Nothing Special   »   [go: up one dir, main page]

WO2014208088A1 - Remover liquid for photoresists - Google Patents

Remover liquid for photoresists Download PDF

Info

Publication number
WO2014208088A1
WO2014208088A1 PCT/JP2014/003405 JP2014003405W WO2014208088A1 WO 2014208088 A1 WO2014208088 A1 WO 2014208088A1 JP 2014003405 W JP2014003405 W JP 2014003405W WO 2014208088 A1 WO2014208088 A1 WO 2014208088A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resist
stripping solution
mass
photoresist
Prior art date
Application number
PCT/JP2014/003405
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 淵上
五十嵐 軌雄
礼子 有冨
善秀 小佐野
靖紀 鈴木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2014208088A1 publication Critical patent/WO2014208088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen

Definitions

  • the present invention relates to a photoresist stripping solution.
  • the present invention relates to a resist stripping solution suitably used for manufacturing Cu or Cu alloy wiring boards for flat panel displays (FPD) such as liquid crystal displays and organic EL displays.
  • FPD flat panel displays
  • Al has been used as a conventional wiring material in FPDs such as liquid crystal displays, but it is necessary to lower the wiring resistance in the same way as semiconductor elements in order to cope with the recent increase in substrate size, higher definition, and organic EL.
  • Cu or Cu alloy having a lower resistance than Al is an attempt to use.
  • Cu is less susceptible to corrosion in an aqueous solution because it has less protective oxide film formed on the surface than Al. Therefore, there is a problem that the wiring pattern cannot be stably formed. Therefore, in the manufacture of semiconductors, corrosion is prevented by a dry process using plasma.
  • the FPD has a larger substrate size than a semiconductor, and it is difficult to apply a dry process using plasma. Therefore, development of wiring formation using a wet etching method is indispensable.
  • the problem when Cu is used as the wiring material is the corrosion of the Cu film surface by wet etching as described above.
  • a wiring pattern is formed with a resist on a Cu film formed on a substrate, an unnecessary portion of the Cu film is removed by an etchant that dissolves Cu, and finally, A desired wiring pattern can be obtained by removing the resist film.
  • the Cu film is corroded in the final resist film peeling step.
  • the resist film adhering to the Cu film surface disappears, the Cu film surface is directly exposed to the stripping solution.
  • the resist film stripping solution exhibits alkalinity and also contains water. Therefore, the Cu film is easily corroded.
  • development of a stripping solution for a photoresist that achieves a good balance between stripping the photoresist film and preventing corrosion of the Cu film has been performed.
  • the main technique is to mix a Cu film corrosion inhibitor into the stripping solution.
  • Patent Document 1 (a) 10 to 65% by weight of a nitrogen-containing organic hydroxy compound, (b) 10 to 60% by weight of a water-soluble organic solvent, (c) 5 to 50% by weight of water, (d ) A photoresist stripping solution containing 0.1 to 10% by weight of a benzotriazole-based compound is disclosed, and (a) the nitrogen-containing organic hydroxy compound has an acid dissociation constant (pKa) in an aqueous solution at 25 ° C. of 7. 5-13 amines are preferred.
  • pKa acid dissociation constant
  • the pH of the photoresist stripping solution becomes a strong alkali of 10 or more. Therefore, the copper wiring is easily dissolved, that is, corroded by generating HCuO 2 ⁇ and CuO 2 ⁇ ions by dissolved oxygen in the liquid. Further, the anticorrosive agent (d) benzotriazole-based compound cannot form a polymer film having a high degree of polymerization in a strong alkaline solution and has a low anticorrosion property. Therefore, the addition amount must be increased, and the excessively added benzotriazole-based compound may remain on the Cu film wiring and may remain as a foreign substance.
  • Patent Document 2 (a) primary or secondary alkanolamine is 5 to 45% by weight, (b) polar organic solvent and water are 50 to 94.95% by weight, and (c) maltol, uracil, 4-hydroxy- A photoresist stripping solution comprising 0.05 to 10% by weight of at least one heterocyclic compound selected from the group consisting of 6-methyl-2-pyrone and the like has been proposed. Even in such a composition, the pH of the photoresist stripping solution is a strong alkali of 10 or more, and the copper wiring is easily corroded. Therefore, if the anticorrosive agent (c) is added excessively, the anticorrosive agent (c) may remain on the Cu wiring and may remain as foreign matter.
  • Patent Document 3 discloses a method of manufacturing a semiconductor device in which a copper wiring pattern is formed on a substrate and then the copper wiring pattern is cleaned using an aqueous solution containing 2 ⁇ 10 ⁇ 6 to 10 ⁇ 1 mol ⁇ dm ⁇ 2 of benzotriazole. Proposed.
  • Patent Document 4 discloses a stripping solution comprising a polyhydric alcohol, an alkanolamine, water, a glycol ether, and an anticorrosive.
  • water is 30% by mass or less from the viewpoint of recycling
  • glycol ether is desirably 60% by mass or more as a main recycling material.
  • Patent Document 5 is a photo characterized in that the tertiary alkanolamine is 1 to 9% by mass, the polar solvent is 10 to 70% by mass, the water is 10 to 40% by mass, and the resist component is 3000 ppm. A resist stripping solution is proposed.
  • This photoresist stripping solution uses a photosensitive resist component as a corrosion inhibitor for Cu film. Since the resist component has a higher boiling point than solution components such as tertiary alkanolamine, polar solvent, and water, it can be completely separated. Therefore, no matter how many times the drainage of the stripping solution is regenerated, the resist component does not remain in the regenerated solution, and the corrosion inhibitor is not concentrated.
  • Patent Document 1 Cu etching is evaluated by performing a dry etching process. It is known that the etchant of Cu and the etchant of Al are different. In particular, in the case of an oxidant-based etchant that wet-etches Cu, the resist film is altered and is difficult to peel off. That is, the photoresist film stripping solution disclosed in Patent Document 1 cannot be simply applied as a photoresist film stripping solution used in the step of wet etching treatment of Cu or Cu alloy.
  • Patent Document 2 considers this point, and exactly discloses a stripping solution for a photoresist film used when wet etching Cu or Cu alloy on a large-area substrate.
  • the primary or secondary alkanolamine used as the main component of the stripping solution shows strong alkali, the action of the heterocyclic compound added as a corrosion inhibitor is weakened. Therefore, the heterocyclic compound has a considerably large composition of 0.05 to 10 wt%.
  • Patent Document 2 does not consider that these heterocyclic compounds added as a corrosion inhibitor form an insoluble compound with the Cu film to prevent corrosion. It is the point which reduces the adhesiveness between the layers processed into a film. That is, the corrosion inhibitor in an amount of 0.05 to 10 wt% causes a problem that the adhesion with the film formed on the Cu film is lowered.
  • Patent Document 3 BTA (benzotriazole) is used as a Cu film to prevent corrosion when the Cu film is brought into contact with a cleaning agent in the cleaning process when the photoresist film on the Cu film is peeled off. It discloses the formation of insoluble compounds in between.
  • the Cu film is basically a process in dry etching. Further, like Patent Document 2, the adhesiveness to the next layer formed on the Cu film is not taken into consideration.
  • the following problems arise from the viewpoint of recycling the stripping solution.
  • the amine-based material, the solvent, and the corrosion inhibitor have close boiling points and are not easily separated. That is, the amine material, the solvent, and the corrosion inhibitor are separated together.
  • the separated separation liquid is regenerated by adding the shortage by inspecting the composition ratio of the materials.
  • the corrosion inhibitor When the recycling (recycling) process is repeated in such a situation, the corrosion inhibitor is concentrated in the stripping solution although the content is very small.
  • the corrosion inhibitor exhibits a corrosion prevention effect in a small amount. That is, a non-moving body is formed on the Cu film. Therefore, even if it is concentrated even a little, the adhesiveness of the film formed on the Cu film is surely affected.
  • a problem such as pinholes or stripping from the Cu film occurs suddenly on the film formed on the Cu film.
  • the present invention is for a photoresist that can maintain good cleanliness of the outermost surface of Cu even when the concentration of the resist component in the photoresist stripping solution increases while the same stripping solution for photoresist is circulated. Provide stripping solution.
  • the stripping solution for photoresist of the present invention comprises: 40-60 mass% water, 1 to 15% by weight of a tertiary alkanolamine, It has a polar solvent of 25 to 59% by mass.
  • the stripping solution for photoresist of the present invention comprises: More than 60% by weight and less than 80% by weight water, 1 to 8% by weight of a tertiary alkanolamine, It may have 12 to 39% by mass of a polar solvent. Furthermore, in any case, the resist component may contain a trace amount ( ⁇ ).
  • the polar solvent is composed of propylene glycol (PG) and diethylene glycol monobutyl ether (BDG), and the ratio of the diethylene glycol monobutyl ether to the polar solvent is 5/8 or more.
  • the tertiary alkanolamine is N-methyldiethanolamine (MDEA).
  • the resist component is a component from an exposed positive photoresist.
  • the water content is increased from 40 to 80, compared to the case of Patent Document 5.
  • it can prevent that the organic substance layer of Cu film surface adheres, ensuring the peelability of a resist film.
  • the outermost surface of the Cu film can be kept clean, and there is an effect that the problem of film peeling between the film laminated on the Cu film does not occur.
  • the resist component is used as a corrosion inhibitor for Cu films.
  • the resist component has a boiling point higher than that of a solution component such as a tertiary alkanolamine, a polar solvent, and water, and thus can be completely separated. Therefore, no matter how many times the drainage of the stripping solution is regenerated, the resist component does not remain in the regenerated solution, and there is no fear that the corrosion inhibitor is concentrated.
  • a remanufactured photoresist stripping solution can be prepared by controlling the proportions of tertiary alkanolamine, a polar solvent, and water without a trace additive. Therefore, it is easy to manage the reclaimed photoresist stripping solution.
  • the photoresist stripping solution according to the present invention refers to a stripping solution for photoresist.
  • a film formed of a photoresist is also called a photoresist film or a resist film.
  • the photoresist stripper of the present invention has 40 to 60% by mass of water, 1 to 15% by mass of a tertiary alkanolamine, and 25 to 59% by mass of a polar solvent. Further, it may have water of more than 60% by mass and 80% by mass or less, 1 to 8% by mass of tertiary alkanolamine, and 12 to 39% by mass of polar solvent.
  • tertiary alkanolamines that can be suitably used include the following. Triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N-methylethanolamine, N-ethylethanolamine, N-butylethanolamine, N-methyldiethanolamine Etc. These may be used in combination of a plurality of types.
  • the polar solvent may be an organic solvent having an affinity for water. Moreover, it is more suitable if the mixing property with said tertiary alkanolamine is favorable.
  • water-soluble organic solvents examples include sulfoxides such as dimethyl sulfoxide; sulfones such as dimethyl sulfone, diethyl sulfone, bis (2-hydroxyethyl) sulfone, and tetramethylene sulfone; N, N-dimethylformamide, N-methyl Amides such as formamide, N, N-dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N -Lactams such as hydroxymethyl-2-pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-diisopropyl -2-Imidazolidinones such as imi
  • At least one selected from dimethyl sulfoxide, N-methyl-2-pyrrolidone, and diethylene glycol monobutyl ether is preferably used from the viewpoints of further peelability and anticorrosiveness to the substrate.
  • diethylene glycol monobutyl ether and N-methyl-2-pyrrolidone are particularly preferred.
  • These components may be used in combination of a plurality of types.
  • propylene glycol (PG) and diethylene glycol monobutyl ether (BDG) in a ratio of 3: 5.
  • diethylene glycol monobutyl ether is preferably mixed at a ratio of 5/8 or more of the polar solvent. This is because diethylene glycol monobutyl ether dissolves resist components well.
  • the mixing ratio of PG and BDG may be adjusted depending on the properties of the resist film to be peeled off. For example, when a-Si (amorphous silicon) of a semiconductor layer is dry-etched, the resist film is exposed to severe conditions such as high temperature and radical atmosphere caused by plasma. As a result, the resist film is denatured, and even when immersed in a resist stripping solution having a polar solvent having a ratio of PG to BDG of 3: 5, it may be difficult to remove the resist film. In such a case, a large amount of BDG having an excellent function of dissolving the resist film may be blended.
  • PG mainly has a function of swelling the resist film. Therefore, in order to make it easy to peel off the resist film, it is preferable that it be present even in a small amount. In addition, since PG maintains neutrality even if it mixes with water, regarding the pH, the amount of use is high.
  • the mixing ratio of PG and BDG is 3: 5 in a usage situation where the resist film is not very modified like wet etching.
  • the ratio of BDG may be changed to 5/8 or more.
  • the water is preferably pure water, but may contain impurities within the industrially usable range. That is, it is not necessary to use pure water that has passed through the RO membrane. This is because some impurities may be tolerated when a wiring of several ⁇ m or more is formed.
  • Water is preferably contained in an amount of 40 to 80% by mass, preferably 40 to 60% by mass, based on the entire resist stripping solution.
  • amount of water is less than 40% by mass, an organic layer remains on the Cu surface, and there is a high possibility that “film peeling” occurs in which the film deposited on the Cu film is peeled off.
  • film peeling occurs in which the film deposited on the Cu film is peeled off.
  • it exceeds 80% by mass the photoresist film will not peel off.
  • a resist component in addition to the solution components (tertiary alkanolamine, polar solvent and water), a resist component may be contained at 1 ppm or more and 3000 ppm or less.
  • the resist component is a component of the photoresist film from which the stripping solution of the present invention is stripped. More specifically, it is a resist component that is exposed, exposed to an etchant (acidic), and peeled off from the Cu film surface by a stripping solution in a photolithography process.
  • the “resist component” may be a component in which the component of the photoresist film before exposure is changed.
  • a component that is not contained in the photoresist film before being exposed is a component that is contained in the exposed photoresist film or is dissolved in the solution component from the exposed photoresist film, or a stripping solution Any component that has been changed and melted by associating with the sorbent may be used.
  • exposure includes not only exposure performed by a light source such as a halogen lamp but also exposure to light under a light source such as a fluorescent lamp or LED.
  • a positive photoresist is a mixture of a resin that dissolves in an alkaline solution and a photosensitive agent, and it is considered that the photosensitive agent protects the melting point of the resin.
  • the resin novolic resin is often used.
  • diazonaphthoquinone (DNQ) is often used as the photosensitive agent. This DNQ changes to indenketene when exposed to light. When indenketene encounters water, it undergoes a hydrolysis reaction and changes to indenecarboxylic acid.
  • the resist component is preferably a component from a positive photoresist.
  • the resist component is responsible for preventing corrosion of the Cu film surface. Therefore, the stripping solution that is used for the first time is supplied from the exposed photoresist film on the Cu film even if it does not contain a resist component.
  • this also means that the concentration of the resist component in the stripping solution increases with repeated use. Since the resist component includes a resin constituting the resist film, an increase in the concentration of the resist component also leads to an increase in debris (resist film fragments). Further, when a large amount of resist component remains on the surface of the Cu film, the adhesiveness with the film formed on the Cu film is lowered.
  • the concentration of the resist component for effectively using the stripping solution there is an upper limit to the concentration of the resist component for effectively using the stripping solution.
  • the resist component in the stripping solution to be repeatedly used is preferably 3000 ppm or less in the stripping solution. This is because, when the resist component exceeds this concentration, a defective portion such as a pinhole occurs in the film formed on the Cu film.
  • the stripping solution of the present invention can be used repeatedly without being regenerated until the concentration of the resist component is increased to 3000 ppm.
  • means 1 ppm or more and 3000 ppm or less with respect to the total amount of the resist stripping solution. Therefore, in the description of the composition ratio, only tertiary alkanolamine, polar solvent and water may be added to reach 100% by mass.
  • the resist stripping solution may be composed of only the tertiary alkanolamine, the polar solvent, and water.
  • the resist stripping solution of the present invention is considered to have obtained a corrosion inhibitor from the resist component, corrosion of the Cu film surface is suppressed.
  • the corrosion force of other components in the stripping solution is so strong that it cannot be protected by a corrosion inhibitor, the surface of the Cu film is corroded. Therefore, the ratio of the tertiary alkanolamine, the polar solvent and the water in the stripping solution of the present invention is alkaline enough to dissolve the exposed resist film, and the Cu film is substantially in the presence of the resist component. It is necessary to have a corrosive force that remains.
  • the fact that the Cu film substantially remains means that the Cu film remains to the extent that it does not hinder the product even if the exposed resist film on the Cu film is removed by the stripping solution.
  • the blending amount of the tertiary alkanolamine in the photoresist stripping solution of the present invention is preferably 1 to 8% by weight with respect to the total amount of the resist stripping solution in the range of 40 to 80% by weight of water. More preferably, the amount of water may be increased to 1 to 15% by mass relative to the total amount of the resist stripping solution in the range of 40 to 60% by mass. If the tertiary alkanolamine is contained in an amount of more than 15% by mass with respect to the total amount of the resist stripping solution, the Cu film will be corroded even if the resist component is contained. If it is less than 1% by mass, the photoresist film cannot be peeled off.
  • the ratio of polar solvent can be determined as the balance of water and tertiary alkanolamine. More specifically, when water is 40 to 60% by mass and tertiary alkanolamine is 1 to 15% by mass, the composition ratio of the polar solvent is 25 to 59% by mass. When water is more than 60% by mass and 80% by mass or less and tertiary alkanolamine is 1 to 8% by mass, the composition ratio of the polar solvent is 12 to 39% by mass.
  • the temperature of the reaction between the resin or photosensitizer in the photoresist and the stripping solution is very important. Therefore, temperature control when using the stripping solution is strictly performed.
  • the stripping solution and the object to be treated of the present invention are preferably in the range of 35 ° C to 45 ° C, and more preferably in the range of 38 ° C to 42 ° C. Further, it is desirable that the object to be treated and the stripping solution are treated at the same temperature. Since the base material of FPD is very large, the space where the stripping solution is used becomes a large space. This is because the temperature range from 35 ° C. to 45 ° C. allows such a space to stably carry out a chemical reaction and maintain large temperatures without requiring large energy.
  • an evaluation substrate was produced by the following procedure. First, ITO (Indium Tin Oxide: transparent electrode) was formed on a glass substrate having a size of 10 mm ⁇ 50 mm (thickness 1 mm) by a sputtering method. The thickness was 0.2 nm (2,000 angstroms).
  • ITO Indium Tin Oxide: transparent electrode
  • a Cu film for gate lines was formed on the ITO film to a thickness of about 0.3 ⁇ m by vapor deposition. This was designated as evaluation substrate A.
  • a positive resist was applied to the evaluation substrate A to a thickness of 1 ⁇ m with a spinner. After the resist film was formed, prebaking was performed for 2 minutes in an environment of 100 ° C.
  • the photomask used was a linear pattern with a width of 5 ⁇ m. Then, development was performed using tetramethylammonium hydroxide (TMAH). Thus, the exposed photoresist film was removed.
  • TMAH tetramethylammonium hydroxide
  • etching was performed for 1 minute using an oxidant-based etchant heated to 40 ° C.
  • an oxidant-based etchant heated to 40 ° C.
  • the substrate after the treatment was washed with flowing pure water for 1 minute.
  • the cleaned substrate was dried and stored for 1 minute in a spin drying apparatus at 8,000 rpm.
  • nitrogen gas having a flow rate of 0.5 m ⁇ 3> / s through a filter was blown from the rotation center. This is designated as an evaluation board B.
  • the evaluation substrate B has a photoresist film remaining as a pattern and a portion where the Cu film exposed by removing the photoresist film is etched. Note that the portion of the photoresist film remaining as a pattern also includes a portion having an area of 5 mm square in order to measure a contact angle described later.
  • the stripping solution sample is a polar solvent in which MDEA is 1, 2, 5, 8, 15% by mass, the moisture content is 40, 60, 80% by mass, respectively, and the remainder is mixed in a ratio of 3: 5 PG and BDG It was. Therefore, a total of 15 levels of stripping solution samples were prepared. Moreover, 100 ppm of resist components were dissolved in the resist stripping solution sample with respect to the total amount.
  • each resist stripping solution sample prepared as described above was placed in a vial and heated to 40 ° C. with a water bath.
  • the evaluation substrate B was immersed in the resist stripping solution sample in the vial for 1 minute while stirring at 500 rpm with a magnetic stirrer. Thereafter, the soaked evaluation substrate B was washed with pure water for 1 minute and dried by blowing nitrogen gas.
  • the peeled state of the developed resist film on the evaluation substrate B was visually confirmed. Further, the contact angle was measured on the Cu film after the resist film was peeled off. The contact angle was measured by the ⁇ / 2 method in which pure water was used as a reagent and the contact angle was calculated from the radius and height of the droplet made of the reagent.
  • Fig. 1 shows the relationship between moisture content and contact angle.
  • the horizontal axis represents the moisture content (% by mass) of the resist stripping solution.
  • the vertical axis represents the contact angle (deg).
  • white circles are 1% by mass of N-methyldiethanolamine (MDEA)
  • black circles are 2% by mass
  • black triangles are 5% by mass
  • white triangles are 8% by mass
  • white squares are 15% by mass.
  • the amount of polar solvent is the rest of MDEA and water.
  • the resist component contained at 100 ppm with respect to the total amount of the resist stripping solution is not included in the description of the total amount (100%).
  • the contact angle of the Cu film after the resist film is peeled is considered to observe water repellency due to the resist component remaining as a protective film on the Cu film. That is, after removing the resist film with the resist stripping solution, the contact angle becomes small. For example, when the contact angle is measured on the resist film surface before peeling off the resist film, the contact angle is close to 50 to 70 °.
  • the contact angle is 30 ° or less, and the hydrophobic component (resist component) remains on the Cu film after the resist film is stripped. It is thought that it is not.
  • the resist stripping solution sample containing 1% by mass of N-methyldiethanolamine (MDEA) had a low contact angle of 30 ° or less even when the moisture content increased. However, the contact angle did not decrease. On the other hand, the other resist stripping solution samples showed a decrease in contact angle as the moisture content increased.
  • MDEA N-methyldiethanolamine
  • MDEA makes the resist stripping solution alkaline, and the exposed resist film is dissolved in an alkaline solution, and MDEA makes the resist stripping solution alkaline. Therefore, it is considered that when the MDEA is less than 1% by mass, the resist stripping solution itself cannot dissolve the resist film.
  • the contact angle was as low as 21 ° at a moisture content of 60% by mass. However, when the moisture content was 80% by mass, the contact angle was 62 °. This is presumably because the total of MDEA (15% by mass) and moisture (80% by mass) was 95% by mass, and as a result, the polar solvent was reduced to 5% by mass. That is, it can be determined that the exposed resist film cannot be removed even if the amount of the polar solvent is too small.
  • MDEA white square N-methyldiethanolamine
  • the white triangle MDEA is 8% by mass, even if the moisture content is 80% by mass (the total amount of MDEA and water is 88% by mass), the contact angle is 25 ° or less. % Or more is considered good.
  • MDEA which is a tertiary alkanolamine
  • MDEA which is a tertiary alkanolamine
  • the composition of the moisture content is 40 to 80% by mass with respect to the total amount of the resist stripping solution, the tertiary amine is 1 to 8% by mass, and the remainder is the polar solvent. Can be kept clean. If the water content is 40 to 60% by mass, the tertiary amine can be increased to 15% by mass.
  • the anticorrosion of the Cu film is called "Cu anticorrosion" and was evaluated according to the following procedure.
  • the film thickness before dipping (t1 nm) of the Cu film before dipping was measured.
  • 50 ml of a resist stripping solution prepared at a predetermined composition ratio was dispensed into a vial.
  • the resist stripping solution was heated to 40 ° C. with a water bath while still in the vial.
  • the prepared evaluation substrate A was placed in the resist stripping solution at 40 ° C. and immersed for 30 minutes while stirring at 500 rpm with a magnetic stirrer.
  • the evaluation substrate A was pulled up from the peeling solution and washed with flowing pure water for 1 minute. After washing, the film was dried for 2 minutes with dry air (nitrogen gas) at a flow rate of 0.8 m 3 / s. And the film thickness (t2) after process of Cu on the evaluation board
  • FIG. 2 shows a graph in which the influence of the moisture content on the etching rate of the resist stripping solution with respect to Cu is examined.
  • the horizontal axis is the moisture content (% by mass), and the vertical axis is the etching rate (nm / min) of the Cu film.
  • the method of preparing the resist stripping solution sample is the same as in the case of ⁇ Effect of moisture on stripping property>.
  • a tertiary alkanolamine, N-methyldiethanolamine (MDEA), a polar solvent, propylene glycol (PG), and diethylene glycol monobutyl ether (BDG) were mixed at a ratio of 5:24:40.
  • the resist stripping solution is alkaline due to the presence of tertiary alkanolamine.
  • Cu is dissolved and etched (damaged) by the alkaline water.
  • the etching rate increased as the moisture content increased.
  • the moisture content was 40% by mass or more, the etching rate was saturated. Therefore, it can be said that the damage to the Cu film does not change much even if the moisture content increases. That is, the resist stripping solution having a moisture content of 40 to 80% by mass shown in FIG. 1 can be used practically without any problem.
  • the resist stripping solution according to the present invention having a moisture content of 40 to 80% by mass can strip the resist film, does not leave the protective film on the Cu surface after stripping the resist film, and the stripped resist film Therefore, the resist film can be peeled off without forming an organic layer on the Cu surface.
  • the stripping solution of the present invention can be suitably used in general for FPDs such as liquid crystal displays, plasma displays, organic ELs, etc., which are manufactured by wet etching using a Cu film as a conducting wire, and particularly require a large area and fine processing. it can.
  • FPDs such as liquid crystal displays, plasma displays, organic ELs, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

Provided is a remover liquid for photoresist films, which removes a photoresist film without damaging a Cu film, and which does not decrease adhesion between the Cu film and a layer deposited thereon, said photoresist film having been changed in the properties and having become difficult to remove by being exposed to an etchant for Cu films during wet etching of the Cu film or Cu alloy film on a large-area substrate for the formation of wiring lines or the like. A remover liquid for photoresists, which is characterized by containing 40-60% by mass of water, 1-15% by mass of a tertiary alkanolamine and 25-59% by mass of a polar solvent, or alternatively, by containing more than 60% by mass but 80% by mass or less of water, 1-8% by mass of a tertiary alkanolamine and 12-39% by mass of a polar solvent.

Description

フォトレジスト用剥離液Stripper for photoresist
 本発明は、フォトレジスト用剥離液に関する。特に、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)のCu又はCu合金配線基板製造に好適に使用されるレジスト剥離液に関する。 The present invention relates to a photoresist stripping solution. In particular, the present invention relates to a resist stripping solution suitably used for manufacturing Cu or Cu alloy wiring boards for flat panel displays (FPD) such as liquid crystal displays and organic EL displays.
 ICやLSI等では、半導体素子の高集積化とチップサイズの縮小化に伴い、配線回路の微細化及び多層化が進み、半導体素子で用いる金属膜の抵抗(配線抵抗)と配線容量に起因する信号の遅延などが問題視されている。そのため、配線抵抗をより小さくするためにアルミニウム(Al)よりも抵抗の少ない銅(Cu)が用いられるようになっている。 In ICs, LSIs, etc., with the high integration of semiconductor elements and the reduction in chip size, the miniaturization and multilayering of wiring circuits have progressed, resulting from the resistance (wiring resistance) and wiring capacitance of metal films used in semiconductor elements. Signal delay is considered a problem. For this reason, copper (Cu) having a resistance lower than that of aluminum (Al) is used to reduce the wiring resistance.
 一方、液晶ディスプレイ等のFPDでも、従来配線材料としてAlが採用されてきたが、近年の基板大型化や高精細化および有機ELへの対応のため、半導体素子同様に、配線抵抗を下げる必要があり、Alよりも抵抗の少ないCu若しくはCu合金等を配線材料として用いられることが試みられている。 On the other hand, Al has been used as a conventional wiring material in FPDs such as liquid crystal displays, but it is necessary to lower the wiring resistance in the same way as semiconductor elements in order to cope with the recent increase in substrate size, higher definition, and organic EL. There is an attempt to use Cu or Cu alloy having a lower resistance than Al as a wiring material.
 CuはAlに比べ、表面に生成する酸化被膜の保護性が弱いため、水溶液中では腐食しやすい。従って、配線パターンを安定して形成できないという課題がある。そこで、半導体の製造では、プラズマを使ったドライプロセスで腐食を防止している。しかし、FPDは半導体よりも基板サイズが大きく、プラズマを使ったドライプロセスの適用が困難である。そのため、ウェットエッチング工法を用いた配線形成の開発が不可欠である。 Cu is less susceptible to corrosion in an aqueous solution because it has less protective oxide film formed on the surface than Al. Therefore, there is a problem that the wiring pattern cannot be stably formed. Therefore, in the manufacture of semiconductors, corrosion is prevented by a dry process using plasma. However, the FPD has a larger substrate size than a semiconductor, and it is difficult to apply a dry process using plasma. Therefore, development of wiring formation using a wet etching method is indispensable.
 配線材料としてCuを用いた場合の課題は、上記に示したようにウェットエッチングによるCu膜面の腐食である。よく知られているように、ウェットエッチングによるフォトリソグラフィでは、基材上に形成したCu膜にレジストで配線パターンを形成し、Cuを溶解するエッチャントによって不要な部分のCu膜を除去し、最後にレジスト膜を除去することで、所望の配線パターンを得る事ができる。 The problem when Cu is used as the wiring material is the corrosion of the Cu film surface by wet etching as described above. As is well known, in photolithography by wet etching, a wiring pattern is formed with a resist on a Cu film formed on a substrate, an unnecessary portion of the Cu film is removed by an etchant that dissolves Cu, and finally, A desired wiring pattern can be obtained by removing the resist film.
 ここで、Cu膜が腐食されるのは、最後のレジスト膜の剥離工程である。この工程では、Cu膜表面に付着していたレジスト膜が無くなるため、Cu膜表面が剥離液に直接曝される。特にレジスト膜の剥離液は、アルカリ性を示し、また水も混在されている。そのため、Cu膜は容易に腐食される。そこで、フォトレジスト膜を剥離する事と、Cu膜の腐食を防止する事をバランス良く達成するフォトレジスト用剥離液の開発が行われている。
その主たる手法は、剥離液中にCu膜の腐食防止剤を混入させることである。
Here, the Cu film is corroded in the final resist film peeling step. In this step, since the resist film adhering to the Cu film surface disappears, the Cu film surface is directly exposed to the stripping solution. In particular, the resist film stripping solution exhibits alkalinity and also contains water. Therefore, the Cu film is easily corroded. In view of this, development of a stripping solution for a photoresist that achieves a good balance between stripping the photoresist film and preventing corrosion of the Cu film has been performed.
The main technique is to mix a Cu film corrosion inhibitor into the stripping solution.
 特許文献1では、(a)含窒素有機ヒドロキシ化合物が10~65重量%、(b)水溶性有機溶媒が10~60重量%、(c)水が5~50重量%、防食剤として(d)ベンゾトリアゾール系化合物が0.1~10重量%からなるフォトレジスト用剥離液が開示されており、(a)含窒素有機ヒドロキシ化合物としては25℃の水溶液における酸解離定数(pKa)が7.5~13のアミン類が好ましいとされている。 In Patent Document 1, (a) 10 to 65% by weight of a nitrogen-containing organic hydroxy compound, (b) 10 to 60% by weight of a water-soluble organic solvent, (c) 5 to 50% by weight of water, (d ) A photoresist stripping solution containing 0.1 to 10% by weight of a benzotriazole-based compound is disclosed, and (a) the nitrogen-containing organic hydroxy compound has an acid dissociation constant (pKa) in an aqueous solution at 25 ° C. of 7. 5-13 amines are preferred.
 しかし、このような組成ではフォトレジスト用剥離液のpHは10以上の強アルカリとなる。したがって、銅配線は、液中の溶存酸素によって、HCuO2-やCuO2-イオンを生成して容易に溶解、すなわち腐食する。また、防食剤の(d)ベンゾトリアゾール系化合物は強アルカリ溶液中では重合度の高いポリマー皮膜を作れず、防食性が弱い。そのため、添加量を増やさなければならず、過剰に添加されたベンゾトリアゾール系化合物がCu膜配線上に残留し、異物として残ってしまうおそれがある。 However, with such a composition, the pH of the photoresist stripping solution becomes a strong alkali of 10 or more. Therefore, the copper wiring is easily dissolved, that is, corroded by generating HCuO 2− and CuO 2− ions by dissolved oxygen in the liquid. Further, the anticorrosive agent (d) benzotriazole-based compound cannot form a polymer film having a high degree of polymerization in a strong alkaline solution and has a low anticorrosion property. Therefore, the addition amount must be increased, and the excessively added benzotriazole-based compound may remain on the Cu film wiring and may remain as a foreign substance.
 特許文献2では、(a)一級または二級のアルカノールアミンを5~45重量%、(b)極性有機溶剤及び水を50~94.95重量%、(c)マルトールやウラシルや4-ヒドロキシ-6-メチル-2-ピロンなどからなる群から選択される少なくとも1種の複素環式化合物を0.05~10重量%からなるフォトレジスト剥離液が提案されている。このような組成の場合でも、フォトレジスト用剥離液のpHは10以上の強アルカリであり、銅配線は腐食しやすい。したがって、過剰に防食剤(c)を添加すると、防食剤(c)がCu配線上に残留し、異物として残ってしまうおそれがある。 In Patent Document 2, (a) primary or secondary alkanolamine is 5 to 45% by weight, (b) polar organic solvent and water are 50 to 94.95% by weight, and (c) maltol, uracil, 4-hydroxy- A photoresist stripping solution comprising 0.05 to 10% by weight of at least one heterocyclic compound selected from the group consisting of 6-methyl-2-pyrone and the like has been proposed. Even in such a composition, the pH of the photoresist stripping solution is a strong alkali of 10 or more, and the copper wiring is easily corroded. Therefore, if the anticorrosive agent (c) is added excessively, the anticorrosive agent (c) may remain on the Cu wiring and may remain as foreign matter.
 特許文献3では基板上に銅配線パターンを形成した後、その銅配線パターンをベンゾトリアゾールが2×10-6~10-1mol・dm-2含まれる水溶液を使って洗浄する半導体装置の製造方法が提案されている。 Patent Document 3 discloses a method of manufacturing a semiconductor device in which a copper wiring pattern is formed on a substrate and then the copper wiring pattern is cleaned using an aqueous solution containing 2 × 10 −6 to 10−1 mol · dm−2 of benzotriazole. Proposed.
 さらに、ウェットエッチングによる工法では、剥離液を含め、さまざまな溶液が大量に使用される。これらは、そのまま廃棄すると環境汚染となるおそれが大きい。また、比較的高価な材料でもある。したがって、使用した剥離液等はリサイクルの処理を行い、再生しながら繰り返し使用できるのが好ましい。 Furthermore, in the wet etching method, various solutions including stripper are used in large quantities. If these are discarded as they are, there is a high risk of environmental pollution. It is also a relatively expensive material. Therefore, it is preferable that the stripping solution used can be used repeatedly while being recycled after being recycled.
 このような観点から特許文献4では、多価アルコールとアルカノールアミンと水とグリコールエーテルと、防食剤からなる剥離液が開示されている。特に水はリサイクルの観点から30質量%以下であり、グリコールエーテルは主たる再生用材料として60質量%以上とすることが望ましいとされている。 From this point of view, Patent Document 4 discloses a stripping solution comprising a polyhydric alcohol, an alkanolamine, water, a glycol ether, and an anticorrosive. In particular, water is 30% by mass or less from the viewpoint of recycling, and glycol ether is desirably 60% by mass or more as a main recycling material.
 これらの開示された技術は、レジスト膜を剥離する際のCu膜のダメージという点では、考慮されているものの、Cu膜上に他の膜を形成する際の接着性などが考慮されていなかった。そこで、大面積の基板上のCu若しくはCu合金層をウェットエッチングすることによって配線等とする際に、露光され、変質し剥離しにくくなったフォトレジスト膜をCu膜にダメージを与えないように剥離し、なおかつ、Cu膜の上に形成させる膜との間の接着力を低下させないフォトレジスト膜の剥離液であって、リサイクルを繰り返してもレジスト膜の剥離性とCu膜の腐食性とCu膜およびCu膜上に形成膜との接着性を維持し続けることができるフォトレジスト剥離液が望まれた。 Although these disclosed techniques are considered in terms of damage to the Cu film when the resist film is peeled off, adhesiveness when forming another film on the Cu film has not been considered. . Therefore, when a Cu or Cu alloy layer on a large-area substrate is wet-etched to form a wiring or the like, the photoresist film that has been exposed, altered, and difficult to peel off is peeled off so as not to damage the Cu film. In addition, it is a stripping solution for a photoresist film that does not lower the adhesive force between the film formed on the Cu film, and the resist film can be stripped, the Cu film can be corroded, and the Cu film can be repeatedly recycled. In addition, a photoresist stripping solution that can maintain the adhesion to the formed film on the Cu film has been desired.
 これに対して、特許文献5は、三級アルカノールアミンが1~9質量%、極性溶媒が10~70質量%、水が10~40質量%およびレジスト成分が3000ppmからなることを特徴とするフォトレジスト用剥離液を提案している。 On the other hand, Patent Document 5 is a photo characterized in that the tertiary alkanolamine is 1 to 9% by mass, the polar solvent is 10 to 70% by mass, the water is 10 to 40% by mass, and the resist component is 3000 ppm. A resist stripping solution is proposed.
 このフォトレジスト用剥離液は、感光されたレジスト成分をCu膜の腐食防止剤として使用する。レジスト成分は三級アルカノールアミン、極性溶媒、水といった溶液成分より沸点が高いため、完全に分離することができる。したがって、剥離液の排液を何度再生しても、再生した液中にレジスト成分は残留せず、腐食防止剤が濃縮されるというおそれがないという効果を奏するとされている。 This photoresist stripping solution uses a photosensitive resist component as a corrosion inhibitor for Cu film. Since the resist component has a higher boiling point than solution components such as tertiary alkanolamine, polar solvent, and water, it can be completely separated. Therefore, no matter how many times the drainage of the stripping solution is regenerated, the resist component does not remain in the regenerated solution, and the corrosion inhibitor is not concentrated.
特許第3514435号公報Japanese Patent No. 3514435 特開2008-216296号公報JP 2008-216296 A 特許第3306598号公報Japanese Patent No. 3306598 特開2007-114519号公報JP 2007-114519 A 特開2012-242696号公報JP 2012-242696 A
 特許文献1では、Cuのエッチングにはドライエッチング処理を行って評価されている。CuのエッチャントとAlのエッチャントが異なるものであることは知られており、特にCuをウェットエッチングする酸化剤系のエッチング液では、レジスト膜は変質され、剥離しにくくなる。すなわち、特許文献1で開示されたフォトレジスト膜の剥離液は、Cu若しくはCu合金をウェットエッチング処理する工程で用いるフォトレジスト膜の剥離液としては単純には適用できない。 In Patent Document 1, Cu etching is evaluated by performing a dry etching process. It is known that the etchant of Cu and the etchant of Al are different. In particular, in the case of an oxidant-based etchant that wet-etches Cu, the resist film is altered and is difficult to peel off. That is, the photoresist film stripping solution disclosed in Patent Document 1 cannot be simply applied as a photoresist film stripping solution used in the step of wet etching treatment of Cu or Cu alloy.
 特許文献2は、この点考慮されており、まさに、大面積の基板上のCu若しくはCu合金をウェットエッチングする際に用いるフォトレジスト膜の剥離液を開示している。しかし、剥離液の主剤として用いている一級又は二級のアルカノールアミンは強アルカリを示すため、腐食防止剤として添加する複素環式化合物はその作用が弱まる。そのため、複素環式化合物は0.05~10wt%とかなり多い組成となっている。 Patent Document 2 considers this point, and exactly discloses a stripping solution for a photoresist film used when wet etching Cu or Cu alloy on a large-area substrate. However, since the primary or secondary alkanolamine used as the main component of the stripping solution shows strong alkali, the action of the heterocyclic compound added as a corrosion inhibitor is weakened. Therefore, the heterocyclic compound has a considerably large composition of 0.05 to 10 wt%.
 特許文献2が検討していないのは、腐食防止剤として添加するこれらの複素環式化合物は、Cu膜との間に不溶性の化合物を形成して、腐食を防止するが、同時にCu膜の上に成膜処理される層との間の接着性を低下させる点である。つまり、0.05~10wt%の量の腐食防止剤は、Cu膜の上に形成される膜との接着性を低下させるという問題を生じさせる。 Patent Document 2 does not consider that these heterocyclic compounds added as a corrosion inhibitor form an insoluble compound with the Cu film to prevent corrosion. It is the point which reduces the adhesiveness between the layers processed into a film. That is, the corrosion inhibitor in an amount of 0.05 to 10 wt% causes a problem that the adhesion with the film formed on the Cu film is lowered.
 特許文献3は、Cu膜上のフォトレジスト膜を剥離する際の洗浄過程でCu膜が洗浄剤と接触させた際に腐食されるのを防止するのにBTA(ベンゾトリアゾール)がCu膜との間に不溶性の化合物を形成する点を開示している。しかし、基本的にCu膜はドライエッチングにおける処理である。また、特許文献2同様、Cu膜上に形成する次の層との接着性まで考慮したものではない。 In Patent Document 3, BTA (benzotriazole) is used as a Cu film to prevent corrosion when the Cu film is brought into contact with a cleaning agent in the cleaning process when the photoresist film on the Cu film is peeled off. It discloses the formation of insoluble compounds in between. However, the Cu film is basically a process in dry etching. Further, like Patent Document 2, the adhesiveness to the next layer formed on the Cu film is not taken into consideration.
 さらに、剥離液のリサイクルという観点からは次のような課題が生じる。剥離液を構成する材料の中で、アミン系材料と溶剤および腐食防止剤は、沸点が近接しており、その分離は容易ではない。つまり、アミン系材料と溶剤と腐食防止剤は、まとめて分離されることになる。まとめて分離された分離液は、その材料の構成比を検査することで、不足分を追加し再生される。 Furthermore, the following problems arise from the viewpoint of recycling the stripping solution. Among the materials constituting the stripping solution, the amine-based material, the solvent, and the corrosion inhibitor have close boiling points and are not easily separated. That is, the amine material, the solvent, and the corrosion inhibitor are separated together. The separated separation liquid is regenerated by adding the shortage by inspecting the composition ratio of the materials.
 ここで、上記のようにCu膜の上に形成される膜との接着性を考慮すると、腐食防止剤は微量しか添加できない。そうすると、蒸留等によって剥離液の排液から分離された液中の腐食防止剤の含有量を検査するのは困難になる。含有量が少ない上、アミン系材料や溶剤と沸点が近いため、判別も弁別もできないからである。 Here, considering the adhesiveness with the film formed on the Cu film as described above, only a trace amount of the corrosion inhibitor can be added. If it does so, it will become difficult to test | inspect the content of the corrosion inhibitor in the liquid isolate | separated from the effluent of stripping liquid by distillation etc. This is because the content is small and the boiling point is close to that of amine-based materials and solvents, so that discrimination and discrimination are not possible.
 このような状況で再生(リサイクル)処理が繰り返されると、剥離液中では、微量な含有量であるものの、腐食防止剤が濃縮される。腐食防止剤は、微量で腐食防止効果を示す。つまりCu膜上に不動体を形成する。そのため、わずかでも濃縮されると、Cu膜上に形成される膜の接着性に確実に影響を及ぼす。結果、剥離液を再生使用していると、ある時、突然Cu膜上に形成される膜にピンホールやCu膜からの剥離といった問題が発生することとなる。 When the recycling (recycling) process is repeated in such a situation, the corrosion inhibitor is concentrated in the stripping solution although the content is very small. The corrosion inhibitor exhibits a corrosion prevention effect in a small amount. That is, a non-moving body is formed on the Cu film. Therefore, even if it is concentrated even a little, the adhesiveness of the film formed on the Cu film is surely affected. As a result, when the stripping solution is recycled, a problem such as pinholes or stripping from the Cu film occurs suddenly on the film formed on the Cu film.
 また、これらの点を改善したとされる特許文献5のフォトレジスト用剥離液では、レジスト剥離工程で循環して使用された場合、剥離したレジスト膜がフォトレジスト用剥離液中に溶解し、レジスト成分濃度が高くなる。レジスト成分濃度が高くなると、レジスト膜は剥離しているが、Cu最表面上にSEMでも観察できないほど薄い有機物層が残り、剥離処理後に成膜を行った場合に膜剥がれなどが起きるという課題があった。 In addition, in the photoresist stripping solution of Patent Document 5, which is said to have improved these points, when the resist stripping solution is circulated and used in the resist stripping step, the stripped resist film dissolves in the photoresist stripping solution, and the resist Increased component concentration. When the resist component concentration increases, the resist film is peeled off, but an organic layer that is too thin to be observed by SEM remains on the outermost surface of Cu, and there is a problem that film peeling occurs when film formation is performed after the peeling process. there were.
 本発明は同じフォトレジスト用剥離液を循環して使用するうちに、フォトレジスト用剥離液中のレジスト成分濃度が高くなっても、Cu最表面の清浄性を良好に保つことができるフォトレジスト用剥離液を提供する。 The present invention is for a photoresist that can maintain good cleanliness of the outermost surface of Cu even when the concentration of the resist component in the photoresist stripping solution increases while the same stripping solution for photoresist is circulated. Provide stripping solution.
 上記の解題を解決するために、本発明のフォトレジスト用剥離液は、
 40~60質量%の水と、
 1~15質量%の三級アルカノールアミンと、
 25~59質量%の極性溶媒を有することを特徴とする。
In order to solve the above problem, the stripping solution for photoresist of the present invention comprises:
40-60 mass% water,
1 to 15% by weight of a tertiary alkanolamine,
It has a polar solvent of 25 to 59% by mass.
 また、本発明のフォトレジスト用剥離液は、
 60質量%より多く80質量%以下の水と、
 1~8質量%の三級アルカノールアミンと、
 12~39質量%の極性溶媒を有していてもよい。さらに、いずれの場合でも、レジスト成分が微量(δ)含まれていてもよい。
Moreover, the stripping solution for photoresist of the present invention comprises:
More than 60% by weight and less than 80% by weight water,
1 to 8% by weight of a tertiary alkanolamine,
It may have 12 to 39% by mass of a polar solvent. Furthermore, in any case, the resist component may contain a trace amount (δ).
 また、上記フォトレジスト用剥離液では、
 前記極性溶媒はプロピレングリコール(PG)とジエチレングリコールモノブチルエーテル(BDG)からなり、前記極性溶媒に対する前記ジエチレングリコールモノブチルエーテルの比率が8分の5以上であることを特徴とする。
In the photoresist stripping solution,
The polar solvent is composed of propylene glycol (PG) and diethylene glycol monobutyl ether (BDG), and the ratio of the diethylene glycol monobutyl ether to the polar solvent is 5/8 or more.
 また、上記フォトレジスト用剥離液では、
 前記三級アルカノールアミンは、N-メチルジエタノールアミン(MDEA)であることを特徴とする。
In the photoresist stripping solution,
The tertiary alkanolamine is N-methyldiethanolamine (MDEA).
 また、上記フォトレジスト用剥離液では、前記レジスト成分は露光されたポジ型フォト
レジストからの成分であることを特徴とする。
In the photoresist stripping solution, the resist component is a component from an exposed positive photoresist.
 本発明では、水の割合を40乃至80と特許文献5の場合より、水の含有量を多くする。このようにすることで、レジスト膜の剥離性を確保しつつ、Cu膜表面の有機物層が付着しないようにすることができる。その結果、Cu膜の最表面を清浄に保つことができ、Cu膜上に積層する膜との間で膜剥がれといった問題が発生しなくなるという効果を奏する。 In the present invention, the water content is increased from 40 to 80, compared to the case of Patent Document 5. By doing in this way, it can prevent that the organic substance layer of Cu film surface adheres, ensuring the peelability of a resist film. As a result, the outermost surface of the Cu film can be kept clean, and there is an effect that the problem of film peeling between the film laminated on the Cu film does not occur.
 また、本発明では、レジスト成分をCu膜の腐食防止剤として使用する。そして、レジスト成分は三級アルカノールアミン、極性溶媒、水といった溶液成分より沸点が高いため、完全に分離することができる。したがって、剥離液の排液を何度再生しても、再生した液中にレジスト成分は残留せず、腐食防止剤が濃縮されるというおそれがない。 In the present invention, the resist component is used as a corrosion inhibitor for Cu films. The resist component has a boiling point higher than that of a solution component such as a tertiary alkanolamine, a polar solvent, and water, and thus can be completely separated. Therefore, no matter how many times the drainage of the stripping solution is regenerated, the resist component does not remain in the regenerated solution, and there is no fear that the corrosion inhibitor is concentrated.
 また、腐食防止剤やレジスト膜溶解補助剤はレジスト膜側に存在するという見方もできる。従って、微量添加剤のない三級アルカノールアミン、極性溶媒、水の成分比率を管理すれば、再生されたフォトレジスト用剥離液を調製することができる。そのため再生フォトレジスト用剥離液の管理が容易である。 Also, it can be said that the corrosion inhibitor and the resist film dissolution aid are present on the resist film side. Therefore, a remanufactured photoresist stripping solution can be prepared by controlling the proportions of tertiary alkanolamine, a polar solvent, and water without a trace additive. Therefore, it is easy to manage the reclaimed photoresist stripping solution.
レジスト剥離液中の水分率と、レジスト膜が剥離された後のCu膜上の接触角の関係を調べたグラフである。It is the graph which investigated the relationship between the moisture content in a resist peeling liquid, and the contact angle on Cu film after a resist film was peeled. 水分率とエッチングレートの関係を示すグラフである。It is a graph which shows the relationship between a moisture content and an etching rate.
 以下本発明に係るフォトレジスト用剥離液について説明する。なお、以下の説明は本発明に係るフォトレジスト用剥離液の一実施形態を示すものであり、本発明の趣旨を逸脱しない範囲で、以下の実施形態および実施例は改変されてもよい。また、本発明に係るフォトレジスト剥離液はフォトレジスト用剥離液を指す。またフォトレジストで形成された膜をフォトレジスト膜若しくはレジスト膜とも呼ぶ。 Hereinafter, the stripping solution for photoresist according to the present invention will be described. The following description shows one embodiment of the photoresist stripping solution according to the present invention, and the following embodiments and examples may be modified without departing from the gist of the present invention. The photoresist stripping solution according to the present invention refers to a stripping solution for photoresist. A film formed of a photoresist is also called a photoresist film or a resist film.
 本発明のフォトレジスト剥離液は、40~60質量%の水と、1~15質量%の三級アルカノールアミンと、25~59質量%の極性溶媒を有する。また、60質量%より多く80質量%以下の水と、1~8質量%の三級アルカノールアミンと、12~39質量%の極性溶媒を有していてもよい。 The photoresist stripper of the present invention has 40 to 60% by mass of water, 1 to 15% by mass of a tertiary alkanolamine, and 25 to 59% by mass of a polar solvent. Further, it may have water of more than 60% by mass and 80% by mass or less, 1 to 8% by mass of tertiary alkanolamine, and 12 to 39% by mass of polar solvent.
 三級アルカノールアミンとしては、具体的に以下のものが好適に利用できる。トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N-ブチルエタノールアミン、N-メチルジエタノールアミン等である。これらは、複数種類を混合して用いてもよい。 Specific examples of tertiary alkanolamines that can be suitably used include the following. Triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N-methylethanolamine, N-ethylethanolamine, N-butylethanolamine, N-methyldiethanolamine Etc. These may be used in combination of a plurality of types.
 極性溶媒としては、水と親和性のある有機溶媒であればよい。また上記の三級アルカノールアミンとの混合性が良好であればより好適である。 The polar solvent may be an organic solvent having an affinity for water. Moreover, it is more suitable if the mixing property with said tertiary alkanolamine is favorable.
 このような水溶性有機溶媒としては、ジメチルスルホキシド等のスルホキシド類;ジメチルスルホン、ジエチルスルホン、ビス(2-ヒドロキシエチル)スルホン、テトラメチレンスルホン等のスルホン類;N,N-ジメチルホルムアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジエチルアセトアミド等のアミド類;N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-プロピル-2-ピロリドン、N-ヒドロキシメチル-2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン等のラクタム類;1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジイソプロピル-2-イミダゾリジノン等のイミダゾリジノン類;エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテルなどのジエチレングリコールモノアルキルエーテル(アルキルは炭素原子数1~6の低級アルキル基)等の多価アルコール類、およびその誘導体が挙げられる。これらの中で、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジエチレングリコールモノブチルエーテルの中から選ばれる少なくとも1種が、より一層の剥離性、基板に対する防食性等の点から好ましく用いられる。中でも、ジエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンが特に好ましい。これらの成分は複数種類を混合して用いてもよい。 Examples of such water-soluble organic solvents include sulfoxides such as dimethyl sulfoxide; sulfones such as dimethyl sulfone, diethyl sulfone, bis (2-hydroxyethyl) sulfone, and tetramethylene sulfone; N, N-dimethylformamide, N-methyl Amides such as formamide, N, N-dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N -Lactams such as hydroxymethyl-2-pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-diisopropyl -2-Imidazolidinones such as imidazolidinone; Glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol mono Examples thereof include polyhydric alcohols such as diethylene glycol monoalkyl ether such as butyl ether (alkyl is a lower alkyl group having 1 to 6 carbon atoms), and derivatives thereof. Among these, at least one selected from dimethyl sulfoxide, N-methyl-2-pyrrolidone, and diethylene glycol monobutyl ether is preferably used from the viewpoints of further peelability and anticorrosiveness to the substrate. Of these, diethylene glycol monobutyl ether and N-methyl-2-pyrrolidone are particularly preferred. These components may be used in combination of a plurality of types.
 また、プロピレングリコール(PG)とジエチレングリコールモノブチルエーテル(BDG)を3:5の割合で用いるのも好ましい。特に、ジエチレングリコールモノブチルエーテルは、極性溶媒の8分の5以上の割合で混合されているのがよい。ジエチレングリコールモノブチルエーテルは、レジスト成分をよく溶解するからである。 It is also preferable to use propylene glycol (PG) and diethylene glycol monobutyl ether (BDG) in a ratio of 3: 5. In particular, diethylene glycol monobutyl ether is preferably mixed at a ratio of 5/8 or more of the polar solvent. This is because diethylene glycol monobutyl ether dissolves resist components well.
 なお、剥離対象となるレジスト膜の性状によってはPGとBDGの混合比率を調整してもよい。例えば、半導体層のa-Si(アモルファスシリコン)をドライエッチングする際には、レジスト膜は、プラズマによる高温かつラジカルな雰囲気という過酷な条件に曝される。その結果、レジスト膜が変成し、PGとBDGの比率が3:5の極性溶媒を有するレジスト剥離液に浸漬させても、剥離させるのが困難になる場合もある。そのような場合は、レジスト膜を溶解させる機能に優れたBDGを多めに配合してもよい。 Note that the mixing ratio of PG and BDG may be adjusted depending on the properties of the resist film to be peeled off. For example, when a-Si (amorphous silicon) of a semiconductor layer is dry-etched, the resist film is exposed to severe conditions such as high temperature and radical atmosphere caused by plasma. As a result, the resist film is denatured, and even when immersed in a resist stripping solution having a polar solvent having a ratio of PG to BDG of 3: 5, it may be difficult to remove the resist film. In such a case, a large amount of BDG having an excellent function of dissolving the resist film may be blended.
 ただし、BDGは水と混合した場合にpHを低下させてしまうため、あまり多い割合にするとレジスト剥離液のpHを低下させてしまう(酸性側にする)。つまり、BDGの比率を高めると、レジスト剥離液のpHをアルカリ側にするというアミン(MDEA)の効果を相殺する虞がある。これはレジスト剥離液の効果を低減させることに繋がる。 However, since BDG lowers the pH when mixed with water, if the ratio is too large, the pH of the resist stripping solution is lowered (to the acidic side). That is, when the ratio of BDG is increased, the effect of amine (MDEA) that the pH of the resist stripping solution is set to the alkali side may be offset. This leads to a reduction in the effect of the resist stripping solution.
 一方、PGは主としてレジスト膜を膨潤させる機能を有している。したがって、レジスト膜を剥離させやすくするため、少量でも存在させておくのがよい。なお、PGは、水と混合しても中性を保つので、pHに関しては、使用量の自由度は高い。 On the other hand, PG mainly has a function of swelling the resist film. Therefore, in order to make it easy to peel off the resist film, it is preferable that it be present even in a small amount. In addition, since PG maintains neutrality even if it mixes with water, regarding the pH, the amount of use is high.
 したがって、ウェットエッチングのようにレジスト膜があまり変性しないような使用状況では、PGとBDGの混合比率は3:5が望ましい。しかし、上記のようにレジスト膜が変性するような場合は、BDGの比率を8分の5以上に変更しても良い。 Therefore, it is desirable that the mixing ratio of PG and BDG is 3: 5 in a usage situation where the resist film is not very modified like wet etching. However, when the resist film is modified as described above, the ratio of BDG may be changed to 5/8 or more.
 水は、純水であることが好ましいが、工業的に利用できる範囲内で、不純物が含まれていてもよい。すなわち、RO膜を通過させた純水を用いなくてもよい。数μm以上の配線を形成する場合は、多少の不純物は許容できる場合もあるからである。 The water is preferably pure water, but may contain impurities within the industrially usable range. That is, it is not necessary to use pure water that has passed through the RO membrane. This is because some impurities may be tolerated when a wiring of several μm or more is formed.
 水は、レジスト剥離液全体に対して、40~80質量%、好ましくは、40~60質量%含有させるのが望ましい。水の分量が40質量%より少ないと、Cu表面に有機物層が残り、Cu膜の上に堆積させる膜が剥がれる「膜剥がれ」が生じるおそれが高くなる。また、80質量%より多くなると、フォトレジスト膜が剥離しなくなる。 Water is preferably contained in an amount of 40 to 80% by mass, preferably 40 to 60% by mass, based on the entire resist stripping solution. When the amount of water is less than 40% by mass, an organic layer remains on the Cu surface, and there is a high possibility that “film peeling” occurs in which the film deposited on the Cu film is peeled off. On the other hand, if it exceeds 80% by mass, the photoresist film will not peel off.
 本発明では、溶液成分(三級アルカノールアミンと極性溶媒と水)に加え、レジスト成分が1ppm以上、3000ppm以下で含まれていてもよい。レジスト成分は本発明の剥離液が剥離するフォトレジスト膜の成分である。より詳しくは、フォトリソグラフィの工程において、露光され、エッチャント(酸性)に曝されて、剥離液によってCu膜表面から剥離されたレジスト成分である。 In the present invention, in addition to the solution components (tertiary alkanolamine, polar solvent and water), a resist component may be contained at 1 ppm or more and 3000 ppm or less. The resist component is a component of the photoresist film from which the stripping solution of the present invention is stripped. More specifically, it is a resist component that is exposed, exposed to an etchant (acidic), and peeled off from the Cu film surface by a stripping solution in a photolithography process.
 したがって、本発明において「レジスト成分」とは露光される前のフォトレジスト膜の成分が変化した成分であってもよい。言い換えると、露光される前のフォトレジスト膜に含まれていない成分であっても、露光されたフォトレジスト膜に含まれる若しくは露光されたフォトレジスト膜から溶液成分中に溶けだした成分、または剥離液に会合することで変化し溶けだした成分であればよい。また、ここで「露光」とは、ハロゲンランプなどの光源によって行われる露光以外にも、蛍光灯やLED等の光源下で光に曝される場合も含む。 Therefore, in the present invention, the “resist component” may be a component in which the component of the photoresist film before exposure is changed. In other words, even a component that is not contained in the photoresist film before being exposed, is a component that is contained in the exposed photoresist film or is dissolved in the solution component from the exposed photoresist film, or a stripping solution Any component that has been changed and melted by associating with the sorbent may be used. Here, “exposure” includes not only exposure performed by a light source such as a halogen lamp but also exposure to light under a light source such as a fluorescent lamp or LED.
 本発明の発明者は、Cu膜上に塗布され、露光されたフォトレジスト膜を溶液成分(三級アルカノールアミンと極性溶媒と水)によって溶解すると、Cu膜の腐食が実質的に問題のない程度に押さえられ、なおかつレジスト膜の溶解性も維持できることを確認した。
この理由は明確ではないが1つの説明として次のように考えられる。
When the inventor of the present invention dissolves a photoresist film coated and exposed on a Cu film with solution components (tertiary alkanolamine, polar solvent and water), the corrosion of the Cu film is not substantially problematic. It was confirmed that the solubility of the resist film can be maintained.
The reason for this is not clear, but is considered as one explanation as follows.
 ポジ型フォトレジストは、アルカリ溶液に溶解する樹脂と、感光剤の混合物であり、感光剤が樹脂の溶解点を保護していると考えられている。樹脂はノボリック樹脂が使われることが多い。また、感光剤はポジ型フォトレジストの場合は、ジアゾナフトキノン(DNQ)が使用される場合が多い。このDNQは、感光すると、インデンケテンに変化する。
インデンケテンは、水と出会うと加水分解反応し、インデンカルボン酸に変化する。
A positive photoresist is a mixture of a resin that dissolves in an alkaline solution and a photosensitive agent, and it is considered that the photosensitive agent protects the melting point of the resin. As the resin, novolic resin is often used. In the case of a positive photoresist, diazonaphthoquinone (DNQ) is often used as the photosensitive agent. This DNQ changes to indenketene when exposed to light.
When indenketene encounters water, it undergoes a hydrolysis reaction and changes to indenecarboxylic acid.
 インデンカルボン酸は、アルカリ溶液に可溶であるので溶けだす。結果、樹脂の溶解点がアルカリ溶液に曝され、フォトレジスト膜が剥離する。ここで、このインデンカルボン酸がCu膜の表面に付着することで、溶液成分(三級アルカノールアミンと極性溶媒と水)からCu膜の腐食を防止しているものと考えられる。また、このインデンカルボン酸は融点が200℃以上であるので、剥離液の溶液成分との分離は極めて容易である。従って、レジスト成分はポジ型フォトレジストからの成分であるのが好ましい。 イ ン Indenecarboxylic acid dissolves in an alkaline solution. As a result, the melting point of the resin is exposed to the alkaline solution, and the photoresist film is peeled off. Here, it is considered that this indenecarboxylic acid adheres to the surface of the Cu film, thereby preventing corrosion of the Cu film from solution components (tertiary alkanolamine, polar solvent and water). Moreover, since this indenecarboxylic acid has a melting point of 200 ° C. or higher, separation from the solution component of the stripping solution is extremely easy. Therefore, the resist component is preferably a component from a positive photoresist.
 本発明の剥離液では、Cu膜表面の腐食防止はレジスト成分が担っていると考えられる。したがって、使い始めの剥離液は、レジスト成分を含まなくても、Cu膜上の露光されたフォトレジスト膜から供給される。しかし、これは、繰り返し使用していると、剥離液中のレジスト成分の濃度が上がることも意味する。レジスト成分には、レジスト膜を構成する樹脂も含まれるため、レジスト成分の濃度の上昇はデブリ(レジスト膜の破片)の増加にもつながる。また、レジスト成分が多くCu膜表面に残留すると、Cu膜の上に形成される膜との接着性が低下する。 In the stripping solution of the present invention, it is considered that the resist component is responsible for preventing corrosion of the Cu film surface. Therefore, the stripping solution that is used for the first time is supplied from the exposed photoresist film on the Cu film even if it does not contain a resist component. However, this also means that the concentration of the resist component in the stripping solution increases with repeated use. Since the resist component includes a resin constituting the resist film, an increase in the concentration of the resist component also leads to an increase in debris (resist film fragments). Further, when a large amount of resist component remains on the surface of the Cu film, the adhesiveness with the film formed on the Cu film is lowered.
 つまり、剥離液を効果的に利用するためのレジスト成分の濃度には上限が存在する。本発明の剥離液では、繰り返し使用する剥離液中のレジスト成分は剥離液中3000ppm以下であるのが好ましい。レジスト成分が、この濃度以上になると、Cu膜上に形成する膜にピンホールなどの接着不良の箇所が発生するからである。言い換えると、本発明の剥離液は、レジスト成分が3000ppmまで濃度が上昇するまで、再生することなく繰り返し使用することができる。 That is, there is an upper limit to the concentration of the resist component for effectively using the stripping solution. In the stripping solution of the present invention, the resist component in the stripping solution to be repeatedly used is preferably 3000 ppm or less in the stripping solution. This is because, when the resist component exceeds this concentration, a defective portion such as a pinhole occurs in the film formed on the Cu film. In other words, the stripping solution of the present invention can be used repeatedly without being regenerated until the concentration of the resist component is increased to 3000 ppm.
 本発明に係るレジスト剥離液では、レジスト成分の含有量は微量であるため、含有量を示す際には単にδと表す。すなわち、δはレジスト剥離液全量に対しては1ppm以上、3000ppm以下を意味する。したがって、組成比の表記の際には三級アルカノールアミンと極性溶媒と水だけを加えて100質量%になってよい。 In the resist stripping solution according to the present invention, since the content of the resist component is very small, it is simply expressed as δ when showing the content. That is, δ means 1 ppm or more and 3000 ppm or less with respect to the total amount of the resist stripping solution. Therefore, in the description of the composition ratio, only tertiary alkanolamine, polar solvent and water may be added to reach 100% by mass.
 また、定常的にレジスト剥離液を使用している剥離槽若しくは剥離工程には、洗浄しきれないレジスト成分が残留している。したがって、追加補充する場合等は、三級アルカノールアミンと極性溶媒と水だけでレジスト剥離液を構成してもよい。 Also, resist components that cannot be cleaned remain in the stripping tank or stripping process in which the resist stripping solution is regularly used. Therefore, in the case of additional replenishment or the like, the resist stripping solution may be composed of only the tertiary alkanolamine, the polar solvent, and water.
 本発明のレジスト剥離液は、レジスト成分から腐食防止剤を得ているとも考えられるので、Cu膜表面の腐食は抑制される。しかし、腐食防止剤でも保護できないほど剥離液中の他の成分の腐食力が強いとCu膜表面は腐食を受ける。したがって、本発明の剥離液における三級アルカノールアミンと、極性溶媒と水の比率は、露光されたレジスト膜を溶解させられる程度のアルカリ性であって、レジスト成分の存在下で実質的にCu膜が残存する程度の腐食力であることが必要である。なお、ここで実質的にCu膜が残存するとは、剥離液によってCu膜上の露光されたレジスト膜を除去しても、製品として支障ない程度にCu膜が残ることをいう。 Since the resist stripping solution of the present invention is considered to have obtained a corrosion inhibitor from the resist component, corrosion of the Cu film surface is suppressed. However, if the corrosion force of other components in the stripping solution is so strong that it cannot be protected by a corrosion inhibitor, the surface of the Cu film is corroded. Therefore, the ratio of the tertiary alkanolamine, the polar solvent and the water in the stripping solution of the present invention is alkaline enough to dissolve the exposed resist film, and the Cu film is substantially in the presence of the resist component. It is necessary to have a corrosive force that remains. Here, the fact that the Cu film substantially remains means that the Cu film remains to the extent that it does not hinder the product even if the exposed resist film on the Cu film is removed by the stripping solution.
 そのために本発明のフォトレジスト剥離液での三級アルカノールアミンの配合量としては、水が40~80質量%の範囲ではレジスト剥離液全量に対して1~8質量%がよい。
また、より好ましくは水が40~60質量%の範囲で、レジスト剥離液全量に対して1~15質量%まで増やしても良い。三級アルカノールアミンが、レジスト剥離液全量に対して15質量%より多く含まれると、レジスト成分が含まれていたとしてもCu膜に腐食が生じてしまう。また1質量%未満では、フォトレジスト膜を剥離することができなくなる。
Therefore, the blending amount of the tertiary alkanolamine in the photoresist stripping solution of the present invention is preferably 1 to 8% by weight with respect to the total amount of the resist stripping solution in the range of 40 to 80% by weight of water.
More preferably, the amount of water may be increased to 1 to 15% by mass relative to the total amount of the resist stripping solution in the range of 40 to 60% by mass. If the tertiary alkanolamine is contained in an amount of more than 15% by mass with respect to the total amount of the resist stripping solution, the Cu film will be corroded even if the resist component is contained. If it is less than 1% by mass, the photoresist film cannot be peeled off.
 極性溶媒の比率は、水と三級アルカノールアミンの残部として決定することができる。
より具体的には、水が40~60質量%、三級アルカノールアミンが1~15質量%の場合は、極性溶媒の組成比は25~59質量%となる。また、水が60質量%より多く80質量%以下で、三級アルカノールアミンが1~8質量%の場合は、極性溶媒の組成比は、12~39質量%となる。
The ratio of polar solvent can be determined as the balance of water and tertiary alkanolamine.
More specifically, when water is 40 to 60% by mass and tertiary alkanolamine is 1 to 15% by mass, the composition ratio of the polar solvent is 25 to 59% by mass. When water is more than 60% by mass and 80% by mass or less and tertiary alkanolamine is 1 to 8% by mass, the composition ratio of the polar solvent is 12 to 39% by mass.
 また、フォトレジスト中の樹脂や感光剤と、剥離液の反応は温度が非常に関係する。そのため、剥離液を使用する際の温度管理は厳格に行われる。本発明の剥離液および被処理対象は35℃から45℃が好適な範囲であり、38℃から42℃であればより好適な使用範囲である。また、被処理対象物および剥離液ともに同一温度で処理されるのが望ましい。FPDの基材は非常に大きいため、剥離液が使用される空間は大きな空間となる。そのような空間を化学反応が安定して行え、なおかつ温度管理に大きなエネルギーを要しないで保持できるのが35℃から45℃の温度範囲であるからである。 Also, the temperature of the reaction between the resin or photosensitizer in the photoresist and the stripping solution is very important. Therefore, temperature control when using the stripping solution is strictly performed. The stripping solution and the object to be treated of the present invention are preferably in the range of 35 ° C to 45 ° C, and more preferably in the range of 38 ° C to 42 ° C. Further, it is desirable that the object to be treated and the stripping solution are treated at the same temperature. Since the base material of FPD is very large, the space where the stripping solution is used becomes a large space. This is because the temperature range from 35 ° C. to 45 ° C. allows such a space to stably carry out a chemical reaction and maintain large temperatures without requiring large energy.
 以下に本発明の実施例を比較例と共に示すが、本発明は以下の実施例に限定されるものではない。まず、サンプルの準備および評価方法を説明する。 Examples of the present invention are shown below together with comparative examples, but the present invention is not limited to the following examples. First, sample preparation and evaluation methods will be described.
 <評価基板の作製方法>本発明のフォトレジスト剥離液の効果を示すために、以下の手順で評価基板を作製した。まず、10mm×50mmの大きさのガラス基板(厚さ1mm)にITO(Indium Tin Oxide:透明電極)をスパッタ法により成膜した。厚みは0.2nm(2,000オングストローム)とした。 <Production Method of Evaluation Substrate> In order to show the effect of the photoresist stripping solution of the present invention, an evaluation substrate was produced by the following procedure. First, ITO (Indium Tin Oxide: transparent electrode) was formed on a glass substrate having a size of 10 mm × 50 mm (thickness 1 mm) by a sputtering method. The thickness was 0.2 nm (2,000 angstroms).
 次にITO膜の上にゲート線用のCu膜を蒸着法で約0.3μmの厚みに成膜した。これを評価基板Aとした。 Next, a Cu film for gate lines was formed on the ITO film to a thickness of about 0.3 μm by vapor deposition. This was designated as evaluation substrate A.
 次に評価基板Aに、ポジ型のレジストを厚さ1μmの厚みにスピナーで塗布した。レジスト膜を成膜後、100℃の環境下で2分のプリベークを行った。 Next, a positive resist was applied to the evaluation substrate A to a thickness of 1 μm with a spinner. After the resist film was formed, prebaking was performed for 2 minutes in an environment of 100 ° C.
 次にフォトマスクを使って露光した。フォトマスクは幅5μmの直線状のパターンを用いた。そして、テトラメチルアンモニウムハイドロオキサイド(TMAH)を使って現像を行った。これで、感光した部分のフォトレジスト膜が除去された。 Next, exposure was performed using a photomask. The photomask used was a linear pattern with a width of 5 μm. Then, development was performed using tetramethylammonium hydroxide (TMAH). Thus, the exposed photoresist film was removed.
 次に、40℃に昇温させた酸化剤系のエッチャントを用いて、1分間エッチングした。
この処理で、フォトレジスト膜が残った部分以外のCu膜は除去された。処理が終わった基板は純水の流水で1分間洗浄を行った。洗浄後の基板は8,000rpmのスピン乾燥装置で1分間乾燥させ保管した。なお、この際にフィルターを通した0.5m3/sの流量の窒素ガスを回転中心から吹き付けた。これを評価基板Bとする。
Next, etching was performed for 1 minute using an oxidant-based etchant heated to 40 ° C.
By this treatment, the Cu film other than the portion where the photoresist film remained was removed. The substrate after the treatment was washed with flowing pure water for 1 minute. The cleaned substrate was dried and stored for 1 minute in a spin drying apparatus at 8,000 rpm. At this time, nitrogen gas having a flow rate of 0.5 m <3> / s through a filter was blown from the rotation center. This is designated as an evaluation board B.
 評価基板Bは、パターンとして残ったフォトレジスト膜と、フォトレジスト膜が除去されて露出したCu膜がエッチングされた部分を有する。なお、パターンとして残ったフォトレジスト膜の部分には、後述する接触角を測定するために、5mm四方の面積の部分もある。 The evaluation substrate B has a photoresist film remaining as a pattern and a portion where the Cu film exposed by removing the photoresist film is etched. Note that the portion of the photoresist film remaining as a pattern also includes a portion having an area of 5 mm square in order to measure a contact angle described later.
 <水分が剥離性に与える影響>レジスト剥離液中の水分がレジスト膜の剥離性に与える影響について、水分の含有比率の異なるレジスト剥離液サンプルを作製し、評価基板Bを用いて調べた。レジスト剥離液サンプルは、三級アルカノールアミンにN-メチルジエタノールアミン(MDEA)を使用し、極性溶媒としてプロピレングリコール(PG)およびジエチレングリコールモノブチルエーテル(BDG)を用いた。 <Effect of moisture on peelability> The influence of moisture in the resist stripper on the strippability of the resist film was prepared by examining resist strippers having different moisture content ratios and using evaluation substrate B. As a resist stripping solution sample, N-methyldiethanolamine (MDEA) was used as a tertiary alkanolamine, and propylene glycol (PG) and diethylene glycol monobutyl ether (BDG) were used as polar solvents.
 剥離液サンプルは、MDEAを1、2、5、8、15質量%とし、それぞれに水分率を40、60、80質量%とし、残りをPGとBDGが3:5の割合で混合した極性溶媒とした。したがって、全部で15水準の剥離液サンプルを用意した。また、レジスト剥離液サンプルには、全体量に対して、100ppmのレジスト成分を溶解させた。 The stripping solution sample is a polar solvent in which MDEA is 1, 2, 5, 8, 15% by mass, the moisture content is 40, 60, 80% by mass, respectively, and the remainder is mixed in a ratio of 3: 5 PG and BDG It was. Therefore, a total of 15 levels of stripping solution samples were prepared. Moreover, 100 ppm of resist components were dissolved in the resist stripping solution sample with respect to the total amount.
 上記のようにして調製した各レジスト剥離液サンプル50mlをバイアル瓶にとり、ウォーターバスで40℃まで昇温させた。マグネチック・スターラーで500rpmの攪拌を与えながら、評価基板Bをバイアル瓶中のレジスト剥離液サンプルに1分間浸漬させた。その後、浸漬させた評価基板Bを純水で1分間洗浄し、窒素ガスのブローで乾燥させた。 50 ml of each resist stripping solution sample prepared as described above was placed in a vial and heated to 40 ° C. with a water bath. The evaluation substrate B was immersed in the resist stripping solution sample in the vial for 1 minute while stirring at 500 rpm with a magnetic stirrer. Thereafter, the soaked evaluation substrate B was washed with pure water for 1 minute and dried by blowing nitrogen gas.
 評価基板B上の現像されたレジスト膜の剥離状態は、目視で確認した。また、レジスト膜が剥離した後のCu膜上で、接触角を測定した。接触角は、純水を試薬として用い、試薬でできた液滴の半径と高さから接触角を算出するθ/2法で測定した。 The peeled state of the developed resist film on the evaluation substrate B was visually confirmed. Further, the contact angle was measured on the Cu film after the resist film was peeled off. The contact angle was measured by the θ / 2 method in which pure water was used as a reagent and the contact angle was calculated from the radius and height of the droplet made of the reagent.
 図1に水分率と接触角の関係を示す。横軸はレジスト剥離液の水分率(質量%)である。また縦軸は、接触角(deg)である。図中、白丸はN-メチルジエタノールアミン(MDEA)が1質量%、黒丸は2質量%、黒三角は5質量%、白三角は8質量%、白四角は15質量%である。極性溶媒の量は、MDEAと水の残り部分である。なお、レジスト剥離液全量に対して100ppm含ませたレジスト成分は、全量(100%)の表記に含ませていない。 Fig. 1 shows the relationship between moisture content and contact angle. The horizontal axis represents the moisture content (% by mass) of the resist stripping solution. The vertical axis represents the contact angle (deg). In the figure, white circles are 1% by mass of N-methyldiethanolamine (MDEA), black circles are 2% by mass, black triangles are 5% by mass, white triangles are 8% by mass, and white squares are 15% by mass. The amount of polar solvent is the rest of MDEA and water. In addition, the resist component contained at 100 ppm with respect to the total amount of the resist stripping solution is not included in the description of the total amount (100%).
 レジスト膜が剥離した後のCu膜の接触角は、Cu膜上に保護膜として残ったレジスト成分による撥水性を観測していると考えられる。つまり、レジスト剥離液でレジスト膜を除去した後は、接触角は小さくなる。例えば、レジスト膜を剥離する前に、レジスト膜表面で接触角を測定すると、50~70°近い接触角となる。 The contact angle of the Cu film after the resist film is peeled is considered to observe water repellency due to the resist component remaining as a protective film on the Cu film. That is, after removing the resist film with the resist stripping solution, the contact angle becomes small. For example, when the contact angle is measured on the resist film surface before peeling off the resist film, the contact angle is close to 50 to 70 °.
 一方、図1で示したレジスト剥離液サンプルでは、ほとんどのサンプルで、接触角が30°以下になり、レジスト膜を剥離させた後のCu膜上に疎水性成分(レジスト成分)は、残留していないと考えられる。 On the other hand, in most of the resist stripping liquid samples shown in FIG. 1, the contact angle is 30 ° or less, and the hydrophobic component (resist component) remains on the Cu film after the resist film is stripped. It is thought that it is not.
 より詳細にみると、N-メチルジエタノールアミン(MDEA)が1質量%のレジスト剥離液サンプルは、水分率が多くなっても、接触角は30°以下と低い値であった。ただし、接触角が減少することはなかった。一方、その他のレジスト剥離液サンプルは、水分率が多くなるに従い、接触角が減少傾向を見せた。 More specifically, the resist stripping solution sample containing 1% by mass of N-methyldiethanolamine (MDEA) had a low contact angle of 30 ° or less even when the moisture content increased. However, the contact angle did not decrease. On the other hand, the other resist stripping solution samples showed a decrease in contact angle as the moisture content increased.
 MDEAは、レジスト剥離液をアルカリ性にするもので、感光したレジスト膜は、アルカリ性溶液に溶解するとされており、MDEAはレジスト剥離液をアルカリ性にする。したがって、MDEAが1質量%未満になると、レジスト剥離液自体がレジスト膜を溶解できなくなると考えられる。 MDEA makes the resist stripping solution alkaline, and the exposed resist film is dissolved in an alkaline solution, and MDEA makes the resist stripping solution alkaline. Therefore, it is considered that when the MDEA is less than 1% by mass, the resist stripping solution itself cannot dissolve the resist film.
 白四角のN-メチルジエタノールアミン(MDEA)が15質量%を参照すると、水分率が60質量%では、接触角が21°と低かった。しかし、水分率が80質量%になると、接触角は62°になった。これは、MDEA(15質量%)と水分(80質量%)の合計が95質量%となり、その結果、極性溶媒が5質量%と、少なくなったためと考えられる。すなわち、極性溶媒が少なすぎても感光したレジスト膜は剥離できないと判断できる。 Referring to 15% by mass of white square N-methyldiethanolamine (MDEA), the contact angle was as low as 21 ° at a moisture content of 60% by mass. However, when the moisture content was 80% by mass, the contact angle was 62 °. This is presumably because the total of MDEA (15% by mass) and moisture (80% by mass) was 95% by mass, and as a result, the polar solvent was reduced to 5% by mass. That is, it can be determined that the exposed resist film cannot be removed even if the amount of the polar solvent is too small.
 白三角のMDEAが8質量%の場合を参照すると、水分率が80質量%(MDEAと水の合計が88質量%)でも、25°以下の接触角であることから、極性溶媒はおよそ10質量%以上あれば、よいと考えられる。 Referring to the case where the white triangle MDEA is 8% by mass, even if the moisture content is 80% by mass (the total amount of MDEA and water is 88% by mass), the contact angle is 25 ° or less. % Or more is considered good.
 なお、図1では、三級アルカノールアミンであるMDEAが1~8質量%の範囲で水分率は40~80質量%まで使用することができることが読み取れる。しかし、水分率が80質量%より多くなると、目視でレジスト膜自体の剥離残りが発生し、レジスト剥離液としては、好適とは言えなかった。 In FIG. 1, it can be seen that MDEA, which is a tertiary alkanolamine, can be used in a range of 1 to 8% by mass and a moisture content of 40 to 80% by mass. However, when the moisture content is higher than 80% by mass, the resist film itself is peeled off visually, which is not suitable as a resist stripping solution.
 以上のことから、水分率がレジスト剥離液全量に対して40~80質量%で、三級アミンが1~8質量%、残りが極性溶媒の組成は、レジスト膜を剥離した後のCu膜表面を清浄に保持することができると考えられる。また、水が40~60質量%であれば、三級アミンは15質量%まで増やすこともできる。 From the above, the composition of the moisture content is 40 to 80% by mass with respect to the total amount of the resist stripping solution, the tertiary amine is 1 to 8% by mass, and the remainder is the polar solvent. Can be kept clean. If the water content is 40 to 60% by mass, the tertiary amine can be increased to 15% by mass.
 <Cu防食性>Cu膜の防食性を「Cu防食性」とよび、以下のような手順で評価を実施した。評価基板Aについて、浸漬させる前のCu膜の浸漬前膜厚(t1nm)を測定した。所定の組成比で調製したレジスト剥離液50mlをバイアル瓶に分注した。そしてレジスト剥離液をバイアル瓶に入ったままウォーターバスにて40℃に昇温させた。40℃になったレジスト剥離液中に用意した評価基板Aを入れマグネチック・スターラーで500rpmの回転で攪拌しながら30分浸漬させた。 <Cu anticorrosion> The anticorrosion of the Cu film is called "Cu anticorrosion" and was evaluated according to the following procedure. For the evaluation substrate A, the film thickness before dipping (t1 nm) of the Cu film before dipping was measured. 50 ml of a resist stripping solution prepared at a predetermined composition ratio was dispensed into a vial. The resist stripping solution was heated to 40 ° C. with a water bath while still in the vial. The prepared evaluation substrate A was placed in the resist stripping solution at 40 ° C. and immersed for 30 minutes while stirring at 500 rpm with a magnetic stirrer.
 浸漬後剥離液から評価基板Aを引き上げて、純水の流水で1分間洗浄した。洗浄後は0.8m3/sの流量のドライエア(窒素ガス)にて2分間乾燥した。そして、浸漬後の評価基板A上のCuの処理後膜厚(t2)を測定した。エッチングレートは、(t1-t2)/30(nm/min)として、求めた。 After the immersion, the evaluation substrate A was pulled up from the peeling solution and washed with flowing pure water for 1 minute. After washing, the film was dried for 2 minutes with dry air (nitrogen gas) at a flow rate of 0.8 m 3 / s. And the film thickness (t2) after process of Cu on the evaluation board | substrate A after immersion was measured. The etching rate was determined as (t1-t2) / 30 (nm / min).
 図2には、水分率がレジスト剥離液のCuに対するエッチングレートに及ぼす影響について調べたグラフを示す。横軸は水分率(質量%)であり、縦軸はCu膜のエッチングレート(nm/min)である。レジスト剥離液サンプルの作り方は、<水分が剥離性に与える影響>の場合と同じである。なお、三級アルカノールアミンであるN-メチルジエタノールアミン(MDEA)と、極性溶媒であるプロピレングリコール(PG)とジエチレングリコールモノブチルエーテル(BDG)は5:24:40の比率で混合したものを用いた。 FIG. 2 shows a graph in which the influence of the moisture content on the etching rate of the resist stripping solution with respect to Cu is examined. The horizontal axis is the moisture content (% by mass), and the vertical axis is the etching rate (nm / min) of the Cu film. The method of preparing the resist stripping solution sample is the same as in the case of <Effect of moisture on stripping property>. A tertiary alkanolamine, N-methyldiethanolamine (MDEA), a polar solvent, propylene glycol (PG), and diethylene glycol monobutyl ether (BDG) were mixed at a ratio of 5:24:40.
 なお、この組成は、水の割合が50質量%の時でも、MDEAがレジスト剥離液全体の3.6質量%含有される。また、PGとBDGの比率は、常に3:5となっている。 In this composition, even when the ratio of water is 50% by mass, MDEA is contained in 3.6% by mass of the entire resist stripping solution. Moreover, the ratio of PG and BDG is always 3: 5.
 レジスト剥離液は三級アルカノールアミンの存在によってアルカリ性を示す。Cuは、このアルカリ水によって、溶解し、エッチングされる(ダメージを受ける)。 The resist stripping solution is alkaline due to the presence of tertiary alkanolamine. Cu is dissolved and etched (damaged) by the alkaline water.
 図2を参照して、水分率が増加するとエッチングレートは上昇した。しかし、水分率が40質量%以上になると、エッチングレートは飽和した。したがって、水分率が増加しても、Cu膜へのダメージはあまり変化しないと言える。すなわち、図1で示した水分率が40~80質量%含有するレジスト剥離液は、実用上特に問題なく使用することができる。 Referring to FIG. 2, the etching rate increased as the moisture content increased. However, when the moisture content was 40% by mass or more, the etching rate was saturated. Therefore, it can be said that the damage to the Cu film does not change much even if the moisture content increases. That is, the resist stripping solution having a moisture content of 40 to 80% by mass shown in FIG. 1 can be used practically without any problem.
 以上のように、水分率を40~80質量%含む本発明に係るレジスト剥離液は、レジスト膜を剥離でき、レジスト膜剥離後のCu表面に防護膜を残留させず、また、剥離したレジスト膜からの再溶解も生じないため、Cu表面上に有機物層を形成することなくレジスト膜を剥離させることができる。 As described above, the resist stripping solution according to the present invention having a moisture content of 40 to 80% by mass can strip the resist film, does not leave the protective film on the Cu surface after stripping the resist film, and the stripped resist film Therefore, the resist film can be peeled off without forming an organic layer on the Cu surface.
 本発明の剥離液は、ウェットエッチングによって、Cu膜を導線とし製造するもの、特に大面積でなおかつ微細な加工が必要となる、液晶ディスプレイ、プラズマディスプレイ、有機ELなどFPD一般に好適に利用することができる。 The stripping solution of the present invention can be suitably used in general for FPDs such as liquid crystal displays, plasma displays, organic ELs, etc., which are manufactured by wet etching using a Cu film as a conducting wire, and particularly require a large area and fine processing. it can.

Claims (6)

  1.  40~60質量%の水と、
     1~15質量%の三級アルカノールアミンと、
     25~59質量%の極性溶媒を有することを特徴とするフォトレジスト用剥離液。
    40-60 mass% water,
    1 to 15% by weight of a tertiary alkanolamine,
    A photoresist stripping solution comprising 25 to 59% by mass of a polar solvent.
  2.  60質量%より多く80質量%以下の水と、
     1~8質量%の三級アルカノールアミンと、
     12~39質量%の極性溶媒を有することを特徴とするフォトレジスト用剥離液。
    More than 60% by weight and less than 80% by weight water,
    1 to 8% by weight of a tertiary alkanolamine,
    A photoresist stripping solution comprising 12 to 39% by mass of a polar solvent.
  3.  さらに1~3000ppmのレジスト成分を含むことを特徴とする請求項1または2の何れかの請求項に記載されたフォトレジスト用剥離液。 3. The photoresist stripping solution according to claim 1, further comprising 1 to 3000 ppm of a resist component.
  4.  前記極性溶媒は、プロピレングリコールとジエチレングリコールモノブチルエーテルからなり、前記極性溶媒に対する前記ジエチレングリコールモノブチルエーテルの比率が8分の5以上であることを特徴とする請求項1乃至3の何れか1の請求項に記載されたフォトレジスト用剥離液。 The said polar solvent consists of propylene glycol and diethylene glycol monobutyl ether, The ratio of the said diethylene glycol monobutyl ether with respect to the said polar solvent is 5/8 or more, The claim of any one of Claim 1 thru | or 3 characterized by the above-mentioned. The photoresist stripping solution described.
  5.  前記三級アルカノールアミンは、N-メチルジエタノールアミンであることを特徴とする請求項1乃至4の何れか1の請求項に記載されたフォトレジスト用剥離液。 The photoresist stripping solution according to any one of claims 1 to 4, wherein the tertiary alkanolamine is N-methyldiethanolamine.
  6.  レジスト成分は、露光されたポジ型フォトレジストからの成分であることを特徴とする請求項3乃至5の何れか1の請求項に記載されたフォトレジスト用剥離液。 The resist stripping solution according to any one of claims 3 to 5, wherein the resist component is a component from an exposed positive-type photoresist.
PCT/JP2014/003405 2013-06-27 2014-06-25 Remover liquid for photoresists WO2014208088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-134708 2013-06-27
JP2013134708A JP2015011096A (en) 2013-06-27 2013-06-27 Stripping liquid for photoresist

Publications (1)

Publication Number Publication Date
WO2014208088A1 true WO2014208088A1 (en) 2014-12-31

Family

ID=52141447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003405 WO2014208088A1 (en) 2013-06-27 2014-06-25 Remover liquid for photoresists

Country Status (3)

Country Link
JP (1) JP2015011096A (en)
TW (1) TW201518879A (en)
WO (1) WO2014208088A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350276A (en) * 2000-06-05 2001-12-21 Nagase Kasei Kogyo Kk Photoresist remover composition and method for using the same
JP2002278091A (en) * 2001-03-19 2002-09-27 Nagase Kasei Kogyo Kk Photoresist remover composition and method for removing photoresist using the same
JP2003255565A (en) * 2001-12-27 2003-09-10 Tokyo Ohka Kogyo Co Ltd Photoresist stripping solution
JP2006310603A (en) * 2005-04-28 2006-11-09 Nissan Chem Ind Ltd Cleaning liquid component for semiconductor including boron compound and cleaning method
WO2010073887A1 (en) * 2008-12-25 2010-07-01 ナガセケムテックス株式会社 Photoresist remover composition, method for removing photoresist of multilayer metal circuit board, and method for producing multilayer metal circuit board
WO2010119753A1 (en) * 2009-04-17 2010-10-21 ナガセケムテックス株式会社 Photoresist remover composition and method for removing photoresist
JP2012018982A (en) * 2010-07-06 2012-01-26 Tosoh Corp Resist stripping agent and stripping method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104387B2 (en) * 2002-07-08 2008-06-18 花王株式会社 Release agent composition
KR100950779B1 (en) * 2009-08-25 2010-04-02 엘티씨 (주) Composition of stripper for all tft-lcd process photoresist
JP5809444B2 (en) * 2011-05-20 2015-11-10 パナソニック株式会社 Stripper for photoresist
JP5712051B2 (en) * 2011-05-20 2015-05-07 パナソニック株式会社 Stripping liquid recycling system and operation method, and stripping liquid recycling method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350276A (en) * 2000-06-05 2001-12-21 Nagase Kasei Kogyo Kk Photoresist remover composition and method for using the same
JP2002278091A (en) * 2001-03-19 2002-09-27 Nagase Kasei Kogyo Kk Photoresist remover composition and method for removing photoresist using the same
JP2003255565A (en) * 2001-12-27 2003-09-10 Tokyo Ohka Kogyo Co Ltd Photoresist stripping solution
JP2006310603A (en) * 2005-04-28 2006-11-09 Nissan Chem Ind Ltd Cleaning liquid component for semiconductor including boron compound and cleaning method
WO2010073887A1 (en) * 2008-12-25 2010-07-01 ナガセケムテックス株式会社 Photoresist remover composition, method for removing photoresist of multilayer metal circuit board, and method for producing multilayer metal circuit board
WO2010119753A1 (en) * 2009-04-17 2010-10-21 ナガセケムテックス株式会社 Photoresist remover composition and method for removing photoresist
JP2012018982A (en) * 2010-07-06 2012-01-26 Tosoh Corp Resist stripping agent and stripping method using the same

Also Published As

Publication number Publication date
TW201518879A (en) 2015-05-16
JP2015011096A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP6277511B2 (en) Resist stripper
WO2012160721A1 (en) Photoresist stripping solution, stripping solution recycling system and operating method, and method for recycling stripping solution
US6916772B2 (en) Sulfoxide pyrolid(in)one alkanolamine cleaner composition
CN1904016B (en) Composition for removal of residue comprising cationic salts and methods using same
TWI494713B (en) Photoresist stripping solution
US20040147421A1 (en) Process for the use of bis-choline and tris-choline in the cleaning of quartz-coated polysilicon and other materials
TWI617901B (en) Photoresistive peeling agent composition and photoresistive peeling method
WO2003091376A1 (en) Oxalic acid as a cleaning product for aluminium, copper and dielectric surfaces
TWI546632B (en) A photoresist stripping agent composition, a sheet metal wiring substrate, and a method for manufacturing the same
EP1470207A1 (en) Aqueous stripping and cleaning composition
JP6112446B2 (en) Photoresist stripping composition
JP2000039727A (en) Stripper composition for photoresist
JP5809444B2 (en) Stripper for photoresist
JP2018511079A (en) Compositions and methods for promoting charge complex copper protection in low PKA driven polymer strips
JP5712051B2 (en) Stripping liquid recycling system and operation method, and stripping liquid recycling method
JP2007200944A (en) Substrate cleaning liquid
TWI795433B (en) Stripping composition for removing dry film resist and stripping method using the same
TWI629352B (en) Receptor stripping solution
JP2015011356A (en) Stripping liquid for photoresist
WO2014208088A1 (en) Remover liquid for photoresists
JP5717519B2 (en) Stripper for photoresist
JP2016031384A (en) Stripping solution for photoresist
JP2016109870A (en) Resist peeling liquid and method for producing the same
JP2006343604A (en) Cleaning liquid for photolithography and method of processing substrate using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14816800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14816800

Country of ref document: EP

Kind code of ref document: A1