WO2014207267A1 - Sistema modular de carga inductiva para vehículos eléctricos - Google Patents
Sistema modular de carga inductiva para vehículos eléctricos Download PDFInfo
- Publication number
- WO2014207267A1 WO2014207267A1 PCT/ES2013/070441 ES2013070441W WO2014207267A1 WO 2014207267 A1 WO2014207267 A1 WO 2014207267A1 ES 2013070441 W ES2013070441 W ES 2013070441W WO 2014207267 A1 WO2014207267 A1 WO 2014207267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modules
- resonant
- electric vehicles
- charging system
- inductive charging
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/20—Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/12—Bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/40—Working vehicles
- B60L2200/44—Industrial trucks or floor conveyors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/60—Electric or hybrid propulsion means for production processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- Modular inductive charging system for electric vehicles This specification refers, as its title indicates, a modular inductive charging system for electric vehicles that uses a charging station equipped with a plurality of independently controllable resonant modules, each with its corresponding primary coupling coil, which acts on electric vehicles equipped with one or more resonant modules, which can be connected in parallel or in series, each with its corresponding secondary coupling coil, one or several converter modules, and the appropriate battery pack
- the invention is encompassed within inductive charging devices for electric vehicles, of the type comprising a primary device arranged as a normally fixed charging station and one or several secondary devices located in electric vehicles, both of which are inductively coupled to each other for the transfer of electrical energy that causes the battery charge of the electric vehicle while standing.
- inductive charging technology without electrical contact, is widely known and used for recharging batteries included in electric vehicles, as we can find reflected, for example in US2010123451 "Inductive power transfer system and method” patents, US2008238364 “System for inductive power transfer”, KR101038350 “Non-contact type inductive power transfer device for electric vehicle”, WO2013012585 “Wireless power transfer electric vehicle supply equipment installation and validation toor, US2012010341” Ultra slim power supply device and power acquisition device for electric vehicle “, US20120186927” Power supply device, power acquisition device and safety system for electromagnetic induction powered electric vehicle “and EP2584665" Wireless high power transfer under regulatory constraints ", but all these embodiments have a common problem: power transfer must be calculated and optimized for certain Inada powers and battery voltages, in order to minimize innate energy losses to an inductive transfer.
- Some control systems are also known to minimize losses caused by misalignment between coupling coils, such as patents WO2009144354 "High-frequency inductive coupling power transfer system and associated method 'and WO 2009144355" Automatic method for controlling a high -frequency inductive coupling power transfer system "presenting a system that maintains the transferred power by compensating for imbalances of up to 99% of the secondary surface.
- patents WO2009144354 High-frequency inductive coupling power transfer system and associated method 'and WO 2009144355
- Automatic method for controlling a high -frequency inductive coupling power transfer system presents a system that maintains the transferred power by compensating for imbalances of up to 99% of the secondary surface.
- TW200832883 Power supply and charger for series -parallel loosely coupled inductive power transfer system
- TW200810315 Power circuit component parameters design method for compensating the loosely coupled inductive power transfer system.
- the modular inductive charging system for electric vehicles object of the present invention uses a charging station, formed as an AC / DC converter that feeds a plurality of independently controllable resonant modules, which can be of different powers or of the same and of different frequencies or of the same, each with its corresponding primary coupling coil.
- the electric vehicles to be charged in turn use one or several resonant modules, each with its corresponding secondary coupling coil, one or several AC / DC converter modules (6), and the appropriate battery pack.
- resonant modules in the electric vehicle they can be connected in parallel or in series. They will be connected in parallel when it is desired to add the current transferred from the resonant modules of the charging station, thus achieving perfectly adapt the power requirements required by the electric vehicle. They will be connected in series when it is desired to add the voltage delivered by each one, being able to charge battery sets of higher nominal voltage and being able to reach the power demanded by the vehicle.
- This charging system also involves an automatic connection and control configuration of both the AC / DC converter and the resonant modules of the charging station, as well as the entire charging process, based on information provided by the own electric vehicle through a wireless communication protocol with the charging station.
- This information includes serial or parallel configuration data, identification for charging, battery charge status and other control signals.
- This modular inductive charging system is susceptible to use for multiple types of electric vehicles, from bicycles, motorcycles or electric cars for personal use, passing vans, trucks or other industrial vehicles, to trains or trams.
- This modular inductive charging system for electric vehicles provides multiple advantages, among which we can highlight that it has a multifunctional charging station, automatically adaptable to electric vehicles with batteries of different powers or working voltages.
- Another important advantage is that it avoids the need for charging stations specifically adapted for each type of vehicle, facilitating service to vehicles of different manufacturers and different applications.
- Another notable advantage is that, when performing the primary control, the working voltage can be adjusted over a wide range.
- control technologies can be implemented to compensate for possible misalignments between the primary and secondary coils, to minimize losses and optimize energy transfer.
- figure -1- shows a simplified generic block diagram.
- FIG -2- shows a simplified block diagram of a charging station with an electric vehicle with two resonant modules in parallel.
- FIG -3- shows a simplified block diagram of a charging station with an electric vehicle with two resonant modules in series.
- Figure -4- shows a simplified block diagram of a charging station with an electric vehicle with a single resonant module.
- Figure -5- shows an example of a topology combining different maximum powers and working frequencies.
- Figure -6- shows an example of a topology combining different maximum powers and working frequencies.
- Figure -7- shows a graph of an example of maximum power obtainable as a function of voltage, in an example showing battery charging of 350V, in parallel, and 700V, in series.
- Figure -8- shows an example of alignment of the primary and secondary coupling coils in case of multiple resonant modules in the vehicle.
- the modular inductive charging system for electric vehicles object of the present invention basically comprises, as can be seen in the attached drawing, a primary device (1) arranged as a charging station, normally fixed, and one or more secondary devices (2), located in electric vehicles, both being inductively coupled to each other for the transfer of electrical energy while the vehicle is stationary, and may also be applicable to moving vehicles.
- the primary device (1) includes
- Each secondary device (2) in turn comprises
- resonant modules (5) in the secondary device (2) located in the electric vehicle, they can be connected in parallel or in series. They will be connected in parallel when it is desired to add the current transferred from the resonant modules (4) of the primary device (1), thus achieving perfectly adapt the power requirements required by the electric vehicle. They will be connected in series when it is desired to add the voltage delivered by each one, being able to charge battery assemblies (7) of higher nominal voltage, thus being able to perfectly adapt the power needs required by the electric vehicle.
- each of the resonant modules (4) were 25kW maximum power, and 350V load voltage, we could find multiple possible load combinations, such as:
- the resonant modules (4) of the primary device (1) can all have the same maximum power, or combine resonant modules (4a, 4b) of different maximum powers P1 (4a) and P2 (4b), corresponding to different resonant modules (6a, 6b) in the vehicle.
- the resonant modules (4) of the primary device (1) can all have the same working frequency, or combine different working frequencies f1, f2, etc.
- This charging system is capable of being carried out with any circuit topology of the known ones, even allowing the combination of several of them.
- This modular inductive charging system for electric vehicles involves a characteristic operating procedure comprising an alignment phase, a configuration phase, a charging phase and an end of charging phase.
- the alignment phase comprises the location of the electric vehicle next to the charging station, being positioned such that the best possible alignment between the coil or secondary coils (13) of the secondary device (2), located in the electric vehicle, occurs. and the coil or primary coils (12) of the secondary device (2), located in the charging station.
- the configuration phase includes the sending by the electric vehicle, through its wireless communications module (8), of its battery configuration data, such as voltage or serial / parallel connection, identification for charging, charge status of the battery and other control signals, the reception of this information by means of the wireless communications module (9) of the primary device (1), which transmits it to the control module (10) of the resonant modules (4) and the control module (11) of the AC / DC converter (3), and the activation by control module (10) of the module or resonant modules (4) necessary depending on the particular configuration of the electric vehicle, automatically configuring to transfer the power specified by the vehicle's battery.
- the wireless communications module (9) of the primary device (1) which transmits it to the control module (10) of the resonant modules (4) and the control module (11) of the AC / DC converter (3), and the activation by control module (10) of the module or resonant modules (4) necessary depending on the particular configuration of the electric vehicle, automatically configuring to transfer the power specified by the vehicle's battery.
- the charging phase comprises the inductive transfer of power between the resonant module or modules (4) activated at the charging station and the resonant module (5) of the electric vehicle, being regulated in real time by the control module (10 ) of the resonant modules (4) and the control module (1 1) of the AC / DC converter (3) based on the charging information received from the battery pack (7) of the electric vehicle through the modules wireless communications (8.9).
- the end-of-charge phase comprises the disconnection of the resonant module or modules (4) previously activated when the control module (10) detects the full charge by means of the information supplied from the electric vehicle through the wireless communication modules ( 8.9).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Sistema modular de carga inductiva para vehículos eléctricos que utiliza una estación de carga dotada de una pluralidad de módulos resonantes controlables independientemente, cada uno con su correspondiente bobina primaria de acoplamiento, que actúa sobre vehículos eléctricos dotados a su vez con uno o varios módulos resonantes, que pueden ir conectados en paralelo o en serie, cada uno con su correspondiente bobina secundaria de acoplamiento, uno o varios módulos convertidores, y el oportuno conjunto de baterías. La invención que se presenta aporta la principal ventaja de permitir disponer de una estación de carga multifuncional, adaptable automáticamente a vehículos eléctricos con baterías de distintas potencias o tensiones de trabajo.
Description
DESCRIPCION
Sistema modular de carga inductiva para vehículos eléctricos La presente memoria descriptiva se refiere, como su título indica, un sistema modular de carga inductiva para vehículos eléctricos que utiliza una estación de carga dotada de una pluralidad de módulos resonantes controlables independientemente, cada uno con su correspondiente bobina primaria de acoplamiento, que actúa sobre vehículos eléctricos dotados a su vez con uno o varios módulos resonantes, que pueden ir conectados en paralelo o en serie, cada uno con su correspondiente bobina secundaria de acoplamiento, uno o varios módulos convertidores, y el oportuno conjunto de baterías.
Campo de la invención
La invención se engloba dentro de los dispositivos de carga inductiva para vehículos eléctricos, del tipo de los que comprenden un dispositivo primario dispuesto como estación de carga normalmente fija y uno o varios dispositivos secundarios ubicados en los vehículos eléctricos, estando ambos acoplados inductivamente entre sí para la transferencia de energía eléctrica que origine la carga de la batería del vehículo eléctrico mientras está parado.
Antecedentes de la invención
En la actualidad la tecnología de carga inductiva, sin contacto eléctrico, es ampliamente conocido y utilizada para la recarga de baterías incluidas en vehículos eléctricos, tal y como podemos encontrar reflejado, por ejemplo en las patentes US2010123451 "Inductive power transfer system and method", US2008238364 "System for inductive power transfer", KR101038350 "Non-contact type inductive power transfer device for electric vehicle", WO2013012585 "Wireless power transfer electric vehicle supply equipment installation and validation toor, US2012010341 "Ultra slim power supply device and power adquisition device for electric vehicle", US20120186927 "Power supply device, power adquisition device and safety system for electromagnetic induction powered electric vehicle" y EP2584665 "Wireless high power transfer under regulatory constraints", pero todas estas realizaciones tienen una problemática común: la transferencia de potencia debe de estar calculada y optimizada para unas determinadas potencias y tensiones de batería, con el fin de minimizar las pérdidas de energía innatas a una transferencia inductiva. Ello implica que, por cada tipo de vehículo, de potencia motora, de capacidad de baterías y de tensión de baterías, sea necesario un sistema de carga diferenciado, lo cual es un gran problema, máxime al no existir ninguna estandarización en los vehículos eléctricos, lo cual da pié a una gran
dispersión de características entre los distintos fabricantes. Así es común ver sistemas de carga desde pocos kW hasta cerca de 200kW, así como tensiones en las baterías desde 200V hasta más de 800V, lo cual hace impensable técnicamente una estación de carga común para todos ellos.
Se conocen asimismo algunos sistemas de control para minimizar las pérdidas originadas por los desalineamientos entre las bobinas de acoplamiento, como por ejemplo las patentes WO2009144354 "High-frequency inductive coupling power transfer system and associated method' y WO 2009144355 "Automatic method for controlling a high-frequency inductive coupling power transfer system" que presentan un sistema que mantiene la potencia transferida compensando desajustes de hasta el 99% de la superficie del secundario. En la misma línea trabajan realizaciones como las descritas en las patentes TW200832883 "Power supply and charger for series-parallel loosely coupled inductive power transfer system" y TW200810315 "Power circuit component parameters design method for compensating the loosely coupled inductive power transfer system". Algunos dispositivos, como por ejemplo el descrito en la patente WO2013046104 "Coil configurations for Inductive Power Transfer" utiliza múltiples circuitos resonantes para mejorar la eficiencia de la transferencia de potencia a diferentes distancias entre primario y secundario, pero ninguna de estas realizaciones consigue compensar diferencias de potencia y/o tensiones como existen entre los distintos fabricantes de vehículos eléctricos, siguiendo necesitando de estaciones de carga diferentes para cada uno.
También existen algunas realizaciones, como las descritas en la patente GB2474867 "Transferring electric energy to a vehicle, using a system which comprises consecutive segments for energy transfer" que plantean la utilización de múltiples elementos resonantes en el primario, distribuidos longitudinalmente, para transferir energía a un secundario ubicado en un vehículo en movimiento, para permitir la carga de este vehículo mientras está en movimiento, por ejemplo en el caso de un tranvía, autobús o tren o similar, que no permanecen en una parada el tiempo suficiente para la carga por lo que hay que complementarlo con una carga mientras está en movimiento cerca de la parada. Estas técnicas también se citan en la publicación "Co/7 design and shielding methods for a magnetic resonant wireless power transfer system" (Proceedings of the IEEE, Vol 101 ,N°6, Junio 2013). Al igual que en el caso anterior no consigue mediante esta técnica compensar diferencias de potencia y/o tensiones como existen entre los distintos fabricantes de vehículos eléctricos, siguiendo necesitando de estaciones de carga diferentes para cada uno.
De la misma forma, se conocen algunas realizaciones, como la descrita en la patente WO2013012480 "Regulation control and energy management scheme for wireless power transfer" que utilizan comunicaciones inalámbricas para la transferencia de parámetros entre primario y secundario, pero no en un contexto modular de múltiples convertidores que permita compensar diferencias de potencia y/o tensiones como existen entre los distintos fabricantes de vehículos eléctricos.
Descripción de la invención
Para solventar la problemática existente en la actualidad en la recarga de vehículos eléctricos mientras el vehículo está parado con diferentes necesidades de potencia, tensión de batería, etc., se ha ideado el sistema modular de carga inductiva para vehículos eléctricos objeto de la presente invención, el cual utiliza una estación de carga, conformada como un convertidor AC/DC que alimenta a una pluralidad de módulos resonantes controlables independientemente, que pueden ser de distintas potencias o de la misma y de distintas frecuencias o de la misma, cada uno con su correspondiente bobina primaria de acoplamiento.
Los vehículos eléctricos a cargar utilizan a su vez uno o varios módulos resonantes, cada uno con su correspondiente bobina secundaria de acoplamiento, uno o varios módulos convertidores AC/DC (6), y el oportuno conjunto de baterías.
En caso de varios módulos resonantes en el vehículo eléctrico pueden ir conectados en paralelo o en serie. Irán conectados en paralelo cuando se desee sumar la corriente transferida desde los módulos resonantes de la estación de carga, consiguiendo de esta forma adaptar perfectamente las necesidades de potencia requeridas por el vehículo eléctrico. Irán conectados en serie cuando se desee sumar la tensión entregada por cada uno, consiguiendo cargar conjuntos de baterías de mayor tensión nominal y pudiendo alcanzar la potencia demandada por el vehículo.
El funcionamiento de este sistema de carga comporta asimismo una configuración de conexión y control automáticos tanto del convertidor AC/DC como de los módulos resonantes de la estación de carga, como de todo el proceso de carga, en función de una información proporcionada por el propio vehículo eléctrico mediante un protocolo de comunicación inalámbrico con la estación de carga. Esta información incluye datos de configuración serie o paralelo, identificación para el cobro, estado de la carga de la batería y otras señales de control.
Este sistema modular de carga inductiva es susceptible de uso para múltiples tipos de vehículos eléctricos, desde bicicletas, motocicletas o coches eléctricos de uso personal, pasando por furgonetas, camiones u otros vehículos industriales, hasta trenes o tranvías.
Ventajas de la invención
Este sistema modular de carga inductiva para vehículos eléctricos que se presenta aporta múltiples ventajas entre las que podemos destacar que permite disponer de una estación de carga multifuncional, adaptable automáticamente a vehículos eléctricos con baterías de distintas potencias o tensiones de trabajo.
Otra ventaja importante es que evita la necesidad de estaciones de cargas específicamente adaptadas para cada tipo de vehículo, facilitando el servicio a vehículos de diferentes fabricantes y de diferentes aplicaciones.
Es importante destacar la ventaja añadida que supone la posibilidad de combinar entre sí módulos resonantes de diversas potencias y frecuencias, para una mejor adecuación a diversos tipos de vehículos.
Otra destacable ventaja es que, al realizar el control en el primario, se puede ajustar la tensión de trabajo en un amplio margen.
También debemos resaltar que este sistema de carga es susceptible de realización con cualquier topología resonante de las conocidas, permitiendo incluso la combinación de varias de ellas.
Destacar asimismo que pueden implementarse tecnologías de control que permitan compensar las posibles faltas de alineamiento entre las bobinas del primario y del secundario, para minimizar las pérdidas y optimizar la transferencia de energía.
No debemos dejar de resaltar la ventaja que implica la perfecta optimización de parámetros de la transferencia de potencia en la carga, minimizando las pérdidas eléctricas y disminuyendo por tanto el coste económico de la recarga.
Descripción de las figuras
Para comprender mejor el objeto de la presente invención, en el plano anexo se ha representado una realización práctica preferencial de un sistema modular de carga inductiva para vehículos eléctricos. En dicho plano la figura -1- muestra un diagrama de bloques simplificado genérico.
La figura -2- muestra un diagrama de bloques simplificado de una estación de carga con un vehículo eléctrico con dos módulos resonantes en paralelo.
La figura -3- muestra un diagrama de bloques simplificado de una estación de carga con un vehículo eléctrico con dos módulos resonantes en serie.
La figura -4- muestra un diagrama de bloques simplificado de una estación de carga con un vehículo eléctrico con un único módulo resonante.
La figura -5- muestra un ejemplo de topología combinando distintas potencias máximas y frecuencias de trabajo.
La figura -6- muestra un ejemplo de topología combinando distintas potencias máximas y frecuencias de trabajo.
La figura -7- muestra una gráfica de un ejemplo de potencia máxima obtenible en función de la tensión, en un ejemplo mostrando carga de baterías de 350V, en paralelo, y de 700V, en serie.
La figura -8- muestra un ejemplo de alineación de las bobinas primarias y secundarias de acoplamiento en caso de múltiples módulos resonantes en el vehículo.
Realización preferente de la invención
El sistema modular de carga inductiva para vehículos eléctricos objeto de la presente invención comprende básicamente, como puede apreciarse en el plano anexo, un dispositivo primario (1) dispuesto como estación de carga, normalmente fija, y uno o varios dispositivos secundarios (2), ubicados en los vehículos eléctricos, estando ambos acoplados inductivamente entre sí para la transferencia de energía eléctrica mientras el vehículo está parado, pudiendo ser aplicable también a vehículos en movimiento.
El dispositivo primario (1) incluye
- un convertidor AC/DC (3) que alimenta en continua a
- una pluralidad de módulos resonantes (4) controlables independientemente, que incorporan cada uno su correspondiente bobina primaria (12) de acoplamiento,
- un módulo de comunicaciones inalámbricas (9),
- un módulo de control (10) de los módulos resonantes (4) y
- un módulo de control (1 1) del convertidor AC/DC (3).
Cada dispositivo secundario (2) comprende a su vez
- uno o varios módulos resonantes (5), que incorporan cada uno su correspondiente bobina secundaria (13) de acoplamiento,
- uno o varios módulos convertidores AC/DC (6),
- uno conjunto de baterías (7) y
- un módulo de comunicaciones inalámbricas (8).
En caso de existir varios módulos resonantes (5) en el dispositivo secundario (2), ubicados en el vehículo eléctrico, pueden ir conectados en paralelo o en serie. Irán conectados en paralelo cuando se desee sumar la corriente transferida desde los módulos resonantes (4) del dispositivo primario (1), consiguiendo de esta forma adaptar perfectamente las necesidades de potencia requeridas por el vehículo eléctrico. Irán conectados en serie cuando se desee sumar la tensión entregada por cada uno, consiguiendo cargar conjuntos de baterías (7) de mayor tensión nominal, consiguiendo de esta forma adaptar perfectamente las necesidades de potencia requeridas por el vehículo eléctrico .
Así, por ejemplo, si en una realización de la invención cada uno de los módulos resonantes (4) fuera de 25kW de potencia máxima, y 350V de tensión de carga, podríamos encontrarnos múltiples combinaciones de carga posibles, como por ejemplo:
- vehículo eléctrico con dos módulos resonantes (5) en paralelo (Fig. 2), que posibilitaría cargar un conjunto de baterías (7) de unos 350V, con una potencia máxima de 50kW, situación típica en el caso de algunas furgonetas o camiones.
- vehículo eléctrico con dos módulos resonantes (5) en serie (Fig. 3), que posibilitaría cargar un conjunto de baterías (7) de unos 700V, con una potencia máxima de 50kW, situación típica en el caso de algunas furgonetas o camiones.
- vehículo eléctrico con un único módulo resonante (5) (Fig. 4), que posibilitaría cargar un conjunto de baterías (7) de unos 350V, con una potencia máxima de 25kW, situación típica en el caso de un coche particular.
Obviamente con esta misma realización también sería posible cargar un vehículo con cuatro módulos resonantes (5) en paralelo, obteniendo en este caso 350V y 100kW, o bien con tres módulos resonantes (5) en serie, obteniendo en este caso 1050V y 100kW, u otra combinación que se necesitara dependiendo del conjunto de baterías (7) instalado en cada vehículo, permitiendo utilizar una misma estación de carga con vehículos de diferentes tipos y necesidades eléctricas.
Asimismo está previsto que, para poder adecuarse a la variedad de vehículos eléctricos existentes, los módulos resonantes (4) del dispositivo primario (1) puedan tener todos la misma potencia máxima, o bien combinar módulos resonantes (4a, 4b) de diferentes potencias máximas P1 (4a) y P2 (4b), correspondientes a distintos módulos resonantes (6a, 6b) en el vehículo.
De la misma forma está previsto que los módulos resonantes (4) del dispositivo primario (1) puedan tener todos la misma frecuencia de trabajo, o bien combinar diferentes frecuencias de trabajo f1 , f2, etc ..
Este sistema de carga es susceptible de realización con cualquier topología de circuito de las conocidas, permitiendo incluso la combinación de varias de ellas.
Este sistema modular de carga inductiva para vehículos eléctricos comporta un procedimiento de operación característico que comprende una fase de alineación, una fase de configuración, una fase de carga y una fase de fin de carga.
La fase de alineación comprende la ubicación del vehículo eléctrico junto a la estación de carga, posicionándose de tal forma que se produzca la mejor alineación posible entre la bobina o bobinas secundarias (13) del dispositivo secundario (2), ubicadas en el vehículo eléctrico, y la bobina o bobinas primarias (12) del dispositivo secundario (2), ubicadas en la estación de carga.
La fase de configuración, comprende el envío por parte del vehículo eléctrico, mediante su módulo de comunicaciones inalámbricas (8), de sus datos de configuración de la batería, como tensión o conexión serie / paralelo, identificación para el cobro, estado de la carga de la batería y otras señales de control, la recepción de esta información mediante el módulo de comunicaciones inalámbricas (9) del dispositivo primario (1), el cual la transmite al módulo de control (10) de los módulos resonantes (4) y al módulo de control (11) del convertidor AC/DC (3), y la activación por parte módulo de control (10) del módulo o módulos resonantes (4) necesarios en función de la configuración particular del vehículo eléctrico, configurándose automáticamente para transferir la potencia especificada por la batería del vehículo.
La fase de de carga comprende la transferencia inductiva de potencia entre el módulo o módulos resonantes (4) activados en la estación de carga y el módulo o módulos resonantes (5) del vehículo eléctrico, regulándose en tiempo real mediante el módulo de control (10) de los módulos resonantes (4) y el módulo de control (1 1) del convertidor AC/DC (3) en función de la información de carga recibida desde el conjunto de baterías (7) de vehículo eléctrico a través de los módulos de comunicaciones inalámbricas (8,9).
La fase de fin de carga comprende la desconexión del módulo o módulos resonantes (4) anteriormente activados al detectar el módulo de control (10) la carga completa por medio de la información suministrada desde el vehículo eléctrico a través de los módulos de comunicaciones inalámbricas (8,9).
Claims
REIVINDICACIONES
1 - Sistema modular de carga inductiva para vehículos eléctricos, del tipo de los que comprenden un dispositivo primario (1) dispuesto como estación de carga normalmente fija y uno o varios dispositivos secundarios (2), ubicados en los vehículos eléctricos, estando ambos acoplados inductivamente entre sí para la transferencia de energía eléctrica mientras el vehículo está parado o en circulación, caracterizado por que el dispositivo primario (1) comprende
- un convertidor AC/DC (3) que alimenta en continua a
- una pluralidad de módulos resonantes (4) controlables independientemente, que incorporan cada uno su correspondiente bobina primaria (12) de acoplamiento,
- un módulo de comunicaciones inalámbricas (9),
- un módulo de control (10) de los módulos resonantes (4) y
- un módulo de control (11) del convertidor AC/DC (3),
y cada dispositivo secundario (2) comprende a su vez
- uno o varios módulos resonantes (5), que incorporan cada uno su correspondiente bobina secundaria (13) de acoplamiento,
- uno o varios módulos convertidores AC/DC (6),
- uno conjunto de baterías (7) y
- un módulo de comunicaciones inalámbricas (8).
2 - Sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 1 , caracterizado por que los módulos resonantes (5) del dispositivo secundario (2) están conectados en paralelo.
3 - Sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 1 , caracterizado por que los módulos resonantes (5) del dispositivo secundario (2) están conectados en serie.
4 - Sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 1 , caracterizado por que los módulos resonantes (4) del dispositivo primario (1) tienen todos la misma potencia máxima.
5 - Sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 1 , caracterizado por que los módulos resonantes (4) del dispositivo primario (1) combinan diferentes potencias máximas. 6 - Sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 1 , caracterizado por que los módulos resonantes (4) del dispositivo primario (1) tienen todos la misma frecuencia de trabajo.
7 - Sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 1 , caracterizado por que los módulos resonantes (4) del dispositivo primario (1) combinan diferentes frecuencias de trabajo.
8 - Procedimiento de operación de un sistema modular de carga inductiva para vehículos eléctricos como el descrito en las anteriores reivindicaciones, caracterizado por que comprende una fase de alineación, una fase de configuración, una fase de carga y una fase de fin de carga.
9 - Procedimiento de operación de un sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 8, caracterizado por que la fase de alineación comprende la ubicación del vehículo eléctrico junto a la estación de carga, posicionándose de tal forma que se produzca la mejor alineación posible entre la bobina o bobinas secundarias (13) del dispositivo secundario (2), ubicadas en el vehículo eléctrico, y la bobina o bobinas primarias (12) del dispositivo secundario (2), ubicadas en la estación de carga. 10 - Procedimiento de operación de un sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 8, caracterizado por que la fase de configuración, comprende el envío por parte del vehículo eléctrico, mediante su módulo de comunicaciones inalámbricas (8), de sus datos de configuración de la batería, identificación para el cobro, estado de la carga de la batería y otras señales de control, la recepción de esta información mediante el módulo de comunicaciones inalámbricas (9) del dispositivo primario (1), el cual la transmite al módulo de control (10) de los módulos resonantes (4) y al módulo de control (1 1) del convertidor AC/DC (3), y la activación por parte módulo de control (10) del módulo o módulos resonantes (4) necesarios en función de la configuración particular del vehículo eléctrico, configurándose automáticamente para transferir la potencia especificada por la batería del vehículo.
1 1 - Procedimiento de operación de un sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 8, caracterizado por que la fase de de carga comprende la transferencia inductiva de potencia entre el módulo o módulos resonantes (4) activados en la estación de carga y el módulo o módulos resonantes (5) del vehículo eléctrico, regulándose en tiempo real mediante el módulo de control (10) de los módulos resonantes (4) y el módulo de control (1 1) del convertidor AC/DC (3) en función de la información de carga recibida desde el conjunto de baterías (7) de vehículo eléctrico a través de los módulos de comunicaciones inalámbricas (8,9), compensándose en caso necesario la desalineación entre las bobinas primarias (12) y secundarias (13) de acoplamiento.
12 - Procedimiento de operación de un sistema modular de carga inductiva para vehículos eléctricos, según la reivindicación 8, caracterizado por que la fase de fin de carga comprende la desconexión del módulo o módulos resonantes (4) anteriormente activados al detectar el módulo de control (10) la carga completa por medio de la información suministrada desde el vehículo eléctrico a través de los módulos de comunicaciones inalámbricas (8,9).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2013/070441 WO2014207267A1 (es) | 2013-06-28 | 2013-06-28 | Sistema modular de carga inductiva para vehículos eléctricos |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2013/070441 WO2014207267A1 (es) | 2013-06-28 | 2013-06-28 | Sistema modular de carga inductiva para vehículos eléctricos |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014207267A1 true WO2014207267A1 (es) | 2014-12-31 |
Family
ID=52141131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2013/070441 WO2014207267A1 (es) | 2013-06-28 | 2013-06-28 | Sistema modular de carga inductiva para vehículos eléctricos |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014207267A1 (es) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018054378A1 (zh) * | 2016-09-26 | 2018-03-29 | 华为技术有限公司 | 一种充电桩 |
WO2018065451A1 (de) * | 2016-10-07 | 2018-04-12 | Bayerische Motoren Werke Aktiengesellschaft | Spuleneinheit zum induktiven laden eines fahrzeuges |
EP3333009A1 (en) * | 2016-12-07 | 2018-06-13 | Evtec AG | System for re-charging an accumulator of energy of an electric vehicle (ev) |
WO2019053329A1 (en) | 2017-09-13 | 2019-03-21 | Movekotech Oy | METHOD AND APPARATUS FOR TRANSMITTING ELECTRICAL POWER |
WO2020095333A1 (en) * | 2018-11-05 | 2020-05-14 | Cucco Antonio | Low voltage adaptive battery charger for the simultaneous charging of electric devices for the transport of people and /or goods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2947114A1 (fr) * | 2009-06-17 | 2010-12-24 | Renault Sas | Charge d'une batterie de vehicule automobile |
EP2383858A1 (en) * | 2008-12-24 | 2011-11-02 | Kabushiki Kaisha Toyota Jidoshokki | Resonance type noncontact charging device |
US20120206098A1 (en) * | 2009-10-19 | 2012-08-16 | Kim Hyunmin | Wireless charging system for an electric vehicle, and charging method for same |
US20130033228A1 (en) * | 2011-08-05 | 2013-02-07 | Evatran Llc | Method and apparatus for inductively transferring ac power between a charging unit and a vehicle |
-
2013
- 2013-06-28 WO PCT/ES2013/070441 patent/WO2014207267A1/es active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2383858A1 (en) * | 2008-12-24 | 2011-11-02 | Kabushiki Kaisha Toyota Jidoshokki | Resonance type noncontact charging device |
FR2947114A1 (fr) * | 2009-06-17 | 2010-12-24 | Renault Sas | Charge d'une batterie de vehicule automobile |
US20120206098A1 (en) * | 2009-10-19 | 2012-08-16 | Kim Hyunmin | Wireless charging system for an electric vehicle, and charging method for same |
US20130033228A1 (en) * | 2011-08-05 | 2013-02-07 | Evatran Llc | Method and apparatus for inductively transferring ac power between a charging unit and a vehicle |
Non-Patent Citations (1)
Title |
---|
"Recarga sin cables of los coches electricos''.", IN THE BLOG OF CELEDONIO AND COGOLLUDO, IN BLOGSKN77., 4 December 2012 (2012-12-04), Retrieved from the Internet <URL:http://blogs.km77.com/celedonioycogolludo/page/7> [retrieved on 20140218] * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018054378A1 (zh) * | 2016-09-26 | 2018-03-29 | 华为技术有限公司 | 一种充电桩 |
US10926655B2 (en) | 2016-09-26 | 2021-02-23 | Huawei Technologies Co., Ltd. | Charging pile |
WO2018065451A1 (de) * | 2016-10-07 | 2018-04-12 | Bayerische Motoren Werke Aktiengesellschaft | Spuleneinheit zum induktiven laden eines fahrzeuges |
US11908616B2 (en) | 2016-10-07 | 2024-02-20 | Bayerische Motoren Werke Aktiengesellschaft | Coil unit for inductively charging a vehicle |
EP3333009A1 (en) * | 2016-12-07 | 2018-06-13 | Evtec AG | System for re-charging an accumulator of energy of an electric vehicle (ev) |
WO2019053329A1 (en) | 2017-09-13 | 2019-03-21 | Movekotech Oy | METHOD AND APPARATUS FOR TRANSMITTING ELECTRICAL POWER |
WO2020095333A1 (en) * | 2018-11-05 | 2020-05-14 | Cucco Antonio | Low voltage adaptive battery charger for the simultaneous charging of electric devices for the transport of people and /or goods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101764496B1 (ko) | 무선 전력 전송 시스템용 능동 정류기와 이를 이용하는 차량 어셈블리 및 그 작동 방법 | |
US9573485B2 (en) | Electric machine and power supply system having battery pack | |
Huh et al. | High performance inductive power transfer system with narrow rail width for on-line electric vehicles | |
WO2014207267A1 (es) | Sistema modular de carga inductiva para vehículos eléctricos | |
Qiu et al. | Overview of wireless charging technologies for electric vehicles | |
US11364809B2 (en) | Method of charging from electric vehicle to electric vehicle | |
US9481259B2 (en) | Bidirectional vehicle charging apparatus and operation method thereof | |
US20160221461A1 (en) | Mobile machine, wireless power transmission system, and wireless power transmission method | |
WO2012133446A1 (ja) | ワイヤレス給受電装置およびワイヤレス電力伝送システム | |
US20130009462A1 (en) | Power-feed device | |
CN102104280A (zh) | 使用共享电力电子器件进行快速充电的设备和方法 | |
CN104369677A (zh) | 电车电力馈送系统、电力馈送装置和电力存储装置 | |
CN108695953B (zh) | 用于给车辆供电的功率转换器装置和包括该装置的设备 | |
EP2230123A2 (en) | Railway system including power feeding equipment installed on railway track between stations | |
EP3163736B1 (en) | Method for controlling dc-dc converter and ground assembly and wireless power transfer method using the same | |
WO2015029297A1 (ja) | 非接触受電装置 | |
US20190039464A1 (en) | Primary-side charging device, secondary-side charging device and method of charging a battery for a vehicle having an electric drive | |
US20140239879A1 (en) | Battery charging system | |
KR20150067619A (ko) | 무선충전 림 방식의 자기부상 하이브리드 차량 장치 및 방법 | |
ES2325875A1 (es) | Sistema de transferencia de potencia con acoplamiento inductivo en alta frecuencia y procedimiento asociado. | |
ES2899856T3 (es) | Sistema de carga de elementos de almacenamiento de energía eléctrica de un vehículo | |
ES2556682B1 (es) | Sistema modular de carga inductiva para vehículos eléctricos | |
CN204012878U (zh) | 一种兼容传能和通讯的电动车无线充电系统 | |
CN114228520B (zh) | 一种用于无线充电的组合供电系统 | |
Lukic et al. | Use of inductive power transfer for electric vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13888460 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13888460 Country of ref document: EP Kind code of ref document: A1 |