Image processing device and method removing afterimage of ultrasonic image
KR102591262B1 (en) Apparatus and mehod for making ultrasound imaging
JP2007313320A (en) Ultrasonic diagnostic system and method for outputting digital signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893890

Country of ref document: EP

Kind code of ref document: A1