WO2014208714A1 - Polyarylene sulfonic acids and precursors thereof, production method of polyarylene sulfonic acids and precursors thereof, and composite electrolyte film and production method therefor - Google Patents
Polyarylene sulfonic acids and precursors thereof, production method of polyarylene sulfonic acids and precursors thereof, and composite electrolyte film and production method therefor Download PDFInfo
- Publication number
- WO2014208714A1 WO2014208714A1 PCT/JP2014/067117 JP2014067117W WO2014208714A1 WO 2014208714 A1 WO2014208714 A1 WO 2014208714A1 JP 2014067117 W JP2014067117 W JP 2014067117W WO 2014208714 A1 WO2014208714 A1 WO 2014208714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- sulfonic acid
- carbon atoms
- polymer electrolyte
- formula
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/10—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1044—Mixtures of polymers, of which at least one is ionically conductive
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/142—Side-chains containing oxygen
- C08G2261/1428—Side-chains containing oxygen containing acyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/145—Side-chains containing sulfur
- C08G2261/1452—Side-chains containing sulfur containing sulfonyl or sulfonate-groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/51—Charge transport
- C08G2261/516—Charge transport ion-conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to polyarylene sulfonic acids and precursors thereof that can be used as a polymer electrolyte, a method for producing the same, and a composite polymer electrolyte membrane using the polyarylene sulfonic acids and a method for producing the same.
- a fuel cell is a device that generates electricity through a chemical reaction between hydrogen and oxygen, and is expected to be a major source of energy for the next generation, especially in the automobile industry.
- the fuel cell supplies hydrogen to the fuel electrode and is oxidized at the fuel electrode to generate protons and electrons.
- the generated protons move to the air electrode side through the polymer electrolyte membrane, and the generated electrons move to the air electrode side through the connected circuit.
- oxygen reacts with protons and electrons to produce water.
- a fuel cell is a device that generates electricity by a series of reactions.
- the polymer electrolyte membrane used here is required to have high proton conductivity. Other properties include high film strength, low hydrogen and oxygen permeability, and poor chemical oxidation. In addition, cost reduction is also eagerly desired. Examples of the polymer electrolyte membrane that satisfies these required characteristics include hydrocarbon polymer electrolyte membranes.
- polyarylene sulfonic acids having a main chain skeleton directly linked with aromatic rings and having a sulfonic acid group as a proton conductive group are promising as materials for polymer electrolyte membranes.
- polyarylene sulfonic acid can be obtained by copolymerizing a monomer having a protected sulfonic acid group and deprotecting the obtained polyarylene sulfonic acid precursor (see Patent Documents 1 and 2). reference).
- the polyarylene sulfonic acid disclosed in the above patent document can be used as a polymer electrolyte membrane by molding into a membrane, but in order to prevent dissolution in water, it is necessary to introduce a water-insoluble site by copolymerization. The amount of sulfonic acid groups in the polymer could not be increased.
- polymer electrolyte membranes have high proton conductivity as cation exchange membranes, are sufficiently stable chemically, thermally, electrochemically and mechanically and can be used over a long period of time.
- Membranes have been used.
- perfluorocarbon sulfonic acid membranes generally undergo significant degradation due to hydrogen peroxide generated by the reaction between permeated hydrogen and oxygen and the resulting hydroxy radicals when gas leakage is large and held in an open circuit state. It has been.
- the resin component is combusted, but the perfluorocarbon sulfonic acid membrane contains a large amount of fluorine, which prevents corrosion of incineration facilities and discharges harmful gases. It is necessary to take sufficient measures to prevent it.
- problems have been pointed out with fluorine-based electrolytes, such as fluorine ions generated by electrolyte degradation when used over a long period of time, corroding the inside of the system.
- hydrocarbon polymer solid electrolytes in which ionic groups such as sulfonic acid groups are introduced into polymers such as polyetheretherketone, polyethersulfone, and polysulfone have recently become popular. It is being considered.
- hydrocarbon-based polymer solid electrolytes tend to hydrate and swell compared to perfluorocarbon sulfonic acid, and have large dimensional changes, so there are problems with mechanical properties such as breakage due to repeated drying and wetting. .
- a method for increasing the strength and durability of the polymer solid electrolyte membrane there is a method of crosslinking the electrolyte membrane.
- a cross-linked polymer electrolyte membrane obtained by reacting a radical polymerizable monomer in the presence of an initiator in the presence of a polyarylene-based electrolyte (see, for example, Patent Document 3) or a polyfunctional triazine compound or a polyfunctional triazine compound in the electrolyte membrane
- a cross-linked polymer electrolyte membrane having a casing and a reaction thereof has been reported.
- the durability is improved by crosslinking, but if the proton conductivity is increased by increasing the amount of sulfonic acid groups in the electrolyte, the crosslinking will not suppress the expansion of the polymer electrolyte when it contains water, resulting in damage to the membrane. There is a fear. Increasing the crosslink density in order to suppress the expansion reduces the sulfonic acid group in the electrolyte, and it is difficult to overcome the trade-off relationship between the improvement in proton conductivity and the durability.
- a composite polymer solid electrolyte membrane in which various reinforcing materials are combined with the polymer solid electrolyte membrane has been proposed.
- a composite polymer solid electrolyte membrane (see, for example, Patent Document 6) in which the void portion of the stretched porous polytetrafluoroethylene membrane is impregnated with a perfluorocarbon sulfonic acid polymer, which is an ion exchange resin, is a perfluorocarbon sulfonic acid polymer.
- a polymer solid electrolyte membrane in which a polybenzoxazole porous membrane and a polymer solid electrolyte are combined as a hydrocarbon polymer solid electrolyte reinforced with a hydrocarbon reinforcing material.
- an electrolyte membrane obtained by polymerizing a polymer having ion conductivity from a monomer permeated into the porous substrate see, for example, Patent Document 9) or a polymer having an ion exchange group is filled in the porous substrate.
- An electrolyte membrane for example, see Patent Document 10.
- the proportion of the filled hydrocarbon polymer solid electrolyte is smaller than that of the hydrocarbon polymer solid electrolyte single membrane, the ion exchange capacity of the obtained composite electrolyte membrane is lowered. For this reason, the electrolyte membrane is not so high in proton conductivity and is considered to be insufficient in terms of power generation performance when applied to a fuel cell using hydrogen as a fuel.
- An object of the present invention is to solve the above-mentioned problems of the prior art, and (1) to provide a useful precursor for producing polyarylene sulfonic acids that dissolve in water, and to provide a production method thereof.
- hydrocarbons To solve the shortage of mechanical strength, which was a problem of polymer electrolyte membranes, improve proton conductivity as a composite membrane, and improve durability and performance when used in fuel cells.
- polyarylene sulfonic acid having a large amount of sulfonic acid groups in the molecule and introducing a structure that becomes a reaction point with other reactive compounds can be incorporated into reactive compounds or molecules having proton conductive groups.
- a reactive compound composition composed of a reactive compound having two or more reactive groups, etc., is filled into the pores of the porous substrate, and the reactive compound is polyarylenesulfonic acid or a reactive compound by external stimulation. It has been found that an excellent polymer electrolyte membrane that does not contain a large amount of fluorine atoms and has both proton conductivity and durability can be obtained by reacting with.
- polyarylene sulfonic acid having a large amount of sulfonic acid groups and introducing a structure that becomes a reactive site with other reactive compounds, the benzoyl group is effective as a reactive site, and It was clarified that the introduction amount of acid groups, that is, the ion exchange capacity is more than a specific value and that the solubility in water is more than a certain value greatly contributes to the improvement of the characteristics of the novel polymer electrolyte membrane. And found a suitable polyarylene sulfonic acid.
- Patent Document 2 describes a polyarylene sulfonic acid having a benzoyl structure, but the polyarylene sulfonic acid is water-insoluble and is clearly different from the polyarylene sulfonic acid of the present invention. .
- Patent Documents 3 and 4 there is no description or suggestion that a reactive site is introduced into the polymer electrolyte, which is different from the present invention in terms of technical idea.
- Patent Document 5 discloses a reaction between electrolytes by a photoreaction of a benzoyl group and a saturated hydrocarbon group.
- Ar 1 is a divalent aromatic group containing a sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative
- Ar 2 is a benzoyl group containing no sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative.
- a divalent aromatic group having (2) The polyarylene sulfonic acid precursor according to (1), which is represented by the formula (3).
- Ar 1 is an aromatic group containing a sulfonic acid group or a derivative of a sulfonic acid group that can be converted into a salt thereof.
- Ar 2 does not include a sulfonic acid group or a derivative of a sulfonic acid group that can be converted into a salt thereof, and represents an aromatic group having a benzoyl group.
- R 1 and R 2 are any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
- R 1 and R 2 may be the same or different, and R 3 is either an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms which may have a substituent.
- the substituent of R 3 is any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, and the substituents may be the same or different.
- a represents an integer of 1 to 3
- b represents an integer of 1 to 4.
- R 4 is any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. May be the same or different, r is 1 or 2, d represents 4-r, A represents OR 5 or N (R 6 ) (R 7 ), R 5 represents hydrogen, Any one of an alkali metal and an alkyl group having 1 to 20 carbon atoms, R 6 and R 7 are either hydrogen or an alkyl group having 1 to 20 carbon atoms, and R 6 and R 7 may be the same; May be different.) (8) The polyarylene sulfonic acids according to (7), wherein 90% or more of R 5 in A in the formula (5) or a total of R 6 and R 7 is an alkyl group having 1 to 20 carbon atoms precursor.
- R 8 and R 9 are hydrogen, an alkyl group having 1 to 20 carbon atoms, and 6 to 20 carbon atoms. R 8 and R 9 may be the same or different, and R 10 is an alkyl group having 1 to 20 carbon atoms, or may have a substituent.
- a ′ is an integer of 1 to 3
- b ′ is an integer of 1 to 4.
- R 11 is hydrogen, an alkyl group having 1 to 20 carbon atoms, or 6 to 6 carbon atoms. Any one of 20 aryl groups, the substituents may be the same or different, s is 1 or 2, e is 4-s, B is OR 12 or N (R 13 ) (R 14 ), R 12 represents any one of hydrogen, an alkali metal, or an alkyl group having 1 to 20 carbon atoms, and R 13 and R 14 are either hydrogen or an alkyl group having 1 to 20 carbon atoms.
- R 13 and R 14 may be the same or different.
- a composition comprising a nickel compound, a phosphorus ligand, zinc, and sodium iodide is used as the catalyst.
- (12) Polyarylene sulfonic acids having a repeating structure of formula (8) and formula (9), having a solubility in 100 g of water at a temperature of 25 ° C. of 0.1 g or more and an ion exchange capacity of 3 meq / g or more.
- Ar3 is a divalent aromatic group containing a sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative, and Ar3 is a divalent acid having a benzoyl group without containing a sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative.
- aromatic groups (13)
- the structural unit containing Ar 4 in the formula (10) is represented by the formula (11), and the polyarylene sulfonic acids according to (13),
- R 15 and R 16 are any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. , R 15 and R 16 may be the same or different, and R 17 represents either an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms which may have a substituent.
- the substituent for R 17 is any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, and the substituents may be the same or different.
- ", B" represents an integer of 1 to 4.
- R 18 is any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. May be the same or different, r ′ is 1 or 2, d ′ represents 4-r ′, A ′ represents OR 19 , N (R 20 ) ( R 21 ), R 19 represents hydrogen, an alkali metal, or an alkyl group having 1 to 20 carbon atoms, R 20 and R 21 are either hydrogen or an alkyl group having 1 to 20 carbon atoms, and R 20 and R 21 are the same.
- a ′ is OR 19 , and 80% or more of R 19 is hydrogen or an alkali metal,
- Step 1 Step of coupling polymerization of a composition containing at least the compounds represented by Formula (13) and Formula (14)
- Step 2 Deprotecting the sulfonic acid group derivative of the polymer produced in Step 1 Step of making a sulfonic acid group or a salt thereof
- Step 3 Step of bringing the polymer produced in Step 2 into contact with an acid
- X 1 and Y 1 are halogen atoms excluding fluorine, and X 1 and Y 1 may be the same or different.
- X 1 ′ and Y 1 ′ are halogen atoms excluding fluorine, and X 1 ′ and Y 1 ′ may be the same or different.
- R 25 is hydrogen, an alkyl group having 1 to 20 carbon atoms, Any of aryl groups having 6 to 20 carbon atoms, the substituents may be the same or different, s ′ is 1 or 2, e ′ is 4-s ′, B is OR 26 or N (R 27 ) (R 28 ), R 26 represents any one of hydrogen, an alkali metal, or an alkyl group having 1 to 20 carbon atoms, and R 27 and R 28 represent hydrogen or 1 to 20 carbon atoms.
- R 27 and R 28 may be the same or different.
- a composite polymer electrolyte membrane comprising a porous base material and a polymer electrolyte filled in its pores, wherein the polymer electrolyte is composed of two or more aromatic polymer electrolytes at sites other than ionic groups
- a composite polymer electrolyte membrane characterized by being connected by a compound having a structure different from that of the aromatic polymer electrolyte and having a repeating unit.
- the composite polymer electrolyte membrane according to (22) obtained by reacting the polymer electrolyte with the radical polymerizable compound.
- (40) (39) A fuel cell using the polymer electrolyte membrane electrode assembly according to (39).
- polyarylene sulfonic acids having a high ion exchange capacity produced from polyarylene sulfonic acids having a specific structure can be suitably used as an electrolyte for a fuel cell.
- the composite electrolyte membrane in which the polyarylene sulfonic acids and the radically polymerizable monomer having an acidic group are filled in the pores of the porous membrane through crosslinking realizes high proton conductivity due to high ion exchange capacity.
- the crosslinked polymer electrolyte is filled in the pores of the porous substrate, hydration / swelling can be suppressed, dimensional change is reduced, and breakage occurs due to repeated drying / wetting. The problem of mechanical characteristics can be solved.
- 1 is a 1 H-NMR spectrum (solvent: chloroform-d6) of a polyarylene sulfonic acid precursor obtained in Example 2.
- 1 is a 1 H-NMR spectrum (solvent: heavy water) of polyarylene sulfonic acids obtained in Example 6.
- the first invention of the present application relates to a polyarylene sulfonic acid precursor and a method for producing the same.
- the polyarylene sulfonic acid precursor of the present invention is: A polyarylene sulfonic acid precursor having a structure represented by formula (1) and formula (2).
- Ar 1 is a divalent aromatic group containing a sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative
- Ar 2 is a benzoyl group containing no sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative.
- a further preferred embodiment of the polyarylene sulfonic acid precursor of the present invention is a polyarylene sulfonic acid precursor having a structure represented by the following formula (3).
- Ar 1 is an aromatic group containing a sulfonic acid group, a sulfonic acid salt or a sulfonic acid group derivative
- Ar 2 is a sulfonic acid group, (Aromatic group having benzoyl group without sulfonate or sulfonic acid group derivative)
- m + n is less than 10
- m + n exceeds 1000
- polymerization is difficult, which is not preferable.
- a more preferable range of m + n is 15 to 500, and more preferably 20 to 100.
- m: n 70: 30 to 99: 1 is preferable, and 80:20 to 90:10 is more preferable.
- R 1 and R 2 are hydrogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- R 1 and R 2 may be the same or different, and
- R 3 is either an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms which may have a substituent.
- the substituent for R 3 is any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, and the substituents may be the same or different.
- a represents an integer of 1 to 3
- b represents an integer of 1 to 4.
- R 4 is any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
- the groups may be the same or different, r is 1 or 2, d represents 4-r, A represents OR 5 or N (R 6) (R 7 ), and R 5 represents hydrogen , An alkali metal, and an alkyl group having 1 to 20 carbon atoms, R 6 and R 7 are either hydrogen or an alkyl group having 1 to 20 carbon atoms, and R 6 and R 7 are the same. May be different.
- R 1 to R 4 may be the same group or different groups.
- R 1 , R 2 and R 4 are preferably hydrogen
- R 3 is an aryl group having 6 to 20 carbon atoms which may have a substituent from the viewpoint of chemical stability and reactivity.
- a phenyl group is particularly preferable.
- R 1 to R 4 are an alkyl group having 1 to 20 carbon atoms
- examples thereof include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Butyl group, n-pentyl group, 2,2-dimethylpropyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n -Tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-
- a represents an integer of 1 to 3
- b represents an integer of 1 to 4
- p and q are 0 or 1
- r is 1 or 2
- d is 4-r
- r is 1, and d is preferably 3.
- R 5 in A of the formula (5) is an alkyl group having 1 to 20 carbon atoms, and 95% More preferably, it is the above.
- R 5 in A of the formula (5) may be a hydrogen atom or an alkali metal atom other than the alkyl group having 1 to 20 carbon atoms.
- Examples of the first component of the raw material compound for producing the polyarylene sulfonic acid precursor represented by the formula (1) include a dihalobenzene compound which may have a substituent represented by the formula (6).
- R 8 and R 9 are hydrogen, an alkyl group having 1 to 20 carbon atoms, and 6 to 20 carbon atoms. R 8 and R 9 may be the same or different, and R 10 is an alkyl group having 1 to 20 carbon atoms, or may have a substituent.
- a ′ is an integer of 1 to 3
- b ′ is an integer of 1 to 4.
- Examples of the compound represented by the formula (6) include 2,4-dichlorobenzophenone, 2,5-dichlorobenzophenone, 3,4-dichlorobenzophenone, 2,4′-dichlorobenzophenone, which may have a substituent, 4,4′-dichlorobenzophenone, 2,4-dibromobenzophenone, 2,5-dibromobenzophenone, 3,4-dibromobenzophenone, 2,4′-dibromobenzophenone, 4,4′-dibromobenzophenone, and derivatives thereof Can be mentioned.
- 2,5-dichlorobenzophenone, 4,4′-dichlorobenzophenone and derivatives thereof which may have a substituent are preferable, 2,5-dichlorobenzophenone and 4,4′-dichlorobenzophenone are more preferable, and 2 More preferred is 5-dichlorobenzophenone.
- Dihalobenzenesulfonic acid ester or dihalobenzene which may have a substituent represented by formula (7) as the second component of the raw material compound for producing the polyarylenesulfonic acid precursor of formula (2) And sulfonic acid amides.
- R 7 is hydrogen, an alkyl group having 1 to 20 carbon atoms, or 6 to 6 carbon atoms. Any one of 20 aryl groups, the substituents may be the same or different, s is 1 or 2, e is 4-s, B is represented by OR 8 or NR 9 2 R 8 represents any one of hydrogen, an alkali metal, or an alkyl group having 1 to 20 carbon atoms, and R 9 represents any one of hydrogen or an alkyl group having 1 to 20 carbon atoms.
- Examples of the compound represented by the formula (7) include isopropyl 2,5-dichlorobenzenesulfonate, isobutyl 2,5-dichlorobenzenesulfonate, 2,5-dichlorobenzenesulfonate (2,2-dimethylpropyl), Cyclohexyl 2,5-dichlorobenzenesulfonate, n-octyl 2,5-dichlorobenzenesulfonate, n-pentadecyl 2,5-dichlorobenzenesulfonate, n-icosyl 2,5-dichlorodichlorosulfonate, 3,5 -Isopropyl dichlorobenzene sulfonate, isobutyl 3,5-dichlorobenzene sulfonate, 3,5-dichlorobenzene sulfonate (2,2-dimethylpropyl), cyclohexyl 3,5-dichloro
- 2,5-dichlorobenzenesulfonic acid (2,2-dimethylpropyl), isobutyl 2,5-dichlorobenzenesulfonic acid, and cyclohexyl 2,5-dichlorobenzenesulfonic acid are from the viewpoint of stability as a sulfonic acid group precursor. preferable.
- 2,5-dichlorobenzenesulfonic acid amide N-methyl-2,5-dichlorobenzenesulfonic acid amide, N, N-dimethyl-2,5-dichlorobenzenesulfonic acid amide, N-ethyl-2,5- Dichlorobenzenesulfonic acid amide, N, N-diethyl-2,5-dichlorobenzenesulfonic acid amide, N-propyl-2,5-dichlorobenzenesulfonic acid amide, N-butyl-2,5-dichlorobenzenesulfonic acid amide It is preferable from the viewpoint of stability during polymerization.
- the polyarylene sulfonic acid precursor of the present invention can be polymerized by a coupling reaction of the first synthetic component and the second synthetic component, but in that case, it is preferable to use a catalyst.
- a catalyst Is preferably a composition containing a nickel compound, a ligand, and a reducing agent, and more preferably an iodine compound or the like is used as a reaction accelerator.
- nickel compounds nickel (0) bis (cyclooctadiene), nickel (0) (ethylene) bis (triphenylphosphine), nickel (0) tetrakis (triphenylphosphine) and other zerovalent nickel compounds, nickel fluoride, Nickel halides such as nickel chloride, nickel bromide and nickel iodide, nickel carboxylates such as nickel formate and nickel acetate, nickel sulfate, nickel carbonate, nickel nitrate, nickel acetylacetonate, bis (triphenylphosphine) nickel dichloride And divalent nickel compounds such as nickel (0) bis (cyclooctadiene), nickel halide, and bis (triphenylphosphine) nickel dichloride are preferable.
- the amount of the nickel compound used is preferably 0.01 to 500 mol% with respect to the monomer. If the amount of the nickel compound used is too large, the molecular weight tends to be small. Further, it is practically 100 mol% or less due to difficulty in purification and cost. On the other hand, if the amount is too small, the catalytic ability may be lost due to the influence of water present in the system, and it is practically 1 mol% or more. That is, 1 to 100 mol% is preferable.
- Examples of the ligand include nitrogen-containing bidentate ligands and phosphorus ligands.
- nitrogen-containing bidentate ligand include 2,2'-bipyridine, 1,10-phenanthroline, methylenebisoxazoline, N, N'-tetramethylethylenediamine, and the like.
- phosphorus ligands include triphenylphosphine, tris (o-tolyl) phosphine, tris (m-tolyl) phosphine, tris (p-tolyl) phosphine, 1,2-bis (diphenylphosphino) ethane, 3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,4-bis (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, Triphenylphosphine, tris (o-tolyl) phosphine, tris (m-tolyl) phosphine, and tris (p-tolyl) phosphine are preferable.
- the amount of the ligand used is 0.5 to 8.0 equivalents, preferably 1.0 to 44.0 equivalents, with respect to the nickel compound.
- Zinc is preferably used as the reducing agent.
- the amount used is usually 1 equivalent or more with respect to the monomer, and there is no upper limit. Practically, in consideration of purification after polymerization, it is 5 equivalents or less, preferably 2 equivalents or less. Moreover, it is preferable that zinc is a powder and it is preferable to wash
- sodium iodide, potassium iodide, or the like can be used, and sodium iodide can be used. It is presumed that the iodine compound acts on the monomer and substitutes the halogen group with the iodine group to further improve the reactivity.
- the polymerization solvent may be any solvent that can dissolve the monomer, the catalyst composition, and the polyarylenesulfonic acid precursor to be produced.
- solvents include aromatic hydrocarbon solvents such as toluene and xylene, ether solvents such as tetrahydrofuran and 1,4-dioxane, dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N-dimethylformamide.
- aprotic polar solvents such as N, N-dimethylacetamide, and halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, and chloroform.
- a solvent may be used independently and may be used in mixture of 2 or more types.
- ether solvents and aprotic polar solvents are preferable, and tetrahydrofuran, dimethyl sulfoxide, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are more preferable.
- the amount of the solvent used is usually 1 to 200 times by weight, preferably 5 to 100 times by weight with respect to the monomer in the monomer composition.
- the reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen gas or argon gas.
- the polymerization time is preferably 0.5 to 48 hours, and the reaction temperature is preferably from room temperature to the boiling point of the solvent.
- the polyarylene sulfonic acid precursor is reprecipitated by introducing the solution after the reaction into an acidic aqueous solution, and then the polyarylene sulfonic acid precursor is obtained by removing impurities using an organic solvent.
- the solvent used for removing impurities is preferably a solvent that does not dissolve the polyarylene sulfonic acid precursor but can dissolve organic impurities such as monomers, oligomer components, and ligand components.
- the molecular weight and structure of the obtained polyarylene sulfonic acid precursor can be analyzed by ordinary analysis means such as gel permeation chromatography and NMR. Examples of the solvent used for removing impurities include alcohols such as methanol, ethanol and 2-propanol, acetone and acetonitrile, and 2-propanol and acetone are preferable.
- the second invention of the present application relates to polyarylene sulfonic acids and a method for producing the same.
- the polyarylene sulfonic acids of the present invention are Polyarylene sulfonic acids having a repeating structure of formula (8) and formula (9), a solubility in 100 g of water at a temperature of 25 ° C. of 0.1 g or more and an ion exchange capacity of 3 meq / g or more.
- Ar3 is a divalent aromatic group containing a sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative, and Ar3 is a divalent acid having a benzoyl group without containing a sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative.
- aromatic groups
- a further preferred embodiment of the polyarylene sulfonic acid of the present invention is a polyarylene sulfonic acid having a structure represented by the following formula (10).
- Ar 4 is a sulfonic acid group, (Aromatic group having benzoyl group without sulfonate or sulfonic acid group derivative)
- m1 + n1 is less than 10, it is difficult to maintain the shape as an electrolyte, and if m1 + n1 exceeds 1000, polymerization becomes difficult, which is not preferred.
- a more preferable range of m1 + n1 is 15 to 500, and further preferably 20 to 100.
- m1: n1 70: 30 to 99: 1 is preferable, and 80:20 to 90:10 is more preferable.
- the ion exchange capacity is the sulfonic acid group concentration per unit weight.
- M molecular weight in the unit structure
- N number of sulfonic acid groups in the unit structure
- the ion exchange capacity is preferably in the range of 3 to 16 meq / g. More preferably, the ion exchange capacity is 3.0 to 8.4 meq / g, more preferably 3.5 to 8.0 meq / g, and 4.0 to 7.5 meq / g. It is preferable.
- the structural units containing Ar 3 and Ar 4 in formula (10) are structures represented by formulas (11) and (12), respectively.
- n1 represents the same meaning as defined in formula (10).
- R 15 and R 16 are any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
- R 15 and R 16 may be the same or different, and
- R 17 is an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms which may have a substituent.
- the substituent for R 17 is any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, and the substituents may be the same or different.
- a ′′ and b ′′ are integers of 1 to 4.
- m1 is defined by Formula (10) .
- R 18 is hydrogen, an alkyl group having 1 to 20 carbon atoms which represent the same meaning as the number of carbon 6 Is either aryl group 20, the substituents may optionally be the same or different .r 'is 1 or 2, d' is '.A showing a' 4-r is OR 19, N (R 20 ) ( R 21 ), R 19 represents hydrogen, an alkali metal, or an alkyl group having 1 to 20 carbon atoms, and R 20 and R 21 are either hydrogen or an alkyl group having 1 to 20 carbon atoms. And R 20 and R 21 may be the same or different.)
- R 15 to R 18 may be the same group or different groups.
- R 15 , R 16 and R 18 are preferably hydrogen
- R 17 is an aryl group having 6 to 20 carbon atoms which may have a substituent from the viewpoint of chemical stability and reactivity.
- a phenyl group is particularly preferable.
- R 15 to R 18 are alkyl groups having 1 to 20 carbon atoms, examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Butyl group, n-pentyl group, 2,2-dimethylpropyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n -Tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group
- r ′ is 1 or 2
- d ′ is 4-r ′
- r ′ is 1, and d ′ is preferably 3.
- a ′ in the formula (12) is preferably OH, at least 80% of A ′ is more preferably OH, and more preferably 90% or more, More preferably 95% or more.
- a ′ other than OH may be OR 19 in which R 19 is other than H, or N (R 20 ) ( R 21 ), or OR 19 in which R 19 is an alkali metal atom.
- the polyarylene sulfonic acids of the present invention include at least the following Step 1, Step 2, and Step 3, and can be produced by carrying out in the order of Step 1, Step 2, and Step 3.
- Step 1 Step of coupling polymerization of a composition containing at least the compounds represented by Formula (13) and Formula (14)
- Step 2) Deprotecting the sulfonic acid group derivative of the polymer produced in Step 1 Step of making a sulfonic acid group or a salt thereof
- X 1 and Y 1 are halogen atoms excluding fluorine, and X 1 and Y 1 may be the same or different.
- X 1 ′ and Y 1 ′ are halogen atoms excluding fluorine, and X 1 ′ and Y 1 ′ may be the same or different.
- R 25 is hydrogen, an alkyl group having 1 to 20 carbon atoms, Any of aryl groups having 6 to 20 carbon atoms, the substituents may be the same or different, s ′ is 1 or 2, e ′ is 4-s ′, B is OR 26 or N (R 27 ) (R 28 ), R 26 represents any one of hydrogen, an alkali metal, or an alkyl group having 1 to 20 carbon atoms, and R 27 and R 28 represent hydrogen or 1 to 20 carbon atoms. And R 27 and R 28 may be the same or different.)
- Step 1 is described in the method for producing the polyarylene sulfonic acid precursor of the present invention.
- Step 2 a sulfonic acid group or a salt thereof can be obtained by deprotecting the sulfonic acid ester group or sulfonic acid amide group of the polyarylenesulfonic acid precursor.
- step 3 the salt of the sulfonic acid group is converted into a sulfonic acid group by contacting with an acid.
- the deprotection in step 2 is preferably performed by hydrolysis, and is preferably decomposed in the presence of water and an acid or alkali.
- an acidic or alkaline aqueous solution is used as the acid or alkali, the water-soluble polyarylene sulfonic acids of the present invention are difficult to purify. Therefore, it is preferable to perform deprotection in an organic solvent using an alkali metal halide or a quaternary ammonium halide.
- alkali metal halide examples include lithium bromide and sodium iodide.
- amine hydrochloride examples include trimethylamine hydrochloride and triethylamine hydrochloride. Lithium bromide and trimethylamine hydrochloride are preferable, and trimethylamine is preferable. Hydrochloride is more preferred. The amount used is 1.1 to 10 equivalents, preferably 2 to 8 equivalents, relative to the sulfonic acid ester or sulfonic acid amide in the polymer.
- the solvent used for the reaction is preferably a solvent in which the deprotecting agent is dissolved and the polyarylenesulfonic acid precursor is dissolved.
- examples thereof include aprotic polar solvents such as N-methylpyrrolidone.
- the reaction temperature is usually 0 to 200 ° C., preferably 80 to 160 ° C.
- Examples of the solvent in which the produced polyarylene sulfonic acids are not dissolved and the reaction residue of the deprotecting agent is dissolved include a halogenated hydrocarbon solvent. Of these, chloroform is preferred. Extraction is preferred as a purification method.
- the polyarylene sulfonic acid When the polyarylene sulfonic acid is converted into an ammonium sulfonate type or a metal salt of sulfonic acid and brought into contact with the acid, it is preferable to use a solid acid for ease of separation.
- a solid acid an inorganic solid acid such as a heteropoly acid, sulfonated amorphous carbon, and a cation exchange resin can be used. From the viewpoint of improving production efficiency and purity, a cation-sensitive resin can be used. More preferred.
- the amount of the cation exchange resin used depends on the ion exchange capacity of the cation exchange resin, but since it is an equilibrium reaction, a considerable amount more than 10 times the ion exchange capacity of the target polymer is required. Although there is no particular upper limit, it is practically 20 times or less.
- the acid treatment may be carried out in two or more stages.
- the contact with the solid acid is preferably performed in water.
- the polyarylene sulfonic acids of the present invention can be produced by filtering the solid acid from the polyarylene sulfonic acid aqueous solution in which the solid acid is dispersed, concentrating and drying.
- the polyarylene sulfonic acids of the present invention can be used for an electrolyte membrane of a fuel cell.
- the film forming method is not particularly limited, but it is dissolved in a solvent containing water, applied onto a flat substrate, dried and formed into a film.
- the solvent is dried at room temperature to 200 ° C. to obtain a dried film. It may be combined with a porous film, non-woven fabric, or fine particles, and after film formation, heat treatment, light irradiation, electron beam irradiation, or the like can be performed.
- the solvent used in this case is not limited to the following, but examples include an aprotic solvent and an alcohol solvent, and an alcohol is preferable.
- the thickness of the film is 1 to 200 ⁇ m, preferably 5 to 100 ⁇ m. The film thickness depends on the concentration of the coating solution or the coating thickness on the flat substrate. A substrate containing a film or metal oxide is preferred as the planar substrate.
- the third invention of the present application relates to a composite polymer electrolyte membrane and a method for producing the same.
- the composite polymer electrolyte membrane of the present invention is a composite electrolyte membrane in which a polymer electrolyte having an aromatic ring in the main chain and a radically polymerizable compound are filled in the pores of a porous base material.
- the polyelectrolyte is characterized in that two or more molecules of an aromatic polymer electrolyte are connected by a compound having a structure different from that of the aromatic polymer electrolyte and having a repeating unit at a site other than the ionic group. And a composite polymer electrolyte membrane.
- the composite polymer electrolyte membrane of the present invention comprises a porous group comprising a mixture containing an aromatic polymer electrolyte having a structure capable of generating radicals by external stimulation in a molecular chain and one or more radical polymerizable compounds.
- a composite polymer electrolyte membrane obtained by applying an external stimulus after filling into the pores of the material and reacting the polymer electrolyte with the radical polymerizable compound is preferable.
- At least one of the radical polymerizable compounds has a sulfonic acid group or a phosphonic acid group, and at least one of the radical polymerizable compounds not having a sulfonic acid group or a phosphonic acid group is 2 More preferably, it has at least one radical polymerizable group.
- the external stimulus is preferably ultraviolet irradiation or electron beam irradiation, ultraviolet irradiation is preferable for ease of reaction, and electron beam irradiation is preferable for improving reactivity.
- the polymer electrolyte in the composite polymer electrolyte membrane of the present invention has a repeating structure of formula (8) and formula (9), has a solubility in 100 g of water at a temperature of 25 ° C. of 0.1 g or more, and an ion exchange capacity. It is preferable to use polyarylene sulfonic acids having an amount of 3 meq / g or more.
- Ar3 is a divalent aromatic group containing a sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative
- Ar3 is a divalent acid having a benzoyl group without containing a sulfonic acid group, sulfonic acid salt or sulfonic acid group derivative.
- aromatic groups The preferred embodiments of the polyarylene sulfonic acids of the present invention are as described above.
- the radical polymerizable compound to be used may be one or more, but preferably two or more.
- At least one of the radically polymerizable compounds to be used preferably has a sulfonic acid group or a phosphonic acid group.
- a sulfonic acid group preferably has a sulfonic acid group or a phosphonic acid group.
- vinylsulfonic acid, vinylphosphonic acid, styrenesulfonic acid, 2-acrylamido-2-methyl Propanesulfonic acid and their salts are raised. It is more preferable to have a sulfonic acid group from the viewpoint of proton conductivity.
- At least one of the above radical polymerizable compounds preferably has two or more radical polymerizable groups per molecule, and more preferably three or more from the viewpoint of crosslinkability.
- KAYARAD-DPHA KAYARAD R-604, DPCA-20, -30, -60, -120, HX-620, D -310, D-330
- Iupimer UV SA1002, SA2007 Mitsubishi Chemical Co., Ltd.
- Biscote # 195, # 230, # 215, # 260, # 335HP, # 295, # 300, # 700 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), light acrylate 4EG-A, 9EG-A, NP-A, DCP-A, BP-4EA, BP-4PA, PE-3A, PE- 4A, DPE-6A (from Kyoeisha Chemical Co., Ltd.), Aronix M-208, M-210, M-215, M-220, M-240, M- 05, M-309, M-315, M-325 (man
- the material of the porous substrate used in the present invention is not particularly limited as long as it does not block or interfere with proton conduction.
- An aromatic polymer, an aromatic polymer, or a fluorine-containing polymer is preferably used.
- the aliphatic polymer include, but are not limited to, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and the like.
- polyethylene here is a general term for ethylene-based polymers having a polyethylene crystal structure.
- ethylene and other polymers are used. It also includes a copolymer with a monomer, and specifically includes a copolymer with ethylene and ⁇ -olefin, which is called linear low density polyethylene (LLDPE), and an ultrahigh molecular weight polyethylene.
- LLDPE linear low density polyethylene
- Polypropylene as used herein is a general term for polypropylene-based polymers having a polypropylene crystal structure, and generally used propylene-based block copolymers, random copolymers, etc. (these are copolymers with ethylene, 1-butene, etc.). Which is a polymer).
- aromatic polymer examples include polyphenylene sulfide, polyethersulfone, polysulfidesulfone, polyethylene terephthalate, polycarbonate, polyimide, polyetherimide, polyetherketone, polyetheretherketone, polyphenyleneoxide, aromatic polyamide, and polyamideimide. Is mentioned. Furthermore, cellulose and polylactic acid can also be used.
- thermoplastic resin having at least one carbon-fluorine bond in the molecule is used, but all or most of the hydrogen atoms of the aliphatic polymer are substituted with fluorine atoms.
- Those having a different structure are preferably used.
- Specific examples thereof include polytrifluoroethylene, polytetrafluoroethylene, polychlorotrifluoroethylene, poly (tetrafluoroethylene-hexafluoropropylene), poly (tetrafluoroethylene-perfluoroalkyl ether), and polyvinylidene fluoride. Although it is mentioned, it is not limited to these.
- polytetrafluoroethylene and poly (tetrafluoroethylene-hexafluoropropylene) are preferable, and polytetrafluoroethylene is particularly preferable.
- These porous materials may be used alone or in combination with other materials.
- porous material an aliphatic polyolefin film typified by polyethylene or polypropylene is preferable from the viewpoint of electrochemical stability and cost.
- a process of adding an extractable to polyolefin, finely dispersing it, forming a sheet, extracting the extractable with a solvent or the like to form pores, and performing a stretching process before and / or after extraction as necessary The porous material obtained by the wet method obtained by the extraction method which has can also be used.
- a porous material opened in a honeycomb shape by self-organization or a film made porous by stretching by adding a pore-forming agent such as calcium carbonate can be used.
- the porosity of the porous substrate is appropriately determined experimentally depending on the ion exchange capacity of the polymer electrolyte to be used. From the viewpoint of proton conductivity of the composite polymer electrolyte membrane and ease of filling the polymer electrolyte solution, 30% or more and 90% or less are preferable, and 35% or more and 70% or less are more preferable. When the porosity is 35% or more, the polymer electrolyte solution can be easily filled up to the inside of the porous material, and the proton conduction path is easily formed continuously in the thickness aroma of the composite polymer electrolyte membrane.
- the porosity of the porous substrate is obtained from the following equation by cutting the porous material into squares, measuring the length of one side L (cm), weight W (g), and thickness D (cm). Can do.
- Porosity 100-100 (W / ⁇ ) / (L2 ⁇ D) ⁇ in the above formula indicates the film density.
- ⁇ uses a value obtained by the density gradient tube method of D method of JIS K7112 (1980). At this time, ethanol and water are used as the density gradient tube liquid.
- the thickness of the porous substrate can be appropriately determined depending on the film thickness of the target composite polymer electrolyte membrane, but is preferably 1 to 100 ⁇ m in practice.
- the film thickness is less than 1 ⁇ m, the film may be stretched due to the tension in the film forming process and the secondary processing process, and vertical wrinkles may be generated or broken.
- it exceeds 100 ⁇ m the polymer electrolyte is insufficiently filled and the proton conductivity is lowered.
- the composite polymer electrolyte membrane of the present invention can be obtained by impregnating the porous base material with a mixed solution of the aromatic polymer electrolyte and the radical polymerizable compound and then proceeding with crosslinking by external stimulation.
- the ion exchange capacity of the composite polymer electrolyte membrane of the present invention may be 1.5 meq / g or more from the viewpoint of proton conductivity of the composite polymer electrolyte membrane. It is preferably 5 meq / g or more and 6.0 meq / g or less, and more preferably 2.0 meq / g or more and 4.0 meq / g.
- the ion exchange capacity is lower than 1.5 milliequivalent / g, proton conductivity is insufficient, and when the ion exchange capacity is higher than 6.0 milliequivalent / g, there is a problem in the morphological stability of the membrane.
- the method for producing the composite polymer electrolyte membrane of the present invention will be described below.
- the method for impregnating the porous membrane with the mixed solution of the aromatic polymer electrolyte and the radical polymerizable compound is not particularly limited, and it is sufficient that the porous substrate and the mixed solution are in contact with each other.
- a step of impregnating and impregnating the porous substrate is not particularly limited, and it is sufficient that the porous substrate and the mixed solution are in contact with each other.
- the mixing ratio of the aromatic polymer electrolyte and the radical polymerizable compound in the present invention is not particularly limited as long as it does not deviate from the range of the above ion exchange capacity, but the aromatic polymer electrolyte / radical polymerizable compound (mass%) Ratio) is preferably in the range of 90/10 to 40/60, particularly preferably 75/25 to 50/50 from the viewpoint of proton conductivity, durability, and reactivity.
- the concentration of the mixed solution of the aromatic polyelectrolyte and the radical polymerizable compound in the present invention is not particularly limited as long as it has fluidity, but is 1% by mass to 30% by mass, preferably , 5 mass% to 15 mass%.
- Examples of the solvent in the above mixed solution include alcohols such as methanol, ethanol and isopropyl alcohol, aprotic organic solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone and dimethylsulfoxide, and water. Each of these solvents may be mixed. From the viewpoint of drying speed and film-forming property, it is preferable to use a mixed solvent of an alcohol solvent and water, and it is more preferable to use a mixed solvent of methanol and water.
- the resulting composite membrane is subjected to an external stimulus to cause a radical reaction and to proceed with crosslinking.
- the external stimulus may be anything that can react a part of the aromatic polymer electrolyte and the radical polymerizable compound, and examples thereof include ultraviolet rays and electron beam irradiation. Of these, ultraviolet irradiation is preferred for the convenience of reaction, and electron beam irradiation is preferred for improving reactivity.
- heat treatment can be performed in parallel with or after these treatments. It is sufficient that a part of the aromatic polymer electrolyte and the radically polymerizable compound can be reacted, and the specific heating conditions are not particularly limited, but the treatment is performed at a temperature of 50 ° C. to 150 ° C. from the viewpoint of reactivity. It is preferable to treat at 80 to 150 ° C.
- the membrane / electrode assembly of the present invention can be obtained by bonding the composite polymer electrolyte membrane of the present invention to an electrode catalyst layer.
- the electrode in the present invention comprises an electrode material and a layer (electrode catalyst layer) containing a catalyst formed on the surface thereof, and a known material can be used as the electrode material.
- a conductive porous material such as carbon paper or carbon cloth can be used, but is not limited thereto.
- a material subjected to surface treatment such as water repellent treatment or hydrophilic treatment can be used.
- a known material can be used for the catalyst.
- platinum, an alloy of platinum and ruthenium, and the like can be given, but the invention is not limited to them.
- An adhesive can be used for the catalyst and the electrode catalyst layer including the particles carrying the catalyst, and as the adhesive, a resin having proton conductivity can be used.
- a conventionally known method can be used. For example, a method in which an adhesive is applied to the electrode surface to adhere the polymer electrolyte membrane and the electrode catalyst layer or There is a method of heating and pressurizing the polymer electrolyte membrane and the electrode catalyst layer.
- the adhesive a known one such as a Nafion (trade name) solution may be used, or an adhesive based on an ionic group-containing polymer constituting the composite polymer electrolyte membrane of the present invention may be used. You may use what has other hydrocarbon type proton conductive polymers as a main component.
- the method for producing the composite is preferably a method in which a composition containing an adhesive and a catalyst is applied and adhered to the electrode surface.
- a method of joining the polymer electrolyte membrane and the electrode by pressure heating is particularly suitable.
- the fuel cell of the present invention can be produced using the polymer electrolyte membrane or the polymer electrolyte membrane / electrode assembly of the present invention.
- the fuel cell of the present invention includes, for example, an oxygen electrode, a fuel electrode, a polymer electrolyte membrane sandwiched between the electrodes, an oxidant flow path provided on the oxygen electrode side, and a fuel electrode side.
- the fuel flow path is provided.
- a fuel cell stack can be obtained by connecting such unit cells with a conductive separator.
- ⁇ Thickness of polymer electrolyte membrane> The thickness of the composite polymer electrolyte membrane was determined by measurement using a micrometer (Mitutoyo, standard micrometer). Measurement was performed at 10 locations, and the average value was taken as the thickness.
- ⁇ Ion exchange capacity> 100 mg of the dried proton exchange membrane was immersed in 50 ml of 0.01 M NaOH aqueous solution and stirred at 25 ° C. for 2 hours. Thereafter, neutralization titration with 0.02 M aqueous HCl was performed. For neutralization titration, a potentiometric titrator COMMITE-980 manufactured by Hiranuma Sangyo Co., Ltd. was used. The ion exchange equivalent was calculated by the following formula. Ion exchange capacity [milliequivalent / g] (10-titer [ml]) / 2
- ⁇ Repeated swelling / shrinkage (D / W) test method The swelling / contraction repeated test and durability of the polymer electrolyte membrane were measured by the following methods.
- the polymer electrolyte membrane was set in a self-made swelling / contraction repeated test cell (effective area about 15 cm 2 ), and the cell temperature was heated to 85 ° C. Thereafter, a test was repeated in which a non-humidified nitrogen was supplied to the cell for 270 seconds-full humidified nitrogen for 30 seconds. Breaking of the membrane was confirmed by applying back pressure (50 kPa) to the cathode side every 6 cycles with the anode open (determined that membrane tearing occurred at back pressure ⁇ ). Measurement was made up to 500 cycles, and those that were torn were evaluated as x, and those that were not torn were evaluated as o.
- a membrane-electrode assembly was obtained.
- This joined body was incorporated into an evaluation fuel cell FC25-02SP manufactured by Electrochem, and power generation characteristics were evaluated by supplying hydrogen and oxygen at a cell temperature of 80 ° C. under conditions of an anode 26% RH and a cathode 16% RH. . Comparison was made between samples using the voltage at 1 A / cm 2 after the performance was stabilized.
- Example 2 Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 80/20) As in Example 1, with a weight ratio of 2,2-dimethylpropyl 2,5-dimethylpropylsulfonate (2.0 g, 6.7 mmol) and 2,5-dichlorobenzophenone (0.42 g, 1.68 mmol) as raw materials Polymerized under various experimental conditions. 1.2 g of poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 80/20) could be synthesized. Mn was 2900 g / mol
- Example 3 Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 4,4′-benzophenone] (molar ratio: 90/10)
- Polymerization was conducted under similar experimental conditions. It was possible to synthesize 1.4 g of poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 4,4′-benzophenone] (molar ratio: 90/10).
- Mn was 2800 g / mol.
- the chemical structure is shown in Formula (16).
- Example 4 Poly [(N, N-dimethyl-p-phenylenesulfonic acid amide / 4,4′-benzophenone] (molar ratio: 90/10) The weight ratio of N, N-dimethyl-2,5-dichlorobenzenesulfonic acid amide (1.7 g, 6.7 mmol) and 2,5-dichlorobenzophenone (0.19 g, 0.75 mmol) as raw materials was as in Example 1. Polymerization was conducted under similar experimental conditions. Poly [(N, N-dimethyl-p-phenylenesulfonic acid amide / 4,4′-benzophenone] (molar ratio: 90/10) was able to be synthesized. Mn was 2400 g / mol.
- Example 5 Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10)
- a polyarylene sulfonic acid precursor synthesized in Example 1 (1 g, corresponding to 4.4 mmol of sulfonate unit), trimethylamine hydrochloride (2.1 g, 22 mmol), and 20 ml of NMP were weighed and stirred at 120 ° C. for 12 hours. did. The reaction mixture was washed with 100 ml of chloroform and washed with chloroform until the reaction residue of trimethylamine hydrochloride could be removed.
- a purified polymer, 10 g of a cation exchange resin (Dowex Monosphere 650C), and 10 g of pure water were weighed into a 100 ml Erlenmeyer flask and stirred at room temperature for 12 hours.
- the cation exchange resin was removed by filtration, and the polymer aqueous solution was concentrated and dried to synthesize 0.7 g of poly (p-phenylenesulfonic acid).
- the synthesized poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) has an ion exchange capacity of 5.5 meq / g and a solubility in 100 g of pure water of 0.1 g or more. It was.
- Example 6 Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 80/20) Using the polyarylenesulfonic acid precursor obtained in Example 2, 0.6 g of poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 80/20) was obtained in the same manner as in Example 5. I was able to synthesize. The ion exchange capacity was 4.8 meq / g, and the solubility in 100 g of pure water was 0.1 g or more.
- Example 7 Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) Using the polyarylenesulfonic acid precursor obtained in Example 4, 0.5 g of polypoly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) was obtained in the same manner as in Example 5. I was able to synthesize.
- the synthesized poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) has an ion exchange capacity of 5.4 meq / g and a solubility in 100 g of pure water of 0.1 g or more. It was.
- reaction vessel ⁇ B> 2,5-dimethylbenzenesulfonic acid 2,2-dimethylpropyl (2.0 g, 6.7 mmol), 2,5-dichlorobenzophenone (1.68 g, 6.73 mmol) in tetrahydrofuran ( 7 ml) was added.
- the solution in the reaction vessel ⁇ B> was transferred to the reaction vessel ⁇ A> and stirred at 70 ° C. for 6 hours.
- the reaction solution was poured into 100 ml of 10% aqueous hydrochloric acid and filtered.
- Example 8 100 mg of the poly [(p-phenylene sulfonic acid) -2,5-benzophenone] (molar ratio: 90/10) obtained in Example 5, 40 mg of vinyl sulfonic acid and 20 mg of dipentaerythritol hexaacrylate were dissolved in methanol / water [90 / 10 (w / w)] was dissolved in a mixed solution of 4.4 g. Thereafter, a polyethylene porous membrane (size: 10 ⁇ 10 cm, film thickness: 15 ⁇ m, porosity: 49%) immersed in methanol was placed on a PTFE substrate, and the polymer solution was coated thereon, and a nitrogen atmosphere Dry at room temperature.
- a polyethylene porous membrane size: 10 ⁇ 10 cm, film thickness: 15 ⁇ m, porosity: 49%) immersed in methanol was placed on a PTFE substrate, and the polymer solution was coated thereon, and a nitrogen atmosphere Dry at room temperature.
- the obtained composite film was irradiated with ultraviolet rays (20 J / cm 2 ) under heating at 80 degrees. Further, heat treatment was performed at 120 ° C. for 1 hour.
- the obtained crosslinked composite membrane was immersed in pure water overnight and then dried to obtain a target composite polymer electrolyte membrane.
- the ion exchange capacity of the obtained membrane was 2.2 meq / g.
- Example 9 100 mg of the poly [(p-phenylene sulfonic acid) -2,5-benzophenone] (molar ratio: 90/10) obtained in Example 5, 40 mg of vinyl sulfonic acid and 20 mg of dipentaerythritol hexaacrylate were dissolved in methanol / water [90 / 10 (w / w)] was dissolved in a mixed solution of 4.4 g. Thereafter, a polyethylene porous membrane (size: 10 ⁇ 10 cm, film thickness: 20 ⁇ m, porosity: 45%) immersed in methanol was placed on a PTFE substrate, and the polymer solution was coated thereon, and a nitrogen atmosphere Dry at room temperature.
- a polyethylene porous membrane size: 10 ⁇ 10 cm, film thickness: 20 ⁇ m, porosity: 45%
- the obtained composite film was subjected to UV irradiation (20 J / cm 2 ) under heating at 80 degrees. Further, heat treatment was performed at 120 ° C. for 1 hour.
- the obtained crosslinked composite membrane was immersed in pure water overnight and then dried to obtain a target composite polymer electrolyte membrane.
- the obtained membrane had an ion exchange capacity of 2.5 meq / g.
- a polymer solution D was prepared by dissolving 12.00 g of a polymer D having a repeating unit represented by the formula (molecular weight: about 100,000) in 88.00 g of N-methyl-2-pyrrolidone. This solution was cast on a 188 ⁇ m polyester film at room temperature and treated at 80 ° C. for 10 minutes, 100 ° C. for 10 minutes, and 130 ° C. for 10 minutes. Then, the obtained film-like film
- the composite polymer electrolyte membrane of the present invention showed no cracks, tears, pinholes or the like in the swelling / shrinkage repetition test of the polymer electrolyte membrane. Therefore, it can be seen that the durability of the composite polymer electrolyte membrane of the present invention is greatly improved as compared with the hydrocarbon electrolyte membrane of the comparative example. Further, it was confirmed that the power generation test showed higher performance than the comparative example. Proton conductivity also has excellent characteristics over Nafion in a low humidity environment, so it can be expected to be used as a fuel cell membrane.
- the composite polymer electrolyte membrane of the present invention showed high proton conductivity under low humidity and high durability against swelling / shrinkage tests. Therefore, by using the composite polymer electrolyte membrane of the present invention, It is possible to provide a fuel cell that is excellent in durability and can be operated under low humidity.
- the composite polymer electrolyte membrane of the present invention can be produced using the polyarylene sulfonic acids of the present invention.
- the polyarylene sulfonic acids of the present invention can be produced from the polyarylene sulfonic acid precursor of the present invention.
- the composite polymer electrolyte membrane of the present invention can be expected to greatly improve the practicality of a fuel cell using hydrogen as a fuel, which greatly contributes to the development of the industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
The present invention discloses a method for obtaining an excellent polymer electrolyte film, which achieves both proton conductivity and durability without including a large amount of fluorine atoms, by filling, into pores in a porous substrate: a polyarylene sulfonic acid having a large quantity of sulfonic acid groups in each molecule and having a structure (benzoyl structure) that forms a reactive site with other reactive compounds; and a reactive compound composition comprising a reactive compound which has a proton-conductive group, a reactive compound which has 2 or more reactive groups in each molecule, etc. The reactive compound is then reacted with the polyarylene sulfonic acid and the reactive compound using external stimulation.
Description
本発明は高分子電解質として使用可能なポリアリーレンスルホン酸類とその前駆体、及びそれらの製造方法、並びに前記ポリアリーレンスルホン酸類を用いた複合高分子電解質膜とその製造方法に関する。
The present invention relates to polyarylene sulfonic acids and precursors thereof that can be used as a polymer electrolyte, a method for producing the same, and a composite polymer electrolyte membrane using the polyarylene sulfonic acids and a method for producing the same.
高分子電解質は固体高分子型燃料電池(以下、燃料電池)に用いられている。燃料電池は水素と酸素との化学反応により発電する装置であり、次世代エネルギー源のひとつとして自動車産業を中心に大きく期待を寄せられている。
Polymer electrolytes are used in solid polymer fuel cells (hereinafter referred to as fuel cells). A fuel cell is a device that generates electricity through a chemical reaction between hydrogen and oxygen, and is expected to be a major source of energy for the next generation, especially in the automobile industry.
燃料電池は燃料極に水素を供給し、燃料極で酸化されプロトンと電子を生成する。生成したプロトンは高分子電解質膜を介して空気極側に移動し、生成した電子は接続された回路を通じて空気極側に移動する。空気極では酸素とプロトンおよび電子が反応し、水を生成する。このように燃料電池は一連の反応により発電する装置である。
The fuel cell supplies hydrogen to the fuel electrode and is oxidized at the fuel electrode to generate protons and electrons. The generated protons move to the air electrode side through the polymer electrolyte membrane, and the generated electrons move to the air electrode side through the connected circuit. At the air electrode, oxygen reacts with protons and electrons to produce water. Thus, a fuel cell is a device that generates electricity by a series of reactions.
ここで使用される高分子電解質膜は高いプロトン伝導性が要求されている。その他の特性として、膜強度が強い、水素および酸素の透過性が小さい、化学的に酸化されにくいなどが挙げられる。また価格面でも低コスト化が切望されている。それら要求特性を満たす高分子電解質膜として炭化水素系の高分子電解質膜が挙げられる。特に芳香環が直接連結した主鎖骨格を有し、プロトン伝導性基としてスルホン酸基を有する、ポリアリーレンスルホン酸類は、高分子電解質膜の材料として有望である。ポリアリーレンスルホン酸は、保護されたスルホン酸基を有するモノマーを共重合し、得られたポリアリーレンスルホン酸類前駆体を脱保護することで得られることが開示されている(特許文献1及び2を参照)。前記特許文献で開示されたポリアリーレンスルホン酸は膜に成型することで高分子電解質膜として用いることができるが、水への溶解を防ぐため、共重合により非水溶性部位を導入する必要があり、ポリマー中のスルホン酸基量を大きくすることができなかった。
The polymer electrolyte membrane used here is required to have high proton conductivity. Other properties include high film strength, low hydrogen and oxygen permeability, and poor chemical oxidation. In addition, cost reduction is also eagerly desired. Examples of the polymer electrolyte membrane that satisfies these required characteristics include hydrocarbon polymer electrolyte membranes. In particular, polyarylene sulfonic acids having a main chain skeleton directly linked with aromatic rings and having a sulfonic acid group as a proton conductive group are promising as materials for polymer electrolyte membranes. It is disclosed that polyarylene sulfonic acid can be obtained by copolymerizing a monomer having a protected sulfonic acid group and deprotecting the obtained polyarylene sulfonic acid precursor (see Patent Documents 1 and 2). reference). The polyarylene sulfonic acid disclosed in the above patent document can be used as a polymer electrolyte membrane by molding into a membrane, but in order to prevent dissolution in water, it is necessary to introduce a water-insoluble site by copolymerization. The amount of sulfonic acid groups in the polymer could not be increased.
これまで、高分子電解質膜には、カチオン交換膜として高いプロトン伝導率を有すると共に、化学的、熱的、電気化学的および力学的に十分安定で、長期にわたり使用できるものとして、パーフルオロカーボンスルホン酸膜が使用されてきた。しかしながら、パーフルオロカーボンスルホン酸膜は、一般的にガスリークが大きく開回路状態で保持した場合に、透過した水素と酸素の反応によって生じる過酸化水素やそれから生じるヒドロキシラジカルによる劣化が著しく進行することが知られている。また、使用済みの燃料電池から白金触媒を回収するために、樹脂成分を燃焼することが行われるが、パーフルオロカーボンスルホン酸膜はフッ素を大量に含むため、焼却設備の腐食防止や有害ガスの排出防止のため、十分な対策を採る必要がある。さらに、長期に使用した場合、電解質の劣化で生じるフッ素イオンがシステム内部を腐食するなど、フッ素系電解質の問題が指摘されている。
Up to now, polymer electrolyte membranes have high proton conductivity as cation exchange membranes, are sufficiently stable chemically, thermally, electrochemically and mechanically and can be used over a long period of time. Membranes have been used. However, it is known that perfluorocarbon sulfonic acid membranes generally undergo significant degradation due to hydrogen peroxide generated by the reaction between permeated hydrogen and oxygen and the resulting hydroxy radicals when gas leakage is large and held in an open circuit state. It has been. In addition, in order to recover the platinum catalyst from the used fuel cell, the resin component is combusted, but the perfluorocarbon sulfonic acid membrane contains a large amount of fluorine, which prevents corrosion of incineration facilities and discharges harmful gases. It is necessary to take sufficient measures to prevent it. Furthermore, problems have been pointed out with fluorine-based electrolytes, such as fluorine ions generated by electrolyte degradation when used over a long period of time, corroding the inside of the system.
一方、パーフルオロカーボンスルホン酸膜に代わる電解質膜として、ポリエーテルエーテルケトンやポリエーテルスルホン、ポリスルホンなどのポリマーにスルホン酸基などイオン性基を導入した、いわゆる炭化水素系高分子固体電解質が近年盛んに検討されている。しかしながら、炭化水素系高分子固体電解質はパーフルオロカーボンスルホン酸に比べて水和・膨潤しやすく、寸法変化が大きいため、乾燥・湿潤の繰り返しにより破断してしまうなどの機械的な特性に問題がある。
On the other hand, as electrolyte membranes that replace perfluorocarbon sulfonic acid membranes, so-called hydrocarbon polymer solid electrolytes in which ionic groups such as sulfonic acid groups are introduced into polymers such as polyetheretherketone, polyethersulfone, and polysulfone have recently become popular. It is being considered. However, hydrocarbon-based polymer solid electrolytes tend to hydrate and swell compared to perfluorocarbon sulfonic acid, and have large dimensional changes, so there are problems with mechanical properties such as breakage due to repeated drying and wetting. .
高分子固体電解質膜の強度や耐久性を上げる方法として、電解質膜を架橋する方法が挙げられる。ポリアリーレン系電解質存在下にラジカル重合性モノマーを開始剤存在下で反応させた架橋高分子電解質膜(例えば、特許文献3参照)や電解質膜中に多官能性トリアジン化合物、多官能性トリアジン化合物前躯体を有し、それらを反応させた架橋高分子電解質膜(例えば、特許文献4参照)が報告されている。いずれも架橋によって耐久性は向上するものの、電解質中のスルホン酸基量を大きくしてプロトン伝導性を向上させようとすると、架橋だけでは含水時の高分子電解質の膨張を抑制できず膜が破損する恐れがある。膨張を抑制するために架橋密度を増やすことは、電解質中のスルホン酸基を減らすことになり、プロトン伝導性の向上と耐久性が相反するトレードオフの関係を打破することは困難であった。
As a method for increasing the strength and durability of the polymer solid electrolyte membrane, there is a method of crosslinking the electrolyte membrane. A cross-linked polymer electrolyte membrane obtained by reacting a radical polymerizable monomer in the presence of an initiator in the presence of a polyarylene-based electrolyte (see, for example, Patent Document 3) or a polyfunctional triazine compound or a polyfunctional triazine compound in the electrolyte membrane A cross-linked polymer electrolyte membrane having a casing and a reaction thereof (for example, see Patent Document 4) has been reported. In both cases, the durability is improved by crosslinking, but if the proton conductivity is increased by increasing the amount of sulfonic acid groups in the electrolyte, the crosslinking will not suppress the expansion of the polymer electrolyte when it contains water, resulting in damage to the membrane. There is a fear. Increasing the crosslink density in order to suppress the expansion reduces the sulfonic acid group in the electrolyte, and it is difficult to overcome the trade-off relationship between the improvement in proton conductivity and the durability.
高分子電解質同士を反応させ耐久性を向上させるため、分子中のカルボニル基とメチル基を反応させることが開示されている(例えば特許文献5を参照)。しかしながら、両者の反応性は低く、かつ高分子反応であるため、反応を進行させることが困難であり、反応性基を増やすとイオン性基の濃度が減少しプロトン伝導性が低下する問題があった。
In order to improve durability by reacting polymer electrolytes with each other, it is disclosed that a carbonyl group and a methyl group in a molecule are reacted (for example, see Patent Document 5). However, since the reactivity of both is low and it is a polymer reaction, it is difficult to proceed with the reaction. When the reactive group is increased, the concentration of the ionic group decreases and the proton conductivity decreases. It was.
さらに、高分子固体電解質膜の機械的強度を向上させ、寸法変化を抑制する方法として、高分子固体電解質膜に種々の補強材を組み合わせた複合高分子固体電解質膜が提案されている。延伸多孔ポリテトラフルオロエチレン膜の空隙部にイオン交換樹脂であるパーフルオロカーボンスルホン酸ポリマーを含浸し、一体化した複合高分子固体電解質膜(例えば、特許文献6を参照)が、パーフルオロカーボンスルホン酸ポリマーの膜内に補強材としてフィブリル化されたポリテトラフルオロエチレンが分散された複合高分子固体電解質膜(例えば、特許文献7を参照)が、それぞれ記載されている。しかしながら、元素としてフッ素を含んでいることには変わりなく、廃棄時の環境汚染や、発電時に発生する、フッ素膜の問題は依然として解決されていない。
Furthermore, as a method for improving the mechanical strength of the polymer solid electrolyte membrane and suppressing the dimensional change, a composite polymer solid electrolyte membrane in which various reinforcing materials are combined with the polymer solid electrolyte membrane has been proposed. A composite polymer solid electrolyte membrane (see, for example, Patent Document 6) in which the void portion of the stretched porous polytetrafluoroethylene membrane is impregnated with a perfluorocarbon sulfonic acid polymer, which is an ion exchange resin, is a perfluorocarbon sulfonic acid polymer. Composite polymer solid electrolyte membranes (see, for example, Patent Document 7) in which fibrillated polytetrafluoroethylene is dispersed as a reinforcing material are described. However, it does not change that it contains fluorine as an element, and the problem of environmental pollution at the time of disposal and the problem of the fluorine film generated at the time of power generation are still not solved.
一方、炭化水素系高分子固体電解質を炭化水素系の補強材で補強したものとしてポリベンゾオキサゾール多孔膜と高分子固体電解質を複合化した高分子固体電解質膜(例えば、特許文献8を参照)が記載されている。また、多孔性基材中に浸透させたモノマーからイオン伝導性を有するポリマーを重合した電解質膜(例えば、特許文献9を参照)や、イオン交換性基を有する重合体を多孔質基材に充填した電解質膜(例えば、特許文献10を参照)などが報告されている。
On the other hand, a polymer solid electrolyte membrane (see, for example, Patent Document 8) in which a polybenzoxazole porous membrane and a polymer solid electrolyte are combined as a hydrocarbon polymer solid electrolyte reinforced with a hydrocarbon reinforcing material. Are listed. In addition, an electrolyte membrane obtained by polymerizing a polymer having ion conductivity from a monomer permeated into the porous substrate (see, for example, Patent Document 9) or a polymer having an ion exchange group is filled in the porous substrate. An electrolyte membrane (for example, see Patent Document 10) has been reported.
しかしながら、いずれの場合においても、充填された炭化水素系高分子固体電解質の割合が炭化水素系高分子固体電解質単独膜に比べて少なくなるため、得られた複合電解質膜のイオン交換容量が低下することから、プロトン伝導性があまり高くなく水素を燃料とする燃料電池などに応用した際には、発電性能などにおいて不十分と思われる電解質膜であった。
However, in any case, since the proportion of the filled hydrocarbon polymer solid electrolyte is smaller than that of the hydrocarbon polymer solid electrolyte single membrane, the ion exchange capacity of the obtained composite electrolyte membrane is lowered. For this reason, the electrolyte membrane is not so high in proton conductivity and is considered to be insufficient in terms of power generation performance when applied to a fuel cell using hydrogen as a fuel.
本発明の課題は、上記従来技術の問題点を解決するものであり、(1)水に溶解するポリアリーレンスルホン酸類を製造するための有用な前駆体を提供すること、及びその製造方法を提供すること、(2)イオン交換基容量が高く、25℃における水100gに対する溶解度が0.1g以上であるポリアリーレンスルホン酸類を提供すること、及びその製造方法を提供すること、(3)炭化水素系高分子固体電解質膜の課題であった機械的強度の不足を解決すると共に、複合膜としてのプロトン伝導性が向上し、さらに、燃料電池に用いた場合の耐久性向上ならびに性能向上させることができる複合高分子電解質膜、該複合高分子電解質膜を用いた高分子電解質/電極接合体と燃料電池を提供することである。
加えて、さらなる燃料電池の実用化・普及に対して、プロトン伝導性と耐久性の両立、及び廃棄や連続使用時の外部環境への影響抑制など、既存の高分子電解質の問題点の解消することが課題である。 An object of the present invention is to solve the above-mentioned problems of the prior art, and (1) to provide a useful precursor for producing polyarylene sulfonic acids that dissolve in water, and to provide a production method thereof. (2) providing polyarylene sulfonic acids having a high ion exchange group capacity and a solubility in 100 g of water at 25 ° C. of 0.1 g or more, and a method for producing the same, (3) hydrocarbons To solve the shortage of mechanical strength, which was a problem of polymer electrolyte membranes, improve proton conductivity as a composite membrane, and improve durability and performance when used in fuel cells. It is intended to provide a composite polymer electrolyte membrane that can be produced, a polymer electrolyte / electrode assembly using the composite polymer electrolyte membrane, and a fuel cell.
In addition, for further commercialization and popularization of fuel cells, the problems of existing polymer electrolytes such as compatibility of proton conductivity and durability, and suppression of the impact on the external environment during disposal and continuous use will be solved. This is a problem.
加えて、さらなる燃料電池の実用化・普及に対して、プロトン伝導性と耐久性の両立、及び廃棄や連続使用時の外部環境への影響抑制など、既存の高分子電解質の問題点の解消することが課題である。 An object of the present invention is to solve the above-mentioned problems of the prior art, and (1) to provide a useful precursor for producing polyarylene sulfonic acids that dissolve in water, and to provide a production method thereof. (2) providing polyarylene sulfonic acids having a high ion exchange group capacity and a solubility in 100 g of water at 25 ° C. of 0.1 g or more, and a method for producing the same, (3) hydrocarbons To solve the shortage of mechanical strength, which was a problem of polymer electrolyte membranes, improve proton conductivity as a composite membrane, and improve durability and performance when used in fuel cells. It is intended to provide a composite polymer electrolyte membrane that can be produced, a polymer electrolyte / electrode assembly using the composite polymer electrolyte membrane, and a fuel cell.
In addition, for further commercialization and popularization of fuel cells, the problems of existing polymer electrolytes such as compatibility of proton conductivity and durability, and suppression of the impact on the external environment during disposal and continuous use will be solved. This is a problem.
本発明者らは、上記課題を解決するため、鋭意検討を続けてきた。その結果、分子中の多量のスルホン酸基を有し、かつ他の反応性化合物との反応点となる構造を導入したポリアリーレンスルホン酸を、プロトン伝導性基を有する反応性化合物や分子中に2個以上の反応性基を有する反応性化合物などからなる反応性化合物組成物とともに、多孔性基材の空孔中に充填し、さらに外部刺激によって反応性化合物をポリアリーレンスルホン酸や反応性化合物と反応させることによって、フッ素原子を大量に含まず、プロトン伝導性と耐久性を両立する優れた高分子電解質膜を得ることを見出した。また、その過程において、多量のスルホン酸基を有し、かつ他の反応性化合物との反応点となる構造を導入したポリアリーレンスルホン酸について、反応点としてベンゾイル基が有効であること、さらにスルホン酸基の導入量、すなわちイオン交換容量が特定値以上であり、なおかつ水に対する溶解度が一定値以上のものを用いることが、前記の新規高分子電解質膜の特性向上に大きく寄与することを明らかにし、適正なポリアリーレンスルホン酸を見出した。さらに、前記ポリアリーレンスルホン酸について、製造方法を検討した結果、適正な方法を見出し、ポリアリーレンスルホン酸類前駆体の適正な構造とその製造方法、及び、ポリアリーレンスルホン酸からポリアリーレンスルホン酸を製造する方法についても、それぞれ適正な方法を見出し、本発明を完成させるに至った。
In order to solve the above problems, the present inventors have continued intensive studies. As a result, polyarylene sulfonic acid having a large amount of sulfonic acid groups in the molecule and introducing a structure that becomes a reaction point with other reactive compounds can be incorporated into reactive compounds or molecules having proton conductive groups. A reactive compound composition composed of a reactive compound having two or more reactive groups, etc., is filled into the pores of the porous substrate, and the reactive compound is polyarylenesulfonic acid or a reactive compound by external stimulation. It has been found that an excellent polymer electrolyte membrane that does not contain a large amount of fluorine atoms and has both proton conductivity and durability can be obtained by reacting with. Further, in the process, polyarylene sulfonic acid having a large amount of sulfonic acid groups and introducing a structure that becomes a reactive site with other reactive compounds, the benzoyl group is effective as a reactive site, and It was clarified that the introduction amount of acid groups, that is, the ion exchange capacity is more than a specific value and that the solubility in water is more than a certain value greatly contributes to the improvement of the characteristics of the novel polymer electrolyte membrane. And found a suitable polyarylene sulfonic acid. Furthermore, as a result of studying the production method for the polyarylene sulfonic acid, an appropriate method was found, the proper structure of the polyarylene sulfonic acid precursor and the production method thereof, and the production of polyarylene sulfonic acid from the polyarylene sulfonic acid As for the methods to be performed, the inventors have found an appropriate method and completed the present invention.
なお、特許文献2には、ベンゾイル構造を有するポリアリーレンスルホン酸が記載されているが、該ポリアリーレンスルホン酸は非水溶性であり、本発明のポリアリーレンスルホン酸とは異なることは明白である。また、特許文献3や4では、高分子電解質に反応性部位を導入することは記載も示唆もされておらず、本発明とは技術的思想で異なるものである。さらに、特許文献5においては、ベンゾイル基と飽和炭化水素基の光反応による電解質間反応が開示されている。反応点としてベンゾイル基に着目した点では本発明と共通するが、効率の低い飽和炭化水素基ではなく、さらに反応性の高い化合物を用い、かつ、高分子電解質間の反応ではなく、反応性化合物を介して高分子電解質間を結合することで効率よく反応を進行させることができる本発明は、特許文献5で開示された発明に対して格別の効果を奏するものであり、容易に想到できないことは明白である。また特許文献6~10の補強電解質膜に関する発明においては、高分子電解質に反応点を有し水溶性であるポリアリーレンスルホン酸を用いることについて、記載も示唆もなく、本発明が新規性及び進歩性を有することは明らかである。
Patent Document 2 describes a polyarylene sulfonic acid having a benzoyl structure, but the polyarylene sulfonic acid is water-insoluble and is clearly different from the polyarylene sulfonic acid of the present invention. . In Patent Documents 3 and 4, there is no description or suggestion that a reactive site is introduced into the polymer electrolyte, which is different from the present invention in terms of technical idea. Further, Patent Document 5 discloses a reaction between electrolytes by a photoreaction of a benzoyl group and a saturated hydrocarbon group. Although it is common with the present invention in that the benzoyl group is focused on as a reaction point, a reactive compound is used instead of a low-efficiency saturated hydrocarbon group and a more reactive compound, and not a reaction between polymer electrolytes. The present invention, which allows the reaction to proceed efficiently by bonding between the polymer electrolytes through the invention, has a special effect on the invention disclosed in Patent Document 5 and cannot be easily conceived. Is obvious. Further, in the inventions relating to the reinforced electrolyte membranes of Patent Documents 6 to 10, there is no description or suggestion about using a water-soluble polyarylene sulfonic acid having a reactive site in the polymer electrolyte, and the present invention is novel and advanced. It is clear that it has sex.
すなわち、本発明は(1)~(40)により達成される。
(1)
式(1)および式(2)で示される構造を有することを特徴とする、ポリアリーレンスルホン酸類前駆体。 That is, the present invention is achieved by (1) to (40).
(1)
A polyarylene sulfonic acid precursor having a structure represented by formulas (1) and (2).
(1)
式(1)および式(2)で示される構造を有することを特徴とする、ポリアリーレンスルホン酸類前駆体。 That is, the present invention is achieved by (1) to (40).
(1)
A polyarylene sulfonic acid precursor having a structure represented by formulas (1) and (2).
(2)
式(3)で示されることを特徴とする(1)に記載のポリアリーレンスルホン酸類前駆体。
(2)
The polyarylene sulfonic acid precursor according to (1), which is represented by the formula (3).
(3)
前記式(3)のAr2を含む構成単位が式(4)で示されることを特徴とする(2)に記載のポリアリーレンスルホン酸類前駆体。
(3)
The polyarylene sulfonic acid precursor according to (2), wherein the structural unit containing Ar 2 in the formula (3) is represented by the formula (4).
(4)
前記式(4)のR3が置換基を有してもよい炭素数6~20のアリール基であることを特徴とする(3)に記載のポリアリーレンスルホン酸類前駆体。
(5)
前記式(4)において、p=0、及びq=1であることを特徴とする(3)又は(4)のいずれかに記載のポリアリーレンスルホン酸類前駆体。
(6)
前記式(4)において、p=1、及びq=0であることを特徴とする(3)又は(4)のいずれかに記載のポリアリーレンスルホン酸類前駆体。
(7)
前記式(3)のAr1を含む構成単位が式(5)で表される構造であることを特徴とする(2)~(6)のいずれかに記載のポリアリーレンスルホン酸類前駆体。
(4)
The polyarylene sulfonic acid precursor according to (3), wherein R 3 in the formula (4) is an aryl group having 6 to 20 carbon atoms which may have a substituent.
(5)
The polyarylene sulfonic acid precursor according to any one of (3) and (4), wherein p = 0 and q = 1 in the formula (4).
(6)
The polyarylene sulfonic acid precursor according to any one of (3) and (4), wherein p = 1 and q = 0 in the formula (4).
(7)
The polyarylene sulfonic acid precursor according to any one of (2) to (6), wherein the structural unit containing Ar 1 in the formula (3) has a structure represented by the formula (5).
(8)
前記式(5)のAにおけるR5、もしくは、R6及びR7の合計の90%以上が炭素数1~20のアルキル基であることを特徴とする(7)に記載のポリアリーレンスルホン酸類前駆体。
(9)
少なくとも式(6)及び(7)で表される化合物を含む組成物を、触媒の存在下でカップリング重合することを特徴とする、(1)~(8)のいずれかに記載のポリアリーレンスルホン酸類前駆体を製造する方法。
(8)
The polyarylene sulfonic acids according to (7), wherein 90% or more of R 5 in A in the formula (5) or a total of R 6 and R 7 is an alkyl group having 1 to 20 carbon atoms precursor.
(9)
The polyarylene according to any one of (1) to (8), wherein a composition containing at least the compounds represented by formulas (6) and (7) is subjected to coupling polymerization in the presence of a catalyst. A method for producing a sulfonic acid precursor.
(10)
前記触媒として、ニッケル化合物、リン配位子、亜鉛、及びヨウ化ナトリウムを含む組成物を用いることを特徴とする(9)に記載のポリアリーレンスルホン酸類前駆体の製造方法。
(11)
前記ニッケル化合物がビス(シクロオクタジエン)ニッケルまたは塩化ニッケルビス(トリフェニルホスフィン)であり、前記リン配位子がトリアリールホスフィンであることを特徴とする(10)に記載のポリアリーレンスルホン酸類前駆体の製造方法。
(12)
式(8)および式(9)の繰り返し構造を有し、温度25℃における水100gに対する溶解度が0.1g以上かつイオン交換容量が3ミリ当量/g以上のポリアリーレンスルホン酸類。
(10)
A composition comprising a nickel compound, a phosphorus ligand, zinc, and sodium iodide is used as the catalyst. The method for producing a polyarylene sulfonic acid precursor according to (9),
(11)
The polyarylenesulfonic acid precursor according to (10), wherein the nickel compound is bis (cyclooctadiene) nickel or nickel chloride bis (triphenylphosphine), and the phosphorus ligand is a triarylphosphine. Body manufacturing method.
(12)
Polyarylene sulfonic acids having a repeating structure of formula (8) and formula (9), having a solubility in 100 g of water at a temperature of 25 ° C. of 0.1 g or more and an ion exchange capacity of 3 meq / g or more.
(13)
式(10)の構造であることを特徴とする、(12)に記載のポリアリーレンスルホン酸類。
(13)
The polyarylene sulfonic acid according to (12), which has a structure represented by formula (10):
(14)
前記式(10)においてAr4を含む構成単位が式(11)で示されることを特徴とする(13)に記載のポリアリーレンスルホン酸類。
(14)
The structural unit containing Ar 4 in the formula (10) is represented by the formula (11), and the polyarylene sulfonic acids according to (13),
(15)
前記式(11)のR17が置換基を有してもよい炭素数6~20のアリール基であることを特徴とする(14)に記載のポリアリーレンスルホン酸類。
(16)
前記式(11)において、p”=0、及びq”=1であることを特徴とする(14)、又は(15)のいずれかに記載のポリアリーレンスルホン酸類。
(17)
前記式(11)において、p”=1、及びq”=0であることを特徴とする(14)、又は(15)のいずれかに記載のポリアリーレンスルホン酸類。
(18)
前記式(10)のAr3を含む構成単位が式(12)で表される構造であることを特徴とする(13)~(17)のいずれかに記載のポリアリーレンスルホン酸類。
(15)
The polyarylene sulfonic acids according to (14), wherein R 17 in the formula (11) is an aryl group having 6 to 20 carbon atoms which may have a substituent.
(16)
The polyarylene sulfonic acids according to any one of (14) and (15), wherein p ″ = 0 and q ″ = 1 in the formula (11).
(17)
The polyarylene sulfonic acids according to any one of (14) and (15), wherein p ″ = 1 and q ″ = 0 in the formula (11).
(18)
The polyarylenesulfonic acid according to any one of (13) to (17), wherein the structural unit containing Ar 3 in the formula (10) has a structure represented by the formula (12).
(19)
前記式(12)において、A’がOR19であり、R19の80%以上が水素またはアルカリ金属であることを特徴とする(18)に記載のポリアリーレンスルホン酸類。
(20)
少なくとも下記の工程1、工程2、及び、工程3の工程を含み、工程1、工程2、工程3の順番で行うことを特徴とする、(12)~(19)のいずれかに記載のポリアリーレンスルホン酸類を製造する方法。
(工程1) 少なくとも、式(13)及び式(14)で表される化合物を含む組成物をカップリング重合する工程
(工程2) 工程1で製造したポリマーのスルホン酸基誘導体を脱保護してスルホン酸基またはその塩とする工程
(工程3) 工程2で製造したポリマーを、酸に接触させる工程
(19)
In the formula (12), A ′ is OR 19 , and 80% or more of R 19 is hydrogen or an alkali metal, The polyarylene sulfonic acids according to (18),
(20)
The process according to any one of (12) to (19), characterized in that it comprises at least the following
(Step 1) Step of coupling polymerization of a composition containing at least the compounds represented by Formula (13) and Formula (14) (Step 2) Deprotecting the sulfonic acid group derivative of the polymer produced in
(21)
前記工程(b)における脱保護が、アルカリ金属ハロゲン化物またはハロゲン化第四級アンモニウムを用いることを特徴とする(20)に記載のポリアリーレンスルホン酸類の製造方法。
(22)
前記工程(c)における、酸が固体酸であることを特徴とする(20)又は(21)に記載のポリアリーレンスルホン酸類の製造方法。
(23)
前記固体酸が陽イオン交換樹脂であることを特徴とする(22)に記載のポリアリーレンスルホン酸類の製造方法。
(24)
多孔性の基材とその細孔に充填された高分子電解質からなる複合高分子電解質膜であって、該高分子電解質は2分子以上の芳香族系高分子電解質がイオン性基以外の部位で、該芳香族系高分子電解質と異なる構造を有し且つ繰り返し単位を有する化合物によって連結されていることを特徴とする複合高分子電解質膜。
(25)
外部刺激によりラジカルを発生しうる構造を分子鎖中に有する芳香族系高分子電解質と1種類以上のラジカル重合性化合物を含む混合物を多孔性の基材の細孔中に充填後に、外部刺激を与え、該高分子電解質と該ラジカル重合性化合物を反応させて得られる(22)に記載の複合高分子電解質膜。
(26)
前記ラジカル重合性化合物の少なくとも1種類がスルホン酸基もしくはホスホン酸基を有していることを特徴とする(25)に記載の高分子電解質膜。
(27)
前記ラジカル重合性化合物の少なくとも1種類が2個以上のラジカル重合性基を有していることを特徴とする(25)又は(26)のいずれかに記載の複合高分子電解質膜。
(28)
前記外部刺激が紫外線照射または電子線照射であることを特徴とする(25)~(27)のいずれかに記載の複合高分子電解質膜。
(29)
前記芳香族系高分子電解質が、請求項12に記載のポリアリーレンスルホン酸類であることを特徴とする(24)~(28)のいずれかに記載の複合高分子電解質膜。
(30)
前記芳香族系高分子電解質が、(13)に記載のポリアリーレンスルホン酸類であることを特徴とする(24)~(28)のいずれかに記載の複合高分子電解質膜。
(31)
前記芳香族系高分子電解質が、(14)に記載のポリアリーレンスルホン酸類であることを特徴とする(24)~(28)のいずれかに記載の複合高分子電解質膜
(32)
前記芳香族系高分子電解質が、(15)に記載のポリアリーレンスルホン酸類であることを特徴とする(24)~(28)のいずれかに記載の複合高分子電解質膜
(33)
前記芳香族系高分子電解質が、(16)に記載のポリアリーレンスルホン酸類であることを特徴とする(24)~(28)のいずれかに記載の複合高分子電解質膜
(34)
前記芳香族系高分子電解質が、(17)に記載のポリアリーレンスルホン酸類であることを特徴とする(24)~(28)のいずれかに記載の複合高分子電解質膜
(35)
前記芳香族系高分子電解質が、(18)に記載のポリアリーレンスルホン酸類であることを特徴とする(24)~(28)のいずれかに記載の複合高分子電解質膜
(36)
前記芳香族系高分子電解質が、(19)に記載のポリアリーレンスルホン酸類であることを特徴とする(24)~(28)のいずれかに記載の複合高分子電解質膜
(37)
前記多孔性基材が主として高分子材料からなることを特徴とする(24)~(36)のいずれかに記載の複合高分子電解質膜。
(38)
イオン交換容量が1.5ミリ当量/g~6.0ミリ当量/gであることを特徴とする(24)~(37)のいずれかに記載の複合高分子電解質膜。
(39)
(24)~(38)のいずれかに記載の複合高分子電解質膜を用いた燃料電池用高分子電解質膜電極接合体。
(40)
(39)に記載の高分子電解質膜電極接合体を用いた燃料電池。
(21)
The method for producing polyarylenesulfonic acids according to (20), wherein the deprotection in the step (b) uses an alkali metal halide or a quaternary ammonium halide.
(22)
The method for producing polyarylene sulfonic acids according to (20) or (21), wherein the acid in the step (c) is a solid acid.
(23)
The method for producing polyarylene sulfonic acids according to (22), wherein the solid acid is a cation exchange resin.
(24)
A composite polymer electrolyte membrane comprising a porous base material and a polymer electrolyte filled in its pores, wherein the polymer electrolyte is composed of two or more aromatic polymer electrolytes at sites other than ionic groups A composite polymer electrolyte membrane characterized by being connected by a compound having a structure different from that of the aromatic polymer electrolyte and having a repeating unit.
(25)
After filling the pores of the porous base material with a mixture containing an aromatic polymer electrolyte having a structure capable of generating radicals by external stimulation in the molecular chain and one or more radical polymerizable compounds, external stimulation is performed. The composite polymer electrolyte membrane according to (22) obtained by reacting the polymer electrolyte with the radical polymerizable compound.
(26)
The polymer electrolyte membrane according to (25), wherein at least one of the radical polymerizable compounds has a sulfonic acid group or a phosphonic acid group.
(27)
The composite polymer electrolyte membrane according to any one of (25) and (26), wherein at least one of the radical polymerizable compounds has two or more radical polymerizable groups.
(28)
The composite polymer electrolyte membrane according to any one of (25) to (27), wherein the external stimulus is ultraviolet ray irradiation or electron beam irradiation.
(29)
The composite polymer electrolyte membrane according to any one of (24) to (28), wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 12.
(30)
The composite polymer electrolyte membrane according to any one of (24) to (28), wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to (13).
(31)
The composite polymer electrolyte membrane (32) according to any one of (24) to (28), wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to (14).
The composite polymer electrolyte membrane (33) according to any one of (24) to (28), wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to (15).
The composite polymer electrolyte membrane (34) according to any one of (24) to (28), wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to (16).
The composite polymer electrolyte membrane (35) according to any one of (24) to (28), wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to (17).
The composite polymer electrolyte membrane (36) according to any one of (24) to (28), wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to (18).
The composite polymer electrolyte membrane (37) according to any one of (24) to (28), wherein the aromatic polymer electrolyte is the polyarylene sulfonic acids described in (19)
The composite polymer electrolyte membrane according to any one of (24) to (36), wherein the porous substrate is mainly composed of a polymer material.
(38)
The composite polymer electrolyte membrane according to any one of (24) to (37), wherein the ion exchange capacity is 1.5 meq / g to 6.0 meq / g.
(39)
(24) A polymer electrolyte membrane electrode assembly for a fuel cell using the composite polymer electrolyte membrane according to any one of (24) to (38).
(40)
(39) A fuel cell using the polymer electrolyte membrane electrode assembly according to (39).
本発明により、特定構造のポリアリーレンスルホン酸類から製造される高いイオン交換容量を有するポリアリーレンスルホン酸類を、燃料電池用電解質として好適に用いることができる。また、さらに前記ポリアリーレンスルホン酸類と酸性基を有するラジカル重合性モノマーを架橋を介した状態で多孔膜の細孔中に充填された複合電解質膜は、高いイオン交換容量により高いプロトン伝導性が実現できると共に、多孔性基材の細孔中に架橋高分子電解質が充填されていることから、水和・膨潤を抑制でき、寸法変化が小さくなり、乾燥・湿潤の繰り返しにより破断してしまうなどの機械的な特性の問題を解消できる。
According to the present invention, polyarylene sulfonic acids having a high ion exchange capacity produced from polyarylene sulfonic acids having a specific structure can be suitably used as an electrolyte for a fuel cell. In addition, the composite electrolyte membrane in which the polyarylene sulfonic acids and the radically polymerizable monomer having an acidic group are filled in the pores of the porous membrane through crosslinking, realizes high proton conductivity due to high ion exchange capacity. In addition, since the crosslinked polymer electrolyte is filled in the pores of the porous substrate, hydration / swelling can be suppressed, dimensional change is reduced, and breakage occurs due to repeated drying / wetting. The problem of mechanical characteristics can be solved.
以下、本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail.
本願第一の発明は、ポリアリーレンスルホン酸類前駆体及びその製造方法に関する。
本発明のポリアリーレンスルホン酸類前駆体は、
式(1)および式(2)で示される構造を有することを特徴とする、ポリアリーレンスルホン酸類前駆体、である。 The first invention of the present application relates to a polyarylene sulfonic acid precursor and a method for producing the same.
The polyarylene sulfonic acid precursor of the present invention is:
A polyarylene sulfonic acid precursor having a structure represented by formula (1) and formula (2).
本発明のポリアリーレンスルホン酸類前駆体は、
式(1)および式(2)で示される構造を有することを特徴とする、ポリアリーレンスルホン酸類前駆体、である。 The first invention of the present application relates to a polyarylene sulfonic acid precursor and a method for producing the same.
The polyarylene sulfonic acid precursor of the present invention is:
A polyarylene sulfonic acid precursor having a structure represented by formula (1) and formula (2).
香族基であり、Ar2はスルホン酸基、スルホン酸塩またはスルホン酸基誘導体を含まず
ベンゾイル基を有する2価の芳香族基を示す。)
本発明のポリアリーレンスルホン酸類前駆体のさらに好ましい態様は、下記式(3)で表される構造のポリアリーレンスルホン酸類前駆体である。
A further preferred embodiment of the polyarylene sulfonic acid precursor of the present invention is a polyarylene sulfonic acid precursor having a structure represented by the following formula (3).
式(3)において、m+nが10未満では電解質前駆体としての形状を保つことが困難となり好ましくなく、m+nが1000を超えると重合が困難になり好ましくない。m+nのより好ましい範囲は15~500であり、さらに好ましくは20~100である。なお、m+nは全分子の平均値を用いることが好ましい。m:n=70:30~99:1の範囲であることが好ましく、80:20~90:10の範囲であることがより好ましい。
In the formula (3), if m + n is less than 10, it is difficult to maintain the shape as the electrolyte precursor, and if m + n exceeds 1000, polymerization is difficult, which is not preferable. A more preferable range of m + n is 15 to 500, and more preferably 20 to 100. In addition, it is preferable to use the average value of all molecules for m + n. m: n = 70: 30 to 99: 1 is preferable, and 80:20 to 90:10 is more preferable.
前記式(3)のAr1、Ar2を含む構成単位は、それぞれ式(4)および式(5)に示される。
The structural units containing Ar 1 and Ar 2 in the formula (3) are represented by formula (4) and formula (5), respectively.
R1~R4は、同一の基であってもいいし、異なる基であってもよい。中でもR1、R2、R4は水素が好ましく、R3は、化学的な安定性と反応性の点から、置換基を有していてもよい炭素数6~20のアリール基であることが好ましく、特にフェニル基が好ましい。
R 1 to R 4 may be the same group or different groups. Among them, R 1 , R 2 and R 4 are preferably hydrogen, and R 3 is an aryl group having 6 to 20 carbon atoms which may have a substituent from the viewpoint of chemical stability and reactivity. Are preferable, and a phenyl group is particularly preferable.
R1~R4が炭素数1~20のアルキル基の場合、その例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2,2-ジメチルプロピル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基、1,3-ブタジエン-1,4-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基等の直鎖状、枝分かれ状、環状のいずれかの構造のものが挙げられる。炭素数6~20のアリール基として、フェニル基、1-ナフチル基、2-ナフチル基、3-フェナントリル基、2-アントリル基等が挙げられる。
When R 1 to R 4 are an alkyl group having 1 to 20 carbon atoms, examples thereof include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Butyl group, n-pentyl group, 2,2-dimethylpropyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n -Tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, 1,3-butadiene-1,4-diyl And a straight-chain, branched, or cyclic structure such as a butane-1,4-diyl group or a pentane-1,5-diyl group. Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 3-phenanthryl group, 2-anthryl group and the like.
前記式(4)においてaは1~3の整数、bは1~4の整数を示し、p、qは0または1であり、p+q=1を示す。すなわち、p=1、q=0又はp=0、q=1のいずれかである。なかでも反応性の面からp=0、q=1が好ましい。
In the formula (4), a represents an integer of 1 to 3, b represents an integer of 1 to 4, p and q are 0 or 1, and p + q = 1. That is, p = 1, q = 0 or p = 0, q = 1. Of these, p = 0 and q = 1 are preferable from the viewpoint of reactivity.
前記式(4)において、rは1又は2、dは4-rを示し、rは1、dは3が好ましい。
In the formula (4), r is 1 or 2, d is 4-r, r is 1, and d is preferably 3.
前駆体としての安定性の面から、前記式(5)のAにおけるR5、もしくはR6及びR7の合計の90%以上が炭素数1~20のアルキル基であることが好ましく、95%以上であることがさらに好ましい。前記式(5)のAにおけるR5について、炭素数1~20のアルキル基以外は、水素原子もしくはアルカリ金属原子であってもよい。
From the viewpoint of stability as a precursor, it is preferable that 90% or more of R 5 in A of the formula (5), or the total of R 6 and R 7 is an alkyl group having 1 to 20 carbon atoms, and 95% More preferably, it is the above. R 5 in A of the formula (5) may be a hydrogen atom or an alkali metal atom other than the alkyl group having 1 to 20 carbon atoms.
以下、本発明のポリアリーレンスルホン酸類前駆体の製造方法について説明する。
Hereafter, the manufacturing method of the polyarylene sulfonic acid precursor of this invention is demonstrated.
前記式(1)で表されるポリアリーレンスルホン酸類前駆体を製造するための原料化合物の第一成分として、式(6)に示される置換基を有してもよいジハロベンゼン化合物が挙げられる。
Examples of the first component of the raw material compound for producing the polyarylene sulfonic acid precursor represented by the formula (1) include a dihalobenzene compound which may have a substituent represented by the formula (6).
式(6)で表される化合物の例としては、置換基を有してよい2,4-ジクロロベンゾフェノン、2,5-ジクロロベンゾフェノン、3,4-ジクロロベンゾフェノン、2,4’-ジクロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、2,4-ジブロモベンゾフェノン、2,5-ジブロモベンゾフェノン、3,4-ジブロモベンゾフェノン、2,4’-ジブロモベンゾフェノン、4,4’-ジブロモベンゾフェノン、及びそれらの誘導体が挙げられる。中でも、置換基を有してもよい2,5-ジクロロベンゾフェノン、4,4’-ジクロロベンゾフェノン及びそれらの誘導体が好ましく、2,5-ジクロロベンゾフェノン、4,4’-ジクロロベンゾフェノンがより好ましく、2,5-ジクロロベンゾフェノンがさらに好ましい。
Examples of the compound represented by the formula (6) include 2,4-dichlorobenzophenone, 2,5-dichlorobenzophenone, 3,4-dichlorobenzophenone, 2,4′-dichlorobenzophenone, which may have a substituent, 4,4′-dichlorobenzophenone, 2,4-dibromobenzophenone, 2,5-dibromobenzophenone, 3,4-dibromobenzophenone, 2,4′-dibromobenzophenone, 4,4′-dibromobenzophenone, and derivatives thereof Can be mentioned. Among them, 2,5-dichlorobenzophenone, 4,4′-dichlorobenzophenone and derivatives thereof which may have a substituent are preferable, 2,5-dichlorobenzophenone and 4,4′-dichlorobenzophenone are more preferable, and 2 More preferred is 5-dichlorobenzophenone.
前記式(2)のポリアリーレンスルホン酸類前駆体を製造するための原料化合物の第二成分として、式(7)に示される置換基を有してもよいジハロベンゼンスルホン酸エステル又はジハロベンゼンスルホン酸アミドが挙げられる。
Dihalobenzenesulfonic acid ester or dihalobenzene which may have a substituent represented by formula (7) as the second component of the raw material compound for producing the polyarylenesulfonic acid precursor of formula (2) And sulfonic acid amides.
式(7)で表される化合物の例として、2,5-ジクロロベンゼンスルホン酸イソプロピル、2,5-ジクロロベンゼンスルホン酸イソブチル、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル) 、2,5-ジクロロベンゼンスルホン酸シクロヘキシル、2,5-ジクロロベンゼンスルホン酸n-オクチル、2,5-ジクロロベンゼンスルホン酸n-ペンタデシル、2,5-ジクロロジクロロベンゼンスルホン酸n-イコシル、3,5-ジクロロベンゼンスルホン酸イソプロピル、3,5-ジクロロベンゼンスルホン酸イソブチル、3,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)、3,5-ジクロロベンゼンスルホン酸シクロヘキシル、3,5-ジクロロベンゼンスルホン酸n-オクチル、3,5-ジクロロベンゼンスルホン酸n-ペンタデシル、3,5-ジクロロベンゼンスルホン酸n-イコシル、2,5-ジブロモベンゼンスルホン酸イソプロピル、2,5-ジブロモベンゼンスルホン酸イソブチル、2,5-ジブロモベンゼンスルホン酸(2,2-ジメチルプロピル) 、2,5-ジブロモベンゼンスルホン酸シクロヘキシル、2,5-ジブロモベンゼンスルホン酸n-オクチル、2,5-ジブロモベンゼンスルホン酸n-ペンタデシル、2,5-ジブロモベンゼンスルホン酸n-イコシル、3,5-ジブロモベンゼンスルホン酸イソプロピル、3,5-ジブロモベンゼンスルホン酸イソブチル、3,5-ジブロモベンゼンスルホン酸(2,2-ジメチルプロピル) 、3,5-ジブロモベンゼンスルホン酸シクロヘキシル、3,5-ジブロモベンゼンスルホン酸n-オクチル、3,5-ジブロモベンゼンスルホン酸n-ペンタデシル、3,5-ジブロモベンゼンスルホン酸n-イコシル、2,4-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)、2,4-ジブロモベンゼンスルホン酸(2,2-ジメチルプロピル)、2,5-ジクロロスルホン酸アミド、N-メチル-2,5-ジクロロスルホン酸アミド、N,N-ジメチル-2,5-ジクロロスルホン酸アミド、N-エチル-2,5-ジクロロスルホン酸アミド、N,N-ジエチル-2,5-ジクロロスルホン酸アミド、N-プロピル-2,5-ジクロロスルホン酸アミド、N,N-ジプロピル-2,5-ジクロロスルホン酸アミド、N-ブチル-2,5-ジクロロスルホン酸アミド、N,N-ジブチル-2,5-ジクロロスルホン酸アミド、2,4-ジクロロスルホン酸アミド、N-メチル-2,4-ジクロロスルホン酸アミド、N,N-ジメチル-2,4-ジクロロスルホン酸アミド、N-エチル-2,4-ジクロロスルホン酸アミド、N,N-ジエチル-2,4-ジクロロスルホン酸アミド、N-プロピル-2,4-ジクロロスルホン酸アミド、N,N-ジプロピル-2,4-ジクロロスルホン酸アミド、N-ブチル-2,4-ジクロロスルホン酸アミド、N,N-ジブチル-2,4-ジクロロスルホン酸アミド、3,5-ジクロロスルホン酸アミド、N-メチル-3,5-ジクロロスルホン酸アミド、N,N-ジメチル-3,5-ジクロロスルホン酸アミド、N-エチル-3,5-ジクロロスルホン酸アミド、N,N-ジエチル-3,5-ジクロロスルホン酸アミド、N-プロピル-3,5-ジクロロスルホン酸アミド、N,N-ジプロピル-3,5-ジクロロスルホン酸アミド、N-ブチル-3,5-ジクロロスルホン酸アミド、N,N-ジブチル-3,5-ジクロロスルホン酸アミド、2,5-ジブロモスルホン酸アミド、N-メチル-2,5-ジブロモスルホン酸アミド、N,N-ジメチル-2,5-ジブロモスルホン酸アミド、N-エチル-2,5-ジブロモスルホン酸アミド、N,N-ジエチル-2,5-ジブロモスルホン酸アミド、N-プロピル-2,5-ジブロモスルホン酸アミド、N,N-ジプロピル-2,5-ジブロモスルホン酸アミド、N-ブチル-2,5-ジブロモスルホン酸アミド、N,N-ジブチル-2,5-ジブロモスルホン酸アミド、2,4-ジブロモスルホン酸アミド、N-メチル-2,4-ジブロモスルホン酸アミド、N,N-ジメチル-2,4-ジブロモスルホン酸アミド、N-エチル-2,4-ジブロモスルホン酸アミド、N,N-ジエチル-2,4-ジブロモスルホン酸アミド、N-プロピル-2,4-ジブロモスルホン酸アミド、N,N-ジプロピル-2,4-ジブロモスルホン酸アミド、N-ブチル-2,4-ジブロモスルホン酸アミド、N,N-ジブチル-2,4-ジブロモスルホン酸アミド、3,5-ジブロモスルホン酸アミド、N-メチル-3,5-ジブロモスルホン酸アミド、N,N-ジメチル-3,5-ジブロモスルホン酸アミド、N-エチル-3,5-ジブロモスルホン酸アミド、N,N-ジエチル-3,5-ジブロモスルホン酸アミド、N-プロピル-3,5-ジブロモスルホン酸アミド、N,N-ジプロピル-3,5-ジブロモスルホン酸アミド、N-ブチル-3,5-ジブロモスルホン酸アミド、N,N-ジブチル-3,5-ジブロモスルホン酸アミドが挙げられる。中でも2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)、2,5-ジクロロベンゼンスルホン酸イソブチル、2,5-ジクロロベンゼンスルホン酸シクロヘキシルがスルホン酸基前駆体としての安定性の面から好ましい。また、2,5-ジクロロベンゼンスルホン酸アミド、N-メチル-2,5-ジクロロベンゼンスルホン酸アミド、N、N-ジメチル-2,5-ジクロロベンゼンスルホン酸アミド、N-エチル-2,5-ジクロロベンゼンスルホン酸アミド、N、N-ジエチル-2,5-ジクロロベンゼンスルホン酸アミド、N-プロピル-2,5-ジクロロベンゼンスルホン酸アミド、N-ブチル-2,5-ジクロロベンゼンスルホン酸アミドが重合時の安定性の面から好ましい。
Examples of the compound represented by the formula (7) include isopropyl 2,5-dichlorobenzenesulfonate, isobutyl 2,5-dichlorobenzenesulfonate, 2,5-dichlorobenzenesulfonate (2,2-dimethylpropyl), Cyclohexyl 2,5-dichlorobenzenesulfonate, n-octyl 2,5-dichlorobenzenesulfonate, n-pentadecyl 2,5-dichlorobenzenesulfonate, n-icosyl 2,5-dichlorodichlorosulfonate, 3,5 -Isopropyl dichlorobenzene sulfonate, isobutyl 3,5-dichlorobenzene sulfonate, 3,5-dichlorobenzene sulfonate (2,2-dimethylpropyl), cyclohexyl 3,5-dichlorobenzene sulfonate, 3,5-dichlorobenzene N-octyl sulfonate, 3,5- N-pentadecyl chlorobenzenesulfonate, n-icosyl 3,5-dichlorobenzenesulfonate, isopropyl 2,5-dibromobenzenesulfonate, isobutyl 2,5-dibromobenzenesulfonate, 2,5-dibromobenzenesulfonic acid (2, 2-dimethylpropyl), cyclohexyl 2,5-dibromobenzenesulfonate, n-octyl 2,5-dibromobenzenesulfonate, n-pentadecyl 2,5-dibromobenzenesulfonate, n- 2,5-dibromobenzenesulfonate Icosyl, isopropyl 3,5-dibromobenzenesulfonate, isobutyl 3,5-dibromobenzenesulfonate, 3,5-dibromobenzenesulfonate (2,2-dimethylpropyl), cyclohexyl 3,5-dibromobenzenesulfonate, 3 , 5 N-octyl dibromobenzenesulfonate, n-pentadecyl 3,5-dibromobenzenesulfonate, n-icosyl 3,5-dibromobenzenesulfonate, 2,4-dichlorobenzenesulfonic acid (2,2-dimethylpropyl), 2 , 4-Dibromobenzenesulfonic acid (2,2-dimethylpropyl), 2,5-dichlorosulfonic acid amide, N-methyl-2,5-dichlorosulfonic acid amide, N, N-dimethyl-2,5-dichlorosulfone Acid amide, N-ethyl-2,5-dichlorosulfonic acid amide, N, N-diethyl-2,5-dichlorosulfonic acid amide, N-propyl-2,5-dichlorosulfonic acid amide, N, N-dipropyl- 2,5-dichlorosulfonic acid amide, N-butyl-2,5-dichlorosulfonic acid amide, N, N-dibutyl-2 , 5-dichlorosulfonic acid amide, 2,4-dichlorosulfonic acid amide, N-methyl-2,4-dichlorosulfonic acid amide, N, N-dimethyl-2,4-dichlorosulfonic acid amide, N-ethyl-2 , 4-dichlorosulfonic acid amide, N, N-diethyl-2,4-dichlorosulfonic acid amide, N-propyl-2,4-dichlorosulfonic acid amide, N, N-dipropyl-2,4-dichlorosulfonic acid amide N-butyl-2,4-dichlorosulfonic acid amide, N, N-dibutyl-2,4-dichlorosulfonic acid amide, 3,5-dichlorosulfonic acid amide, N-methyl-3,5-dichlorosulfonic acid amide N, N-dimethyl-3,5-dichlorosulfonic acid amide, N-ethyl-3,5-dichlorosulfonic acid amide, N, N-diethyl-3,5- Chlorosulfonic acid amide, N-propyl-3,5-dichlorosulfonic acid amide, N, N-dipropyl-3,5-dichlorosulfonic acid amide, N-butyl-3,5-dichlorosulfonic acid amide, N, N- Dibutyl-3,5-dichlorosulfonic acid amide, 2,5-dibromosulfonic acid amide, N-methyl-2,5-dibromosulfonic acid amide, N, N-dimethyl-2,5-dibromosulfonic acid amide, N- Ethyl-2,5-dibromosulfonic acid amide, N, N-diethyl-2,5-dibromosulfonic acid amide, N-propyl-2,5-dibromosulfonic acid amide, N, N-dipropyl-2,5-dibromo Sulfonamide, N-butyl-2,5-dibromosulfonic acid amide, N, N-dibutyl-2,5-dibromosulfonic acid amide, 2,4-di Lomosulfonic acid amide, N-methyl-2,4-dibromosulfonic acid amide, N, N-dimethyl-2,4-dibromosulfonic acid amide, N-ethyl-2,4-dibromosulfonic acid amide, N, N-diethyl -2,4-dibromosulfonic acid amide, N-propyl-2,4-dibromosulfonic acid amide, N, N-dipropyl-2,4-dibromosulfonic acid amide, N-butyl-2,4-dibromosulfonic acid amide N, N-dibutyl-2,4-dibromosulfonic acid amide, 3,5-dibromosulfonic acid amide, N-methyl-3,5-dibromosulfonic acid amide, N, N-dimethyl-3,5-dibromosulfone Acid amide, N-ethyl-3,5-dibromosulfonic acid amide, N, N-diethyl-3,5-dibromosulfonic acid amide, N-propyl-3, 5-dibromosulfonic acid amide, N, N-dipropyl-3,5-dibromosulfonic acid amide, N-butyl-3,5-dibromosulfonic acid amide, N, N-dibutyl-3,5-dibromosulfonic acid amide Can be mentioned. Among them, 2,5-dichlorobenzenesulfonic acid (2,2-dimethylpropyl), isobutyl 2,5-dichlorobenzenesulfonic acid, and cyclohexyl 2,5-dichlorobenzenesulfonic acid are from the viewpoint of stability as a sulfonic acid group precursor. preferable. 2,5-dichlorobenzenesulfonic acid amide, N-methyl-2,5-dichlorobenzenesulfonic acid amide, N, N-dimethyl-2,5-dichlorobenzenesulfonic acid amide, N-ethyl-2,5- Dichlorobenzenesulfonic acid amide, N, N-diethyl-2,5-dichlorobenzenesulfonic acid amide, N-propyl-2,5-dichlorobenzenesulfonic acid amide, N-butyl-2,5-dichlorobenzenesulfonic acid amide It is preferable from the viewpoint of stability during polymerization.
上記、第一の合成成分及び第二の合成成分をカップリング反応することによって、本発明のポリアリーレンスルホン酸類前駆体を重合することができるが、その際に、触媒を用いることが好ましく、触媒としては、ニッケル化合物、配位子、還元剤を含む組成物であることが好ましく、反応促進剤としてヨウ素化合物などを用いるとなお好ましい。
The polyarylene sulfonic acid precursor of the present invention can be polymerized by a coupling reaction of the first synthetic component and the second synthetic component, but in that case, it is preferable to use a catalyst. Is preferably a composition containing a nickel compound, a ligand, and a reducing agent, and more preferably an iodine compound or the like is used as a reaction accelerator.
ニッケル化合物として、ニッケル(0)ビス(シクロオクタジエン)、ニッケル(0)(エチレン)ビス(トリフェニルホスフィン) 、ニッケル(0)テトラキス(トリフェニルホスフィン)等のゼロ価ニッケル化合物、フッ化ニッケル、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル等のハロゲン化ニッケル、ギ酸ニッケル、酢酸ニッケル等のニッケルカルボン酸塩、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、ニッケルアセチルアセトナート、ビス( トリフェニルホスフィン)ニッケルジクロリド等の2価ニッケル化合物が挙げられ、ニッケル(0)ビス(シクロオクタジエン) 、ハロゲン化ニッケル、ビス(トリフェニルホスフィン)ニッケルジクロリドが好ましい。
As nickel compounds, nickel (0) bis (cyclooctadiene), nickel (0) (ethylene) bis (triphenylphosphine), nickel (0) tetrakis (triphenylphosphine) and other zerovalent nickel compounds, nickel fluoride, Nickel halides such as nickel chloride, nickel bromide and nickel iodide, nickel carboxylates such as nickel formate and nickel acetate, nickel sulfate, nickel carbonate, nickel nitrate, nickel acetylacetonate, bis (triphenylphosphine) nickel dichloride And divalent nickel compounds such as nickel (0) bis (cyclooctadiene), nickel halide, and bis (triphenylphosphine) nickel dichloride are preferable.
ニッケル化合物の使用量はモノマーに対して0.01~500mol%がよく、ニッケル化合物の使用量が多すぎると分子量が小さくなる傾向にある。また精製が困難かつコスト的な問題から実用的には100mol%以下である。一方、少なすぎると系中に存在する水の影響により触媒能がなくなる可能性があり、実用的には1mol%以上である。すなわち、1~100mol%%が好ましい。
The amount of the nickel compound used is preferably 0.01 to 500 mol% with respect to the monomer. If the amount of the nickel compound used is too large, the molecular weight tends to be small. Further, it is practically 100 mol% or less due to difficulty in purification and cost. On the other hand, if the amount is too small, the catalytic ability may be lost due to the influence of water present in the system, and it is practically 1 mol% or more. That is, 1 to 100 mol% is preferable.
配位子として、含窒素二座配位子またはリン配位子が挙げられる。含窒素二座配位子としては2,2’-ビピリジン、1,10-フェナントロリン、メチレンビスオキサゾリン、N,N’-テトラメチルエチレンジアミン等が挙げられる。一方、リン配位子としてはトリフェニルホスフィン、トリス(o-トリル)ホスフィン、トリス(m-トリル)ホスフィン、トリス(p-トリル)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセンが挙げられ、トリフェニルホスフィン、トリス(o-トリル)ホスフィン、トリス(m-トリル)ホスフィン、トリス(p-トリル)ホスフィンが好ましい。配位子の使用量はニッケル化合物に対して、含窒素ニ座配位子は0.5~8.0当量、好ましくは1.0~44.0当量である。
Examples of the ligand include nitrogen-containing bidentate ligands and phosphorus ligands. Examples of the nitrogen-containing bidentate ligand include 2,2'-bipyridine, 1,10-phenanthroline, methylenebisoxazoline, N, N'-tetramethylethylenediamine, and the like. On the other hand, phosphorus ligands include triphenylphosphine, tris (o-tolyl) phosphine, tris (m-tolyl) phosphine, tris (p-tolyl) phosphine, 1,2-bis (diphenylphosphino) ethane, 3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,4-bis (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, Triphenylphosphine, tris (o-tolyl) phosphine, tris (m-tolyl) phosphine, and tris (p-tolyl) phosphine are preferable. The amount of the ligand used is 0.5 to 8.0 equivalents, preferably 1.0 to 44.0 equivalents, with respect to the nickel compound.
還元剤として亜鉛を用いることが好ましい。使用量は通常モノマーに対して1当量以上であり、上限は設けない。実用的には重合後の精製を考慮すると5当量以下、好ましくは2当量以下である。また亜鉛は粉末であることが好ましく、使用前に酸などで洗浄することが好ましい。
Zinc is preferably used as the reducing agent. The amount used is usually 1 equivalent or more with respect to the monomer, and there is no upper limit. Practically, in consideration of purification after polymerization, it is 5 equivalents or less, preferably 2 equivalents or less. Moreover, it is preferable that zinc is a powder and it is preferable to wash | clean with an acid etc. before use.
反応を促進する化合物として用いるヨウ素化合物としては、ヨウ化ナトリウム、ヨウ化カリウムなどを用いることができ、ヨウ化ナトリウムを用いることができる。ヨウ素化合物はモノマーに作用してハロゲン基をヨウ素基に置換し、反応性をより向上させていると推定される。
As an iodine compound used as a compound for promoting the reaction, sodium iodide, potassium iodide, or the like can be used, and sodium iodide can be used. It is presumed that the iodine compound acts on the monomer and substitutes the halogen group with the iodine group to further improve the reactivity.
重合溶媒として、モノマー及び触媒組成物及び生成するポリアリーレンスルホン酸類前駆体が溶解し得る溶媒であればよい。そのような溶媒の具体例としては、トルエン、キシレン等の芳香族炭化水素溶媒、テトラヒドロフラン、1,4-ジオキサン等のエーテル溶媒、ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の非プロトン性極性溶媒、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素溶媒等が挙げられる。溶媒は単独で用いてもよいし、2種以上を混合して用いてもよい。中でもエーテル溶媒及び非プロトン性極性溶媒が好ましく、テトラヒドロフラン、ジメチルスルホキシド、N-メチル-2-ピロリドン及びN,N-ジメチルアセトアミドがより好ましい。溶媒の使用量は、多すぎると分子量の小さなポリアリーレンが得られやすく、少なすぎるとモノマー組成物及び生成するポリアリーレンの溶解性の観点から好ましくない。モノマー組成物中のモノマーに対して、通常1~200重量倍、好ましくは5~100重量倍である。
The polymerization solvent may be any solvent that can dissolve the monomer, the catalyst composition, and the polyarylenesulfonic acid precursor to be produced. Specific examples of such solvents include aromatic hydrocarbon solvents such as toluene and xylene, ether solvents such as tetrahydrofuran and 1,4-dioxane, dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N-dimethylformamide. And aprotic polar solvents such as N, N-dimethylacetamide, and halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, and chloroform. A solvent may be used independently and may be used in mixture of 2 or more types. Of these, ether solvents and aprotic polar solvents are preferable, and tetrahydrofuran, dimethyl sulfoxide, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are more preferable. When the amount of the solvent used is too large, polyarylene having a small molecular weight is easily obtained, and when the amount is too small, it is not preferable from the viewpoint of the solubility of the monomer composition and the resulting polyarylene. The amount is usually 1 to 200 times by weight, preferably 5 to 100 times by weight with respect to the monomer in the monomer composition.
反応は、窒素ガス、アルゴンガス等の不活性ガスの雰囲気下で実施されることが好ましい。重合時間は0.5時間~48時間以内で行い、反応温度は室温~溶媒の沸点までで行うことが好ましい。
The reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen gas or argon gas. The polymerization time is preferably 0.5 to 48 hours, and the reaction temperature is preferably from room temperature to the boiling point of the solvent.
反応後の溶液を酸性水溶液に投入することでポリアリーレンスルホン酸類前駆体を再沈し、その後、有機溶媒を用いて不純物を除去することでポリアリーレンスルホン酸類前駆体を得ることができる。不純物除去に用いる溶媒は、ポリアリーレンスルホン酸類前駆体を溶解せず、モノマーやオリゴマー成分、及び配位子成分などの有機不純物を溶解しうるものが好ましい。得られたポリアリーレンスルホン酸類前駆体の分子量や構造は、ゲル浸透クロマトグラフィー、NMR等の通常の分析手段により分析することができる。不純物の除去に用いる溶媒としては、例えば、メタノール、エタノール、2-プロパノールなどのアルコール類またはアセトン、アセトニトリル等が挙げられ、2-プロパノールおよびアセトンが好ましい。
The polyarylene sulfonic acid precursor is reprecipitated by introducing the solution after the reaction into an acidic aqueous solution, and then the polyarylene sulfonic acid precursor is obtained by removing impurities using an organic solvent. The solvent used for removing impurities is preferably a solvent that does not dissolve the polyarylene sulfonic acid precursor but can dissolve organic impurities such as monomers, oligomer components, and ligand components. The molecular weight and structure of the obtained polyarylene sulfonic acid precursor can be analyzed by ordinary analysis means such as gel permeation chromatography and NMR. Examples of the solvent used for removing impurities include alcohols such as methanol, ethanol and 2-propanol, acetone and acetonitrile, and 2-propanol and acetone are preferable.
本願第二の発明は、ポリアリーレンスルホン酸類及びその製造方法に関する。
本発明のポリアリーレンスルホン酸類は、
式(8)および式(9)の繰り返し構造を有し、温度25℃における水100gに対する溶解度が0.1g以上かつイオン交換容量が3ミリ当量/g以上のポリアリーレンスルホン酸類である。 The second invention of the present application relates to polyarylene sulfonic acids and a method for producing the same.
The polyarylene sulfonic acids of the present invention are
Polyarylene sulfonic acids having a repeating structure of formula (8) and formula (9), a solubility in 100 g of water at a temperature of 25 ° C. of 0.1 g or more and an ion exchange capacity of 3 meq / g or more.
本発明のポリアリーレンスルホン酸類は、
式(8)および式(9)の繰り返し構造を有し、温度25℃における水100gに対する溶解度が0.1g以上かつイオン交換容量が3ミリ当量/g以上のポリアリーレンスルホン酸類である。 The second invention of the present application relates to polyarylene sulfonic acids and a method for producing the same.
The polyarylene sulfonic acids of the present invention are
Polyarylene sulfonic acids having a repeating structure of formula (8) and formula (9), a solubility in 100 g of water at a temperature of 25 ° C. of 0.1 g or more and an ion exchange capacity of 3 meq / g or more.
本発明のポリアリーレンスルホン酸のさらに好ましい態様は、下記式(10)で表される構造のポリアリーレンスルホン酸類である。
A further preferred embodiment of the polyarylene sulfonic acid of the present invention is a polyarylene sulfonic acid having a structure represented by the following formula (10).
式(10)において、m1+n1が10未満では電解質としての形状を保つことが困難となり好ましくなく、m1+n1が1000を超えると重合が困難になり好ましくない。m1+n1のより好ましい範囲は15~500であり、さらに好ましくは20~100である。なお、m1+n1は全分子の平均値を用いることが好ましい。m1:n1=70:30~99:1の範囲であることが好ましく、80:20~90:10の範囲であることがより好ましい。
In formula (10), if m1 + n1 is less than 10, it is difficult to maintain the shape as an electrolyte, and if m1 + n1 exceeds 1000, polymerization becomes difficult, which is not preferred. A more preferable range of m1 + n1 is 15 to 500, and further preferably 20 to 100. In addition, it is preferable to use the average value of all molecules for m1 + n1. m1: n1 = 70: 30 to 99: 1 is preferable, and 80:20 to 90:10 is more preferable.
イオン交換容量とは単位重量当たりのスルホン酸基濃度を表し、単位構造中の分子量をM、単位構造中のスルホン酸基数をNと定義すると、イオン交換容量K『ミリ当量/g』は次式で表すことができる。
K=1000×N/M The ion exchange capacity is the sulfonic acid group concentration per unit weight. When the molecular weight in the unit structure is defined as M and the number of sulfonic acid groups in the unit structure is defined as N, the ion exchange capacity K “milliequivalent / g” is Can be expressed as
K = 1000 × N / M
K=1000×N/M The ion exchange capacity is the sulfonic acid group concentration per unit weight. When the molecular weight in the unit structure is defined as M and the number of sulfonic acid groups in the unit structure is defined as N, the ion exchange capacity K “milliequivalent / g” is Can be expressed as
K = 1000 × N / M
電解質のプロトン伝導性の面から、イオン交換容量は3~16ミリ当量/gの範囲であることが好ましい。より好ましくは、イオン交換容量は3.0~8.4ミリ当量/gであり、中でも3.5~8.0ミリ当量/gがさらに好ましく、4.0~7.5ミリ当量/gがなお好ましい。
From the viewpoint of proton conductivity of the electrolyte, the ion exchange capacity is preferably in the range of 3 to 16 meq / g. More preferably, the ion exchange capacity is 3.0 to 8.4 meq / g, more preferably 3.5 to 8.0 meq / g, and 4.0 to 7.5 meq / g. It is preferable.
式(10)のAr3、Ar4を含む構成単位はそれぞれ式(11)、(12)で表される構造である。
The structural units containing Ar 3 and Ar 4 in formula (10) are structures represented by formulas (11) and (12), respectively.
R15~R18は、同一の基であってもいいし、異なる基であってもよい。中でもR15、R16、R18は水素が好ましく、R17は、化学的な安定性と反応性の点から、置換基を有していてもよい炭素数6~20のアリール基であることが好ましく、特にフェニル基が好ましい。
R 15 to R 18 may be the same group or different groups. Among them, R 15 , R 16 and R 18 are preferably hydrogen, and R 17 is an aryl group having 6 to 20 carbon atoms which may have a substituent from the viewpoint of chemical stability and reactivity. Are preferable, and a phenyl group is particularly preferable.
R15~R18が炭素数1~20のアルキル基の場合、その例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2,2-ジメチルプロピル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基、1,3-ブタジエン-1,4-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基等の直鎖状、枝分かれ状、環状のいずれかの構造のものが挙げられる。炭素数6~20のアリール基として、フェニル基、1-ナフチル基、2-ナフチル基、3-フェナントリル基、2-アントリル基等が挙げられる。
When R 15 to R 18 are alkyl groups having 1 to 20 carbon atoms, examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Butyl group, n-pentyl group, 2,2-dimethylpropyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n -Tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, 1,3-butadiene-1,4-diyl And a straight-chain, branched, or cyclic structure such as a butane-1,4-diyl group or a pentane-1,5-diyl group. Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 3-phenanthryl group, 2-anthryl group and the like.
式(11)においてa”、b”は1~4の整数を示し、p”、q”は0または1であり、p”+q”=1を示す。すなわち、p”=1かつq”=0またはp”=0かつq”=1のいずれかである。なかでも反応性の面からp”=0、q”=1が好ましい。
In formula (11), a ″ and b ″ represent integers of 1 to 4, p ″ and q ″ are 0 or 1, and p ″ + q ″ = 1. That is, either p ″ = 1 and q ″ = 0 or p ″ = 0 and q ″ = 1. Of these, p ″ = 0 and q ″ = 1 are preferable from the viewpoint of reactivity.
式(12)において、r’は1または2、d’は4-r’を示し、r’は1、d’は3が好ましい。
In the formula (12), r ′ is 1 or 2, d ′ is 4-r ′, r ′ is 1, and d ′ is preferably 3.
電解質としてのプロトン伝導性の面から、式(12)におけるA’はOHであることが好ましく、少なくともA’の80%がOHであることがさらに好ましく、90%以上であることがより好ましく、95%以上がなお好ましい。OH以外のA’は、R19がH以外であるOR19、もしくはN(R20)(R21)でもよいし、R19がアルカリ金属原子であるOR19であってもよい。
In view of proton conductivity as an electrolyte, A ′ in the formula (12) is preferably OH, at least 80% of A ′ is more preferably OH, and more preferably 90% or more, More preferably 95% or more. A ′ other than OH may be OR 19 in which R 19 is other than H, or N (R 20 ) ( R 21 ), or OR 19 in which R 19 is an alkali metal atom.
以下、本発明のポリアリーレンスルホン酸類の製造方法について説明する。
Hereinafter, the manufacturing method of the polyarylene sulfonic acids of this invention is demonstrated.
本発明のポリアリーレンスルホン酸類は、少なくとも下記の工程1、工程2、及び、工程3の工程を含み、工程1、工程2、工程3の順番で行うことで製造することができる。
(工程1) 少なくとも、式(13)及び式(14)で表される化合物を含む組成物をカップリング重合する工程
(工程2) 工程1で製造したポリマーのスルホン酸基誘導体を脱保護してスルホン酸基またはその塩とする工程
(工程3) 工程2で製造したポリマーを、酸に接触させる工程 The polyarylene sulfonic acids of the present invention include at least thefollowing Step 1, Step 2, and Step 3, and can be produced by carrying out in the order of Step 1, Step 2, and Step 3.
(Step 1) Step of coupling polymerization of a composition containing at least the compounds represented by Formula (13) and Formula (14) (Step 2) Deprotecting the sulfonic acid group derivative of the polymer produced inStep 1 Step of making a sulfonic acid group or a salt thereof (Step 3) Step of bringing the polymer produced in Step 2 into contact with an acid
(工程1) 少なくとも、式(13)及び式(14)で表される化合物を含む組成物をカップリング重合する工程
(工程2) 工程1で製造したポリマーのスルホン酸基誘導体を脱保護してスルホン酸基またはその塩とする工程
(工程3) 工程2で製造したポリマーを、酸に接触させる工程 The polyarylene sulfonic acids of the present invention include at least the
(Step 1) Step of coupling polymerization of a composition containing at least the compounds represented by Formula (13) and Formula (14) (Step 2) Deprotecting the sulfonic acid group derivative of the polymer produced in
工程1については、前記の本発明のポリアリーレンスルホン酸類前駆体の製造法に記載した。工程2において、ポリアリーレンスルホン酸類前駆体のスルホン酸エステル基又はスルホン酸アミド基を脱保護することによってスルホン酸基又はその塩とすることができる。さらに工程3において、酸と接触させることによりスルホン酸基の塩をスルホン酸基とする。以上の工程により、本発明のポリアリーレンスルホン酸類を製造することができる。
Step 1 is described in the method for producing the polyarylene sulfonic acid precursor of the present invention. In Step 2, a sulfonic acid group or a salt thereof can be obtained by deprotecting the sulfonic acid ester group or sulfonic acid amide group of the polyarylenesulfonic acid precursor. Further, in step 3, the salt of the sulfonic acid group is converted into a sulfonic acid group by contacting with an acid. Through the above steps, the polyarylene sulfonic acids of the present invention can be produced.
工程2における脱保護は、加水分解によって行うことが好ましく、水と、酸又はアルカリの存在下で分解することが好ましい。、酸又はアルカリとして、酸性又はアルカリ性の水溶液を用いると、水溶性の本発明のポリアリーレンスルホン酸類は精製が困難となる。そこで、アルカリ金属ハロゲン化物またはハロゲン化第四級アンモニウムを用い、有機溶媒中で脱保護を行うことが好ましい。
The deprotection in step 2 is preferably performed by hydrolysis, and is preferably decomposed in the presence of water and an acid or alkali. When an acidic or alkaline aqueous solution is used as the acid or alkali, the water-soluble polyarylene sulfonic acids of the present invention are difficult to purify. Therefore, it is preferable to perform deprotection in an organic solvent using an alkali metal halide or a quaternary ammonium halide.
アルカリ金属ハロゲン化物としては、例えば、臭化リチウム、ヨウ化ナトリウム等が挙げられ、アミン塩酸塩としては、トリメチルアミン塩酸塩、トリエチルアミン塩酸塩等が挙げられ、臭化リチウム及びトリメチルアミン塩酸塩が好ましく、トリメチルアミン塩酸塩がさらに好ましい。使用量はポリマー中のスルホン酸エステル又はスルホン酸アミドに対して1.1~10当量、好ましくは2~8当量である。
Examples of the alkali metal halide include lithium bromide and sodium iodide. Examples of the amine hydrochloride include trimethylamine hydrochloride and triethylamine hydrochloride. Lithium bromide and trimethylamine hydrochloride are preferable, and trimethylamine is preferable. Hydrochloride is more preferred. The amount used is 1.1 to 10 equivalents, preferably 2 to 8 equivalents, relative to the sulfonic acid ester or sulfonic acid amide in the polymer.
反応に使用する溶媒は、脱保護剤が溶解し、ポリアリーレンスルホン酸類前駆体が溶解するものを用いることが好ましい。例えば、N-メチルピロリドン等の非プロトン性極性溶媒が挙げられる。反応温度は通常、0~200℃、好ましくは80~160℃である。
The solvent used for the reaction is preferably a solvent in which the deprotecting agent is dissolved and the polyarylenesulfonic acid precursor is dissolved. Examples thereof include aprotic polar solvents such as N-methylpyrrolidone. The reaction temperature is usually 0 to 200 ° C., preferably 80 to 160 ° C.
反応後の溶液中にはスルホン酸アンモニウム型またはスルホン酸金属塩型に変換されたポリアリーレンスルホン酸類、脱保護剤の反応残渣、反応溶媒が存在しているために精製を行う必要がある。精製に用いる溶媒として、スルホン酸アンモニウム型またはスルホン酸金属塩型に変換されたポリアリーレンスルホン酸類が溶解せず脱保護剤の反応残渣が溶解する溶媒、またはスルホン酸アンモニウム型またはスルホン酸金属塩型に変換されたポリアリーレンスルホン酸類が溶解し脱保護剤の反応残渣が溶解しない溶媒が求められる。生成したポリアリーレンスルホン酸類が溶解せず脱保護剤の反応残渣が溶解する溶媒としてハロゲン化炭化水素溶媒等が挙げられる。中でもクロロホルムが好ましい。精製方法としては抽出が好ましい。
In the solution after the reaction, polyarylene sulfonic acids converted into an ammonium sulfonate type or a metal salt type of sulfonic acid, a reaction residue of a deprotecting agent, and a reaction solvent are present, so purification is necessary. Solvents used for purification are those in which polyarylene sulfonic acids converted to ammonium sulfonate type or sulfonic acid metal salt type do not dissolve and the reaction residue of the deprotecting agent dissolves, or ammonium sulfonate type or sulfonic acid metal salt type There is a need for a solvent in which the polyarylene sulfonic acids converted into bis are dissolved and the reaction residue of the deprotecting agent is not dissolved. Examples of the solvent in which the produced polyarylene sulfonic acids are not dissolved and the reaction residue of the deprotecting agent is dissolved include a halogenated hydrocarbon solvent. Of these, chloroform is preferred. Extraction is preferred as a purification method.
スルホン酸アンモニウム型またはスルホン酸金属塩型に変換されポリアリーレンスルホン酸類を酸に接触させる際には、分離の容易さから、固体酸を用いることが好ましい。固体酸としては、ヘテロポリ酸などの無機固体酸、スルホン化不定形カーボン、及び陽イオン交換樹脂などを用いることができるが、生成効率と純度の向上の観点から、陽イオン好感樹脂を用いることがより好ましい。陽イオン交換樹脂の使用量は陽イオン交換樹脂のイオン交換容量に依存するが、平衡反応であるため目的のポリマーのイオン交換容量の10倍以上の相当量が必要とされる。特に上限は設けないが、実用的には20倍以下である。酸処理は2つ以上の段階に分けて実施してもよい。固体酸との接触は水中で行うことが好ましい。
When the polyarylene sulfonic acid is converted into an ammonium sulfonate type or a metal salt of sulfonic acid and brought into contact with the acid, it is preferable to use a solid acid for ease of separation. As the solid acid, an inorganic solid acid such as a heteropoly acid, sulfonated amorphous carbon, and a cation exchange resin can be used. From the viewpoint of improving production efficiency and purity, a cation-sensitive resin can be used. More preferred. The amount of the cation exchange resin used depends on the ion exchange capacity of the cation exchange resin, but since it is an equilibrium reaction, a considerable amount more than 10 times the ion exchange capacity of the target polymer is required. Although there is no particular upper limit, it is practically 20 times or less. The acid treatment may be carried out in two or more stages. The contact with the solid acid is preferably performed in water.
固体酸が分散したポリアリーレンスルホン酸類水溶液から固体酸をろ別し、濃縮・乾燥する事により本発明のポリアリーレンスルホン酸類を製造することができる。
The polyarylene sulfonic acids of the present invention can be produced by filtering the solid acid from the polyarylene sulfonic acid aqueous solution in which the solid acid is dispersed, concentrating and drying.
本発明のポリアリーレンスルホン酸類は燃料電池の電解質膜に用いることができる。製膜方法は特に限定されるわけではないが、水を含む溶媒に溶解し平面基盤上に塗布、乾燥し製膜する。溶媒の乾燥は室温~200℃で行い、乾燥した膜を得ることができる。多孔膜、不織布、微粒子との複合化をしてもよく、製膜後に加熱処理、光照射、電子線照射などの処理を行うこともできる。この際に用いられる溶媒も以下に限るわけではないが、非プロトン性溶媒、アルコール系溶媒が挙げられ、アルコールが好ましい。膜の厚さは1~200μm、好ましくは5~100μmである。膜厚は塗布液の濃度あるいは平面基板上の塗布厚に依存する。平面基板としてフィルムまたは金属酸化物を含む基板が好ましい。
The polyarylene sulfonic acids of the present invention can be used for an electrolyte membrane of a fuel cell. The film forming method is not particularly limited, but it is dissolved in a solvent containing water, applied onto a flat substrate, dried and formed into a film. The solvent is dried at room temperature to 200 ° C. to obtain a dried film. It may be combined with a porous film, non-woven fabric, or fine particles, and after film formation, heat treatment, light irradiation, electron beam irradiation, or the like can be performed. The solvent used in this case is not limited to the following, but examples include an aprotic solvent and an alcohol solvent, and an alcohol is preferable. The thickness of the film is 1 to 200 μm, preferably 5 to 100 μm. The film thickness depends on the concentration of the coating solution or the coating thickness on the flat substrate. A substrate containing a film or metal oxide is preferred as the planar substrate.
本願第三の発明は、複合高分子電解質膜及びその製造方法に関する。
本発明の複合高分子電解質膜は、多孔性基材の細孔内に、主鎖に芳香族環を有する高分子電解質およびラジカル重合性化合物が架橋されて充填された複合電解質膜であって該高分子電解質は2分子以上の芳香族系高分子電解質がイオン性基以外の部位で、該芳香族系高分子電解質と異なる構造を有し且つ繰り返し単位を有する化合物によって連結されていることを特徴とする複合高分子電解質膜である。 The third invention of the present application relates to a composite polymer electrolyte membrane and a method for producing the same.
The composite polymer electrolyte membrane of the present invention is a composite electrolyte membrane in which a polymer electrolyte having an aromatic ring in the main chain and a radically polymerizable compound are filled in the pores of a porous base material. The polyelectrolyte is characterized in that two or more molecules of an aromatic polymer electrolyte are connected by a compound having a structure different from that of the aromatic polymer electrolyte and having a repeating unit at a site other than the ionic group. And a composite polymer electrolyte membrane.
本発明の複合高分子電解質膜は、多孔性基材の細孔内に、主鎖に芳香族環を有する高分子電解質およびラジカル重合性化合物が架橋されて充填された複合電解質膜であって該高分子電解質は2分子以上の芳香族系高分子電解質がイオン性基以外の部位で、該芳香族系高分子電解質と異なる構造を有し且つ繰り返し単位を有する化合物によって連結されていることを特徴とする複合高分子電解質膜である。 The third invention of the present application relates to a composite polymer electrolyte membrane and a method for producing the same.
The composite polymer electrolyte membrane of the present invention is a composite electrolyte membrane in which a polymer electrolyte having an aromatic ring in the main chain and a radically polymerizable compound are filled in the pores of a porous base material. The polyelectrolyte is characterized in that two or more molecules of an aromatic polymer electrolyte are connected by a compound having a structure different from that of the aromatic polymer electrolyte and having a repeating unit at a site other than the ionic group. And a composite polymer electrolyte membrane.
さらに、本発明の複合高分子電解質膜は、外部刺激によりラジカルを発生しうる構造を分子鎖中に有する芳香族系高分子電解質と1種類以上のラジカル重合性化合物を含む混合物を多孔性の基材の細孔中に充填後に、外部刺激を与え、該高分子電解質と該ラジカル重合性化合物を反応させて得られる複合高分子電解質膜であることが好ましい。
Further, the composite polymer electrolyte membrane of the present invention comprises a porous group comprising a mixture containing an aromatic polymer electrolyte having a structure capable of generating radicals by external stimulation in a molecular chain and one or more radical polymerizable compounds. A composite polymer electrolyte membrane obtained by applying an external stimulus after filling into the pores of the material and reacting the polymer electrolyte with the radical polymerizable compound is preferable.
上記ラジカル重合性化合物の少なくとも1種類はスルホン酸基もしくはホスホン酸基を有していることが、より好ましく、上記ラジカル重合性化合物でスルホン酸基もしくはホスホン酸基を有さない少なくとも1種類が2個以上のラジカル重合性基を有していることがさらに好ましい。また、上記外部刺激が紫外線照射または電子線照射であることが好ましく、反応の簡便さからは紫外線照射が好ましく、反応性の向上の面からは電子線照射が好ましい。
More preferably, at least one of the radical polymerizable compounds has a sulfonic acid group or a phosphonic acid group, and at least one of the radical polymerizable compounds not having a sulfonic acid group or a phosphonic acid group is 2 More preferably, it has at least one radical polymerizable group. The external stimulus is preferably ultraviolet irradiation or electron beam irradiation, ultraviolet irradiation is preferable for ease of reaction, and electron beam irradiation is preferable for improving reactivity.
また、本発明の複合高分子電解質膜における高分子電解質には、式(8)および式(9)の繰り返し構造を有し、温度25℃における水100gに対する溶解度が0.1g以上かつイオン交換容量が3ミリ当量/g以上のポリアリーレンスルホン酸類を用いることが好ましい。
The polymer electrolyte in the composite polymer electrolyte membrane of the present invention has a repeating structure of formula (8) and formula (9), has a solubility in 100 g of water at a temperature of 25 ° C. of 0.1 g or more, and an ion exchange capacity. It is preferable to use polyarylene sulfonic acids having an amount of 3 meq / g or more.
本発明のポリアリーレンスルホン酸類の好ましい態様については前記の通りである。
The preferred embodiments of the polyarylene sulfonic acids of the present invention are as described above.
次に本発明の複合高分子電解質膜におけるラジカル重合性化合物について説明する。用いるラジカル重合性化合物は1種類以上であれば良いが、2種類以上であることが好ましい。
Next, the radical polymerizable compound in the composite polymer electrolyte membrane of the present invention will be described. The radical polymerizable compound to be used may be one or more, but preferably two or more.
用いるラジカル重合性化合物の少なくとも1種がスルホン酸基もしくはホスホン酸基を有していることが好ましく、具体的には、ビニルスルホン酸、ビニルホスホン酸、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸およびそれらの塩が上げられる。プロトン伝導性の面からスルホン酸基を有していることがより好ましい。
At least one of the radically polymerizable compounds to be used preferably has a sulfonic acid group or a phosphonic acid group. Specifically, vinylsulfonic acid, vinylphosphonic acid, styrenesulfonic acid, 2-acrylamido-2-methyl Propanesulfonic acid and their salts are raised. It is more preferable to have a sulfonic acid group from the viewpoint of proton conductivity.
さらに、上記ラジカル重合性化合物の少なくとも1種類が1分子当たり2個以上のラジカル重合性基を有していることが好ましく、架橋性の面から3個以上であることがより好ましい。
Furthermore, at least one of the above radical polymerizable compounds preferably has two or more radical polymerizable groups per molecule, and more preferably three or more from the viewpoint of crosslinkability.
以下に、2官能以上のラジカル重合性を示す化合物の例を示す。
ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリス(2-ヒドキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、ビス(ヒドロキシメチル)トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、水添ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、ビスフェノールAのジグリシジルエーテルにヒドロキシ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートを付加させたエポキシ(メタ)アクリレート、ポリオキシアルキレン化ビスフェノールAのジ(メタ)アクリレート、p-またはm-ジビニルベンゼン、トリエチレングリコールジビニルエーテル、ジビニルスルホンなどが挙げられる。 Below, the example of the compound which shows bifunctional or more radical polymerizability is shown.
Dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethylene glycol di (meth) acrylate , Tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate , Trimethylolpropane trioxyethyl (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, tris (2-hydro (Diethyl) isocyanurate di (meth) acrylate, bis (hydroxymethyl) tricyclodecane di (meth) acrylate, di (meth) acrylate of diol which is an adduct of bisphenol A ethylene oxide or propylene oxide, hydrogenated bisphenol A Di (meth) acrylate of diol, which is an adduct of ethylene oxide or propylene oxide, epoxy (meth) acrylate obtained by adding hydroxyalkyl (meth) acrylate such as hydroxy (meth) acrylate to diglycidyl ether of bisphenol A, polyoxy Examples thereof include di (meth) acrylates of alkyleneated bisphenol A, p- or m-divinylbenzene, triethylene glycol divinyl ether, divinyl sulfone and the like.
ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリス(2-ヒドキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、ビス(ヒドロキシメチル)トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、水添ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、ビスフェノールAのジグリシジルエーテルにヒドロキシ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートを付加させたエポキシ(メタ)アクリレート、ポリオキシアルキレン化ビスフェノールAのジ(メタ)アクリレート、p-またはm-ジビニルベンゼン、トリエチレングリコールジビニルエーテル、ジビニルスルホンなどが挙げられる。 Below, the example of the compound which shows bifunctional or more radical polymerizability is shown.
Dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethylene glycol di (meth) acrylate , Tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate , Trimethylolpropane trioxyethyl (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, tris (2-hydro (Diethyl) isocyanurate di (meth) acrylate, bis (hydroxymethyl) tricyclodecane di (meth) acrylate, di (meth) acrylate of diol which is an adduct of bisphenol A ethylene oxide or propylene oxide, hydrogenated bisphenol A Di (meth) acrylate of diol, which is an adduct of ethylene oxide or propylene oxide, epoxy (meth) acrylate obtained by adding hydroxyalkyl (meth) acrylate such as hydroxy (meth) acrylate to diglycidyl ether of bisphenol A, polyoxy Examples thereof include di (meth) acrylates of alkyleneated bisphenol A, p- or m-divinylbenzene, triethylene glycol divinyl ether, divinyl sulfone and the like.
1分子中に2つ以上のラジカル重合性基を有するモノマーの市販品としては、例えば、KAYARAD-DPHA、KAYARAD R-604、DPCA-20、-30、-60、-120、HX-620、D-310、D-330(以上、日本化薬(株)製)ユピマーUV SA1002、SA2007(以上、三菱化学(株)製)、ビスコート #195、#230、#215、#260、#335HP、#295、#300、#700(大阪有機化学工業(株)製)、ライトアクリレート 4EG-A、9EG-A、NP-A、DCP-A、BP-4EA、BP-4PA、PE-3A、PE-4A、DPE-6A(以上、共栄社化学(株)製)、アロニックス M-208、M-210、M-215、M-220、M-240、M-305、M-309、M-315、M-325(以上、東亜合成(株)製)などが挙げられる。
Commercially available monomers having two or more radically polymerizable groups in one molecule include, for example, KAYARAD-DPHA, KAYARAD R-604, DPCA-20, -30, -60, -120, HX-620, D -310, D-330 (Nippon Kayaku Co., Ltd.) Iupimer UV SA1002, SA2007 (Mitsubishi Chemical Co., Ltd.), Biscote # 195, # 230, # 215, # 260, # 335HP, # 295, # 300, # 700 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), light acrylate 4EG-A, 9EG-A, NP-A, DCP-A, BP-4EA, BP-4PA, PE-3A, PE- 4A, DPE-6A (from Kyoeisha Chemical Co., Ltd.), Aronix M-208, M-210, M-215, M-220, M-240, M- 05, M-309, M-315, M-325 (manufactured by Toagosei Co.), and the like.
本発明に用いられる多孔性基材の材質としては、プロトン伝導を遮断や妨害しないものであれば特に限定するものではないが、耐熱性の観点や、物理的強度の補強効果を鑑みれば、脂肪族系高分子、芳香族系高分子、または含フッ素高分子が好ましく使用される。脂肪族系高分子としては、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体等が挙げられるが、これらに限定されるものではない。なお、ここで言うポリエチレンとは、ポリエチレンの結晶構造を有するエチレン系のポリマーの総称であり、例えば直鎖状高密度ポリエチレン(HDPE)や、低密度ポリエチレン(LDPE)の他に、エチレンと他のモノマーとの共重合体をも含み、具体的には、直鎖状低密度ポリエチレン(LLDPE)と称されるエチレン、α-オレフィンとの共重合体や超高分子量ポリエチレンなどを含む。またここで言うポリプロピレンはポリプロピレンの結晶構造を有するポリプロピレン系のポリマーの総称であり、一般に使用されているプロピレン系ブロック共重合体、ランダム共重合体など(これらはエチレンや1-ブテンなどとの共重合体である)を含むものである。
The material of the porous substrate used in the present invention is not particularly limited as long as it does not block or interfere with proton conduction. However, in view of heat resistance and physical strength reinforcement effect, An aromatic polymer, an aromatic polymer, or a fluorine-containing polymer is preferably used. Examples of the aliphatic polymer include, but are not limited to, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and the like. In addition, polyethylene here is a general term for ethylene-based polymers having a polyethylene crystal structure. For example, in addition to linear high-density polyethylene (HDPE) and low-density polyethylene (LDPE), ethylene and other polymers are used. It also includes a copolymer with a monomer, and specifically includes a copolymer with ethylene and α-olefin, which is called linear low density polyethylene (LLDPE), and an ultrahigh molecular weight polyethylene. Polypropylene as used herein is a general term for polypropylene-based polymers having a polypropylene crystal structure, and generally used propylene-based block copolymers, random copolymers, etc. (these are copolymers with ethylene, 1-butene, etc.). Which is a polymer).
前記芳香族系高分子としては、例えばポリフェニレンスルフィド、ポリエーテルスルホン、ポリスルフィドスルホン、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンオキシド、芳香族ポリアミド、ポリアミドイミド等が挙げられる。さらに、セルロースやポリ乳酸も使用できる。
Examples of the aromatic polymer include polyphenylene sulfide, polyethersulfone, polysulfidesulfone, polyethylene terephthalate, polycarbonate, polyimide, polyetherimide, polyetherketone, polyetheretherketone, polyphenyleneoxide, aromatic polyamide, and polyamideimide. Is mentioned. Furthermore, cellulose and polylactic acid can also be used.
また、前記含フッ素高分子としては、分子内に炭素-フッ素結合を少なくとも1個有する熱可塑性樹脂が使用されるが、脂肪族系高分子の水素原子のすべてまたは大部分がフッ素原子によって置換された構造のものが好適に使用される。その具体例としては、例えばポリトリフルオロエチレン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリ(テトラフルオロエチレン-ヘキサフルオロプロピレン)、ポリ(テトラフルオロエチレン-ペルフルオロアルキルエーテル)、ポリフッ化ビニリデン等が挙げられるが、これらに限定されるものではない。なかでもポリテトラフルオロエチレン、ポリ(テトラフルオロエチレン-ヘキサフルオロプロピレン)が好ましく、特にポリテトラフルオロエチレンが好ましい。これらの多孔質材料は、単独で用いても、他の素材と組み合わせて用いても良い。
In addition, as the fluorine-containing polymer, a thermoplastic resin having at least one carbon-fluorine bond in the molecule is used, but all or most of the hydrogen atoms of the aliphatic polymer are substituted with fluorine atoms. Those having a different structure are preferably used. Specific examples thereof include polytrifluoroethylene, polytetrafluoroethylene, polychlorotrifluoroethylene, poly (tetrafluoroethylene-hexafluoropropylene), poly (tetrafluoroethylene-perfluoroalkyl ether), and polyvinylidene fluoride. Although it is mentioned, it is not limited to these. Of these, polytetrafluoroethylene and poly (tetrafluoroethylene-hexafluoropropylene) are preferable, and polytetrafluoroethylene is particularly preferable. These porous materials may be used alone or in combination with other materials.
多孔質材料として多孔質フィルムを選択する場合、電気化学的な安定性、コストの観点からポリエチレンやポリプロピレンに代表される脂肪族ポリオレフィンフィルムが好ましい。
When a porous film is selected as the porous material, an aliphatic polyolefin film typified by polyethylene or polypropylene is preferable from the viewpoint of electrochemical stability and cost.
また、ポリオレフィンに被抽出物を添加し、微分散させ、シート化した後に被抽出物を溶媒などにより抽出して孔を形成し、必要に応じて抽出前および/または後に延伸加工を行う工程を有する抽出法で得られた湿式法で得られた多孔質材料も使用可能である。また自己組織化によるハニカム状に開口した多孔質材料や炭酸カルシウムなどの造孔剤を添加し延伸により多孔質化したフィルムも使用可能である。
Also, a process of adding an extractable to polyolefin, finely dispersing it, forming a sheet, extracting the extractable with a solvent or the like to form pores, and performing a stretching process before and / or after extraction as necessary. The porous material obtained by the wet method obtained by the extraction method which has can also be used. In addition, a porous material opened in a honeycomb shape by self-organization or a film made porous by stretching by adding a pore-forming agent such as calcium carbonate can be used.
多孔質基材の空隙率は使用する高分子電解質のイオン交換容量によって適宜実験的に求められるが、複合高分子電解質膜のプロトン伝導性や、高分子電解質溶液の充填の容易さの観点から、30%以上90%以下が好ましく、35%以上70%以下がより好ましい。空隙率が35%以上であれば、高分子電解質溶液が多孔質材料の内部まで充填が容易となりプロトン伝導パスが複合化高分子電解質膜の厚み芳香に連続的に形成されやすい。また、90%以下であれば製膜工程での作業性が良好となり、複合高分子電解質膜の乾湿寸法変化や吸水時の機械的強度の低下を抑制できる。
The porosity of the porous substrate is appropriately determined experimentally depending on the ion exchange capacity of the polymer electrolyte to be used. From the viewpoint of proton conductivity of the composite polymer electrolyte membrane and ease of filling the polymer electrolyte solution, 30% or more and 90% or less are preferable, and 35% or more and 70% or less are more preferable. When the porosity is 35% or more, the polymer electrolyte solution can be easily filled up to the inside of the porous material, and the proton conduction path is easily formed continuously in the thickness aroma of the composite polymer electrolyte membrane. Moreover, if it is 90% or less, the workability | operativity in a film forming process will become favorable, and the reduction | decrease of the mechanical strength at the time of the wet and dry dimension change of a composite polymer electrolyte membrane and water absorption can be suppressed.
多孔質基材の空隙率は、多孔質材料を正方形に切り取り、一辺の長さをL(cm)、重量W(g)、厚みD(cm)、を測定して、以下の式より求めることができる。
空隙率=100-100(W/ρ)/(L2×D)
上記式中のρは、フィルム密度を示す。ρはJIS K7112(1980)のD法の密度勾配管法にて求めた値を用いる。このときの密度勾配管用液は、エタノールと水を用いる。 The porosity of the porous substrate is obtained from the following equation by cutting the porous material into squares, measuring the length of one side L (cm), weight W (g), and thickness D (cm). Can do.
Porosity = 100-100 (W / ρ) / (L2 × D)
Ρ in the above formula indicates the film density. ρ uses a value obtained by the density gradient tube method of D method of JIS K7112 (1980). At this time, ethanol and water are used as the density gradient tube liquid.
空隙率=100-100(W/ρ)/(L2×D)
上記式中のρは、フィルム密度を示す。ρはJIS K7112(1980)のD法の密度勾配管法にて求めた値を用いる。このときの密度勾配管用液は、エタノールと水を用いる。 The porosity of the porous substrate is obtained from the following equation by cutting the porous material into squares, measuring the length of one side L (cm), weight W (g), and thickness D (cm). Can do.
Porosity = 100-100 (W / ρ) / (L2 × D)
Ρ in the above formula indicates the film density. ρ uses a value obtained by the density gradient tube method of D method of JIS K7112 (1980). At this time, ethanol and water are used as the density gradient tube liquid.
多孔質基材の厚みは、目的とする複合高分子電解質膜の膜厚により適宜決定できるが、1~100μmであることが実用上好ましい。フィルム厚みが1μm未満では、製膜工程および二次加工工程における張力によってフィルムが伸び、縦じわの発生や、破断する場合がある。また、100μmを超えると、高分子電解質の充填が不十分となりプロトン伝導性が低下する。
The thickness of the porous substrate can be appropriately determined depending on the film thickness of the target composite polymer electrolyte membrane, but is preferably 1 to 100 μm in practice. When the film thickness is less than 1 μm, the film may be stretched due to the tension in the film forming process and the secondary processing process, and vertical wrinkles may be generated or broken. On the other hand, if it exceeds 100 μm, the polymer electrolyte is insufficiently filled and the proton conductivity is lowered.
本発明の複合高分子電解質膜は、上記多孔質基材に上記芳香族高分子電解質および上記ラジカル重合性化合物の混合溶液を含浸させたあとに、外部刺激によって架橋を進行させることで得られる。
The composite polymer electrolyte membrane of the present invention can be obtained by impregnating the porous base material with a mixed solution of the aromatic polymer electrolyte and the radical polymerizable compound and then proceeding with crosslinking by external stimulation.
本発明の複合高分子電解質膜のイオン交換容量は、複合高分子電解質膜のプロトン伝導性の観点から、1.5ミリ当量/g以上であれば良く、膜の形態安定性について考慮すると1.5ミリ当量/g以上6.0ミリ当量/g以下であることが好ましく、2.0ミリ当量/g以上4.0ミリ当量/gであることがより好ましい。イオン交換容量が1.5ミリ当量/gより低いとプロトン伝導性が不十分で、イオン交換容量が6.0ミリ当量/gより高いと膜の形態安定性に問題が出てしまう。
The ion exchange capacity of the composite polymer electrolyte membrane of the present invention may be 1.5 meq / g or more from the viewpoint of proton conductivity of the composite polymer electrolyte membrane. It is preferably 5 meq / g or more and 6.0 meq / g or less, and more preferably 2.0 meq / g or more and 4.0 meq / g. When the ion exchange capacity is lower than 1.5 milliequivalent / g, proton conductivity is insufficient, and when the ion exchange capacity is higher than 6.0 milliequivalent / g, there is a problem in the morphological stability of the membrane.
以下に本発明の複合高分子電解質膜の製造法について説明する。
芳香族高分子電解質およびラジカル重合性化合物の混合溶液の多孔膜への含浸方法は特に限定されず、該多孔質基材と上記混合溶液が接触するような態様をとればよく、上記混合溶液を溜めた溶液槽に、該多孔質基材を浸漬した後に溶媒を除去する工程、該溶液を多孔質基材に流延塗布して含浸させる工程、該溶液を基材上に流延塗布しその後に該多孔質基材を貼り合わせて含浸させる工程などが挙げられる。 The method for producing the composite polymer electrolyte membrane of the present invention will be described below.
The method for impregnating the porous membrane with the mixed solution of the aromatic polymer electrolyte and the radical polymerizable compound is not particularly limited, and it is sufficient that the porous substrate and the mixed solution are in contact with each other. A step of removing the solvent after immersing the porous substrate in the pooled solution tank, a step of casting and impregnating the solution onto the porous substrate, and casting and applying the solution onto the substrate. And a step of impregnating and impregnating the porous substrate.
芳香族高分子電解質およびラジカル重合性化合物の混合溶液の多孔膜への含浸方法は特に限定されず、該多孔質基材と上記混合溶液が接触するような態様をとればよく、上記混合溶液を溜めた溶液槽に、該多孔質基材を浸漬した後に溶媒を除去する工程、該溶液を多孔質基材に流延塗布して含浸させる工程、該溶液を基材上に流延塗布しその後に該多孔質基材を貼り合わせて含浸させる工程などが挙げられる。 The method for producing the composite polymer electrolyte membrane of the present invention will be described below.
The method for impregnating the porous membrane with the mixed solution of the aromatic polymer electrolyte and the radical polymerizable compound is not particularly limited, and it is sufficient that the porous substrate and the mixed solution are in contact with each other. A step of removing the solvent after immersing the porous substrate in the pooled solution tank, a step of casting and impregnating the solution onto the porous substrate, and casting and applying the solution onto the substrate. And a step of impregnating and impregnating the porous substrate.
本発明における芳香族高分子電解質およびラジカル重合性化合物の混合比は、上記のイオン交換容量の範囲から逸脱しないものであれば特に限定されないが、芳香族高分子電解質/ラジカル重合性化合物(質量%比)で90/10~40/60の範囲であることが好ましく、プロトン伝導性や耐久性および反応性の面から75/25~50/50であることが特に好ましい。
The mixing ratio of the aromatic polymer electrolyte and the radical polymerizable compound in the present invention is not particularly limited as long as it does not deviate from the range of the above ion exchange capacity, but the aromatic polymer electrolyte / radical polymerizable compound (mass%) Ratio) is preferably in the range of 90/10 to 40/60, particularly preferably 75/25 to 50/50 from the viewpoint of proton conductivity, durability, and reactivity.
本発明における芳香族高分子電解質およびラジカル重合性化合物の混合溶液の濃度は、流動性を有する範囲であれば、特に限定されるものではないが、1質量%~30質量%であり、好ましくは,5質量%~15質量%である。
The concentration of the mixed solution of the aromatic polyelectrolyte and the radical polymerizable compound in the present invention is not particularly limited as long as it has fluidity, but is 1% by mass to 30% by mass, preferably , 5 mass% to 15 mass%.
上記混合溶液における溶剤としては、メタノール、エタノール、イソプロピルアルコールなどのアルコール類やジメチルアセトアミド、ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシドなどの非プロトン性有機溶媒および水などが挙げられる。これらの溶剤はそれぞれ混合されていても良い。乾燥速度および製膜性の観点からアルコール系の溶媒と水の混合溶媒を用いることが好ましく、メタノールと水の混合溶媒を用いることがより好ましい。
Examples of the solvent in the above mixed solution include alcohols such as methanol, ethanol and isopropyl alcohol, aprotic organic solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone and dimethylsulfoxide, and water. Each of these solvents may be mixed. From the viewpoint of drying speed and film-forming property, it is preferable to use a mixed solvent of an alcohol solvent and water, and it is more preferable to use a mixed solvent of methanol and water.
芳香族系高分子電解質およびラジカル重合性化合物の混合溶液の多孔膜への含浸後に、得られた複合膜に対して、外部刺激を与えてラジカル反応を起こし、架橋を進行させることで本発明の高分子電解質膜を得ることができる。ここで、外部刺激とは、芳香族高分子電解質およびラジカル重合性化合物の一部を反応させることができるものであれば良く、例えば、紫外線や電子線照射を挙げることができる。なかでも、反応の簡便さからは紫外線照射が好ましく、反応性の向上の面からは電子線照射が好ましい。
After impregnating the porous membrane with the mixed solution of the aromatic polymer electrolyte and the radical polymerizable compound, the resulting composite membrane is subjected to an external stimulus to cause a radical reaction and to proceed with crosslinking. A polymer electrolyte membrane can be obtained. Here, the external stimulus may be anything that can react a part of the aromatic polymer electrolyte and the radical polymerizable compound, and examples thereof include ultraviolet rays and electron beam irradiation. Of these, ultraviolet irradiation is preferred for the convenience of reaction, and electron beam irradiation is preferred for improving reactivity.
また、これらの処理と並行またはその処理後に加熱処理を行うこともできる。芳香族高分子電解質およびラジカル重合性化合物の一部を反応させることができればよく、具体的な加熱条件については、特に限定されないが、反応性の面から50℃~150℃の温度で処理することが好ましく、80~150℃で処理することがより好ましい。
In addition, heat treatment can be performed in parallel with or after these treatments. It is sufficient that a part of the aromatic polymer electrolyte and the radically polymerizable compound can be reacted, and the specific heating conditions are not particularly limited, but the treatment is performed at a temperature of 50 ° C. to 150 ° C. from the viewpoint of reactivity. It is preferable to treat at 80 to 150 ° C.
本発明の膜/電極接合体は、本発明の複合高分子電解質膜を電極触媒層と接合することによって得ることができる。
本発明における電極とは、電極材料と、その表面に形成された触媒を含む層(電極触媒層)とからなり、電極材料としては、公知の材料を用いることができる。例えば、カーボンペーパーやカーボンクロスなど、導電性の多孔質材料を用いることができるが、それらに限定されるものではない。カーボンペーパーやカーボンクロスなど、導電性の多孔質材料は、撥水処理、親水処理などの表面処理がされたものを用いることもできる。触媒には、公知の材料を用いることができる。例えば、白金、白金とルテニウムなどの合金などを挙げることができるが、それらに限定されるものではない。
触媒や触媒を坦持した粒子を含む電極触媒層には、接着剤を用いることができ、接着剤としては、プロトン伝導性を有する樹脂を用いることができる。 The membrane / electrode assembly of the present invention can be obtained by bonding the composite polymer electrolyte membrane of the present invention to an electrode catalyst layer.
The electrode in the present invention comprises an electrode material and a layer (electrode catalyst layer) containing a catalyst formed on the surface thereof, and a known material can be used as the electrode material. For example, a conductive porous material such as carbon paper or carbon cloth can be used, but is not limited thereto. As the conductive porous material such as carbon paper or carbon cloth, a material subjected to surface treatment such as water repellent treatment or hydrophilic treatment can be used. A known material can be used for the catalyst. For example, platinum, an alloy of platinum and ruthenium, and the like can be given, but the invention is not limited to them.
An adhesive can be used for the catalyst and the electrode catalyst layer including the particles carrying the catalyst, and as the adhesive, a resin having proton conductivity can be used.
本発明における電極とは、電極材料と、その表面に形成された触媒を含む層(電極触媒層)とからなり、電極材料としては、公知の材料を用いることができる。例えば、カーボンペーパーやカーボンクロスなど、導電性の多孔質材料を用いることができるが、それらに限定されるものではない。カーボンペーパーやカーボンクロスなど、導電性の多孔質材料は、撥水処理、親水処理などの表面処理がされたものを用いることもできる。触媒には、公知の材料を用いることができる。例えば、白金、白金とルテニウムなどの合金などを挙げることができるが、それらに限定されるものではない。
触媒や触媒を坦持した粒子を含む電極触媒層には、接着剤を用いることができ、接着剤としては、プロトン伝導性を有する樹脂を用いることができる。 The membrane / electrode assembly of the present invention can be obtained by bonding the composite polymer electrolyte membrane of the present invention to an electrode catalyst layer.
The electrode in the present invention comprises an electrode material and a layer (electrode catalyst layer) containing a catalyst formed on the surface thereof, and a known material can be used as the electrode material. For example, a conductive porous material such as carbon paper or carbon cloth can be used, but is not limited thereto. As the conductive porous material such as carbon paper or carbon cloth, a material subjected to surface treatment such as water repellent treatment or hydrophilic treatment can be used. A known material can be used for the catalyst. For example, platinum, an alloy of platinum and ruthenium, and the like can be given, but the invention is not limited to them.
An adhesive can be used for the catalyst and the electrode catalyst layer including the particles carrying the catalyst, and as the adhesive, a resin having proton conductivity can be used.
膜/電極接合体の作製方法としては、従来からの公知の方法を用いて行うことができ、例えば、電極表面に接着剤を塗布して高分子電解質膜と電極触媒層とを接着する方法または高分子電解質膜と電極触媒層とを加熱加圧する方法等がある。接着剤としては、ナフィオン(商品名)溶液など公知のものを用いてもよいし、本発明の複合高分子電解質膜構成するイオン性基含有ポリマーを主成分としたものを用いてもよいし、他の炭化水素系プロトン伝導性ポリマーを主成分とするものを用いてもよい。複合体を作製する方法は、接着剤と触媒を含む組成物を電極表面に塗布して接着する方法が好ましい。本発明の複合高分子電解質膜においては、イオン性基含有ポリマーが適度な軟化温度を有するため、加圧加熱によって高分子電解質膜と電極とを接合する方法が特に適している。
As a method for producing the membrane / electrode assembly, a conventionally known method can be used. For example, a method in which an adhesive is applied to the electrode surface to adhere the polymer electrolyte membrane and the electrode catalyst layer or There is a method of heating and pressurizing the polymer electrolyte membrane and the electrode catalyst layer. As the adhesive, a known one such as a Nafion (trade name) solution may be used, or an adhesive based on an ionic group-containing polymer constituting the composite polymer electrolyte membrane of the present invention may be used. You may use what has other hydrocarbon type proton conductive polymers as a main component. The method for producing the composite is preferably a method in which a composition containing an adhesive and a catalyst is applied and adhered to the electrode surface. In the composite polymer electrolyte membrane of the present invention, since the ionic group-containing polymer has an appropriate softening temperature, a method of joining the polymer electrolyte membrane and the electrode by pressure heating is particularly suitable.
本発明の燃料電池は、本発明の高分子電解質膜または高分子電解質膜/電極接合体を用いて作製することができる。本発明の燃料電池は、例えば酸素極と、燃料極と、それぞれの極に挟まれて配置された高分子電解質膜と、酸素極側に設けられた酸化剤の流路と、燃料極側に設けられた燃料の流路を有するものである。このような一つの単位セルを導電性のセパレーターで連結することによって燃料電池スタックを得ることができる。
The fuel cell of the present invention can be produced using the polymer electrolyte membrane or the polymer electrolyte membrane / electrode assembly of the present invention. The fuel cell of the present invention includes, for example, an oxygen electrode, a fuel electrode, a polymer electrolyte membrane sandwiched between the electrodes, an oxidant flow path provided on the oxygen electrode side, and a fuel electrode side. The fuel flow path is provided. A fuel cell stack can be obtained by connecting such unit cells with a conductive separator.
以下、本発明を、実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されることはない。なお、各種測定は次のように行った。
<高分子電解質膜の評価方法>
以下に高分子電解質膜の評価方法を示す。なお評価するに際しては、特別な記載がない限り、厚みや質量を正確に測ることを目的とし、室温が20℃で相対湿度が30±5RH
%にコントロールされた測定室内で評価を行った。なお、測定に際してサンプルは、24時間以上、測定室内で静置したものを使用した。 EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples. Various measurements were performed as follows.
<Polymer electrolyte membrane evaluation method>
The evaluation method of a polymer electrolyte membrane is shown below. In the evaluation, unless otherwise specified, the purpose is to accurately measure the thickness and mass, and the room temperature is 20 ° C. and the relative humidity is 30 ± 5 RH.
Evaluation was carried out in a measurement room controlled at%. In the measurement, a sample that was allowed to stand in a measurement chamber for 24 hours or more was used.
<高分子電解質膜の評価方法>
以下に高分子電解質膜の評価方法を示す。なお評価するに際しては、特別な記載がない限り、厚みや質量を正確に測ることを目的とし、室温が20℃で相対湿度が30±5RH
%にコントロールされた測定室内で評価を行った。なお、測定に際してサンプルは、24時間以上、測定室内で静置したものを使用した。 EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples. Various measurements were performed as follows.
<Polymer electrolyte membrane evaluation method>
The evaluation method of a polymer electrolyte membrane is shown below. In the evaluation, unless otherwise specified, the purpose is to accurately measure the thickness and mass, and the room temperature is 20 ° C. and the relative humidity is 30 ± 5 RH.
Evaluation was carried out in a measurement room controlled at%. In the measurement, a sample that was allowed to stand in a measurement chamber for 24 hours or more was used.
<高分子電解質膜の厚み>
複合高分子電解質膜の厚みは、マイクロメーター(Mitutoyo、標準マイクロメーター)を用いて測定することにより求めた。測定は10箇所行い、その平均値を厚みとした。 <Thickness of polymer electrolyte membrane>
The thickness of the composite polymer electrolyte membrane was determined by measurement using a micrometer (Mitutoyo, standard micrometer). Measurement was performed at 10 locations, and the average value was taken as the thickness.
複合高分子電解質膜の厚みは、マイクロメーター(Mitutoyo、標準マイクロメーター)を用いて測定することにより求めた。測定は10箇所行い、その平均値を厚みとした。 <Thickness of polymer electrolyte membrane>
The thickness of the composite polymer electrolyte membrane was determined by measurement using a micrometer (Mitutoyo, standard micrometer). Measurement was performed at 10 locations, and the average value was taken as the thickness.
<イオン交換容量>
乾燥したプロトン交換膜100mgを、0.01MのNaOH水溶液50mlに浸漬し、25℃で2時間攪拌した。その後、0.02MのHCl水溶液で中和滴定した。中和滴定には、平沼産業(株)製、電位差滴定装置COMTITE-980を用いた。イオン交換当量は下記式で計算して求めた。
イオン交換容量[ミリ当量/g]=(10-滴定量[ml])/2 <Ion exchange capacity>
100 mg of the dried proton exchange membrane was immersed in 50 ml of 0.01 M NaOH aqueous solution and stirred at 25 ° C. for 2 hours. Thereafter, neutralization titration with 0.02 M aqueous HCl was performed. For neutralization titration, a potentiometric titrator COMMITE-980 manufactured by Hiranuma Sangyo Co., Ltd. was used. The ion exchange equivalent was calculated by the following formula.
Ion exchange capacity [milliequivalent / g] = (10-titer [ml]) / 2
乾燥したプロトン交換膜100mgを、0.01MのNaOH水溶液50mlに浸漬し、25℃で2時間攪拌した。その後、0.02MのHCl水溶液で中和滴定した。中和滴定には、平沼産業(株)製、電位差滴定装置COMTITE-980を用いた。イオン交換当量は下記式で計算して求めた。
イオン交換容量[ミリ当量/g]=(10-滴定量[ml])/2 <Ion exchange capacity>
100 mg of the dried proton exchange membrane was immersed in 50 ml of 0.01 M NaOH aqueous solution and stirred at 25 ° C. for 2 hours. Thereafter, neutralization titration with 0.02 M aqueous HCl was performed. For neutralization titration, a potentiometric titrator COMMITE-980 manufactured by Hiranuma Sangyo Co., Ltd. was used. The ion exchange equivalent was calculated by the following formula.
Ion exchange capacity [milliequivalent / g] = (10-titer [ml]) / 2
<プロトン伝導性>
自作測定用プローブ(テフロン(登録商標)製)上で短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、80℃、50%RHの恒温・恒湿オーブン(株式会社ナガノ科学機械製作所、LH-20-01)中に試料を保持し、白金線間のインピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を変化させて測定し、極間距離とC-Cプロットから見積もられる抵抗測定値をプロットした勾配から以下の式により膜と白金線間の接触抵抗をキャンセルしたプロトン伝導率(σ)を算出した。
σ[S/cm]=1/膜幅[cm]×膜厚[cm]×抵抗極間勾配[Ω/cm] <Proton conductivity>
A platinum wire (diameter: 0.2 mm) was pressed against the surface of the strip-shaped membrane sample on a self-made measurement probe (manufactured by Teflon (registered trademark)), and a constant temperature / humidity oven at 80 ° C. and 50% RH (Nagano Co., Ltd. The specimen was held in Science Machinery Co., Ltd., LH-20-01), and the impedance between the platinum wires was measured by SOLARTRON 1250 FREQUENCY RESPONSE ANALYSER. Proton conductivity (σ) with the contact resistance between the membrane and the platinum wire canceled by the following formula from the slope of the measured resistance value estimated from the distance between the poles and the CC plot. Was calculated.
σ [S / cm] = 1 / film width [cm] × film thickness [cm] × resistance interelectrode gradient [Ω / cm]
自作測定用プローブ(テフロン(登録商標)製)上で短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、80℃、50%RHの恒温・恒湿オーブン(株式会社ナガノ科学機械製作所、LH-20-01)中に試料を保持し、白金線間のインピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を変化させて測定し、極間距離とC-Cプロットから見積もられる抵抗測定値をプロットした勾配から以下の式により膜と白金線間の接触抵抗をキャンセルしたプロトン伝導率(σ)を算出した。
σ[S/cm]=1/膜幅[cm]×膜厚[cm]×抵抗極間勾配[Ω/cm] <Proton conductivity>
A platinum wire (diameter: 0.2 mm) was pressed against the surface of the strip-shaped membrane sample on a self-made measurement probe (manufactured by Teflon (registered trademark)), and a constant temperature / humidity oven at 80 ° C. and 50% RH (Nagano Co., Ltd. The specimen was held in Science Machinery Co., Ltd., LH-20-01), and the impedance between the platinum wires was measured by SOLARTRON 1250 FREQUENCY RESPONSE ANALYSER. Proton conductivity (σ) with the contact resistance between the membrane and the platinum wire canceled by the following formula from the slope of the measured resistance value estimated from the distance between the poles and the CC plot. Was calculated.
σ [S / cm] = 1 / film width [cm] × film thickness [cm] × resistance interelectrode gradient [Ω / cm]
<膨潤・収縮繰り返し(D/W)試験方法>
高分子電解質膜の膨潤・収縮繰り返し試験および耐久性は、以下の方法で測定した。高分子電解質膜を自作の膨潤・収縮繰り返し試験セル(有効面積約15cm2)にセットし、セル温度は85℃になるように加温した。その後、セル中に無加湿の窒素を270秒-フル加湿の窒素を30秒流すサイクルを繰り返す試験を実施した。6サイクルごとにアノード開放状態でカソード側に背圧(50kPa)を掛けることで膜の破れを確認した(背圧↓で膜破れ発生と判断)。
500サイクルまで測定し、破れがあったものは×、破れがなかったものは○と評価した。 <Repeated swelling / shrinkage (D / W) test method>
The swelling / contraction repeated test and durability of the polymer electrolyte membrane were measured by the following methods. The polymer electrolyte membrane was set in a self-made swelling / contraction repeated test cell (effective area about 15 cm 2 ), and the cell temperature was heated to 85 ° C. Thereafter, a test was repeated in which a non-humidified nitrogen was supplied to the cell for 270 seconds-full humidified nitrogen for 30 seconds. Breaking of the membrane was confirmed by applying back pressure (50 kPa) to the cathode side every 6 cycles with the anode open (determined that membrane tearing occurred at back pressure ↓).
Measurement was made up to 500 cycles, and those that were torn were evaluated as x, and those that were not torn were evaluated as o.
高分子電解質膜の膨潤・収縮繰り返し試験および耐久性は、以下の方法で測定した。高分子電解質膜を自作の膨潤・収縮繰り返し試験セル(有効面積約15cm2)にセットし、セル温度は85℃になるように加温した。その後、セル中に無加湿の窒素を270秒-フル加湿の窒素を30秒流すサイクルを繰り返す試験を実施した。6サイクルごとにアノード開放状態でカソード側に背圧(50kPa)を掛けることで膜の破れを確認した(背圧↓で膜破れ発生と判断)。
500サイクルまで測定し、破れがあったものは×、破れがなかったものは○と評価した。 <Repeated swelling / shrinkage (D / W) test method>
The swelling / contraction repeated test and durability of the polymer electrolyte membrane were measured by the following methods. The polymer electrolyte membrane was set in a self-made swelling / contraction repeated test cell (effective area about 15 cm 2 ), and the cell temperature was heated to 85 ° C. Thereafter, a test was repeated in which a non-humidified nitrogen was supplied to the cell for 270 seconds-full humidified nitrogen for 30 seconds. Breaking of the membrane was confirmed by applying back pressure (50 kPa) to the cathode side every 6 cycles with the anode open (determined that membrane tearing occurred at back pressure ↓).
Measurement was made up to 500 cycles, and those that were torn were evaluated as x, and those that were not torn were evaluated as o.
<高分子電解質膜と電極との接合および発電試験>
デュポン社製20%ナフィオン(登録商標)溶液に、市販の40%Pt触媒担持カーボン(田中貴金属工業社 燃料電池用触媒 TEC10V40E)と、少量の超純水およびイソプロピルアルコールを加えた後、均一になるまで攪拌し、触媒ペーストを調製した。この触媒ペーストを、カーボンペーパー(東レ社製 TGPH-060)に白金の付着量が0.5mg/cm2になるように均一に塗布・乾燥して、電極触媒層付きガス拡散層を作製した。上記の電極触媒層付きガス拡散層の間に、高分子電解質膜を、電極触媒層が膜に接するように挟み、ホットプレス法により80℃、3MPaにて4分間加圧、加熱することにより、膜-電極接合体とした。この接合体をElectrochem社製の評価用燃料電池セルFC25-02SPに組み込んで、セル温度80℃で、アノード26%RHおよびカソード16%RHの条件で水素と酸素を供給して発電特性を評価した。性能安定後の1A/cm2での電圧を用いサンプル間の比較を行った。 <Bonding of polymer electrolyte membrane and electrode and power generation test>
It becomes uniform after adding commercially available 40% Pt catalyst-supported carbon (Tanaka Kikinzoku Kogyo TEC10V40E), a small amount of ultrapure water and isopropyl alcohol to a 20% Nafion (registered trademark) solution manufactured by DuPont. Until the catalyst paste was prepared. The catalyst paste was uniformly applied to carbon paper (TGPH-060 manufactured by Toray Industries, Inc.) so that the amount of platinum deposited was 0.5 mg / cm 2 and dried to prepare a gas diffusion layer with an electrode catalyst layer. By sandwiching the polymer electrolyte membrane between the gas diffusion layers with the electrode catalyst layer so that the electrode catalyst layer is in contact with the membrane, and pressurizing and heating at 80 ° C. and 3 MPa for 4 minutes by a hot press method, A membrane-electrode assembly was obtained. This joined body was incorporated into an evaluation fuel cell FC25-02SP manufactured by Electrochem, and power generation characteristics were evaluated by supplying hydrogen and oxygen at a cell temperature of 80 ° C. under conditions of an anode 26% RH and a cathode 16% RH. . Comparison was made between samples using the voltage at 1 A / cm 2 after the performance was stabilized.
デュポン社製20%ナフィオン(登録商標)溶液に、市販の40%Pt触媒担持カーボン(田中貴金属工業社 燃料電池用触媒 TEC10V40E)と、少量の超純水およびイソプロピルアルコールを加えた後、均一になるまで攪拌し、触媒ペーストを調製した。この触媒ペーストを、カーボンペーパー(東レ社製 TGPH-060)に白金の付着量が0.5mg/cm2になるように均一に塗布・乾燥して、電極触媒層付きガス拡散層を作製した。上記の電極触媒層付きガス拡散層の間に、高分子電解質膜を、電極触媒層が膜に接するように挟み、ホットプレス法により80℃、3MPaにて4分間加圧、加熱することにより、膜-電極接合体とした。この接合体をElectrochem社製の評価用燃料電池セルFC25-02SPに組み込んで、セル温度80℃で、アノード26%RHおよびカソード16%RHの条件で水素と酸素を供給して発電特性を評価した。性能安定後の1A/cm2での電圧を用いサンプル間の比較を行った。 <Bonding of polymer electrolyte membrane and electrode and power generation test>
It becomes uniform after adding commercially available 40% Pt catalyst-supported carbon (Tanaka Kikinzoku Kogyo TEC10V40E), a small amount of ultrapure water and isopropyl alcohol to a 20% Nafion (registered trademark) solution manufactured by DuPont. Until the catalyst paste was prepared. The catalyst paste was uniformly applied to carbon paper (TGPH-060 manufactured by Toray Industries, Inc.) so that the amount of platinum deposited was 0.5 mg / cm 2 and dried to prepare a gas diffusion layer with an electrode catalyst layer. By sandwiching the polymer electrolyte membrane between the gas diffusion layers with the electrode catalyst layer so that the electrode catalyst layer is in contact with the membrane, and pressurizing and heating at 80 ° C. and 3 MPa for 4 minutes by a hot press method, A membrane-electrode assembly was obtained. This joined body was incorporated into an evaluation fuel cell FC25-02SP manufactured by Electrochem, and power generation characteristics were evaluated by supplying hydrogen and oxygen at a cell temperature of 80 ° C. under conditions of an anode 26% RH and a cathode 16% RH. . Comparison was made between samples using the voltage at 1 A / cm 2 after the performance was stabilized.
以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
<ポリアリーレンスルホン酸類前駆体の合成>
(実施例1)
ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン] (モル比:90/10)
30ml反応容器<A>に無水塩化ニッケル(97mg、0.75mmol)、トリフェニルホスフィン(780mg、3.0mmol)、ヨウ化ナトリウム(56mg、0.37mmol)、亜鉛粉末(980mg、15mmol)を量りとり、テトラヒドロフラン3mlを加えた。70℃まで昇温し、10分間撹拌した。異なる30ml反応容器<B>に2,5-ジクロロベンゼンスルホン酸2,2-ジメチルプロピル(2.0g、6.7mmol)、2,5-ジクロロベンゾフェノン(0.19g、0.75mmol)にテトラヒドロフラン(7ml)を加えた。反応容器<B>の溶液を反応容器<A>に移し、70℃で6時間撹拌した。反応溶液を10%塩酸水溶液100mlに注ぎ、ろ過した。次いで、アセトン100ml中に分散させ、反応混合物を溶解し、ろ過することにより目的としたポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:90/10)を1.3g合成することができた。1H-NMRを用いて末端法より算出したMnは2500g/molであった。化学構造を式(15)に示す。 <Synthesis of polyarylene sulfonic acid precursors>
(Example 1)
Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 90/10)
Weigh anhydrous nickel chloride (97 mg, 0.75 mmol), triphenylphosphine (780 mg, 3.0 mmol), sodium iodide (56 mg, 0.37 mmol), zinc powder (980 mg, 15 mmol) into a 30 ml reaction vessel <A>. 3 ml of tetrahydrofuran was added. The temperature was raised to 70 ° C. and stirred for 10 minutes. In a different 30 ml reaction vessel <B>, 2,2-dimethylpropyl 2,5-dimethylpropylsulfonate (2.0 g, 6.7 mmol), 2,5-dichlorobenzophenone (0.19 g, 0.75 mmol) and tetrahydrofuran (0.19 g, 0.75 mmol) were added. 7 ml) was added. The solution in the reaction vessel <B> was transferred to the reaction vessel <A> and stirred at 70 ° C. for 6 hours. The reaction solution was poured into 100 ml of 10% aqueous hydrochloric acid and filtered. Subsequently, it was dispersed in 100 ml of acetone, and the reaction mixture was dissolved and filtered to obtain the desired poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 90 / It was possible to synthesize 1.3 g of 10). The Mn calculated from the terminal method using 1H-NMR was 2500 g / mol. The chemical structure is shown in Formula (15).
(実施例1)
ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン] (モル比:90/10)
30ml反応容器<A>に無水塩化ニッケル(97mg、0.75mmol)、トリフェニルホスフィン(780mg、3.0mmol)、ヨウ化ナトリウム(56mg、0.37mmol)、亜鉛粉末(980mg、15mmol)を量りとり、テトラヒドロフラン3mlを加えた。70℃まで昇温し、10分間撹拌した。異なる30ml反応容器<B>に2,5-ジクロロベンゼンスルホン酸2,2-ジメチルプロピル(2.0g、6.7mmol)、2,5-ジクロロベンゾフェノン(0.19g、0.75mmol)にテトラヒドロフラン(7ml)を加えた。反応容器<B>の溶液を反応容器<A>に移し、70℃で6時間撹拌した。反応溶液を10%塩酸水溶液100mlに注ぎ、ろ過した。次いで、アセトン100ml中に分散させ、反応混合物を溶解し、ろ過することにより目的としたポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:90/10)を1.3g合成することができた。1H-NMRを用いて末端法より算出したMnは2500g/molであった。化学構造を式(15)に示す。 <Synthesis of polyarylene sulfonic acid precursors>
(Example 1)
Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 90/10)
Weigh anhydrous nickel chloride (97 mg, 0.75 mmol), triphenylphosphine (780 mg, 3.0 mmol), sodium iodide (56 mg, 0.37 mmol), zinc powder (980 mg, 15 mmol) into a 30 ml reaction vessel <A>. 3 ml of tetrahydrofuran was added. The temperature was raised to 70 ° C. and stirred for 10 minutes. In a different 30 ml reaction vessel <B>, 2,2-
(実施例2)
ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:80/20)
原料として2,5-ジクロロベンゼンスルホン酸2,2-ジメチルプロピル(2.0g、6.7mmol)、2,5-ジクロロベンゾフェノン(0.42g、1.68mmol)の重量比で実施例1と同様な実験条件で重合した。ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:80/20)を1.2g合成することができた。Mnは2900g/molであった (Example 2)
Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 80/20)
As in Example 1, with a weight ratio of 2,2-dimethylpropyl 2,5-dimethylpropylsulfonate (2.0 g, 6.7 mmol) and 2,5-dichlorobenzophenone (0.42 g, 1.68 mmol) as raw materials Polymerized under various experimental conditions. 1.2 g of poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 80/20) could be synthesized. Mn was 2900 g / mol
ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:80/20)
原料として2,5-ジクロロベンゼンスルホン酸2,2-ジメチルプロピル(2.0g、6.7mmol)、2,5-ジクロロベンゾフェノン(0.42g、1.68mmol)の重量比で実施例1と同様な実験条件で重合した。ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:80/20)を1.2g合成することができた。Mnは2900g/molであった (Example 2)
Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 80/20)
As in Example 1, with a weight ratio of 2,2-
(実施例3)
ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/4,4’-ベンゾフェノン](モル比:90/10)
原料として2,5-ジクロロベンゼンスルホン酸2,2-ジメチルプロピル(2.0g、6.7mmol)、4,4’-ジクロロベンゾフェノン(0.19g、0.75mmol)の重量比で実施例1と同様な実験条件で重合した。ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/4,4’-ベンゾフェノン](モル比:90/10)を1.4g合成することができた。Mnは2800g/molであった。化学構造を式(16)に示す。 (Example 3)
Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 4,4′-benzophenone] (molar ratio: 90/10)
The weight ratio of 2,2-dimethylpropyl 2,5-dimethylbenzenesulfonate (2.0 g, 6.7 mmol) and 4,4′-dichlorobenzophenone (0.19 g, 0.75 mmol) as starting materials Polymerization was conducted under similar experimental conditions. It was possible to synthesize 1.4 g of poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 4,4′-benzophenone] (molar ratio: 90/10). Mn was 2800 g / mol. The chemical structure is shown in Formula (16).
ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/4,4’-ベンゾフェノン](モル比:90/10)
原料として2,5-ジクロロベンゼンスルホン酸2,2-ジメチルプロピル(2.0g、6.7mmol)、4,4’-ジクロロベンゾフェノン(0.19g、0.75mmol)の重量比で実施例1と同様な実験条件で重合した。ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/4,4’-ベンゾフェノン](モル比:90/10)を1.4g合成することができた。Mnは2800g/molであった。化学構造を式(16)に示す。 (Example 3)
Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 4,4′-benzophenone] (molar ratio: 90/10)
The weight ratio of 2,2-
(実施例4)
ポリ[(N,N-ジメチル-p-フェニレンスルホン酸アミド/4,4’-ベンゾフェノン](モル比:90/10)
原料としてN,N-ジメチル-2,5-ジクロロベンゼンスルホン酸アミド(1.7g、6.7mmol)、2,5-ジクロロベンゾフェノン(0.19g、0.75mmol)の重量比で実施例1と同様な実験条件で重合した。ポリ[(N,N-ジメチル-p-フェニレンスルホン酸アミド/4,4’-ベンゾフェノン](モル比:90/10)
を1.3g合成することができた。Mnは2400g/molであった。 Example 4
Poly [(N, N-dimethyl-p-phenylenesulfonic acid amide / 4,4′-benzophenone] (molar ratio: 90/10)
The weight ratio of N, N-dimethyl-2,5-dichlorobenzenesulfonic acid amide (1.7 g, 6.7 mmol) and 2,5-dichlorobenzophenone (0.19 g, 0.75 mmol) as raw materials was as in Example 1. Polymerization was conducted under similar experimental conditions. Poly [(N, N-dimethyl-p-phenylenesulfonic acid amide / 4,4′-benzophenone] (molar ratio: 90/10)
Was able to be synthesized. Mn was 2400 g / mol.
ポリ[(N,N-ジメチル-p-フェニレンスルホン酸アミド/4,4’-ベンゾフェノン](モル比:90/10)
原料としてN,N-ジメチル-2,5-ジクロロベンゼンスルホン酸アミド(1.7g、6.7mmol)、2,5-ジクロロベンゾフェノン(0.19g、0.75mmol)の重量比で実施例1と同様な実験条件で重合した。ポリ[(N,N-ジメチル-p-フェニレンスルホン酸アミド/4,4’-ベンゾフェノン](モル比:90/10)
を1.3g合成することができた。Mnは2400g/molであった。 Example 4
Poly [(N, N-dimethyl-p-phenylenesulfonic acid amide / 4,4′-benzophenone] (molar ratio: 90/10)
The weight ratio of N, N-dimethyl-2,5-dichlorobenzenesulfonic acid amide (1.7 g, 6.7 mmol) and 2,5-dichlorobenzophenone (0.19 g, 0.75 mmol) as raw materials was as in Example 1. Polymerization was conducted under similar experimental conditions. Poly [(N, N-dimethyl-p-phenylenesulfonic acid amide / 4,4′-benzophenone] (molar ratio: 90/10)
Was able to be synthesized. Mn was 2400 g / mol.
(比較例1)
30ml反応容器<A>に無水塩化ニッケル(140mg、1.1mmol)、トリフェニルホスフィン(890mg、3.4mmol)、沃化ナトリウム(120mg、0.84mmol)、亜鉛粉末(2.2g、32mmol)を量りとり、N-メチルピロリドン3mlを加えた。70℃まで昇温し、10分間撹拌した。異なる30ml反応容器<B>に2,5-ジクロロベンゼンスルホン酸ナトリウム(1.7g、6.7mmol)、2,5-ジクロロベンゾフェノン(0.42g、1.7mmol)にN-メチルピロリドン(7ml)を加えた。反応容器<B>の溶液を反応容器<A>に移し、70℃で6時間撹拌した。反応溶液をメタノール100mlに注ぐことにより沈殿物を得た。沈殿物を数回メタノールで洗浄した。得られた沈殿物は未反応の原料のみでポリマーを得ることはできなかった。吸湿性のモノマーを使用したことにより、触媒が失活したためである。 (Comparative Example 1)
In a 30 ml reaction vessel <A>, anhydrous nickel chloride (140 mg, 1.1 mmol), triphenylphosphine (890 mg, 3.4 mmol), sodium iodide (120 mg, 0.84 mmol), zinc powder (2.2 g, 32 mmol) were added. Weigh and add 3 ml of N-methylpyrrolidone. The temperature was raised to 70 ° C. and stirred for 10 minutes. In a different 30 ml reaction vessel <B>,sodium 2,5-dichlorobenzenesulfonate (1.7 g, 6.7 mmol), 2,5-dichlorobenzophenone (0.42 g, 1.7 mmol) and N-methylpyrrolidone (7 ml) Was added. The solution in the reaction vessel <B> was transferred to the reaction vessel <A> and stirred at 70 ° C. for 6 hours. The reaction solution was poured into 100 ml of methanol to obtain a precipitate. The precipitate was washed several times with methanol. The obtained precipitate was not able to obtain a polymer only with unreacted raw materials. This is because the catalyst was deactivated by using a hygroscopic monomer.
30ml反応容器<A>に無水塩化ニッケル(140mg、1.1mmol)、トリフェニルホスフィン(890mg、3.4mmol)、沃化ナトリウム(120mg、0.84mmol)、亜鉛粉末(2.2g、32mmol)を量りとり、N-メチルピロリドン3mlを加えた。70℃まで昇温し、10分間撹拌した。異なる30ml反応容器<B>に2,5-ジクロロベンゼンスルホン酸ナトリウム(1.7g、6.7mmol)、2,5-ジクロロベンゾフェノン(0.42g、1.7mmol)にN-メチルピロリドン(7ml)を加えた。反応容器<B>の溶液を反応容器<A>に移し、70℃で6時間撹拌した。反応溶液をメタノール100mlに注ぐことにより沈殿物を得た。沈殿物を数回メタノールで洗浄した。得られた沈殿物は未反応の原料のみでポリマーを得ることはできなかった。吸湿性のモノマーを使用したことにより、触媒が失活したためである。 (Comparative Example 1)
In a 30 ml reaction vessel <A>, anhydrous nickel chloride (140 mg, 1.1 mmol), triphenylphosphine (890 mg, 3.4 mmol), sodium iodide (120 mg, 0.84 mmol), zinc powder (2.2 g, 32 mmol) were added. Weigh and add 3 ml of N-methylpyrrolidone. The temperature was raised to 70 ° C. and stirred for 10 minutes. In a different 30 ml reaction vessel <B>,
<ポリアリーレンスルホン酸類の合成>
(実施例5)
ポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)
実施例1で合成したポリアリーレンスルホン酸類前駆体(1g、スルホン酸エステルユニット4.4mmol分に相当)、トリメチルアミン塩酸塩(2.1g、22mmol)、NMP 20mlを計量し、120℃で12時間攪拌した。反応混合物をクロロホルム100mlで洗浄し、トリメチルアミン塩酸塩の反応残渣が除去できるまでクロロホルムで洗浄した。100ml三角フラスコに精製したポリマー、陽イオン交換樹脂(ダウエックスモノスフィアー650C)10g、純水10gを計量し室温で12時間攪拌した。陽イオン交換樹脂をろ過により除去し、ポリマー水溶液を濃縮、乾燥し、ポリ(p-フェニレンスルホン酸)を0.7g合成することができた。合成したポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)のイオン交換容量は5.5ミリ当量/g、純水100gに対する溶解度は0.1g以上あった。 <Synthesis of polyarylene sulfonic acids>
(Example 5)
Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10)
A polyarylene sulfonic acid precursor synthesized in Example 1 (1 g, corresponding to 4.4 mmol of sulfonate unit), trimethylamine hydrochloride (2.1 g, 22 mmol), and 20 ml of NMP were weighed and stirred at 120 ° C. for 12 hours. did. The reaction mixture was washed with 100 ml of chloroform and washed with chloroform until the reaction residue of trimethylamine hydrochloride could be removed. A purified polymer, 10 g of a cation exchange resin (Dowex Monosphere 650C), and 10 g of pure water were weighed into a 100 ml Erlenmeyer flask and stirred at room temperature for 12 hours. The cation exchange resin was removed by filtration, and the polymer aqueous solution was concentrated and dried to synthesize 0.7 g of poly (p-phenylenesulfonic acid). The synthesized poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) has an ion exchange capacity of 5.5 meq / g and a solubility in 100 g of pure water of 0.1 g or more. It was.
(実施例5)
ポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)
実施例1で合成したポリアリーレンスルホン酸類前駆体(1g、スルホン酸エステルユニット4.4mmol分に相当)、トリメチルアミン塩酸塩(2.1g、22mmol)、NMP 20mlを計量し、120℃で12時間攪拌した。反応混合物をクロロホルム100mlで洗浄し、トリメチルアミン塩酸塩の反応残渣が除去できるまでクロロホルムで洗浄した。100ml三角フラスコに精製したポリマー、陽イオン交換樹脂(ダウエックスモノスフィアー650C)10g、純水10gを計量し室温で12時間攪拌した。陽イオン交換樹脂をろ過により除去し、ポリマー水溶液を濃縮、乾燥し、ポリ(p-フェニレンスルホン酸)を0.7g合成することができた。合成したポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)のイオン交換容量は5.5ミリ当量/g、純水100gに対する溶解度は0.1g以上あった。 <Synthesis of polyarylene sulfonic acids>
(Example 5)
Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10)
A polyarylene sulfonic acid precursor synthesized in Example 1 (1 g, corresponding to 4.4 mmol of sulfonate unit), trimethylamine hydrochloride (2.1 g, 22 mmol), and 20 ml of NMP were weighed and stirred at 120 ° C. for 12 hours. did. The reaction mixture was washed with 100 ml of chloroform and washed with chloroform until the reaction residue of trimethylamine hydrochloride could be removed. A purified polymer, 10 g of a cation exchange resin (Dowex Monosphere 650C), and 10 g of pure water were weighed into a 100 ml Erlenmeyer flask and stirred at room temperature for 12 hours. The cation exchange resin was removed by filtration, and the polymer aqueous solution was concentrated and dried to synthesize 0.7 g of poly (p-phenylenesulfonic acid). The synthesized poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) has an ion exchange capacity of 5.5 meq / g and a solubility in 100 g of pure water of 0.1 g or more. It was.
(実施例6)
ポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:80/20)
実施例2で得たポリアリーレンスルホン酸類前駆体を用い、実施例5と同様にしてポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:80/20)を0.6g合成することができた。イオン交換容量は4.8ミリ当量/g、純水100gに対する溶解度は0.1g以上であった。 (Example 6)
Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 80/20)
Using the polyarylenesulfonic acid precursor obtained in Example 2, 0.6 g of poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 80/20) was obtained in the same manner as in Example 5. I was able to synthesize. The ion exchange capacity was 4.8 meq / g, and the solubility in 100 g of pure water was 0.1 g or more.
ポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:80/20)
実施例2で得たポリアリーレンスルホン酸類前駆体を用い、実施例5と同様にしてポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:80/20)を0.6g合成することができた。イオン交換容量は4.8ミリ当量/g、純水100gに対する溶解度は0.1g以上であった。 (Example 6)
Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 80/20)
Using the polyarylenesulfonic acid precursor obtained in Example 2, 0.6 g of poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 80/20) was obtained in the same manner as in Example 5. I was able to synthesize. The ion exchange capacity was 4.8 meq / g, and the solubility in 100 g of pure water was 0.1 g or more.
(実施例7)
ポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)
実施例4で得たポリアリーレンスルホン酸類前駆体を用い、実施例5と同様にしてポリポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)を0.5g合成することができた。合成したポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)のイオン交換容量は5.4ミリ当量/g、純水100gに対する溶解度は0.1g以上あった。 (Example 7)
Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10)
Using the polyarylenesulfonic acid precursor obtained in Example 4, 0.5 g of polypoly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) was obtained in the same manner as in Example 5. I was able to synthesize. The synthesized poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) has an ion exchange capacity of 5.4 meq / g and a solubility in 100 g of pure water of 0.1 g or more. It was.
ポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)
実施例4で得たポリアリーレンスルホン酸類前駆体を用い、実施例5と同様にしてポリポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)を0.5g合成することができた。合成したポリ[(p-フェニレンスルホン酸)/2,5-ベンゾフェノン](モル比:90/10)のイオン交換容量は5.4ミリ当量/g、純水100gに対する溶解度は0.1g以上あった。 (Example 7)
Poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10)
Using the polyarylenesulfonic acid precursor obtained in Example 4, 0.5 g of polypoly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) was obtained in the same manner as in Example 5. I was able to synthesize. The synthesized poly [(p-phenylenesulfonic acid) / 2,5-benzophenone] (molar ratio: 90/10) has an ion exchange capacity of 5.4 meq / g and a solubility in 100 g of pure water of 0.1 g or more. It was.
(比較例2)
ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:50/50)
30ml反応容器<A>に無水塩化ニッケル(0.18g、1.35mmol)、トリフェニルホスフィン(1.41g、5.4mmol)、沃化ナトリウム(0.10g、0.67mmol)、亜鉛粉末(0.88g、13.5mmol)を量りとり、テトラヒドロフラン3mlを加えた。70℃まで昇温し、10分間撹拌した。異なる30ml反応容器<B>に2,5-ジクロロベンゼンスルホン酸2,2-ジメチルプロピル(2.0g、6.7mmol)、2,5-ジクロロベンゾフェノン(1.68g、6.73mmol)にテトラヒドロフラン(7ml)を加えた。反応容器<B>の溶液を反応容器<A>に移し、70℃で6時間撹拌した。反応溶液を10%塩酸水溶液100mlに注ぎ、ろ過した。次いで、アセトン100ml中に分散させ、反応混合物を溶解し、ろ過することにより目的としたポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:50/50)を1.3g合成することができた。Mnは2500g/molであった。ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:50/50)を実施例1と同様に処理したが、トリメチルアミン塩酸塩で脱保護したポリマーは純水に溶解しなかった。 (Comparative Example 2)
Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 50/50)
In a 30 ml reaction vessel <A>, anhydrous nickel chloride (0.18 g, 1.35 mmol), triphenylphosphine (1.41 g, 5.4 mmol), sodium iodide (0.10 g, 0.67 mmol), zinc powder (0 .88 g, 13.5 mmol) was weighed and 3 ml of tetrahydrofuran was added. The temperature was raised to 70 ° C. and stirred for 10 minutes. In a different 30 ml reaction vessel <B>, 2,5-dimethylbenzenesulfonic acid 2,2-dimethylpropyl (2.0 g, 6.7 mmol), 2,5-dichlorobenzophenone (1.68 g, 6.73 mmol) in tetrahydrofuran ( 7 ml) was added. The solution in the reaction vessel <B> was transferred to the reaction vessel <A> and stirred at 70 ° C. for 6 hours. The reaction solution was poured into 100 ml of 10% aqueous hydrochloric acid and filtered. Subsequently, it was dispersed in 100 ml of acetone, and the reaction mixture was dissolved and filtered to obtain the desired poly [(p-phenylenesulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 50 / 50 g of 50) could be synthesized. Mn was 2500 g / mol. Poly [(p-phenylenesulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 50/50) was treated in the same manner as in Example 1, except that the polymer deprotected with trimethylamine hydrochloride was It did not dissolve in pure water.
ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:50/50)
30ml反応容器<A>に無水塩化ニッケル(0.18g、1.35mmol)、トリフェニルホスフィン(1.41g、5.4mmol)、沃化ナトリウム(0.10g、0.67mmol)、亜鉛粉末(0.88g、13.5mmol)を量りとり、テトラヒドロフラン3mlを加えた。70℃まで昇温し、10分間撹拌した。異なる30ml反応容器<B>に2,5-ジクロロベンゼンスルホン酸2,2-ジメチルプロピル(2.0g、6.7mmol)、2,5-ジクロロベンゾフェノン(1.68g、6.73mmol)にテトラヒドロフラン(7ml)を加えた。反応容器<B>の溶液を反応容器<A>に移し、70℃で6時間撹拌した。反応溶液を10%塩酸水溶液100mlに注ぎ、ろ過した。次いで、アセトン100ml中に分散させ、反応混合物を溶解し、ろ過することにより目的としたポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:50/50)を1.3g合成することができた。Mnは2500g/molであった。ポリ[(p-フェニレンスルホン酸)2,2-ジメチルプロピル/2,5-ベンゾフェノン](モル比:50/50)を実施例1と同様に処理したが、トリメチルアミン塩酸塩で脱保護したポリマーは純水に溶解しなかった。 (Comparative Example 2)
Poly [(p-phenylene sulfonic acid) 2,2-dimethylpropyl / 2,5-benzophenone] (molar ratio: 50/50)
In a 30 ml reaction vessel <A>, anhydrous nickel chloride (0.18 g, 1.35 mmol), triphenylphosphine (1.41 g, 5.4 mmol), sodium iodide (0.10 g, 0.67 mmol), zinc powder (0 .88 g, 13.5 mmol) was weighed and 3 ml of tetrahydrofuran was added. The temperature was raised to 70 ° C. and stirred for 10 minutes. In a different 30 ml reaction vessel <B>, 2,5-
(実施例8)
実施例5で得たポリ[(p-フェニレンスルホン酸)-2,5-ベンゾフェノン](モル比:90/10)100mg、ビニルスルホン酸40mg、ジペンタエリスリトールヘキサアクリレート20mgをメタノール/水[90/10(w/w)]混合溶液4.4gに溶解させた。その後、メタノールに浸漬したポリエチレン製多孔膜(サイズ:10×10cm、膜厚:15μm、空孔率:49%)をPTFE製基材上に置き、その上から上記ポリマー溶液をコートし、窒素雰囲気下室温で乾燥させた。得られた複合膜に対して、80度加熱下で紫外線照射(20J/cm2)を行った。さらに、120℃で1時間熱処理を実施した。得られた架橋複合膜を純水に一晩浸漬し、その後乾燥させ、目的の複合高分子電解質膜を得た。得られた膜のイオン交換容量は2.2meq/gであった。 (Example 8)
100 mg of the poly [(p-phenylene sulfonic acid) -2,5-benzophenone] (molar ratio: 90/10) obtained in Example 5, 40 mg of vinyl sulfonic acid and 20 mg of dipentaerythritol hexaacrylate were dissolved in methanol / water [90 / 10 (w / w)] was dissolved in a mixed solution of 4.4 g. Thereafter, a polyethylene porous membrane (size: 10 × 10 cm, film thickness: 15 μm, porosity: 49%) immersed in methanol was placed on a PTFE substrate, and the polymer solution was coated thereon, and a nitrogen atmosphere Dry at room temperature. The obtained composite film was irradiated with ultraviolet rays (20 J / cm 2 ) under heating at 80 degrees. Further, heat treatment was performed at 120 ° C. for 1 hour. The obtained crosslinked composite membrane was immersed in pure water overnight and then dried to obtain a target composite polymer electrolyte membrane. The ion exchange capacity of the obtained membrane was 2.2 meq / g.
実施例5で得たポリ[(p-フェニレンスルホン酸)-2,5-ベンゾフェノン](モル比:90/10)100mg、ビニルスルホン酸40mg、ジペンタエリスリトールヘキサアクリレート20mgをメタノール/水[90/10(w/w)]混合溶液4.4gに溶解させた。その後、メタノールに浸漬したポリエチレン製多孔膜(サイズ:10×10cm、膜厚:15μm、空孔率:49%)をPTFE製基材上に置き、その上から上記ポリマー溶液をコートし、窒素雰囲気下室温で乾燥させた。得られた複合膜に対して、80度加熱下で紫外線照射(20J/cm2)を行った。さらに、120℃で1時間熱処理を実施した。得られた架橋複合膜を純水に一晩浸漬し、その後乾燥させ、目的の複合高分子電解質膜を得た。得られた膜のイオン交換容量は2.2meq/gであった。 (Example 8)
100 mg of the poly [(p-phenylene sulfonic acid) -2,5-benzophenone] (molar ratio: 90/10) obtained in Example 5, 40 mg of vinyl sulfonic acid and 20 mg of dipentaerythritol hexaacrylate were dissolved in methanol / water [90 / 10 (w / w)] was dissolved in a mixed solution of 4.4 g. Thereafter, a polyethylene porous membrane (size: 10 × 10 cm, film thickness: 15 μm, porosity: 49%) immersed in methanol was placed on a PTFE substrate, and the polymer solution was coated thereon, and a nitrogen atmosphere Dry at room temperature. The obtained composite film was irradiated with ultraviolet rays (20 J / cm 2 ) under heating at 80 degrees. Further, heat treatment was performed at 120 ° C. for 1 hour. The obtained crosslinked composite membrane was immersed in pure water overnight and then dried to obtain a target composite polymer electrolyte membrane. The ion exchange capacity of the obtained membrane was 2.2 meq / g.
(実施例9)
実施例5で得たポリ[(p-フェニレンスルホン酸)-2,5-ベンゾフェノン](モル比:90/10)100mg、ビニルスルホン酸40mg、ジペンタエリスリトールヘキサアクリレート20mgをメタノール/水[90/10(w/w)]混合溶液4.4gに溶解させた。その後、メタノールに浸漬したポリエチレン製多孔膜(サイズ:10×10cm、膜厚:20μm、空孔率:45%)をPTFE製基材上に置き、その上から上記ポリマー溶液をコートし、窒素雰囲気下室温で乾燥させた。得られた複合膜に対して、80度加熱下でUV照射(20J/cm2)を行った。さらに、120℃で1時間熱処理を実施した。得られた架橋複合膜を純水に一晩浸漬し、その後乾燥させ、目的の複合高分子電解質膜を得た。得られた膜のイオン交換容量は2.5meq/gであった。 Example 9
100 mg of the poly [(p-phenylene sulfonic acid) -2,5-benzophenone] (molar ratio: 90/10) obtained in Example 5, 40 mg of vinyl sulfonic acid and 20 mg of dipentaerythritol hexaacrylate were dissolved in methanol / water [90 / 10 (w / w)] was dissolved in a mixed solution of 4.4 g. Thereafter, a polyethylene porous membrane (size: 10 × 10 cm, film thickness: 20 μm, porosity: 45%) immersed in methanol was placed on a PTFE substrate, and the polymer solution was coated thereon, and a nitrogen atmosphere Dry at room temperature. The obtained composite film was subjected to UV irradiation (20 J / cm 2 ) under heating at 80 degrees. Further, heat treatment was performed at 120 ° C. for 1 hour. The obtained crosslinked composite membrane was immersed in pure water overnight and then dried to obtain a target composite polymer electrolyte membrane. The obtained membrane had an ion exchange capacity of 2.5 meq / g.
実施例5で得たポリ[(p-フェニレンスルホン酸)-2,5-ベンゾフェノン](モル比:90/10)100mg、ビニルスルホン酸40mg、ジペンタエリスリトールヘキサアクリレート20mgをメタノール/水[90/10(w/w)]混合溶液4.4gに溶解させた。その後、メタノールに浸漬したポリエチレン製多孔膜(サイズ:10×10cm、膜厚:20μm、空孔率:45%)をPTFE製基材上に置き、その上から上記ポリマー溶液をコートし、窒素雰囲気下室温で乾燥させた。得られた複合膜に対して、80度加熱下でUV照射(20J/cm2)を行った。さらに、120℃で1時間熱処理を実施した。得られた架橋複合膜を純水に一晩浸漬し、その後乾燥させ、目的の複合高分子電解質膜を得た。得られた膜のイオン交換容量は2.5meq/gであった。 Example 9
100 mg of the poly [(p-phenylene sulfonic acid) -2,5-benzophenone] (molar ratio: 90/10) obtained in Example 5, 40 mg of vinyl sulfonic acid and 20 mg of dipentaerythritol hexaacrylate were dissolved in methanol / water [90 / 10 (w / w)] was dissolved in a mixed solution of 4.4 g. Thereafter, a polyethylene porous membrane (size: 10 × 10 cm, film thickness: 20 μm, porosity: 45%) immersed in methanol was placed on a PTFE substrate, and the polymer solution was coated thereon, and a nitrogen atmosphere Dry at room temperature. The obtained composite film was subjected to UV irradiation (20 J / cm 2 ) under heating at 80 degrees. Further, heat treatment was performed at 120 ° C. for 1 hour. The obtained crosslinked composite membrane was immersed in pure water overnight and then dried to obtain a target composite polymer electrolyte membrane. The obtained membrane had an ion exchange capacity of 2.5 meq / g.
(比較例3)
下記式(17); (Comparative Example 3)
Following formula (17);
下記式(17); (Comparative Example 3)
Following formula (17);
この溶液を、室温の雰囲気下で188μmポリエステルフィルム上にキャストし、80℃で10分、100℃で10分、130℃で10分処理した。その後、得られたフィルム状膜を、室温の純水に一晩浸漬させ、残留している溶媒を取り除いた。その後、得られた膜をろ紙に挟み、さらにガラス板で両面を挟み、荷重をかけつつ、20℃、相対湿度30%RHの室内で、2日間、放置して乾燥し、高分子電解質膜を作製した。得られた高分子電解質膜の厚みは、17μmであり、イオン交換容量は、2.1meq/gとなった。
This solution was cast on a 188 μm polyester film at room temperature and treated at 80 ° C. for 10 minutes, 100 ° C. for 10 minutes, and 130 ° C. for 10 minutes. Then, the obtained film-like film | membrane was immersed in the pure water of room temperature overnight, and the remaining solvent was removed. Thereafter, the obtained membrane is sandwiched between filter papers, and both sides are further sandwiched between glass plates. While applying a load, the membrane is left to dry for 2 days in a room at 20 ° C. and a relative humidity of 30% RH, and a polymer electrolyte membrane is obtained. Produced. The obtained polymer electrolyte membrane had a thickness of 17 μm and an ion exchange capacity of 2.1 meq / g.
(比較例4)
市販のパーフルオロスルホン酸系イオン交換膜であるナフィオン NR211(商品名)を用いて、比較評価した。 (Comparative Example 4)
Comparison evaluation was carried out using Nafion NR211 (trade name), which is a commercially available perfluorosulfonic acid ion exchange membrane.
市販のパーフルオロスルホン酸系イオン交換膜であるナフィオン NR211(商品名)を用いて、比較評価した。 (Comparative Example 4)
Comparison evaluation was carried out using Nafion NR211 (trade name), which is a commercially available perfluorosulfonic acid ion exchange membrane.
表1から、本発明の複合高分子電解質膜は、高分子電解質膜の膨潤・収縮繰り返し試験において、割れ、裂け、ピンホール等も認められなかった。したがって、本発明の複合高分子電解質膜は、比較例の炭化水素系電解質膜に比べて耐久性が大きく向上していることがわかる。さらに、発電試験においても比較例よりも高い性能を示すことが確認できた。プロトン伝導性においても、低湿度環境下において、ナフィオン以上の優れた特性を示すことから、燃料電池膜としての応用に期待が持てる。
From Table 1, the composite polymer electrolyte membrane of the present invention showed no cracks, tears, pinholes or the like in the swelling / shrinkage repetition test of the polymer electrolyte membrane. Therefore, it can be seen that the durability of the composite polymer electrolyte membrane of the present invention is greatly improved as compared with the hydrocarbon electrolyte membrane of the comparative example. Further, it was confirmed that the power generation test showed higher performance than the comparative example. Proton conductivity also has excellent characteristics over Nafion in a low humidity environment, so it can be expected to be used as a fuel cell membrane.
本発明の複合高分子電解質膜は、低湿度下において高いプロトン伝導性を示し、膨潤・収縮試験に対しても高い耐久性を示したことから、本発明の複合高分子電解質膜を用いることで、耐久性に優れ、低湿度下でも運転可能な燃料電池が提供できる。本発明の複合高分子電解質膜は、本発明のポリアリーレンスルホン酸類を用いて製造することができる。また、本発明のポリアリーレンスルホン酸類は、本発明のポリアリーレンスルホン酸類前駆体から製造することができる。本発明の複合高分子電解質膜により、水素を燃料とする燃料電池の実用性が大幅に向上することが期待でき、産業界の発展に寄与するところ大である。
The composite polymer electrolyte membrane of the present invention showed high proton conductivity under low humidity and high durability against swelling / shrinkage tests. Therefore, by using the composite polymer electrolyte membrane of the present invention, It is possible to provide a fuel cell that is excellent in durability and can be operated under low humidity. The composite polymer electrolyte membrane of the present invention can be produced using the polyarylene sulfonic acids of the present invention. The polyarylene sulfonic acids of the present invention can be produced from the polyarylene sulfonic acid precursor of the present invention. The composite polymer electrolyte membrane of the present invention can be expected to greatly improve the practicality of a fuel cell using hydrogen as a fuel, which greatly contributes to the development of the industry.
Claims (40)
- 式(1)および式(2)で示される構造を有することを特徴とする、ポリアリーレンスルホン酸類前駆体。
- 式(3)で示されることを特徴とする請求項1に記載のポリアリーレンスルホン酸類前駆体。
- 前記式(3)のAr2を含む構成単位が式(4)で示されることを特徴とする請求項2に記載のポリアリーレンスルホン酸類前駆体。
- 前記式(4)のR3が置換基を有してもよい炭素数6~20のアリール基であることを特徴とする請求項3に記載のポリアリーレンスルホン酸類前駆体。 4. The polyarylene sulfonic acid precursor according to claim 3, wherein R 3 in the formula (4) is an aryl group having 6 to 20 carbon atoms which may have a substituent.
- 前記式(4)において、p=0、及びq=1であることを特徴とする請求項3又は4のいずれかに記載のポリアリーレンスルホン酸類前駆体。 5. The polyarylene sulfonic acid precursor according to claim 3, wherein in the formula (4), p = 0 and q = 1.
- 前記式(4)において、p=1、及びq=0であることを特徴とする請求項3又は4のいずれかに記載のポリアリーレンスルホン酸類前駆体。 5. The polyarylene sulfonic acid precursor according to claim 3, wherein in the formula (4), p = 1 and q = 0.
- 前記式(3)のAr1を含む構成単位が式(5)で表される構造であることを特徴とする請求項2~6のいずれかに記載のポリアリーレンスルホン酸類前駆体。
- 前記式(5)のAにおけるR5、もしくは、R6及びR7の合計の90%以上が炭素数1~20のアルキル基であることを特徴とする請求項7に記載のポリアリーレンスルホン酸類前駆体。 8. The polyarylene sulfonic acids according to claim 7, wherein 90% or more of R 5 in R in Formula (5) or R 6 and R 7 is an alkyl group having 1 to 20 carbon atoms. precursor.
- 少なくとも式(6)及び(7)で表される化合物を含む組成物を、触媒の存在下でカップリング重合することを特徴とする、請求項1~8のいずれかに記載のポリアリーレンスルホン酸類前駆体を製造する方法。
- 前記触媒として、ニッケル化合物、リン配位子、亜鉛、及びヨウ化ナトリウムを含む組成物を用いることを特徴とする請求項9に記載のポリアリーレンスルホン酸類前駆体の製造方法。 The method for producing a polyarylenesulfonic acid precursor according to claim 9, wherein a composition containing a nickel compound, a phosphorus ligand, zinc, and sodium iodide is used as the catalyst.
- 前記ニッケル化合物がビス(シクロオクタジエン)ニッケルまたは塩化ニッケルビス(トリフェニルホスフィン)であり、前記リン配位子がトリアリールホスフィンであることを特徴とする請求項10に記載のポリアリーレンスルホン酸類前駆体の製造方法。 11. The polyarylene sulfonic acid precursor according to claim 10, wherein the nickel compound is bis (cyclooctadiene) nickel or nickel chloride bis (triphenylphosphine), and the phosphorus ligand is a triarylphosphine. Body manufacturing method.
- 式(8)および式(9)の繰り返し構造を有し、温度25℃における水100gに対する溶解度が0.1g以上かつイオン交換容量が3ミリ当量/g以上のポリアリーレンスルホン酸類。
- 式(10)の構造であることを特徴とする、請求項12に記載のポリアリーレンスルホン酸類。
- 前記式(10)においてAr4を含む構成単位が式(11)で示されることを特徴とする請求項13に記載のポリアリーレンスルホン酸類。
- 前記式(11)のR17が置換基を有してもよい炭素数6~20のアリール基であることを特徴とする請求項14に記載のポリアリーレンスルホン酸類。 The polyarylene sulfonic acids according to claim 14, wherein R 17 in the formula (11) is an aryl group having 6 to 20 carbon atoms which may have a substituent.
- 前記式(11)において、p”=0、及びq”=1であることを特徴とする請求項14、又は15のいずれかに記載のポリアリーレンスルホン酸類。 16. The polyarylene sulfonic acids according to claim 14, wherein p ″ = 0 and q ″ = 1 in the formula (11).
- 前記式(11)において、p”=1、及びq”=0であることを特徴とする請求項14、又は15のいずれかに記載のポリアリーレンスルホン酸類。 16. The polyarylene sulfonic acids according to claim 14, wherein p ″ = 1 and q ″ = 0 in the formula (11).
- 前記式(10)のAr3を含む構成単位が式(12)で表される構造であることを特徴とする請求項13~17のいずれかに記載のポリアリーレンスルホン酸類。
- 前記式(12)において、A’がOR19であり、R19の80%以上が水素またはアルカリ金属であることを特徴とする請求項18に記載のポリアリーレンスルホン酸類。 The polyarylene sulfonic acids according to claim 18, wherein in the formula (12), A 'is OR 19 , and 80% or more of R 19 is hydrogen or an alkali metal.
- 少なくとも下記の工程1、工程2、及び、工程3の工程を含み、工程1、工程2、工程3の順番で行うことを特徴とする、請求項12~19のいずれかに記載のポリアリーレンスルホン酸類を製造する方法。
(工程1) 少なくとも、式(13)及び式(14)で表される化合物を含む組成物をカップリング重合する工程
(工程2) 工程1で製造したポリマーのスルホン酸基誘導体を脱保護してスルホン酸基またはその塩とする工程
(工程3) 工程2で製造したポリマーを、酸に接触させる工程
(Step 1) Step of coupling polymerization of a composition containing at least the compounds represented by Formula (13) and Formula (14) (Step 2) Deprotecting the sulfonic acid group derivative of the polymer produced in Step 1 Step of making a sulfonic acid group or a salt thereof (Step 3) Step of bringing the polymer produced in Step 2 into contact with an acid
- 前記工程(b)における脱保護が、アルカリ金属ハロゲン化物またはハロゲン化第四級アンモニウムを用いることを特徴とする請求項20に記載のポリアリーレンスルホン酸類の製造方法。 The method for producing polyarylenesulfonic acids according to claim 20, wherein the deprotection in the step (b) uses an alkali metal halide or a quaternary ammonium halide.
- 前記工程(c)における、酸が固体酸であることを特徴とする請求項20又は21に記載のポリアリーレンスルホン酸類の製造方法。 The method for producing polyarylene sulfonic acids according to claim 20 or 21, wherein the acid in the step (c) is a solid acid.
- 前記固体酸が陽イオン交換樹脂であることを特徴とする請求項22に記載のポリアリーレンスルホン酸類の製造方法。 The method for producing polyarylene sulfonic acids according to claim 22, wherein the solid acid is a cation exchange resin.
- 多孔性の基材とその細孔に充填された高分子電解質からなる複合高分子電解質膜であって、該高分子電解質は2分子以上の芳香族系高分子電解質がイオン性基以外の部位で、該芳香族系高分子電解質と異なる構造を有し且つ繰り返し単位を有する化合物によって連結されていることを特徴とする複合高分子電解質膜。 A composite polymer electrolyte membrane comprising a porous base material and a polymer electrolyte filled in its pores, wherein the polymer electrolyte is composed of two or more aromatic polymer electrolytes at sites other than ionic groups A composite polymer electrolyte membrane characterized by being connected by a compound having a structure different from that of the aromatic polymer electrolyte and having a repeating unit.
- 外部刺激によりラジカルを発生しうる構造を分子鎖中に有する芳香族系高分子電解質と1種類以上のラジカル重合性化合物を含む混合物を多孔性の基材の細孔中に充填後に、外部刺激を与え、該高分子電解質と該ラジカル重合性化合物を反応させて得られる請求項22に記載の複合高分子電解質膜。 After filling the pores of the porous base material with a mixture containing an aromatic polymer electrolyte having a structure capable of generating radicals by external stimulation in the molecular chain and one or more radical polymerizable compounds, external stimulation is performed. The composite polymer electrolyte membrane according to claim 22, which is obtained by reacting the polymer electrolyte with the radical polymerizable compound.
- 前記ラジカル重合性化合物の少なくとも1種類がスルホン酸基もしくはホスホン酸基を有していることを特徴とする請求項25に記載の高分子電解質膜。 26. The polymer electrolyte membrane according to claim 25, wherein at least one of the radical polymerizable compounds has a sulfonic acid group or a phosphonic acid group.
- 前記ラジカル重合性化合物の少なくとも1種類が2個以上のラジカル重合性基を有していることを特徴とする請求項25又は26のいずれかに記載の複合高分子電解質膜。 27. The composite polymer electrolyte membrane according to claim 25 or 26, wherein at least one of the radical polymerizable compounds has two or more radical polymerizable groups.
- 前記外部刺激が紫外線照射または電子線照射であることを特徴とする請求項25~27のいずれかに記載の複合高分子電解質膜。 The composite polymer electrolyte membrane according to any one of claims 25 to 27, wherein the external stimulus is ultraviolet ray irradiation or electron beam irradiation.
- 前記芳香族系高分子電解質が、請求項12に記載のポリアリーレンスルホン酸類であることを特徴とする請求項24~28のいずれかに記載の複合高分子電解質膜。 The composite polymer electrolyte membrane according to any one of claims 24 to 28, wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 12.
- 前記芳香族系高分子電解質が、請求項13に記載のポリアリーレンスルホン酸類であることを特徴とする請求項24~28のいずれかに記載の複合高分子電解質膜。 The composite polymer electrolyte membrane according to any one of claims 24 to 28, wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 13.
- 前記芳香族系高分子電解質が、請求項14に記載のポリアリーレンスルホン酸類であることを特徴とする請求項24~28のいずれかに記載の複合高分子電解質膜 The composite polymer electrolyte membrane according to any one of claims 24 to 28, wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 14.
- 前記芳香族系高分子電解質が、請求項15に記載のポリアリーレンスルホン酸類であることを特徴とする請求項24~28のいずれかに記載の複合高分子電解質膜 The composite polymer electrolyte membrane according to any one of claims 24 to 28, wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 15.
- 前記芳香族系高分子電解質が、請求項16に記載のポリアリーレンスルホン酸類であることを特徴とする請求項24~28のいずれかに記載の複合高分子電解質膜 The composite polymer electrolyte membrane according to any one of claims 24 to 28, wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 16.
- 前記芳香族系高分子電解質が、請求項17に記載のポリアリーレンスルホン酸類であることを特徴とする請求項24~28のいずれかに記載の複合高分子電解質膜 The composite polymer electrolyte membrane according to any one of claims 24 to 28, wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 17.
- 前記芳香族系高分子電解質が、請求項18に記載のポリアリーレンスルホン酸類であることを特徴とする請求項24~28のいずれかに記載の複合高分子電解質膜 The composite polymer electrolyte membrane according to any one of claims 24 to 28, wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 18.
- 前記芳香族系高分子電解質が、請求項19に記載のポリアリーレンスルホン酸類であることを特徴とする請求項24~28のいずれかに記載の複合高分子電解質膜 The composite polymer electrolyte membrane according to any one of claims 24 to 28, wherein the aromatic polymer electrolyte is the polyarylene sulfonic acid according to claim 19.
- 前記多孔性基材が主として高分子材料からなることを特徴とする請求項24~36のいずれかに記載の複合高分子電解質膜。 The composite polymer electrolyte membrane according to any one of claims 24 to 36, wherein the porous substrate is mainly composed of a polymer material.
- イオン交換容量が1.5ミリ当量/g~6.0ミリ当量/gであることを特徴とする請求項24~37のいずれかに記載の複合高分子電解質膜。 The composite polymer electrolyte membrane according to any one of claims 24 to 37, wherein the ion exchange capacity is 1.5 meq / g to 6.0 meq / g.
- 請求項24~38のいずれかに記載の複合高分子電解質膜を用いた燃料電池用高分子電解質膜電極接合体。 A polymer electrolyte membrane electrode assembly for a fuel cell using the composite polymer electrolyte membrane according to any one of claims 24 to 38.
- 請求項39に記載の高分子電解質膜電極接合体を用いた燃料電池。 40. A fuel cell using the polymer electrolyte membrane electrode assembly according to claim 39.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015524128A JPWO2014208714A1 (en) | 2013-06-28 | 2014-06-27 | Polyarylene sulfonic acids and precursors thereof, production method thereof, composite electrolyte membrane and production method thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013136379 | 2013-06-28 | ||
JP2013-136381 | 2013-06-28 | ||
JP2013136380 | 2013-06-28 | ||
JP2013-136380 | 2013-06-28 | ||
JP2013136381 | 2013-06-28 | ||
JP2013-136379 | 2013-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208714A1 true WO2014208714A1 (en) | 2014-12-31 |
Family
ID=52142039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067117 WO2014208714A1 (en) | 2013-06-28 | 2014-06-27 | Polyarylene sulfonic acids and precursors thereof, production method of polyarylene sulfonic acids and precursors thereof, and composite electrolyte film and production method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014208714A1 (en) |
WO (1) | WO2014208714A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016207610A (en) * | 2015-04-28 | 2016-12-08 | 東洋紡株式会社 | Composite polymer electrolyte membrane and manufacturing method therefor and membrane electrode assembly, fuel cell |
JP2016207609A (en) * | 2015-04-28 | 2016-12-08 | 東洋紡株式会社 | Composite polymer electrolyte membrane, manufacturing method therefor, membrane electrode assembly and fuel cell |
CN110350246A (en) * | 2019-07-01 | 2019-10-18 | 昆山宝创新能源科技有限公司 | Electrolyte for high-pressure solid negative electrode material and the lithium battery with the electrolyte |
WO2024218158A1 (en) | 2023-04-19 | 2024-10-24 | Solvay Specialty Polymers Usa, Llc | Polyarylene polymers |
WO2024218155A1 (en) | 2023-04-19 | 2024-10-24 | Solvay Specialty Polymers Usa, Llc | Polyarylene polymers |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002289222A (en) * | 2001-03-26 | 2002-10-04 | Mitsui Chemicals Inc | Ion-conductive polymer, and polymer film and fuel cell using it |
JP2004335119A (en) * | 2003-04-30 | 2004-11-25 | Toagosei Co Ltd | Electrolyte film and fuel cell using the electrolyte film |
WO2005075535A1 (en) * | 2004-02-05 | 2005-08-18 | Sumitomo Chemical Company, Limited | Method for producing polymer compound |
JP2007119654A (en) * | 2005-10-31 | 2007-05-17 | Mitsui Chemicals Inc | Proton-conductive block copolymer, its crosslinked material and proton-conductive film and fuel cell using the same |
JP2008037897A (en) * | 2006-08-01 | 2008-02-21 | Toyobo Co Ltd | Sulfonic group-containing photocrosslinkable polymer, sulfonic group-containing photocrosslinkable polymer composition, polyelectrolyte film, crosslinked polyelectrolyte film, polyelectrolyte film/electrode assembly, fuel cell and application thereof |
JP2009093919A (en) * | 2007-10-09 | 2009-04-30 | Toagosei Co Ltd | Manufacturing method for aromatic polyether electrolyte membrane |
JP2009185250A (en) * | 2008-02-08 | 2009-08-20 | Toagosei Co Ltd | Manufacturing method of isolated polymer |
WO2009142274A1 (en) * | 2008-05-21 | 2009-11-26 | 住友化学株式会社 | Polymer, polyarylene block copolymer, polyelectrolyte, polyelectrolyte membrane, and fuel cell |
WO2010021348A1 (en) * | 2008-08-21 | 2010-02-25 | 住友化学株式会社 | Polymer, polymer electrolyte and use of same |
JP2010073418A (en) * | 2008-09-17 | 2010-04-02 | Toyota Motor Corp | Electrolyte membrane |
-
2014
- 2014-06-27 WO PCT/JP2014/067117 patent/WO2014208714A1/en active Application Filing
- 2014-06-27 JP JP2015524128A patent/JPWO2014208714A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002289222A (en) * | 2001-03-26 | 2002-10-04 | Mitsui Chemicals Inc | Ion-conductive polymer, and polymer film and fuel cell using it |
JP2004335119A (en) * | 2003-04-30 | 2004-11-25 | Toagosei Co Ltd | Electrolyte film and fuel cell using the electrolyte film |
WO2005075535A1 (en) * | 2004-02-05 | 2005-08-18 | Sumitomo Chemical Company, Limited | Method for producing polymer compound |
JP2007119654A (en) * | 2005-10-31 | 2007-05-17 | Mitsui Chemicals Inc | Proton-conductive block copolymer, its crosslinked material and proton-conductive film and fuel cell using the same |
JP2008037897A (en) * | 2006-08-01 | 2008-02-21 | Toyobo Co Ltd | Sulfonic group-containing photocrosslinkable polymer, sulfonic group-containing photocrosslinkable polymer composition, polyelectrolyte film, crosslinked polyelectrolyte film, polyelectrolyte film/electrode assembly, fuel cell and application thereof |
JP2009093919A (en) * | 2007-10-09 | 2009-04-30 | Toagosei Co Ltd | Manufacturing method for aromatic polyether electrolyte membrane |
JP2009185250A (en) * | 2008-02-08 | 2009-08-20 | Toagosei Co Ltd | Manufacturing method of isolated polymer |
WO2009142274A1 (en) * | 2008-05-21 | 2009-11-26 | 住友化学株式会社 | Polymer, polyarylene block copolymer, polyelectrolyte, polyelectrolyte membrane, and fuel cell |
WO2010021348A1 (en) * | 2008-08-21 | 2010-02-25 | 住友化学株式会社 | Polymer, polymer electrolyte and use of same |
JP2010073418A (en) * | 2008-09-17 | 2010-04-02 | Toyota Motor Corp | Electrolyte membrane |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016207610A (en) * | 2015-04-28 | 2016-12-08 | 東洋紡株式会社 | Composite polymer electrolyte membrane and manufacturing method therefor and membrane electrode assembly, fuel cell |
JP2016207609A (en) * | 2015-04-28 | 2016-12-08 | 東洋紡株式会社 | Composite polymer electrolyte membrane, manufacturing method therefor, membrane electrode assembly and fuel cell |
CN110350246A (en) * | 2019-07-01 | 2019-10-18 | 昆山宝创新能源科技有限公司 | Electrolyte for high-pressure solid negative electrode material and the lithium battery with the electrolyte |
WO2024218158A1 (en) | 2023-04-19 | 2024-10-24 | Solvay Specialty Polymers Usa, Llc | Polyarylene polymers |
WO2024218157A1 (en) | 2023-04-19 | 2024-10-24 | Solvay Specialty Polymers Usa, Llc | Polyarylene polymers |
WO2024218155A1 (en) | 2023-04-19 | 2024-10-24 | Solvay Specialty Polymers Usa, Llc | Polyarylene polymers |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014208714A1 (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains | |
Kim et al. | Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures | |
JP4508954B2 (en) | Membrane-electrode structure for polymer electrolyte fuel cell | |
Kim et al. | Poly (arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly (vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions | |
WO2014208714A1 (en) | Polyarylene sulfonic acids and precursors thereof, production method of polyarylene sulfonic acids and precursors thereof, and composite electrolyte film and production method therefor | |
JP4572512B2 (en) | POLYMER ELECTROLYTE, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITION AND POLYMER ELECTROLYTE FUEL CELL USING SAME | |
JP4915099B2 (en) | Mixed solution containing polymer electrolyte, polymer electrolyte composition containing polymer having crosslinked structure, and polymer electrolyte membrane | |
Jiang et al. | Optimization and synthesis of plasma polymerized proton exchange membranes for direct methanol fuel cells | |
JP6550695B2 (en) | Composite polymer electrolyte membrane, method for producing the same, and use thereof | |
Wang et al. | Low water swelling polyaromatic proton exchange membranes | |
JP2006253002A (en) | Manufacturing method of ion exchange membrane | |
JP2015165461A (en) | Composite electrolyte membrane and manufacturing method thereof | |
JP2007146111A (en) | Sulfonic acid group-containing polymer, ion-exchange membrane, membrane/electrode assembly, fuel cell, and polymer composition | |
JP2006206808A (en) | Sulfonic group-containing polymer, polymer composition comprising said polymer, ion exchange resin and ion exchange membrane obtained using said polymer, and membrane/electrode assembly and fuel cell obtained using said ion exchange membrane | |
JP2016207609A (en) | Composite polymer electrolyte membrane, manufacturing method therefor, membrane electrode assembly and fuel cell | |
Nam et al. | Synthesis and properties of bonding layer containing flexible and fluorinated moieties for hydrocarbon-based membrane electrode assemblies | |
JP4752336B2 (en) | Proton conducting membrane with improved thermal stability and composition for forming the conducting membrane | |
JP6521213B2 (en) | Composite polymer electrolyte membrane, method for producing the same, and use thereof | |
JP2009104926A (en) | Membrane electrode assembly | |
EP2009724B1 (en) | Method for producing polymer electrolyte membrane, polymer electrolyte membrane and direct methanol fuel cell | |
JP2006206809A (en) | Sulfonic group-containing polymer, polymer composition comprising said polymer, ion exchange resin and ion exchange membrane obtained using said polymer, and membrane/electrode assembly obtained using said ion exchange membrane, and fuel cell | |
JP2007063533A (en) | Sulfonic group-containing polymer, use of the same, and method for producing the same | |
JP4022833B2 (en) | Sulfonic acid group-containing polymer and use thereof | |
JP2016207610A (en) | Composite polymer electrolyte membrane and manufacturing method therefor and membrane electrode assembly, fuel cell | |
WO2011087459A1 (en) | Method of forming a polymer electrolyte membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14817712 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015524128 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14817712 Country of ref document: EP Kind code of ref document: A1 |