Nothing Special   »   [go: up one dir, main page]

WO2014136972A1 - 超分子複合体、発光体、および有機化合物検出用のセンサー素子 - Google Patents

超分子複合体、発光体、および有機化合物検出用のセンサー素子 Download PDF

Info

Publication number
WO2014136972A1
WO2014136972A1 PCT/JP2014/056070 JP2014056070W WO2014136972A1 WO 2014136972 A1 WO2014136972 A1 WO 2014136972A1 JP 2014056070 W JP2014056070 W JP 2014056070W WO 2014136972 A1 WO2014136972 A1 WO 2014136972A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
supramolecular complex
compound
molecule
general formula
Prior art date
Application number
PCT/JP2014/056070
Other languages
English (en)
French (fr)
Inventor
利和 小野
良雄 久枝
創 畠中
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2015504462A priority Critical patent/JP6311093B2/ja
Publication of WO2014136972A1 publication Critical patent/WO2014136972A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/02Monocyclic aromatic halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/02Monocyclic aromatic halogenated hydrocarbons
    • C07C25/13Monocyclic aromatic halogenated hydrocarbons containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Definitions

  • the present invention belongs to the technical field of functional materials, and particularly relates to a supramolecular complex (a supramolecular compound) constituted by combining a plurality of molecules.
  • Fluorescent materials that can emit light by fluorescence are widely used mainly as components for electronic devices such as organic EL materials.
  • an OLED device including a light emitting layer containing a light emitting bis (azinyl) methene boron complex compound (see Patent Document 1), a boron compound that is a blue light emitting luminescence compound (see Patent Document 2), a pyrene compound and bis (azinyl)
  • a light-emitting element containing a boron complex having an azeene skeleton see Patent Document 3).
  • a light-emitting material that can use a ⁇ -conjugated molecule having excellent optical characteristics and electrochemical characteristics as a light-emitting material for such a conventional electronic device is expected.
  • the ⁇ -conjugated molecule has excellent properties such as high absorbance, wide absorption region, and abundant wavelength selectivity by delocalizing ⁇ electrons in the molecule.
  • naphthalene diimide and aromatic molecules toluene, etc.
  • this luminescence is luminescence in a solution, not in a solid, and the absolute luminescence quantum yield is as low as 1% or less.
  • a solid supramolecular complex composed of a plurality of molecules is also disclosed in order to obtain sufficient light emission intensity by utilizing the characteristics of ⁇ -conjugated molecules.
  • a solid light-emitting material that exhibits exciplex emission (exciplex) by interacting naphthalene diimide and aromatic molecules (toluene, benzene, xylene, etc.) in a crystal using a porous metal complex (non-excited) Patent Documents 2 to 4).
  • the absolute light emission quantum yield in the solid light-emitting material remains as low as 22% at maximum.
  • a ⁇ -conjugated molecule cannot sufficiently exhibit its excellent characteristics particularly in a solid.
  • the solid light emitting material has many practical problems for the following reasons. First, since heavy metals are used, handling is not easy and the environmental load is large. Furthermore, in order to obtain the solid light-emitting material, zinc nitrate, terephthalic acid, naphthalene diimide are dissolved in dimethylformamide and reacted at 95 ° C. for 3 days to obtain crystals, and solvent molecules (dimethylformamide) are obtained. It is necessary to go through a plurality of complicated steps of removing and incorporating guest molecules (toluene, benzene, xylene, etc.).
  • an object of the present invention is to provide a supramolecular complex having excellent luminescent properties, which is formed from a plurality of components without using a heavy metal and by a simple operation. .
  • the inventors focused on the coordination bond (nitrogen-boron bond: NB bond) due to the strong intermolecular interaction between nitrogen atoms (N) and boron atoms (B).
  • NB bond nitrogen-boron bond
  • N nitrogen atoms
  • B boron atoms
  • a supramolecular complex also referred to as an inclusion crystal
  • the supramolecular complex does not require a heavy metal as in the prior art, but can be obtained by a very simple method of simply mixing the above-mentioned plurality of components.
  • a Lewis base composed of an aromatic diimide compound or an aromatic imide compound, a Lewis acid composed of a tertiary boron compound, and optionally substituted benzene, naphthalene, anthracene.
  • a solvent molecule composed of pyrene (guest molecule; electron donor), and a nitrogen atom contained in the Lewis base and a boron atom contained in the Lewis acid are coordinated.
  • the photograph of the supramolecular complex (inclusion crystal) according to the present invention and the result of elemental analysis are shown (the molecular structure indicates the type of solvent molecule).
  • the result of thermogravimetric analysis (TG) of the supramolecular complex (inclusion crystal) according to the present invention is shown as follows (temperature increase: 10 ° C./min) (molecular structure indicates the type of solvent molecule).
  • the result of the single crystal X-ray-wire structure analysis regarding the supramolecular complex (inclusion crystal) (solvent molecule toluene) based on this invention is shown.
  • the result of the powder X-ray diffraction measurement with respect to the supramolecular complex (inclusion crystal) according to the present invention is shown.
  • (A) The result of the emission spectrum measurement in the solid state of the supramolecular complex (inclusion crystal) according to the present invention is shown.
  • (B) The result of the emission spectrum measurement obtained as a sensor of the supramolecular complex (inclusion crystal) according to the present invention is shown.
  • the result of 1 H NMR spectrum (solvent CF 3 COOD) of p-NDI is shown.
  • (Upper: general view, lower: enlarged view) The result of the emission spectrum measurement in the solid state of the supramolecular complex (inclusion crystal) according to the present invention is shown.
  • the aromatic diimide compound or aromatic imide compound constituting the Lewis base constituting the supramolecular complex of the present invention can be represented by the following general formula (I-1) or general formula (I-2), respectively. .
  • ring A represents an optionally substituted aromatic hydrocarbon ring having 6 to 20 carbon atoms, which may be monocyclic or polycyclic, and R 1 and R 2 are independently of each other, A substituted or unsubstituted pyridyl group, pyrimidyl group, pyrazyl group, pyridazyl group, triazyl group, pyrrole group, imidazole group, pyrazole group, isothiazole group, which may be linked by an alkyl chain having 1 to 10 carbon atoms, Isoxazole group, furazane group, thiadiazole group, triazole group, tetrazole group, indole group, or benzonitrile group; may be substituted with a linear or branched alkyl group having 1 to 10 carbon atoms or a fluoro group Represents an aniline group or an amino group; a nitrile group.
  • Ring A is preferably a 1- to 4-membered aromatic hydrocarbon ring.
  • a benzene ring, a naphthalene ring, or a perylene ring can be used.
  • Lewis bases include compounds represented by the following formulas (a-1) to (a-6). From the viewpoint of easy incorporation of solvent molecules, the formulas (a-1) to (a-6) It is more preferable to use a bulky diimide compound represented by (a-3).
  • R 1 and R 2 contained in the compound are the same as those already described above.
  • R 1 and R 2 include substituents represented by the following formulas (b-1) to (b-25).
  • the following formula ( A pyridyl group or a pyrimidyl group represented by b-1) to (b-6) is preferable. More preferred is a pyridyl group represented by the following formulas (b-1) to (b-3).
  • R has 1 to 10 carbon atoms
  • m has 1 to 10 carbon atoms
  • the Lewis base used in the present invention includes a pyromellitic acid diimide compound, a naphthalenediimide compound, or a perylene diimide compound substituted with a pyridyl group or a pyrimidyl group (each represented by the formula (a-1), A compound represented by (a-2) or (a-3), wherein both R 1 and R 2 in each formula are a pyridyl group or a pyrimidyl group).
  • a pyromellitic diimide compound substituted with a pyridyl group as represented by (c-6) is more preferable.
  • the tertiary boron compound constituting the Lewis acid constituting the supramolecular complex of the present invention can be represented by the following general formula (II-1) or general formula (II-2).
  • R 3 represents a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 3 to 10 carbon atoms including an isopropyl group or an aryl group including a phenyl group and a pentafluorophenyl group
  • R 4 represents isopropyl Group or an aryl group including a phenyl group and a pentafluorophenyl group.
  • examples of such a Lewis acid include compounds represented by the following formulas (d-1) to (d-8).
  • the following formulas It is preferably made of a tertiary boron compound corresponding to the general formula (II-1) as represented by (d-1) to (d-6).
  • the above R 3 is preferably a phenyl group which may be substituted with a fluorine atom, and is represented by, for example, the following formula (d-5).
  • TPFB tris (pentafluorophenylborane)
  • d-6 tris (pentafluorophenylborane)
  • TPFB tris (pentafluorophenyl) which is a more bulky molecule is particularly preferable.
  • Boran TPFB
  • solvent molecule examples include optionally substituted benzene, naphthalene, anthracene, and pyrene. Of these, monocyclic ones are preferred from the viewpoint of easily entering the gap between the Lewis acid and the Lewis base and forming a supramolecular complex.
  • benzene, toluene, xylene, fluorotoluene, 1, 3, 5 There may be mentioned trimethylbenzene, 1,2,4-trimethylbenzene, anisole, methylanisole, iodobenzene, fluorobenzene and difluorobenzene.
  • the supramolecular complex according to the present invention is composed of a plurality of components of the above Lewis base (host molecule), Lewis acid, and solvent molecule (guest molecule), and unlike the conventional case, no heavy metal is required. It is what. Furthermore, it has the outstanding property that it can prepare by only mixing these multiple components. That is, the supramolecular complex according to the present invention has various emission wavelengths including those having different emission wavelengths, excellent yield and emission time, by simply changing the kind of solvent molecules (guest molecules). A supramolecular complex which is a compound useful as a light emitter.
  • the constituent Lewis base (host molecule), Lewis acid, and solvent molecule (guest molecule) are mixed, and the solvent molecule (guest molecule) is boiled or heated to 100 ° C.
  • the supramolecular complex according to the present invention can be obtained in a powder form by allowing to stand for several minutes.
  • the supramolecular complex (inclusion crystal) according to the present invention is composed of a combination of these three components, that is, Lewis base (host molecule), Lewis acid, and solvent molecule (guest molecule). Exhibit a variety of different emission characteristics (see Examples below). Furthermore, with respect to such luminescence characteristics, most of the supramolecular complex (inclusion crystal) according to the present invention showed higher absolute luminescence quantum yield than before. In particular, the inclusion crystal using m-fluorotoluene as a solvent molecule (guest molecule) showed a high value of 40%. This numerical value shows a light emission characteristic approximately twice that of the conventional solid light emitting material (22% at maximum) shown in Non-Patent Documents 2 to 4 described above.
  • supramolecular complexes with different colors can be obtained. It is done.
  • the Lewis base is naphthalenediimide (NDI) substituted with a pyridyl group and the Lewis acid is tris (pentafluorophenyl) borane (TPFB)
  • the aromatic molecule is benzene, toluene, xylene, 1, 3 , 5-trimethylbenzene, anisole, iodobenzene, and fluorobenzene
  • the resulting different supramolecular complexes (inclusion crystals) are blue, respectively, by ultraviolet light excitation (excitation wavelength 330-380 nm). It is shown that seven colors (purple, indigo, blue, green, yellow, orange, red) included in the red wavelength region exhibit different colors (see the examples described later).
  • the supramolecular complex (inclusion crystal) according to the present invention can be used as an illumination material or a display material that emits fluorescence when irradiated with ultraviolet light, utilizing such excellent characteristics.
  • the supramolecular complex is not limited to the use as the light emitting material described above. That is, the supramolecular complex also has a unique property that it can be easily detached by heating or depressurizing (evacuating) solvent molecules (guest molecules). Using this property, the supramolecular complex formed by separation of the solvent molecules (guest molecules) is used as a sensor element for detection for detecting the type of various organic compounds (particularly solvent molecules). You can also.
  • the sensor element for detecting the organic compound is used in the same manner as the preparation method for preparing the supramolecular complex (inclusion material) by simply mixing the organic compound to be tested into the sensor element (then It may be boiled and cooled to room temperature), and a color corresponding to the type of solvent molecule (guest molecule) can be obtained, so that the solvent molecule (guest molecule) can be easily identified visually. .
  • it can be used as an extremely simple sensor element for detecting an organic compound that can identify an organic compound to be examined by simply observing a colored color by a simple operation of simply mixing. it can.
  • NMR AVANCE 500 nuclear magnetic resonance apparatus (Bruker) Fluorescence spectrum: F7000 Hitachi Fluorometer (Hitachi High-Tech) Absolute luminescence quantum yield measurement device: Absolute PL quantum yield measurement device (Hamamatsu Photonics Co., Ltd.) Luminescence lifetime measurement: Compact fluorescence lifetime measurement system Quantaurus-Tau C11367-01 (Hamamatsu Photonics)) Fluorescence microscope observation: Leica DM2500 (Leica) Single crystal X-ray structure analysis: CCD single crystal automatic X-ray structure diffractometer (Rigaku Corporation) Thermogravimetric analysis (TG): TG / DTA 7300 (SII nanotechnology) Diffuse reflection electron spectrum (UV-vis): V670 type UV-visible spectrophotometer (manufactured by JASCO Corporation) In
  • FIG. 1 shows a photograph of an inclusion crystal according to the present invention and the results of elemental analysis (molecular structure indicates the type of solvent molecule). Proceeding from the upper left column to the lower right column, benzene (1 ⁇ Benzene), toluene (1 ⁇ Toluene), o-xylene (1 ⁇ o-Xylene), m-xylene (1 ⁇ m-Xylene), p -The results for p-Xylene, 135 trimethylbenzene (1 ⁇ 1,3,5-Trimetylbenzene), anisole (1 ⁇ Inisole) and iodobenzene (1 ⁇ Iodobenzene) are shown.
  • FIG. 2 shows the results of thermogravimetric analysis (TG) of the soot clathrate crystal (1 ⁇ Solvent) according to the present invention.
  • TG thermogravimetric analysis
  • FIG. 3 shows the results of single-crystal X-ray structure analysis of the supramolecular complex (inclusion crystal) (solvent molecule toluene; 1 ⁇ Toluene) according to the present invention.
  • the supramolecular complex inclusion crystal
  • solvent molecule toluene solvent molecule toluene
  • 1 ⁇ Toluene solvent molecule toluene
  • FIG. 3 shows the results of single-crystal X-ray structure analysis of the supramolecular complex (inclusion crystal) (solvent molecule toluene; 1 ⁇ Toluene) according to the present invention.
  • the pyridyl group of compound 1 and TPFB form a supramolecular complex via a nitrogen-boron bond (NB bond), and the encapsulated solvent molecule (toluene molecule) is filled as if the gap was filled. It was a close crystal (1 (Toluene).
  • FIG. 4 shows the results of powder X-ray diffraction measurement for a supramolecular complex (inclusion crystal) using various solvent molecules according to the present invention.
  • Supramolecular complexes include 1 ⁇ Benzene, 1 ⁇ Iodobenzene, 1 ⁇ Fluorobenzene, 1 ⁇ Toluene, 1 ⁇ m-Xylene, 1 ⁇ p-Xylene, 1 ⁇ 135-Trimethylbenzene, 1 ⁇ Anisole, 1 ⁇ m-Methylanisole and 1 ⁇ Iodobenzene were targeted.
  • the supramolecular complex (inclusion crystal) according to the present invention emits seven colors (purple, indigo, blue, green, yellow, orange, red) by changing solvent molecules under ultraviolet light excitation (370 nm). : It became clear that it functions as a solid state light emitter exhibiting ultraviolet light excitation (370 nm). Solvent molecules having an electron withdrawing group for the aromatic ring exhibited violet, indigo and blue emission, while solvent molecules having an electron donating group shifted to longer wavelengths, green, yellow and orange. These behaviors are considered to originate from exciplex emission (exciplex) generated by the exchange of electrons between the host molecule (the compound 1) and the solvent molecule (guest molecule) in the excited state.
  • exciplex emission exciplex
  • inclusion crystals with m-fluorotoluene (1 ⁇ m-Fluorotoluene), toluene (1 ⁇ Toluene), and m-xylene (1 ⁇ m-Xylene) as guests have high absolute luminescence quantum yields exceeding 30%. Indicated. It is conceivable that the guest molecules are densely taken into the gap formed by the supramolecular complex formed by Compound 1 and TPFB to induce efficient exciplex emission (exciplex) formation. Regarding iodobenzene, red light emission was exhibited, which is considered to be due to light emission due to phosphorescence accompanying the heavy atom effect.
  • Example of use as sensor for organic compound detection Compound 1 (50 mg, 0.12 mmol, 1 eq.), Tris (pentafluorophenyl) borane (B (C 6 F 5 ) 3 , TPFB, 125 mg, 0.24 mmol, 2 eq.) and toluene (0.10 mL) were added to an agate mortar, and mechanical pulverization and mixing were performed for 15 minutes. As a result, a pale yellow powder was obtained. When the obtained powder was irradiated with ultraviolet light (365 nm), light blue emission was observed.
  • Tris (pentafluorophenyl) borane (B (C 6 F 5 ) 3 , TPFB, 125 mg, 0.24 mmol, 2 eq.) and toluene (0.10 mL)
  • benzene, ortho-xylene, meta-xylene, para-xylene, 1,3,5-trimethylbenzene, and 1-methylnaphthalene were used as aromatic molecular solvents. As shown in FIG. Of powder was obtained. Further, when the obtained powder was irradiated with ultraviolet light (365 nm), it was observed that light emission of light blue, green, yellow and orange was caused by the difference in the aromatic molecular solvent. We were able to sense the difference in organic compounds as the difference in emission color.
  • Example 2 The starting material was prepared using compound p-NDI instead of compound 1 of Example 1.
  • Example 3 The starting material was prepared using Compound 2 described below in place of Compound 1 of Example 1.
  • the excitation wavelength is 365 nm.
  • the excitation wavelength was 340 nm, and the lifetime observation wavelength was measured at the respective maximum emission wavelength.
  • Room temperature 25 ° C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 重金属を用いることなく、さらには簡便な操作によって、複数の構成成分から形成される優れた発光特性を有する超分子複合体を提供する。 【解決手段】超分子複合体は、下記の一般式(I-1)または一般式(I-2)で表される芳香族ジイミド化合物または芳香族イミド化合物からなるルイス塩基と、下記の一般式(II-1)または一般式(II-2)で表される3級ホウ素化合物からなるルイス酸と、置換されていてもよいベンゼン、ナフタレン、アントラセン、またはピレンからなる溶媒分子とから構成され、該ルイス塩基に含まれる窒素原子と該ルイス酸に含まれるホウ素原子とが配位結合して構成される。 (式中、環Aは、芳香族炭化水素環を表し、RおよびRは、互いに独立して、炭素数1~10のアルキル鎖で連結されていてもよい、ピリジル基等を表す。) (Rは、フッ素原子、塩素原子、臭素原子、イソプロピル基を含む炭素数3~10からなるアルキル基またはフェニル基、ペンタフルオロフェニル基を含むアリール基を表し、Rは、イソプロピル基または、フェニル基、ペンタフルオロフェニル基を含むアリール基を表す。)

Description

超分子複合体、発光体、および有機化合物検出用のセンサー素子
 本発明は、機能性材料の技術分野に属し、特に、複数の分子を複合して構成される超分子複合体(超分子化合物)に関する。
 蛍光により発光性が得られる発光材料は、主に有機EL材料等の電子デバイス用部品として広く利用されている。例えば、発光性ビス(アジニル)メテンホウ素錯体化合物を含有する発光層を含むOLEDデバイス(特許文献1参照)、青色発光ルミネッセンス化合物であるホウ素化合物(特許文献2参照)、ピレン化合物とビス(アジニル)アゼン骨格を有するホウ素錯体とを含有する発光素子(特許文献3参照)などがある。
 近年、このような従来の電子デバイス用の発光材料として、優れた光学特性および電気化学特性をもつπ共役分子を利用できる発光材料の実現が期待されている。π共役分子は、分子内でπ電子が非局在化されることによって、高い吸光度、広い吸収領域、豊富な波長選択性という優れた特性を有する。このπ共役分子を利用する発光については、例えば、ナフタレンジイミドと芳香族分子(トルエンなど)が、溶媒中で相互作用し、励起錯体発光(エキサイプレックス)を観測することが示されている(非特許文献1)。しかし、この発光は固体中ではなく溶液中での発光であり、さらには絶対発光量子収率は1%以下という低いものである。
 上記の溶液中での発光とは異なり、π共役分子の特性を活かして、充分な発光強度を得るために、複数の分子から構成される固体の超分子複合体も開示されている。例えば、多孔性金属錯体を用いて、ナフタレンジイミドと芳香族分子(トルエン、ベンゼン、キシレンなど)を結晶中で相互作用させることで、励起錯体発光(エキサイプレックス)を示す固体発光材料がある(非特許文献2~4)。
特表2007-524238号公報 特表2006-520772号公報 特開2009-10181号公報
T. C. Barros, S. Brochsztain, V. G. Toscano, P. B. Filho, M. J. Politi, J. Photochem.Photobio. A 111, 97, (1997). Y. Takashima, V. M. Martinez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M.Nakahama, K, Sugimoto, S. Kitagawa, Nat. Commun., 2, 168, (2011) http://www.kyoto-u.ac.jp/ja/news_data/h/h1/news6/2010/110126_1.htm V. M. Martinez, S. Furukawa, Y. Takashima, I. L. Arbeloa, S.Kitagawa, J. Phys. Chem.C 116, 26084, (2013).
 しかし、該固体発光材料における絶対発光量子収率は、最大で22%という低い値にとどまっている。このように、π共役分子は、特に固体中ではその優れた特性を十分に発揮できないことが知られている。
 さらに、該固体発光材料では、次のような理由により、実用上、多くの問題がある。まず、重金属を用いることから、取り扱いが容易ではなく環境負荷も大きい。さらには、該固体発光材料を得る為に、硝酸亜鉛、テレフタル酸、ナフタレンジイミドをジメチルホルムアミドに溶解させ、95℃ で3日間にわたって反応させることで結晶を取得すること、溶媒分子(ジメチルホルムアミド)を取り除くこと、および、ゲスト分子(トルエン、ベンゼン、キシレンなど)を取り込ませること、という煩雑な複数の工程を経る必要がある。
 本発明の目的は、上記課題を解決すべく、重金属を用いることなく、さらには簡便な操作によって、複数の構成成分から形成される優れた発光特性を有する超分子複合体を提供することにある。
 本発明者らは、窒素原子(N)間とホウ素原子(B)間に働く強い分子間相互作用による配位結合(窒素-ホウ素結合:N-B 結合)に着目したところ、該分子相互作用を活用することによって、固体状態で優れた発光特性を発揮する超分子複合体(包接結晶ともいう)を見出した。また、該超分子複合体は、従来のような重金属を必要としないことのみならず、上記の複数成分を、単に混合するのみという極めて簡便な手法で得られることも見出した。
 かくして、本発明では、芳香族ジイミド化合物または芳香族イミド化合物からなるルイス塩基(ホスト分子;電子受容体)と、3級ホウ素化合物からなるルイス酸と、置換されていてもよいベンゼン、ナフタレン、アントラセン、またはピレンからなる溶媒分子(ゲスト分子;電子供与体)とから構成され、該ルイス塩基に含まれる窒素原子と該ルイス酸に含まれるホウ素原子とが配位結合して構成されていることを特徴とする超分子複合体が提供される。
本発明に係る超分子複合体(包接結晶)の写真と元素分析の結果を示す(分子構造は溶媒分子の種類を示す)。 本発明に係る超分子複合体(包接結晶)の熱重量分析(TG)の結果 (昇温10℃/min)を示す(分子構造は溶媒分子の種類を示している)。 本発明に係る超分子複合体(包接結晶)(溶媒分子トルエン)に関する単結晶X 線構造解析の結果を示す。 本発明に係る超分子複合体(包接結晶)に対する粉末X 線回折測定の結果を示す。 (a)本発明に係る超分子複合体(包接結晶)の固体状態における発光スペクトル測定の結果を示す。(b)本発明に係る超分子複合体(包接結晶)のセンサーとして得られた発光スペクトル測定の結果を示す。 p-NDIの1H NMRスペクトル(溶媒CF3COOD )の結果を示す。(上段:全体図、下段:拡大図) 本発明に係る超分子複合体(包接結晶)の固体状態における発光スペクトル測定の結果を示す。
(ルイス塩基)
 本発明の超分子複合体を構成するルイス塩基を構成する芳香族ジイミド化合物または芳香族イミド化合物は、各々、下記の一般式(I-1)または一般式(I-2)で表すことができる。
Figure JPOXMLDOC01-appb-C000003
 上記式中、環Aは、置換基を有してもよい炭素数6~20の芳香族炭化水素環を表し、単環でも複環でもよく、RおよびRは、互いに独立して、炭素数1~10のアルキル鎖で連結されていてもよい、置換もしくは非置換の、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、トリアジル基、ピロール基、イミダゾール基、ピラゾール基、イソチアゾール基、イソオキサゾール基、フラザン基、チアジアゾール基、トリアゾール基、テトラゾール基、インドール基、もしくはベンゾニトリル基;炭素数1~10の直鎖状もしくは分岐鎖状のアルキル基もしくはフルオロ基で置換されていてもよい、アニリン基、もしくはアミノ基;ニトリル基を表す。
 環Aとしては、1~4員環の芳香族炭化水素環が好ましく、例えば、ベンゼン環、ナフタレン環、ペリレン環を用いることができる。すなわち、ルイス塩基の例としては、以下の式(a-1)~(a-6)で表される化合物を挙げることができるが、溶媒分子を取込みやすい点から、式(a-1)~(a-3)で表されるような、嵩高いジイミド化合物を用いることが、より好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記化合物に含まれるRおよびRは、上記で既に記載したものと同一である。なお、このRおよびRの例としては、以下の式(b-1)~(b-25)で表される置換基を挙げることができるが、取扱いの容易さから、以下の式(b-1)~(b-6)で表される、ピリジル基またはピリミジル基であることが好ましい。より好ましくは、以下の式(b-1)~(b-3)で表される、ピリジル基である。
Figure JPOXMLDOC01-appb-C000005
(上記式中、Rは炭素数1~10であり、mは炭素数1~10である)
 以上の点から、本願発明に用いられるルイス塩基としては、ピリジル基またはピリミジル基で置換された、ピロメリット酸ジイミド化合物、ナフタレンジイミド化合物、またはペリレンジイミド化合物(それぞれ、前記式(a-1)、(a-2)、または(a-3)で表される化合物であって、各式中のRおよびRの双方が、ピリジル基またはピリミジル基であるもの)であることが好ましい。
 さらに、取扱いの容易さから、以下の式(c-1)~(c-3)で表されるような、ピリジル基で置換されたナフタレンジイミド化合物、または、以下の式(c-4)~(c-6)で表されるような、ピリジル基で置換されたピロメリット酸ジイミド化合物であることが、より好ましい。
Figure JPOXMLDOC01-appb-C000006
(ルイス酸)
 本発明の超分子複合体を構成するルイス酸を構成する3級ホウ素化合物は、下記の一般式(II-1)または一般式(II-2)で表すことができる。
Figure JPOXMLDOC01-appb-C000007
 上記式中、Rは、フッ素原子、塩素原子、臭素原子、イソプロピル基を含む炭素数3~10からなるアルキル基またはフェニル基、ペンタフルオロフェニル基を含むアリール基を表し、Rは、イソプロピル基または、フェニル基、ペンタフルオロフェニル基を含むアリール基を表す。
 すなわち、このようなルイス酸の例としては、以下の式(d-1)~(d-8)で表される化合物を挙げることができるが、このうち、取扱いの容易さから、以下の式(d-1)~(d-6)で表されるような、上記一般式(II-1)に該当する3級ホウ素化合物からなることが好ましい。このうち、嵩高い分子であることが好ましいことから、上記のRは、フッ素原子で置換されていてもよいフェニル基であることが好ましく、例えば、以下の式(d-5)で表されるようなトリフェニルボラン、または以下の式(d-6)で表されるようなトリス(ペンタフルオロフェニルボラン) (TPFB)が好ましく、特に好ましくは、より嵩高い分子であるトリス(ペンタフルオロフェニルボラン) (TPFB)である。
Figure JPOXMLDOC01-appb-C000008
(溶媒分子)
 本発明の超分子複合体を構成する溶媒分子としては、置換されていてもよいベンゼン、ナフタレン、アントラセン、およびピレンが挙げられる。このうち、前記ルイス酸およびルイス塩基の間隙に入り込みやすく、超分子複合体を形成し易いという点から、単環のものが好ましく、例えば、ベンゼン、トルエン、キシレン、フルオロトルエン、1,3,5-トリメチルベンゼン、1,2,4-トリメチルベンゼン、アニソール、メチルアニソール、ヨードベンゼン、フルオロベンゼン、およびジフルオロベンゼンを挙げることができる。
 このように、本発明に係る超分子複合体は、上記のルイス塩基(ホスト分子)、ルイス酸、溶媒分子(ゲスト分子)の複数成分により構成されるものであり、従来とは異なり重金属を不要とするものである。さらにこれらの複数成分を単に混ぜるだけで調製することができるという優れた性質を有する。すなわち、本発明に係る超分子複合体は、溶媒分子(ゲスト分子)の種類を変えるだけで、各種の発光波長の異なる、収率および発光時間の優れたものも含む、各種の発光波長を有する、発光体として有用な化合物である超分子複合体である。
 その調製例としては、構成成分であるルイス塩基(ホスト分子)、ルイス酸、および溶媒分子(ゲスト分子)を混合し、溶媒分子(ゲスト分子)が煮沸する、もしくは100℃まで加熱した後、室温で数分間静置することによって、本発明に係る超分子複合体を粉末状で得ることができる。
 このようにして得られた本発明に係る超分子複合体(包接結晶)は、これら3つの構成成分、すなわち、ルイス塩基(ホスト分子)、ルイス酸、および溶媒分子(ゲスト分子)の組み合わせによって、様々な異なる発光特性を呈する(後述の実施例参照)。さらに、このような発光特性について、本発明に係る超分子複合体(包接結晶)の大部分は、従来よりも高い絶対発光量子収率を示した。特に、m-フルオロトルエンを溶媒分子(ゲスト分子)とした包接結晶では、40%という高値を示した。この数値は、上述した非特許文献2~4で示された従来の固体発光材料(最大22%)よりも約2倍の発光特性を示すものである。
 また、ルイス塩基(ホスト分子)とルイス酸の種類を固定して、溶媒分子(ゲスト分子)の種類を様々に入れ替えることによって、各々、異なる発色を呈する超分子複合体(包接結晶)が得られる。例えば、ルイス塩基をピリジル基で置換されたナフタレンジイミド(NDI)とし、ルイス酸をトリス(ペンタフルオロフェニル)ボラン(TPFB)とした場合に、芳香族分子を、ベンゼン、トルエン、キシレン、1,3,5-トリメチルベンゼン、アニソール、ヨードベンゼン、およびフルオロベンゼンの各々に入れ替えた場合、得られた異なる超分子複合体(包接結晶)は、紫外光励起(励起波長330~380nm)によって、各々、青色~赤色の波長領域に含まれる7色(紫、藍、青、緑、黄、橙、赤)の異なる発色を呈することが示されている(後述の実施例参照)。
 このような優れた発光メカニズムは、未だ詳細には解明されていないが、この3つの構成成分の構造上の組み合わせ、すなわち、超分子複合体(包接結晶)内でルイス塩基(ホスト分子)とルイス酸との分子間に生じている隙間に溶媒分子(ゲスト分子)が密に取り込まれていることと、分子内の窒素およびホウ素の配位結合による強い分子間相互作用の共存によって、超分子複合体(包接結晶)内でルイス塩基(ホスト分子)と溶媒分子(ゲスト分子)による励起錯体発光(エキサイプレックス)が安定的かつ効率的に誘引されやすい状況を形成しているものと推察される。
 本発明に係る超分子複合体(包接結晶)は、このような優れた特性を活かして、紫外光照射により蛍光を発する照明材料や表示材料として利用することができる。
 また、該超分子複合体は、上述した発光材料としての用途に限定されない。すなわち、該超分子複合体は、溶媒分子(ゲスト分子)を加熱または減圧(真空引き)することにより、容易に離脱できるという特異な性質も有している。この性質を用いて、該溶媒分子(ゲスト分子)が離脱して形成された超分子複合体を、各種有機化合物(特に、溶媒分子)の種類を検出するための、検出用センサー素子として利用することもできる。
 この有機化合物検出用のセンサー素子の使用方法は、超分子複合体(包接材料)を調製する前記調製方法と同じく、被検対象の有機化合物を、該センサー素子に単に混ぜ合わせるのみで(その後、煮沸して室温まで冷却してもよい)、溶媒分子(ゲスト分子)の種類に応じた呈色が得られることから、視覚的に容易に該溶媒分子(ゲスト分子)を同定することができる。このように、単に混ぜ合わせるという簡素な操作のみによって、さらに呈色した色を観察するだけで、被検対象の有機化合物を同定できるという極めて簡便な有機化合物検出用のセンサー素子として利用することができる。
 以下に、本発明の特徴をさらに具体的に示すために実施例を記すが、本発明は以下の実施例によって制限されるものではない。
なお、以下の実施例では、次の機器・装置を使用した。
NMR:AVANCE 500 核磁気共鳴装置((株)ブルカー製)
蛍光スペクトル:F7000形日立蛍光光度計((株)日立ハイテク)
絶対発光量子収率測定装置:絶対PL量子収率測定装置((株)浜松ホトニクス)
発光寿命測定:小型蛍光寿命測定装置Quantaurus-Tau C11367-01 ((株)浜松ホトニクス))
蛍光顕微鏡観察:Leica DM2500(ライカ)
単結晶X線構造解析:CCD単結晶自動X線構造回折装置((株)リガク)
熱重量分析(TG):TG/DTA 7300(SIIナノテクノロジー)
拡散反射電子スペクトル(UV-vis):V670型紫外可視分光光度計((株)日本分光製)
赤外吸収スペクトル(IR):FT-IR 460plus分光光度計((株)日本分光社製)
(実施例1)
原料となるルイス塩基の合成
Figure JPOXMLDOC01-appb-C000009
 還流管付き50 mL丸底フラスコに1,4,5,8 ナフタレンテトラカルボン酸二無水和物(2.50g,mmol, 9.32 mmol) 、3-アミノピリジン(1.95g, 20.7 mmol)、ジメチルホルムアミド(DMF)(20mL)を加え、150℃ で6 時間加熱還流を行った。室温まで冷却後、生じた沈殿をろ別し、DMF により再結晶することで黄土色の針状結晶を得た。バキュームオーブン(50℃)で真空下12 時間乾燥させる事で、黄土色の粉末(ナフタレンジイミド: 以下、化合物"1"という)を得た。(3.01g, 7.16mmol 収率: 77 %)。同定は元素分析により行った。Elemental Analysis: Calcd, C=68.57,H=2.88, N=13.33; Found, C=68.16, H=2.88, N=13.30.
超分子複合体(包接結晶)の調製
Figure JPOXMLDOC01-appb-C000010
 前記化合物1(50 mg, mmol, 1 eq.)、トリス(ペンタフルオロフェニルボラン) (TPFB) (125 mg, mmol, 2eq.)、トルエン10mL をサンプル管に加えた。ホットプレートにてトルエンが煮沸するまで加熱後、室温にて数分間静置した。生じた沈殿をろ別することで、粉末として超分子複合体(以下、前記化合物"1"とトルエン(溶媒)から得られた超分子複合体を"1⊃Toluene"と表す)を得た(178 mg)。元素分析の結果、前記化合物"1":TPFB:トルエン分子=1:2:2 の組成で構成される包接結晶である事が明らかとなった。その他の芳香族溶媒中(フルオロベンゼン、m-フルオロトルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレン、1,3,5-トリメチルベンゼン、アニソール、m-メチルアニソール、ヨードベンゼン)においても、前記化合物"1":TPFB:溶媒分子=1:2:2 の組成比である包接結晶(以下、前記化合物"1"と"溶媒(Solvent)"から得られた超分子複合体を"1⊃Solvent"と表す)が得られた。
 図1では、本発明に係る包接結晶の写真と元素分析の結果を示す(分子構造は溶媒分子の種類を示す)。左上欄から右方向で進んで右下欄まで、ベンゼン(1⊃Benzene)、トルエン(1⊃Toluene)、o-キシレン(1⊃o-Xylene)、m-キシレン(1⊃m-Xylene) 、p- キシレン(1⊃p-Xylene) 、135 トリメチルベンゼン(1⊃1,3,5-Trimetylbenzene)、アニソール(1⊃Anisole)、ヨードベンゼン(1⊃Iodobenzene)の結果を示している。
 また、図2に、本発明に係る 包接結晶(1⊃Solvent)の熱重量分析(TG)の結果を示す。いずれの試料においても、溶媒分子(ゲスト分子)の放出による重量変化が観測された。それぞれの溶媒の沸点より少し高い温度での溶媒放出挙動が観測されたことから、包接結晶中においてホスト分子と溶媒分子(ゲスト分子)との間で相互作用(電荷移動相互作用)が働いていることが考えられる。またいずれの試料においても300 度付近を越えると大きな重量の減少が観測されたが、これは骨格(ホスト分子)の分解挙動に由来するものと考えられる。
単結晶X 線構造解析
 本発明に係る超分子複合体(包接結晶)(溶媒分子トルエン;1⊃Toluene)に関する単結晶X 線構造解析の結果を図3に示す。
 結果として、化合物1 のピリジル基とTPFB とが窒素-ホウ素結合(N-B 結合)を介して超分子複合体を形成し、その間隙を埋めるかのように溶媒分子(トルエン分子)が取り込まれた包接結晶(1⊃Toluene)であった。電子不足なπ 共役分子(1)をアクセプター(A)、電子豊富なπ共役分子(トルエン)をドナー(D)とすると、D-A-D 型の一次元カラムを形成していた。単結晶から推測される構成成分の組成比は、前記化合物"1" : TPFB : トルエン = 1 : 2 : 2 であり、これは元素分析の結果と一致していた。
 本発明に係る各種の溶媒分子を用いた超分子複合体(包接結晶)に対する粉末X線回折測定の結果を図4に示す。図4では、上から1⊃m-Methylanisole、1⊃135-Trimetylbenzene、1⊃m-Xylene、1⊃Benzene、1⊃Toluene、1⊃Tolueneの結晶構造から推測されるX線回折パターン、である。いずれの試料においても1⊃Tolueneの結晶構造から推測されるX線回折パターンと類似していたことより、溶媒分子(ゲスト分子)の種類に関わらず、同様の結晶構造を有しているものと考えられる。これは超分子複合体(包接結晶)の元素分析が前記化合物"1":TPFB:溶媒分子=1:2:2であることからも強く示唆される。
発光特性の評価
 蛍光顕微鏡により評価された本発明に係る超分子複合体(包接結晶)の発光特性を、励起波長 = 330-380 nm 発光波長 > 420 nmで確認した。超分子複合体(包接結晶)としては、1⊃Benzene、1⊃Iodobenzene、1⊃Fluorobenzene, 1⊃Toluene, 1⊃m-Xylene, 1⊃p-Xylene,1⊃135-Trimethylbenzene, 1⊃Anisole, 1⊃m-Methylanisole, 1⊃Iodobenzeneを対象とした。
 いずれの試料においても、数μ~数十μメートルの結晶性固体であった。また紫外光照射下(励起波長=330-380nm)で結晶から発光する様子が観測された。その発光色は、ベンゼン(1⊃Benzene)で青色、メタキシレン(1⊃m-Xylene)で緑色、ヨードベンゼン(1⊃Iodobenzene)で赤色の発光が観測されるように、用いる溶媒分子(ゲスト分子)の種類の違いにより、異なる発光色を示した。
 さらに、固体状態における発光スペクトル測定および発光寿命測定を行った。結果を図5(a)および以下の表1に示す。
Figure JPOXMLDOC01-appb-T000011
(発光スペクトル測定結果の考察)
 このように、本発明に係る超分子複合体(包接結晶)は、紫外光励起(370nm)において、溶媒分子を変えることによって、7色発光(紫、藍、青、緑、黄、橙、赤:紫外光励起(370nm))を示す固体発光体として機能することが明らかとなった。芳香環に対して電子求引基を持つ溶媒分子であれば紫・藍・青色発光を示し、電子供与基を持つ溶媒分子とすると緑・黄・橙色へとより長波長側へとシフトした。これらの挙動は、励起状態におけるホスト分子(前記化合物1)と溶媒分子(ゲスト分子)との電子のやりとりで生ずる励起錯体発光(エキサイプレックス)に由来するものと考えられる。中でもm-フルオロトルエン(1⊃m-Fluorotoluene)、トルエン(1⊃Toluene)、m-キシレン(1⊃m-Xylene)をゲストとした包接結晶では、30%を超える高い絶対発光量子収率を示した。化合物1とTPFBが形成する超分子複合体が形成する間隙にゲスト分子が密に取り込まれる事が、効率の良い励起錯体発光(エキサイプレックス)形成を誘起している事が考えられる。ヨードベンゼンに関しては、赤色発光を示したが、これは重原子効果に伴うリン光による発光によるものと考えられる。
(発光寿命測定結果の考察)
 寿命の観測波長は、それぞれの最大発光波長で測定した(励起波長 365 nm、室温(25oC))。得られた発光寿命測定結果から、その多くは数ナノ秒から数十ナノ秒を示す発光寿命を示すものであり、ホスト分子(前記化合物1)とゲスト分子(溶媒分子)との相互作用で生じる電荷移動相互作用(チャージ-トランスファー相互作用、C-T相互作用)もしくは励起錯体発光(エキサイプレックス)による蛍光発光であることが考えられる。一方で、ヨードベンゼン、オルトヨードトルエン、メタヨードトルエンをゲスト分子(溶媒分子)として用いた場合は、数十マイクロ秒、数百マイクロ秒の長寿命の発光寿命が観測された。重原子(ヨウ素)を含むことから、包接結晶中における重原子効果によりスピン-軌道相互作用が大きくなり、励起三重項からの発光(リン光)が観測されたものである。結晶中で分子運動が制限されているため、室温でもリン光発光が観測されたものと考えられる。
有機化合物検出用のセンサーとしての使用例
 上記化合物1(50 mg, 0.12 mmol, 1eq.)、トリス(ペンタフルオロフェニル)ボラン(B(C6F5)3 , TPFB, 125 mg, 0.24 mmol, 2 eq.)、トルエン(0.10 mL)をメノウ乳鉢に加え、機械的粉砕・混合を15分行ったところ、淡黄色の粉末が得られた。得られた粉末に、紫外光(365 nm)照射を行ったところ、水色発光が観測された。その他、芳香族分子溶媒として、ベンゼン、オルトキシレン、メタキシレン、パラキシレン、1,3,5-トリメチルベンゼン、1-メチルナフタレンを用いたところ、図5(b)に示すように淡黄色から橙色の粉末が得られた。また得られた粉末に、紫外光(365 nm)照射を行ったところ、芳香族分子溶媒の違いによって、水色、緑色、黄色、橙色発光を示す事が観測された。有機化合物の違いを発光色の違いとしてセンシングすることができた。
(実施例2)
 出発原料を、実施例1の化合物1に代替して、化合物p-NDIを用いて、製造した。
原料となるルイス塩基の合成
(p-NDIの合成と同定)
Figure JPOXMLDOC01-appb-C000012

還流管付き200 mLのナスフラスコに1,4,5,8ナフタレンテトラカルボン酸二無水物( NA)(2.5g, 9.3 mmol)と4-アミノピリジン(21 mmol, 2.0g)を20mLのN,N’-ジメチルホルムアミド(DMF)に溶解させ、150℃で4時間還流を行った。室温まで冷却後、生じた沈殿を濾別し、赤褐色固体を得た。この固体を200mLのナスフラスコに加え40mLのDMFに溶解後再結晶させた。この再結晶操作を2回行い、薄橙色結晶を得た。結晶を真空下27時間130℃で加熱することで結晶中に残存するDMFを除去し、橙色結晶を得た。
 p-NDIの同定は1H NMR測定により行った。溶媒として重トリフルオロ酢酸CF3COODを利用した。結果を図6および以下の表に示す。得られた結果から、収量3.2 g、収率83%であることが確認された。
Figure JPOXMLDOC01-appb-T000013
 上記で得られた化合物p-NDI (50 mg, 0.12 mmol, 1eq.)、トリス(ペンタフルオロフェニル)ボラン(B(C6F5)3 , TPFB, 125 mg, 0.24 mmol, 2 eq.)、トルエン(0.10 mL)をメノウ乳鉢に加え、機械的粉砕・混合を15分行ったところ、淡黄色の粉末が得られた。
有機化合物検出用のセンサーとしての使用例
 得られた粉末に、紫外光(365 nm)照射を行ったところ、水色発光が観測された。その他、芳香族分子溶媒として、ベンゼン、オルトキシレン、メタキシレン、パラキシレン、1,3,5-トリメチルベンゼン、1-メチルナフタレンを用いたところ、淡黄色から橙色の粉末が得られた。また得られた粉末に、紫外光(365 nm)照射を行ったところ、芳香族分子溶媒の違いによって、水色、緑色、黄色、橙色発光を示す事が観測された。有機化合物の違いを発光色の違いとしてセンシングすることができた。
(実施例3)
 出発原料を、実施例1の化合物1に代替して、以下に述べる化合物2を用いて、製造した。
原料となるルイス塩基の合成
(化合物2の合成と同定)
Figure JPOXMLDOC01-appb-C000014
 還流管付き200 mLのナスフラスコにピロメリット酸二無水物 (3.47 g, 15.9 mmol)と3-アミノピリジン(3.0 g, 31.9 mmol)を20 mLのN,N’-ジメチルホルムアミド(DMF)に溶解させ、150℃で6時間還流を行った。室温まで冷却後、生じた沈殿を濾別し、黄色固体を得た。この固体を200 mLのナスフラスコに加え40 mLのDMFに溶解後再結晶させた。この再結晶操作を2回行い、黄色結晶を得た。バキュームオーブンで12時間150℃で加熱することで結晶中に残存するDMFを除去し、黄色の粉末を得た。(4.44g, 12.0mmol収率: 75 %)。同定は元素分析により行った。Elemental Analysis: Calcd, C=64.87, H=2.72, N=15.30; Found, C=64.61, H=2.70, N=15.05. 
Figure JPOXMLDOC01-appb-C000015
 上記で得られた化合物2(50 mg, 0.135mmol, 1 eq.)、トリス(ペンタフルオロフェニルボラン) (TPFB) (140 mg, 2eq.)、オルトキシレン10mL をサンプル管に加えた。ホットプレートにてメタキシレンが煮沸するまで加熱後、室温にて3日間静置した。生じた沈殿をろ別することで、粉末として超分子複合体(以下、前記化合物"2"とオルトキシレン(溶媒)から得られた超分子複合体を"2⊃o-Xylene"という)を得た(197 mg)。その他の芳香族溶媒中(m-キシレン、p-キシレン、1,3,5-トリメチルベンゼン、1,2,4-トリメチルベンゼン、アニソール、ブロモベンゼン、ヨードベンゼン)においても、包接結晶(以下、前記化合物"2"と"溶媒"から得られたものを"2⊃Solvent"という)が得られた。
 以下の表および図7に、包接結晶(2⊃Solvent)の発光特性を示した。励起波長は365 nm。ブロモベンゼン、ヨードベンゼンをゲストとした場合の励起波長は340nm、寿命の観測波長はそれぞれの最大発光波長で測定した。室温(25oC)。
Figure JPOXMLDOC01-appb-T000016
 図7の結果から、ゲスト分子の違いにより、青色(466nm)から黄緑色(541nm)の発光を示し、絶対発光量子収率の多くは10%を超える高い値を示した。発光寿命に関しては、キシレン、トリメチルベンゼン、アニソールがゲスト分子の場合にはナノ秒オーダーであったことより、ホスト分子(前記化合物2)とゲスト分子(溶媒分子)との相互作用で生じるチャージトランスファー相互作用(C-T相互作用)もしくは励起錯体発光(エキサイプレックス)による蛍光発光であることが考えられる。一方で、ブロモベンゼン、ヨードベンゼンをゲスト分子(溶媒分子)として用いた場合は、990マイクロ秒、103マイクロ秒の長寿命の発光寿命が観測された。重原子(臭素、ヨウ素)を含むことから、包接結晶中における重原子効果によりスピン-軌道相互作用が大きくなり、励起三重項からの発光(リン光)が観測されたものである。結晶中で分子運動が強く制限されているため、室温でもリン光発光が観測されたものと考えられる。

Claims (8)

  1.  下記の一般式(I-1)または一般式(I-2)で表される芳香族ジイミド化合物または芳香族イミド化合物からなるルイス塩基と、下記の一般式(II-1)または一般式(II-2)で表される3級ホウ素化合物からなるルイス酸と、置換されていてもよいベンゼン、ナフタレン、アントラセン、またはピレンからなる溶媒分子とから構成され、該ルイス塩基に含まれる窒素原子と該ルイス酸に含まれるホウ素原子とが配位結合して構成されていることを特徴とする超分子複合体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、環Aは、置換基を有してもよい炭素数6~20の芳香族炭化水素環を表し、単環でも複環でもよく、RおよびRは、互いに独立して、炭素数1~10のアルキル鎖で連結されていてもよい、置換もしくは非置換の、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、トリアジル基、ピロール基、イミダゾール基、ピラゾール基、イソチアゾール基、イソオキサゾール基、フラザン基、チアジアゾール基、トリアゾール基、テトラゾール基、インドール基、もしくはベンゾニトリル基;炭素数1~10の直鎖状もしくは分岐鎖状のアルキル基もしくはフルオロ基で置換されていてもよい、アニリン基、もしくはアミノ基;ニトリル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式中、Rは、フッ素原子、塩素原子、臭素原子、イソプロピル基を含む炭素数3~10からなるアルキル基またはフェニル基、ペンタフルオロフェニル基を含むアリール基を表し、Rは、イソプロピル基または、フェニル基、ペンタフルオロフェニル基を含むアリール基を表す。)
  2.  ルイス塩基が、前記一般式(I-1)で表される芳香族ジイミド化合物であり、RおよびRは、互いに独立して、ピリジル基またはピリミジル基であり、
     ルイス酸が、前記一般式(II-1)で表される3級ホウ素化合物からなり、Rが、フッ素原子で置換されていてもよいフェニル基であることを特徴とする請求項1に記載の超分子複合体。
  3.  ルイス塩基が、ピリジル基またはピリミジル基で置換された、ピロメリット酸ジイミド化合物、ナフタレンジイミド化合物、およびペリレンジイミド化合物から構成される群から選択されることを特徴とする請求項2に記載の超分子複合体。
  4.  ルイス塩基が、ピリジル基で置換された、ピロメリット酸ジイミド化合物、またはナフタレンジイミド化合物であることを特徴とする請求項3に記載の超分子複合体。
  5.  ルイス酸が、トリス(ペンタフルオロフェニル)ボランであることを特徴とする請求項1~4のいずれかに記載の超分子複合体。
  6.  溶媒分子が、ベンゼン、トルエン、キシレン、フルオロトルエン、1,3,5-トリメチルベンゼン、1,2,4-トリメチルベンゼン、アニソール、メチルアニソール、ヨードベンゼン、フルオロベンゼン、およびジフルオロベンゼンからなる群から選択されることを特徴とする請求項1~5のいずれかに記載の超分子複合体。
  7.  請求項1~6のいずれかに記載の超分子複合体を含む発光体。
  8.  請求項1~6のいずれかに記載の超分子複合体から、溶媒分子が除去されてなることを特徴とする、有機化合物からなる溶媒分子の種類を検出するためのセンサー素子。
PCT/JP2014/056070 2013-03-07 2014-03-07 超分子複合体、発光体、および有機化合物検出用のセンサー素子 WO2014136972A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015504462A JP6311093B2 (ja) 2013-03-07 2014-03-07 超分子複合体、発光体、および有機化合物検出用のセンサー素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-045908 2013-03-07
JP2013045908 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014136972A1 true WO2014136972A1 (ja) 2014-09-12

Family

ID=51491479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056070 WO2014136972A1 (ja) 2013-03-07 2014-03-07 超分子複合体、発光体、および有機化合物検出用のセンサー素子

Country Status (2)

Country Link
JP (1) JP6311093B2 (ja)
WO (1) WO2014136972A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
JP2017165957A (ja) * 2016-03-09 2017-09-21 国立大学法人九州大学 超分子発光体の発光寿命制御方法
JP2017186490A (ja) * 2016-04-01 2017-10-12 国立大学法人東京工業大学 室温燐光を示す有機発光材料、及びそれを用いた光デバイス
JP2017226627A (ja) * 2016-06-23 2017-12-28 国立大学法人北海道大学 新規化合物、化学センサー、センシング装置及びセンシング方法
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
JP2018039777A (ja) * 2016-08-31 2018-03-15 共栄社化学株式会社 ペリキサンテノキサンテンビスイミド化合物、その製造方法、有機el素子及び有機薄膜太陽電池
JP2018100246A (ja) * 2016-12-21 2018-06-28 国立大学法人九州大学 包接発光体
JP2018146300A (ja) * 2017-03-02 2018-09-20 国立大学法人九州大学 超高圧領域における圧力感知材料及び圧力測定法
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
EP3800187A1 (en) * 2015-03-31 2021-04-07 Sony Corporation Organic image sensor comprising specific naphthalenediimide compound
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
CN115368870A (zh) * 2022-10-06 2022-11-22 北京师范大学 一种具有长余辉发光特性的超分子胶粘剂及其制备方法
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US12122767B2 (en) 2019-10-01 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256122A (ja) * 2010-06-07 2011-12-22 Japan Science & Technology Agency ゲスト応答性発光材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256122A (ja) * 2010-06-07 2011-12-22 Japan Science & Technology Agency ゲスト応答性発光材料

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HAJIME HATANAKA ET AL.: "Hoso- Chisso Saku Keisei o Riyo shita Chobunshi Fukugotai no Koso Goseiho no Kochiku to Kotai Hakko Tokusei no Hyoka", JAPAN SOCIETY OF COORDINATION CHEMISTRY DAI 63 KAI TORONKAI YOSHISHU, vol. 349, 15 October 2013 (2013-10-15), pages 2PA - 069 *
MARTIN P. DEBRECZENY ET AL.: "A molecular probe of the electric field produced by a photogenerated ion pair", NEW JOURNAL OF CHEMISTRY, vol. 20, 1996, pages 815 - 828 *
SUSUMU KITAGAWA ET AL.: "Charge Transfer and Exciplex Emissions from a Naphthalenediimide Entangled Coordination Framework Accommodating Various Aromatic Guests", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 116, 20 November 2012 (2012-11-20), pages 26084 - 26090 *
TERESA C. BARROS ET AL.: "Photophysical characterization of a 1,4,5,8- naphthalenediimide derivative", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A: CHEMISTRY, vol. 111, 1997, pages 97 - 104 *
TOSHIKAZU ONO ET AL.: "Kasadakai Lewis Pair o Riyo shita Naphthalenediimide Yudotai no Kaigo Seigyo to Kotai Hakko Zairyo eno Oyo", 2013 NEN SYMPOSIUM ON PHOTOCHEMISTRY, 7 September 2013 (2013-09-07), pages 147, 2C03 *
TOSHIKAZU ONO ET AL.: "Kasadakai Lewis San-Enki Keisei o Katsuyo shita Naphthalenediimide Yudotai no Hosetsu Kessho no Sosei to Guest Bunshi ni Izon shita Kotai Hakko Tokusei no Hyoka", POLYMER PREPRINTS, JAPAN, vol. 62, no. 1, 14 May 2013 (2013-05-14), pages 1321, 2L07 *
TOSHIKAZU ONO ET AL.: "Kasadakai Lewis San-Enki Keisei o Katsuyo shita Naphthalenediimide Yudotai no Kaigo Seigyo to Chobunshi Fukugo Zairyo no Kaihatsu", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 93 SHUNKI NENKAI (2013) KOEN YOKOSHU III, vol. 727, 8 March 2013 (2013-03-08), pages 2 A7 - 06 *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
EP3800187A1 (en) * 2015-03-31 2021-04-07 Sony Corporation Organic image sensor comprising specific naphthalenediimide compound
JP2017165957A (ja) * 2016-03-09 2017-09-21 国立大学法人九州大学 超分子発光体の発光寿命制御方法
JP2017186490A (ja) * 2016-04-01 2017-10-12 国立大学法人東京工業大学 室温燐光を示す有機発光材料、及びそれを用いた光デバイス
JP2017226627A (ja) * 2016-06-23 2017-12-28 国立大学法人北海道大学 新規化合物、化学センサー、センシング装置及びセンシング方法
JP2018039777A (ja) * 2016-08-31 2018-03-15 共栄社化学株式会社 ペリキサンテノキサンテンビスイミド化合物、その製造方法、有機el素子及び有機薄膜太陽電池
JP2018100246A (ja) * 2016-12-21 2018-06-28 国立大学法人九州大学 包接発光体
JP2018146300A (ja) * 2017-03-02 2018-09-20 国立大学法人九州大学 超高圧領域における圧力感知材料及び圧力測定法
JP2022000644A (ja) * 2017-03-02 2022-01-04 国立大学法人九州大学 超高圧領域における圧力感知材料及び圧力測定法
JP7078235B2 (ja) 2017-03-02 2022-05-31 国立大学法人九州大学 超高圧領域における圧力感知材料及び圧力測定法
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US12024517B2 (en) 2018-05-04 2024-07-02 Incyte Corporation Salts of an FGFR inhibitor
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12122767B2 (en) 2019-10-01 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12083124B2 (en) 2019-10-14 2024-09-10 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
CN115368870A (zh) * 2022-10-06 2022-11-22 北京师范大学 一种具有长余辉发光特性的超分子胶粘剂及其制备方法

Also Published As

Publication number Publication date
JPWO2014136972A1 (ja) 2017-02-16
JP6311093B2 (ja) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6311093B2 (ja) 超分子複合体、発光体、および有機化合物検出用のセンサー素子
Cao et al. CN-Containing donor–acceptor-type small-molecule materials for thermally activated delayed fluorescence OLEDs
Gan et al. Integration of aggregation-induced emission and delayed fluorescence into electronic donor–acceptor conjugates
WO2020162600A1 (ja) 多環芳香族化合物
Zhao et al. Aggregation-induced emission (AIE)-active highly emissive novel carbazole-based dyes with various solid-state fluorescence and reversible mechanofluorochromism characteristics
Ono et al. Flexible-color tuning and white-light emission in three-, four-, and five-component host/guest co-crystals by charge-transfer emissions as well as effective energy transfers
CN106459095A (zh) 金属有机骨架(mof)黄色磷光体及其在白光发射器件中的应用
WO2015018322A1 (en) Composition and synthesis of aggregation-induced emission materials
JP2011213643A (ja) 銅錯体化合物及びこれを用いた有機発光素子
TW202236717A (zh) 發光元件
US11613695B2 (en) Luminescent and dispersible hybrid materials combining ionic and coordinate bonds in molecular crystals
Liu et al. Schiff base derivatives containing heterocycles with aggregation-induced emission and recognition ability
Liu et al. Cocrystals of naphthalene diimide with naphthalene derivatives: A facile approach to tune the luminescent properties
JP6589163B2 (ja) 超分子の包接体及び白色発光材料
Sk et al. A deep blue thermally activated delayed fluorescence emitter: balance between charge transfer and color purity
Feng et al. Investigation of molecular arrangements and solid-state fluorescence properties of solvates and cocrystals of 1-acetyl-3-phenyl-5-(9-anthryl)-2-pyrazoline
JP2013502485A (ja) コア拡張ペリレンジイミド色素の合成方法および新規なコア拡張ペリレンジイミド色素
CN107001926B (zh) 双(二芳基亚甲基)-二氢并苯类化合物的聚集诱导发光和聚集促进光致变色
Mattiello et al. Enhancement of fluorescence and photostability of luminescent radicals by quadruple addition of phenyl groups
Li et al. Developing Bright Afterglow Materials via Manipulation of Higher Triplet Excited States and Relay Synthesis in Difluoroboron β‐Diketonate Systems
CN114621271B (zh) 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
Wang et al. Color-tunable organic composite nanoparticles based on perylene tetracarboxylic-diimides and a silicon-cored fluoranthene derivate
JP6977982B2 (ja) 包接発光体
TWI543982B (zh) A compound containing an imidazol [1,2-a] pyrimidine structure, and a preparation thereof And organic light emitting diodes containing them
Matsumoto et al. J-aggregate structure in a chloroform solvate of a 2, 3-dicyanopyrazine dye–Separation of two-dimensional stacking dye layers by solvate formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760438

Country of ref document: EP

Kind code of ref document: A1