WO2015041279A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2015041279A1 WO2015041279A1 PCT/JP2014/074652 JP2014074652W WO2015041279A1 WO 2015041279 A1 WO2015041279 A1 WO 2015041279A1 JP 2014074652 W JP2014074652 W JP 2014074652W WO 2015041279 A1 WO2015041279 A1 WO 2015041279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- pixel
- substrate
- shielding layer
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 212
- 239000000758 substrate Substances 0.000 claims abstract description 83
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 12
- 238000003384 imaging method Methods 0.000 description 98
- 230000015654 memory Effects 0.000 description 34
- 230000015572 biosynthetic process Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 238000007747 plating Methods 0.000 description 11
- 239000010949 copper Substances 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
- H01L27/14623—Optical shielding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14634—Assemblies, i.e. Hybrid structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14636—Interconnect structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/79—Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
Definitions
- the present invention particularly relates to a semiconductor device and a solid-state imaging device having a three-dimensional structure.
- CMOS Complementary Metal Oxide Semiconductor solid-state imaging devices
- MOS-type solid-state imaging devices CMOS (Complementary Metal Oxide Semiconductor) solid-state imaging devices
- CCD Charge Coupled Device
- MOS type solid-state imaging device can be driven by a single power source.
- a CCD type solid-state imaging device requires a dedicated manufacturing process, whereas a MOS type solid-state imaging device can be manufactured using the same manufacturing process as other LSIs, so that the SOC (System On Chip).
- SOC System On Chip
- the MOS type solid-state imaging device amplifies signal charges in each pixel by providing an amplification circuit in each pixel, the MOS-type solid-state imaging device is not easily affected by noise from a signal transmission path. Furthermore, the MOS type solid-state imaging device can select and take out the signal charge of each pixel (selection method), and in principle, the signal accumulation time and readout order can be freely controlled for each pixel. It has the characteristics.
- a semiconductor device having a stacked structure (three-dimensional structure) in which a plurality of substrates are three-dimensionally connected is attracting attention as an influential structure for maintaining an improvement in the degree of integration in the semiconductor device.
- semiconductor elements are three-dimensionally integrated in a structure in which semiconductor active layers are stacked in multiple layers, for example, due to limitations in lithography technology in miniaturization, miniaturization of wiring, and increase in wiring length.
- Various barriers faced by a semiconductor device having a two-dimensional structure can be avoided, such as an increase in wiring resistance, an increase in parasitic effect, a saturation tendency of operation speed associated therewith, and a high electric field effect due to miniaturization of element dimensions.
- imagers conventional solid-state imaging devices (hereinafter also referred to as “imagers”) have been mainly monolithic structures, but recent imagers have also been put into practical use with three-dimensional structures.
- a connection method for connecting substrates to be stacked using through electrodes may not be adopted depending on the thickness of the substrate. Further, even when the area that can be used for connection between the substrates is small, it is difficult to use the through electrode. For this reason, as a method for connecting the substrates to be laminated, for example, a method of connecting the substrates by connecting electrodes formed on the substrate surface, such as bumps produced by vapor deposition or plating, is adopted. There is.
- the present invention has been made on the basis of the above-mentioned problem recognition, and provides a semiconductor device having a three-dimensional structure capable of reducing noise mixed in a signal transmitted and received via an electrode formed on a substrate surface.
- the purpose is that.
- a semiconductor device includes a first substrate on which a first circuit is formed, and a second substrate on which a second circuit is formed and spaced apart from the first substrate. And a connecting portion that is disposed between the first substrate and the second substrate and electrically connects the first circuit and the second circuit, and the first substrate and the second substrate Between the first substrate and the second substrate, and a value in the at least one of the first substrate and the second substrate is constant. And a connected shielding layer.
- the shielding layer is composed of a plurality of unit shielding layers, as viewed from the stacking direction of the first substrate and the second substrate.
- the plurality of unit shielding layers may be arranged so as to surround the connection portion.
- the shielding layer is composed of a first unit shielding layer and a second unit shielding layer, and the first unit shielding layer and the The 2nd unit shielding layer may be arrange
- the shielding layer further comprises a third unit shielding layer and a fourth unit shielding layer, and the third unit shielding layer.
- the fourth unit shielding layer surround the corresponding connecting portion in a direction perpendicular to a line connecting positions where the corresponding first unit shielding layer and the second unit shielding layer are arranged. It may be arranged as follows.
- the plurality of unit shielding layers are respectively the first substrate and the second substrate. It may be the same shape as the shape of the connection surface of the connection part formed in the above.
- the shielding layer is formed on one of the first substrate and the second substrate, and the inside of the formed substrate. May be connected to a potential having a constant value.
- the one of the first unit shielding layer and the second unit shielding layer is the one described above.
- a unit shielding layer is formed on the first substrate, the other unit shielding layer is formed on the second substrate, and each of the first unit shielding layer and the second unit shielding layer is the unit shielding layer. It may be connected to a potential having a constant value in the substrate on which the layer is formed.
- the first circuit converts incident light into an electrical signal, and the converted electrical signal As a pixel signal, and a plurality of pixels that transmit to the second circuit via the connection unit, and the second circuit receives the pixel signal transmitted from each of the pixels via the connection unit.
- a processing circuit for receiving and processing the received pixel signal may be provided.
- the shielding layer includes a first circuit formed on the first substrate and a second circuit formed on the second substrate. It may be arranged so as to surround the connecting portion that transmits and receives analog signals to and from.
- the shielding layer includes a first circuit formed on the first substrate and a second circuit formed on the second substrate. Surrounding the connection section that transmits and receives signals that operate at a high speed when signals transmitted and received through the connection section are classified into signals that operate at low speed and signals that operate at high speed It may be arranged as follows.
- the first circuit or the second circuit converts the pixel signal into digital data.
- An AD conversion circuit that performs serial conversion, serializer that serializes the multi-bit digital data after AD conversion into 1-bit digital data, and a clock supply circuit that supplies a clock for driving the serializer.
- the shielding layer may be formed of the same material as the connection portion.
- FIG. 1 is an overview showing a schematic configuration of a semiconductor device according to an embodiment of the present invention. It is sectional drawing which showed the structure of the semiconductor device in the 1st Embodiment of this invention. It is another sectional view showing the structure of the semiconductor device in the first embodiment. It is sectional drawing which showed the structure of the semiconductor device in the 2nd Embodiment of this invention. It is the figure which showed an example of the shape of the shield in the semiconductor device of this embodiment. It is the figure which showed an example of the shape of the shield in the semiconductor device of this embodiment. It is the figure which showed an example of the shape of the shield in the semiconductor device of this embodiment. It is sectional drawing which showed another example of the shape of the shield in the semiconductor device of this embodiment.
- FIG. 1 is an overview diagram illustrating a schematic configuration of a solid-state imaging device to which a structure of a semiconductor device according to an embodiment is applied. It is the circuit diagram which showed schematic structure of the pixel chip in the solid-state imaging device in the 3rd Embodiment of this invention. It is the circuit diagram which showed schematic structure of the circuit chip in the solid-state imaging device in the 3rd embodiment. It is sectional drawing which showed the structure of the solid-state imaging device in the 3rd embodiment. It is the circuit diagram which showed schematic structure of the pixel chip in the solid-state imaging device in the 4th Embodiment of this invention. It is the circuit diagram which showed schematic structure of the circuit chip in the solid-state imaging device in the 4th embodiment. It is sectional drawing which showed the structure of the solid-state imaging device in the 4th embodiment.
- FIG. 1 is an overview showing a schematic configuration of the semiconductor device according to the present embodiment.
- the semiconductor device 3 includes a first semiconductor chip (first substrate) 31 and a second semiconductor chip (second substrate) 32.
- the first semiconductor chip 31 and the second semiconductor chip 32 are arranged apart from each other by the connection region 33.
- the chip connection portions formed in the first semiconductor chip 31 and the second semiconductor chip 32 are electrically connected within the connection region 33, whereby one semiconductor device 3 is configured.
- the external wiring connection portion 34 formed in the first semiconductor chip 31 is used for transmitting and receiving a voltage, a signal, and the like with a circuit outside the package when the semiconductor device 3 is packaged with ceramic or the like, for example. It is a connection part.
- an insulating member such as a resin or an adhesive is filled in a space in the connection region 33 that exists after the first semiconductor chip 31 and the second semiconductor chip 32 are connected by the chip connection portion. It may be configured. Therefore, the “separation” in the present embodiment is not only the state where the first semiconductor chip 31 and the second semiconductor chip 32 are connected by the chip connecting portion, but also a state in which a space exists, A state in which the insulating member is filled is also included.
- FIG. 2 is a cross-sectional view showing the structure of the semiconductor device 3 according to the first embodiment.
- FIG. 2 is a cross-sectional view of the semiconductor device 3 taken along the dotted line AA (cross section AA) in the general view of the semiconductor device 3 shown in FIG.
- the chip connection portion formed on the surface of the first semiconductor chip 31 and the chip connection portion formed on the surface of the second semiconductor chip 32 are electrically connected within the connection region 33.
- one semiconductor device 3 is configured.
- bumps produced by a vapor deposition method or a plating method are used for the chip connection portions formed on the respective surfaces of the first semiconductor chip 31 and the second semiconductor chip 32.
- the chip connecting portion may be configured to connect the electrode disposed on the first semiconductor chip 31 and the electrode disposed on the second semiconductor chip 32.
- bumps are formed as chip connection portions of the first semiconductor chip 31 and the second semiconductor chip 32 will be described below.
- connection region 33 even when the chip connection portions (bumps) formed on the first semiconductor chip 31 and the second semiconductor chip 32 are expressed without distinction, they are also referred to as “bumps”.
- bumps (connection portions) 331 indicate connection portions of the respective bumps formed on the first semiconductor chip 31 and the second semiconductor chip 32. Thereby, each signal of the first semiconductor chip 31 and each signal of the second semiconductor chip 32 are electrically connected, and the first semiconductor chip 31 and the second semiconductor chip 32 are connected to the bump 331. Signals are transmitted and received via.
- the shield 332 is a noise shielding layer connected to at least one fixed potential (for example, ground) of the first semiconductor chip 31 and the second semiconductor chip 32.
- the shield 332 is formed so as to surround each bump 331.
- the shield 332 is formed of the same material as the bump 331 (for example, gold (Au) plating, copper (Cu) plating, nickel (Ni) plating, etc.)). Copper and nickel are advantageous in that they are cheaper than gold and easy to process.
- the space existing between the shield 332 and the bump 331 may be filled with an insulating member such as resin or adhesive.
- FIG. 3 is another cross-sectional view showing the structure of the semiconductor device 3 in the first embodiment.
- 3 is a schematic view of the semiconductor device 3 shown in FIG. 1, and a cross-sectional view of the semiconductor device 3 taken along a dotted line BB in the cross-sectional view of the semiconductor device 3 shown in FIG. Is shown.
- the first semiconductor chip 31 includes a first semiconductor layer 311, a first device formation region 312, a first wiring layer 313, and a first metal wiring 314.
- the second semiconductor chip 32 includes a second semiconductor layer 321, a second device formation region 322, a second wiring layer 323, and a second metal wiring 324.
- the bump 331 electrically connects the first metal wiring 314 of the first semiconductor chip 31 and the second metal wiring 324 of the second semiconductor chip 32.
- the bump 331 is formed in the circuit (first circuit) formed in the first device formation region 312 in the first semiconductor chip 31 and in the second device formation region 322 in the second semiconductor chip 32. Are connected to each other (second circuit). As a result, signals are transmitted and received between the circuits formed in the respective device formation regions 312 and 322.
- the shield 332 includes bumps 331 between the first semiconductor chip 31 and the second semiconductor chip 32 as seen from the cross-sectional view of the semiconductor device 3 when viewed from the stacking direction. Are formed at a position so as to be sandwiched between them (surrounding the bump 331).
- the shield 332 is connected to a fixed potential such as ground in the formed semiconductor chip. More specifically, the shield 332 is connected to a fixed potential in the first device formation region 312 of the first semiconductor chip 31 and the second device formation region 322 of the second semiconductor chip 32.
- the central shield 332 b is connected to a fixed potential in the first device formation region 312 of the first semiconductor chip 31. The case where the shields 332a and 332c at both ends are respectively connected to the fixed potential in the second device formation region 322 of the second semiconductor chip 32 is shown.
- the shield 332 is connected to a fixed potential in the device formation regions 312 and 322 of either the first semiconductor chip 31 or the second semiconductor chip 32, the shield 332 is not connected to the signal connected via the bump 331. Since mixed noise can be reduced, it is not always necessary to electrically connect the fixed potentials of both the first semiconductor chip 31 and the second semiconductor chip 32 as shown in FIG.
- the shield 332 is formed around the region where the bump 331 is formed.
- the first semiconductor chip is interposed via the bumps 331.
- the noise mixed in the signal transmitted / received between the circuit formed in the first device formation region 312 in the circuit 31 and the circuit formed in the second device formation region 322 in the second semiconductor chip 32 Reduction, that is, noise can be shielded.
- the shield 332 is formed of the same material as the bump 331. For this reason, in the semiconductor device 3 of the first embodiment, the shield 332 can be formed by the same manufacturing process as that for forming the bump 331. Thereby, in the semiconductor device 3 of the first embodiment, the shield 332 can be easily formed.
- FIG. 4 is a cross-sectional view showing the structure of the semiconductor device 3 according to the second embodiment. 4 shows a portion indicated by a dotted line AA (cross section AA) in the overview of the semiconductor device 3 shown in FIG. 1, similarly to the structure of the semiconductor device 3 of the first embodiment shown in FIG. 2 shows a cross-sectional view of the semiconductor device 3 in FIG. Therefore, in FIG. 4, the same reference numerals are given to the same structures as those of the semiconductor device 3 of the first embodiment shown in FIG.
- the difference between the structure of the semiconductor device 3 of the second embodiment and the structure of the semiconductor device 3 of the first embodiment is that the shield 332 in the semiconductor device 3 of the first embodiment is replaced with the shield 333. It is. Therefore, in the following description, description of the same structure as that of the semiconductor device 3 of the first embodiment is omitted, and the structure of the shield 333 different from the semiconductor device 3 of the first embodiment will be described.
- a fixed potential (for example, ground) is provided in the first semiconductor chip 31 and the second semiconductor chip 32.
- the shield 333 is a noise shielding layer connected to a fixed potential of at least one of the first semiconductor chip 31 and the second semiconductor chip 32, similarly to the shield 332 in the semiconductor device 3 of the first embodiment. Further, when the semiconductor device 3 is viewed in the stacking direction of the first semiconductor chip 31 and the second semiconductor chip 32, the shield 333 is formed so as to surround each bump 331. As can be seen from FIG. 4, the shield 333 has a shape similar to the shape of the bump 331, that is, the shape of the connection surface of the bump formed on each of the first semiconductor chip 31 and the second semiconductor chip 32.
- the sub-shields which are unit shielding layers, are formed to be continuous. At this time, each of the subshields forming the shield 333 is also formed of the same material as the bump 331.
- each sub-shield forming the shield 333 has a fixed potential in the device formation region of either the first semiconductor chip 31 or the second semiconductor chip 32. As a result, noise mixed in the signal connected via the bump 331 can be reduced. For this reason, each of the sub-shields forming the shield 333 is not necessarily limited to the fixed potentials of both the first semiconductor chip 31 and the second semiconductor chip 32, and the electrical potential, similarly to the shield 332 in the first embodiment. There is no need to connect to.
- the shield 333 is formed around the region where the bump 331 is formed, as in the semiconductor device 3 of the first embodiment.
- the gap between the first semiconductor chip 31 and the second semiconductor chip 32 is hollow, as in the semiconductor device 3 of the first embodiment.
- each sub shield forming the shield 333 is formed of the same material and the same shape as the bump 331.
- the shield 333 can be formed by the same manufacturing process as that for forming the bumps 331. Thereby, in the semiconductor device 3 of the second embodiment, it is not necessary to newly provide a dedicated manufacturing process for forming the shield 333, and the shield 333 can be easily formed.
- the shape of the shield in the semiconductor device 3 is not limited to the shape similar to the shield 332 shown in the first embodiment or the shield 333 shown in the second embodiment, and is adjacent to the bump 331. If it is formed at a position sandwiching 331 (surrounding the bump 331), noise mixed in a signal transmitted / received via the bump 331 can be shielded.
- 5A to 5C are diagrams showing an example of the shape of the shield in the semiconductor device 3 of the present embodiment. 5A to 5C show the shape of the shield corresponding to one bump 331. FIG.
- FIG. 5A shows the shape of the shield 334 formed so as to surround the periphery of the bump 331.
- the shield 334 is also connected to a fixed potential in the device forming regions 312 and 322 of either one or both of the first semiconductor chip 31 and the second semiconductor chip 32.
- FIG. 5B also includes four sub-shields 335a to 335d (first unit shielding layer to fourth unit shielding layer) formed at orthogonal positions so as to surround the periphery of the bump 331 from four directions.
- the shape of the shield 335 is shown.
- the shield 335 is also connected to a fixed potential in the device formation region of either one or both of the first semiconductor chip 31 and the second semiconductor chip 32. Note that each of the sub-shields 335a to 335d shown in FIG. 5B is not necessarily formed on the same semiconductor chip.
- any one of the subshields 335 a to 335 d is formed on the first semiconductor chip 31, and the subshields 335 a to 335 d that are not formed on the first semiconductor chip 31 are formed on the second semiconductor chip 32. May be.
- each of the subshields 336a to 336b shown in FIG. 5C is not necessarily formed on the same semiconductor chip.
- the sub shield 336 a may be formed on the first semiconductor chip 31, and the sub shield 336 b may be formed on the second semiconductor chip 32.
- the shield 332 formed in a lattice shape is shown, and in the semiconductor device 3 of the second embodiment, a plurality of subshields having the same shape as the bump 331 are formed in a lattice shape.
- the arranged shield 333 is shown, for example, as shown in FIG. 6, it may have a shape in which there is a gap that connects the respective lattices. If the shield is formed in a shape having a gap as shown in FIG. 6 or a shape having a gap between the sub-shields as shown in FIG.
- this gap Can be used, for example, when an insulating member is filled in a space existing between the bump 331 and the shield. That is, if the insulating member has fluidity and can move (flow) from the gap existing between the shields or between the sub-shields to the region of another bump 331, the insulating member is poured from the gap. Even after the first semiconductor chip 31 and the second semiconductor chip 32 are connected by the bumps 331, all the spaces existing between the bumps 331 and the shield can be filled with the insulating member. .
- FIG. 7 is a block diagram showing a schematic configuration of an imaging device (for example, a mirrorless digital camera) equipped with a solid-state imaging device to which the structure of the semiconductor device 3 of this embodiment is applied.
- an imaging device for example, a mirrorless digital camera
- Each component shown here can be realized in terms of hardware by an element such as a CPU and a memory of a computer, and in terms of software, it can be realized by a computer program. It is shown as a functional block realized by cooperation. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
- the imaging device 1 shown in FIG. 7 includes a lens unit unit 2, a solid-state imaging device 13, a light emitting device 4, a memory 5, a recording device 6, a display device 7, an image signal processing circuit 8, a lens control device 9, and an image sensor control device. 10, a light emission control device 11, and a camera control device 12.
- the lens unit 2 is driven and controlled by the lens control device 9 such as zoom, focus, and diaphragm, and forms a subject image on the solid-state imaging device 13.
- the lens control device 9 such as zoom, focus, and diaphragm
- the solid-state imaging device 13 is a solid-state imaging device 13 having a structure to which the structure of the semiconductor device 3 of the present embodiment is applied.
- the solid-state imaging device 13 is a MOS solid-state imaging device that is driven and controlled by the image sensor control device 10 and outputs an image signal corresponding to the amount of light received from the subject light incident on the solid-state imaging device 13 via the lens unit 2. is there. A detailed description of the solid-state imaging device 13 will be described later.
- the light emitting device 4 is a device such as a strobe or a flash that is driven and controlled by the light emission control device 11 and adjusts the light reflected from the subject by applying light emitted from the light emitting device 4 to the subject.
- the image signal processing circuit 8 performs processing such as signal amplification, conversion to image data, various corrections, and image data compression on the image signal output from the solid-state imaging device 13.
- the image signal processing circuit 8 uses the memory 5 as temporary storage means for image data in each process.
- the recording device 6 is a detachable recording medium such as a semiconductor memory, and records or reads out image data.
- the display device 7 is a display device such as a liquid crystal that displays an image based on image data imaged on the solid-state imaging device 13 and processed by the image signal processing circuit 8 or image data read from the recording device 6. .
- the camera control device 12 is a control device that performs overall control of the imaging device 1. Further, the camera control device 12 controls the lens control device 9 to control driving of zoom, focus, diaphragm, and the like by the lens unit unit 2. The camera control device 12 controls the image sensor control device 10 and the light emission control device 11 to cooperatively control the solid-state imaging device 13 and the light emission device 4.
- FIG. 8 is an overview diagram showing a schematic configuration of the solid-state imaging device 13 to which the structure of the semiconductor device 3 of the present embodiment is applied.
- the solid-state imaging device 13 has a structure to which the structure of the semiconductor device 3 of the present embodiment is applied. More specifically, as shown in FIG. 8, the solid-state imaging device 13 includes a pixel chip 131 and a circuit chip 132. The pixel chip 131 and the circuit chip 132 are electrically connected through the connection region 133.
- the external wiring connection unit 134 formed in the pixel chip 131 transmits and receives voltage, signals, and the like with a circuit outside the package.
- the pixel chip 131 is a chip in which normal pixels including a photoelectric conversion unit that converts incident subject light (incident light) into an electrical signal are two-dimensionally arranged. Each pixel included in the pixel chip 131 is driven and controlled by a signal in the pixel chip 131 or a signal transmitted from the circuit chip 132. Each pixel included in the pixel chip 131 transmits the converted electric signal to the circuit chip 132 as a pixel signal.
- the circuit chip 132 is a chip including a processing circuit that receives an electrical signal (pixel signal) transmitted from each pixel provided in the pixel chip 131 and performs processing on the received electrical signal (pixel signal). .
- the processing performed on the pixel signal received by the processing circuit included in the circuit chip 132 includes temporary storage (holding) and integration of the pixel signal, simple arithmetic processing on the pixel signal, and the like.
- the circuit chip 132 transmits a signal for driving and controlling the pixel chip 131 to the pixel chip 131.
- the connection region 133 is a region where bumps for electrically connecting the pixel chip 131 and the circuit chip 132 are formed.
- a shield is formed to reduce noise mixed in a signal (pixel signal or the like) transmitted / received between the pixel chip 131 and the circuit chip 132 via the bump.
- the pixel chip 131 and the circuit chip 132 transmit and receive signals (pixel signals and the like) via bumps formed in the connection region 133.
- FIG. 9 is a circuit diagram illustrating a schematic configuration of the pixel chip 131 in the solid-state imaging device 13 according to the third embodiment.
- the pixel chip 131 includes a pixel chip vertical scanning circuit 1311, a pixel array unit 1312, a unit pixel 1313, a pixel signal line 1314, a pixel chip vertical scanning circuit signal line 1315, and a pixel control line 1316.
- a circuit, a pixel signal bump 13321, and a control signal bump 13322 are provided.
- FIG. 9 an example of a pixel array unit 1312 in which a plurality of unit pixels 1313 are two-dimensionally arranged in 10 rows and 10 columns is illustrated.
- numbers and symbols in “(): parentheses” shown after each symbol are a row number corresponding to each of the unit pixels 1313 arranged in the pixel chip 131. Represents the column number.
- the first number in “(): brackets” indicates the row number, and the last number indicates the column number.
- the unit pixel 1313 in the second row and the third column is represented as a unit pixel 1313 (2, 3).
- the same row number or column number is represented by a number
- the non-identical row number or column number is designated as “ *: Represented by an asterisk.
- the pixel control line 1316 in the second row is represented as a pixel control line 1316 (2, *).
- the pixel chip vertical scanning circuit 1311 is transmitted from the circuit chip 132, and in accordance with a control signal input to the pixel chip vertical scanning circuit signal line 1315 via the control signal bump 13322, each unit in the pixel array unit 1312.
- the pixel 1313 is controlled to output the pixel signal of each unit pixel 1313 to the corresponding pixel signal line 1314.
- the pixel chip vertical scanning circuit 1311 outputs a control signal for controlling the unit pixel 1313 to the pixel control line 1316 for each row of the unit pixels 1313 arranged in the pixel array unit 1312.
- Each unit pixel 1313 in the pixel array unit 1312 outputs a reset signal when reset and an electrical signal corresponding to the amount of received object light (amount of light) to the pixel signal line 1314 as a pixel signal.
- the pixel signal output from the unit pixel 1313 to the pixel signal line 1314 is transmitted to the circuit chip 132 via the pixel signal bump 13321.
- the pixel signal line 1314 and the pixel chip vertical scanning circuit signal line 1315 are connected to the circuit chip 132 via the pixel signal bump 13321 or the control signal bump 13322.
- the pixel chip 131 and the circuit chip 132 include various signals necessary for driving and controlling the pixel chip 131 and each unit pixel 1313 in the pixel chip 131 by the pixel signal line 1314 and the pixel chip vertical scanning circuit signal line 1315. Transmit and receive pixel signals to be output.
- FIG. 10 is a circuit diagram illustrating a schematic configuration of the circuit chip 132 in the solid-state imaging device 13 according to the third embodiment.
- a circuit chip 132 includes a pixel signal processing chip vertical scanning circuit 1321, a memory array unit 1322, a unit memory 1323, a memory signal line 1324, a pixel signal processing chip vertical signal line 1325, a pixel signal processing chip column processing circuit 1326, A second circuit including a pixel signal processing chip horizontal scanning circuit 1327, a pixel signal processing chip horizontal scanning circuit signal line 1328, an image sensor control circuit 1329, an image sensor control circuit signal line 13210, and a memory control line 13211; And a control signal bump 13322 are provided.
- FIG. 10 an example of a memory array unit 1322 in which a plurality of unit memories 1323 are two-dimensionally arranged in 10 rows and 10 columns is shown.
- numbers and symbols in “(): parentheses” shown after each symbol indicate a row number and a column corresponding to each unit memory arranged in the circuit chip 132.
- the number is expressed in the same manner as the pixel chip 131 shown in FIG.
- the pixel signal processing chip vertical scanning circuit 1321 controls each unit memory 1323 in the memory array unit 1322 according to the control signal input from the image sensor control circuit 1329, and corresponds the memory signal of each unit memory 1323. Each pixel signal processing chip is output to the vertical signal line 1325.
- the pixel signal processing chip vertical scanning circuit 1321 outputs a control signal for controlling the unit memory 1323 to the memory control line 13211 for each row of the unit memory 1323 arranged in the memory array unit 1322.
- Each unit memory 1323 in the memory array unit 1322 is output from the corresponding unit pixel 1313 in the pixel array unit 1312 provided in the pixel chip 131, and is sent to the memory signal line 1324 via the pixel signal bump 13321.
- the transmitted pixel signal is input.
- Each unit memory 1323 holds an electric signal corresponding to the input pixel signal, and outputs the held electric signal to the pixel signal processing chip vertical signal line 1325 as a memory signal.
- the pixel signal processing chip column processing circuit 1326 performs processing on the memory signal output from the unit memory 1323. In the processing on the memory signal by the pixel signal processing chip column processing circuit 1326, signal subtraction (difference processing) is performed based on the clamp pulse ⁇ CL and the sample hold pulse ⁇ SH input from the image sensor control circuit 1329. Further, processing by the pixel signal processing chip column processing circuit 1326 includes processing such as signal amplification and comparison.
- the pixel signal processing chip column processing circuit 1326 includes a current source load connected to the pixel signal processing chip vertical signal line 1325.
- the pixel signal processing chip horizontal scanning circuit 1327 sequentially processes the processed memory signals output from the pixel signal processing chip column processing circuit 1326 on the basis of the horizontal scanning pulse ⁇ H input from the image sensor control circuit 1329. Read out to the chip horizontal scanning circuit signal line 1328.
- the image sensor control circuit 1329 controls the pixel signal processing chip vertical scanning circuit 1321, the pixel signal processing chip column processing circuit 1326, the pixel signal processing chip horizontal scanning circuit 1327, and the pixel chip vertical scanning circuit 1311 in the pixel chip 131.
- the memory signal line 1324 and the image sensor control circuit signal line 13210 are connected to the pixel chip 131 via the pixel signal bump 13321 or the control signal bump 13322.
- the pixel chip 131 and the circuit chip 132 are output by the memory signal line 1324 and the image sensor control circuit signal line 13210 from various signals necessary for driving and controlling the pixel chip 131 and each unit pixel 1313 in the pixel chip 131. Transmit / receive pixel signals.
- the solid-state imaging device 13 is controlled by the image sensor control circuit 1329, the pixel signal processing chip vertical scanning circuit 1321, the pixel signal processing chip column processing circuit 1326, the pixel signal processing chip horizontal scanning circuit 1327, and the pixel chip vertical scanning circuit 1311. Then, a pixel signal corresponding to the amount of received subject light received is output.
- FIG. 11 is a cross-sectional view illustrating the structure of the solid-state imaging device 13 according to the third embodiment.
- FIG. 11 is a cross-sectional view of the solid-state imaging device 13 taken along the dotted line AA (cross section AA) in the overview diagram of the solid-state imaging device 13 shown in FIG.
- the shield 1333 is the same as the pixel signal bump 13321 or the control signal bump 13322.
- a plurality of sub-shields having a shape are formed to be continuous.
- the shield 1333 is a noise shielding layer connected to a fixed potential of at least one of the pixel chip 131 and the circuit chip 132, similarly to the shield 333 in the semiconductor device 3 of the second embodiment shown in FIG. Further, when viewed in the stacking direction of the pixel chip 131 and the circuit chip 132, the shield 1333 is formed so as to surround each pixel signal bump 13321. Each of the subshields forming the shield 1333 is also formed of the same material as the pixel signal bump 13321.
- each of the subshields forming the shield 1333 is connected to a fixed potential in any one of the chips in the same manner as each of the subshields forming the shield 333 in the semiconductor device 3 of the second embodiment. However, it is not always necessary to electrically connect the fixed potentials of both the pixel chip 131 and the circuit chip 132.
- the shield 1333 is provided around the region where the pixel signal bump 13321 is formed.
- the pixel chip 131 is connected to the pixel chip 131 via the pixel signal bump 13321 in the connection region 133 where the space between the pixel chip 131 and the circuit chip 132 is hollow.
- noise mixed in the pixel signal transmitted to the circuit chip 132 can be reduced. That is, in the solid-state imaging device 13 of the third embodiment, it is possible to shield noise mixed in the pixel signal immediately after the unit pixel 1313 outputs the pixel signal. As a result, the solid-state imaging device 13 of the third embodiment can obtain a good image with less noise.
- the pixel signal bump 13321 and the control signal bump 13322 are both electrically connected to the pixel chip 131 and the circuit chip 132.
- Each of the pixel signal bumps 13321 and the control signal bumps 13322 is formed of the same material such as gold (Au) plating, copper (Cu) plating, nickel (Ni) plating, or the like.
- the shield 1333 is made of the same material as the pixel signal bump 13321 and the control signal bump 13322. However, as can be seen from FIG. 11, the shield 1333 is formed so as to surround only the pixel signal bump 13321.
- the pixel signal which is an analog signal output from the unit pixel 1313
- the pixel signal bump 13322 no shield is formed for the control signal bump 13322 to which a digital control signal that is considered to be less affected by noise is transmitted.
- the shield can be formed in consideration of the possibility of being affected by noise for each signal transmitted and received via the bump.
- the solid-state imaging device 13 of the fourth embodiment has the same configuration as the solid-state imaging device 13 to which the structure of the semiconductor device 3 of the present embodiment shown in FIG. 8 is applied. Therefore, in the following description, the same code
- FIG. 12 is a circuit diagram illustrating a schematic configuration of the pixel chip 131 in the solid-state imaging device 13 according to the fourth embodiment.
- the pixel chip 131 includes a first circuit including a pixel array unit 1312 and a pixel output digital processing circuit 1318, a control signal bump 13322, and a pixel output digital processing circuit bump 13323. .
- Each unit pixel 1313 in the pixel array unit 1312 outputs a pixel signal to the pixel output digital processing circuit 1318 in accordance with a control signal input from the circuit chip 132 via the control signal bump 13322.
- the row selection of the unit pixel 1313 provided in the pixel array unit 1312 is directly performed by a control signal input via the control signal bump 13322.
- the pixel output digital processing circuit 1318 performs digital signal processing on the pixel signal output from each unit pixel 1313 in the pixel array unit 1312, and the control input from the circuit chip 132 via the control signal bump 13322. In response to the signal, the signal after the digital signal processing is transmitted to the circuit chip 132 via the pixel output digital processing circuit bump 13323.
- the pixel output digital processing circuit 1318 is, for example, an AD conversion circuit that converts a pixel signal that is an analog signal output from the unit pixel 1313 into digital data, or multi-bit digital data after AD conversion into 1-bit digital data.
- a digital signal processing circuit such as a serializer that serializes and sequentially outputs is provided.
- the pixel output digital processing circuit 1318 includes a clock supply circuit that supplies a clock for driving the serializer.
- the sampling clock used when the pixel output digital processing circuit 1318 performs AD conversion and the timing at which serialized digital data is output is via the control signal bump 13322.
- This signal is faster than the input control signal.
- the sampling clock used for AD conversion and the timing for outputting serialized digital data become faster depending on the resolution of AD conversion and the number of bits of the digital data.
- the signal after the digital signal processing that the pixel output digital processing circuit 1318 transmits to the circuit chip 132 through the pixel output digital processing circuit bump 13323 is a signal that is faster than the control signal.
- the pixel signal output from the unit pixel 1313 is AD converted into 10-bit digital data, and the control signal controls the output of the pixel signal to the single unit pixel 1313 using the 10-bit digital data after AD conversion.
- the clock for outputting digital data by the serializer (the clock supplied by the clock supply circuit to the serializer) has a frequency that is 10 times or more higher than the frequency of the control signal.
- the cycle in which the serializer outputs each digital data is 10 times or more than the cycle in which the control signal controls the unit pixel 1313.
- the 1-bit digital data signal serialized by the serializer is also a signal that changes at an early cycle synchronized with the clock timing.
- FIG. 13 is a circuit diagram illustrating a schematic configuration of the circuit chip 132 in the solid-state imaging device 13 according to the fourth embodiment.
- a circuit chip 132 includes a second circuit including a pixel output digital processing circuit control circuit 13212, a pixel array unit control circuit 13213, and a pixel signal output circuit 13214, a control signal bump 13322, and a pixel output digital. And a processing circuit bump 13323.
- the pixel array unit control circuit 13213 generates a control signal for outputting the pixel signal of each unit pixel 1313 to the corresponding pixel output digital processing circuit 1318 by controlling each unit pixel 1313 in the pixel array unit 1312. To do. For example, the pixel array unit control circuit 13213 generates a control signal for selecting each unit pixel 1313 in the pixel array unit 1312 for each row, a control signal for resetting each unit pixel 1313, and the like. Each control signal generated by the pixel array unit control circuit 13213 is transmitted to each unit pixel 1313 in the pixel array unit 1312 provided in the pixel chip 131 via the control signal bump 13322.
- the pixel output digital processing circuit control circuit 13212 controls the pixel output digital processing circuit 1318 to generate a control signal for performing digital signal processing on the pixel signal output from each unit pixel 1313.
- the pixel output digital processing circuit control circuit 13212 clocks a signal sample timing control signal for generating a sampling clock used when AD converting a pixel signal, or a clock used when the serializer serializes digital data.
- a timing control signal for generating the supply circuit is generated.
- Each control signal generated by the pixel output digital processing circuit control circuit 13212 is transmitted to each pixel output digital processing circuit 1318 provided in the pixel chip 131 via the control signal bump 13322.
- the pixel signal output circuit 13214 receives the digital signal processed signal transmitted from the pixel output digital processing circuit 1318 via the pixel output digital processing circuit bump 13323, and receives the received digital signal processed signal (for example, digital signal Data) as an output signal of the solid-state imaging device 13.
- digital signal processed signal for example, digital signal Data
- FIG. 14 is a cross-sectional view illustrating the structure of the solid-state imaging device 13 in the fourth embodiment. 14 shows a portion (AA) indicated by a dotted line AA in the overview diagram of the solid-state imaging device 13 shown in FIG. 8, similarly to the structure of the solid-state imaging device 13 of the third embodiment shown in FIG. 2 is a cross-sectional view of the solid-state imaging device 13 in (cross section).
- the shield 1334 is connected to the control signal bump 13322 or the pixel output digital processing circuit bump.
- a plurality of sub-shields having the same shape as 13323 are formed so as to be connected.
- the shield 1334 is a noise shielding layer connected to a fixed potential of at least one of the pixel chip 131 and the circuit chip 132, similarly to the shield 1333 in the solid-state imaging device 13 of the third embodiment illustrated in FIG. 11. Further, when viewed in the stacking direction of the pixel chip 131 and the circuit chip 132, the shield 1334 is formed so as to surround each pixel output digital processing circuit bump 13323, and is connected to a fixed potential in the formed chip. Yes. Each of the sub shields forming the shield 1334 is also formed of the same material as the pixel output digital processing circuit bump 13323.
- each of the sub-shields forming the shield 1334 may be connected to a fixed potential in any of the chips in the same manner as each of the sub-shields forming the shield 1333 in the solid-state imaging device 13 of the third embodiment. For example, it is not always necessary to electrically connect the fixed potentials of both the pixel chip 131 and the circuit chip 132.
- the shield 1334 does not reduce noise mixed in a signal transmitted / received between the pixel chip 131 and the circuit chip 132 via the pixel output digital processing circuit bump 13323, but the pixel chip 131.
- the circuit chip 132 are formed for the purpose of reducing noise emitted from signals transmitted and received.
- the digital signal processed signal transmitted from the pixel chip 131 to the circuit chip 132 via the pixel output digital processing circuit bump 13323 is transmitted from the circuit chip 132 via the control signal bump 13322. This is because the signal changes at a cycle earlier than the control signal transmitted to the pixel chip 131.
- the shield 1334 is formed to shield noise emitted from the signal after digital signal processing. Thereby, the mixing of noise into other signals is reduced.
- the shield 1334 is formed around the region where the pixel output digital processing circuit bump 13323 is formed.
- the periphery of each pixel output digital processing circuit bump 13323 that transmits and receives a signal that may emit noise, that is, a signal that operates at high speed. Is formed so as to surround.
- the pixel output digital processing circuit bump 13323 is interposed in the connection region 133 where the space between the pixel chip 131 and the circuit chip 132 is hollow.
- control signal bump 13322 and the pixel output digital processing circuit bump 13323 are both electrically connected to the pixel chip 131 and the circuit chip 132.
- Each of the control signal bump 13322 and the pixel output digital processing circuit bump 13323 is formed of the same material such as gold (Au) plating, copper (Cu) plating, or nickel (Ni) plating.
- the shield 1334 is made of the same material as the control signal bump 13322 and the pixel output digital processing circuit bump 13323. However, as can be seen from FIG. 14, the shield 1334 is formed so as to surround only the pixel output digital processing circuit bump 13323.
- the control signal bump 13322 that operates at a relatively low speed and is considered to have a low possibility of emitting noise is shielded against the control signal bump 13322. Does not form. In this way, by classifying the signals transmitted and received via the bumps into signals that operate at high speed and signals that operate at low speed, considering the possibility of emitting noise for each signal, A shield can be formed.
- the pixel output digital processing circuit control circuit 13212 supports a sampling clock used when the pixel output digital processing circuit 1318 AD-converts a pixel signal and a clock used when the serializer serializes digital data.
- a sampling clock used when the pixel output digital processing circuit 1318 AD-converts a pixel signal
- a clock used when the serializer serializes digital data.
- the pixel output digital processing circuit control circuit 13212 directly transmits a clock, for example, the pixel output digital processing circuit 1318 includes a multiplication circuit, and the transmitted clock is multiplied in the pixel chip 131. In use, it is conceivable that a shield adjacent to the corresponding control signal bump 13322 is not formed.
- the chip connection portion formed in each semiconductor chip is adjacent to each chip connection portion in the connection region to which the chip connection portion is electrically connected. Then, a shield is formed at such a position as to sandwich this chip connecting portion (surrounding the chip connecting portion).
- the shield is formed in consideration of the presence or absence of the influence of noise, such as an analog signal or a signal operating at high speed, or the presence or absence of noise emission.
- a shield can be easily formed by the same method as the manufacturing process and manufacturing process which form each chip
- the semiconductor device to which the structure of the semiconductor device of the present invention can be applied implements the present invention. It is not limited to the form for doing.
- the specific configuration and structure of the present invention are not limited to the mode for carrying out the present invention, and various changes can be made without departing from the spirit of the present invention. For example, even if the position where the chip connection portion is formed or the component or circuit configuration of the semiconductor device is changed due to a change in the circuit element in the semiconductor device, the chip connection portion is formed via the chip connection portion formed in the semiconductor chip.
- the semiconductor device has a three-dimensional structure that transmits and receives signals, the concept of the present invention can be applied to any semiconductor device having any configuration.
- a digital signal processing circuit such as an AD conversion circuit or a serializer, a clock supply circuit, or a multiplication circuit is provided in the pixel output digital processing circuit 1318.
- the concept of the present invention can be applied.
- the concept of the present invention can be applied to a configuration in which all or part of an AD conversion circuit, a serializer, a clock supply circuit, and a multiplication circuit are provided in the circuit chip 132.
- two substrates may be connected by a connection unit, or three or more substrates may be connected by a connection unit.
- a connection unit In the case of a semiconductor device or a solid-state imaging device in which three or more substrates are connected at the connection portion, two of them correspond to the first substrate and the second substrate according to the claims.
- Solid-state imaging device 31 First semiconductor chip (first substrate) 131 pixel chip (first substrate) 1311 Pixel chip vertical scanning circuit (first circuit) 1312 Pixel array unit (first circuit) 1313 Unit pixel (first circuit) 1314 Pixel signal line 1315 Pixel chip vertical scanning circuit signal line 1316 Pixel control line 1318 Pixel output digital processing circuit (first circuit) 311 First semiconductor layer 312 First device formation region 313 First wiring layer 314 First metal wiring 32 Second semiconductor chip (second substrate) 132 Circuit chip (second substrate) 1321 Pixel signal processing chip vertical scanning circuit (second circuit) 13212 Pixel output digital processing circuit control circuit (second circuit) 13213 Pixel array unit control circuit (second circuit) 13214 Pixel signal output circuit (second circuit) 1322 Memory array section (second circuit) 1323 unit memory (second circuit) 1324 Memory signal line 1325 Pixel signal processing chip vertical signal line 1326 Pixel signal processing chip column processing circuit 1327 Pixel signal processing chip horizontal scanning circuit 1328 Pixel signal processing chip horizontal
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
半導体装置は、第1の回路が形成された第1の基板と、第2の回路が形成され、前記第1の基板と離間して配置された第2の基板と、前記第1の基板と前記第2の基板との間に配置され、前記第1の回路と前記第2の回路とを電気的に接続する接続部と、前記第1の基板と前記第2の基板との間に前記接続部とともに挟まれ、前記接続部を囲むように配置され、前記第1の基板と前記第2の基板との少なくとも一方の基板内の値が一定である電位に接続された遮へい層と、を備える。
Description
本発明は、特に3次元構造の半導体装置、固体撮像装置に関する。
本願は、2013年09月18日に、日本に出願された特願2013-192904号に基づき優先権を主張し、その内容をここに援用する。
本願は、2013年09月18日に、日本に出願された特願2013-192904号に基づき優先権を主張し、その内容をここに援用する。
近年、固体撮像装置としてCMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化膜半導体)型固体撮像装置(以下、「MOS型固体撮像装置」という)が注目され、実用化されている。このMOS型固体撮像装置は、CCD(Charge Coupled Device:電荷結合素子)型固体撮像装置と異なり、単一電源で駆動することが可能である。また、CCD型固体撮像装置では、専用の製造プロセスを必要とするのに対し、MOS型固体撮像装置は、他のLSIと同じ製造プロセスを用いて製造することができることからSOC(System On Chip)への対応が容易であり、固体撮像装置の多機能化を可能としている。また、MOS型固体撮像装置は、各画素に増幅回路を備えることによって画素内で信号電荷を増幅しているため、信号の伝達経路からのノイズの影響を受けづらい構成である。さらに、MOS型固体撮像装置は、各画素の信号電荷を選択して取り出す(選択方式)ことが可能であり、原理上、信号の蓄積時間や読み出し順序を画素毎に自由に制御することができるという特徴を有している。
また、複数の基板を3次元的に接続した積層型の構造(3次元構造)の半導体装置が、半導体装置における集積度の向上を維持するための有力な構造として注目されている。この3次元構造の半導体装置は、半導体活性層を多層に積み重ねた構造に3次元的に半導体素子を集積することによって、例えば、微細化におけるリソグラフィ技術の限界、配線の微細化や配線長増大による配線抵抗の増大や寄生効果の増大、またそれに伴う動作速度の飽和傾向、素子寸法の微細化による高電界効果など、2次元構造の半導体装置が直面する種々の障壁を回避することができる。
このことから、従来の固体撮像装置(以下、「イメージャ」ともいう)が、モノリシックな構造が主流であったのに対し、近年のイメージャでも、3次元構造のものが実用化されている。
しかし、3次元構造の半導体装置においては、集積度が増すことによって、積層した基板間を接続する配線によるノイズの影響を避けることができない。特に、3次元構造のイメージャの場合では、基板間を接続する配線に混入するノイズの影響によって、取得した画像が劣化してしまうという問題が発生する。このような問題を解決するための技術として、例えば、特許文献1で開示された技術のように、積層した基板間を接続するための貫通電極の周辺にシールド配線を設けることによって、ノイズの影響を低減する技術が提案されている。
しかしながら、特許文献1で開示された技術のように、貫通電極を使用して積層する基板を接続する接続方法は、基板の厚さによっては採用することができない場合がある。また、基板間の接続に使用することができる領域が少ない場合にも、貫通電極の使用は困難である。このため、積層する基板の接続方法として、例えば、蒸着法やメッキ法で作製されるバンプなど、基板表面に形成された電極同士を接続することによって、基板間を接続する方法が採用されることがある。
しかしながら、バンプを使用した基板の接続は、基板間の中空の状態である部分で行われるため、特許文献1で開示された技術のように、配線層を用いてバンプの周辺をシールドすることができない。そのため、バンプを介して接続される信号にノイズが混入し、信号を劣化させてしまうという問題が発生する。特に、3次元構造のイメージャの場合では、イメージャから出力される画像信号にノイズが混入すると、得られる画像が劣化してしまうことが懸念される。
本発明は、上記の課題認識に基づいてなされたものであり、基板表面に形成された電極を介して送受信される信号に混入するノイズを低減することができる3次元構造の半導体装置を提供することを目的としている。
本発明の第1の態様の半導体装置は、第1の回路が形成された第1の基板と、第2の回路が形成され、前記第1の基板と離間して配置された第2の基板と、前記第1の基板と前記第2の基板との間に配置され、前記第1の回路と前記第2の回路とを電気的に接続する接続部と、前記第1の基板と前記第2の基板との間に前記接続部とともに挟まれ、前記接続部を囲むように配置され、前記第1の基板と前記第2の基板との少なくとも一方の基板内の値が一定である電位に接続された遮へい層と、を備える。
本発明の第2の態様によれば、上記第1の態様において、前記遮へい層は、複数の単位遮へい層から構成され、前記第1の基板と前記第2の基板との積層方向から見た場合、前記複数の単位遮へい層が、前記接続部を囲むように配置されていてもよい。
本発明の第3の態様によれば、上記第2の態様において、前記遮へい層は、第1の単位遮へい層と第2の単位遮へい層とから構成され、前記第1の単位遮へい層と前記第2の単位遮へい層とが、対応する前記接続部を囲むように配置されていてもよい。
本発明の第4の態様によれば、上記第3の態様において、前記遮へい層は、さらに、第3の単位遮へい層と第4の単位遮へい層とから構成され、前記第3の単位遮へい層と前記第4の単位遮へい層とが、対応する前記第1の単位遮へい層と前記第2の単位遮へい層とが配置された位置を結ぶ線に直交する方向に、対応する前記接続部を囲むように配置されていてもよい。
本発明の第5の態様によれば、上記第2の態様から上記第4の態様のいずれか一態様において、前記複数の単位遮へい層は、前記第1の基板および前記第2の基板のそれぞれに形成された前記接続部の接続面の形状と同様の形状であってもよい。
本発明の第6の態様によれば、上記第1の態様において、前記遮へい層は、前記第1の基板または前記第2の基板のいずれか一方の基板に形成され、前記形成された基板内の値が一定である電位に接続されていてもよい。
本発明の第7の態様によれば、上記第2の態様から上記第5の態様のいずれか一態様において、前記第1の単位遮へい層及び前記第2の単位遮へい層のうち、一方の前記単位遮へい層が前記第1の基板に形成され、他方の前記単位遮へい層が前記第2の基板に形成され、前記第1の単位遮へい層及び前記第2の単位遮へい層それぞれは、前記単位遮へい層が形成された基板内の値が一定である電位に接続されていてもよい。
本発明の第8の態様によれば、上記第1の態様から上記第7の態様のいずれか一態様において、前記第1の回路は、入射光を電気信号に変換し、前記変換した電気信号を画素信号として、前記接続部を介して前記第2の回路に送信する複数の画素を備え、前記第2の回路は、前記接続部を介してそれぞれの前記画素から送信された前記画素信号を受信し、前記受信した前記画素信号に対する処理を行う処理回路を備えていてもよい。
本発明の第9の態様によれば、上記第8の態様において、前記遮へい層は、前記第1の基板に形成された第1の回路と前記第2の基板に形成された第2の回路との間でアナログの信号を送受信する前記接続部を囲むように配置されていてもよい。
本発明の第10の態様によれば、上記第8の態様において、前記遮へい層は、前記第1の基板に形成された第1の回路と前記第2の基板に形成された第2の回路との間で前記接続部を介して送受信される信号を、低速な動作をする信号と高速な動作をする信号とに分類した場合に、高速な動作をする信号を送受信する前記接続部を囲むように配置されていてもよい。
本発明の第11の態様によれば、上記第8の態様から上記第10の態様のいずれか一態様において、前記第1の回路または前記第2の回路は、前記画素信号をデジタルデータに変換するAD変換回路と、AD変換後の多ビットの前記デジタルデータを1ビットのデジタルデータにシリアライズするシリアライザと、前記シリアライザを駆動するクロックを供給するクロック供給回路と、を少なくとも備えていてもよい。
本発明の第12の態様によれば、上記第1の態様から上記第11の態様のいずれか一態様において、前記遮へい層は、前記接続部と同じ材料で形成されていてもよい。
上記各態様によれば、基板表面に形成された電極を介して送受信される信号に混入するノイズを低減することができる3次元構造の半導体装置を提供することができる。
以下、本発明の実施形態について、図面を参照して説明する。なお、以下の説明は、例示のために特定の詳細な内容が含まれている。しかし、当業者であれば、以下に説明する詳細な内容に様々な変更を加えた場合であっても、本発明の範囲を超えないことは理解できるであろう。従って、以下に説明する本発明の例示的な実施形態は、権利を請求された発明に対して、一般性を失わせることなく、また、何ら限定をすることもなく、述べられたものである。
<半導体装置>
図1は、本実施形態による半導体装置の概略構成を示した概観図である。図1において、半導体装置3は、第1の半導体チップ(第1の基板)31と第2の半導体チップ(第2の基板)32とから構成される。半導体装置3では、図1に示したように、第1の半導体チップ31と第2の半導体チップ32とが、接続領域33の分だけ離間して配置されている。そして、第1の半導体チップ31と第2の半導体チップ32とのそれぞれに形成されたチップ接続部が、接続領域33内で電気的に接続されることによって、1つの半導体装置3が構成されている。また、第1の半導体チップ31に形成された外部配線接続部34は、例えば、セラミックなどで半導体装置3をパッケージした場合に、パッケージの外部の回路との間で電圧や信号などを送受信するための接続部である。
図1は、本実施形態による半導体装置の概略構成を示した概観図である。図1において、半導体装置3は、第1の半導体チップ(第1の基板)31と第2の半導体チップ(第2の基板)32とから構成される。半導体装置3では、図1に示したように、第1の半導体チップ31と第2の半導体チップ32とが、接続領域33の分だけ離間して配置されている。そして、第1の半導体チップ31と第2の半導体チップ32とのそれぞれに形成されたチップ接続部が、接続領域33内で電気的に接続されることによって、1つの半導体装置3が構成されている。また、第1の半導体チップ31に形成された外部配線接続部34は、例えば、セラミックなどで半導体装置3をパッケージした場合に、パッケージの外部の回路との間で電圧や信号などを送受信するための接続部である。
なお、半導体装置3では、チップ接続部によって第1の半導体チップ31と第2の半導体チップ32とが接続された後に存在する接続領域33内の空間に、樹脂や接着剤などの絶縁部材が充填される構成であってもよい。従って、本実施形態における「離間」とは、チップ接続部によって第1の半導体チップ31と第2の半導体チップ32とが接続している箇所以外に、空間が存在している状態のみならず、絶縁部材が充填されている状態も含まれる。
<第1の実施形態>
次に、図1に示した半導体装置3における第1の実施形態の構造について説明する。図2は、本第1の実施形態における半導体装置3の構造を示した断面図である。図2は、図1に示した半導体装置3の概観図に点線A-Aで示した部分(A-A断面)における半導体装置3の断面図を示している。
次に、図1に示した半導体装置3における第1の実施形態の構造について説明する。図2は、本第1の実施形態における半導体装置3の構造を示した断面図である。図2は、図1に示した半導体装置3の概観図に点線A-Aで示した部分(A-A断面)における半導体装置3の断面図を示している。
半導体装置3は、第1の半導体チップ31の表面に形成されたチップ接続部と第2の半導体チップ32の表面に形成されたチップ接続部とが、接続領域33内で電気的に接続されることによって、1つの半導体装置3が構成される。第1の半導体チップ31および第2の半導体チップ32のそれぞれの表面に形成されるチップ接続部は、例えば、蒸着法、メッキ法で作製されるバンプなどが用いられる。なお、チップ接続部は、第1の半導体チップ31に配置された電極と第2の半導体チップ32に配置された電極とを接続する構成であってもよい。
第1の半導体チップ31および第2の半導体チップ32のそれぞれのチップ接続部として、バンプが形成されている半導体装置3を以下に説明する。なお、接続領域33内において、第1の半導体チップ31および第2の半導体チップ32のそれぞれに形成されたチップ接続部(バンプ)を区別せずに表す場合にも、「バンプ」という。
図2において、バンプ(接続部)331は、第1の半導体チップ31および第2の半導体チップ32に形成されたそれぞれのバンプの接続部分を示している。これにより、第1の半導体チップ31のそれぞれの信号と第2の半導体チップ32のそれぞれの信号とが電気的に接続され、第1の半導体チップ31と第2の半導体チップ32とは、バンプ331を介して信号の送受信を行う。
第1の半導体チップ31及び第2の半導体チップ32内には、値が一定である電位(以下、「固定電位」と称する)が設けられている。シールド332は、第1の半導体チップ31及び第2の半導体チップ32のうち少なくとも一方の固定電位(例えば、グラウンド)に接続されているノイズ遮へい層である。また、シールド332は、それぞれのバンプ331を囲むように形成されている。また、シールド332は、バンプ331と同じ材料(例えば、金(Au)メッキ、銅(Cu)メッキ、ニッケル(Ni)メッキなど)で形成されている。なお、銅やニッケルは、金に比べて安価であり、加工が容易であるという利点がある。
図2において、シールド332とバンプ331との間に存在する空間には、樹脂や接着剤などの絶縁部材を充填してもよい。
次に、本第1の実施形態の半導体装置3を別の方向から見た場合の構造について説明する。図3は、本第1の実施形態における半導体装置3の構造を示した別の断面図である。
図3は、図1に示した半導体装置3の概観図、および図2に示した半導体装置3の断面図に点線B-Bで示した部分(B-B断面)における半導体装置3の断面図を示している。
図3は、図1に示した半導体装置3の概観図、および図2に示した半導体装置3の断面図に点線B-Bで示した部分(B-B断面)における半導体装置3の断面図を示している。
第1の半導体チップ31は、第1の半導体層311と、第1のデバイス形成領域312と、第1の配線層313と、および第1のメタル配線314とから構成される。また、第2の半導体チップ32は、第2の半導体層321と、第2のデバイス形成領域322と、第2の配線層323と、第2のメタル配線324とから構成される。
バンプ331は、第1の半導体チップ31の第1のメタル配線314と、第2の半導体チップ32の第2のメタル配線324とを電気的に接続する。バンプ331は、第1の半導体チップ31内の第1のデバイス形成領域312に形成された回路(第1の回路)と、第2の半導体チップ32内の第2のデバイス形成領域322に形成された回路(第2の回路)とを互いに接続する。これにより、それぞれのデバイス形成領域312,322に形成された回路間で信号の送受信を行う。
シールド332は、図2に示すように、第1の半導体チップ31と第2の半導体チップ32との積層方向から見た場合半導体装置3の断面図を見てもわかるように、バンプ331を間に挟む(バンプ331を囲む)ような位置に形成される。そして、上述したように、シールド332は、形成された半導体チップ内の、例えば、グラウンドなどの固定電位に接続されている。より具体的には、シールド332は、第1の半導体チップ31の第1のデバイス形成領域312及び第2の半導体チップ32の第2のデバイス形成領域322内の固定電位に接続されている。図3には、中央のシールド332bが、第1の半導体チップ31の第1のデバイス形成領域312内の固定電位に接続されている。両端のシールド332a,332cが、第2の半導体チップ32のそれぞれの第2のデバイス形成領域322内の固定電位にそれぞれ接続されている場合を示している。
なお、シールド332は、第1の半導体チップ31または第2の半導体チップ32のいずれかのデバイス形成領域312,322内の固定電位に接続されていれば、バンプ331を介して接続された信号に混入するノイズを低減することができるため、図3に示したように、必ずしも第1の半導体チップ31と第2の半導体チップ32との両方の固定電位と、電気的に接続する必要はない。
このように、本第1の実施形態の半導体装置3では、バンプ331を形成する領域周辺にシールド332を形成する。これにより、本第1の実施形態の半導体装置3では、第1の半導体チップ31と第2の半導体チップ32との間が中空の状態であっても、バンプ331を介して第1の半導体チップ31内の第1のデバイス形成領域312に形成された回路と、第2の半導体チップ32内の第2のデバイス形成領域322に形成された回路との間で送受信される信号に混入するノイズを低減する、つまり、ノイズをシールドすることができる。
また、本第1の実施形態の半導体装置3では、シールド332を、バンプ331と同じ材料で形成する。このため、本第1の実施形態の半導体装置3では、バンプ331を形成する製造工程と同じ製造工程でシールド332を形成することができる。これにより、本第1の実施形態の半導体装置3では、容易にシールド332を形成することができる。
<第2の実施形態>
次に、図1に示した半導体装置3における第2の実施形態の構造について説明する。図4は、本第2の実施形態における半導体装置3の構造を示した断面図である。図4は、図2に示した第1の実施形態の半導体装置3の構造と同様に、図1に示した半導体装置3の概観図に点線A-Aで示した部分(A-A断面)における半導体装置3の断面図を示している。従って、図4においては、図2に示した第1の実施形態の半導体装置3の構造と同様の構造には、同一の符号を付加している。
次に、図1に示した半導体装置3における第2の実施形態の構造について説明する。図4は、本第2の実施形態における半導体装置3の構造を示した断面図である。図4は、図2に示した第1の実施形態の半導体装置3の構造と同様に、図1に示した半導体装置3の概観図に点線A-Aで示した部分(A-A断面)における半導体装置3の断面図を示している。従って、図4においては、図2に示した第1の実施形態の半導体装置3の構造と同様の構造には、同一の符号を付加している。
本第2の実施形態の半導体装置3の構造と、第1の実施形態の半導体装置3の構造との違いは、第1の実施形態の半導体装置3におけるシールド332が、シールド333に代わったのみである。従って、以下の説明においては、第1の実施形態の半導体装置3と同様の構造に関する説明は省略し、第1の実施形態の半導体装置3と異なるシールド333の構造について説明する。
第1の半導体チップ31及び第2の半導体チップ32内には、固定電位(例えば、グラウンド)が設けられている。シールド333は、第1の実施形態の半導体装置3におけるシールド332と同様、第1の半導体チップ31及び第2の半導体チップ32のうち少なくとも一方の固定電位に接続されているノイズ遮へい層である。また、半導体装置3を第1の半導体チップ31及び第2の半導体チップ32の積層方向に見た場合、シールド333はそれぞれのバンプ331を囲むように形成されている。図4を見てわかるように、シールド333は、バンプ331の形状、つまり、第1の半導体チップ31と第2の半導体チップ32とのそれぞれに形成されたバンプの接続面の形状と同様の形状の単位遮へい層であるサブシールドが連なるように形成されている。このとき、シールド333を形成するそれぞれのサブシールドも、バンプ331と同じ材料で形成される。
なお、本第2の実施形態の半導体装置3においても、シールド333を形成するそれぞれのサブシールドは、第1の半導体チップ31または第2の半導体チップ32のいずれかのデバイス形成領域内の固定電位に接続されていれば、バンプ331を介して接続された信号に混入するノイズを低減することができる。このため、シールド333を形成するそれぞれのサブシールドは、第1の実施形態におけるシールド332と同様に、必ずしも第1の半導体チップ31と第2の半導体チップ32との両方の固定電位と、電気的に接続する必要はない。
このように、本第2の実施形態の半導体装置3でも、第1の実施形態の半導体装置3と同様に、バンプ331を形成する領域周辺にシールド333を形成する。これにより、本第2の実施形態の半導体装置3でも、第1の実施形態の半導体装置3と同様に、第1の半導体チップ31と第2の半導体チップ32との間が中空の状態であっても、バンプ331を介して第1の半導体チップ31と、第2の半導体チップ32との間で送受信される信号に混入するノイズを低減することができる。
また、本第2の実施形態の半導体装置3では、シールド333を形成するそれぞれのサブシールドを、バンプ331と同じ材料、同様の形状で形成する。このため、本第2の実施形態の半導体装置3では、バンプ331を形成する製造プロセスと同じ製造プロセスでシールド333を形成することができる。これにより、本第2の実施形態の半導体装置3では、シールド333を形成するための専用の製造プロセスを新たに設ける必要がなく、容易にシールド333を形成することができる。
なお、半導体装置3におけるシールドの形状は、第1の実施形態において示したシールド332や、第2の実施形態において示したシールド333と同様の形状に限定されず、バンプ331に隣接し、このバンプ331を間に挟む(バンプ331を囲む)ような位置に形成されていれば、バンプ331を介して送受信される信号に混入するノイズをシールドすることができる。ここで、半導体装置3におけるシールドの形状について、いくつかの例を説明する。図5A~図5Cは、本実施形態の半導体装置3におけるシールドの形状の一例を示した図である。なお、図5A~図5Cには、1つのバンプ331に対応するシールドの形状を示している。
図5Aには、バンプ331の周辺を囲むように形成されたシールド334の形状を示している。シールド334も、第1の半導体チップ31または第2の半導体チップ32のいずれか一方または両方のデバイス形成領域312,322内の固定電位に接続されている。
また、図5Bには、バンプ331の周辺を4つの方向から囲むような直交する位置に形成された4つのサブシールド335a~335d(第1の単位遮へい層~第4の単位遮へい層)で構成されるシールド335の形状を示している。シールド335も、第1の半導体チップ31または第2の半導体チップ32のいずれか一方または両方のデバイス形成領域内の固定電位に接続されている。なお、図5Bに示したサブシールド335a~サブシールド335dのそれぞれは、同じ半導体チップに形成されるものとは限らない。すなわち、サブシールド335a~サブシールド335dのいずれかが第1の半導体チップ31に形成され、第1の半導体チップ31に形成されていないサブシールド335a~サブシールド335dが第2の半導体チップ32に形成されてもよい。
また、図5Cには、バンプ331の周辺を2つの方向から囲むような位置に形成された2つのサブシールド336a,336b(第1の単位遮へい層,第2の単位遮へい層)で構成されるシールド336の形状を示している。シールド336も、第1の半導体チップ31または第2の半導体チップ32のいずれか一方または両方のデバイス形成領域内の固定電位に接続されている。なお、図5Cに示したサブシールド336a~サブシールド336bのそれぞれは、同じ半導体チップに形成されるものとは限らない。例えば、サブシールド336aが第1の半導体チップ31に形成され、サブシールド336bが第2の半導体チップ32に形成されてもよい。
このように、本実施形態の半導体装置3では、様々形状のシールドを形成することができる。なお、第1の実施形態の半導体装置3では、格子状に形成されたシールド332を示し、第2の実施形態の半導体装置3では、バンプ331と同様の形状の複数のサブシールドを格子状に配置したシールド333を示したが、例えば、図6に示したように、それぞれの格子が繋がるような隙間が存在する形状であってもよい。図6に示したような隙間が存在する形状や、図5Bまたは図5Cに示したように、それぞれのサブシールドの間に隙間が存在する形状でシールドが形成されている場合には、この隙間を、例えば、バンプ331とシールドとの間に存在する空間に絶縁部材を充填する際に利用することもできる。つまり、シールド同士またはそれぞれのサブシールド同士の間に存在する隙間から別のバンプ331の領域に移動する(流れる)ことができる流動性のある絶縁部材であれば、隙間から絶縁部材を流し込むことによって、第1の半導体チップ31と第2の半導体チップ32とをバンプ331によって接続した後であっても、バンプ331とシールドとの間に存在する全ての空間に、絶縁部材を充填することができる。
<撮像装置>
次に、本実施形態の半導体装置3の構造を適用する一例として、撮像装置に搭載する固体撮像装置に、本実施形態の半導体装置3の構造を適用した場合について説明する。図7は、本実施形態の半導体装置3の構造を適用した固体撮像装置を搭載した撮像装置(例えば、ミラーレスデジタルカメラ)の概略構成を示したブロック図である。ここに示した各構成要素は、ハードウェア的には、コンピュータのCPUやメモリをはじめとする素子で実現することができ、ソフトウェア的にはコンピュータプログラムなどによって実現されるが、ここでは、これらの連携によって実現される機能ブロックとして示している。従って、これらの機能ブロックは、ハードウェア、ソフトウェアの組合せによって、様々な形式で実現できるということは、当業者には理解できるであろう。
次に、本実施形態の半導体装置3の構造を適用する一例として、撮像装置に搭載する固体撮像装置に、本実施形態の半導体装置3の構造を適用した場合について説明する。図7は、本実施形態の半導体装置3の構造を適用した固体撮像装置を搭載した撮像装置(例えば、ミラーレスデジタルカメラ)の概略構成を示したブロック図である。ここに示した各構成要素は、ハードウェア的には、コンピュータのCPUやメモリをはじめとする素子で実現することができ、ソフトウェア的にはコンピュータプログラムなどによって実現されるが、ここでは、これらの連携によって実現される機能ブロックとして示している。従って、これらの機能ブロックは、ハードウェア、ソフトウェアの組合せによって、様々な形式で実現できるということは、当業者には理解できるであろう。
図7に示した撮像装置1は、レンズユニット部2、固体撮像装置13、発光装置4、メモリ5、記録装置6、表示装置7、画像信号処理回路8、レンズ制御装置9、イメージセンサ制御装置10、発光制御装置11、およびカメラ制御装置12から構成される。
レンズユニット部2は、レンズ制御装置9によってズーム、フォーカス、絞りなどが駆動制御され、被写体像を固体撮像装置13に結像させる。
固体撮像装置13は、本実施形態の半導体装置3の構造が適用された構造の固体撮像装置13である。固体撮像装置13は、イメージセンサ制御装置10によって駆動、制御され、レンズユニット部2を介して固体撮像装置13に入射した被写体光の受光量に応じた画像信号を出力するMOS型固体撮像装置である。なお、固体撮像装置13に関する詳細な説明は、後述する。
発光装置4は、発光制御装置11によって駆動、制御され、発光装置4から発せられる光を被写体に当てることにより、被写体から反射する光を調節するストロボやフラッシュなどの装置である。
画像信号処理回路8は、固体撮像装置13から出力された画像信号に対して、信号の増幅、画像データへの変換および各種の補正、画像データの圧縮などの処理を行う。なお、画像信号処理回路8は、各処理における画像データの一時記憶手段としてメモリ5を利用する。
記録装置6は、半導体メモリなどの着脱可能な記録媒体であり、画像データの記録または読み出しを行う。
表示装置7は、固体撮像装置13に結像され、画像信号処理回路8によって処理された画像データ、または記録装置6から読み出された画像データに基づく画像を表示する液晶などの表示装置である。
カメラ制御装置12は、撮像装置1の全体の制御を行う制御装置である。また、カメラ制御装置12は、レンズ制御装置9を制御することによって、レンズユニット部2によるズーム、フォーカス、絞りなどの駆動を制御する。また、カメラ制御装置12は、イメージセンサ制御装置10と発光制御装置11とを制御することによって、固体撮像装置13と、発光装置4とを協調制御する。
<固体撮像装置>
次に、撮像装置1に搭載した固体撮像装置13について説明する。まず、固体撮像装置13の構造について説明する。図8は、本実施形態の半導体装置3の構造を適用した固体撮像装置13の概略構成を示した概観図である。固体撮像装置13は、上述したように、本実施形態の半導体装置3の構造が適用された構造である。より具体的には、図8に示したように、固体撮像装置13は、画素チップ131と回路チップ132とから構成される。そして、画素チップ131と回路チップ132とは、接続領域133を介して電気的に接続されている。また、画素チップ131に形成された外部配線接続部134によって、パッケージの外部の回路との間で電圧や信号などの送受信を行う。
次に、撮像装置1に搭載した固体撮像装置13について説明する。まず、固体撮像装置13の構造について説明する。図8は、本実施形態の半導体装置3の構造を適用した固体撮像装置13の概略構成を示した概観図である。固体撮像装置13は、上述したように、本実施形態の半導体装置3の構造が適用された構造である。より具体的には、図8に示したように、固体撮像装置13は、画素チップ131と回路チップ132とから構成される。そして、画素チップ131と回路チップ132とは、接続領域133を介して電気的に接続されている。また、画素チップ131に形成された外部配線接続部134によって、パッケージの外部の回路との間で電圧や信号などの送受信を行う。
画素チップ131は、入射した被写体光(入射光)を電気信号に変換する光電変換部を含む通常の画素が2次元状に配列されたチップである。画素チップ131に備えたそれぞれの画素は、画素チップ131内の信号、あるいは回路チップ132から送信された信号によって駆動、制御される。そして、画素チップ131に備えたそれぞれの画素は、変換した電気信号を画素信号として回路チップ132に送信する。
回路チップ132は、画素チップ131に備えられたそれぞれの画素から送信されてきた電気信号(画素信号)を受信し、受信した電気信号(画素信号)に対する処理を行う処理回路を備えたチップである。回路チップ132に備えた処理回路が受信した画素信号に対して行う処理には、画素信号の一時的な記憶(保持)や積分、画素信号に対する簡単な演算処理などがある。また、回路チップ132は、画素チップ131を駆動、制御するための信号を画素チップ131に送信する。
接続領域133は、画素チップ131と回路チップ132とを電気的に接続するためのバンプが形成された領域である。また、接続領域133内には、バンプを介して画素チップ131と回路チップ132との間で送受信される信号(画素信号など)に混入するノイズを低減するためのシールドが形成されている。画素チップ131と回路チップ132とは、接続領域133内に形成されたバンプを介して信号(画素信号など)の送受信を行う。
<第3の実施形態>
次に、固体撮像装置13の構成について説明する。まず、本第3の実施形態の固体撮像装置13における画素チップ131について説明する。図9は、本第3の実施形態における固体撮像装置13内の画素チップ131の概略構成を示した回路図である。図9において、画素チップ131は、画素チップ垂直走査回路1311、画素アレイ部1312、単位画素1313、画素信号線1314、画素チップ垂直走査回路信号線1315、画素制御線1316で構成される第1の回路と、画素信号用バンプ13321と、制御信号用バンプ13322とを備えている。なお、図9に示した画素チップ131では、複数の単位画素1313が、10行10列に2次元的に配置された画素アレイ部1312の例を示している。
次に、固体撮像装置13の構成について説明する。まず、本第3の実施形態の固体撮像装置13における画素チップ131について説明する。図9は、本第3の実施形態における固体撮像装置13内の画素チップ131の概略構成を示した回路図である。図9において、画素チップ131は、画素チップ垂直走査回路1311、画素アレイ部1312、単位画素1313、画素信号線1314、画素チップ垂直走査回路信号線1315、画素制御線1316で構成される第1の回路と、画素信号用バンプ13321と、制御信号用バンプ13322とを備えている。なお、図9に示した画素チップ131では、複数の単位画素1313が、10行10列に2次元的に配置された画素アレイ部1312の例を示している。
なお、図9に示した画素チップ131において、各符号の後に表す“():括弧”内の数字および記号は、画素チップ131内に配置されている単位画素1313のそれぞれに対応した行番号と列番号とを表す。そして、“():括弧”内の最初の数字は行番号、最後の数字は列番号を示す。例えば、2行3列目の単位画素1313は、単位画素1313(2,3)と表す。また、行番号または列番号のいずれか一方のみ、すなわち、同一の行番号または列番号を表す場合には、同一の行番号または列番号を数字で表し、同一ではない行番号または列番号を“*:アスタリスク”で表す。例えば、2行目の画素制御線1316は、画素制御線1316(2,*)と表す。また、行番号および列番号の両方を特定しない場合には、各符号の後の“():括弧”を表記しない。
画素チップ垂直走査回路1311は、回路チップ132から送信され、制御信号用バンプ13322を介して画素チップ垂直走査回路信号線1315に入力された制御信号に応じて、画素アレイ部1312内のそれぞれの単位画素1313を制御し、各単位画素1313の画素信号を対応するそれぞれの画素信号線1314に出力させる。画素チップ垂直走査回路1311は、画素制御線1316に、単位画素1313を制御するための制御信号を、画素アレイ部1312に配置された単位画素1313の行毎に出力する。
画素アレイ部1312内のそれぞれの単位画素1313は、リセットされたときのリセット信号、および入射した被写体光の受光量(光線量)に応じた電気信号を、画素信号として画素信号線1314に出力する。単位画素1313から画素信号線1314に出力された画素信号は、画素信号用バンプ13321を介して回路チップ132へ送信される。
画素信号線1314および画素チップ垂直走査回路信号線1315は、画素信号用バンプ13321または制御信号用バンプ13322を介して回路チップ132に接続される。画素チップ131と回路チップ132とは、画素信号線1314および画素チップ垂直走査回路信号線1315によって、画素チップ131の駆動、制御に必要な各種信号、および画素チップ131内のそれぞれの単位画素1313が出力する画素信号の送受信を行う。
次に、本第3の実施形態の固体撮像装置13における回路チップ132について説明する。図10は、本第3の実施形態における固体撮像装置13内の回路チップ132の概略構成を示した回路図である。図10において、回路チップ132は、画素信号処理チップ垂直走査回路1321、メモリアレイ部1322、単位メモリ1323、メモリ信号線1324、画素信号処理チップ垂直信号線1325、画素信号処理チップ列処理回路1326、画素信号処理チップ水平走査回路1327、画素信号処理チップ水平走査回路信号線1328、イメージセンサ制御回路1329、イメージセンサ制御回路信号線13210、メモリ制御線13211で構成される第2の回路と、画素信号用バンプ13321と、制御信号用バンプ13322とを備えている。なお、図10に示した回路チップ132では、複数の単位メモリ1323が、10行10列に2次元的に配置されたメモリアレイ部1322の例を示している。
なお、図10に示した回路チップ132において、各符号の後に表す“():括弧”内の数字および記号は、回路チップ132内に配置されている単位メモリのそれぞれに対応した行番号と列番号とを表し、その表し方は、図9に示した画素チップ131と同様である。
画素信号処理チップ垂直走査回路1321は、イメージセンサ制御回路1329から入力された制御信号に応じて、メモリアレイ部1322内のそれぞれの単位メモリ1323を制御し、各単位メモリ1323のメモリ信号を対応するそれぞれの画素信号処理チップ垂直信号線1325に出力させる。画素信号処理チップ垂直走査回路1321は、メモリ制御線13211に、単位メモリ1323を制御するための制御信号を、メモリアレイ部1322に配置された単位メモリ1323の行毎に出力する。
メモリアレイ部1322内のそれぞれの単位メモリ1323には、画素チップ131に備えた画素アレイ部1312内の対応するそれぞれの単位画素1313から出力され、画素信号用バンプ13321を介してメモリ信号線1324に送信された画素信号が入力される。そして、それぞれの単位メモリ1323は、入力された画素信号に応じた電気信号を保持し、保持した電気信号をメモリ信号として画素信号処理チップ垂直信号線1325に出力する。
画素信号処理チップ列処理回路1326は、単位メモリ1323から出力されたメモリ信号に対する処理を行う。画素信号処理チップ列処理回路1326によるメモリ信号に対する処理では、イメージセンサ制御回路1329から入力されたクランプパルスΦCLおよびサンプルホールドパルスΦSHに基づいて、信号の減算(差分処理)が行われる。さらに、画素信号処理チップ列処理回路1326による処理には、信号の増幅、比較などの処理が含まれる。また、画素信号処理チップ列処理回路1326は、画素信号処理チップ垂直信号線1325に接続される電流源負荷を含んでいる。
画素信号処理チップ水平走査回路1327は、イメージセンサ制御回路1329から入力された水平走査パルスΦHに基づいて、画素信号処理チップ列処理回路1326から出力された処理後のメモリ信号を順次、画素信号処理チップ水平走査回路信号線1328に読み出す。
イメージセンサ制御回路1329は、画素信号処理チップ垂直走査回路1321、画素信号処理チップ列処理回路1326、画素信号処理チップ水平走査回路1327、および画素チップ131内の画素チップ垂直走査回路1311を制御する。
メモリ信号線1324およびイメージセンサ制御回路信号線13210は、画素信号用バンプ13321または制御信号用バンプ13322を介して画素チップ131に接続される。画素チップ131と回路チップ132とは、メモリ信号線1324およびイメージセンサ制御回路信号線13210によって、画素チップ131の駆動、制御に必要な各種信号、および画素チップ131内のそれぞれの単位画素1313が出力する画素信号の送受信を行う。
このイメージセンサ制御回路1329、画素信号処理チップ垂直走査回路1321、画素信号処理チップ列処理回路1326、画素信号処理チップ水平走査回路1327、および画素チップ垂直走査回路1311による制御によって、固体撮像装置13は、入射した被写体光の受光量に応じた画素信号を出力する。
次に、本第3の実施形態の固体撮像装置13の構造について説明する。図11は、本第3の実施形態における固体撮像装置13の構造を示した断面図である。図11は、図8に示した固体撮像装置13の概観図に点線A-Aで示した部分(A-A断面)における固体撮像装置13の断面図を示している。図11に示したように、固体撮像装置13では、図4に示した第2の実施形態の半導体装置3と同様に、シールド1333を、画素信号用バンプ13321または制御信号用バンプ13322と同様の形状の複数のサブシールドが連なるように形成している。
画素チップ131及び回路チップ132内には、固定電圧が設けられている。シールド1333は、図4に示した第2の実施形態の半導体装置3におけるシールド333と同様、画素チップ131及び回路チップ132のうち少なくとも一方の固定電位に接続されているノイズ遮へい層である。また、画素チップ131及び回路チップ132の積層方向に見た場合、シールド1333は、それぞれの画素信号用バンプ13321を囲むように形成されている。シールド1333を形成するそれぞれのサブシールドも、画素信号用バンプ13321と同じ材料で形成される。なお、シールド1333を形成するそれぞれのサブシールドも、第2の実施形態の半導体装置3におけるシールド333を形成するそれぞれのサブシールドと同様に、いずれかのチップ内の固定電位に接続されていれば、必ずしも画素チップ131と回路チップ132との両方の固定電位と、電気的に接続する必要はない。
このように、本第3の実施形態の固体撮像装置13でも、第1の実施形態および第2の実施形態の半導体装置3と同様に、画素信号用バンプ13321を形成する領域周辺にシールド1333を形成する。これにより、本第3の実施形態の固体撮像装置13でも、画素チップ131と回路チップ132との間が中空の状態である接続領域133の部分で、画素信号用バンプ13321を介して画素チップ131から回路チップ132に送信される画素信号に混入するノイズを低減することができる。すなわち、本第3の実施形態の固体撮像装置13では、単位画素1313が画素信号を出力した直後で、画素信号に混入するノイズをシールドすることができる。このことにより、本第3の実施形態の固体撮像装置13では、ノイズの少ない良好な画像を得ることができる。
また、第3の実施形態の固体撮像装置13においては、画素信号用バンプ13321と制御信号用バンプ13322とは共に、画素チップ131と回路チップ132とを電気的に接続する。そして、画素信号用バンプ13321と制御信号用バンプ13322とのそれぞれは、例えば、金(Au)メッキ、銅(Cu)メッキ、ニッケル(Ni)メッキなどの同じ材料で形成されている。また、シールド1333は、画素信号用バンプ13321と制御信号用バンプ13322と同じ材料で形成されている。しかし、図11を見てわかるように、シールド1333は、画素信号用バンプ13321のみを囲むように形成されている。これは、単位画素1313が出力するアナログ信号である画素信号を、画素信号用バンプ13321を介して画素チップ131から回路チップ132に送信する際に、画素信号に混入するノイズを低減することによって、画質低下を抑えた画像を得るためである。このため、固体撮像装置13では、ノイズによる影響が少ないと考えられるデジタルの制御信号が送信される制御信号用バンプ13322に対しては、シールドを形成していない。このように、バンプを介して送受信されるそれぞれの信号毎にノイズの影響を受ける可能性の有無を考慮して、シールドを形成することができる。
<第4の実施形態>
次に、固体撮像装置13の別の構成について説明する。なお、本第4の実施形態の固体撮像装置13も、図8に示した本実施形態の半導体装置3の構造を適用した固体撮像装置13と同様の構成である。従って、以下の説明においては、第3の実施形態の固体撮像装置13と同様の構成要素には同一の符号を付加して、詳細な説明は省略する。
次に、固体撮像装置13の別の構成について説明する。なお、本第4の実施形態の固体撮像装置13も、図8に示した本実施形態の半導体装置3の構造を適用した固体撮像装置13と同様の構成である。従って、以下の説明においては、第3の実施形態の固体撮像装置13と同様の構成要素には同一の符号を付加して、詳細な説明は省略する。
まず、本第4の実施形態の固体撮像装置13における画素チップ131について説明する。図12は、本第4の実施形態における固体撮像装置13内の画素チップ131の概略構成を示した回路図である。図12において、画素チップ131は、画素アレイ部1312、画素出力デジタル処理回路1318で構成される第1の回路と、制御信号用バンプ13322と、画素出力デジタル処理回路用バンプ13323とを備えている。
画素アレイ部1312内のそれぞれの単位画素1313は、回路チップ132から制御信号用バンプ13322を介して入力された制御信号に応じて、画素信号を画素出力デジタル処理回路1318に出力する。このとき、例えば、画素アレイ部1312に備えた単位画素1313の行選択は、制御信号用バンプ13322を介して入力された制御信号によって直接行われる。
画素出力デジタル処理回路1318は、画素アレイ部1312内のそれぞれの単位画素1313から出力された画素信号に対してデジタル信号処理を行い、回路チップ132から制御信号用バンプ13322を介して入力された制御信号に応じて、デジタル信号処理後の信号を、画素出力デジタル処理回路用バンプ13323を介して回路チップ132に送信する。
画素出力デジタル処理回路1318は、例えば、単位画素1313が出力するアナログ信号である画素信号をデジタルデータに変換するAD変換回路や、AD変換後の多ビットのデジタルデータを、1ビットのデジタルデータにシリアライズして順次出力するシリアライザなどのデジタル信号処理回路を備えている。また、画素出力デジタル処理回路1318は、シリアライザを駆動するクロックを供給するクロック供給回路を備えている。
なお、画素出力デジタル処理回路1318がAD変換する際に使用するサンプリングクロックや、シリアライズしたデジタルデータを出力するタイミング、つまり、クロック供給回路がシリアライザに供給するクロックは、制御信号用バンプ13322を介して入力される制御信号よりも高速な信号である。また、AD変換で使用するサンプリングクロックや、シリアライズしたデジタルデータを出力するタイミング(クロック供給回路がシリアライザに供給するクロック)は、AD変換の分解能やデジタルデータのビット数に応じて、さらに高速になることもある。このため、画素出力デジタル処理回路1318が画素出力デジタル処理回路用バンプ13323を介して回路チップ132に送信するデジタル信号処理後の信号は、制御信号よりも高速な信号となる。
例えば、単位画素1313が出力した画素信号を10ビットのデジタルデータにAD変換し、AD変換後の10ビットのデジタルデータを、制御信号が1つの単位画素1313に対して画素信号の出力を制御する周期と同じ周期で出力する場合を考える。つまり、画素出力デジタル処理回路1318が、制御信号によって1つの単位画素1313を制御する周期で、10ビットのデジタルデータの全てを1ビットずつ出力する場合を考える。この場合、シリアライザがデジタルデータを出力するためのクロック(クロック供給回路がシリアライザに供給するクロック)は、制御信号の周波数よりも10倍またはそれ以上高い周波数となる。つまり、シリアライザがそれぞれのデジタルデータを出力する周期は、制御信号が単位画素1313を制御する周期に対して10倍またはそれ以上の周期になる。このため、シリアライザによってシリアライズされた1ビットのデジタルデータの信号も、クロックのタイミングに同期した早い周期で変化する信号となる。
次に、本第4の実施形態の固体撮像装置13における回路チップ132について説明する。図13は、本第4の実施形態における固体撮像装置13内の回路チップ132の概略構成を示した回路図である。図13において、回路チップ132は、画素出力デジタル処理回路制御回路13212、画素アレイ部制御回路13213、画素信号出力回路13214で構成される第2の回路と、制御信号用バンプ13322と、画素出力デジタル処理回路用バンプ13323とを備えている。
画素アレイ部制御回路13213は、画素アレイ部1312内のそれぞれの単位画素1313を制御することによって、各単位画素1313の画素信号を対応する画素出力デジタル処理回路1318に出力させるための制御信号を生成する。例えば、画素アレイ部制御回路13213は、画素アレイ部1312内のそれぞれの単位画素1313を行毎に選択するための制御信号や、それぞれの単位画素1313をリセットするための制御信号などを生成する。画素アレイ部制御回路13213が生成したそれぞれの制御信号は、制御信号用バンプ13322を介して画素チップ131に備えた画素アレイ部1312内のそれぞれの単位画素1313へ送信される。
画素出力デジタル処理回路制御回路13212は、画素出力デジタル処理回路1318を制御することによって、各単位画素1313から出力された画素信号に対してデジタル信号処理を行わせるための制御信号を生成する。例えば、画素出力デジタル処理回路制御回路13212は、画素信号をAD変換する際に使用するサンプリングクロックを生成するための信号サンプルタイミング制御信号や、シリアライザがデジタルデータをシリアライズする際に使用するクロックをクロック供給回路が生成するためのタイミング制御信号などを生成する。画素出力デジタル処理回路制御回路13212が生成したそれぞれの制御信号は、制御信号用バンプ13322を介して画素チップ131に備えられたそれぞれの画素出力デジタル処理回路1318へ送信される。
画素信号出力回路13214は、画素出力デジタル処理回路1318から画素出力デジタル処理回路用バンプ13323を介して送信されたデジタル信号処理後の信号を受信し、受信したデジタル信号処理後の信号(例えば、デジタルデータ)を、固体撮像装置13の出力信号として外部に出力する。
次に、本第4の実施形態の固体撮像装置13の構造について説明する。図14は、本第4の実施形態における固体撮像装置13の構造を示した断面図である。図14は、図11に示した第3の実施形態の固体撮像装置13の構造と同様に、図8に示した固体撮像装置13の概観図に点線A-Aで示した部分(A-A断面)における固体撮像装置13の断面図を示している。図14に示したように、固体撮像装置13では、図11に示した第3の実施形態の固体撮像装置13と同様に、シールド1334を、制御信号用バンプ13322または画素出力デジタル処理回路用バンプ13323と同様の形状の複数のサブシールドが連なるように形成している。
画素チップ131及び回路チップ132内には、固定電圧が設けられている。シールド1334は、図11に示した第3の実施形態の固体撮像装置13におけるシールド1333と同様、画素チップ131及び回路チップ132のうち少なくとも一方の固定電位に接続されているノイズ遮へい層である。また、画素チップ131及び回路チップ132の積層方向に見た場合、シールド1334は、それぞれの画素出力デジタル処理回路用バンプ13323を囲むように形成され、形成されたチップ内で固定電位に接続されている。シールド1334を形成するそれぞれのサブシールドも、画素出力デジタル処理回路用バンプ13323と同じ材料で形成される。なお、シールド1334を形成するそれぞれのサブシールドも、第3の実施形態の固体撮像装置13におけるシールド1333を形成するそれぞれのサブシールドと同様に、いずれかのチップ内の固定電位に接続されていれば、必ずしも画素チップ131と回路チップ132との両方の固定電位と、電気的に接続する必要はない。
なお、シールド1334を形成する目的は、第3の実施形態の固体撮像装置13と異なる。より具体的には、シールド1334は、画素出力デジタル処理回路用バンプ13323を介して画素チップ131と回路チップ132との間で送受信される信号に混入するノイズを低減するのではなく、画素チップ131と回路チップ132との間で送受信される信号から放出されるノイズを低減することを目的として形成されている。これは、上述したように、画素出力デジタル処理回路用バンプ13323を介して画素チップ131から回路チップ132に送信されるデジタル信号処理後の信号は、制御信号用バンプ13322を介して回路チップ132から画素チップ131に送信される制御信号よりも早い周期で変化する信号であるからである。つまり、早い周期で変化するデジタル信号処理後の信号によってノイズが放出されると、固体撮像装置13内の他の信号に対して影響を及ぼしてしまうことがあるため、本第4の実施形態の固体撮像装置13では、シールド1334を形成することによって、デジタル信号処理後の信号が放出するノイズをシールドする。これにより、他の信号へのノイズの混入を低減している。
このように、本第4の実施形態の固体撮像装置13でも、第3の実施形態の固体撮像装置13と同様に、画素出力デジタル処理回路用バンプ13323を形成する領域周辺にシールド1334を形成する。このとき、本第4の実施形態の固体撮像装置13では、ノイズを放出してしまう可能性がある信号、つまり、高速で動作する信号を送受信するそれぞれの画素出力デジタル処理回路用バンプ13323の周辺を囲むように形成する。これにより、本第4の実施形態の固体撮像装置13では、画素チップ131と回路チップ132との間が中空の状態である接続領域133の部分で、画素出力デジタル処理回路用バンプ13323を介して画素チップ131から回路チップ132に送信されるデジタル信号処理後の信号が放出するノイズを低減することができる。すなわち、本第4の実施形態の固体撮像装置13では、画素出力デジタル処理回路1318がデジタル信号処理後の信号を出力した直後で、デジタル信号処理後の信号が放出するノイズをシールドすることができる。このことにより、本第4の実施形態の固体撮像装置13でも、ノイズの少ない良好な画像を得ることができる。
また、第4の実施形態の固体撮像装置13においては、制御信号用バンプ13322と、画素出力デジタル処理回路用バンプ13323とは共に、画素チップ131と回路チップ132とを電気的に接続する。そして、制御信号用バンプ13322と画素出力デジタル処理回路用バンプ13323とのそれぞれは、例えば、金(Au)メッキ、銅(Cu)メッキ、ニッケル(Ni)メッキなどの同じ材料で形成されている。また、シールド1334は、制御信号用バンプ13322と画素出力デジタル処理回路用バンプ13323と同じ材料で形成されている。しかし、図14を見てわかるように、シールド1334は、画素出力デジタル処理回路用バンプ13323のみを囲むように形成されている。これは、上述したように、単位画素1313が出力した画素信号に応じたデジタル信号を、画素出力デジタル処理回路用バンプ13323を介して画素チップ131から回路チップ132に送信する際に放出するノイズを低減することによって、画質低下を抑えた画像を得るためである。このため、第4の実施形態の固体撮像装置13では、比較的低速で動作し、ノイズを放出する可能性が少ないと考えられる制御信号が送信される制御信号用バンプ13322に対しては、シールドを形成していない。このように、バンプを介して送受信される信号を、高速で動作する信号と低速で動作する信号とに分類することによって、それぞれの信号毎にノイズを放出する可能性の有無を考慮して、シールドを形成することができる。
なお、例えば、画素出力デジタル処理回路制御回路13212が、画素出力デジタル処理回路1318が画素信号をAD変換する際に使用するサンプリングクロックや、シリアライザがデジタルデータをシリアライズする際に使用するクロックを、対応する制御信号用バンプ13322を介して直接送信する場合には、この制御信号用バンプ13322の周辺を囲むようにシールドを形成することが考えられる。ただし、画素出力デジタル処理回路制御回路13212がクロックを直接送信する場合であっても、例えば、画素出力デジタル処理回路1318内に逓倍回路を備え、送信されたクロックを画素チップ131内で逓倍して使用する際には、対応する制御信号用バンプ13322に隣接したシールドを形成しないことも考えられる。
上記に述べたように、本発明を実施するための形態によれば、それぞれの半導体チップに形成されたチップ接続部が電気的に接続される接続領域内に、それぞれのチップ接続部に隣接し、このチップ接続部を間に挟む(チップ接続部を囲む)ような位置にシールドを形成する。これにより、本発明を実施するための形態の半導体装置では、それぞれの半導体チップの間が中空の状態であっても、チップ接続部を介して接続された信号に混入するノイズまたはチップ接続部を介して接続された信号から放出されるノイズを低減する、つまり、ノイズをシールドすることができる。このことにより、本発明を実施するための形態では、ノイズによる影響が少ない3次元構造の半導体装置を提供することができる。
また、本発明を実施するための形態によれば、アナログの信号や高速に動作する信号など、ノイズの影響の有無、またはノイズの放出の有無を考慮して、シールドを形成する。
また、本発明を実施するための形態では、それぞれのチップ接続部を形成する製造工程や製造プロセスと同じ方法で、容易にシールドを形成することができる。これにより、本発明を実施するための形態の半導体装置では、より有効にシールドを形成することができる。
また、本発明を実施するための形態では、それぞれのチップ接続部を形成する製造工程や製造プロセスと同じ方法で、容易にシールドを形成することができる。これにより、本発明を実施するための形態の半導体装置では、より有効にシールドを形成することができる。
なお、本実施形態においては、本発明の半導体装置の構造を、固体撮像装置に適用した場合について説明したが、本発明の半導体装置の構造を適用することができる半導体装置は、本発明を実施するための形態に限定されない。また、本発明における具体的な構成や構造は、本発明を実施するための形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更をすることができる。例えば、半導体装置内の回路要素が変わったことにより、チップ接続部が形成される位置や半導体装置の構成要素や回路構成が変更された場合でも、半導体チップに形成されたチップ接続部を介して信号を送受信する3次元構造の半導体装置であれば、いかなる構成の半導体装置であっても、本発明の考え方を適用することができる。
また、第4の実施形態においては、画素出力デジタル処理回路1318内にAD変換回路やシリアライザなどのデジタル信号処理回路、およびクロック供給回路や逓倍回路を備えた一例について説明したが、構成要素や回路構成が異なる場合でも、本発明の考え方を適用することができる。例えば、AD変換回路、シリアライザ、クロック供給回路、および逓倍回路の全てまたは一部を、回路チップ132内に備えた構成であっても、本発明の考え方を適用することができる。
また、本発明の実施形態に係る半導体装置や固体撮像装置は、2枚の基板が接続部により接続されていてもよいし、3枚以上の基板が接続部で接続されていてもよい。3枚以上の基板が接続部で接続される半導体装置や固体撮像装置の場合、そのうちの2枚が請求項に係る第1の基板と第2の基板に相当する。
以上、本発明の実施形態について、図面を参照して説明してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲においての種々の変更も含まれる。
上記各実施形態によれば、基板表面に形成された電極を介して送受信される信号に混入するノイズを低減することができる3次元構造の半導体装置を提供することができる。
1 撮像装置
2 レンズユニット部
3 半導体装置
13 固体撮像装置(半導体装置)
31 第1の半導体チップ(第1の基板)
131 画素チップ(第1の基板)
1311 画素チップ垂直走査回路(第1の回路)
1312 画素アレイ部(第1の回路)
1313 単位画素(第1の回路)
1314 画素信号線
1315 画素チップ垂直走査回路信号線
1316 画素制御線
1318 画素出力デジタル処理回路(第1の回路)
311 第1の半導体層
312 第1のデバイス形成領域
313 第1の配線層
314 第1のメタル配線
32 第2の半導体チップ(第2の基板)
132 回路チップ(第2の基板)
1321 画素信号処理チップ垂直走査回路(第2の回路)
13212 画素出力デジタル処理回路制御回路(第2の回路)
13213 画素アレイ部制御回路(第2の回路)
13214 画素信号出力回路(第2の回路)
1322 メモリアレイ部(第2の回路)
1323 単位メモリ(第2の回路)
1324 メモリ信号線
1325 画素信号処理チップ垂直信号線
1326 画素信号処理チップ列処理回路
1327 画素信号処理チップ水平走査回路
1328 画素信号処理チップ水平走査回路信号線
1329 イメージセンサ制御回路(第2の回路)
13210 イメージセンサ制御回路信号線
13211 メモリ制御線
321 第2の半導体層
322 第2のデバイス形成領域
323 第2の配線層
324 第2のメタル配線
33,133 接続領域
331 バンプ(接続部)
13321 画素信号用バンプ(接続部)
13322 制御信号用バンプ(接続部)
13323 画素出力デジタル処理回路用バンプ(接続部)
332,334 シールド(遮へい層)
333,335,336,1333,1334 シールド(遮へい層,単位遮へい層)
335a,335b,335c,335d,336a,336b サブシールド(単位遮へい層)
34,134 外部配線接続部
4 発光装置
5 メモリ
6 記録装置
7 表示装置
8 画像信号処理回路
9 レンズ制御装置
10 イメージセンサ制御装置
11 発光制御装置
12 カメラ制御装置
2 レンズユニット部
3 半導体装置
13 固体撮像装置(半導体装置)
31 第1の半導体チップ(第1の基板)
131 画素チップ(第1の基板)
1311 画素チップ垂直走査回路(第1の回路)
1312 画素アレイ部(第1の回路)
1313 単位画素(第1の回路)
1314 画素信号線
1315 画素チップ垂直走査回路信号線
1316 画素制御線
1318 画素出力デジタル処理回路(第1の回路)
311 第1の半導体層
312 第1のデバイス形成領域
313 第1の配線層
314 第1のメタル配線
32 第2の半導体チップ(第2の基板)
132 回路チップ(第2の基板)
1321 画素信号処理チップ垂直走査回路(第2の回路)
13212 画素出力デジタル処理回路制御回路(第2の回路)
13213 画素アレイ部制御回路(第2の回路)
13214 画素信号出力回路(第2の回路)
1322 メモリアレイ部(第2の回路)
1323 単位メモリ(第2の回路)
1324 メモリ信号線
1325 画素信号処理チップ垂直信号線
1326 画素信号処理チップ列処理回路
1327 画素信号処理チップ水平走査回路
1328 画素信号処理チップ水平走査回路信号線
1329 イメージセンサ制御回路(第2の回路)
13210 イメージセンサ制御回路信号線
13211 メモリ制御線
321 第2の半導体層
322 第2のデバイス形成領域
323 第2の配線層
324 第2のメタル配線
33,133 接続領域
331 バンプ(接続部)
13321 画素信号用バンプ(接続部)
13322 制御信号用バンプ(接続部)
13323 画素出力デジタル処理回路用バンプ(接続部)
332,334 シールド(遮へい層)
333,335,336,1333,1334 シールド(遮へい層,単位遮へい層)
335a,335b,335c,335d,336a,336b サブシールド(単位遮へい層)
34,134 外部配線接続部
4 発光装置
5 メモリ
6 記録装置
7 表示装置
8 画像信号処理回路
9 レンズ制御装置
10 イメージセンサ制御装置
11 発光制御装置
12 カメラ制御装置
Claims (12)
- 第1の回路が形成された第1の基板と、
第2の回路が形成され、前記第1の基板と離間して配置された第2の基板と、
前記第1の基板と前記第2の基板との間に配置され、前記第1の回路と前記第2の回路とを電気的に接続する接続部と、
前記第1の基板と前記第2の基板との間に前記接続部とともに挟まれ、前記接続部を囲むように配置され、前記第1の基板と前記第2の基板との少なくとも一方の基板内の値が一定である電位に接続された遮へい層と、
を備える
半導体装置。 - 前記遮へい層は、複数の単位遮へい層から構成され、
前記第1の基板と前記第2の基板との積層方向から見た場合、前記複数の単位遮へい層が、前記接続部を囲むように配置される
請求項1に記載の半導体装置。 - 前記遮へい層は、第1の単位遮へい層と第2の単位遮へい層とから構成され、
前記第1の単位遮へい層と前記第2の単位遮へい層とが、対応する前記接続部を囲むように配置される
請求項2に記載の半導体装置。 - 前記遮へい層は、さらに、第3の単位遮へい層と第4の単位遮へい層とから構成され、
前記第3の単位遮へい層と前記第4の単位遮へい層とが、対応する前記第1の単位遮へい層と前記第2の単位遮へい層とが配置された位置を結ぶ線に直交する方向に、対応する前記接続部を囲むように配置される
請求項3に記載の半導体装置。 - 前記複数の単位遮へい層は、
前記第1の基板および前記第2の基板のそれぞれに形成された前記接続部の接続面の形状と同様の形状である
請求項2から請求項4のいずれか1の項に記載の半導体装置。 - 前記遮へい層は、
前記第1の基板または前記第2の基板のいずれか一方の基板に形成され、前記形成された基板内の値が一定である電位に接続される
請求項1に記載の半導体装置。 - 前記第1の単位遮へい層及び前記第2の単位遮へい層のうち、一方の前記単位遮へい層が前記第1の基板に形成され、他方の前記単位遮へい層が前記第2の基板に形成され、
前記第1の単位遮へい層及び前記第2の単位遮へい層それぞれは、
前記単位遮へい層が形成された基板内の値が一定である電位に接続される
請求項2から請求項5のいずれか1の項に記載の半導体装置。 - 前記第1の回路は、
入射光を電気信号に変換し、前記変換した電気信号を画素信号として、前記接続部を介して前記第2の回路に送信する複数の画素を備え、
前記第2の回路は、
前記接続部を介してそれぞれの前記画素から送信された前記画素信号を受信し、前記受信した前記画素信号に対する処理を行う処理回路を備える
請求項1から請求項7のいずれか1の項に記載の半導体装置。 - 前記遮へい層は、
前記第1の基板に形成された第1の回路と前記第2の基板に形成された第2の回路との間でアナログの信号を送受信する前記接続部を囲むように配置される
請求項8に記載の半導体装置。 - 前記遮へい層は、
前記第1の基板に形成された第1の回路と前記第2の基板に形成された第2の回路との間で前記接続部を介して送受信される信号を、低速な動作をする信号と高速な動作をする信号とに分類した場合に、高速な動作をする信号を送受信する前記接続部を囲むように配置される
請求項8に記載の半導体装置。 - 前記第1の回路または前記第2の回路は、
前記画素信号をデジタルデータに変換するAD変換回路と、
AD変換後の多ビットの前記デジタルデータを1ビットのデジタルデータにシリアライズするシリアライザと、
前記シリアライザを駆動するクロックを供給するクロック供給回路と、
を備える
請求項8から請求項10のいずれか1の項に記載の半導体装置。 - 前記遮へい層は、前記接続部と同じ材料で形成される
請求項1から請求項11のいずれか1の項に記載の半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/052,037 US9712775B2 (en) | 2013-09-18 | 2016-02-24 | Semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013192904A JP2015060909A (ja) | 2013-09-18 | 2013-09-18 | 半導体装置 |
JP2013-192904 | 2013-09-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/052,037 Continuation US9712775B2 (en) | 2013-09-18 | 2016-02-24 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015041279A1 true WO2015041279A1 (ja) | 2015-03-26 |
Family
ID=52688926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074652 WO2015041279A1 (ja) | 2013-09-18 | 2014-09-18 | 半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9712775B2 (ja) |
JP (1) | JP2015060909A (ja) |
WO (1) | WO2015041279A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017117828A (ja) * | 2015-12-21 | 2017-06-29 | ソニー株式会社 | 固体撮像素子および電子装置 |
CN107895731A (zh) * | 2016-10-04 | 2018-04-10 | 豪威科技股份有限公司 | 在互连件之间具有屏蔽凸块的堆叠式图像传感器 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015216527B3 (de) | 2015-08-28 | 2016-10-27 | Siemens Healthcare Gmbh | Röntgendetektor mit kapazitätsoptimiertem, lichtdichtem Padaufbau und medizinisches Gerät mit diesem Röntgendetektor |
US10930603B2 (en) * | 2016-03-22 | 2021-02-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Coaxial through via with novel high isolation cross coupling method for 3D integrated circuits |
JPWO2017175376A1 (ja) * | 2016-04-08 | 2019-02-14 | オリンパス株式会社 | 半導体装置および半導体装置の製造方法 |
JP6932580B2 (ja) | 2017-08-04 | 2021-09-08 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子 |
WO2020138488A1 (ja) * | 2018-12-28 | 2020-07-02 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像装置及び電子機器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS615549A (ja) * | 1984-06-20 | 1986-01-11 | Hitachi Micro Comput Eng Ltd | 半導体装置 |
JPH04340732A (ja) * | 1991-05-17 | 1992-11-27 | Toshiba Corp | 実装回路装置 |
JPH1027989A (ja) * | 1996-07-11 | 1998-01-27 | Sony Corp | プリント配線板 |
JP2003347506A (ja) * | 2003-05-26 | 2003-12-05 | Rohm Co Ltd | チップ・オン・チップ構造の半導体装置およびそれに用いる半導体チップ |
WO2007105478A1 (ja) * | 2006-02-27 | 2007-09-20 | Mitsumasa Koyanagi | 集積センサを搭載した積層型半導体装置 |
JP2013016963A (ja) * | 2011-07-01 | 2013-01-24 | Olympus Corp | 固体撮像装置、固体撮像装置の制御方法、および撮像装置 |
JP2013183347A (ja) * | 2012-03-02 | 2013-09-12 | Konica Minolta Inc | 固体撮像装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3918635B2 (ja) * | 2002-05-30 | 2007-05-23 | ソニー株式会社 | 直流レベル制御方法、クランプ回路、撮像装置 |
JP4539312B2 (ja) * | 2004-12-01 | 2010-09-08 | セイコーエプソン株式会社 | 電気光学装置及び電子機器 |
JP4686201B2 (ja) * | 2005-01-27 | 2011-05-25 | パナソニック株式会社 | 固体撮像装置及びその製造方法 |
US7750964B2 (en) * | 2005-09-30 | 2010-07-06 | Sony Corporation | Method and apparatus for driving a semiconductor device including driving of signal charges within and outside an effective transfer period |
JP2007105478A (ja) | 2005-10-11 | 2007-04-26 | Jeong Ja Jung | 座式作業用下肢補助装置 |
TWI370678B (en) * | 2006-02-15 | 2012-08-11 | Sony Corp | Solid-state image-capturing device, driving method thereof, camera, electric charge transfer device, driving method and driving device for driving load, and electronic equipment |
US8525287B2 (en) * | 2007-04-18 | 2013-09-03 | Invisage Technologies, Inc. | Materials, systems and methods for optoelectronic devices |
JP2011039340A (ja) * | 2009-08-13 | 2011-02-24 | Sony Corp | 撮像装置 |
JP5716347B2 (ja) | 2010-10-21 | 2015-05-13 | ソニー株式会社 | 固体撮像装置及び電子機器 |
US8542614B2 (en) * | 2011-08-30 | 2013-09-24 | Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense | Full-duplex wireless voice broadcasting apparatus with channel-changing and interference-resistance |
CN103367374B (zh) * | 2012-04-02 | 2017-06-09 | 索尼公司 | 固体摄像装置及其制造方法、半导体器件的制造装置和方法、电子设备 |
KR101240537B1 (ko) * | 2012-05-07 | 2013-03-11 | (주)실리콘화일 | 이종접합 구조의 칩 적층 이미지센서 및 그 제조방법 |
-
2013
- 2013-09-18 JP JP2013192904A patent/JP2015060909A/ja active Pending
-
2014
- 2014-09-18 WO PCT/JP2014/074652 patent/WO2015041279A1/ja active Application Filing
-
2016
- 2016-02-24 US US15/052,037 patent/US9712775B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS615549A (ja) * | 1984-06-20 | 1986-01-11 | Hitachi Micro Comput Eng Ltd | 半導体装置 |
JPH04340732A (ja) * | 1991-05-17 | 1992-11-27 | Toshiba Corp | 実装回路装置 |
JPH1027989A (ja) * | 1996-07-11 | 1998-01-27 | Sony Corp | プリント配線板 |
JP2003347506A (ja) * | 2003-05-26 | 2003-12-05 | Rohm Co Ltd | チップ・オン・チップ構造の半導体装置およびそれに用いる半導体チップ |
WO2007105478A1 (ja) * | 2006-02-27 | 2007-09-20 | Mitsumasa Koyanagi | 集積センサを搭載した積層型半導体装置 |
JP2013016963A (ja) * | 2011-07-01 | 2013-01-24 | Olympus Corp | 固体撮像装置、固体撮像装置の制御方法、および撮像装置 |
JP2013183347A (ja) * | 2012-03-02 | 2013-09-12 | Konica Minolta Inc | 固体撮像装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017117828A (ja) * | 2015-12-21 | 2017-06-29 | ソニー株式会社 | 固体撮像素子および電子装置 |
US10917602B2 (en) | 2015-12-21 | 2021-02-09 | Sony Corporation | Stacked imaging device with Cu-Cu bonding portion |
CN107895731A (zh) * | 2016-10-04 | 2018-04-10 | 豪威科技股份有限公司 | 在互连件之间具有屏蔽凸块的堆叠式图像传感器 |
Also Published As
Publication number | Publication date |
---|---|
US9712775B2 (en) | 2017-07-18 |
US20160173803A1 (en) | 2016-06-16 |
JP2015060909A (ja) | 2015-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015041279A1 (ja) | 半導体装置 | |
US11177312B2 (en) | Image sensor and image capture device | |
US10264199B2 (en) | Solid-state imaging device, method for producing solid-state imaging device, and electronic apparatus using photoelectric conversion elements | |
KR101799262B1 (ko) | 촬상소자 및 촬상장치 | |
JP7103388B2 (ja) | 撮像素子および撮像装置 | |
US20120205520A1 (en) | Image sensor and sensing method thereof | |
JP6457738B2 (ja) | 固体撮像装置および撮像装置 | |
JP2012257095A (ja) | 固体撮像装置、撮像装置、および信号読み出し方法 | |
KR20220025915A (ko) | 촬상 소자 및 촬상 장치 | |
JP5791982B2 (ja) | 固体撮像装置、撮像装置、および信号読み出し方法 | |
TW201618535A (zh) | 固態攝影裝置、固態攝影裝置的製造方法以及電子機器 | |
JP6732043B2 (ja) | Tdi方式リニアイメージセンサ | |
JP6907358B2 (ja) | 撮像素子及び撮像装置 | |
WO2017077620A1 (ja) | 固体撮像装置 | |
JP6388662B2 (ja) | 固体撮像装置 | |
JP5234100B2 (ja) | 固体撮像装置および撮像装置 | |
WO2015122299A1 (ja) | 固体撮像装置、電子機器、および固体撮像装置の製造方法 | |
JPWO2008142968A1 (ja) | 撮像素子およびそれを備えた撮像装置 | |
US20230207600A1 (en) | Solid-state image pickup element and electronic device | |
JP7230946B2 (ja) | 撮像素子、及び撮像装置 | |
US9491387B2 (en) | Image capturing device having substrates connected through a connection unit | |
JP2024127607A (ja) | 光電変換装置及び光電変換システム | |
JP2023084281A (ja) | 光電変換装置、機器 | |
JP2006013979A (ja) | 固体撮像装置 | |
JP2006339518A (ja) | 固体撮像素子及び撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14845753 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14845753 Country of ref document: EP Kind code of ref document: A1 |