WO2014129630A1 - 光学系、光学部材、マイクロミラーアレイ、表示装置および撮像装置 - Google Patents
光学系、光学部材、マイクロミラーアレイ、表示装置および撮像装置 Download PDFInfo
- Publication number
- WO2014129630A1 WO2014129630A1 PCT/JP2014/054358 JP2014054358W WO2014129630A1 WO 2014129630 A1 WO2014129630 A1 WO 2014129630A1 JP 2014054358 W JP2014054358 W JP 2014054358W WO 2014129630 A1 WO2014129630 A1 WO 2014129630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- component
- circularly polarized
- optical member
- polarized light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/22—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
- G02B30/25—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/18—Stereoscopic photography by simultaneous viewing
- G03B35/24—Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/002—Arrays of reflective systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
- G02B27/285—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/286—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/13362—Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/229—Image signal generators using stereoscopic image cameras using a single 2D image sensor using lenticular lenses, e.g. arrangements of cylindrical lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/305—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
Definitions
- the present invention relates to an optical system, an optical member, a micromirror array, a display device, and an imaging device.
- Patent Document 1 describes an image display device including a microlens array in which a plurality of microlenses that form a three-dimensional image by combining light beams emitted from a plurality of display pixels are two-dimensionally arranged.
- the optical system has a concave surface that reflects the light of the first circular polarization component and transmits the light of the second circular polarization component in the rotation direction opposite to the first circular polarization component.
- the second optical member transmits the light of the first linearly polarized light component and has the second linearly polarized light component orthogonal to the first linearly polarized light component.
- the display device has a concave surface that reflects the light of the first circular polarization component and transmits the light of the second circular polarization component in the rotation direction opposite to the first circular polarization component.
- An optical system and a display unit having a display surface arranged adjacent to the plurality of optical systems.
- the display surface is disposed at a position optically substantially equivalent to the focal position of the concave surface.
- the plurality of optical systems is arranged corresponding to the plurality of display pixels on the display surface for each optical system.
- the second optical member has a liquid crystal plate, and the observation of the three-dimensional image and the two-dimensional image can be performed by switching the voltage applied to the liquid crystal plate. It is preferable to switch between observation.
- the optical system transmits a first linearly polarized light component and reflects a second linearly polarized light component orthogonal to the first linearly polarized light component, and the first straight line.
- the display device transmits the first linearly polarized light component light and reflects the second linearly polarized light component orthogonal to the first linearly polarized light component, and the first straight line.
- a wave plate for converting the light of the polarization component into the light of the first circular polarization component and the light of the first circular polarization component are reflected, and the light of the second circular polarization component in the rotation direction opposite to the first circular polarization component is transmitted.
- a plurality of optical systems having an optical member having a concave surface, and a display unit having a display surface disposed adjacent to the plurality of optical systems.
- the optical member includes a reflective linearly polarizing plate that transmits the first linearly polarized light component and reflects the second linearly polarized light component that is orthogonal to the first linearly polarized light component, and the reflective linearly polarizing plate.
- the optical member of the tenth aspect is disposed between the quarter-wave plate and the reflective linearly polarizing plate, and has substantially the same optical characteristics as the half-wave plate.
- the reflecting mirror in the optical member according to the tenth or eleventh aspect, preferably has a transparent substrate having a concave surface.
- the reflecting mirror in the optical member according to the twelfth aspect, preferably has a filling member filled in the concave surface and having the same refractive index as that of the transparent substrate.
- the cholesteric liquid crystal is preferably applied to one of the concave surface and the convex surface that is the back surface thereof.
- the optical members according to any one of the tenth to fourteenth aspects are arranged in a one-dimensional or two-dimensional manner.
- a display device includes the micromirror array according to the fifteenth aspect, and a display unit disposed so that the display surface faces one of the reflective linearly polarizing plate and the concave back surface.
- an imaging apparatus includes: the micromirror array according to the fifteenth aspect; an imaging element disposed so that the imaging surface faces one of the reflective linearly polarizing plate and the concave back surface; .
- the optical system, the optical member, the micromirror array, the display device, and the imaging device can be thinned.
- FIG. 1 is a perspective view schematically showing a configuration of a display device according to a first embodiment of the present invention. It is sectional drawing which shows typically the structure of the micro lens which concerns on 1st Embodiment. It is sectional drawing which shows typically the structure of the micro lens which concerns on 2nd Embodiment. It is sectional drawing which shows typically the structure of the micro lens which concerns on 3rd Embodiment. It is sectional drawing which shows typically the structure of the micro lens which concerns on 4th Embodiment. It is a figure which shows the simple near-eye observation system which uses a convex lens. It is a figure which shows the example which applied the polarization return
- FIG. 1 is a perspective view schematically showing a configuration of a display device according to a first embodiment of the present invention.
- the display device 100 is a so-called integral photography type stereoscopic image display device, and includes a liquid crystal display 110 and a micromirror array 120 installed to face the display surface of the liquid crystal display 110.
- a large number of display pixels (pixels) 111 having a rectangular shape are two-dimensionally arranged squarely.
- the micromirror array 120 is a two-dimensional staggered arrangement of a large number of micromirrors 121 having a circular shape.
- a plurality of display pixels 111 exist in a range covered by one micromirror 121 in the entire display surface of the liquid crystal display 110.
- the micromirror array 120 and the liquid crystal display 110 are schematically illustrated with a space therebetween, but in actuality, the space between the micromirror array 120 and the liquid crystal display 110 is very small or exists. do not do.
- the micromirror array 120 is formed in a thin film shape and is bonded to the display surface of the liquid crystal display 110.
- an image captured through the micromirror array 120 is displayed on the display surface of the liquid crystal display 110.
- an image captured through the micromirror array 120 is displayed on the display surface of the liquid crystal display 110.
- the observer can visually recognize a three-dimensional stereoscopic image.
- Such a three-dimensional image browsing method is known as an integral photography method.
- FIG. 2 is a cross-sectional view schematically showing the configuration of the micromirror 121.
- the micromirror array 120 is a multidimensional array of micromirrors 121 shown in FIG. In FIG. 2, for easy understanding, each member constituting one micromirror 121 and the liquid crystal display 110 are illustrated separately from each other, but each member is actually formed in close contact.
- the micromirror 121 is formed by laminating a reflective linearly polarizing plate 122, a quarter-wave (1 ⁇ 4 ⁇ ) plate 123, and a reflecting mirror 124 in order from the display surface side of the liquid crystal display 110. .
- the reflective linear polarizing plate 122 has a function of reflecting the S-polarized component of the incident light and transmitting the P-polarized component.
- the quarter-wave plate 123 is installed at an angle of 45 degrees with respect to the axis of the reflective linear polarizing plate 122.
- the reflecting mirror 124 is formed by forming a concave surface on a transparent substrate and then filling the concave surface with an optical adhesive having the same refractive index as that of the transparent substrate. Cholesteric liquid crystal is applied to the concave surface (or the convex surface on the back side) to form a circularly polarized light separating layer.
- the circularly polarized light separation layer made of cholesteric liquid crystal allows the left circularly polarized light to pass through and reflects the right circularly polarized light as the right circularly polarized light.
- the reflecting mirror 124 is installed so that the display surface of the liquid crystal display 110 is positioned at the focal position.
- the focal length f is R / 2 with respect to the radius of curvature R of the concave surface.
- the focal length f is 2R. That is, by using the reflecting mirror 124, the focal length f can be reduced to 1/4 of the conventional length.
- P-polarized light 10 is emitted from the display surface of the liquid crystal display 110 placed on the right side of FIG.
- the P-polarized light 10 passes through the reflective linear polarizing plate 122 and enters the quarter-wave plate 123. Then, it passes through the quarter-wave plate 123 and changes to right circularly polarized light 11 and enters the concave surface of the reflecting mirror 124.
- the concave surface acts as a concave mirror for the right circularly polarized light 11 by the circularly polarized light separating layer.
- the right-handed circularly polarized light 11 is reflected by the concave surface of the reflecting mirror 124 and goes again to the quarter-wave plate 123.
- the right circularly polarized light 11 is changed to S-polarized light 12 by passing through the quarter-wave plate 123 and is incident on the reflective linearly polarizing plate 122.
- the reflective linearly polarizing plate 122 reflects the S-polarized light 12.
- the reflected S-polarized light 12 passes through the quarter-wave plate 123 to become the left circularly polarized light 13, passes through the reflecting mirror 124, and travels toward the observer.
- the concave surface of the reflecting mirror 124 is filled with an optical adhesive having the same refractive index as that of the transparent substrate, the left circularly polarized light 13 transmitted through the reflecting mirror 124 does not receive the refraction effect due to the concave surface.
- the light beam having a focal point on the display surface of the liquid crystal display 110 is emitted from the micromirror array 120 toward the observer.
- the micromirror 121 is arranged to face the quarter-wave plate 123 and one surface of the quarter-wave plate 123, and is a reflective straight line that transmits the P-polarized component and reflects the S-polarized component.
- a polarizing plate 122 and a reflecting mirror 124 that has a concave surface facing the other surface of the quarter-wave plate 123 and reflects the right circularly polarized light component incident on the concave surface and transmits the left circularly polarized light component. Since it did in this way, the display apparatus 100 using the micromirror array 120 can be reduced in thickness.
- the reflecting mirror 124 has a transparent base material with a concave surface, and the concave surface is filled with an optical adhesive having the same refractive index as the transparent base material. Since it did in this way, the left circularly-polarized component can permeate
- the display device 100 includes a micromirror array 120 in which a plurality of micromirrors 121 are two-dimensionally arranged, and a liquid crystal display 110 arranged so that the display surface faces the concave back surface of the reflecting mirror 124. Since it did in this way, the display apparatus 100 can be reduced in thickness.
- the display device according to the first embodiment described above has a problem that the contrast of the image displayed on the liquid crystal display 110 is reduced by the external light incident on the micromirror 121 from the observer side.
- the configuration of the display device according to the second embodiment that solves this problem will be described below.
- FIG. 3 is a cross-sectional view schematically showing the configuration of the micromirror according to the second embodiment.
- differences from the display device according to the first embodiment will be described, and the same members as those in the first embodiment will be denoted by the same reference numerals as those in the first embodiment. Description is omitted.
- the micromirror 221 includes the quarter-wave plate 125 facing the convex surface of the reflecting mirror 124 (the back surface of the concave surface on which the circularly polarized light separation layer is formed) on the micromirror 121 according to the first embodiment, An absorption linear polarizing plate 126 that opposes the convex surface of the reflecting mirror 124 via a quarter-wave plate 125 is added.
- the quarter-wave plate 125 is a member having the same configuration as the quarter-wave plate 123 already described.
- the absorption linear polarizing plate 126 has a function of absorbing the S-polarized component of the incident light and transmitting the P-polarized component.
- P-polarized light 10 is emitted from the display surface of the liquid crystal display 110 placed on the right side of FIG.
- the light 10 follows the path described in the first embodiment, and becomes the left circularly polarized light 13 and is emitted from the reflecting mirror 124.
- the left circularly polarized light 13 passes through the quarter-wave plate 125 to become P-polarized light 14, passes through the absorption linear polarizing plate 126, and travels toward the observer.
- the external light incident on the micromirror 221 from the observer side will be examined.
- the absorption linear polarizing plate 126 and the quarter-wave plate 125 are not present (that is, in the case of the same configuration as that of the first embodiment shown in FIG. 2), the external light directed from the left side of FIG.
- the right circularly polarized light component is reflected by the convex surface of the reflecting mirror 124 and travels toward the viewer. That is, since the external light is reflected by the reflecting mirror 124 and returned to the viewer side, the contrast of the image to be observed is lowered.
- the S-polarized component of the external light is absorbed by the absorption linear polarizing plate 126 and only the P-polarized component is transmitted through the absorption linear polarizing plate 126.
- the P-polarized component light passes through the quarter-wave plate 125 and changes to right-polarized component light, is reflected by the convex surface of the reflecting mirror 124, and travels toward the quarter-wave plate 125 again.
- the right circularly polarized light component passes through the quarter-wave plate 125 and is changed to light of the S polarized light component, and is absorbed by the absorption linear polarizing plate 126.
- all external light is absorbed by the absorption type linear polarizing plate 126.
- the micromirror 221 is provided facing the convex surface of the reflecting mirror 124, an absorption linear polarizing plate 126 that transmits the P-polarized component and absorbs the S-polarized component, and the reflecting mirror 124 and the absorbing linear polarizing plate 126. And a quarter-wave plate 125 provided therebetween. Since it did in this way, the contrast fall of the observation image by external light can be prevented.
- FIG. 4A is a cross-sectional view schematically showing the configuration of the micromirror according to the third embodiment.
- the micromirror 321 has a configuration in which a liquid crystal plate 127 provided between the reflective linear polarizing plate 122 and the quarter-wave plate 123 is added to the micromirror 221 according to the second embodiment.
- the liquid crystal plate 127 is a liquid crystal layer formed by a liquid crystal element between a pair of transparent substrates to which a transparent electrode is attached, and whether or not voltage is applied to the transparent electrode (whether or not voltage is applied to the liquid crystal layer). ), The orientation direction of the liquid crystal element changes, and it is possible to switch whether incident light is emitted as it is or a phase difference of 180 degrees is emitted. For example, when a voltage is applied, the incident light passes through the liquid crystal plate 127 as it is, and when no voltage is applied, the incident light is emitted with a phase difference of 180 degrees.
- the liquid crystal plate 127 is a member that can obtain the same effect as inserting and removing a half polarizing plate at the position of the liquid crystal plate 127 in accordance with application of a voltage.
- a member is known as a TN type or STN type liquid crystal panel, for example.
- the display device of the present embodiment can observe a two-dimensional image in addition to a three-dimensional image.
- the display device applies a voltage to the liquid crystal plate 127.
- the micromirror 321 is the same as that described in FIG. This works similarly to the micromirror 221 of the second embodiment.
- the display device does not apply a voltage to the liquid crystal plate 127.
- a phase difference of 180 degrees is generated by the liquid crystal layer of the liquid crystal plate 127, and the S-polarized light Change to light 15.
- the S-polarized light 15 passes through the quarter-wave plate 123, changes to left-handed circularly polarized light 16, and travels toward the reflecting mirror 124.
- the left circularly polarized light 16 passes through the circularly polarized light separating layer of the reflecting mirror 124, passes through the quarter-wave plate 125, and changes to P-polarized light 17.
- the P-polarized light 17 passes through the absorptive linear polarizing plate 126 and travels toward the observer. That is, when no voltage is applied to the liquid crystal plate 127, the light from the liquid crystal display 110 passes through the micromirror 321 and travels toward the observer.
- the micromirror 321 is disposed between the quarter-wave plate 123 and the reflective linearly polarizing plate 122 and has substantially the same optical characteristics as the half-wave plate and the polarization state of incident light.
- a liquid crystal plate 127 that can be electrically switched between a transparent state and a transparent state. Since it did in this way, observation of a three-dimensional image and observation of a two-dimensional image can be switched electrically.
- FIG. 5 is a cross-sectional view schematically showing the configuration of the micromirror according to the fourth embodiment.
- the micromirror 421 includes a reflective linearly polarizing plate 122, a quarter-wave plate 123, a reflector 424, and a quarter-wave plate 125. And an absorption type linearly polarizing plate 126.
- the circularly polarized light separating layer of the reflecting mirror 424 is configured to transmit the right circularly polarized component and reflect the left circularly polarized component.
- each member constituting the micromirror 421 is different from that of the second embodiment. Specifically, in order from the display surface of the liquid crystal display 110, the quarter-wave plate 125, the reflecting mirror 424, the quarter-wave plate 123, the reflective linear polarizing plate 122, and the absorption linear polarizing plate 126 are arranged in this order. Each member is arranged. Further, the reflecting mirror 424 is arranged so that the concave surface thereof is convex with respect to the liquid crystal display 110. That is, the reflecting mirror 424 is arranged facing the observer. The reflecting mirror 424 is arranged such that the display surface of the liquid crystal display 110 is positioned at a position optically equivalent to the focal position.
- P-polarized light 10 is emitted from the display surface of the liquid crystal display 110 placed on the right side of FIG.
- the P-polarized light 10 changes to right circularly polarized light 20 by passing through the quarter-wave plate 125.
- the right circularly polarized light 20 passes through the convex surface of the reflecting mirror 424 and travels toward the quarter-wave plate 123.
- the concave surface of the reflecting mirror 424 is filled with an optical adhesive having the same refractive index as that of the transparent substrate, the right circularly polarized light 20 transmitted through the reflecting mirror 424 does not receive the refractive effect due to the concave surface.
- the right circularly polarized light 20 changes to S-polarized light 21 by passing through the quarter-wave plate 123.
- the S-polarized light 21 travels toward the reflective linear polarizing plate 122, is reflected by the reflective linear polarizing plate 122, and travels toward the quarter-wave plate 123 again. Then, it passes through the quarter-wave plate 123 and changes to left circularly polarized light 22.
- This left circularly polarized light 22 goes to the concave surface of the reflecting mirror 424.
- the concave surface acts as a concave mirror for the left circularly polarized light 22 by the circularly polarized light separating layer.
- the left circularly polarized light 22 is reflected by the concave surface, passes through the quarter-wave plate 123, and changes to P-polarized light 23.
- the P-polarized light 23 again travels toward the reflective linearly polarizing plate 122, passes through the reflective linearly polarizing plate 122 and the absorbing linearly polarizing plate 126, and travels toward the observer.
- the light beam having a focal point on the display surface of the liquid crystal display 110 is emitted from the micromirror 421 toward the observer.
- the absorption linear polarizing plate 126 is provided so that external light incident on the micromirror 421 from the viewer side is not reflected to the viewer side.
- the absorption linear polarizing plate 126 is not present, the S circularly polarized light component of the external light incident on the micromirror 421 is reflected toward the observer by the reflective linear polarizing plate 122.
- the absorption-type linearly polarizing plate 126 absorbs the S-polarized light component that is reflected to the viewer side of the external light, so that the contrast is not reduced by the external light.
- liquid crystal plate 127 described in the third embodiment between the reflective linearly polarizing plate 122 and the quarter-wave plate 123, a three-dimensional image is obtained as in the third embodiment. And observation of a two-dimensional image can be switched.
- the concave surface of the reflecting mirror 424 faces the observer side.
- the circularly polarized light separating layer formed on the concave surface of the reflecting mirror 424 cannot completely reflect the left circularly polarized component (that is, a part of the left circularly polarized component passes through the reflecting mirror 424).
- the light that has unintentionally transmitted through the reflecting mirror 424 is absorbed by the display surface of the liquid crystal display 110 and does not travel toward the viewer.
- the fifth embodiment of the present invention will be described below.
- the fifth embodiment shows an example in which the configuration of the display device described in the above embodiment is applied to a head-mounted display system (head-mounted display device) that is a near-eye observation system.
- FIG. 6 shows a simple near-eye observation system using a convex lens 501.
- the problem when the convex lens 501 is used in the head mounted display system which is a close eye observation system will be described with reference to FIG.
- the head mounted display system of FIG. 6 is a method of observing the two-dimensional display element 510 with a loupe. Most head-mounted display systems are only partially improved by extending the optical path from this type to provide a different label or using multiple lenses. It is no different from this system.
- f must be reduced in order to reduce the size of the device, but this restricts the aperture of the lens.
- a lens having a curvature of f / 2 is required.
- the aperture cannot be larger than f (f is a hemisphere), and the aperture approaches this limit. If it is too large, the distortion will increase and it will not be practical.
- the curvature r of the lens is 10 mm, and in the case of a hemispherical lens, the lens thickness (periphery-center) is 10 mm.
- FIG. 7 shows an example in which the polarization folding optical system 521 is applied to a head mounted display system.
- the polarization folding optical system 521 and the two-dimensional display element 510 arranged close to the eyeball 502 are shown as the head-mounted display system 500, and other configurations are omitted.
- the polarization folding optical system 521 of the present embodiment is similar to the configuration in which the liquid crystal plate 127 of the third embodiment is provided on the micromirror 421 of the fourth embodiment.
- the micromirrors 421 according to the fourth embodiment are arranged in a two-dimensional manner to form the micromirror array 120.
- the polarization folding optical system 521 according to the fifth embodiment includes one eyeball 502 and one eyeball 502.
- One polarization folding optical system 521 is provided corresponding to the two-dimensional display element 510 of the base, and constitutes the head mounted display 500. That is, as can be seen from FIG. 7, the polarization folding optical system 521 has a size corresponding to one eyeball 502 and is considerably larger than one size of the micromirror 421 of the fourth embodiment. Become.
- a quarter-wave plate 525, a reflecting mirror 524, a liquid crystal plate 527, a quarter-wave plate 523, and a reflective linear polarizing plate 522 are arranged in this order from the display surface of the two-dimensional display element 510.
- the two-dimensional display element 510 corresponds to the liquid crystal display 110 of the fourth embodiment
- the quarter wave plate 525 corresponds to the quarter wave plate 125 of the fourth embodiment
- the reflecting mirror 524 includes
- the liquid crystal plate 527 corresponds to the liquid crystal plate 127 of the third embodiment
- the quarter-wave plate 523 is the quarter of the fourth embodiment.
- the reflective linearly polarizing plate 522 corresponds to the reflective linearly polarizing plate 122 of the fourth embodiment.
- the circularly polarized light separating layer of the reflecting mirror 524 is formed of cholesteric liquid crystal, and is configured to transmit the right circularly polarized component and reflect the left circularly polarized component as in the fourth embodiment.
- the reflecting mirror 524 is arranged so that the concave surface is convex with respect to the two-dimensional display element 510, as in the fourth embodiment. That is, the reflecting mirror 524 is arranged facing the viewer.
- the reflecting mirror 524 is arranged so that the display surface of the two-dimensional display element 510 is located at a position optically equivalent to the focal position.
- P-polarized light is emitted to the quarter-wave plate 525 from the display surface of the two-dimensional display element 510 placed on the right side of FIG.
- the P-polarized light changes to right circularly polarized light by passing through the quarter-wave plate 525.
- the right circularly polarized light passes through the convex surface of the reflecting mirror 524 and travels toward the liquid crystal plate 527.
- the concave surface of the reflecting mirror 524 is filled with an optical adhesive having the same refractive index as that of the transparent substrate, so that the right circularly polarized light transmitted through the reflecting mirror 524 is refracted by the concave surface. No effect.
- the liquid crystal plate 527 is a liquid crystal plate similar to the liquid crystal plate 127 of the third embodiment, and the orientation of the liquid crystal element depends on whether or not voltage is applied to the transparent electrode (whether or not voltage is applied to the liquid crystal layer). The direction is changed, and it is possible to switch whether the incident light is emitted as it is or whether it is emitted with a phase difference of 180 degrees. Thus, for example, when a voltage is applied (on), incident light passes through the liquid crystal plate 527 as it is, and when no voltage is applied (off), the incident light is 180 degrees. Output with phase difference.
- the polarization folding optical system 521 of the present embodiment can switch whether to enlarge the image of the two-dimensional display element 510 or to see through the liquid crystal plate 527. Note that control (ON / OFF control) of whether or not to apply a voltage to the liquid crystal plate 527 is performed by the control device 528.
- a voltage is applied to the liquid crystal plate 527.
- the right circularly polarized light that has passed through the reflecting mirror 524 enters the liquid crystal plate 527, and the light that has entered the liquid crystal plate 527 is emitted from the liquid crystal plate 527 with the same polarization direction as that when it was incident, that is, with the right circular polarized light.
- the right circularly polarized light passes through the quarter-wave plate 523 and changes to S-polarized light.
- the S-polarized light travels toward the reflective linear polarizing plate 522, is reflected by the reflective linear polarizing plate 522, and travels toward the quarter-wave plate 523 again. Then, it passes through the quarter-wave plate 523 and changes to left circularly polarized light.
- This left circularly polarized light goes to the concave surface of the reflector 524.
- the concave surface acts as a concave mirror for the left circularly polarized light by the circularly polarized light separating layer.
- the left circularly polarized light is reflected by the concave surface, passes through the liquid crystal plate 527 as it is, goes to the quarter-wave plate 523, passes through the quarter-wave plate 523, and changes to P-polarized light.
- the P-polarized light again travels toward the reflective linear polarizer 522, passes through the reflective linear polarizer 522, and travels toward the viewer.
- the light beam having a focal point on the display surface of the two-dimensional display element 510 is emitted from the polarization folding optical system 521 toward the observer.
- the distance from the concave surface to the display surface is as follows: display element (510) ⁇ 1 ⁇ 4 ⁇ (525) ⁇ concave mirror (pass) (524) ⁇ liquid crystal (passage path) ⁇ 1 ⁇ 4 ⁇ (523) ⁇ polarizing reflector (522) ⁇ 1 / 4 ⁇ (523) ⁇ TN liquid crystal (return path) (527) ⁇ concave mirror (reflection) (524), so the thickness of the concave mirror and the liquid crystal plate are passed twice, so that this space can be used reciprocally. Therefore, it can be almost halved.
- the overall width can be reduced to about half by reducing the center thickness and halving the space of the required focal length. This effect may be used in the direction of the caliber to increase the caliber. Increasing the caliber increases the tolerance of the eye position, making it very easy to see or eliminating the need to adjust pd (interpupillary distance).
- the display element (510) ⁇ 1 ⁇ 4 ⁇ (525) ⁇ concave mirror (pass) (524) ⁇ TN liquid crystal (pass forward path) (527) ⁇ 1 ⁇ 4 ⁇ (523) ⁇ It becomes a polarizing reflector (pass) (522), and this system has no refractive power. Since this can be dynamically switched by the control device 528, if switching is performed with a constant duty, a see-through display is obtained.
- the optical system is the polarization folding optical system 521 as described above, as an optical system of the head mounted display system, an optical system that is thin, has a small open aperture value (brighter), and does not cause chromatic aberration. It becomes possible to use.
- the display unit of the head mounted display system is made thinner, the open aperture value is made smaller (brighter), and chromatic aberration is reduced. No image can be observed.
- the transmission / reflection (absorption) relationship between the P-polarized component and the S-polarized component can be changed.
- the reflective linearly polarizing plate 122 may transmit the S-polarized component and reflect the P-polarized component.
- the circularly polarized light separating layer formed on the reflecting mirror 124 may be formed so as to transmit the right circularly polarized light component and reflect the left circularly polarized light component.
- the absorption linear polarizing plate 126 transmits the S-polarized component and absorbs the P-polarized component, and the liquid crystal display 110 may emit the S-polarized component light instead of the P-polarized component light.
- the arrangement of the plurality of micromirrors in the micromirror array is not limited to the staggered arrangement as in the above-described embodiments.
- the present invention may be applied to a micromirror array in which a plurality of micromirrors are squarely arranged.
- the present invention can also be applied to a display device that observes a stereoscopic image by a lenticular method.
- the lenticular lenses having a long and narrow shape are formed like the micromirrors in the above-described embodiments, and are arranged one-dimensionally.
- the present invention is not limited to such an embodiment.
- the present invention can be applied to an imaging apparatus or an optical aberration measurement apparatus.
- an image sensor such as a CCD or CMOS may be installed so that the position of the image pickup surface matches the focal position of the reflecting mirror 124.
- the optical member (micromirror) of the present invention can be applied to various devices that conventionally used a plurality of microlenses.
- Modification 5 In the fifth embodiment, the example in which the polarization folding optical system 521 is used for a head mounted display has been described. However, the present invention is not necessarily limited to this content. An optical system such as the polarization folding optical system 521 can be applied to various cases in which an observation target is enlarged and observed. As in the fourth modification, the present invention can also be applied to an imaging apparatus, an optical aberration measurement apparatus, and the like. In this case, instead of the two-dimensional display element 510, an imaging element such as a CCD or CMOS may be installed so that the position of the imaging surface matches the focal position of the reflecting mirror 524.
- an imaging element such as a CCD or CMOS may be installed so that the position of the imaging surface matches the focal position of the reflecting mirror 524.
- the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
- DESCRIPTION OF SYMBOLS 100 Display apparatus, 500 ... Head mounted display, 110 ... Liquid crystal display, 510 ... Two-dimensional display element, 120 ... Micromirror array, 121, 221, 321, 421 ... Micromirror, 521 ... Polarization folding
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Stereoscopic And Panoramic Photography (AREA)
Abstract
Description
本発明の第2の態様によると、第1の態様の光学系において、第2光学部材は、第1直線偏光成分の光を透過し、第1直線偏光成分と直交する第2直線偏光成分の光を反射する偏光板と、第1直線偏光成分の光を第1円偏光成分の光に変換する波長板とを有することが好ましい。
本発明の第3の態様によると、表示装置は、第1円偏光成分の光を反射し、第1円偏光成分と逆の回転方向の第2円偏光成分の光を透過する凹面を有する第1光学部材と、第1光学部材で反射した第1円偏光成分の光を第2円偏光成分の光に変換して反射し、第1光学部材に入射させる第2光学部材とを有する複数の光学系と、複数の光学系に隣接して配置された表示面を有する表示部とを備える。
本発明の第4の態様によると、第3の態様の表示装置において、凹面の焦点位置と光学的に略等価な位置に表示面が配置されていることが好ましい。
本発明の第5の態様によると、第3または第4の態様の表示装置において、複数の光学系は、光学系毎に表示面の複数の表示画素に対応して配置されていることが好ましい。
本発明の第6の態様によると、第3から5の何れか1の態様の表示装置において、三次元画像の観察と、二次元画像の観察とが可能であることが好ましい。
本発明の第7の態様によると、第6の態様の表示装置において、第2光学部材は液晶板を有し、液晶板への印加電圧の切り替えにより三次元画像の観察と、二次元画像の観察とを切換えることが好ましい。
本発明の第8の態様によると、光学系は、第1直線偏光成分の光を透過し、第1直線偏光成分と直交する第2直線偏光成分の光を反射する偏光板と、第1直線偏光成分の光を第1円偏光成分の光に変換する波長板と、第1円偏光成分の光を反射し、第1円偏光成分と逆の回転方向の第2円偏光成分の光を透過する凹面を有する光学部材とを有する。
本発明の第9の態様によると、表示装置は、第1直線偏光成分の光を透過し、第1直線偏光成分と直交する第2直線偏光成分の光を反射する偏光板と、第1直線偏光成分の光を第1円偏光成分の光に変換する波長板と、第1円偏光成分の光を反射し、第1円偏光成分と逆の回転方向の第2円偏光成分の光を透過する凹面を有する光学部材とを有する複数の光学系と、複数の光学系に隣接して配置された表示面を有する表示部とを備える。
本発明の第10の態様によると、光学部材は、第1直線偏光成分を透過し第1直線偏光成分と直交する第2直線偏光成分を反射する反射型直線偏光板と、反射型直線偏光板の一方の面に対向して配置された四分の一波長板と、四分の一波長板に対向する凹面を有し、凹面に入射した第1直線偏光成分に対応する回転方向の第1円偏光成分を反射し第1円偏光成分と逆の回転方向の第2円偏光成分を透過する反射鏡と、を備える。
本発明の第11の態様によると、第10の態様の光学部材において、四分の一波長板と反射型直線偏光板との間に配置され、二分の一波長板と略同一の光学特性を有する第1状態と入射光の偏光状態を変化させずに透過する第2状態とを電気的に切替可能な切替部材を備えることが好ましい。
本発明の第12の態様によると、第10または11の態様の光学部材において、反射鏡は、凹面を形成した透明基材を有することが好ましい。
本発明の第13の態様によると、第12の態様の光学部材において、反射鏡は、凹面に充填され透明基材と同一の屈折率を有する充填部材を有することが好ましい。
本発明の第14の態様によると、第10~13のいずれか一態様の光学部材において、凹面とその裏面である凸面との一方にコレステリック液晶が塗布されることが好ましい。
本発明の第15の態様によると、マイクロミラーアレイは、第10~14のいずれか一態様の光学部材を一次元状または二次元状に複数配列した。
本発明の第16の態様によると、表示装置は、第15の態様のマイクロミラーアレイと、表示面が反射型直線偏光板と凹面の裏面との一方に対向するように配置された表示部と、を備える。
本発明の第17の態様によると、撮像装置は、第15の態様のマイクロミラーアレイと、撮像面が反射型直線偏光板と凹面の裏面との一方に対向するように配置された撮像素子と、を備える。
図1は、本発明の第1の実施の形態に係る表示装置の構成を模式的に示す斜視図である。表示装置100は、いわゆるインテグラルフォトグラフィ方式の立体映像表示装置であり、液晶ディスプレイ110と、液晶ディスプレイ110の表示面に対向して設置されたマイクロミラーアレイ120とを備える。液晶ディスプレイ110の表示面には、矩形形状を有する多数の表示画素(ピクセル)111が二次元状に正方配列されている。
図2は、マイクロミラー121の構成を模式的に示す断面図である。マイクロミラーアレイ120は、図2に示したマイクロミラー121が二次元状に多数配列されたものである。なお、図2では分かりやすさのために、1つのマイクロミラー121を構成する各部材および液晶ディスプレイ110を互いに分離して図示しているが、実際には各部材は密着して形成される。
(1)マイクロミラー121は、四分の一波長板123と、四分の一波長板123の一方の面に対向して配置され、P偏光成分を透過しS偏光成分を反射する反射型直線偏光板122と、四分の一波長板123の他方の面に対向する凹面を有し、凹面に入射した右円偏光成分を反射し左円偏光成分を透過する反射鏡124とを備える。このようにしたので、マイクロミラーアレイ120を用いる表示装置100を薄型化することができる。また、従来のマイクロレンズに比べて、開放絞り値が小さく(明るく)且つ色収差が生じないマイクロミラーを用意することが可能になる。
上述した第1の実施の形態の表示装置には、観察者側からマイクロミラー121に向かって入射する外光によって、液晶ディスプレイ110に表示された映像のコントラストが低下してしまうという問題がある。以下、この問題を解決した、第2の実施の形態に係る表示装置の構成を説明する。
(1)マイクロミラー221は、反射鏡124の凸面に対向して設けられ、P偏光成分を透過しS偏光成分を吸収する吸収型直線偏光板126と、反射鏡124と吸収型直線偏光板126との間に設けられた四分の一波長板125とを備える。このようにしたので、外光による観察像のコントラスト低下を防止することができる。
以下、本発明の第3の実施の形態に係る表示装置について説明する。なお、以下の説明では、第2の実施の形態に係る表示装置との違いについて説明し、第2の実施の形態と同一の部材については第2の実施の形態と同一の符号を付して説明を省略する。
(1)マイクロミラー321は、四分の一波長板123と反射型直線偏光板122との間に配置され、二分の一波長板と略同一の光学特性を有する状態と、入射光の偏光状態を変化させずに透過する状態とを電気的に切替可能な液晶板127を備える。このようにしたので、三次元画像の観察と二次元画像の観察とを電気的に切り替えることができる。
以下、本発明の第4の実施の形態に係る表示装置について説明する。なお、以下の説明では、第2の実施の形態に係る表示装置との違いについて説明し、第2の実施の形態と同一の部材については第2の実施の形態と同一の符号を付して説明を省略する。
(1)反射鏡424の凹面は、観察者側を向いている。このようにしたので、反射鏡424の凹面に形成された円偏光分離層が左円偏光成分を完全に反射しきれない場合(つまり左円偏光成分の一部が反射鏡424を透過してしまう場合)であっても、反射鏡424を意図せず透過してしまった光は液晶ディスプレイ110の表示面に吸収され、観察者側に向かうことがない。
以下、本発明の第5の実施の形態について説明する。第5の実施の形態は、上記の実施の形態で説明をした表示装置の構成を近接眼観察システムであるヘッドマウントディスプレイシステム(ヘッドマウント表示装置)に応用した例を示す。
(1)光学系を上記のような偏光折り返し光学系521としたので、ヘッドマウントディスプレイシステムの光学系として、薄型化され、開放絞り値が小さく(明るく)、かつ、色収差が生じない光学系を使用することが可能になる。
上述した各実施の形態において、P偏光成分とS偏光成分との透過・反射(吸収)の関係は変更可能である。例えば図2において、反射型直線偏光板122がS偏光成分を透過しP偏光成分を反射するようにしてもよい。この場合、反射鏡124に形成された円偏光分離層は、右円偏光成分を透過し左円偏光成分を反射するように形成すればよい。また、吸収型直線偏光板126はS偏光成分を透過しP偏光成分を吸収するようにし、液晶ディスプレイ110からはP偏光成分の光でなくS偏光成分の光を出射させればよい。
マイクロミラーアレイにおける複数のマイクロミラーの配列は、上述した各実施の形態のような千鳥配列に限定されない。例えば複数のマイクロミラーを正方配列したマイクロミラーアレイに本発明を適用してもよい。
レンチキュラー方式により立体画像を観察する表示装置に本発明を適用することも可能である。この場合、細長い形状(短冊状)のレンチキュラーレンズを、上述した各実施の形態におけるマイクロミラーのように形成し、一次元状に配列することになる。
上述した各実施の形態では、三次元画像を観察可能な表示装置に本発明を適用した例について説明したが、本発明はそのような実施の形態に限定されない。例えば、撮像装置や光学系の収差測定装置に本発明を適用することも可能である。この場合、液晶ディスプレイ110の代わりに、CCDやCMOS等の撮像素子を、撮像面の位置が反射鏡124の焦点位置と合致するように設置すればよい。その他、従来は複数のマイクロレンズを利用していた種々の装置に、本発明の光学部材(マイクロミラー)を適用することが可能である。
第5の実施の形態では、偏光折り返し光学系521をヘッドマウントディスプレイに使用する例を説明したが、必ずしもこの内容に限定する必要はない。偏光折り返し光学系521のような光学系を、観察対象を拡大して観察する種々の場合に応用することができる。また、変形例4と同様に、撮像装置や光学系の収差測定装置などに本発明を適用することも可能である。この場合、2次元表示素子510の代わりに、CCDやCMOS等の撮像素子を、撮像面の位置が反射鏡524の焦点位置と合致するように設置すればよい。
日本国特許出願2013年第34585号(2013年2月25日出願)
Claims (17)
- 第1円偏光成分の光を反射し、前記第1円偏光成分と逆の回転方向の第2円偏光成分の光を透過する凹面を有する第1光学部材と、
前記第1光学部材で反射した前記第1円偏光成分の光を前記第2円偏光成分の光に変換して反射し、前記第1光学部材に入射させる第2光学部材と
を有する光学系。 - 第2光学部材は、第1直線偏光成分の光を透過し、前記第1直線偏光成分と直交する第2直線偏光成分の光を反射する偏光板と、前記第1直線偏光成分の光を第1円偏光成分の光に変換する波長板と、を有することを特徴とする請求項1に記載の光学系。
- 第1円偏光成分の光を反射し、前記第1円偏光成分と逆の回転方向の第2円偏光成分の光を透過する凹面を有する第1光学部材と、前記第1光学部材で反射した前記第1円偏光成分の光を前記第2円偏光成分の光に変換して反射し、前記第1光学部材に入射させる第2光学部材とを有する複数の光学系と、
前記複数の光学系に隣接して配置された表示面を有する表示部と、
を備える表示装置。 - 前記凹面の焦点位置と光学的に略等価な位置に前記表示面が配置されている請求項3記載の表示装置。
- 前記複数の光学系は、前記光学系毎に前記表示面の複数の表示画素に対応して配置されている請求項3または4に記載の表示装置。
- 三次元画像の観察と、二次元画像の観察とが可能である請求項3から5の何れか1項に記載の表示装置。
- 前記第2光学部材は液晶板を有し、前記液晶板への印加電圧の切り替えにより前記三次元画像の観察と、二次元画像の観察とを切換える請求項6記載の表示装置。
- 第1直線偏光成分の光を透過し、前記第1直線偏光成分と直交する第2直線偏光成分の光を反射する偏光板と、
前記第1直線偏光成分の光を第1円偏光成分の光に変換する波長板と、
前記第1円偏光成分の光を反射し、前記第1円偏光成分と逆の回転方向の第2円偏光成分の光を透過する凹面を有する光学部材と
を有する光学系。 - 第1直線偏光成分の光を透過し、前記第1直線偏光成分と直交する第2直線偏光成分の光を反射する偏光板と、前記第1直線偏光成分の光を第1円偏光成分の光に変換する波長板と、前記第1円偏光成分の光を反射し、前記第1円偏光成分と逆の回転方向の第2円偏光成分の光を透過する凹面を有する光学部材とを有する複数の光学系と、
前記複数の光学系に隣接して配置された表示面を有する表示部と、
を備える表示装置。 - 第1直線偏光成分を透過し前記第1直線偏光成分と直交する第2直線偏光成分を反射する反射型直線偏光板と、
前記反射型直線偏光板の一方の面に対向して配置された四分の一波長板と、
前記四分の一波長板に対向する凹面を有し、前記凹面に入射した前記第1直線偏光成分に対応する回転方向の第1円偏光成分を反射し前記第1円偏光成分と逆の回転方向の第2円偏光成分を透過する反射鏡と、
を備える光学部材。 - 請求項10に記載の光学部材において、
前記四分の一波長板と前記反射型直線偏光板との間に配置され、二分の一波長板と略同一の光学特性を有する第1状態と入射光の偏光状態を変化させずに透過する第2状態とを電気的に切替可能な切替部材を備える光学部材。 - 請求項10または11に記載の光学部材において、
前記反射鏡は、前記凹面を形成した透明基材を有する光学部材。 - 請求項12に記載の光学部材において、
前記反射鏡は、前記凹面に充填され前記透明基材と同一の屈折率を有する充填部材を有する光学部材。 - 請求項10~13のいずれか一項に記載の光学部材において、
前記凹面とその裏面である凸面との一方にコレステリック液晶が塗布される光学部材。 - 請求項10~14のいずれか一項に記載の光学部材を一次元状または二次元状に複数配列したマイクロミラーアレイ。
- 請求項15に記載のマイクロミラーアレイと、
表示面が前記反射型直線偏光板と前記凹面の裏面との一方に対向するように配置された表示部と、
を備える表示装置。 - 請求項15に記載のマイクロミラーアレイと、
撮像面が前記反射型直線偏光板と前記凹面の裏面との一方に対向するように配置された撮像素子と、
を備える撮像装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/768,628 US9933627B2 (en) | 2013-02-25 | 2014-02-24 | Optical system, optical member, micromirror array, display device, and image- capturing device |
JP2015501535A JP6350512B2 (ja) | 2013-02-25 | 2014-02-24 | 表示装置、撮像装置および光学系 |
CN201480010096.8A CN105008986A (zh) | 2013-02-25 | 2014-02-24 | 光学系统、光学部件、微镜阵列、显示装置及摄像装置 |
US15/879,170 US20180149880A1 (en) | 2013-02-25 | 2018-01-24 | Optical system, optical member, micromirror array, display device, and image-capturing device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-034585 | 2013-02-25 | ||
JP2013034585 | 2013-02-25 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/768,628 A-371-Of-International US9933627B2 (en) | 2013-02-25 | 2014-02-24 | Optical system, optical member, micromirror array, display device, and image- capturing device |
US15/879,170 Division US20180149880A1 (en) | 2013-02-25 | 2018-01-24 | Optical system, optical member, micromirror array, display device, and image-capturing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129630A1 true WO2014129630A1 (ja) | 2014-08-28 |
Family
ID=51391407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/054358 WO2014129630A1 (ja) | 2013-02-25 | 2014-02-24 | 光学系、光学部材、マイクロミラーアレイ、表示装置および撮像装置 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9933627B2 (ja) |
JP (2) | JP6350512B2 (ja) |
CN (1) | CN105008986A (ja) |
WO (1) | WO2014129630A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5973098B1 (ja) * | 2015-07-13 | 2016-08-23 | シェンチェン ドゥロドゥロ テクノロジーズ カンパニー リミテッドShenzhen Dlodlo Technologies Co., Ltd. | ニア・アイ・ディスプレイ用光学モジュール |
JP2018512601A (ja) * | 2016-03-21 | 2018-05-17 | シェンチェン ドロドロ ニュー テクノロジー カンパニー リミテッド | 短距離光増幅モジュール、眼鏡、ヘルメットおよび仮想現実システム |
JP2018513393A (ja) * | 2016-03-21 | 2018-05-24 | シェンゼン ドロドロ ニュー テクノロジー カンパニー リミテッド | 短距離光増幅モジュール、眼鏡、ヘルメット、および、vrシステム |
JP2019506636A (ja) * | 2016-01-28 | 2019-03-07 | 深▲セン▼多▲デュオ▼新技▲術▼有限▲責▼任公司Shenzhen Dlodlo New Technology Co., Ltd. | 短距離光増幅モジュール、増幅方法及び増幅システム |
JP2020024245A (ja) * | 2018-08-06 | 2020-02-13 | セイコーエプソン株式会社 | 虚像表示装置 |
JP2021063879A (ja) * | 2019-10-11 | 2021-04-22 | 日本放送協会 | 画像表示装置 |
JP2021510853A (ja) * | 2018-02-26 | 2021-04-30 | グーグル エルエルシーGoogle LLC | 拡張現実ライトフィールドヘッドマウントディスプレイ |
JP2021512356A (ja) * | 2018-08-02 | 2021-05-13 | 浙江舜宇光学有限公司 | 接眼レンズおよび表示装置 |
JP7553669B2 (ja) | 2018-12-04 | 2024-09-18 | 京東方科技集團股▲ふん▼有限公司 | 表示パネル、表示装置及び表示方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090052838A1 (en) * | 2004-03-22 | 2009-02-26 | Mcdowall Ian | Electrically controlled optical elements and method |
US20150042764A1 (en) * | 2013-08-06 | 2015-02-12 | Board Of Trustees Of Michigan State University | Three-dimensional hyperspectral imaging system |
CN107219637B (zh) * | 2016-03-21 | 2024-09-10 | 深圳多哚新技术有限责任公司 | 短距离光学放大模组、眼镜、头盔及vr系统 |
WO2018136197A1 (en) * | 2017-01-20 | 2018-07-26 | Applied Materials, Inc. | Resolution enhanced digital lithography with anti-blazed dmd |
KR102436559B1 (ko) * | 2017-04-18 | 2022-08-25 | 엘지디스플레이 주식회사 | 표시 모듈 및 접안 렌즈를 포함하는 디스플레이 장치 |
KR102694090B1 (ko) * | 2018-07-17 | 2024-08-12 | 삼성디스플레이 주식회사 | 증강 현실 제공 장치와 그의 구동방법 |
CN109188700B (zh) * | 2018-10-30 | 2021-05-11 | 京东方科技集团股份有限公司 | 光学显示系统及ar/vr显示装置 |
CN109254410B (zh) * | 2018-11-13 | 2023-10-10 | 深圳创维新世界科技有限公司 | 空间成像装置 |
US11778856B2 (en) | 2019-05-15 | 2023-10-03 | Apple Inc. | Electronic device having emissive display with light recycling |
CN110596897B (zh) * | 2019-09-17 | 2021-12-10 | 北京耐德佳显示技术有限公司 | 一种平视显示设备 |
CN111487786A (zh) * | 2020-04-26 | 2020-08-04 | 京东方科技集团股份有限公司 | 一种光学显示系统及控制方法、显示装置 |
US11933994B2 (en) * | 2020-05-14 | 2024-03-19 | Brelyon, Inc. | System and method for aperture extension and programmable optical depth modulation via a field evolving cavity |
CN114384702A (zh) * | 2022-01-27 | 2022-04-22 | 上海鱼微阿科技有限公司 | 一种虚拟现实光学系统 |
US11899198B2 (en) | 2022-05-23 | 2024-02-13 | Applied Materials, Inc. | Controlling light source wavelengths for selectable phase shifts between pixels in digital lithography systems |
CN114911059B (zh) * | 2022-06-10 | 2024-08-06 | 京东方科技集团股份有限公司 | 光学显示装置及头戴式显示设备 |
CN115047628B (zh) * | 2022-06-29 | 2024-07-30 | 京东方科技集团股份有限公司 | 显示系统及显示装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005091744A (ja) * | 2003-09-17 | 2005-04-07 | Dainippon Printing Co Ltd | 投影スクリーン及びそれを備えた投影システム |
JP2005148655A (ja) * | 2003-11-19 | 2005-06-09 | Sony Corp | 画像表示装置 |
JP2012022307A (ja) * | 2010-06-16 | 2012-02-02 | Nikon Corp | 画像表示装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6208463B1 (en) * | 1998-05-14 | 2001-03-27 | Moxtek | Polarizer apparatus for producing a generally polarized beam of light |
JP2000102038A (ja) | 1998-09-18 | 2000-04-07 | Sanyo Electric Co Ltd | 2次元映像/3次元映像互換型映像表示装置 |
JP3885444B2 (ja) * | 2000-02-10 | 2007-02-21 | 富士ゼロックス株式会社 | 光読取装置および光記録読取装置 |
JP2001249278A (ja) * | 2000-03-06 | 2001-09-14 | Minolta Co Ltd | 集光光学系、その使用方法および集光光学素子 |
KR100559528B1 (ko) * | 2002-04-26 | 2006-03-10 | 일진디스플레이(주) | 투과율이 향상된 액정디스플레이 패널 |
US6853491B1 (en) * | 2003-11-26 | 2005-02-08 | Frank Ruhle | Collimating optical member for real world simulation |
JP3895268B2 (ja) * | 2002-12-06 | 2007-03-22 | 株式会社東芝 | 立体画像表示装置 |
JP3940725B2 (ja) | 2003-02-06 | 2007-07-04 | 株式会社東芝 | 立体画像表示装置 |
KR100540109B1 (ko) | 2003-02-06 | 2006-01-10 | 가부시끼가이샤 도시바 | 입체 화상 표시 장치 |
US7242524B2 (en) * | 2003-11-25 | 2007-07-10 | Pc Mirage, Llc | Optical system for forming a real image in space |
US20070273970A1 (en) * | 2006-05-26 | 2007-11-29 | Creative Display Systems, Llc | Wide field of view, compact collimating apparatus |
CN101479527A (zh) * | 2006-10-26 | 2009-07-08 | 松下电器产业株式会社 | 光源装置、背光灯装置以及液晶显示器 |
WO2008075258A1 (en) * | 2006-12-19 | 2008-06-26 | Koninklijke Philips Electronics N.V. | Autostereoscopic display device and a system using the same |
JP2008250187A (ja) | 2007-03-30 | 2008-10-16 | Nippon Zeon Co Ltd | コレステリック液晶組成物、円偏光分離シート及び製造方法 |
CN101730860A (zh) * | 2007-07-05 | 2010-06-09 | I2Ic公司 | 光致发光光源 |
JP5022964B2 (ja) | 2008-03-28 | 2012-09-12 | 株式会社東芝 | 立体映像表示装置及び立体映像表示方法 |
GB2465786A (en) * | 2008-11-28 | 2010-06-02 | Sharp Kk | An optical system for varying the perceived shape of a display surface |
JP2010224191A (ja) | 2009-03-23 | 2010-10-07 | Toshiba Corp | 立体画像表示装置 |
US8582043B2 (en) * | 2010-10-13 | 2013-11-12 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | 2D/3D switchable LC lens unit for use in a display device |
JP5286349B2 (ja) * | 2010-12-27 | 2013-09-11 | 株式会社東芝 | 屈折率分布型液晶光学素子および画像表示装置 |
CN102650790B (zh) * | 2011-07-25 | 2015-01-07 | 京东方科技集团股份有限公司 | 应用液晶透镜结构的液晶显示器 |
TWI515458B (zh) * | 2013-09-06 | 2016-01-01 | Zhangjiagang Kangde Xin Optronics Material Co Ltd | A device for displaying a three-dimensional image |
US10281795B2 (en) * | 2014-12-29 | 2019-05-07 | Lg Display Co., Ltd. | Liquid crystal lens film structure, method of fabricating the same and image display device with the same |
US20170242258A1 (en) * | 2016-02-01 | 2017-08-24 | Kopin Corporation | Embedded Reflective Eyepiece |
-
2014
- 2014-02-24 JP JP2015501535A patent/JP6350512B2/ja active Active
- 2014-02-24 CN CN201480010096.8A patent/CN105008986A/zh active Pending
- 2014-02-24 WO PCT/JP2014/054358 patent/WO2014129630A1/ja active Application Filing
- 2014-02-24 US US14/768,628 patent/US9933627B2/en active Active
-
2018
- 2018-01-24 US US15/879,170 patent/US20180149880A1/en not_active Abandoned
- 2018-06-07 JP JP2018109333A patent/JP2018205745A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005091744A (ja) * | 2003-09-17 | 2005-04-07 | Dainippon Printing Co Ltd | 投影スクリーン及びそれを備えた投影システム |
JP2005148655A (ja) * | 2003-11-19 | 2005-06-09 | Sony Corp | 画像表示装置 |
JP2012022307A (ja) * | 2010-06-16 | 2012-02-02 | Nikon Corp | 画像表示装置 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5973098B1 (ja) * | 2015-07-13 | 2016-08-23 | シェンチェン ドゥロドゥロ テクノロジーズ カンパニー リミテッドShenzhen Dlodlo Technologies Co., Ltd. | ニア・アイ・ディスプレイ用光学モジュール |
JP2017021321A (ja) * | 2015-07-13 | 2017-01-26 | シェンチェン ドゥロドゥロ テクノロジーズ カンパニー リミテッドShenzhen Dlodlo Technologies Co., Ltd. | ニア・アイ・ディスプレイ用光学モジュール |
US9690097B2 (en) | 2015-07-13 | 2017-06-27 | Shenzhen Dlodlo Technologies Co., Ltd. | Short-distance optical amplification module and near-eye display optical module using the same |
US9759915B2 (en) | 2015-07-13 | 2017-09-12 | Shenzhen Dlodlo Technologies Co., Ltd. | Short-distance optical amplification module and near-eye display optical module using the same |
JP2019506636A (ja) * | 2016-01-28 | 2019-03-07 | 深▲セン▼多▲デュオ▼新技▲術▼有限▲責▼任公司Shenzhen Dlodlo New Technology Co., Ltd. | 短距離光増幅モジュール、増幅方法及び増幅システム |
EP3410176A4 (en) * | 2016-01-28 | 2019-09-18 | Shenzhen Dlodlo New Technology Co., Ltd. | SHORT-DISTANCE OPTICAL AMPLIFIER MODULE, AMPLIFICATION METHOD, AND AMPLIFICATION SYSTEM |
US11604349B2 (en) | 2016-01-28 | 2023-03-14 | Shenzhen Dlodlo New Technology Co., Ltd. | Short-distance optical amplification module, amplification method and amplification system |
JP2018512601A (ja) * | 2016-03-21 | 2018-05-17 | シェンチェン ドロドロ ニュー テクノロジー カンパニー リミテッド | 短距離光増幅モジュール、眼鏡、ヘルメットおよび仮想現実システム |
JP2018513393A (ja) * | 2016-03-21 | 2018-05-24 | シェンゼン ドロドロ ニュー テクノロジー カンパニー リミテッド | 短距離光増幅モジュール、眼鏡、ヘルメット、および、vrシステム |
US10185148B2 (en) | 2016-03-21 | 2019-01-22 | Shenzhen Dlodlo New Technology Co., Ltd. | Short-range optical amplification module, spectacles, helmet and VR system |
US10324292B2 (en) | 2016-03-21 | 2019-06-18 | Shenzhen Dlodlo New Technology Co., Ltd. | Short range optical amplification module, spectacles, helmet and VR system |
JP7024105B2 (ja) | 2018-02-26 | 2022-02-22 | グーグル エルエルシー | 拡張現実ライトフィールドヘッドマウントディスプレイ |
JP2021510853A (ja) * | 2018-02-26 | 2021-04-30 | グーグル エルエルシーGoogle LLC | 拡張現実ライトフィールドヘッドマウントディスプレイ |
US11022806B2 (en) | 2018-02-26 | 2021-06-01 | Google Llc | Augmented reality light field head-mounted displays |
JP2021512356A (ja) * | 2018-08-02 | 2021-05-13 | 浙江舜宇光学有限公司 | 接眼レンズおよび表示装置 |
JP7151255B2 (ja) | 2018-08-06 | 2022-10-12 | セイコーエプソン株式会社 | 虚像表示装置 |
JP2020024245A (ja) * | 2018-08-06 | 2020-02-13 | セイコーエプソン株式会社 | 虚像表示装置 |
JP7553669B2 (ja) | 2018-12-04 | 2024-09-18 | 京東方科技集團股▲ふん▼有限公司 | 表示パネル、表示装置及び表示方法 |
JP2021063879A (ja) * | 2019-10-11 | 2021-04-22 | 日本放送協会 | 画像表示装置 |
JP7308122B2 (ja) | 2019-10-11 | 2023-07-13 | 日本放送協会 | 画像表示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20180149880A1 (en) | 2018-05-31 |
JPWO2014129630A1 (ja) | 2017-02-02 |
JP6350512B2 (ja) | 2018-07-04 |
US20160077351A1 (en) | 2016-03-17 |
CN105008986A (zh) | 2015-10-28 |
US9933627B2 (en) | 2018-04-03 |
JP2018205745A (ja) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6350512B2 (ja) | 表示装置、撮像装置および光学系 | |
KR102626922B1 (ko) | 투시형 디스플레이 장치 | |
CN101410745B (zh) | 基底导向成像透镜 | |
US5408346A (en) | Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector | |
KR100951213B1 (ko) | 화상 표시 장치 | |
CN106104353B (zh) | 用于近眼显示器的低轮廓图像组合器 | |
US9104036B2 (en) | Collimating optical device and system | |
KR101111742B1 (ko) | 화상표시장치 | |
US20070273970A1 (en) | Wide field of view, compact collimating apparatus | |
US10007121B2 (en) | See-through head-mounted display | |
US7653268B1 (en) | Substrate guided relay with polarization rotating apparatus | |
US10078222B2 (en) | Light guide device and virtual-image display device | |
WO2019104046A1 (en) | Optical display system, method, and applications | |
WO2015068431A1 (ja) | スクリーンおよび表示撮像装置 | |
JP2013114022A (ja) | 偏光装置及び表示装置 | |
KR20200105946A (ko) | 가상 및 혼합 현실을 위한 크로스형 구성의 소형 광학 기기 | |
US20230408824A1 (en) | Optical systems and display engines for augmented reality and near-eye headsets | |
JP5790104B2 (ja) | 頭部装着型表示装置 | |
US11869560B2 (en) | Object tracking system including polarization selective optical element | |
US12001017B1 (en) | Illumination system for object tracking | |
KR102595351B1 (ko) | 얇은 광시야각 근안 디스플레이장치 및 그 방법 | |
US20240272436A1 (en) | Image display apparatus and light guide optical system | |
CN116560105A (zh) | 光学成像组件、光学成像模块和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14754204 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015501535 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14768628 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14754204 Country of ref document: EP Kind code of ref document: A1 |