Nothing Special   »   [go: up one dir, main page]

WO2014206115A1 - 上行多用户数据传输方法及上行多用户输入输出系统 - Google Patents

上行多用户数据传输方法及上行多用户输入输出系统 Download PDF

Info

Publication number
WO2014206115A1
WO2014206115A1 PCT/CN2014/073229 CN2014073229W WO2014206115A1 WO 2014206115 A1 WO2014206115 A1 WO 2014206115A1 CN 2014073229 W CN2014073229 W CN 2014073229W WO 2014206115 A1 WO2014206115 A1 WO 2014206115A1
Authority
WO
WIPO (PCT)
Prior art keywords
stas
sta
information
request
channel
Prior art date
Application number
PCT/CN2014/073229
Other languages
English (en)
French (fr)
Inventor
杨讯
罗毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014206115A1 publication Critical patent/WO2014206115A1/zh
Priority to US14/757,735 priority Critical patent/US11038737B2/en
Priority to US16/378,160 priority patent/US11063807B2/en
Priority to US16/380,819 priority patent/US20190238388A1/en
Priority to US16/380,804 priority patent/US11212156B2/en
Priority to US18/075,385 priority patent/US11968066B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0218Channel estimation of impulse response with detection of nulls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system

Definitions

  • Uplink multi-user data transmission method and uplink multi-user input and output system The application is submitted to the Chinese Patent Office on June 25, 2013, and the application number is 201310255933. 0, the invention name is "uplink multi-user data transmission method and uplink multi-user input. The priority of the Chinese Patent Application, the entire disclosure of which is incorporated herein by reference.
  • the present invention relates to the field of communications technologies, and in particular, to an uplink multi-user data input method and an uplink multi-user multiple input multiple output (UL MU MIMO) system.
  • UL MU MIMO uplink multi-user multiple input multiple output
  • MIMO refers to the use of multiple antennas to construct multi-dimensional spatial resources. These multi-dimensional spatial resources form multiple parallel paths, and wireless stations can use these parallel channels to transmit multiple signals and improve data transmission rate. Further, since the transmitted wireless station and the received wireless station are different in the number of antennas, a station equipped with more antennas can support simultaneous transmission of data with a plurality of stations equipped with fewer antennas (Date). Scenes. In general, we will refer to stations with more antennas to transmit data to multiple stations with fewer antennas. This is called downlink multi-user MIMO (DL MU-MIM0), and multiple stations with fewer antennas are simultaneously equipped. The station transmission data of multiple antenna numbers is called uplink multi-user MIMO (UL MU-MIM0).
  • DL MU-MIM0 downlink multi-user MIMO
  • UL MU-MIM0 uplink multi-user MIMO
  • each station (Station, STA) has only one antenna; K STAs simultaneously send their respective data to the access point (AP).
  • the AP can simultaneously demodulate K-channel independent data information by using the spatial resources obtained by the number of antennas greater than or equal to K.
  • Channel H provides K for this communication. Dimensions.
  • Embodiments of the present invention provide an uplink multi-user data transmission method and an uplink multi-user input and output system, which can implement uplink multi-user data transmission.
  • an uplink multi-user data transmission method including:
  • the access point AP sends the indication information to the at least two STAs, where the indication information is used to indicate that the at least two STAs perform uplink multi-user data transmission;
  • the AP demodulates the uplink data sent by the at least two STAs by using the received beams corresponding to the channels of the STAs to the APs.
  • the method further includes:
  • the AP estimates, according to information used by each STA for channel estimation, a channel of each of the STAs to the AP.
  • the AP estimates, according to information sent by each STA for performing channel estimation, each of the STAs to The channel of the AP includes:
  • a first data frame preamble that is sent by the at least two STAs through a channel that is respectively sent to the AP, where the first data frame preamble includes a training sequence for channel estimation, where each of the STAs Training sequences are orthogonal to each other;
  • the AP estimates a channel of each STA to the AP according to a training sequence in a preamble of the first data frame.
  • the AP is used to send according to each STA
  • the information of the channel estimation is estimated to be a channel of each of the STAs to the AP, where: the AP receives a second data frame preamble that the at least two STAs sequentially send through respective channels to the AP, the second The data frame preamble includes the identifier information of the STA.
  • the AP estimates the channel of each STA to the AP according to the identifier information of the STA in the preamble of the second data frame.
  • the method further includes: the AP estimating, according to information used by each STA for channel estimation, a channel of each STA to the AP.
  • the AP according to information used by each of the STAs for performing channel estimation, to estimate a channel of each of the STAs to the AP, includes:
  • the AP sends a first request to the at least two STAs one by one, the first request is used to indicate that the at least two STAs feed back a zero data packet NDP after receiving the request;
  • the AP estimates a channel of each of the STAs to the AP according to the NDP that the at least two STAs feed back one by one to the channel of the AP.
  • the AP estimates, according to information sent by each STA for performing channel estimation, each of the STAs to The channel of the AP, including:
  • the AP sends a second request, where the second request is used to indicate that the at least two STAs feed back the NDP after receiving the second request;
  • the NDPs Receiving, by the AP, the NDPs that are simultaneously fed back by the at least two STAs to the channel of the AP, where the NDP includes a training sequence for channel estimation, where the training sequences of the STAs are orthogonal to each other. ;
  • the AP performs calculation according to the training sequence in the NDP, and estimates a channel of each STA to the AP according to the calculation result.
  • the method further includes:
  • the AP demodulates the uplink data sent by the at least two STAs, and then returns the acknowledgement information to the at least two STAs.
  • the AP is at least two Before the STA sends the indication information, the method further includes:
  • the AP determines, in the plurality of STAs, STAs that need to perform uplink data transmission as the at least two STAs.
  • the AP determines, in multiple STAs, that uplink data transmission is required.
  • the STA as the at least two STAs, includes:
  • the AP broadcasts the request indication information to the multiple STAs, where the request indication information is used to indicate that the STA that needs to perform uplink data transmission in the multiple STAs sends a request for uploading data to the AP;
  • the request for uploading data that is sent by the STA that needs to perform uplink data transmission, where the request for uploading data includes an identifier sequence for uniquely identifying the STA that needs to perform uplink data transmission, where the requirement is needed.
  • the identification sequences of the STAs performing uplink data transmission are orthogonal to each other;
  • the determining, by the AP, that the STA that needs to perform the uplink data transmission is the at least two STAs includes:
  • the AP receives the respective transmission buffer information that is sent by the multiple STAs in sequence; the AP selects, in the multiple STAs, the STA that sends the buffering information to reach the threshold condition as the STA that needs to perform uplink data transmission.
  • the method further includes: the AP Receiving uplink data sent by a single STA; The AP determines, according to the number of space-time streams occupied by the uplink data sent by the single STA, whether there is still an idle space-time stream; if yes, the AP performs the step of sending the indication information to the at least two STAs.
  • the second aspect provides an uplink multi-user data transmission method, including:
  • the station STA receives the indication information sent by the access point AP, where the indication information is used to indicate that at least two STAs including the STA perform uplink multi-user data transmission;
  • the STA Transmitting, by the STA, the uplink data to the channel of the AP, so that the AP sends the received beam corresponding to the channel of each of the STAs to the AP to the at least two STAs respectively.
  • the uplink data is demodulated.
  • the method further includes:
  • the STA sends information for performing channel estimation to the AP, so that the AP estimates the channel of the STA to the AP according to the information used for channel estimation.
  • the sending, by the STA, information about performing channel estimation to the AP includes: Transmitting a first data frame preamble to a channel of the AP, where the first data frame preamble includes a training sequence for channel estimation, where the at least two STAs simultaneously transmit respective first data frame preambles, and each The training sequences of the STAs are orthogonal to each other.
  • the STA sends the AP to the AP for performing a channel.
  • Estimated information including:
  • the method further includes: the STA sending, to the AP, information for performing channel estimation, so that the AP is used according to the method for performing channel estimation.
  • the information estimates information of the STA to the AP.
  • the sending, by the STA, information about performing channel estimation to the AP includes:
  • the STA Receiving, by the STA, a first request that is sent by the AP to the at least two STAs, the first request is used to indicate that the at least two STAs feed back a zero data packet NDP after receiving the request;
  • the STA feeds back the NDP through its channel to the AP.
  • the sending, by the STA, the information used for performing channel estimation to the AP includes:
  • the STA feeds back the NDP through its channel to the AP, where the NDP includes a training sequence for channel estimation, wherein the training sequences of the STAs are orthogonal to each other.
  • the method further includes:
  • the STA receives the acknowledgement information that the AP replies after demodulating the uplink data sent by the STA.
  • the method further includes:
  • the STA receives the request indication information of the AP broadcast, where the request indication information is used to indicate that the STA that needs to perform uplink data transmission in the multiple STAs sends a request for uploading data to the AP;
  • the AP When the STA needs to perform uplink data transmission, the AP sends a request for uploading data to the AP, where the request for uploading data includes an identifier sequence for uniquely identifying the STA, and the uplink data transmission is required.
  • the identification sequences of the STAs are orthogonal to each other.
  • the method further includes:
  • the STA sends the sending buffer information to the AP, so that the AP selects, in the plurality of STAs, the STA that sends the buffering information to reach the threshold condition as the STA that needs to perform uplink data transmission.
  • the method further includes:
  • the STA changes the format of the transmitted data to support the transmission of the uplink multi-user input and output.
  • the format is then executed by the STA to send uplink data through its channel to the AP.
  • the method further includes: the STA monitoring other Uplink data sent by the STA to the AP;
  • the STA compares the number of space-time flows occupied by the uplink data sent by the other STAs with the number of space-time streams supported by the AP;
  • an access device including:
  • a sending indication unit configured to send the indication information to the at least two STAs, where the indication information is used to indicate that the at least two STAs perform uplink multi-user data transmission;
  • a data receiving unit configured to receive uplink data that is sent by the at least two STAs through respective channels of the AP
  • a data demodulation unit configured to demodulate the uplink data sent by the at least two STAs by using the pre-estimated receiving beams corresponding to the channels of the STAs to the APs.
  • the method further includes: a first channel estimation unit, configured to send, according to each STA, after the sending indication unit sends the indication information to the at least two STAs Information for performing channel estimation estimates a channel of each of the STAs to the AP.
  • a first channel estimation unit configured to send, according to each STA, after the sending indication unit sends the indication information to the at least two STAs Information for performing channel estimation estimates a channel of each of the STAs to the AP.
  • the first channel estimation unit includes:
  • a first receiving subunit configured to receive a first data frame preamble that is sent by the at least two STAs by using a channel that is respectively sent to the AP, where the first data frame preamble is included in the a training sequence of the track estimation, wherein the training sequences of the STAs are orthogonal to each other; the first determining subunit is configured to estimate, according to the training sequence in the preamble of the first data frame, each of the STAs to the AP Channel.
  • the first channel estimation unit includes:
  • a second receiving sub-unit configured to receive, by the at least two STAs, a second data frame preamble that is sequentially sent by using a channel to the AP, where the second data frame preamble includes the identifier information of the STA;
  • a second determining subunit configured to estimate, according to the identifier information of the STA in the preamble of the second data frame, a channel of each of the STAs to the AP.
  • a second channel estimation unit configured to estimate a channel of each STA to the AP according to information used by each STA to perform channel estimation, before the sending indication unit sends the indication information to the at least two STAs.
  • the second channel estimation unit includes:
  • a first sending subunit configured to send a first request to the at least two STAs one by one, the first request is used to indicate that the at least two STAs feed back a zero data message NDP after receiving the request;
  • a third determining subunit configured to estimate a channel of each of the STAs to the AP according to the NDP that the at least two STAs feed back one by one through a channel of the AP.
  • the second channel estimation unit includes:
  • a second sending sub-unit configured to send a second request, where the second request is used to indicate that the at least two STAs simultaneously feed back the NDP after receiving the second request;
  • a feedback receiving sub-unit configured to receive, by the at least two STAs, NDPs that are simultaneously fed back to the channel of the AP, where the NDP includes a training sequence for channel estimation, where the training sequence of each of the STAs is Orthogonal to each other;
  • a fourth determining subunit configured to estimate, according to the training sequence in the NDP, a channel of each of the STAs to the AP.
  • the method further includes:
  • a replying unit configured to demodulate the uplink data sent by the at least two STAs, and then reply the acknowledgement information to the at least two STAs.
  • the method further includes:
  • the station determining unit is configured to determine, as the at least two STAs, STAs that need to perform uplink data transmission among the plurality of STAs before the sending indication unit sends the indication information to the at least two STAs.
  • the station determining unit includes:
  • a broadcast subunit configured to broadcast request indication information to the plurality of STAs, where the request indication information is used to indicate that a STA that needs to perform uplink data transmission in the multiple STAs sends a request for uploading data to the AP;
  • a request receiving subunit configured to receive the request for uploading data sent by the STA that needs to perform uplink data transmission, where the request for uploading data includes an identifier sequence for uniquely identifying the STA that needs to perform uplink data transmission.
  • the identifier sequences of the STAs that need to perform uplink data transmission are orthogonal to each other;
  • the first station determining subunit is configured to determine, according to the identifier sequence, the STA that needs to perform uplink data transmission.
  • the station determining unit includes: an information receiving subunit, configured to receive respective sending buffer information sequentially sent by the multiple STAs;
  • a second station determining subunit configured to select, in the plurality of STAs, the STA that sends the buffering information to reach a threshold condition as the STA that needs to perform uplink data transmission.
  • the method further includes: a single data receiving unit, configured to receive uplink data sent by a single STA before the sending indication unit sends the indication information to the at least two STAs;
  • a determining unit configured to determine, according to the number of space-time streams occupied by the uplink data sent by the single STA, whether there is still an idle space-time stream; if yes, the AP performs the sending of the indication information to the at least two STAs again.
  • a platform including:
  • the indication receiving unit is configured to receive the indication information sent by the access point AP, where the indication information is used to indicate that at least two STAs including the STA perform uplink multi-user data transmission;
  • a data sending unit configured to send uplink data by using the channel to the AP, so that the AP uses the pre-estimated receiving beams corresponding to the channels of the STAs to the AP to the at least two
  • the uplink data sent by the STA is demodulated.
  • the method further includes: a first information sending unit, configured to send, after the indication receiving unit receives the indication information sent by the AP, Estimating information, such that the AP estimates the channel of the STA to the AP according to the information used for channel estimation.
  • the first information sending unit is specifically configured to send the first data by using the channel to the AP a frame preamble, where the first data frame preamble includes a training sequence for channel estimation, where the at least two STAs simultaneously transmit respective first data frame preambles, and the training sequences of the STAs are mutually positive cross.
  • the first information sending unit is specifically configured to pass The channel to the AP sends a second data frame preamble, where the at least two STAs transmit respective second data frame preambles in order, and the second data frame preamble of each STA includes its identification information.
  • the first possible implementation manner, and/or the second possible implementation manner, and/or the third possible implementation manner, in the fourth possible implementation manner include:
  • a second information sending unit configured to send, to the AP, information for performing channel estimation, before the indication receiving unit receives the indication information sent by the AP, so that the AP is configured according to the information used for performing channel estimation. Estimating the information of the STA to the AP.
  • the second information sending unit includes:
  • a first request receiving subunit configured to receive a first request that the AP sends to the at least two STAs one by one, where the first request is used to indicate that the at least two STAs feedback zero after receiving the request Data message NDP;
  • a first feedback subunit configured to feed back NDP through its channel to the AP.
  • the second information sending unit includes:
  • a second request receiving subunit configured to receive a second request sent by the AP, where the second request is used to indicate that the at least two STAs simultaneously feed back NDP after receiving the request; the second feedback subunit, The NDP is used to feed back the NDP through the channel to the AP, where the NDP includes a training sequence for channel estimation, where the training sequences of the STAs are orthogonal to each other.
  • the method further includes:
  • the acknowledgment receiving unit is configured to receive the acknowledgment information that the AP replies after demodulating the uplink data sent by the STA.
  • the method further includes:
  • a broadcast receiving unit configured to: before the indication receiving unit receives the indication information sent by the AP, receive the request indication information that is broadcast by the AP, where the request indication information is used to indicate that the plurality of STAs need to perform uplink data transmission.
  • the STA sends a request for uploading data to the AP;
  • a request sending unit configured to send a request for uploading data to the AP when the uplink data transmission is required, where the request for uploading data includes an identifier sequence for uniquely identifying the STA, where the uplink is required to be performed.
  • the sequence of identification of STAs for data transmission is positive between each other
  • a buffer sending unit configured to: before the indication receiving unit receives the indication information sent by the AP, send the sending buffer information to the AP, so that the AP selects, in the plurality of STAs, the STA that sends the buffer information to reach a threshold condition STAs that need to perform uplink data transmission.
  • the method further includes: a format converting unit, configured to: after the indication receiving unit receives the indication information sent by the AP, change the format of the sending data to support uplink multi-user input The output transmission format is then transmitted by the data transmitting unit through its channel to the AP.
  • the method further includes:
  • the monitoring unit is configured to monitor uplink data sent by other STAs to the AP before the indication receiving unit receives the indication information sent by the AP;
  • a comparison unit configured to compare the number of space-time flows occupied by the uplink data sent by the other STAs with the number of space-time streams supported by the AP;
  • a carrying transmission unit configured to send uplink data to the AP when the AP has a free space flow.
  • a multi-user data transmission system comprising the access device as described in the third aspect, and the plurality of stations as described in the fourth aspect.
  • the AP receives the uplink data of multiple STAs through different channels of the STAs to the AP, and demodulates the data by using the receiving beams corresponding to the respective channels, thereby realizing the separation and solution of the uplink data sent by the AP to multiple STAs. Tuning, realizes data transmission of uplink multi-users.
  • FIG. 1 is a schematic diagram of a transmission and reception structure of an uplink multi-user MIM0 in the prior art
  • FIG. 2 is a flowchart of a method for uplink multi-user data transmission according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for channel estimation according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a preamble of a first data frame in the embodiment shown in FIG. 3;
  • FIG. 5 is a flowchart of another method for channel estimation according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of channel estimation performed in the embodiment shown in FIG. 5;
  • FIG. 7 is a flowchart of another method for channel estimation according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of channel estimation performed in the embodiment shown in FIG. 7;
  • FIG. 9 is a schematic diagram of a format of an NDPA in the embodiment shown in FIG. 7;
  • FIG. 10 is a flowchart of another method for channel estimation according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of channel estimation performed in the embodiment shown in FIG. 10;
  • Figure 12 is a schematic illustration of a simplified UL MU-MIM0 data frame preamble in the embodiment of Figure 10;
  • FIG. 13a-13b are schematic diagrams of an AP replying confirmation message according to an embodiment of the present invention
  • FIG. 14 is a flowchart of a method for determining, by an AP, a STA that needs to perform uplink data transmission in multiple STAs according to an embodiment of the present invention
  • FIG. 15 is a schematic diagram of a STA for determining uplink data transmission according to FIG. 14;
  • FIG. 16 is a flowchart of another method for determining, by an AP, a STA that needs to perform uplink data transmission in multiple STAs according to an embodiment of the present invention;
  • FIG. 17 is a schematic diagram of a STA transmitting respective transmission buffer information according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of another STA transmitting respective transmission buffer information according to an embodiment of the present invention.
  • FIG. 19 is a flowchart of a method for an AP to initiate a UL MU-MIM0 process according to an embodiment of the present invention
  • FIG. 20 is a schematic diagram of the process of the UL MU-MIM0 initiated by the AP shown in FIG. 19.
  • FIG. 21 is a flowchart of a method for the STA to initiate the UL MU-MIM0 process according to the embodiment of the present invention
  • FIG. 22 is a schematic diagram of the STA initiated by the STA shown in FIG. Schematic diagram of the process;
  • FIG. 23 is a flowchart of another method for multi-user uplink data transmission according to an embodiment of the present invention.
  • FIG. 24 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 25 is a schematic structural diagram of a station according to an embodiment of the present invention.
  • 26 is a schematic structural diagram of another access device according to an embodiment of the present invention.
  • FIG. 27 is a schematic structural diagram of another station according to an embodiment of the present invention.
  • the method can include:
  • Step 201 The AP sends indication information to the at least two STAs, where the indication information is used to indicate that at least two STAs perform uplink multi-user data transmission.
  • the AP may broadcast the indication information to all STAs or to the designated two or more STAs, and the indication information is used to indicate that the STA that receives the indication information performs uplink multi-user data transmission.
  • the AP may send the indication information through the UL MU Pol l (Request) frame to indicate that the STA that received the frame initiates a data transmission after a fixed length of time.
  • the UL MU Poll frame may also carry information such as an MCS (Modulation and Coding Scheme), a space-time stream number, or a maximum value of the MCS maximum value and the number of space-time streams recommended by the AP. It is recommended that the MCS and the space-time flow number are used to tell the STA that the AP considers the appropriate MCS value and space-time flow number. The purpose is to enable the STA to select these two parameters as quickly as possible. A suitable value to maximize the transmission rate while guaranteeing the bit error rate.
  • MCS Modulation and Coding Scheme
  • Step 202 The AP receives uplink data sent by at least two STAs through respective channels to the AP.
  • the STA may initiate the UL MU-MIM0 transmission after a certain length of time according to the indication information.
  • Each STA uses its own channel to the AP to send uplink data (Date).
  • the AP can receive uplink data sent by multiple STAs simultaneously through their respective channels, thus ensuring that parallel data between STAs does not interfere with each other.
  • Step 203 The AP demodulates the uplink data sent by the at least two STAs by using the pre-estimated receiving beams corresponding to the STA to the AP.
  • the AP Before demodulating the uplink data, the AP may pre-estimate the channel of each STA to the AP to distinguish the uplink data sent by each STA.
  • the AP can use the pre-estimated channel of each STA to the AP to form a receiving beam corresponding to each channel, and demodulate the received uplink data of different STAs.
  • the process of demodulating the received uplink data of different STAs by using the receiving beams corresponding to the respective channels is similar to the prior art, and details are not described herein again.
  • the AP receives the uplink data of multiple STAs through different channels of the STAs to the AP, and demodulates the data by using the receiving beams corresponding to the respective channels, thereby realizing the separation and solution of the uplink data sent by the AP to multiple STAs. Tuning, realizes data transmission of uplink multi-users.
  • the AP when estimating the channel of each STA to the AP, may determine the STA to AP channel according to the information used by each STA for channel estimation.
  • the AP may perform channel estimation after transmitting indication information to at least two STAs, or may perform channel estimation before transmitting indication information to at least two STAs.
  • the method for performing channel estimation by the AP is as shown in FIG. 3, and may include:
  • Step 301 The AP receives a first data frame preamble that is sent by at least two STAs simultaneously through respective channels to the AP.
  • the first data frame preamble includes a training sequence for channel estimation, wherein the training sequences of the STAs are orthogonal to each other.
  • each STA may send the first data frame preamble and the uplink data of the STA in step 202 in the same data frame.
  • the AP Before obtaining the uplink data of the data frame, the AP first obtains a first data frame preamble in the data frame, and further obtains a training sequence in the preamble of the first data frame, and performs channel estimation on the STA to the AP.
  • the training sequence in the preamble of the first data frame may be obtained by orthogonally extending a long training sequence (Long Training Sequence, LTS or Long Training Field, LTF) in an existing data frame preamble in the time domain.
  • a long training sequence Long Training Sequence, LTS or Long Training Field, LTF
  • Each STA has its own extended sequence, and the extended sequences of the STAs are orthogonal to each other.
  • the orthogonal extension of the pair of long training sequences may use a walsh matrix or an existing P matrix or the like as long as the orthogonality is satisfied.
  • FIG. 4 is a schematic diagram of a first data frame preamble. Among them, short training field (Short),
  • STF Training Field
  • AGC Automatic Gain Control
  • AGC Automatic Gain Control
  • LTF is used for channel estimation of SIG (SIGNAL, signal) domain
  • the SIG is used to carry the physical layer indication information
  • the L-SIG is the signal domain of the traditional format, UHT (Ultra High Throughput)
  • the SIG-A is the signal domain supporting the UL MU-MIM0
  • UHT-STF, UHT -LTF is used for peer
  • AGC and channel estimation of the data portion of UL MU-MIM0, respectively.
  • each LTF symbol of the LTF LTF N is multiplied by a symbol of an orthogonal sequence of length N, thereby obtaining an orthogonal LTF, that is, a training sequence in the preamble of the first data frame.
  • the orthogonal sequence can be a plurality of possible sequences, such as: Walsh, such as W (4), or a P matrix, such as P (4).
  • the STA may choose to use an orthogonal sequence longer than the actual number of streams. For example, since all STAs know the number of antennas of the current AP, the number of antennas may be used as an orthogonal sequence. Length, or an even number that is larger than the number of antennas but closest to the number of antennas.
  • the LTF sequence may also be redesigned such that the training sequences in the preamble of the first data frame transmitted by each STA are orthogonal to each other.
  • the LTF sequences between different STAs are orthogonal or quasi-orthogonal, that is, the weighted sum of the STAs is maximized, and the weighted sum of the other STAs is zero or approaches zero;
  • the AP can effectively estimate channel information according to the LTF.
  • the LTF set based on this standard does not need to further extend the LTF and UHT-LTF as described above.
  • Step 302 The AP estimates, according to the training sequence in the preamble of the first data frame, a channel of each STA to the AP.
  • the AP obtains the training sequence of the LTF part in the preamble of the first data frame, and then weights and adds the training sequence to distinguish the STAs, so that the channel of each STA to the AP can be estimated.
  • the training sequence in the preamble of the first data frame is obtained by orthogonally spreading the long training sequence in the preamble of the existing data frame to obtain the training sequence in the preamble of the first data frame.
  • LTFl LTF
  • LTF LTF
  • the signal received by the AP is the sum of the signals of STA1 and STA2, and the LTF part can represent For:
  • the AP reuses the existing channel estimation method, and performs channel estimation on the respective channel matrix of STA1 and STA2 obtained in 2) and the product of 1 ⁇ 2* ⁇ *£ ⁇ , 2*H 2 *ZJF Obtain a channel matrix, such as multiplying the LTF sequence or dividing by the LTF sequence.
  • the channel matrix is also the receive beam used to demodulate the uplink data in the next step.
  • the AP can form a received beam corresponding to each channel according to the estimated channel, and then demodulate the uplink data part in the data frame on the corresponding channel by using the receiving beam corresponding to each channel.
  • the APs estimate the channels of the STAs to the APs by using the training sequences that are orthogonal to each other in the preamble of the first data frame sent by the STAs, so as to implement the subsequent differentiation and demodulation of the uplink data of each STA.
  • each STA sends a first data frame preamble to the AP at the same time, and the AP distinguishes each STA by using the training sequence in the preamble of the first data frame, so that the channel of each STA to the AP can be estimated.
  • the method for performing channel estimation by the AP may also be as shown in FIG. 5, including: Step 501: The AP receives a second sequence that the at least two STAs sequentially send through respective channels to the AP.
  • the existing data frame is split into the preamble and the uplink data part of the second data frame, and each STA first sends a second data frame preamble to the AP, and after the AP estimates the channel of each STA to the AP, Send the uplink data part to the AP, as shown in Figure 6.
  • the second data frame preamble does not need to include an orthogonal training sequence, and the second data frame preamble portion may be the same as the preamble portion of the prior art data frame, the second The data frame preamble may include the identifier information of the STA, so that the AP can estimate the channel of each STA to the AP according to the order of receiving the preamble of the second data frame and the identification information of the STA.
  • the STA may only send the STF and the LTF when sending the preamble of the second data frame, so that the AP can estimate only the channel information.
  • the uplink data sent by the STA still needs to carry the SIG and other domains as signaling indications.
  • the AP may also send a confirmation message after receiving the second data frame preamble of each STA, so that the whole process is more stable. Further, the AP may send the request information (Pol l ) of the second data frame preamble to each STA one by one to reliably perform channel estimation of each STA.
  • Step 502 The AP estimates, according to the identifier information of the STA in the preamble of the second data frame, a channel of each STA to the AP.
  • the AP may perform the foregoing step 202, and receive uplink data that is sent by each STA at the same time.
  • the STA sends the second data frame preamble and the uplink data part separately, and the STAs send the second data frame preamble in time division, so that the AP estimates the channel of each STA to the AP, thereby implementing subsequent Differentiating and demodulating the uplink data of the STA.
  • the "first data frame preamble” and the “second data frame preamble” are only different from the data frame preamble, and are not specifically or limited.
  • the method for performing channel estimation by the AP is as shown in FIG. 7, and may include:
  • Step 701 The AP sends a first request to the at least two STAs, where the first request is used to indicate that at least two STAs feed back a zero data packet after receiving the request (Nul l Data Packet, hide).
  • the AP may send the NDPR as the first request, indicating that the designated one of the at least two STAs returns the NDP after a fixed time after receiving the NDPR.
  • the AP then sends the NDP Pol 1 (request) as the first request to other STAs one by one, instructing other STAs to feed back NDP after a fixed time after receiving the NDP Pol l.
  • the NDPR needs to indicate the STA list for sending the NDP.
  • the specific implementation method can reuse the format of NDPA (NDP Announcement).
  • the NDPA can include the following fields. : Frame Control, Duration, Receive Address (RA), Transmit Address (TA), Sounding Dialog Token, Station Information (n) Info Tn ), Frame Check Sequence (FCS), and use one of the information bits in the format (such as the reserved bits in the Sounding Dialog Token) to indicate whether the frame is NDPA or NDPR.
  • NDP Pol l is a new Pol l frame, and can also reuse the format of Beamforming Report Pol l (beamforming report request), using information bits to indicate its switching. Moreover, the NDP needs to carry the information of the sending STA, and even the information of the sending STA and the receiving AP.
  • Step 702 The AP estimates the channel of each STA to the AP according to the NDP that the at least two STAs feed back through the channels of the AP.
  • the AP may determine the channel of each STA to the AP according to the feedback order or time of the NDP or the information of the STA carried in the NDP.
  • the AP After the AP determines the channel of each STA to the AP, the AP can perform the above step 202.
  • the AP sends the first request to the STA one by one, so that the AP can estimate the channel of each STA to the AP according to the NDP fed back by each STA, thereby realizing the subsequent differentiation and demodulation of the uplink data of each STA.
  • the method for performing channel estimation by the AP may also be as shown in FIG. 10, including: Step 1001: The AP sends a second request, where the second request is used to indicate that at least two STAs simultaneously feed back the NDP after receiving the second request.
  • the AP may use the NDPR as the second request to indicate that multiple STAs feed back the NDP after receiving the NDPR, as shown in FIG.
  • the advantage of this is that the AP can estimate the interference information between the STAs when transmitting data in advance, in addition to estimating the channel information with each STA.
  • Step 1002 The AP receives an NDP that is simultaneously fed back by at least two STAs through respective channels to the AP, where the NDP includes a training sequence for channel estimation, where the training sequences of the STAs are mutually positive
  • the STA After receiving the NDPR, the STA simultaneously sends an NDP to the AP at a fixed time.
  • the AP performs channel estimation of each STA to the AP according to the NDP sent by all STAs indicated by the NDPR.
  • the NDP fed back by each STA includes a training sequence for channel estimation, and the training sequences of the STAs are orthogonal to each other.
  • Step 1003 The AP estimates, according to the training sequence in the NDP, a channel of each STA to the AP.
  • the AP After weighting and summing the training sequences, the AP can distinguish each STA, so that the channel of each STA to the AP can be estimated.
  • a training sequence that is orthogonal to each other and can be used for channel estimation at the same time [ ⁇ ], which is the kth sequence.
  • the sequence received by the AP is through the channel: If two STAs are simultaneously transmitted, the sequence received by the AP is: h kk + h Sl where is the channel experienced by the sequence ⁇ , " ⁇ " is a point multiplication operation.
  • weighted summation refers to multiplying and adding the known sequence elements to the received sequence elements.
  • the known sequence and the received sequence are internally productd: s t h k ⁇ s k + hj ⁇ Sj ], i - or - /
  • the process of weighting and summing the training sequence when performing step 302 may also be performed.
  • the weighting and summation process in step 1003 is similar.
  • the AP When the AP performs channel estimation, it can further estimate that the interference between the STAs can be simultaneously transmitted.
  • the AP may choose to use the estimation of the interference as a basis for scheduling subsequent UL MU MIM0 transmissions, as shown in Figure 11.
  • the AP selects STA1 and STA2 to be included in the UL MU MIM0 transmission range and excludes STA3 in the UL MU Pol l frame according to the estimated interference condition.
  • the AP since the AP has already learned all the channel information through the NDP, the AP can form a receive beam while scheduling the STA. Therefore, it is not necessary to know the channel information of the STA that has been scheduled in the subsequent uplink data transmission. This will further simplify the data frame structure sent by subsequent STAs. For example, the LTFs in the data frame preamble of Datal and Data2 in Figure 11 can be removed. As shown in Figure 12, the redundant LTF can be removed to improve the system efficiency.
  • the AP estimates the channels of the STAs to the APs, thereby realizing the subsequent differentiation and demodulation of the uplink data of each STA.
  • the method may further include:
  • the AP demodulates the uplink data sent by the at least two STAs, and then returns the acknowledgement information to the at least two STAs.
  • the AP reply confirmation message can take many forms. For example, as shown in FIG. 13a, the AP returns to each STA in a time-sharing manner; or the AP uses a new frame format to carry addresses of multiple STAs and a bitmap of each segment of each STA data to indicate that each STA sends the STA. Whether the data is correctly received; the acknowledgment information may also be carried in the next UL MU Poll frame, as shown in FIG. 13b, where some data reception failure or complete failure or completely correct, will be reflected in the UL MU Poll frame of the next frame data. In the bitmap (BA).
  • BA bitmap
  • next UL MU Pol l can choose not to carry the confirmation message and the default is to have received it completely. Further, if the data transmission is for each STA in the last frame of the TXOP, the AP will not send the UL MU Pol 1 when the reception is completely correct to reflect the acknowledgement of the reception.
  • the UL MU-MIM0 data transmission is performed within the TX0P initiated based on the AP. Therefore, the AP is the TXOP holder sent by the UL MU-MIM0. Therefore, the access category (AC) to which the TX0P belongs is the AC that the AP contends for. Further, in the TX0P, the AP may preferentially select the STA with the same service type as the AC type to which the TX0P belongs, as the primary STA, and only if all or part of the service transmission of the primary STA is successful, the transmission is considered to be successful.
  • the AP may preferentially select the STA with the same service type as the AC type to which the TX0P belongs, as the primary STA, and only if all or part of the service transmission of the primary STA is successful, the transmission is considered to be successful.
  • the method may further include:
  • the AP determines, in the plurality of STAs, STAs that need to perform uplink data transmission as the at least two STAs.
  • the AP first determines which STAs need to perform uplink data transmission, and then sends indication information to the STAs that need to perform uplink data transmission.
  • the method for determining, by the AP, the STA that needs to perform uplink data transmission in multiple STAs, as shown in FIG. 14 may include:
  • Step 1401 The AP broadcasts the request indication information to the multiple STAs, where the request indication information is used to indicate that the STA that needs to perform uplink data transmission in multiple STAs sends a request for uploading data to the AP.
  • the AP can send an indication frame to multiple STA broadcast requests (UL MU).
  • the uplink multi-user announcement carries the request indication information by using the frame to indicate that each STA that needs to perform uplink data transmission initiates a UL MU-MIM0 request.
  • Step 1402 The AP receives a request for uploading data sent by an STA that needs to perform uplink data transmission, where the request for uploading data includes an identifier sequence for uniquely identifying an STA that needs to perform uplink data transmission, and an STA that needs to perform uplink data transmission.
  • the identification sequences are orthogonal to each other.
  • each STA may include an identifier sequence that can uniquely identify itself when initiating a UL MU-MIMO request. And the identification sequences of the STAs are orthogonal to each other. The identification sequence of each STA may be an orthogonal sequence in the time domain or the frequency domain.
  • Step 1403 The AP determines, according to the identifier sequence, an STA that needs to perform uplink data transmission.
  • the AP After receiving the UL MU-MIM0 request of each STA, the AP can determine which STAs have the data transmission request of the UL MU-MIM0 by weighting and summing the identification sequence in the request.
  • a fixed frame interval such as SIFS, can be maintained between the UL MU Announcement frame and the Req frame and subsequent frames.
  • the AP broadcasts the indication information, and the STA that needs to perform uplink data transmission can be determined according to the request of the STA feedback, so that the AP can indicate the uplink data transmission only for the required STA.
  • the method for determining, by the AP, the STA that needs to perform uplink data transmission in multiple STAs, as shown in FIG. 16, includes:
  • Step 1601 The AP receives respective transmission buffer information that multiple STAs transmit in sequence.
  • the STA's send buffer information is an expression of the accumulation of transmission requirements. Specifically, it is the length of the data in the current buffer.
  • the STA may carry its own current transmission buffer information in the sent data, as shown in FIG. 17, or the AP may request each STA to send itself in turn before instructing the STA to perform UL MU-MIM0 transmission.
  • the send buffer information is as shown in Figure 18.
  • the current backoff time of each STA is also a kind of information reflecting the STA's requirements for channel access and data transmission, and information such as hidden nodes, channel correlation, and interference can be sent from the STA to the AP. To facilitate AP scheduling.
  • the transmission buffer information is classified into four access types according to the service type: (AC_V0), video (AC_VI), best effort (AC_BE) and background (AC-BG).
  • the sending buffer information can be refined according to the four types, that is, the data length of each access type is reported to the AP.
  • Step 1602 The AP selects, in the plurality of STAs, the STA that sends the buffer information to reach the threshold condition as the STA that needs to perform uplink data transmission.
  • the AP may use the data of each STA as a basis for determining whether to use the UL MU-MIM0 transmission.
  • the threshold condition may be set according to requirements, for example, a certain amount of data may be set. When the amount of data in the transmission buffer information of the STA reaches the set data amount, the STA is used as the STA that needs to perform uplink data transmission, otherwise the STA is not included in the STA that needs to perform uplink data transmission.
  • the AP determines the STA that needs to perform uplink data transmission according to the sending buffer information of the STA, so that the AP can indicate the uplink data transmission only for the required STA.
  • the UL MU-MIM0 process may be initiated by the AP according to the current scenario, or may be initiated by the STA according to the current scenario.
  • the method may further include:
  • Step 1901 The AP receives uplink data sent by a single STA.
  • a single STA sends uplink data to the AP. As shown in Figure 20, only STA1 sends uplink data to the AP.
  • Step 1902 The AP determines, according to the number of space-time flows occupied by the uplink data sent by the single STA, whether there is still an idle space flow; if yes, the AP performs a step of sending the indication information to the at least two STAs.
  • the AP may perform the foregoing step 201, and send indication information to other STAs through the UL MU Pol1, indicating that multiple STAs perform uplink data transmission at the same time, thereby The UL MU-MIMO process is initiated, as shown in FIG.
  • the AP may carry the UL MU Pol l when replying to the STA1 acknowledgement information to indicate that the STA2 and STA3 in the remaining time of the TX0P perform uplink data transmission.
  • STA2 and STA3 join the transmission of UL MU-MIM0 upon receiving the indication.
  • the AP needs to indicate in the UL MU Pol l the STAs that subsequently participate in the UL MU-MIMO transmission, as well as the duration and service type of the transmission.
  • STA1 can change the format of the data sent from the single-user format to the format that supports UL MU-MIM0 transmission after receiving UL MU Pol l.
  • Date 1-1 indicates the first data of STA1
  • Datel_2 indicates the second data of STA1.
  • the method may further include:
  • Step 2101 The STA monitors uplink data sent by other STAs to the AP.
  • the STA can receive data from other STAs and read it.
  • STA2 listens to the uplink data sent by STA1 to the AP.
  • Step 2102 The STA compares the number of space-time flows occupied by uplink data sent by other STAs with
  • the number of space-time streams supported by the AP is the number of space-time streams supported by the AP.
  • the STA can learn the capabilities of the AP through capability negotiation.
  • the capability negotiation can be carried in the beacon frame broadcast of the AP, and the association between the STA and the AP, re-association, and management frame/data frame interaction.
  • Step 2103 When the AP has a free space flow, the STA sends uplink data to the AP.
  • STA2 determines that the AP still has a free space stream, the STA2 initiates transmission of uplink data, which may be referred to as piggyback transmission.
  • the data frame transmission of the STA2 needs to satisfy the following conditions:
  • the frame format needs to adopt an orthogonal or quasi-orthogonal design, such as the orthogonal LTF in the foregoing embodiment, that is, The LTF parts in the data frames transmitted by STA2 and STA1 are orthogonal to each other. In this way, the AP can distinguish the data frame of STA2 and form a targeted receiving beam.
  • the STA2 transmission should maintain the same level as STA1, specifically, the 0FDM symbol is reached.
  • the corresponding OFDM symbols have a delay that does not exceed the length of the cyclic prefix (CP), that is, the time difference between STA1 and STA2 reaching the AP is within the CP range.
  • CP cyclic prefix
  • the difference in delay between OFDM symbols exceeds the length of the cyclic prefix, strong interference superposition is caused. Since these OFDM symbols carry different information, they cannot be demodulated. In this way, the time difference between STA1 and STA2 reaching the AP is within the CP range, and the AP can avoid interference caused by different OFDM symbols and effectively demodulate the signal.
  • the end of the data frame sent by STA2 cannot exceed the end time of STA1 to avoid conflicts with subsequent acknowledgment messages (ACK) or to cause STAs to operate incorrectly.
  • ACK acknowledgment messages
  • a random access mechanism can be introduced at the STA. Specifically:
  • Each STA generates a random number in the range of [0, MU - l imit) while starting data transmission in the listening channel, where MU - l imi t can be taken as the number of antennas of the AP.
  • the STA listens to the data of a new STA and demodulates the stream number information of the new STA. If there is still an extra space stream, the number is decremented by 1 (since each STA adopts an orthogonal sequence, the STA can be in the channel) In the case of busy, it still monitors the existence of other STA data).
  • the STA can initiate uplink data transmission. Through the process of decrementing the random number, it is avoided that multiple STAs are simultaneously transmitted by using the UL MU MIM0 to cause conflicts.
  • Packets may also be formed, specifying that only other STAs within the group may initiate transmissions with the STAs currently being transmitted within the group.
  • STA1 and STA2 are a group. When STA1 is transmitting, only STA2 can participate in the joint transmission to STA1.
  • the foregoing is a method for implementing multi-user uplink data transmission by using the AP side as an execution subject.
  • the following describes a method for implementing multi-user uplink data transmission by using the STA side as an execution subject.
  • FIG. 23 it is a flowchart of another method for multi-user uplink data transmission according to an embodiment of the present invention.
  • the method can include: Step 2301: The STA receives the indication information sent by the AP, where the indication information is used to indicate that at least two STAs including the STA perform uplink multi-user data transmission.
  • Step 2302 the STA sends uplink data to the channel of the AP, so that the AP uses the pre-estimated receiving beams corresponding to the channels of the STAs to the AP to the at least two STAs respectively.
  • the transmitted uplink data is demodulated.
  • the AP receives the uplink data of multiple STAs through different channels of the STAs to the AP, and demodulates the data by using the receiving beams corresponding to the respective channels, thereby realizing the separation and solution of the uplink data sent by the AP to multiple STAs. Tuning, realizes data transmission of uplink multi-users.
  • the method further includes:
  • the STA sends information for performing channel estimation to the AP, so that the AP estimates the channel of the STA to the AP according to the information used for channel estimation.
  • the STA sends a message for performing channel estimation to the AP, where the STA may send the first data frame preamble by using the channel to the AP, where the first data frame preamble includes And a training sequence for channel estimation, where the at least two STAs simultaneously transmit respective first data frame preambles, and the training sequences of the STAs are orthogonal to each other.
  • the STA sends the information about the channel estimation to the AP, and the STA may also send the second data frame preamble by using the channel to the AP, where the at least two STAs The respective second data frame preambles are transmitted in order, and the second data frame preamble of each STA includes its identification information.
  • the method before the STA receives the indication information sent by the AP, the method further includes:
  • the STA sends information for performing channel estimation to the AP, so that the AP estimates information of the STA to the AP according to the information used for channel estimation.
  • the first method the process in which the STA sends the information for performing channel estimation to the AP may specifically include: The STA receives a first request that the AP sends to the at least two STAs one by one, and the first request is used to indicate that the at least two STAs feed back a zero data packet NDP after receiving the request;
  • the STA feeds back the NDP through its channel to the AP.
  • the process of the STA sending information for performing channel estimation to the AP may also include:
  • the STA feeds back the NDP through the channel to the AP, where the NDP includes a training sequence for channel estimation, where the training sequences of the STAs are orthogonal to each other.
  • the method may further include:
  • the STA receives the acknowledgement information that the AP replies after demodulating the uplink data sent by the STA.
  • the STA may further send information to the AP, so that the AP selects, among the multiple STAs, the STA that performs multi-user uplink data transmission, where
  • the method can be:
  • the STA receives the request indication information of the AP broadcast, where the request indication information is used to indicate that the STA that needs to perform uplink data transmission in the multiple STAs sends a request for uploading data to the AP;
  • the AP When the STA needs to perform uplink data transmission, the AP sends a request for uploading data to the AP, where the request for uploading data includes an identifier sequence for uniquely identifying the STA, where the uplink data transmission is required.
  • the identification sequences of the STAs are orthogonal to each other.
  • Manner 2 The STA sends the sending buffer information to the AP, so that the AP selects, in the plurality of STAs, the STA that sends the buffering information to reach the threshold condition as the STA that needs to perform uplink data transmission.
  • the UL MU-MIM0 process may be initiated by the AP according to the current scenario, or may be determined by the STA according to the current scenario.
  • the method further includes:
  • the STA changes the format of the transmitted data to a transmission format that supports uplink multi-user input and output, and then performs a step of transmitting the uplink data by the STA through its channel to the AP.
  • the method further includes:
  • the STA monitors uplink data sent by other STAs to the AP;
  • the STA compares the number of space-time flows occupied by the uplink data sent by the other STAs with the number of space-time streams supported by the AP;
  • the STA When the AP has a free space flow, the STA sends uplink data to the AP.
  • the STA is the executor, refer to the foregoing example of using the AP as the executor, and no further details are provided here.
  • the embodiments of the present invention propose various schemes, and the uplink multi-user MIM0 can be applied to the current wireless communication system for acquiring channel usage rights based on the contention method.
  • FIG. 24 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • the access device can include:
  • the sending indication unit 241 is configured to send the indication information to the at least two STAs, where the indication information is used to indicate that the at least two STAs perform uplink multi-user data transmission;
  • the data receiving unit 242 is configured to receive uplink data that is sent by the at least two STAs through respective channels to the AP;
  • the data demodulation unit 243 is configured to demodulate the uplink data sent by the at least two STAs by using the received beams corresponding to the channels of the STAs to the APs that are estimated in advance.
  • the AP implements separation and demodulation of the uplink data sent by the AP to multiple STAs by using the foregoing unit, and implements data transmission of the uplink multi-user.
  • the access device may further include: a first channel estimation unit, configured to send, according to each STA, after the sending indication unit sends the indication information to the at least two STAs
  • the information for channel estimation determines the channel of each of the STAs to the AP.
  • the first channel estimation unit may include:
  • a first receiving subunit configured to receive a first data frame preamble that is sent by the at least two STAs by using a channel that is respectively sent to the AP, where the first data frame preamble includes a training sequence for channel estimation, where The training sequences of the STAs are orthogonal to each other;
  • a first determining subunit configured to estimate, according to the training sequence in the preamble of the first data frame, a channel of each STA to the AP.
  • the first channel estimation unit may include:
  • a second receiving sub-unit configured to receive, by the at least two STAs, a second data frame preamble sequentially sent by a channel to the AP, where the second data frame preamble includes the identifier information of the STA;
  • a second determining subunit configured to estimate, according to the identifier information of the STA in the preamble of the second data frame, a channel of each of the STAs to the AP.
  • the access device may further include: a second channel estimation unit, configured to send, according to each of the STAs, before the sending indication unit sends the indication information to the at least two STAs
  • the channel estimation information is used to estimate the channel of each of the STAs to the AP.
  • the second channel estimation unit may include:
  • a first sending sub-unit configured to send a first request to the at least two STAs one by one, where the first request is used to indicate that the at least two STAs feed back a zero data message NDP after receiving the request;
  • the second channel estimation unit may include: a second sending subunit, configured to send a second request, where the second request is used to indicate that the at least two STAs are receiving the After the second request, feedback NDP;
  • a feedback receiving subunit configured to receive an NDP that is simultaneously fed back by the at least two STAs to a channel of the AP, where the NDP includes a training sequence for channel estimation, where a training sequence of each of the STAs is Orthogonal to each other;
  • a fourth determining subunit configured to estimate, according to the training sequence in the NDP, a channel of each of the STAs to the AP.
  • the access device may further include an acknowledgment reply unit, configured to demodulate the uplink data sent by the at least two STAs and then reply the acknowledgment information to the at least two STAs.
  • an acknowledgment reply unit configured to demodulate the uplink data sent by the at least two STAs and then reply the acknowledgment information to the at least two STAs.
  • the access device may further include a station determining unit, configured to determine, in the plurality of STAs, that uplink data is required before the sending indication unit sends the indication information to the at least two STAs.
  • the transmitted STA acts as the at least two STAs.
  • the station determining unit may include:
  • a broadcast subunit configured to broadcast request indication information to the plurality of STAs, where the request indication information is used to indicate that a STA that needs to perform uplink data transmission in the multiple STAs sends a request for uploading data to the AP;
  • a request receiving subunit configured to receive the request for uploading data sent by the STA that needs to perform uplink data transmission, where the request for uploading data includes an identifier sequence for uniquely identifying the STA that needs to perform uplink data transmission.
  • the identifier sequences of the STAs that need to perform uplink data transmission are orthogonal to each other;
  • a first station determining subunit configured to determine, according to the identifier sequence, the STA that needs to perform uplink data transmission.
  • the station determining unit may include:
  • An information receiving subunit configured to receive respective sending buffers that are sent by the multiple STAs in sequence Since.
  • a second station determining sub-unit configured to select, in the plurality of STAs, the STA that sends the buffering information to reach a threshold condition as the STA that needs to perform uplink data transmission.
  • the access device may further include:
  • a single data receiving unit configured to receive uplink data sent by a single STA before the sending indication unit sends the indication information to the at least two STAs;
  • a determining unit configured to determine, according to the number of space-time streams occupied by the uplink data sent by the single STA, whether there is still an idle space-time stream; if yes, the AP performs the sending of the indication information to the at least two STAs again.
  • FIG. 25 it is a schematic structural diagram of a station according to an embodiment of the present invention.
  • the station can include:
  • the indication receiving unit 251 is configured to receive the indication information sent by the access point AP, where the indication information is used to indicate that at least two STAs including the STA perform uplink multi-user data transmission, and the data sending unit 252 is configured to And transmitting the uplink data to the channel of the AP, so that the AP demodulates the uplink data sent by the at least two STAs by using the pre-estimated receiving beams corresponding to the channels of the STAs to the APs. .
  • the station may further include a first information sending unit, configured to send, after the indication receiving unit receives the indication information sent by the AP, information for performing channel estimation, So that the AP estimates the channel of the STA to the AP according to the information used for channel estimation.
  • a first information sending unit configured to send, after the indication receiving unit receives the indication information sent by the AP, information for performing channel estimation, So that the AP estimates the channel of the STA to the AP according to the information used for channel estimation.
  • the first information sending unit may be configured to send, by using a channel to the AP, a first data frame preamble, where the first data frame preamble includes training for channel estimation. a sequence, where the at least two STAs simultaneously transmit respective first data frame preambles, and the training sequences of the STAs are orthogonal to each other.
  • the first information sending unit is specifically configured to send, by using the channel to the AP, a second data frame preamble, where the at least two STAs send each in order The second data frame is preambled, and the second data frame preamble of each STA includes its identification information.
  • the station may further include a second information sending unit, configured to send, to the AP, information for performing channel estimation, before the indication receiving unit receives the indication information sent by the AP, And causing the AP to estimate information of the STA to the AP according to the information used for channel estimation.
  • the second information sending unit may include: a first request receiving subunit, configured to receive a first request that the AP sends to the at least two STAs one by one, the first The request is used to indicate that the at least two STAs feed back a zero data packet NDP after receiving the request;
  • a first feedback subunit configured to feed back NDP through its channel to the AP.
  • the second information sending unit may include:
  • a second request receiving subunit configured to receive a second request sent by the AP, where the second request is used to indicate that the at least two STAs simultaneously feed back an NDP after receiving the request;
  • a second feedback subunit configured to feed back NDP through a channel thereof to the AP, where the NDP includes a training sequence for channel estimation, where training sequences of each of the STAs are mutually positive
  • the station may further include an acknowledgment receiving unit, configured to receive the acknowledgment information that the AP replies after demodulating the uplink data sent by the STA.
  • the station may further include a broadcast receiving unit, configured to receive request indication information of the AP broadcast, the request indication information, before the indication receiving unit receives the indication information sent by the AP.
  • the STA that is configured to perform uplink data transmission in the multiple STAs sends a request for uploading data to the AP;
  • a request sending unit configured to send a request for uploading data to the AP when the uplink data transmission is required, where the request for uploading data includes an identifier sequence for uniquely identifying the STA, where the uplink is required to be performed.
  • the identification sequences of the STAs of data transmission are orthogonal to each other.
  • the station may further include a buffer sending unit, configured to Before receiving the indication information sent by the AP, the indication receiving unit sends the transmission buffer information to the AP, so that the AP selects, in the plurality of STAs, the STA that sends the buffer information to reach the threshold condition as the STA that needs to perform uplink data transmission. .
  • the station may further include a format conversion unit, configured to: after the indication receiving unit receives the indication information sent by the AP, change the format of the transmission data to support transmission of the uplink multi-user input and output. The format is then transmitted by the data transmitting unit through its channel to the AP.
  • a format conversion unit configured to: after the indication receiving unit receives the indication information sent by the AP, change the format of the transmission data to support transmission of the uplink multi-user input and output. The format is then transmitted by the data transmitting unit through its channel to the AP.
  • the station may further include: a monitoring unit, configured to: monitor the uplink data sent by the other STAs to the AP before the indication receiving unit receives the indication information sent by the AP;
  • a comparing unit configured to compare the number of space-time flows occupied by the uplink data sent by the other STAs with the number of space-time streams supported by the AP;
  • a carrying transmission unit configured to send uplink data to the AP when the AP has a free space flow.
  • an embodiment of the present invention further provides an access device 260, which includes a transceiver 2601, a memory 2602, and a processor 2603.
  • the transceiver 2601 is configured to send, to the at least two station STAs, indication information, where the indication information is used to indicate that the at least two STAs perform uplink multi-user data transmission, and receive the at least two STAs to each Uplink data sent by the channel of the AP;
  • a program is stored in the memory 2602, and the processor 2603 is configured to read the program in the memory 2602 and execute the following steps:
  • the uplink data sent by the at least two STAs is demodulated by using the pre-estimated receiving beams corresponding to the channels of the STAs to the AP.
  • an embodiment of the present invention further provides a station 270, including a transceiver 2701, where the transceiver 2701 is configured to receive indication information sent by an access point AP, where the indication information is used to indicate that the STA is included.
  • the transceiver 2701 is configured to receive indication information sent by an access point AP, where the indication information is used to indicate that the STA is included.
  • At least two STAs in the uplink perform uplink multi-user data transmission;
  • the channel of the AP sends the uplink data, so that the AP demodulates the uplink data sent by the at least two STAs by using the pre-estimated receiving beams corresponding to the channels of the STAs to the APs.
  • the embodiment of the invention further provides a multi-user data transmission system, which system can include the access device and the plurality of stations as described in the foregoing embodiments.
  • the AP receives the uplink data of multiple STAs through different channels of the STAs to the AP, and demodulates the data by using the receiving beams corresponding to the channels, thereby realizing the separation and solution of the uplink data sent by the AP to multiple STAs. Tuning, realizes data transmission of uplink multi-users.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated
  • the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM, a random access memory), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行多用户数据传输方法及上行多用户输入输出系统。其中所述方法,包括:接入点AP向至少两个站台STA发送指示信息,所述指示信息用于指示所述至少两个STA进行上行多用户数据传输;所述AP接收所述至少两个STA通过各自到所述AP的信道发送的上行数据;所述AP利用预先估计出的各所述STA到所述AP的信道所对应的接收波束分别对所述至少两个STA发送的上行数据进行解调。本发明实施例中AP通过各STA到AP的不同信道接收多个STA的上行数据,并采用各信道对应的接收波束来解调数据,实现了AP对多个STA发送的上行数据的分离及解调,实现了上行多用户的数据传输。

Description

上行多用户数据传输方法及上行多用户输入输出系统 本申请要求于 2013 年 06 月 25 日提交中国专利局、 申请号为 201310255933. 0, 发明名称为 "上行多用户数据传输方法及上行多用户输 入输出系统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申 请中。 技术领域 本发明涉及通信技术领域, 特别是涉及一种上行多用户数据传输方法 及上行多用户输入输出 ( Uplink Multiuser Multiple Input Multiple Output, UL MU MIMO) 系统。
背景技术
MIMO在无线通信系统中是指利用多天线构建多维的空间资源, 这些 多维空间资源形成多个并行通路, 无线站台就可以利用这些并行的通路 传送多路信号, 提升数据的传输速率。 进一歩的, 由于发送的无线站台 和接收的无线站台在天线数量上不相同, 又出现了配备较多天线数的站 台可以支持与多个配备较少天线数的站台同时传输数据(Date)的场景。 通常, 我们将配备较多天线数的站台向多个配备较少天线数的站台传输 数据称作下行多用户 MIMO (DL MU-MIM0) , 将多个配备较少天线数的站 台同时向配备较多天线数的站台传输数据称作上行多用户 MIMO ( UL MU- MIM0)。
上行多用户 MIMO的收发结构如图 1所示。其中,每个站台(Station, STA) 只有一根天线; K个 STA同时向接入点 (Access Point , AP) 发送 各自的数据。 AP利用其大于或者等于 K的天线数所获得的空间资源, 可 以同时解调出 K路相互独立的数据信息。 信道 H则为此通信提供了 K个 维度。
然而, 在将 UL MU-MIM0应用到无线系统时, AP如何分离并解调各 STA的数据从而实现上行多用户的数据传输仍是需要解决的问题。
发明内容 本发明实施例中提供了一种上行多用户数据传输方法及上行多用户 输入输出系统, 能够实现上行多用户的数据传输。
为了解决上述技术问题, 本发明实施例公开了如下技术方案: 第一方面, 提供一种上行多用户数据传输方法, 包括:
接入点 AP向至少两个站台 STA发送指示信息,所述指示信息用于指 示所述至少两个 STA进行上行多用户数据传输;
所述 AP接收所述至少两个 STA通过各自到所述 AP的信道发送的上 行数据;
所述 AP利用预先估计出的各所述 STA到所述 AP的信道所对应的接 收波束分别对所述至少两个 STA发送的上行数据进行解调。
结合上述第一方面, 在第一种可能的实现方式中, 在所述 AP向至少 两个 STA发送指示信息之后, 所述方法还包括:
所述 AP根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道。
结合上述第一方面, 和 /或第一种可能的实现方式, 在第二种可能的 实现方式中,所述 AP根据各所述 STA发送的用于进行信道估计的信息估 计各所述 STA到所述 AP的信道, 包括:
所述 AP接收所述至少两个 STA通过各自到所述 AP的信道同时发送 的第一数据帧前导, 所述第一数据帧前导中包含用于信道估计的训练序 列, 其中, 各所述 STA的训练序列之间相互正交; 所述 AP根据所述第一数据帧前导中的训练序列估计各所述 STA到所 述 AP的信道。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 在第三种可能的实现方式中, 所述 AP 根据各所述 STA 发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道,包括: 所述 AP接收所述至少两个 STA通过各自到所述 AP的信道依次发送 的第二数据帧前导, 所述第二数据帧前导中包含所述 STA的标识信息; 所述 AP根据所述第二数据帧前导中所述 STA的标识信息估计各所述 STA到所述 AP的信道。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 在第四种可能的实现方式 中, 在所述 AP向至少两个 STA发送指示信息之前, 所述方法还包括: 所述 AP根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 在第五种可能的实现方式中, 所述 AP根据各所述 STA发送的用于 进行信道估计的信息估计各所述 STA到所述 AP的信道, 包括:
所述 AP向所述至少两个 STA逐一发送第一请求,所述第一请求用于 指示所述至少两个 STA在接收到所述请求后反馈零数据报文 NDP;
所述 AP根据所述至少两个 STA通过各自到所述 AP的信道逐一反馈 的 NDP, 估计各所述 STA到所述 AP的信道。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 在第六种可能的实现方式中, 所述 AP根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所 述 AP的信道, 包括:
所述 AP 发送第二请求, 所述第二请求用于指示所述至少两个 STA 在接收到所述第二请求后同时反馈 NDP ;
所述 AP接收所述至少两个 STA通过各自到所述 AP的信道同时反馈 的 NDP, 所述 NDP 中包含用于信道估计的训练序列, 其中, 各所述 STA 的训练序列之间相互正交;
所述 AP根据所述 NDP中的训练序列进行计算,并根据计算结果估计 各所述 STA到所述 AP的信道。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 在 第七种可能的实现方式中, 所述方法还包括:
所述 AP对所述至少两个 STA发送的上行数据进行解调后向所述至少 两个 STA回复确认信息。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式,在第八种可能的实现方式中, 在所述 AP向至 少两个 STA发送指示信息之前, 所述方法还包括:
所述 AP在多个 STA中确定出需要进行上行数据传输的 STA作为所述 至少两个 STA。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 在第九种可能 的实现方式中, 所述 AP在多个 STA 中确定出需要进行上行数据传输的 STA作为所述至少两个 STA, 包括:
所述 AP向所述多个 STA广播请求指示信息,所述请求指示信息用于 指示所述多个 STA中的需要进行上行数据传输的 STA向所述 AP发送上传 数据的请求;
所述 AP接收所述需要进行上行数据传输的 STA发送的上传数据的请 求, 其中, 所述上传数据的请求中包含用于唯一标识所述需要进行上行 数据传输的 STA的标识序列, 所述需要进行上行数据传输的 STA的标识 序列之间相互正交;
所述 AP 根据所述标识序列确定出所述需要进行上行数据传输的
STA。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 和 /或第九种 可能的实现方式, 在第十种可能的实现方式中, 所述 AP在多个 STA中确 定出需要进行上行数据传输的 STA作为所述至少两个 STA, 包括:
所述 AP接收所述多个 STA依次发送的各自的发送缓存信息; 所述 AP在所述多个 STA 中选择所述发送缓存信息达到阈值条件的 STA作为所述需要进行上行数据传输的 STA。
结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 和 /或第九种 可能的实现方式, 和 /或第十种可能的实现方式, 在第十一种可能的实现 方式中,在所述 AP向至少两个 STA发送指示信息之前,所述方法还包括: 所述 AP接收单个 STA发送的上行数据; 所述 AP根据所述单个 STA发送的上行数据占用的空时流数判断是否 还存在空闲的空时流; 若是, 则所述 AP执行所述向至少两个 STA发送指 示信息的歩骤。
第二方面, 提供一种上行多用户数据传输方法, 包括:
站台 STA接收接入点 AP发送的指示信息,所述指示信息用于指示包 括所述 STA在内的至少两个 STA进行上行多用户数据传输;
所述 STA通过其到所述 AP的信道发送上行数据, 以使所述 AP利用 预先估计出的各所述 STA到所述 AP的信道所对应的接收波束分别对所述 至少两个 STA发送的上行数据进行解调。
结合上述第二方面, 在第一种可能的实现方式中, 在所述 STA接收 AP发送的指示信息之后, 所述方法还包括:
所述 STA向所述 AP发送用于进行信道估计的信息, 以使所述 AP根 据所述用于进行信道估计的信息估计所述 STA到所述 AP的信道。
结合上述第二方面, 和 /或第一种可能的实现方式, 在第二种可能的 实现方式中, 所述 STA向所述 AP发送用于进行信道估计的信息, 包括: 所述 STA通过其到所述 AP的信道发送第一数据帧前导,所述第一数 据帧前导中包含用于信道估计的训练序列, 其中, 所述至少两个 STA同 时发送各自的第一数据帧前导,且各所述 STA的训练序列之间相互正交。
结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式,在第三种可能的实现方式中, 所述 STA向所述 AP发送用 于进行信道估计的信息, 包括:
所述 STA通过其到所述 AP的信道发送第二数据帧前导, 其中, 所述 至少两个 STA按次序发送各自的第二数据帧前导, 且各所述 STA的第二 数据帧前导中包含其标识信息。
结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 在第四种可能的实现方式 中, 在所述 STA接收 AP发送的指示信息之前, 所述方法还包括: 所述 STA向所述 AP发送用于进行信道估计的信息, 以使所述 AP根 据所述用于进行信道估计的信息估计所述 STA到所述 AP的信息。
结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 在第五种可能的实现方式中, 所述 STA向所述 AP发送用于进行信 道估计的信息, 包括:
所述 STA接收所述 AP向所述至少两个 STA逐一发送的第一请求,所 述第一请求用于指示所述至少两个 STA在接收到所述请求后反馈零数据 报文 NDP ;
所述 STA通过其到所述 AP的信道反馈 NDP。
结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 在第六种可能的实现方式中, 所述 STA向所述 AP发送用于进行信道估计的信息, 包括:
所述 STA接收所述 AP发送的第二请求,所述第二请求用于指示所述 至少两个 STA在接收到所述请求后同时反馈 NDP ;
所述 STA通过其到所述 AP的信道反馈 NDP, 所述 NDP中包含用于信 道估计的训练序列, 其中, 各所述 STA的训练序列之间相互正交。
结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 在 第七种可能的实现方式中, 所述方法还包括:
所述 STA接收所述 AP在对所述 STA发送的上行数据进行解调后回复 的确认信息。
结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 在第八种可能的实现方式中, 在所述 STA接 收 AP发送的指示信息之前, 所述方法还包括:
所述 STA接收所述 AP广播的请求指示信息,所述请求指示信息用于 指示所述多个 STA中的需要进行上行数据传输的 STA向所述 AP发送上传 数据的请求;
当所述 STA需要进行上行数据传输时,向所述 AP发送上传数据的请 求, 其中, 所述上传数据的请求中包含用于唯一标识所述 STA的标识序 列, 所述需要进行上行数据传输的 STA的标识序列之间相互正交。
结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 在第九种可能 的实现方式中,在所述 STA接收 AP发送的指示信息之前, 所述方法还包 括:
所述 STA向所述 AP发送其发送缓存信息, 以使所述 AP在多个 STA 中选择发送缓存信息达到阈值条件的 STA作为需要进行上行数据传输的 STA。
结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 和 /或第九种 可能的实现方式, 在第十种可能的实现方式中, 在所述 STA接收 AP发送 的指示信息之后, 所述方法还包括:
所述 STA将发送数据的格式更改为支持上行多用户输入输出的传输 格式,然后再执行所述 STA通过其到所述 AP的信道发送上行数据的歩骤。 结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 和 /或第九种 可能的实现方式, 和 /或第十种可能的实现方式, 在第十一种可能的实现 方式中, 在所述 STA接收 AP发送的指示信息之前, 所述方法还包括: 所述 STA监听其他 STA向所述 AP发送的上行数据;
所述 STA比较所述其他 STA发送的上行数据占用的空时流数与所述 AP支持的空时流数;
当所述 AP存在空闲空时流时, 所述 STA向所述 AP发送上行数据。 第三方面, 提供一种接入设备, 包括:
发送指示单元, 用于向至少两个站台 STA发送指示信息, 所述指示 信息用于指示所述至少两个 STA进行上行多用户数据传输;
数据接收单元,用于接收所述至少两个 STA通过各自到所述 AP的信 道发送的上行数据;
数据解调单元, 用于利用预先估计出的各所述 STA到所述 AP的信道 所对应的接收波束分别对所述至少两个 STA发送的上行数据进行解调。
结合上述第三方面, 在第一种可能的实现方式中, 还包括: 第一信道估计单元, 用于在所述发送指示单元向至少两个 STA发送 指示信息之后, 根据各所述 STA发送的用于进行信道估计的信息估计各 所述 STA到所述 AP的信道。
结合上述第三方面, 和 /或第一种可能的实现方式, 在第二种可能的 实现方式中, 所述第一信道估计单元包括:
第一接收子单元, 用于接收所述至少两个 STA 通过各自到所述 AP 的信道同时发送的第一数据帧前导, 所述第一数据帧前导中包含用于信 道估计的训练序列, 其中, 各所述 STA的训练序列之间相互正交; 第一确定子单元, 用于根据所述第一数据帧前导中的训练序列估计 各所述 STA到所述 AP的信道。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 在第三种可能的实现方式中, 所述第一信道估计单元包 括:
第二接收子单元, 用于接收所述至少两个 STA 通过各自到所述 AP 的信道依次发送的第二数据帧前导, 所述第二数据帧前导中包含所述 STA的标识信息;
第二确定子单元, 用于根据所述第二数据帧前导中所述 STA的标识 信息估计各所述 STA到所述 AP的信道。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 在第四种可能的实现方式 中, 还包括:
第二信道估计单元, 用于在所述发送指示单元向至少两个 STA发送 指示信息之前, 根据各所述 STA发送的用于进行信道估计的信息估计各 所述 STA到所述 AP的信道。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 在第五种可能的实现方式中, 所述第二信道估计单元包括:
第一发送子单元, 用于向所述至少两个 STA逐一发送第一请求, 所 述第一请求用于指示所述至少两个 STA在接收到所述请求后反馈零数据 报文 NDP;
第三确定子单元, 用于根据所述至少两个 STA 通过各自到所述 AP 的信道逐一反馈的 NDP, 估计各所述 STA到所述 AP的信道。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 在第六种可能的实现方式中, 所述 第二信道估计单元包括:
第二发送子单元, 用于发送第二请求, 所述第二请求用于指示所述 至少两个 STA在接收到所述第二请求后同时反馈 NDP ;
反馈接收子单元, 用于接收所述至少两个 STA 通过各自到所述 AP 的信道同时反馈的 NDP, 所述 NDP 中包含用于信道估计的训练序列, 其 中, 各所述 STA的训练序列之间相互正交;
第四确定子单元, 用于根据所述 NDP 中的训练序列估计各所述 STA 到所述 AP的信道。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 在 第七种可能的实现方式中, 还包括:
确认回复单元, 用于对所述至少两个 STA发送的上行数据进行解调 后向所述至少两个 STA回复确认信息。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 在第八种可能的实现方式中, 还包括:
站台确定单元, 用于在所述发送指示单元向至少两个 STA发送指示 信息之前, 在多个 STA中确定出需要进行上行数据传输的 STA作为所述 至少两个 STA。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 在第九种可能 的实现方式中, 所述站台确定单元包括:
广播子单元, 用于向所述多个 STA广播请求指示信息, 所述请求指 示信息用于指示所述多个 STA中的需要进行上行数据传输的 STA向所述 AP发送上传数据的请求;
请求接收子单元, 用于接收所述需要进行上行数据传输的 STA发送 的上传数据的请求, 其中, 所述上传数据的请求中包含用于唯一标识所 述需要进行上行数据传输的 STA的标识序列, 所述需要进行上行数据传 输的 STA的标识序列之间相互正交;
第一站台确定子单元, 用于根据所述标识序列确定出所述需要进行 上行数据传输的 STA。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 和 /或第九种 可能的实现方式, 在第十种可能的实现方式中, 所述站台确定单元包括: 信息接收子单元, 用于接收所述多个 STA依次发送的各自的发送缓 存信息;
第二站台确定子单元, 用于在所述多个 STA中选择所述发送缓存信 息达到阈值条件的 STA作为所述需要进行上行数据传输的 STA。
结合上述第三方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 和 /或第九种 可能的实现方式, 和 /或第十种可能的实现方式, 在第十一种可能的实现 方式中, 还包括: 单数据接收单元, 用于在所述发送指示单元向至少两个 STA发送指 示信息之前, 接收单个 STA发送的上行数据;
判断单元, 用于根据所述单个 STA发送的上行数据占用的空时流数 判断是否还存在空闲的空时流; 若是, 则所述 AP再执行所述向至少两个 STA发送指示信息的歩骤。
第四方面, 还提供一种站台, 包括:
指示接收单元, 用于接收接入点 AP发送的指示信息, 所述指示信息 用于指示指示包括所述 STA在内的至少两个 STA进行上行多用户数据传 输;
数据发送单元, 用于通过其到所述 AP的信道发送上行数据, 以使所 述 AP利用预先估计出的各所述 STA到所述 AP的信道所对应的接收波束 分别对所述至少两个 STA发送的上行数据进行解调。
结合上述第四方面, 在第一种可能的实现方式中, 还包括: 第一信息发送单元,用于在所述指示接收单元接收 AP发送的指示信 息之后, 向所述 AP发送用于进行信道估计的信息, 以使所述 AP根据所 述用于进行信道估计的信息估计所述 STA到所述 AP的信道。
结合上述第四方面, 和 /或第一种可能的实现方式, 在第二种可能的 实现方式中, 所述第一信息发送单元, 具体用于通过其到所述 AP的信道 发送第一数据帧前导, 所述第一数据帧前导中包含用于信道估计的训练 序列, 其中, 所述至少两个 STA同时发送各自的第一数据帧前导, 且各 所述 STA的训练序列之间相互正交。
结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 在第三种可能的实现方式中, 所述第一信息发送单元, 具体用于通过其到所述 AP的信道发送第二数据帧前导, 其中, 所述至少 两个 STA按次序发送各自的第二数据帧前导, 且各所述 STA的第二数据 帧前导中包含其标识信息。 结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 在第四种可能的实现方式 中, 还包括:
第二信息发送单元,用于在所述指示接收单元接收 AP发送的指示信 息之前, 向所述 AP发送用于进行信道估计的信息, 以使所述 AP根据所 述用于进行信道估计的信息估计所述 STA到所述 AP的信息。
结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 在第五种可能的实现方式中, 所述第二信息发送单元包括:
第一请求接收子单元,用于接收所述 AP向所述至少两个 STA逐一发 送的第一请求, 所述第一请求用于指示所述至少两个 STA在接收到所述 请求后反馈零数据报文 NDP ;
第一反馈子单元, 用于通过其到所述 AP的信道反馈 NDP。
结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 在第六种可能的实现方式中, 所述 第二信息发送单元包括:
第二请求接收子单元, 用于接收所述 AP发送的第二请求, 所述第二 请求用于指示所述至少两个 STA在接收到所述请求后同时反馈 NDP ; 第二反馈子单元, 用于通过其到所述 AP的信道反馈 NDP, 所述 NDP 中包含用于信道估计的训练序列, 其中, 各所述 STA的训练序列之间相 互正交。
结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 在 第七种可能的实现方式中, 还包括: 确认接收单元,用于接收所述 AP在对所述 STA发送的上行数据进行 解调后回复的确认信息。
结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 在第八种可能的实现方式中, 还包括:
广播接收单元,用于在所述指示接收单元接收 AP发送的指示信息之 前, 接收所述 AP广播的请求指示信息, 所述请求指示信息用于指示所述 多个 STA中的需要进行上行数据传输的 STA向所述 AP发送上传数据的请 求;
请求发送单元, 用于当需要进行上行数据传输时, 向所述 AP发送上 传数据的请求,其中,所述上传数据的请求中包含用于唯一标识所述 STA 的标识序列, 所述需要进行上行数据传输的 STA的标识序列之间相互正
、 - 父。
结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 在第九种可能 的实现方式中, 还包括:
缓存发送单元,用于在所述指示接收单元接收 AP发送的指示信息之 前, 向所述 AP发送其发送缓存信息, 以使所述 AP在多个 STA中选择发 送缓存信息达到阈值条件的 STA作为需要进行上行数据传输的 STA。
结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 和 /或第九种 可能的实现方式, 在第十种可能的实现方式中, 还包括: 格式变换单元,用于在所述指示接收单元接收 AP发送的指示信息之 后, 将发送数据的格式更改为支持上行多用户输入输出的传输格式, 然 后再由所述数据发送单元通过其到所述 AP的信道发送上行数据。
结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可 能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现 方式, 和 /或第五种可能的实现方式, 和 /或第六种可能的实现方式, 和 / 或第七种可能的实现方式, 和 /或第八种可能的实现方式, 和 /或第九种 可能的实现方式, 和 /或第十种可能的实现方式, 在第十一种可能的实现 方式中, 还包括:
监听单元, 用于在所述指示接收单元接收 AP发送的指示信息之前, 监听其他 STA向所述 AP发送的上行数据;
比较单元, 用于比较所述其他 STA发送的上行数据占用的空时流数 与所述 AP支持的空时流数;
携带传输单元, 用于当所述 AP存在空闲空时流时, 向所述 AP发送 上行数据。
第五方面, 还提供一种多用户数据传输系统, 包括如第三方面所述 的接入设备, 以及多个如第四方面所述的站台。
本发明实施例中 AP通过各 STA到 AP的不同信道接收多个 STA的上 行数据, 并采用各信道对应的接收波束来解调数据, 实现了 AP 对多个 STA发送的上行数据的分离及解调, 实现了上行多用户的数据传输。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将 对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见 地, 对于本领域普通技术人员而言, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中上行多用户 MIM0的收发结构示意图;
图 2为本发明实施例一种上行多用户数据传输的方法流程图; 图 3为本发明实施例中一种信道估计的方法流程图;
图 4为图 3所示实施例中第一数据帧前导的示意图;
图 5为本发明实施例中另一种信道估计的方法流程图;
图 6为图 5所示实施例中进行信道估计的示意图;
图 7为本发明实施例中另一种信道估计的方法流程图;
图 8为图 7所示实施例中进行信道估计的示意图;
图 9为图 7所示实施例中一种 NDPA的格式示意图;
图 10为本发明实施例中另一种信道估计的方法流程图;
图 11为图 10所示实施例中进行信道估计的示意图;
图 12为图 10所示实施例中一种简化的 UL MU-MIM0数据帧前导的示 意图;
图 13a~13b为本发明实施例中 AP回复确认信息的示意图; 图 14为本发明实施例中一种 AP在多个 STA中确定出需要进行上行数 据传输的 STA的方法流程图;
图 15为图 14所示确定需要进行上行数据传输的 STA的示意图; 图 16为本发明实施例中另一种 AP在多个 STA中确定出需要进行上行 数据传输的 STA的方法流程图;
图 17为本发明实施例中一种 STA发送各自的发送缓存信息的示意 图;
图 18为本发明实施例中另一种 STA发送各自的发送缓存信息的示意 图;
图 19为本发明实施例中 AP发起 UL MU-MIM0流程的方法流程图; 图 20为图 19所示 AP发起 UL MU-MIM0流程的示意图; 图 21为本发明实施例中 STA发起 UL MU-MIM0流程的方法流程图; 图 22为图 21所示 STA发起 UL MU-MIM0流程的示意图;
图 23为本发明实施例另一种多用户上行数据传输的方法流程图; 图 24为本发明实施例一种接入设备的结构示意图;
图 25为本发明实施例一种站台的结构示意图;
图 26为本发明实施例另一种接入设备的结构示意图;
图 27为本发明实施例另一种站台的结构示意图。
具体实 式 为了使本技术领域的人员更好地理解本发明实施例中的技术方案, 并使本发明实施例的上述目的、 特征和优点能够更加明显易懂, 下面结 合附图对本发明实施例中技术方案作进一歩详细的说明。
参见图 2, 为本发明实施例一种上行多用户数据传输方法的流程图。 该方法可以包括:
歩骤 201, AP向至少两个 STA发送指示信息, 该指示信息用于指示至 少两个 STA进行上行多用户数据传输。
AP可以向所有 STA广播或向指定的两个或两个以上的 STA发送指示信 息, 该指示信息用于指示接收到指示信息的 STA进行上行多用户数据传输。
具体的, AP可以通过 UL MU Pol l (请求) 帧发送该指示信息, 以指示 接收到该帧的 STA在固定时间长度后发起数据(Date)传输。 该 UL MU Poll 帧中还可以携带 AP为各 STA推荐的 MCS (Modulation and Coding Scheme, 调制和编码方案)、 空时流数等信息, 或者 MCS最大值、 空时流数的最大值 等信息。 推荐 MCS和空时流数用于告诉 STA, AP所认为的比较合适的 MCS 值和空时流数, 其目的是为了令 STA可以尽量快速的在这两个参数上选择 合适的值, 以在保证误码率的同时最大化传输速率。
歩骤 202, AP接收至少两个 STA通过各自到 AP的信道发送的上行数据。
STA接收到指示信息后, 即可按照该指示信息在一定时间长度后发起 UL MU-MIM0传输。 其中, 每个 STA采用各自到 AP的信道来发送上行数 据 (Date )。 AP即可接收由多个 STA同时通过各自的信道发送的上行数 据, 这样即保证了 STA之间的并行数据不会相互干扰。
歩骤 203, AP利用预先估计出的各 STA到 AP的信道所对应的接收波束 分别对至少两个 STA发送的上行数据进行解调。
AP在对上行数据进行解调之前, 可以预先估计出各 STA到 AP的信 道, 以区分各 STA发送的上行数据。 AP可以利用预先估计出的各 STA到 AP的信道, 形成各信道对应的接收波束, 对接收到的不同 STA的上行数 据进行解调。 该利用各信道对应的接收波束对接收到的不同 STA的上行 数据进行解调的过程与现有技术类似, 此处不再赘述。
本发明实施例中 AP通过各 STA到 AP的不同信道接收多个 STA的上 行数据, 并采用各信道对应的接收波束来解调数据, 实现了 AP 对多个 STA发送的上行数据的分离及解调, 实现了上行多用户的数据传输。
在本发明的另一实施例中, 该 AP在估计各 STA到 AP的信道时, 具 体可以根据各 STA发送的用于进行信道估计的信息来确定各 STA到 AP的信 道。 该 AP可以在向至少两个 STA发送指示信息之后进行信道估计, 也可以 在向至少两个 STA发送指示信息之前进行信道估计。
若 AP在向至少两个 STA发送指示信息之后进行信道估计, 该 AP进行 信道估计的方法如图 3所示, 可以包括:
歩骤 301, AP接收至少两个 STA通过各自到 AP的信道同时发送的第一 数据帧前导。
该第一数据帧前导中包含用于信道估计的训练序列, 其中, 各 STA 的 训练序列之间相互正交。 在具体实现时, 各 STA可以将该第一数据帧前导与歩骤 202中 STA的 上行数据设置在同一数据帧中发送。 AP在获得数据帧的上行数据之前, 首 先获取数据帧中的第一数据帧前导, 并进一歩获得该第一数据帧前导中的 训练序列, 用于进行对 STA到 AP的信道估计。
本实施例中, 该第一数据帧前导中的训练序列可以是将现有的数据帧 前导中的长训练序列 (Long Training Sequence, LTS或者 Long Training Field, LTF) 在时域做正交扩展获得, 每个 STA都有自己的扩展序列, 且 各 STA 的扩展序列之间相互正交。 该对长训练序列的正交扩展可以使用 walsh矩阵或现有的 P矩阵等, 只要满足正交性即可。
如图 4所示为一种第一数据帧前导的示意图。 其中, 短训练域 (Short
Training Field, STF) 用于同歩禾口设置 AGC (Automatic Gain Control, 白 动增益控制), AGC 主要用于接收端调节接收信号的强度, LTF 用于 SIG (SIGNAL, 信号) 域的信道估计, SIG用于携带物理层指示信息, L-SIG是 传统格式的信号域, UHT (Ultra High Throughput, 极高吞吐量) -SIG- A 则是支持 UL MU-MIM0的信号域; UHT-STF、 UHT-LTF则分别用于 UL MU-MIM0 的数据部分的同歩、 AGC和信道估计。其中, LTF LTFN的每个 LTF符号都对 应的乘以一个长度为 N的正交序列的符号, 从而获得正交的 LTF, 即上述第 一数据帧前导中的训练序列。 该正交序列可以为多种可能的序列, 比如: Walsh , 例如 W (4), 也可以是 P矩阵, 例如 P (4)
Figure imgf000022_0001
P (4) =
Figure imgf000023_0001
由于 STA之间没有相互的信息交流, 所以 STA可以选择采用比实际流 数更长的正交序列, 比如: 由于所有的 STA都知道当前 AP的天线数, 则可 以将天线数作为正交序列的长度, 或者是选择比天线数大但距离天线数最 近的偶数。
在另一实施例中, 也可以重新设计 LTF序列使各 STA发送的第一数据 帧前导中的训练序列相互正交。 这些 LTF序列需要满足如下条件:
不同 STA之间的 LTF序列保持正交或者准正交, 即对本 STA的加权之 和最大化, 对其他 STA的加权之和为零或者趋近于零;
AP根据该 LTF可以有效估计信道信息。
基于这种标准所设置的 LTF不需要再将 LTF和 UHT-LTF做如上所述的 正交扩展。
歩骤 302, AP根据第一数据帧前导中的训练序列估计各 STA到 AP的信 道。
AP获得第一数据帧前导中 LTF部分的训练序列, 然后通过对该训练序 列加权并加和后即可区分出各 STA, 从而可以估计出各 STA到 AP的信道。
例如, 两个 STA: 只需要两个 LTF: LTF1和 LTF2。 以将现有的数据帧 前导中的长训练序列在时域做正交扩展获得第一数据帧前导中的训练序列 为例进行说明, 所采用的正交序列为 [ ^ ; 2 ] = [ 1 1; 1 -1], 获得两 STA 各自的正交训练序列:
STA1: LTFl = LTF, LTF = LTF
STA2: LTF,1 = LTF, LTF2 2 = -LTF
1 ) AP端接收到的信号为 STA1和 STA2的信号之和, LTF部分可以表示 为:
Hl ^[LTFl LTF1 l] + H1 * [LTF , LTF2 2 ] = H1 *[LTF,LTF] + H2 *[LTF,-LTF] = [(Hl +H2)^LTF,(Hl -H2)^LTF]
2) AP分别用 [1, 1]和 [1, -1]对该接收到的训练序列加权:
[(Hl +H2)*LTF,(Hl -H2)*LTF] [(Hl +H2)*LTF,(H2 -Hl)*LTF] 并将加权后的结果向量中的元素加和, 得到 STA1和 STA2各自的信道 矩阵与 LTF的乘积: 2*HX ^LTF 2*H2 ^LTF
3) AP再利用现有的信道估计方法, 分别对 2) 中得到的 STA1和 STA2 各自的信道矩阵与1^^的乘积2*^*£^, 2*H2 *ZJF, 做信道估计就得到 信道矩阵, 比如都乘以 LTF序列或者除以 LTF序列即可。 该信道矩阵也即 下歩骤中用于对上行数据进行解调的接收波束。
该歩骤 302后, AP即可根据估计出的信道形成各信道对应的接收波 束, 然后利用各信道对应的接收波束对对应信道上的数据帧中的上行数 据部分进行解调。
本实施例通过各 STA发送的第一数据帧前导中相互正交的训练序列, 实现了 AP对各 STA到 AP的信道的估计, 从而实现了后续对各 STA上行数 据的区分和解调。
上述实施例中, 各 STA同时向 AP发送第一数据帧前导, AP通过第 一数据帧前导中的训练序列实现对各 STA的区分, 从而可以估计各 STA 到 AP的信道。
在另一实施例中,该 AP进行信道估计的方法还可以如图 5所示,包括: 歩骤 501, AP接收至少两个 STA通过各自到 AP的信道依次发送的第二 本实施例中, 将现有的数据帧拆分为第二数据帧前导和上行数据部分, 各 STA首先依次向 AP发送第二数据帧前导, 在 AP估计各 STA到 AP的信道 后, 再同时向 AP发送上行数据部分, 如图 6所示。 由于各 STA依次发送第 二数据帧前导, 因此该第二数据帧前导中无需包含正交的训练序列, 该第 二数据帧前导部分与现有技术中数据帧的前导部分可以相同, 该第二数据 帧前导中可以包含 STA的标识信息, 这样 AP根据接收到第二数据帧前导的 顺序及 STA的标识信息即可估计出各 STA到 AP的信道。
在具体实现时, STA在发送第二数据帧前导的时候可以只发送 STF和 LTF, 目的是令 AP可以只估计信道信息。这种情况下, STA后续发送的上行 数据则仍需要携带 SIG等域作为信令指示。
AP还可以在收到各 STA的第二数据帧前导后发送一个确认信息, 令整 个流程更稳定。 进一歩的, AP可以对各个 STA逐个发送第二数据帧前导的 请求信息 (Pol l ) , 以可靠的进行各 STA的信道估计。
歩骤 502, AP根据第二数据帧前导中 STA的标识信息估计各 STA到 AP 的信道。
AP在确定出各 STA到 AP的信道后, 即可执行前述歩骤 202, 接收各 STA同时发送的上行数据。
本实施例通过 STA将第二数据帧前导和上行数据部分分开发送, 并 使各 STA分时发送第二数据帧前导, 实现了 AP对各 STA到 AP的信道的估 计, 从而实现了后续对各 STA上行数据的区分和解调。
以上实施例中 "第一数据帧前导"、 "第二数据帧前导"仅为区分不 同的数据帧前导, 并非特指或限定。
若 AP在向至少两个 STA发送指示信息之前进行信道估计, 该 AP进行 信道估计的方法如图 7所示, 可以包括:
歩骤 701, AP向至少两个 STA逐一发送第一请求, 该第一请求用于 指示至少两个 STA在接收到请求后反馈零数据报文 (Nul l Data Packet , 匿)。
在具体实现时, 如图 8所示, AP可以将 NDPR作为第一请求发送, 指示该至少两个 STA中指定的一个 STA在收到 NDPR后,在固定时间后反 馈 NDP。 然后 AP再将 NDP Pol l (请求) 作为第一请求逐一向其他 STA 发送, 指示其他 STA在收到 NDP Pol l后, 在固定时间后反馈 NDP。
在本方案中, NDPR需要指示本次发送 NDP的 STA列表, 具体的一种 实现方法可以重用 NDPA (NDP Announcement , 空数据包声明) 的格式, 如图 9所示, 该 NDPA中可以包含以下字段: 帧控制 (Frame Control ), 时长 (Duration)、 接收端地址 (Receive Address , RA )、 发送端地址 ( Transmission Address , TA)、 信道探测对话令牌 ( Sounding Dialog Token ) , 站台信息 广 n ( STA info Tn ) , 帧校验序列 (Frame Check Sequence, FCS) , 并利用该格式中的一个信息位(比如 Sounding Dialog Token (信道探测对话令牌)中的预留比特位)指示该帧为 NDPA还是 NDPR。
NDP Pol l则是一种新的 Pol l帧, 也可以重用 Beamforming Report Pol l (波束成形报告请求) 的格式, 利用信息位指示其切换。 并且, NDP 需要携带发送 STA的信息, 甚至包含发送 STA和接收 AP的信息。
歩骤 702,AP根据至少两个 STA通过各自到 AP的信道逐一反馈的 NDP, 估计各 STA到 AP的信道。
AP在逐一接收到 STA反馈的 NDP后,可根据 NDP的反馈次序或时间, 或者 NDP中携带的 STA的信息, 确定出各 STA到 AP的信道。
在 AP确定各 STA到 AP的信道后, AP即可执行上述歩骤 202。
本实施例通过 AP逐一向 STA发送第一请求,使得 AP可以根据各 STA 逐一反馈的 NDP对各 STA到 AP的信道的估计, 从而实现了后续对各 STA 上行数据的区分和解调。
在另一实施例中, 该 AP进行信道估计的方法还可以如图 10所示, 包 括: 歩骤 1001, AP发送第二请求, 该第二请求用于指示至少两个 STA在接 收到第二请求后同时反馈 NDP。
本实施例中, AP可以将 NDPR作为第二请求, 用于指示多个 STA在接收 到该 NDPR后同时反馈 NDP, 如图 11所示。 这样做的好处是 AP可以在估计 与各 STA之间的信道信息之外, 提前估计各 STA在共同发送数据时相互之 间的干扰信息。
歩骤 1002, AP接收至少两个 STA通过各自到 AP的信道同时反馈的 NDP, NDP中包含用于信道估计的训练序列, 其中, 各 STA的训练序列之间相互正
、 - 父。
STA在接收到 NDPR后, 在固定时间同时发送 NDP给 AP, AP根据来自 NDPR所指示的所有 STA发送的 NDP进行各 STA到 AP的信道估计。其中, 各 STA反馈的 NDP中包含用于信道估计的训练序列,且各 STA的训练序列相互 正交。
歩骤 1003, AP根据 NDP中的训练序列估计各 STA到 AP的信道。
AP通过对该训练序列加权并加和后即可区分出各 STA, 从而可以估计 出各 STA到 AP的信道。
例如, 满足相互正交并且同时能够用于信道估计的训练序列: = [^], 就是第 k个序列。 相互正交即 = c, c为常数; 且 = o, 或者, ^→o, k≠i, s, 代表向量 s的共轭转置。
AP接收到的序列是经过信道 的: 如果有两个 STA同时发送, 则 AP接收到的序列为: hk k + h Sl 其中, 是序列 ^经历的信道, " · "为点乘运算。
这里, 加权并加和是指用已知序列元素与接收到的序列元素相乘并相 加, 换句话说, 就是已知序列与接收到的序列求内积: st hk · sk + hj · Sj ], i - 或者 - /
在前述实施例中, 若重新设计 LTF序列使各 STA发送的第一数据帧前 导中的训练序列相互正交, 则在执行歩骤 302 时对该训练序列加权并加和 的过程也可与该歩骤 1003中的加权并加和过程类似。
AP在进行信道估计时, 还可进一歩估计到 STA之间同时发送可能产生 的干扰。 AP可以选择将对干扰的估计作为调度后续 UL MU MIM0传输的一种 依据, 图 11就是一个例子。 AP根据估计到的干扰状况在 UL MU Pol l帧中 选择将 STA1和 STA2纳入 UL MU MIM0传输的范围, 而将 STA3排除在外。
而且, 由于 AP通过 NDP已经获知所有的信道信息, AP在调度 STA的同 时就可以形成接收波束。 因此在后续的上行数据传输中并不需要知道已经 调度的 STA的信道信息。 这样就可以进一歩简化后续 STA发送的数据帧结 构。 比如, 可以将图 11中的 Datal和 Data2的数据帧前导 (preamble) 中 的 LTF去除,如图 12所示,能够去除冗余的 LTF对系统效率有较大的提升。
本实施例通过在各 STA同时发送的 NDP中增加相互正交的训练序列, 实现了 AP对各 STA到 AP的信道的估计, 从而实现了后续对各 STA上行数 据的区分和解调。
在本发明的另一实施例中,在 AP对各 STA发送的上行数据进行解调后, 该方法还可以进一歩包括:
AP对至少两个 STA发送的上行数据进行解调后向该至少两个 STA回复 确认信息。
该 AP回复确认信息可以有多种形式。一种是如图 13a所示, AP分时回 复给各个 STA;也可以是 AP利用新的帧格式携带多个 STA的地址和每个 STA 数据的各分段的 bitmap以指示各 STA所发送的数据是否被正确接收; 也可 以将确认信息携带在下一 UL MU Poll帧内, 如图 13b所示, 其中有部分数 据接收失败或者完全失败或者完全正确, 都会体现在下一帧数据的 UL MU Poll帧的 bitmap (BA) 中。值得注意的是, 如果完全正确, 接下来的 UL MU Pol l可以选择不再携带确认信息而默认为已经完全接收正确。 进一歩的, 如果该数据传输为各 STA在该 TX0P的最后一帧, 则 AP在接收完全正确的 情况下不再发送 UL MU Pol l以体现接收的确认。
本发明中, UL MU-MIM0数据传输是在基于 AP发起的 TX0P内进行。 因 此 AP是此次 UL MU-MIM0发送的 TXOP holder。 因此该 TX0P所属于的接入 类型 (Access Category, AC) 为 AP所竞争到信道的 AC。 进一歩的, 在该 TX0P中, AP可以优先选择调度业务类型与本 TX0P所属于的 AC类型相同的 STA作为主 STA, 只有主 STA的全部或者部分业务传输成功才认为是传输是 成功的。
在本发明的另一实施例中, 在 AP向至少两个 STA发送指示信息之前, 该方法还可以包括:
AP在多个 STA中确定出需要进行上行数据传输的 STA作为上述至少两 个 STA。
也即 AP首先确定出哪些 STA需要进行上行数据传输, 然后再向这些需 要进行上行数据传输的 STA发送指示信息。
其中,该 AP在多个 STA中确定出需要进行上行数据传输的 STA的方法, 如图 14所示, 可以包括:
歩骤 1401, AP向多个 STA广播请求指示信息, 该请求指示信息用于指 示多个 STA中的需要进行上行数据传输的 STA向 AP发送上传数据的请求。
如图 15 所示, AP 可以向多个 STA 广播请求发送指示帧 (UL MU
Announcement, 上行多用户声明), 利用该帧携带请求指示信息, 以指示各 需要进行上行数据传输的 STA发起 UL MU-MIM0请求。
歩骤 1402, AP接收需要进行上行数据传输的 STA发送的上传数据的请 求, 其中, 上传数据的请求中包含用于唯一标识需要进行上行数据传输的 STA的标识序列, 需要进行上行数据传输的 STA的标识序列之间相互正交。
需要进行上行数据传输的 STA在接收到 UL MU Announcement后, 发起 UL MU-MIMO请求 Req, 如图 15所示, 为了便于 AP确定出哪些 STA需要发 送上行数据, 各 STA在发起 UL MU-MIMO请求时, 可以在该请求中包含可以 唯一标识自身的标识序列, 且各 STA的标识序列之间相互正交。 各 STA的 标识序列可以是时域或频域上的正交序列。
歩骤 1403, AP根据标识序列确定出需要进行上行数据传输的 STA。
AP在接收到各 STA的 UL MU-MIM0请求后, 通过对请求中的标识序列 加权求和即可判断出哪些 STA有 UL MU-MIM0的数据发送请求。
该 AP对请求中的标识序列加权求和的过程与前述实施例中的加权求和 过程类似, 此处不再赘述。
为了保持连续的发送, 在 UL MU Announcement帧和 Req帧以及后续 的帧之间可以保持固定的帧间隔, 例如 SIFS。
本实施例通过 AP广播指示信息,并根据 STA反馈的请求即可确定出 需要进行上行数据传输的 STA, 从而 AP可以只针对需要的 STA指示上行 数据传输。
该 AP在多个 STA中确定出需要进行上行数据传输的 STA的方法, 还可 以如图 16所示, 包括:
歩骤 1601, AP接收多个 STA依次发送的各自的发送缓存信息。
STA的发送缓存(buffer)信息是发送需求积累的一种体现。具体来说, 就是当前 buffer内数据的长度。
该歩骤中, STA可以在发送的数据中携带自身当前的发送缓存信息, 如 图 17所示, 或者, 也可以是 AP在指示 STA进行 UL MU-MIM0发送之前, 先 请求各 STA依次发送自己的发送缓存信息, 如图 18所示。
除了发送缓存信息外, 各 STA当前的 backoff Time也是反映 STA对信 道接入和数据发送需求的一种信息, 还有隐藏节点、 信道相关性、 干扰等 信息, 都可以由 STA—起发送给 AP, 以利于 AP调度。
对于 QoS STA, 其发送缓存信息按照业务类型分为四种接入类型: 语音 (AC_V0)、 视频 (AC_VI )、 best effort尽力 (AC_BE) 和 background背景 (AC— BG)。 发送缓存信息可以按照这四种类型细化, 即向 AP汇报自己各接 入类型的数据长度。
歩骤 1602, AP在多个 STA中选择发送缓存信息达到阈值条件的 STA作 为需要进行上行数据传输的 STA。
AP在接收到各 STA的发送缓存信息后, 可以根据各 STA的数据情况 作为判断是否用 UL MU-MIM0传输的一个依据, 该阈值条件可以根据需要 进行设定, 例如可以设定一定的数据量, 当 STA的发送缓存信息中的数 据量达到该设定的数据量时, 将该 STA 作为需要进行上行数据传输的 STA, 否则不将 STA列入需要进行上行数据传输的 STA。
本实施例中 AP根据 STA的发送缓存信息确定出了需要进行上行数据 传输的 STA, 从而 AP可以只针对需要的 STA指示上行数据传输。
在本发明的另一实施例中, 该 UL MU-MIM0流程可以由 AP根据当前 的场景确定发起, 也可以是由 STA根据当前的场景确定发起。
如图 19所示, 在 AP发起 UL MU-MIM0流程的场景中, 在 AP向至少 两个 STA发送指示信息之前, 该方法还可以包括:
歩骤 1901, AP接收单个 STA发送的上行数据。
在 AP发起 UL MU-MIM0流程之前, 单个 STA向 AP发送上行数据, 如 图 20所示, 只有 STA1向 AP发送上行数据。
歩骤 1902, AP根据单个 STA发送的上行数据占用的空时流数判断是 否还存在空闲的空时流; 若是, 则 AP再执行向至少两个 STA发送指示信 息的歩骤。
当 AP接收到该 STA发送的上行数据的数据帧后,若根据该数据帧占 用的空时流数判断 AP当前还存在空闲资源, 也即 AP当前的空时流存在 一定的空间资源浪费, 则 AP可以执行前述歩骤 201, 通过 UL MU Pol l 向其他 STA发送指示信息, 指示多个 STA同时进行上行数据传输, 从而 发起 UL MU-MIMO流程, 如图 20所示。
具体的, 如图 20所示, AP可以在回复上述 STA1确认信息时, 同时 携带 UL MU Pol l , 以指示在此 TX0P中剩余时间内的 STA2、 STA3进行上 行数据传输。 STA2和 STA3在收到该指示后加入 UL MU-MIM0的传输。 在 帧格式上, AP需要在 UL MU Pol l中指示后续参加 UL MU-MIMO传输的 STA, 以及该传输的时长、业务类型等信息。此外, STA1可以在收到 UL MU Pol l 后将发送的数据格式从单用户的格式更改为支持 UL MU-MIM0 传输的格 式。其中, Date (数据) 1-1表示 STA1的第 1个数据, Datel_2表示 STA1 的第 2个数据。
如图 21所示, 在 STA发起 UL MU-MIM0流程的场景中, 在 AP向至少 两个 STA发送指示信息之前, 该方法还可以包括:
歩骤 2101, STA监听其他 STA向 AP发送的上行数据。
STA可以接收来自其他 STA的数据并读取。
如图 22所示, STA2监听 STA1向 AP发送的上行数据。
歩骤 2102, 该 STA比较其他 STA发送的上行数据占用的空时流数与
AP支持的空时流数。
STA可以通过能力协商获知 AP的能力; 能力协商可以在 AP的信标 帧广播, STA与 AP关联、 重关联、 管理帧 /数据帧交互中携带。
歩骤 2103, 当 AP存在空闲空时流时, STA向 AP发送上行数据。 当 STA2判断 AP还存在空闲空时流时,该 STA2发起的上行数据的传 输, 该传输可以称为携带式 (piggyback ) 传输。 为了让 AP能够准确的 获知并解调该 STA2的数据, STA2的数据帧发送需要满足以下条件: 帧格式需要采用正交或者准正交的设计, 比如前述实施例中的正交 LTF, 也即 STA2与 STA1发送的数据帧中 LTF部分相互正交。 这样 AP就 可以区分出 STA2的数据帧, 并形成针对性的接收波束。
STA2的发送要与 STA1保持符号级的同歩, 具体的, 达到 0FDM符号 同歩, 即 STA1和 STA2各自发送信号到达 AP时, 其对应的 OFDM符号之 间在时延上相差不超过循环前缀 (CP ) 的长度, 即 STA1和 STA2到达 AP 的时间差在 CP范围内。 因为, OFDM符号之间在时延上相差如果超过循 环前缀的长度, 会造成强干扰叠加, 由于这些 OFDM符号携带信息不同, 故无法解调。 这样 STA1和 STA2到达 AP的时间差在 CP范围内, 在 AP 可以避免 OFDM符号不同歩造成的干扰, 有效解调信号。
STA2发送的数据帧结束时间不能超过 STA1 的结束时间, 以避免后 续的确认信息 (ACK) 发生冲突或者令 STA错误操作。
为了避免多个 STA都希望加入 UL MU-MIM0发送数据, 可以在 STA 端引入随机接入的机制。 具体的说:
每个 STA在监听信道中开始有数据发送的同时在 [0, MU— l imit)范围 内产生一个随机数, 其中 MU— l imi t可以取值为 AP的天线数。
STA监听到一个新 STA的数据并且解调新 STA的流数信息, 如果当 前仍然有多余的空时流时将该随机数减 1 (由于每个 STA都采用了正交 序列, STA可以在信道忙的情况下依然监听到有其他 STA数据的存在)。
当该数值减到 0并且当前仍然有多余的空时流时, STA可以发起上 行数据传输。通过随机数递减的流程,避免多个 STA同时利用 UL MU MIM0 的方式发送导致相互冲突。
也可以形成分组, 规定只有组内的其他 STA才可以发起与组内当前 正在发送的 STA—起传输。比如 STA1和 STA2为一组,当 STA1在发送时, 只有 STA2可以参加到 STA1的共同传输。
以上为以 AP侧为执行主体实现多用户上行数据传输的方法实施例, 下面对以 STA侧为执行主体实现多用户上行数据传输的方法进行说明。
参见图 23, 为本发明实施例另一种多用户上行数据传输的方法流程 图。
该方法可以包括: 歩骤 2301, STA接收 AP发送的指示信息, 所述指示信息用于指示包括 该 STA在内的至少两个 STA进行上行多用户数据传输。
歩骤 2302, STA通过其到所述 AP的信道发送上行数据, 以使所述 AP 利用预先估计出的各所述 STA到所述 AP的信道所对应的接收波束分别对所 述至少两个 STA发送的上行数据进行解调。
本发明实施例中 AP通过各 STA到 AP的不同信道接收多个 STA的上 行数据, 并采用各信道对应的接收波束来解调数据, 实现了 AP 对多个 STA发送的上行数据的分离及解调, 实现了上行多用户的数据传输。
在本发明的另一实施例中, 在所述 STA接收 AP发送的指示信息之后, 所述方法还包括:
所述 STA向所述 AP发送用于进行信道估计的信息, 以使所述 AP根据 所述用于进行信道估计的信息估计所述 STA到所述 AP的信道。
方式一, STA向所述 AP发送用于进行信道估计的信息的过程, 具体可 以是: 所述 STA通过其到所述 AP的信道发送第一数据帧前导, 所述第一数 据帧前导中包含用于信道估计的训练序列, 其中, 所述至少两个 STA 同时 发送各自的第一数据帧前导, 且各所述 STA的训练序列之间相互正交。
方式二, STA向所述 AP发送用于进行信道估计的信息的过程, 也还可 以是: 所述 STA通过其到所述 AP的信道发送第二数据帧前导, 其中, 所述 至少两个 STA按次序发送各自的第二数据帧前导, 且各所述 STA的第二数 据帧前导中包含其标识信息。
在本发明的另一实施例中, 在所述 STA接收 AP发送的指示信息之前, 所述方法还包括:
所述 STA向所述 AP发送用于进行信道估计的信息, 以使所述 AP根据 所述用于进行信道估计的信息估计所述 STA到所述 AP的信息。
方式一, STA向所述 AP发送用于进行信道估计的信息的过程, 具体可 以包括: 所述 STA接收所述 AP向所述至少两个 STA逐一发送的第一请求, 所述 第一请求用于指示所述至少两个 STA在接收到所述请求后反馈零数据报文 NDP;
所述 STA通过其到所述 AP的信道反馈 NDP。
方式二, STA向所述 AP发送用于进行信道估计的信息的过程, 也还可 以包括:
所述 STA接收所述 AP发送的第二请求, 所述第二请求用于指示所述至 少两个 STA在接收到所述请求后同时反馈 NDP;
所述 STA通过其到所述 AP的信道反馈 NDP, 所述 NDP中包含用于信道 估计的训练序列, 其中, 各所述 STA的训练序列之间相互正交。
在本发明的另一实施例中, 该方法还可以包括:
所述 STA接收所述 AP在对所述 STA发送的上行数据进行解调后回复的 确认信息。
在本发明的另一实施例中, 在所述 STA接收 AP发送的指示信息之前, STA还可以向 AP发送信息,以便于 AP在多个 STA中选择出进行多用户上行 数据传输的 STA, 该方法可以是:
方式一:
所述 STA接收所述 AP广播的请求指示信息, 所述请求指示信息用于指 示所述多个 STA中的需要进行上行数据传输的 STA向所述 AP发送上传数据 的请求;
当所述 STA需要进行上行数据传输时,向所述 AP发送上传数据的请求, 其中, 所述上传数据的请求中包含用于唯一标识所述 STA 的标识序列, 所 述需要进行上行数据传输的 STA的标识序列之间相互正交。
方式二: 所述 STA向所述 AP发送其发送缓存信息, 以使所述 AP在多 个 STA中选择发送缓存信息达到阈值条件的 STA作为需要进行上行数据传 输的 STA。 在本发明的另一实施例中, 该 UL MU-MIM0流程可以由 AP根据当前 的场景确定发起, 也可以是由 STA根据当前的场景确定发起。
其中, 若 AP在单 STA发送上行数据的场景中发起 UL MU-MIM0流程, 则在所述 STA接收 AP发送的指示信息之后, 所述方法还包括:
所述 STA将发送数据的格式更改为支持上行多用户输入输出的传输格 式, 然后再执行所述 STA通过其到所述 AP的信道发送上行数据的歩骤。
若由 STA根据当前的场景确定发起 UL MU-MIM0流程, 则在所述 STA接 收 AP发送的指示信息之前, 所述方法还包括:
所述 STA监听其他 STA向所述 AP发送的上行数据;
所述 STA比较所述其他 STA发送的上行数据占用的空时流数与所述 AP 支持的空时流数;
当所述 AP存在空闲空时流时, 所述 STA向所述 AP发送上行数据。 以上以 STA侧为执行主体的方法实施例中, 具体过程请参见前述以 AP 为执行主体的方法实例, 此处不再赘述。
本发明实施例提出了多种方案, 可以将上行多用户 MIM0应用到当前的 基于竞争方式获取信道使用权的无线通信系统。
以上是对本发明方法实施例的描述, 下面对实现上述方法的装置和系 统进行介绍。
参见图 24, 为本发明实施例一种接入设备的结构示意图。
该接入设备可以包括:
发送指示单元 241, 用于向至少两个站台 STA发送指示信息, 所述指示 信息用于指示所述至少两个 STA进行上行多用户数据传输;
数据接收单元 242, 用于接收所述至少两个 STA通过各自到所述 AP的 信道发送的上行数据;
数据解调单元 243, 用于利用预先估计出的各所述 STA到所述 AP的信 道所对应的接收波束分别对所述至少两个 STA发送的上行数据进行解调。 本发明实施例中 AP通过上述单元实现了 AP对多个 STA发送的上行 数据的分离及解调, 实现了上行多用户的数据传输。
在本发明的另一实施例中, 该接入设备还可以包括第一信道估计单元, 用于在所述发送指示单元向至少两个 STA发送指示信息之后, 根据各所述 STA发送的用于进行信道估计的信息确定各所述 STA到所述 AP的信道。
在第一种实现方式中, 该第一信道估计单元可以包括:
第一接收子单元, 用于接收所述至少两个 STA通过各自到所述 AP的信 道同时发送的第一数据帧前导, 所述第一数据帧前导中包含用于信道估计 的训练序列, 其中, 各所述 STA的训练序列之间相互正交;
第一确定子单元, 用于根据所述第一数据帧前导中的训练序列估计各 所述 STA到所述 AP的信道。
在第二种实现方式中, 该第一信道估计单元可以包括:
第二接收子单元, 用于接收所述至少两个 STA通过各自到所述 AP的信 道依次发送的第二数据帧前导, 所述第二数据帧前导中包含所述 STA 的标 识信息;
第二确定子单元, 用于根据所述第二数据帧前导中所述 STA 的标识信 息估计各所述 STA到所述 AP的信道。
在本发明的另一实施例中, 该接入设备还可以包括第二信道估计单元, 用于在所述发送指示单元向至少两个 STA发送指示信息之前, 根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道。
在第一种实现方式中, 该第二信道估计单元可以包括:
第一发送子单元, 用于向所述至少两个 STA逐一发送第一请求, 所述 第一请求用于指示所述至少两个 STA在接收到所述请求后反馈零数据报文 NDP;
第三确定子单元, 用于根据所述至少两个 STA通过各自到所述 AP的信 道逐一反馈的 NDP, 估计各所述 STA到所述 AP的信道。 在第二种实现方式中, 该第二信道估计单元可以包括: 第二发送子单元, 用于发送第二请求, 所述第二请求用于指示所述至 少两个 STA在接收到所述第二请求后同时反馈 NDP;
反馈接收子单元, 用于接收所述至少两个 STA通过各自到所述 AP的信 道同时反馈的 NDP, 所述 NDP中包含用于信道估计的训练序列, 其中, 各所 述 STA的训练序列之间相互正交;
第四确定子单元, 用于根据所述 NDP中的训练序列估计各所述 STA到 所述 AP的信道。
在本发明的另一实施例中, 该接入设备还可以包括确认回复单元, 用 于对所述至少两个 STA发送的上行数据进行解调后向所述至少两个 STA回 复确认信息。
在本发明的另一实施例中, 该接入设备还可以包括站台确定单元, 用 于在所述发送指示单元向至少两个 STA发送指示信息之前, 在多个 STA中 确定出需要进行上行数据传输的 STA作为所述至少两个 STA。
在第一种实现方式中, 该站台确定单元可以包括:
广播子单元, 用于向所述多个 STA广播请求指示信息, 所述请求指示 信息用于指示所述多个 STA中的需要进行上行数据传输的 STA向所述 AP发 送上传数据的请求;
请求接收子单元, 用于接收所述需要进行上行数据传输的 STA发送的 上传数据的请求, 其中, 所述上传数据的请求中包含用于唯一标识所述需 要进行上行数据传输的 STA的标识序列,所述需要进行上行数据传输的 STA 的标识序列之间相互正交;
第一站台确定子单元, 用于根据所述标识序列确定出所述需要进行上 行数据传输的 STA。
在第二种实现方式中, 该站台确定单元可以包括:
信息接收子单元, 用于接收所述多个 STA依次发送的各自的发送缓存 自 .
I口心;
第二站台确定子单元, 用于在所述多个 STA 中选择所述发送缓存信息 达到阈值条件的 STA作为所述需要进行上行数据传输的 STA。
在本发明的另一实施例中, 该接入设备还可以包括:
单数据接收单元, 用于在所述发送指示单元向至少两个 STA发送指示 信息之前, 接收单个 STA发送的上行数据;
判断单元, 用于根据所述单个 STA发送的上行数据占用的空时流数判 断是否还存在空闲的空时流; 若是, 则所述 AP再执行所述向至少两个 STA 发送指示信息的歩骤。
参见图 25, 为本发明实施例一种站台的结构示意图。
该站台可以包括:
指示接收单元 251, 用于接收接入点 AP发送的指示信息, 所述指示信 息用于指示包括该 STA在内的至少两个 STA进行上行多用户数据传输; 数据发送单元 252, 用于通过其到所述 AP的信道发送上行数据, 以使 所述 AP利用预先估计出的各所述 STA到所述 AP的信道所对应的接收波束 分别对所述至少两个 STA发送的上行数据进行解调。
在本发明的另一实施例中, 该站台还可以包括第一信息发送单元, 用 于在所述指示接收单元接收 AP发送的指示信息之后, 向所述 AP发送用于 进行信道估计的信息, 以使所述 AP根据所述用于进行信道估计的信息估计 所述 STA到所述 AP的信道。
具体的, 在一种实现方式中, 该第一信息发送单元具体可以用于通过 其到所述 AP的信道发送第一数据帧前导, 所述第一数据帧前导中包含用于 信道估计的训练序列, 其中, 所述至少两个 STA 同时发送各自的第一数据 帧前导, 且各所述 STA的训练序列之间相互正交。
在另一种实现方式中, 该第一信息发送单元具体可以用于通过其到所 述 AP的信道发送第二数据帧前导, 其中, 所述至少两个 STA按次序发送各 自的第二数据帧前导, 且各所述 STA的第二数据帧前导中包含其标识信息。 在本发明的另一实施例中, 该站台还可以包括第二信息发送单元, 用 于在所述指示接收单元接收 AP发送的指示信息之前, 向所述 AP发送用于 进行信道估计的信息, 以使所述 AP根据所述用于进行信道估计的信息估计 所述 STA到所述 AP的信息。
具体的, 在一种实现方式中, 该第二信息发送单元可以包括: 第一请求接收子单元, 用于接收所述 AP向所述至少两个 STA逐一发送 的第一请求, 所述第一请求用于指示所述至少两个 STA在接收到所述请求 后反馈零数据报文 NDP;
第一反馈子单元, 用于通过其到所述 AP的信道反馈 NDP。
在另一种实现方式中, 该第二信息发送单元可以包括:
第二请求接收子单元, 用于接收所述 AP发送的第二请求, 所述第二请 求用于指示所述至少两个 STA在接收到所述请求后同时反馈 NDP;
第二反馈子单元, 用于通过其到所述 AP的信道反馈 NDP, 所述 NDP中 包含用于信道估计的训练序列, 其中, 各所述 STA 的训练序列之间相互正
、 - 父。
在本发明的另一实施例中, 该站台还可以包括确认接收单元, 用于接 收所述 AP在对所述 STA发送的上行数据进行解调后回复的确认信息。
在本发明的另一实施例中, 该站台还可以包括广播接收单元, 用于在 所述指示接收单元接收 AP发送的指示信息之前, 接收所述 AP广播的请求 指示信息, 所述请求指示信息用于指示所述多个 STA 中的需要进行上行数 据传输的 STA向所述 AP发送上传数据的请求;
请求发送单元, 用于当需要进行上行数据传输时, 向所述 AP发送上传 数据的请求, 其中, 所述上传数据的请求中包含用于唯一标识所述 STA 的 标识序列, 所述需要进行上行数据传输的 STA的标识序列之间相互正交。
在本发明的另一实施例中, 该站台还可以包括缓存发送单元, 用于在 所述指示接收单元接收 AP发送的指示信息之前, 向所述 AP发送其发送缓 存信息, 以使所述 AP在多个 STA中选择发送缓存信息达到阈值条件的 STA 作为需要进行上行数据传输的 STA。
在本发明的另一实施例中, 该站台还可以包括格式变换单元, 用于在 所述指示接收单元接收 AP发送的指示信息之后, 将发送数据的格式更改为 支持上行多用户输入输出的传输格式, 然后再由所述数据发送单元通过其 到所述 AP的信道发送上行数据。
在本发明的另一实施例中, 该站台还可以包括监听单元, 用于在所述 指示接收单元接收 AP发送的指示信息之前, 监听其他 STA向所述 AP发送 的上行数据;
比较单元, 用于比较所述其他 STA发送的上行数据占用的空时流数与 所述 AP支持的空时流数;
携带传输单元, 用于当所述 AP存在空闲空时流时, 向所述 AP发送上 行数据。
如图 26所示, 本发明实施例还提供一种接入设备 260, 该接入设备包 括收发器 2601、 存储器 2602和处理器 2603。
其中, 收发器 2601, 用于向至少两个站台 STA发送指示信息, 所述指 示信息用于指示所述至少两个 STA进行上行多用户数据传输; 接收所述至 少两个 STA通过各自到所述 AP的信道发送的上行数据;
存储器 2602中存储有一段程序, 处理器 2603用于读取存储器 2602中 的程序, 并执行以下歩骤:
利用预先估计出的各所述 STA到所述 AP的信道所对应的接收波束分别 对所述至少两个 STA发送的上行数据进行解调。
如图 27所示, 本发明实施例还提供一种站台 270, 包括收发器 2701, 该收发器 2701用于接收接入点 AP发送的指示信息, 所述指示信息用于指 示包括所述 STA在内的至少两个 STA进行上行多用户数据传输; 通过其到 所述 AP的信道发送上行数据, 以使所述 AP利用预先估计出的各所述 STA 到所述 AP的信道所对应的接收波束分别对所述至少两个 STA发送的上行数 据进行解调。
本发明实施例还提供了一种多用户数据传输系统, 该系统可以包括如 前述实施例中所述的接入设备及多个站台。
本发明实施例中 AP通过各 STA到 AP的不同信道接收多个 STA的上行 数据, 并采用各信道对应的接收波束来解调数据, 实现了 AP对多个 STA发 送的上行数据的分离及解调, 实现了上行多用户的数据传输。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述 的各示例的单元及算法歩骤, 能够以电子硬件、 或者计算机软件和电子 硬件的结合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于 技术方案的特定应用和设计约束条件。 专业技术人员可以对每个特定的 应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超出 本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上 述描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例 中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装 置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例 仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组件可以结合或者 可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所 显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接 口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形 式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开 的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于 一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选 择其中的部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单 元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集 成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或 使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术 方案的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人 计算机, 服务器, 或者网络设备等) 或处理器(processor) 执行本发明 各个实施例所述方法的全部或部分歩骤。 而前述的存储介质包括: U盘、 移动硬盘、只读存储器(ROM, Read-Only Memory ) ,随机存取存储器(RAM, Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种上行多用户数据传输方法, 其特征在于, 包括:
接入点 AP向至少两个站台 STA发送指示信息, 所述指示信息用于指示 所述至少两个 STA进行上行多用户数据传输;
所述 AP接收所述至少两个 STA通过各自到所述 AP的信道发送的上行 数据;
所述 AP利用预先估计出的各所述 STA到所述 AP的信道所对应的接收 波束分别对所述至少两个 STA发送的上行数据进行解调。
2、 根据权利要求 1所述的方法, 其特征在于, 在所述 AP向至少两个 STA发送指示信息之后, 所述方法还包括:
所述 AP根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道。
3、根据权利要求 2所述的方法, 其特征在于, 所述 AP根据各所述 STA 发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道, 包括: 所述 AP接收所述至少两个 STA通过各自到所述 AP的信道同时发送的 第一数据帧前导, 所述第一数据帧前导中包含用于信道估计的训练序列, 其中, 各所述 STA的训练序列之间相互正交;
所述 AP根据所述第一数据帧前导中的训练序列估计各所述 STA到所述 AP的信道。
4、根据权利要求 2所述的方法, 其特征在于, 所述 AP根据各所述 STA 发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道, 包括: 所述 AP接收所述至少两个 STA通过各自到所述 AP的信道依次发送的 第二数据帧前导, 所述第二数据帧前导中包含所述 STA的标识信息; 所述 AP根据所述第二数据帧前导中所述 STA 的标识信息估计各所述 STA到所述 AP的信道。
5、 根据权利要求 1所述的方法, 其特征在于, 在所述 AP向至少两个 STA发送指示信息之前, 所述方法还包括:
所述 AP根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道。
6、 根据权利要求 5所述的方法, 其特征在于, 所述 AP根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道, 包 括:
所述 AP向所述至少两个 STA逐一发送第一请求,所述第一请求用于 指示所述至少两个 STA在接收到所述请求后反馈零数据报文 NDP ;
所述 AP根据所述至少两个 STA通过各自到所述 AP的信道逐一反馈的 NDP , 估计各所述 STA到所述 AP的信道。
7、根据权利要求 5所述的方法, 其特征在于, 所述 AP根据各所述 STA 发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道, 包括: 所述 AP 发送第二请求, 所述第二请求用于指示所述至少两个 STA 在接收到所述第二请求后同时反馈 NDP ;
所述 AP接收所述至少两个 STA通过各自到所述 AP的信道同时反馈的 NDP, 所述 NDP中包含用于信道估计的训练序列, 其中, 各所述 STA的训练 序列之间相互正交;
所述 AP根据所述 NDP中的训练序列估计各所述 STA到所述 AP的信道。
8、 根据权利要求 1至 7中任意一项所述的方法, 其特征在于, 所述方 法还包括:
所述 AP对所述至少两个 STA发送的上行数据进行解调后向所述至少两 个 STA回复确认信息。
9、 根据权利要求 1至 8中任意一项所述的方法, 其特征在于, 在所述 AP向至少两个 STA发送指示信息之前, 所述方法还包括:
所述 AP在多个 STA中确定出需要进行上行数据传输的 STA作为所述至 少两个 STA。
10、 根据权利要求 9所述的方法, 其特征在于, 所述 AP在多个 STA中 确定出需要进行上行数据传输的 STA作为所述至少两个 STA, 包括:
所述 AP向所述多个 STA广播请求指示信息, 所述请求指示信息用于指 示所述多个 STA中的需要进行上行数据传输的 STA向所述 AP发送上传数据 的请求;
所述 AP接收所述需要进行上行数据传输的 STA发送的上传数据的请 求, 其中, 所述上传数据的请求中包含用于唯一标识所述需要进行上行数 据传输的 STA的标识序列, 所述需要进行上行数据传输的 STA的标识序列 之间相互正交;
所述 AP根据所述标识序列确定出所述需要进行上行数据传输的 STA。
1 1、 根据权利要求 9所述的方法, 其特征在于, 所述 AP在多个 STA中 确定出需要进行上行数据传输的 STA作为所述至少两个 STA, 包括:
所述 AP接收所述多个 STA依次发送的各自的发送缓存信息;
所述 AP在所述多个 STA中选择所述发送缓存信息达到阈值条件的 STA 作为所述需要进行上行数据传输的 STA。
12、 根据权利要求 1至 8中任意一项所述的方法, 其特征在于, 在所 述 AP向至少两个 STA发送指示信息之前, 所述方法还包括:
所述 AP接收单个 STA发送的上行数据;
所述 AP根据所述单个 STA发送的上行数据占用的空时流数判断是否还 存在空闲的空时流; 若是, 则所述 AP执行所述向至少两个 STA发送指示信 息的歩骤。
13、 一种上行多用户数据传输方法, 其特征在于, 包括:
站台 STA接收接入点 AP发送的指示信息, 所述指示信息用于指示包括 所述 STA在内的至少两个 STA进行上行多用户数据传输;
所述 STA通过其到所述 AP的信道发送上行数据, 以使所述 AP利用预 先估计出的各所述 STA到所述 AP的信道所对应的接收波束分别对所述至少 两个 STA发送的上行数据进行解调。
14、 根据权利要求 13所述的方法, 其特征在于, 在所述 STA接收 AP 发送的指示信息之后, 所述方法还包括:
所述 STA向所述 AP发送用于进行信道估计的信息, 以使所述 AP根据 所述用于进行信道估计的信息估计所述 STA到所述 AP的信道。
15、 根据权利要求 14所述的方法, 其特征在于, 所述 STA向所述 AP 发送用于进行信道估计的信息, 包括:
所述 STA通过其到所述 AP的信道发送第一数据帧前导, 所述第一数据 帧前导中包含用于信道估计的训练序列, 其中, 所述至少两个 STA 同时发 送各自的第一数据帧前导, 且各所述 STA的训练序列之间相互正交。
16、 根据权利要求 14所述的方法, 其特征在于, 所述 STA向所述 AP 发送用于进行信道估计的信息, 包括:
所述 STA通过其到所述 AP的信道发送第二数据帧前导, 其中, 所述至 少两个 STA按次序发送各自的第二数据帧前导, 且各所述 STA的第二数据 帧前导中包含其标识信息。
17、 根据权利要求 13所述的方法, 其特征在于, 在所述 STA接收 AP 发送的指示信息之前, 所述方法还包括:
所述 STA向所述 AP发送用于进行信道估计的信息, 以使所述 AP根据 所述用于进行信道估计的信息估计所述 STA到所述 AP的信息。
18、 根据权利要求 17所述的方法, 其特征在于, 所述 STA向所述 AP 发送用于进行信道估计的信息, 包括:
所述 STA接收所述 AP向所述至少两个 STA逐一发送的第一请求, 所 述第一请求用于指示所述至少两个 STA在接收到所述请求后反馈零数据 报文 NDP ;
所述 STA通过其到所述 AP的信道反馈 NDP。
19、 根据权利要求 17所述的方法, 其特征在于, 所述 STA向所述 AP 发送用于进行信道估计的信息, 包括:
所述 STA接收所述 AP发送的第二请求, 所述第二请求用于指示所述 至少两个 STA在接收到所述请求后同时反馈 NDP ;
所述 STA通过其到所述 AP的信道反馈 NDP, 所述 NDP中包含用于信道 估计的训练序列, 其中, 各所述 STA的训练序列之间相互正交。
20、 根据权利要求 13至 19中任意一项所述的方法, 其特征在于, 所 述方法还包括: 所述 STA接收所述 AP在对所述 STA发送的上行数据进行解调后回复的 确认信息。
21、 根据权利要求 13至 20中任意一项所述的方法, 其特征在于, 在 所述 STA接收 AP发送的指示信息之前, 所述方法还包括:
所述 STA接收所述 AP广播的请求指示信息, 所述请求指示信息用于指 示所述多个 STA中的需要进行上行数据传输的 STA向所述 AP发送上传数据 的请求;
当所述 STA需要进行上行数据传输时,向所述 AP发送上传数据的请 求, 其中, 所述上传数据的请求中包含用于唯一标识所述 STA的标识序列, 所述需要进行上行数据传输的 STA的标识序列之间相互正交。
22、 根据权利要求 13至 20中任意一项所述的方法, 其特征在于, 在 所述 STA接收 AP发送的指示信息之前, 所述方法还包括:
所述 STA向所述 AP发送其发送缓存信息, 以使所述 AP在多个 STA中 选择发送缓存信息达到阈值条件的 STA作为需要进行上行数据传输的 STA。
23、 根据权利要求 13至 20中任意一项所述的方法, 其特征在于, 在 所述 STA接收 AP发送的指示信息之后, 所述方法还包括:
所述 STA将发送数据的格式更改为支持上行多用户输入输出的传输格 式, 然后再执行所述 STA通过其到所述 AP的信道发送上行数据的歩骤。
24、 根据权利要求 13至 20中任意一项所述的方法, 其特征在于, 在 所述 STA接收 AP发送的指示信息之前, 所述方法还包括:
所述 STA监听其他 STA向所述 AP发送的上行数据;
所述 STA比较所述其他 STA发送的上行数据占用的空时流数与所述 AP支持的空时流数;
当所述 AP存在空闲空时流时, 所述 STA向所述 AP发送上行数据。
25、 一种接入设备, 其特征在于, 包括:
发送指示单元, 用于向至少两个站台 STA发送指示信息, 所述指示信 息用于指示所述至少两个 STA进行上行多用户数据传输;
数据接收单元, 用于接收所述至少两个 STA通过各自到所述 AP的信 道发送的上行数据;
数据解调单元, 用于利用预先估计出的各所述 STA到所述 AP的信道所 对应的接收波束分别对所述至少两个 STA发送的上行数据进行解调。
26、 根据权利要求 25所述的接入设备, 其特征在于, 还包括: 第一信道估计单元, 用于在所述发送指示单元向至少两个 STA发送指 示信息之后, 根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道。
27、 根据权利要求 26所述的接入设备, 其特征在于, 所述第一信道估 计单元包括:
第一接收子单元, 用于接收所述至少两个 STA通过各自到所述 AP的信 道同时发送的第一数据帧前导, 所述第一数据帧前导中包含用于信道估计 的训练序列, 其中, 各所述 STA的训练序列之间相互正交;
第一确定子单元, 用于根据所述第一数据帧前导中的训练序列估计各 所述 STA到所述 AP的信道。
28、 根据权利要求 26所述的接入设备, 其特征在于, 所述第一信道估 计单元包括: 第二接收子单元, 用于接收所述至少两个 STA通过各自到所述 AP的信 道依次发送的第二数据帧前导, 所述第二数据帧前导中包含所述 STA 的标 识信息;
第二确定子单元, 用于根据所述第二数据帧前导中所述 STA 的标识信 息估计各所述 STA到所述 AP的信道。
29、 根据权利要求 25所述的接入设备, 其特征在于, 还包括: 第二信道估计单元, 用于在所述发送指示单元向至少两个 STA发送指 示信息之前, 根据各所述 STA发送的用于进行信道估计的信息估计各所述 STA到所述 AP的信道。
30、 根据权利要求 29所述的接入设备, 其特征在于, 所述第二信道 估计单元包括:
第一发送子单元, 用于向所述至少两个 STA逐一发送第一请求, 所 述第一请求用于指示所述至少两个 STA在接收到所述请求后反馈零数据 报文 NDP ;
第三确定子单元, 用于根据所述至少两个 STA通过各自到所述 AP的 信道逐一反馈的 NDP, 估计各所述 STA到所述 AP的信道。
31、 根据权利要求 29所述的接入设备, 其特征在于, 所述第二信道估 计单元包括:
第二发送子单元, 用于发送第二请求, 所述第二请求用于指示所述 至少两个 STA在接收到所述第二请求后同时反馈 NDP ;
反馈接收子单元, 用于接收所述至少两个 STA通过各自到所述 AP的信 道同时反馈的 NDP, 所述 NDP中包含用于信道估计的训练序列, 其中, 各所 述 STA的训练序列之间相互正交; 第四确定子单元, 用于根据所述 NDP中的训练序列估计各所述 STA到 所述 AP的信道。
32、 根据权利要求 25至 31中任意一项所述的接入设备, 其特征在于, 还包括:
确认回复单元, 用于对所述至少两个 STA发送的上行数据进行解调后 向所述至少两个 STA回复确认信息。
33、 根据权利要求 25至 32中任意一项所述的接入设备, 其特征在于, 还包括:
站台确定单元, 用于在所述发送指示单元向至少两个 STA发送指示信 息之前, 在多个 STA中确定出需要进行上行数据传输的 STA作为所述至少 两个 STA。
34、 根据权利要求 33所述的接入设备, 其特征在于, 所述站台确定单 元包括:
广播子单元, 用于向所述多个 STA广播请求指示信息, 所述请求指示 信息用于指示所述多个 STA中的需要进行上行数据传输的 STA向所述 AP发 送上传数据的请求;
请求接收子单元, 用于接收所述需要进行上行数据传输的 STA发送的 上传数据的请求, 其中, 所述上传数据的请求中包含用于唯一标识所述需 要进行上行数据传输的 STA的标识序列,所述需要进行上行数据传输的 STA 的标识序列之间相互正交;
第一站台确定子单元, 用于根据所述标识序列确定出所述需要进行上
35、 根据权利要求 33所述的接入设备, 其特征在于, 所述站台确定单 元包括:
信息接收子单元, 用于接收所述多个 STA依次发送的各自的发送缓存 自 .
I口心;
第二站台确定子单元, 用于在所述多个 STA 中选择所述发送缓存信息 达到阈值条件的 STA作为所述需要进行上行数据传输的 STA。
36、 根据权利要求 25至 32中任意一项所述的接入设备, 其特征在于, 还包括:
单数据接收单元, 用于在所述发送指示单元向至少两个 STA发送指示 信息之前, 接收单个 STA发送的上行数据;
判断单元, 用于根据所述单个 STA发送的上行数据占用的空时流数判 断是否还存在空闲的空时流; 若是, 则所述 AP再执行所述向至少两个 STA 发送指示信息的歩骤。
37、 一种站台, 其特征在于, 包括:
指示接收单元, 用于接收接入点 AP发送的指示信息, 所述指示信息用 于指示包括所述 STA在内的至少两个 STA进行上行多用户数据传输;
数据发送单元, 用于通过其到所述 AP的信道发送上行数据, 以使所述 AP利用预先估计出的各所述 STA到所述 AP的信道所对应的接收波束分别对 所述至少两个 STA发送的上行数据进行解调。
38、 根据权利要求 37所述的站台, 其特征在于, 还包括:
第一信息发送单元, 用于在所述指示接收单元接收 AP发送的指示信息 之后, 向所述 AP发送用于进行信道估计的信息, 以使所述 AP根据所述用 于进行信道估计的信息估计所述 STA到所述 AP的信道。
39、 根据权利要求 38所述的站台, 其特征在于,
所述第一信息发送单元, 具体用于通过其到所述 AP的信道发送第一数 据帧前导, 所述第一数据帧前导中包含用于信道估计的训练序列, 其中, 所述至少两个 STA同时发送各自的第一数据帧前导, 且各所述 STA的训练 序列之间相互正交。
40、 根据权利要求 38所述的站台, 其特征在于,
所述第一信息发送单元, 具体用于通过其到所述 AP的信道发送第二数 据帧前导, 其中, 所述至少两个 STA按次序发送各自的第二数据帧前导, 且各所述 STA的第二数据帧前导中包含其标识信息。
41、 根据权利要求 37所述的站台, 其特征在于, 还包括:
第二信息发送单元, 用于在所述指示接收单元接收 AP发送的指示信息 之前, 向所述 AP发送用于进行信道估计的信息, 以使所述 AP根据所述用 于进行信道估计的信息估计所述 STA到所述 AP的信息。
42、 根据权利要求 41所述的站台, 其特征在于, 所述第二信息发送单 元包括:
第一请求接收子单元, 用于接收所述 AP向所述至少两个 STA逐一发 送的第一请求, 所述第一请求用于指示所述至少两个 STA在接收到所述 请求后反馈零数据报文 NDP ;
第一反馈子单元, 用于通过其到所述 AP的信道反馈 NDP。
43、 根据权利要求 42所述的站台, 其特征在于, 所述第二信息发送单 元包括: 第二请求接收子单元, 用于接收所述 AP发送的第二请求, 所述第二 请求用于指示所述至少两个 STA在接收到所述请求后同时反馈 NDP ; 第二反馈子单元, 用于通过其到所述 AP的信道反馈 NDP, 所述 NDP中 包含用于信道估计的训练序列, 其中, 各所述 STA 的训练序列之间相互正
、 - 父。
44、 根据权利要求 37至 43中任意一项所述的站台, 其特征在于, 还 包括:
确认接收单元, 用于接收所述 AP在对所述 STA发送的上行数据进行解 调后回复的确认信息。
45、 根据权利要求 37至 44中任意一项所述的站台, 其特征在于, 还 包括:
广播接收单元,用于在所述指示接收单元接收 AP发送的指示信息之前, 接收所述 AP广播的请求指示信息,所述请求指示信息用于指示所述多个 STA 中的需要进行上行数据传输的 STA向所述 AP发送上传数据的请求;
请求发送单元, 用于当需要进行上行数据传输时, 向所述 AP发送上 传数据的请求, 其中, 所述上传数据的请求中包含用于唯一标识所述 STA 的标识序列, 所述需要进行上行数据传输的 STA的标识序列之间相互正交。
46、 根据权利要求 37至 44中任意一项所述的站台, 其特征在于, 还 包括:
缓存发送单元,用于在所述指示接收单元接收 AP发送的指示信息之前, 向所述 AP发送其发送缓存信息, 以使所述 AP在多个 STA中选择发送缓存 信息达到阈值条件的 STA作为需要进行上行数据传输的 STA。
47、 根据权利要求 37至 46中任意一项所述的站台, 其特征在于, 还 包括:
格式变换单元,用于在所述指示接收单元接收 AP发送的指示信息之后, 将发送数据的格式更改为支持上行多用户输入输出的传输格式, 然后再由 所述数据发送单元通过其到所述 AP的信道发送上行数据。
48、 根据权利要求 37至 46中任意一项所述的站台, 其特征在于, 还 包括:
监听单元, 用于在所述指示接收单元接收 AP发送的指示信息之前, 监 听其他 STA向所述 AP发送的上行数据;
比较单元, 用于比较所述其他 STA发送的上行数据占用的空时流数 与所述 AP支持的空时流数;
携带传输单元, 用于当所述 AP存在空闲空时流时, 向所述 AP发送 上行数据。
49、 一种多用户数据传输系统, 其特征在于, 包括如权利要求 25 至 36中任意一项所述的接入设备,以及多个如权利要求 37至 48中任意 一项所述的站台。
PCT/CN2014/073229 2013-06-25 2014-03-11 上行多用户数据传输方法及上行多用户输入输出系统 WO2014206115A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/757,735 US11038737B2 (en) 2013-06-25 2015-12-23 Method for uplink multiuser data transmission and system for uplink multiuser multiple input multiple output
US16/378,160 US11063807B2 (en) 2013-06-25 2019-04-08 Method for uplink multiuser data transmission and system for uplink multiuser multiple input multiple output
US16/380,819 US20190238388A1 (en) 2013-06-25 2019-04-10 Method for uplink multiuser data transmission and system for uplink multiuser multiple input multiple output
US16/380,804 US11212156B2 (en) 2013-06-25 2019-04-10 Method for uplink multiuser data transmission and system for uplink multiuser multiple input multiple output
US18/075,385 US11968066B2 (en) 2013-06-25 2022-12-05 Method for uplink multiuser data transmission and system for uplink multiuser multiple input multiple output

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310255933.0A CN104253673B (zh) 2013-06-25 2013-06-25 上行多用户数据传输方法及上行多用户输入输出系统
CN201310255933.0 2013-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/757,735 Continuation US11038737B2 (en) 2013-06-25 2015-12-23 Method for uplink multiuser data transmission and system for uplink multiuser multiple input multiple output

Publications (1)

Publication Number Publication Date
WO2014206115A1 true WO2014206115A1 (zh) 2014-12-31

Family

ID=52140975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073229 WO2014206115A1 (zh) 2013-06-25 2014-03-11 上行多用户数据传输方法及上行多用户输入输出系统

Country Status (3)

Country Link
US (5) US11038737B2 (zh)
CN (5) CN104253673B (zh)
WO (1) WO2014206115A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178828A1 (en) * 2015-05-04 2016-11-10 Sprint Communications Company L.P. Dynamic implementation of uplink multi-user multiple input and multiple output
CN106160965A (zh) * 2015-03-25 2016-11-23 联想(北京)有限公司 信息处理方法、电子设备及终端
KR20160147362A (ko) * 2015-06-15 2016-12-23 한국전자통신연구원 프레임 전송 방법 및 상기 방법을 수행하는 통신 장치
EP3404955A4 (en) * 2016-02-01 2018-11-21 Huawei Technologies Co., Ltd. Channel measuring method and device
EP3592094A1 (en) * 2015-01-09 2020-01-08 InterDigital Patent Holdings, Inc. Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (wlan) system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253673B (zh) * 2013-06-25 2018-10-02 华为技术有限公司 上行多用户数据传输方法及上行多用户输入输出系统
US9935794B1 (en) 2014-03-24 2018-04-03 Marvell International Ltd. Carrier frequency offset estimation
EP3163970B1 (en) * 2014-07-31 2018-11-28 Huawei Technologies Co. Ltd. Transmission device and transmission method for data frame
US9894641B2 (en) * 2014-09-26 2018-02-13 Qualcomm, Incorporated Methods and apparatus for implementing multiple user uplink medium access control protocols in a wireless network
WO2016138639A1 (zh) * 2015-03-03 2016-09-09 华为技术有限公司 一种下行数据的接收确认方法及装置
CN106304356B (zh) * 2015-06-12 2019-09-24 联想(北京)有限公司 上行数据传输方法及无线接入点、站点
CN106331984A (zh) * 2015-07-01 2017-01-11 中兴通讯股份有限公司 多用户共享接入过程中的重传控制方法、装置、终端
CN106341898B (zh) 2015-07-09 2020-07-07 中兴通讯股份有限公司 多站点的传输指示、触发、执行方法及装置
US9998951B2 (en) * 2015-08-05 2018-06-12 Qualcomm Incorporated Training sequence generation for wireless communication networks
CN106454930A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 信道探测报告传输方法及装置
US9998263B2 (en) * 2015-08-10 2018-06-12 Intel IP Corporation Scheduling resources for orthogonal frequency division multiple access uplink transmissions
CN106488575B (zh) * 2015-08-31 2021-02-09 中兴通讯股份有限公司 一种数据传输方法、接入点、站点
EP4311144A3 (en) * 2015-08-31 2024-03-27 ZTE Corporation Data transmission method, access point, and station
CN106533522B (zh) * 2015-09-10 2020-10-09 华为技术有限公司 一种传输信道状态信息的方法和装置
CN105610757B (zh) * 2015-12-21 2019-02-22 魅族科技(中国)有限公司 无线局域网的通信方法及通信装置、站点和接入点
CN108924945B (zh) 2015-12-25 2019-08-06 华为技术有限公司 一种接入方法及装置
CN107889220B (zh) * 2016-09-29 2022-01-28 华为技术有限公司 通信方法、基站和终端设备
US10959121B1 (en) * 2016-12-20 2021-03-23 Newracom, Inc. Dynamic transmit chain availability signaling in wireless devices
CN110198181B (zh) * 2018-02-27 2021-01-29 华为技术有限公司 发送wlan帧的方法、装置及存储介质
CN110912594B (zh) * 2018-09-17 2022-12-06 华为技术有限公司 波束训练方法及装置
US10721040B2 (en) * 2018-11-01 2020-07-21 Huawei Technologies Co., Ltd. Orthogonal sequence based reference signal design for next generation WLANs
US11272427B2 (en) 2019-05-10 2022-03-08 Huawei Technologies Co., Ltd. Systems and methods for capability indication for a wireless receiving station
CN112134660B (zh) * 2019-06-24 2022-02-18 华为技术有限公司 通信方法及装置
CN112491768B (zh) * 2019-09-12 2024-07-23 华为技术有限公司 序列生成方法及装置
CN112702128B (zh) * 2019-10-23 2023-05-12 中兴通讯股份有限公司 信道测量方法、第一设备、第二设备及计算机可读介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568026A (zh) * 2003-06-20 2005-01-19 中国科学技术大学 一种多用户自适应分组分层时空信号收发系统
CN101383645A (zh) * 2007-09-07 2009-03-11 中兴通讯股份有限公司 一种上行多用户设备虚拟多输入多输出的配对方法
CN102237920A (zh) * 2010-04-28 2011-11-09 英特尔公司 上行链路mu mimo媒体访问和错误恢复的系统和方法
EP2538599A1 (en) * 2010-02-18 2012-12-26 LG Electronics Inc. Method and apparatus for ack transmission in a wlan
CN103081552A (zh) * 2010-07-12 2013-05-01 英特尔公司 用于上行链路mu mimo调度的方法和设备

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7558871B2 (en) * 2003-10-31 2009-07-07 Alcatel-Lucent Usa Inc. Data stream association with call through employment of identifier within message associated with the call
US20060062189A1 (en) * 2004-09-21 2006-03-23 Nokia Corporation Wireless transceiver, circuit module, and method for setting channel access time
CN101969327B (zh) * 2004-12-28 2013-06-12 富士通株式会社 无线通信系统和无线通信方法
JP4832084B2 (ja) 2005-10-20 2011-12-07 三洋電機株式会社 通信方法ならびにそれを利用した無線装置および通信システム
JP4775288B2 (ja) 2006-04-27 2011-09-21 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法
US7995672B2 (en) 2006-06-26 2011-08-09 Ralink Technology (Singapore) Corporation Pte. Ltd. Method and apparatus for reception in a multi-input-multi-output (MIMO) orthogonal frequency domain modulation (OFDM) wireless communication system
US7995665B2 (en) 2006-06-26 2011-08-09 Ralink Technology (Singapore) Corporation Pte. Ltd. Method and apparatus for reception in a multi-input-multi-output (MIMO) orthogonal frequency domain modulation (OFDM) wireless communication system
US8787841B2 (en) * 2006-06-27 2014-07-22 Qualcomm Incorporated Method and system for providing beamforming feedback in wireless communication systems
CN101512973A (zh) * 2006-08-29 2009-08-19 高通股份有限公司 在多个无线局域网中同时操作
CN101136881B (zh) * 2006-08-31 2012-10-10 世意法(北京)半导体研发有限责任公司 一种ofdma上行链路接收机和估计载波频偏的方法
CN101192865B (zh) * 2006-11-27 2012-07-25 上海无线通信研究中心 上行多用户多入多出系统中的用户配对方法
US8798202B2 (en) * 2007-06-15 2014-08-05 Motorola Mobility Llc Method and apparatus using sounding PPDUs to provide range extension to IEEE 802.11n signals
US8379601B2 (en) 2007-08-16 2013-02-19 Motorola Mobility Llc Method and system for selective use of control channel element based implicit pointing
IL203785A (en) 2007-09-12 2014-07-31 Qualcomm Inc Devices to increase capacitance and methods for wireless communication
CN101399631B (zh) * 2007-09-30 2012-04-04 中兴通讯股份有限公司 Su-mimo方式和mu-mimo方式下预编码选择的表示方法
CN101414942A (zh) * 2007-10-15 2009-04-22 株式会社Ntt都科摩 一种最小竞争窗口的调整方法及装置
US8743793B2 (en) * 2008-07-14 2014-06-03 Qualcomm Incorporated Systems and methods for providing a separate contention window allowing allocations for pending uplink SDMA transmission opportunities
US20100290449A1 (en) * 2008-08-20 2010-11-18 Qualcomm Incorporated Preamble extensions
JP4561916B2 (ja) 2008-10-31 2010-10-13 ソニー株式会社 無線通信装置及び無線通信方法、信号処理装置及び信号処理方法、並びにコンピューター・プログラム
US8989106B2 (en) 2009-02-27 2015-03-24 Qualcomm Incorporated Methods and apparatuses for scheduling uplink request spatial division multiple access (RSDMA) messages in an SDMA capable wireless LAN
WO2010118383A1 (en) 2009-04-10 2010-10-14 Marvell World Trade Ltd. Signaling for multi-dimension wireless resource allocation
CN101873633B (zh) * 2009-04-21 2014-03-12 华为技术有限公司 一种多媒体分组数据传输和处理方法以及网络设备
WO2010134768A2 (en) 2009-05-22 2010-11-25 Lg Electronics Inc. Method and apparatus for space division multiple access for wireless local area network system
US8437440B1 (en) * 2009-05-28 2013-05-07 Marvell International Ltd. PHY frame formats in a system with more than four space-time streams
KR101433967B1 (ko) 2009-06-03 2014-08-27 엘지전자 주식회사 Ap 선택 정보 제공 방법
KR101534865B1 (ko) * 2009-06-23 2015-07-27 엘지전자 주식회사 링크 적응 절차 수행 방법
US8750205B2 (en) * 2009-08-07 2014-06-10 Texas Instruments Incorporated Multiple rank CQI feedback for cellular networks
US8848624B2 (en) 2009-08-17 2014-09-30 Broadcom Corporation Multi-user uplink communications within multiple user, multiple access, and/or MIMO wireless communication systems
US8434336B2 (en) 2009-11-14 2013-05-07 Qualcomm Incorporated Method and apparatus for managing client initiated transmissions in multiple-user communication schemes
CN102104404B (zh) * 2009-12-21 2014-09-17 株式会社Ntt都科摩 无线通信系统中多用户mimo的传输方法、基站和用户终端
US8687546B2 (en) * 2009-12-28 2014-04-01 Intel Corporation Efficient uplink SDMA operation
US8532221B2 (en) 2010-02-10 2013-09-10 Marvell World Trade Ltd. Transmission protection for wireless communications
US20110199946A1 (en) * 2010-02-17 2011-08-18 Qualcomm Incorporated Method and apparatus for supporting adaptive channel state information feedback rate in multi-user communication systems
US8923219B2 (en) * 2010-02-17 2014-12-30 Qualcomm Incorporated Method and apparatus for supporting adaptive channel state information feedback rate in multi-user communication systems
WO2011108832A2 (ko) 2010-03-05 2011-09-09 엘지전자 주식회사 무선랜 시스템에서 다중 안테나 기법을 기반으로 한 ppdu 수신 방법 및 장치
WO2011112132A1 (en) * 2010-03-08 2011-09-15 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for redistributing resources for use in a radio communication system
US9357565B2 (en) 2010-03-09 2016-05-31 Qualcomm Incorporated Multi-user uplink communication using EDCA with polling
CN101835098B (zh) * 2010-03-26 2012-09-05 清华大学 一种面向密集用户区域的无线网络重构式通信方法
EP3975439A1 (en) * 2010-04-19 2022-03-30 Samsung Electronics Co., Ltd. Method and system for multi-user transmit opportunity for multi-user multiple-input-multiple-output wireless networks
US8934328B2 (en) * 2010-05-04 2015-01-13 Celeno Communications Ltd. System and method for channel state related feedback in multi-user multiple-input-multiple-output systems
US8982686B2 (en) 2010-06-07 2015-03-17 Qualcomm Incorporated Communication devices for generating and using a matrix-mapped sequence
KR101265031B1 (ko) * 2010-06-30 2013-05-27 엘지전자 주식회사 무선랜 시스템에서 관리정보 전송방법 및 장치
US9232543B2 (en) 2010-07-07 2016-01-05 Samsung Electronics Co., Ltd. Method and system for communication in multi-user multiple-input-multiple-output wireless networks
US8369303B2 (en) * 2010-07-28 2013-02-05 Intel Corporation Techniques for uplink multi-user MIMO MAC support
WO2012026990A1 (en) 2010-08-26 2012-03-01 Marvell World Trade Ltd. Wireless communications with primary and secondary access categories
US8649358B2 (en) * 2010-09-08 2014-02-11 Intel Corporation Techniques for UL MU MIMO signaling and error handling
CN102404852B (zh) * 2010-09-16 2016-03-30 中兴通讯股份有限公司 多用户分组标识、获取方法、接入点及站点
US8902769B1 (en) 2010-09-24 2014-12-02 Quantenna Communications, Inc. Method and apparatus for oversubscription control in a Wi-Fi home network
WO2012067393A1 (en) 2010-11-15 2012-05-24 Lg Electronics Inc. Method and apparatus for determining modulation and coding scheme feedback in wireless local area network system
US20120140615A1 (en) 2010-12-03 2012-06-07 Gong Michelle X Method, station and computer readable medium for downlink multi-user multiple access category medium access and error recovery
CA2824458C (en) 2011-01-10 2015-07-21 Lg Electronics Inc. Method and apparatus for transmitting management information frame in wireless local area network system
US20120182886A1 (en) 2011-01-14 2012-07-19 Nokia Corporation Method and Apparatus for Wireless Medium Access
CN102098252B (zh) * 2011-01-26 2013-11-06 华为技术有限公司 一种干扰消除方法和装置
US9414402B2 (en) * 2011-02-18 2016-08-09 Lg Electronics Inc. Method of communication based on controlling receive chain in wireless local area network and apparatus for the same
CN102711135B (zh) * 2011-03-28 2016-08-31 北京邮电大学 收发机联合抑制干扰的方法、系统、基站及用户终端
CN102201891B (zh) * 2011-05-03 2015-07-22 中兴通讯股份有限公司 一种无线帧的发送方法和装置
TWI478550B (zh) 2011-06-07 2015-03-21 Htc Corp 無線通訊系統回退步驟設定方法
US9008677B2 (en) 2011-06-08 2015-04-14 Qualcomm Incorporated Communication devices for multiple group communications
US20130230120A1 (en) * 2011-08-29 2013-09-05 Qualcomm Incorporated Apparatus and methods for long and short training sequences for a fast fourier transform
CN103959824B (zh) 2011-11-08 2018-05-11 华为技术有限公司 用于数据转发的系统和方法
US9497057B2 (en) 2011-12-06 2016-11-15 Lg Electronics Inc. Method for performing channel sounding in wireless LAN system and apparatus
EP3273743B1 (en) 2012-03-01 2024-10-09 InterDigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
US9184810B2 (en) 2012-04-13 2015-11-10 Qualcomm Incorporated Scheduling algorithms for multi-user (MU) multiple-input multiple-output (MIMO) communication systems
JP6355621B2 (ja) 2012-04-15 2018-07-11 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいてフィードバックトリガーフレーム送受信方法及び装置
KR20150013640A (ko) * 2012-04-30 2015-02-05 인터디지탈 패튼 홀딩스, 인크 협력형 직교 블록 기반 자원 할당(cobra) 동작을 지원하는 방법 및 장치
CN107579761A (zh) 2012-05-09 2018-01-12 交互数字专利控股公司 在无线接入点中实施的方法及无线接入点
US9226227B2 (en) 2012-06-29 2015-12-29 Marvell World Trade Ltd. Group based beacons
US9172445B2 (en) 2012-08-13 2015-10-27 Telefonaktiebolaget L M Ericsson (Publ) Multi-user multiple input multiple output radio communications
US9344963B2 (en) 2012-09-03 2016-05-17 Lg Electronics Inc. Method and apparatus for transmitting and receiving power save-polling frame and response frame in wireless LAN system
US9232502B2 (en) * 2012-10-31 2016-01-05 Samsung Electronics Co., Ltd. Method and system for uplink multi-user multiple-input-multiple-output communication in wireless networks
US9264930B2 (en) * 2012-11-07 2016-02-16 Qualcomm Incorporated Buffer status reporting and logical channel prioritization in multiflow operation
CN102932948A (zh) * 2012-11-08 2013-02-13 东莞宇龙通信科技有限公司 数据通信装置和数据通信方法
JP6190889B2 (ja) 2012-11-09 2017-08-30 インターデイジタル パテント ホールディングス インコーポレイテッド ビーム形成方法およびビームを使用するための方法
GB2509519B (en) 2013-01-04 2018-02-14 Broadcom Corp Methods and apparatuses for managing acknowledgements
US10063290B2 (en) * 2013-03-15 2018-08-28 Interdigital Patent Holdings, Inc. Methods and procedures for non-linear precoding based multiuser multiple input multiple output
US9419752B2 (en) * 2013-03-15 2016-08-16 Samsung Electronics Co., Ltd. Transmission opportunity operation of uplink multi-user multiple-input-multiple-output communication in wireless networks
US9712231B2 (en) 2013-04-15 2017-07-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Multiple narrow bandwidth channel access and MAC operation within wireless communications
US9397805B2 (en) * 2013-04-15 2016-07-19 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
CN104253673B (zh) * 2013-06-25 2018-10-02 华为技术有限公司 上行多用户数据传输方法及上行多用户输入输出系统
US20150110046A1 (en) * 2013-10-17 2015-04-23 Qualcomm Incorporated Methods and apparatus for channel state information feedback
KR102438318B1 (ko) * 2014-10-10 2022-08-30 뉴라컴 인코포레이티드 고효율 무선랜에서 동적 자원 할당

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568026A (zh) * 2003-06-20 2005-01-19 中国科学技术大学 一种多用户自适应分组分层时空信号收发系统
CN101383645A (zh) * 2007-09-07 2009-03-11 中兴通讯股份有限公司 一种上行多用户设备虚拟多输入多输出的配对方法
EP2538599A1 (en) * 2010-02-18 2012-12-26 LG Electronics Inc. Method and apparatus for ack transmission in a wlan
CN102237920A (zh) * 2010-04-28 2011-11-09 英特尔公司 上行链路mu mimo媒体访问和错误恢复的系统和方法
CN103081552A (zh) * 2010-07-12 2013-05-01 英特尔公司 用于上行链路mu mimo调度的方法和设备

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3592094A1 (en) * 2015-01-09 2020-01-08 InterDigital Patent Holdings, Inc. Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (wlan) system
CN106160965A (zh) * 2015-03-25 2016-11-23 联想(北京)有限公司 信息处理方法、电子设备及终端
CN106160965B (zh) * 2015-03-25 2019-09-24 联想(北京)有限公司 信息处理方法、电子设备及终端
WO2016178828A1 (en) * 2015-05-04 2016-11-10 Sprint Communications Company L.P. Dynamic implementation of uplink multi-user multiple input and multiple output
KR20160147362A (ko) * 2015-06-15 2016-12-23 한국전자통신연구원 프레임 전송 방법 및 상기 방법을 수행하는 통신 장치
KR102372357B1 (ko) * 2015-06-15 2022-03-10 한국전자통신연구원 프레임 전송 방법 및 상기 방법을 수행하는 통신 장치
US11463218B2 (en) 2015-06-15 2022-10-04 Electronics And Telecommunications Research Institute Method for transmitting frame and communication device for performing the same
EP3404955A4 (en) * 2016-02-01 2018-11-21 Huawei Technologies Co., Ltd. Channel measuring method and device
US10863375B2 (en) 2016-02-01 2020-12-08 Huawei Technologies Co., Ltd. Channel measurement method and apparatus

Also Published As

Publication number Publication date
CN109245809A (zh) 2019-01-18
CN109245808A (zh) 2019-01-18
US20160156497A1 (en) 2016-06-02
CN109245807B (zh) 2019-11-19
US11968066B2 (en) 2024-04-23
CN109245807A (zh) 2019-01-18
CN109245809B (zh) 2021-08-20
CN104253673A (zh) 2014-12-31
CN109245806B (zh) 2020-01-17
US11038737B2 (en) 2021-06-15
CN104253673B (zh) 2018-10-02
US20230108897A1 (en) 2023-04-06
US20190238387A1 (en) 2019-08-01
US11212156B2 (en) 2021-12-28
US20190238388A1 (en) 2019-08-01
CN109245808B (zh) 2020-09-25
US11063807B2 (en) 2021-07-13
CN109245806A (zh) 2019-01-18
US20190238386A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2014206115A1 (zh) 上行多用户数据传输方法及上行多用户输入输出系统
US11876636B2 (en) Wireless communication device
JP6499285B6 (ja) 無線通信システムにおける多重ユーザ送受信のための方法及びこのための装置
JP6262852B2 (ja) 無線lanにおけるマルチユーザアップリンク受信方法及び装置
EP3160058B1 (en) Method and apparatus for transmitting frame
EP2446677B1 (en) Method and apparatus for multiple user uplink requiring minimal station timing and frequency synchronization
KR20130003030A (ko) 다중-사용자 송신들을 위한 순차적 ack
WO2013000253A1 (zh) 协作多点传输系统中信息的交互方法及协作多点传输系统
CN106304357B (zh) 一种无线信号的传输方法及系统
KR20160091360A (ko) 무선 네트워크들에서 멀티캐스트 통신들을 위한 시스템 및 방법
WO2016062135A1 (zh) 无线局域网络站点共享资源的方法及装置
JP2010263489A (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
WO2018126844A1 (zh) 通信信道的传输、接收方法、装置、基站及终端
JP2011109205A (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
JP7520296B2 (ja) ダウンリンクofdmビームフォーミング同時送信
WO2013055943A1 (en) Multi-user transmission during reverse direction grant
CN114667759A (zh) 接入点、站和对应方法
Li et al. Multi-user medium access control in wireless local area network
WO2016037359A1 (zh) 一种数据传输方法和数据传输装置
CN118872209A (zh) 通信设备和方法
WO2016206652A2 (zh) 一种无线信号的传输方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818664

Country of ref document: EP

Kind code of ref document: A1