WO2014129531A1 - 電力伝送システム、送電装置、受電装置、及び電力伝送方法 - Google Patents
電力伝送システム、送電装置、受電装置、及び電力伝送方法 Download PDFInfo
- Publication number
- WO2014129531A1 WO2014129531A1 PCT/JP2014/053996 JP2014053996W WO2014129531A1 WO 2014129531 A1 WO2014129531 A1 WO 2014129531A1 JP 2014053996 W JP2014053996 W JP 2014053996W WO 2014129531 A1 WO2014129531 A1 WO 2014129531A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power transmission
- power
- antenna
- impedance
- coil
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 495
- 238000000034 method Methods 0.000 title claims description 35
- 238000004891 communication Methods 0.000 claims description 96
- 239000004020 conductor Substances 0.000 description 55
- 239000013535 sea water Substances 0.000 description 44
- 238000004088 simulation Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 35
- 230000005684 electric field Effects 0.000 description 27
- 239000013598 vector Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 15
- 230000004907 flux Effects 0.000 description 13
- 230000005672 electromagnetic field Effects 0.000 description 11
- 239000003989 dielectric material Substances 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 230000001902 propagating effect Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000005674 electromagnetic induction Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
- H03H7/40—Automatic matching of load impedance to source impedance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
Definitions
- the present invention relates to a power transmission system, a power transmission device, a power reception device, and a power transmission method in a medium.
- a device that supplies power needs to use wireless power transmission technology that can efficiently transmit power even in seawater because the surroundings are seawater.
- wireless power transmission technique it is not necessary to expose a metal plug for supplying power, and it is necessary to be a technique that does not cause a short circuit even in seawater having a conductivity of about 4 S / m.
- a power transmission device that transmits and receives power wirelessly has a coil made of a plurality of wound wires. By applying AC power to the coil, a magnetic flux interlinking with the coil is generated. This magnetic flux interlinks with the coil of the power receiving device, so that an induced current is generated in the coil of the power receiving device, and electric power is transmitted.
- Patent Document 1 discloses a technology in which a terminal device body and a removable electronic device such as a memory card perform electromagnetic induction communication using a wireless millimeter wave signal.
- Patent Document 2 discloses a technique using electromagnetic induction that uses a magnetic material to increase the inductance values of a power transmission device and a power reception device to increase the distance of power transmission.
- Patent Literature 3 by using a coil having a high Q value and resonating at the same frequency (magnetic field resonance), the mutual inductance between the power transmitting device and the power receiving device is improved, and the power transmission is extended.
- a technique using electromagnetic induction is disclosed.
- the cause of the decrease in power transmission efficiency mainly consists of a conductor loss in the coil, a matching loss between the power transmission device and the power receiving device, a reflection loss such as a leakage magnetic flux, and a radiation loss.
- this radiation loss is effectively suppressed by using a coil having a high Q value and a non-radiation phenomenon in which energy is accumulated in the vicinity of the power transmission and reception device.
- the power consumption by the medium is an energy loss.
- the cause of this energy loss is based on the electrical conductivity in the seawater and the electric field generated in the seawater. That is, a loss occurs when a potential gradient proportional to the product of the conductivity and the electric field is generated in seawater.
- seawater since seawater has high conductivity, when energy is output omnidirectionally from the power transmission device in the seawater, energy that disappears without reaching the opposite power reception device increases. Therefore, in order to efficiently transmit power in seawater, it is necessary to provide directivity that connects the opposing coil surfaces and to form a flow of energy substantially perpendicular to both coil surfaces.
- the coil surface here is a surface including a loop formed by a current flowing through the coil as an outer shape.
- Patent Documents 1 to 3 are technologies that perform only one of power transmission and communication. There is a need for a technique that can perform both power transmission and communication.
- An example of an object of the present invention is to provide a power transmission system, a power transmission device, a power reception device, and a power transmission method that solve the above-described problems.
- the power transmission system includes a power transmission device and a power reception device.
- the power transmission device is determined by a first antenna, an impedance of a medium interposed between the power transmission device and the power receiving device, an impedance of the first antenna, and an impedance of the second antenna via the first antenna.
- a first power transmission circuit that outputs power having a first resonance frequency.
- the power receiving device includes the second antenna and a second power transmission circuit that receives power output from the power transmitting device via the second antenna.
- the power transmission device is used to transmit power via a medium interposed between the power transmission device and the power reception device.
- the power transmission device outputs electric power having a first resonance frequency determined by an impedance of the medium, an impedance of the antenna of the power transmission device, and an impedance of the antenna of the power reception device via the antenna and the antenna of the power transmission device. Power transmission circuit.
- the power receiving device is used to receive power via a medium interposed between the power transmitting device and the power receiving device.
- the power receiving device includes a first resonance frequency that is determined by the impedance of the medium, the impedance of the antenna of the power transmitting device, and the impedance of the antenna of the power receiving device from the power transmitting device via the antenna and the antenna of the power receiving device.
- a power transmission circuit for receiving power having
- the power transmission method according to the fourth embodiment of the present invention is used for a power transmission device and a power reception device.
- This power transmission method is determined by the impedance of a medium interposed between the power transmitting device and the power receiving device, the impedance of the antenna of the power transmitting device, and the impedance of the antenna of the power receiving device via the antenna of the power transmitting device. Outputting power having a first resonance frequency and receiving the output power via an antenna of the power receiving device.
- the power transmission method according to the fifth embodiment of the present invention is used for a power transmission device that transmits power through a medium interposed between the power transmission device and the power reception device.
- power having a first resonance frequency determined by an impedance of the medium, an impedance of the antenna of the power transmission device, and an impedance of the antenna of the power reception device is output via the antenna of the power transmission device.
- the power transmission method according to the sixth embodiment of the present invention is used for a power receiving device that receives power via a medium interposed between the power transmitting device and the power receiving device.
- the power transmission method receives power having a first resonance frequency determined by an impedance of the medium, an impedance of the antenna of the power transmission device, and an impedance of the antenna of the power reception device via the antenna of the power reception device.
- the electromagnetic energy that diffuses and disappears in the good conductor medium can be reduced.
- communication can also be performed by providing a power transmission side wireless communication circuit that outputs a communication signal at a resonance frequency.
- FIG. 1 is a diagram illustrating a power transmission system according to an embodiment of the present invention. It is a figure which shows the structure of the electric power transmission system by 1st embodiment of this invention. It is a figure which shows the structure of the modification of the electric power transmission system by 1st embodiment of this invention. It is a figure which shows a part of equivalent circuit of the electric power transmission system by 1st embodiment at the time of the radio
- FIG. 1 is a diagram illustrating a power transmission system 1 according to an embodiment of the present invention.
- the power transmission system 1 of the present invention includes at least a power transmission device 11 and a power reception device 12.
- the power transmission device 11 includes a power transmission side antenna 111, a power transmission side power transmission circuit 112, and a power transmission side wireless communication circuit 113.
- the power transmission side antenna may be referred to as a first antenna.
- the power transmission side power transmission circuit may be referred to as a first power transmission circuit.
- the power transmission side wireless communication circuit may be referred to as a first wireless communication circuit.
- the power receiving device 12 includes a power receiving antenna 121, a power receiving power transmission circuit 122, and a power receiving wireless communication circuit 123.
- the power receiving antenna may be referred to as a second antenna.
- the power receiving side power transmission circuit may be referred to as a second power transmission circuit.
- the power receiving side wireless communication circuit may be referred to as a second wireless communication circuit.
- the first antenna 111 and the second antenna 121 are covered with a good conductor medium (medium) 13.
- FIG. 2 is a diagram showing a configuration of the power transmission system 1 according to the first embodiment of the present invention.
- the power transmission system 1 includes a power transmission device 11 and a power reception device 12.
- the power transmission device 11 includes a first antenna 111, a first power transmission circuit 112, a first wireless communication circuit 113, and a power transmission side control circuit 114.
- the power transmission side control circuit may be referred to as a first control circuit.
- the power receiving device 12 includes a second antenna 121, a second power transmission circuit 122, a second wireless communication circuit 123, and a power receiving side control circuit 124.
- the power receiving side control circuit may be referred to as a second control circuit.
- the first antenna 111 and the second antenna 121 are covered with the good conductor medium 13.
- the first antenna 111 includes a power transmission side coil 116 and a power transmission side inclusion portion 117 made of a dielectric material that covers the power transmission side coil 116.
- the power transmission side coil may be referred to as a first coil.
- the power transmission side inclusion unit may be referred to as a first inclusion unit.
- the power reception side antenna 121 includes a power reception side coil 126 and a power reception side inclusion portion 127.
- the power receiving coil may be referred to as a second coil.
- the power receiving side inclusion unit may be referred to as a second inclusion unit.
- the first coil 116 and the second coil 126 are conductors such as a copper wire wound a plurality of times.
- the first coil 116 and the second coil 126 may be a helical coil or a spiral coil.
- the first coil 116 and the second coil 126 are not limited to these.
- the power transmission system 1 includes a secondary battery 125.
- the power transmission system 1 may not include the secondary battery 125.
- Each of the first coil 116 and the second coil 126 may be divided into an upper coil and a lower coil as shown in FIG.
- the first antenna 111 and the second antenna 121 in the power transmission system 1 are collectively referred to as a power transmission unit.
- the first coil 116 and the second coil 126 are collectively referred to as a power transmission coil.
- the power transmission unit transmits power from the power transmission device 11 to the power reception device 12, and also functions as an antenna that performs communication between the power transmission device 11 and the power reception device 12.
- FIG. 3 is a diagram showing a configuration of a modified example of the power transmission system 1 according to the first embodiment of the present invention.
- the power transmission side switching circuit 118 is connected to three functional units of a first antenna 111, a first power transmission circuit 112, and a first wireless communication circuit 113.
- the power transmission side switching circuit may be referred to as a first switching circuit.
- the power receiving side switching circuit 128 is connected to three functional units of the second antenna 121, the second power transmission circuit 122, and the second wireless communication circuit 123.
- the power receiving side switching circuit may be referred to as a second switching circuit.
- the first switching circuit 118 and the second switching circuit 128 may be switches or filters. However, the first switching circuit 118 and the second switching circuit 128 are not limited to these in the present embodiment.
- the power transmission system 1 may not include the first switching circuit 118 and the second switching circuit 128.
- the first inclusion portion 117 and the second inclusion portion 127 are made of a dielectric material having a relative dielectric constant of about 2 to 20 and a dielectric loss tangent of 0.01 or less, such as polyethylene, polyimide, polyamide, fluororesin, and acrylic. May be.
- a good conductor medium is, for example, a material having a conductivity higher than 1 ⁇ 10 ⁇ 4 S / m and a relative dielectric constant greater than 1, such as river, fresh water, tap water, soil, concrete shown in the table of FIG. There may be.
- FIG. 4 is a diagram illustrating a part of an equivalent circuit of the power transmission system 1 when the wireless power output from the power transmission device 11 propagates to the power reception device 12.
- the first power transmission circuit 112 further includes a power transmission side impedance adjustment unit 119 that adjusts the impedance of the first antenna 111.
- the power transmission side impedance adjustment unit may be referred to as a first impedance adjustment unit.
- the second power transmission circuit 122 further includes a power receiving side impedance adjustment unit 129 that adjusts the impedance of the second antenna 121.
- the power reception side impedance adjustment unit may be referred to as a second impedance adjustment unit.
- the impedance of the first coil 116 in the first antenna 111 mainly includes an inductive component (inductance component) L1 and a capacitance component (capacitance component) C1 formed by the first coil 116 and the first inclusion portion 117.
- the inductive component L1 and the capacitive component C1 are uniquely determined by the shape of the coil, the number of turns, the thickness of the copper wire, the dielectric constant of the dielectric constituting the first inclusion portion 117, its size, and the like.
- the impedance of the second coil 126 in the second antenna 121 includes an inductive component L2 and a capacitive component C2 formed by the second coil 126 and the second inclusion 127.
- the first impedance adjustment unit 119 and the second impedance adjustment unit 129 are collectively referred to simply as an impedance adjustment unit.
- L3 is a mutual inductance component in the first coil 116 and the second coil 126.
- C3 is a capacitive component including the first antenna 111, the second antenna 121, and the good conductor medium 13.
- the first impedance adjustment unit 119 includes a variable capacitance component C1 ′.
- the second impedance adjustment unit 129 includes a variable capacitance component C2 ′.
- impedance matching can be obtained at an arbitrary frequency.
- the first impedance adjustment unit 119 includes an inductor L1 ′ whose impedance can be adjusted.
- the second impedance adjustment unit 129 includes an inductor L2 ′ that can adjust the impedance.
- the impedance adjustment range can be expanded as compared with the impedance matching only by the variable capacitors C1 ′ and C2 ′.
- C1 ′, C2 ′, L1 ′, and L2 ′ are set so as to compensate for the variation. It can be adjusted appropriately. As a result, stable power can be supplied while maintaining resonance.
- a varactor diode variable capacitance diode
- a plurality of capacitances can be combined with a switch transistor.
- the inductors L1 ′ and L2 ′ for adjusting the impedance a phase shifter, a variable inductor, or the like can be used.
- the combined capacitance component of the capacitance component of the first antenna 111 itself and the capacitance component of the impedance adjustment circuit such as a variable capacitor or a phase shifter is referred to as C10
- the combined capacitance component C10 is the impedance of the first antenna 111. This will be described as the capacitive component C10.
- the combined inductance component of the first antenna 111 itself and the inductance component of the impedance adjustment circuit such as a variable capacitor or phase shifter is referred to as L10
- the combined inductance component L10 constitutes the impedance of the first antenna 111.
- the inductance component L10 is described.
- the combined capacitance component of the capacitance component of the second antenna 121 itself and the capacitance component of the impedance adjustment circuit such as a variable capacitor or a phase shifter is referred to as C20, and the combined capacitance component C20 constitutes the impedance of the second antenna 121.
- C20 the combined capacitance component of the capacitance component of the second antenna 121 itself and the capacitance component of the impedance adjustment circuit such as a variable capacitor or phase shifter
- L20 the combined inductance component L20 constitutes the impedance of the second antenna 121.
- the inductance component L20 is described.
- the capacitance component C10, the capacitance component C20, the capacitance component C3, and the distance d satisfy predetermined conditions.
- the distance d indicates the distance between the first antenna and the second antenna.
- FIG. 5 is a diagram illustrating the influence of the capacitance components of the first antenna 111 and the second antenna 121 and the capacitance component generated between the power transmission and reception devices on the power transmission efficiency.
- shaft of FIG. 5 shows electric power supply efficiency (arb.unit).
- the horizontal axis of FIG. 5 represents “capacitance component C3 generated between power transmitting / receiving device 11 and power transmitting / receiving device 12” ⁇ “distance d between power transmitting / receiving device 11 and power transmitting / receiving device 12” / (“capacitance C10 of power transmitting / receiving device 11”. "+" Capacity CC20 of power transmission / reception device 12 ").
- FIG. 5 when impedance matching is taken, when the above C10 [pF], C20 [pF], C3 [pF], and d [cm] satisfy the condition of Expression (1), particularly high power It can be seen that transmission efficiency can be obtained.
- the impedance adjustment circuit may be omitted. In that case, particularly high power transmission efficiency is obtained when the relationship of “30> C3 ⁇ d / (C1 + C2)> 0.5” is satisfied.
- the outer area of the first coil 116 and the second coil 126 is about 10 cm 2 to 30 cm 2 , and the distance between the first antenna 111 and the second antenna 121. Equation (1) can be satisfied under the condition that d is about 5 cm to 60 cm.
- the ratio between the outer diameter of the first coil 116 and the dimension of the first inclusion part 117 and the ratio between the outer diameter of the second coil 126 and the dimension of the second inclusion part 127 satisfy predetermined conditions. When satisfying, a particularly high power transmission efficiency can be obtained.
- 6A and 6B are diagrams illustrating the influence of the ratio of the outer diameter of the first coil 116 and the size of the first inclusion part 117 on the power transmission efficiency.
- 6B shows the size d1 of the first inclusion portion 117 along the coil surface and the outer diameter d2 of the first coil 116.
- FIG. 6A the size d1 is fixed, the outer diameter d2 is changed, and the ratio (d1 / d2) is 1.2 or more, so that it is 5% or more than 1 which is the minimum ratio that can be produced. High power transmission efficiency can be obtained.
- the value of the ratio (d1 / d2) is preferably 1.4 or more.
- the outer diameter of the second coil 126 and the dimension of the second inclusion part 127 in the second antenna 121 are also the same as the outer diameter of the first coil 116 and the dimension of the first inclusion part 117. Further, if both the first antenna 111 and the second antenna 121 satisfy the above conditions, a higher effect can be obtained.
- the first switching circuit 118 connects the first antenna 111 and the first power transmission circuit 112. This switching control is performed by the first control circuit 114.
- the second switching circuit 128 connects the second antenna 121 and the second power transmission circuit 122. This switching control is performed by the second control circuit 124.
- an AC power supply (not shown) of the first power transmission circuit 112 outputs AC power at a predetermined frequency.
- the output AC power is supplied to the first coil 116 via the first impedance adjusting unit 119 and the first switching circuit 118 in the first power transmission circuit 112.
- the first antenna 111 outputs the AC power as electromagnetic energy to the outside (the good conductor medium 13).
- the second antenna 121 of the power receiving device 12 receives the output electromagnetic energy.
- the first impedance adjustment unit 119 and the second impedance adjustment unit 129 are adjusted so that the combined impedance of the first antenna 111, the second antenna 121, and the good conductor medium 13 resonates at the frequency of the transmission power. ing.
- the power received by the second antenna 121 that is, the second coil 126, is converted into the second switching circuit 128, the second impedance adjustment unit 129 in the second power transmission circuit 122, and the converter in the second power transmission circuit 122 (see FIG. (Not shown).
- the energy converted from AC to DC by this converter is supplied to the secondary battery 125.
- power transmission is completed.
- the power transmission system 1 In the power transmission system 1 according to the present embodiment, power is supplied at a resonance frequency determined by the combined impedance of the first antenna 111, the first impedance adjustment unit 119, the second antenna 121, the second impedance adjustment unit 129, and the good conductor medium 13.
- the power input to the second antenna 121 can be maximized.
- the first inclusion part 117 and the second inclusion part 127 suppress the expansion of the electric field into the good conductor medium 13. Thereby, there is an effect of suppressing electromagnetic energy that diffuses and disappears in the good conductor medium 13.
- FIG. 7 is a diagram illustrating an electric field vector and a magnetic field vector in the power transmission system 1 according to the first embodiment.
- “E” represents an electric field
- “H” represents a magnetic field.
- FIG. 8 is a diagram illustrating a pointing vector V (energy flow) generated based on an electric field vector and a magnetic field vector in the power transmission system 1 according to the first embodiment.
- FIG. 7 is a diagram schematically showing a simulation result of an electric field and a magnetic field generated between the first antenna 111 and the second antenna 121 during power transmission. As shown in FIG. 7, in the power transmission system 1 of the present embodiment, the first inclusion part 117 and the second inclusion part 127 suppress the expansion of the electric field into the good conductor medium 13.
- a magnetic field generated by a predetermined good conductor medium 13 and a current flowing in the coil causes an eddy current in the good conductor medium 13.
- the eddy current creates a new magnetic field.
- the electric field and the magnetic field can be made substantially parallel to the coil surface.
- the pointing vector V the flow of electromagnetic energy from the first antenna 111 to the second antenna 121 can be generated substantially perpendicular to the coil surface.
- the operation during communication will be described.
- the operation is the same in communication from the power receiving device 12 to the power transmitting device 11.
- the first switching circuit 118 and the second switching circuit 128 connect the power transmission unit and the wireless communication circuit. This switching control is performed by the first control circuit 114 and the second control circuit 124.
- the first wireless communication circuit 113 outputs a communication signal at a predetermined frequency.
- the output communication signal is output from the first antenna 111 to the outside (good conductor medium 13) as electromagnetic energy through the first switching circuit 118 and the first coil 116.
- the second antenna 121 of the power receiving device 12 receives the output electromagnetic energy.
- a communication signal received by the second antenna 121, that is, the second coil 126 is input to the second wireless communication circuit 123 via the second switching circuit 128. As described above, transmission of the communication signal is completed.
- the frequency used for communication is a resonance frequency determined by the combined impedance of each impedance of the first antenna 111, the second antenna 121, and the good conductor medium 13, as in the case of power transmission.
- FIG. 9 is a diagram illustrating the relationship between the ratio (communication frequency / power transmission frequency) and (efficiency ⁇ communication rate). As shown in FIG. 9, it is possible to obtain high power supply efficiency and a high communication rate by increasing the frequency (f2) used for communication higher than the frequency (f1) used for power transmission. In particular, the relationship of “1000> ratio (f2 / f1)> 10” makes it possible to obtain high power supply efficiency and a high communication rate. This is because power supply efficiency is increased by lowering the frequency (f1) used for power transmission, while when the frequency (f2) used for communication is lowered, the received signal level is increased and the S / N ratio is improved, but the ratio band is increased. This is because it decreases.
- the power transmission system 1 minimizes the electromagnetic energy that diffuses and disappears in the good conductor medium even when the power transmitting device 11 and the power receiving device 12 are in a relatively far field. be able to. As a result, long distance and communication are possible by wireless power transmission in a good conductor medium such as seawater.
- FIG. 10 is a diagram showing a configuration of the power transmission system 2 according to the second embodiment of the present invention.
- the power transmission system 2 includes a power transmission device 21 and a power reception device 22.
- the power transmission device 21 includes a first antenna 211, a first power transmission circuit 212, a first wireless communication circuit 213, a first control circuit 214, and a first switching circuit 218.
- the power receiving device 22 includes a second antenna 221, a second power transmission circuit 222, a second wireless communication circuit 223, a second control circuit 224, and a second switching circuit 228.
- the power receiving device 22 may further include a secondary battery 225.
- the first antenna 211 includes a first coil 216, a power transmission side primary inclusion portion 2171 made of a first dielectric covering the first coil 216, and a power transmission side secondary inclusion made of a second dielectric covering the power transmission side primary inclusion portion 2171. Part 2172 is provided.
- the power transmission side primary inclusion unit may be referred to as a first primary inclusion unit.
- the power transmission side secondary inclusion unit may be referred to as a first secondary inclusion unit.
- the second antenna 221 has the same configuration as the first antenna 211. That is, the second antenna 221 includes a second coil 226, a power reception side primary inclusion portion 2271, and a power reception side secondary inclusion portion 2272.
- the power receiving side primary inclusion unit may be referred to as a second primary inclusion unit.
- the power receiving side secondary inclusion may be referred to as a second secondary inclusion.
- the first antenna 211 and the second antenna 221 are covered with a good conductor medium 23.
- the first primary inclusion part and the second primary inclusion part are collectively referred to as a primary inclusion part.
- the first secondary inclusion part and the second secondary inclusion part are collectively referred to as a secondary inclusion part.
- the first primary inclusion part 2171, the first secondary inclusion part 2172, the second primary inclusion part 2271 and the second secondary inclusion part 2272 are made of a dielectric such as polyethylene, polyimide, polyamide, fluororesin, and acrylic.
- a dielectric having a ratio of about 2 to 10 and a dielectric loss tangent of 0.01 or less may be used.
- the relative dielectric constant of the first dielectric that constitutes the first primary inclusion part 2171 may or may not be the same as that of the second dielectric that constitutes the first secondary inclusion part 2172. May be.
- the dielectric loss tangent of the first dielectric constituting the first primary inclusion part 2171 may be different from or identical to the dielectric loss tangent of the second dielectric constituting the first secondary inclusion part 2172. Good. The same applies to the first dielectric constituting the second primary inclusion portion 2271 and the second dielectric constituting the second secondary inclusion portion 2272.
- both the first antenna 211 and the second antenna 221 have a primary inclusion part and a secondary inclusion part.
- the present invention is not limited to this configuration. In the present embodiment, only one of the first antenna 211 and the second antenna 221 may have a primary inclusion part and a secondary inclusion part.
- the power transmission system 2 of the present embodiment may include the impedance adjustment unit described in the first embodiment.
- the power transmission efficiency is further increased. Can be obtained.
- FIG. 11 is a diagram showing the influence of the ratio of the dielectric loss tangent of the first dielectric and the dielectric loss tangent of the second dielectric on the power transmission efficiency.
- shaft of FIG. 11 shows electric power supply efficiency (arb.unit).
- the horizontal axis of FIG. 11 shows the ratio of the dielectric loss tangent of the first secondary inclusion part 2172 to the dielectric loss tangent of the first primary inclusion part 2171.
- FIG. 11 shows a case where the relative permittivity of the first primary inclusion part 2171 is 10 and the relative permittivity of the first secondary inclusion part 2172 is 2.1. According to FIG.
- FIG. 12 is a diagram illustrating the influence of the relative permittivity of the first dielectric and the relative permittivity of the second dielectric on the power transmission efficiency.
- shaft of FIG. 12 shows electric power supply efficiency (arb.unit).
- the horizontal axis of FIG. 12 shows the ratio of the relative dielectric constant of the first secondary inclusion part 2172 to the relative dielectric constant of the first primary inclusion part 2171.
- FIG. 11 shows a case where the dielectric loss tangent of the first dielectric and the dielectric loss tangent of the second dielectric are constant. According to FIG. 12, it can be seen that higher power transmission efficiency can be obtained by making the relative permittivity of the second dielectric larger than the relative permittivity of the first dielectric.
- the first switching circuit 218 and the second switching circuit 228 connect the power transmission unit and the power transmission circuit. This switching control is performed by the first control circuit 214 and the second control circuit 224. Thereafter, an AC power supply (not shown) of the first power transmission circuit 212 outputs AC power at a predetermined frequency. The output AC power is supplied to the first coil 216 via the first impedance adjustment unit 219 and the first switching circuit 218 in the first power transmission circuit 212.
- the first antenna 211 outputs the AC power to the outside (good conductor medium 23) as electromagnetic energy.
- the second antenna 221 of the power receiving device 22 receives the output electromagnetic energy.
- the first impedance adjustment unit 219 and the second impedance adjustment unit 229 are adjusted so that the combined impedance of the first antenna 211, the second antenna 221, and the good conductor medium 23 resonates at the frequency of the transmission power. ing.
- the power received by the second antenna 221, that is, the second coil 226, is converted into the second switching circuit 228, the second impedance adjustment unit 229 in the second power transmission circuit 222, and the converter in the second power transmission circuit 222 ( (Not shown).
- This converter converts the alternating current into direct current and supplies the energy to the secondary battery 225.
- power transmission is completed.
- the power transmission system 2 In the power transmission system 2 according to the present embodiment, power is supplied at a resonance frequency determined by the combined impedance of the first antenna 211, the first impedance adjustment unit 219, the second antenna 221, the second impedance adjustment unit 229, and the good conductor medium 23.
- the first secondary inclusion part 2172 and the second secondary inclusion part 2272 suppress the expansion of the electric field into the good conductor medium 23. Thereby, the electromagnetic energy which diffuses and disappears in the good conductor medium 23 can be minimized.
- the first primary inclusion part 2171 and the second primary inclusion part 2271 can reduce dielectric loss in the vicinity of the first coil 216 and the second coil 226.
- the operation during communication will be described.
- the operation is the same in communication from the power receiving device 22 to the power transmitting device 21.
- the first switching circuit 218 and the second switching circuit 228 connect the power transmission unit and the wireless communication circuit. This switching control is performed by the first control circuit 214 and the second control circuit 224.
- the first wireless communication circuit 213 outputs a communication signal at a predetermined frequency.
- the output communication signal is output from the first antenna 211 to the outside (good conductor medium 23) as electromagnetic energy through the first switching circuit 218 and the first coil 216.
- the second antenna 221 of the power receiving device 22 receives the output electromagnetic energy.
- a communication signal received by the second antenna 221, that is, the second coil 226 is input to the second wireless communication circuit 223 via the second switching circuit 228.
- the frequency used for communication is a resonance frequency determined by the combined impedance of each impedance of the first antenna 211, the second antenna 221, and the good conductor medium 23, as in the case of power transmission.
- the power transmission system 2 according to the present embodiment can obtain higher power transmission efficiency than the power transmission system 1 according to the first embodiment.
- FIG. 13 is a diagram showing a configuration of the power transmission system 3 according to the third embodiment of the present invention.
- a power transmission system 3 according to a third embodiment will be described with reference to the drawings.
- the power transmission system 3 includes a power transmission device 31 and a power reception device 32.
- the power transmission device 31 includes a first antenna 311, a first power transmission circuit 312, a first wireless communication circuit 313, a first control circuit 314, and a first switching circuit 318.
- the power receiving device 32 includes a second antenna 321, a second power transmission circuit 322, a second wireless communication circuit 323, a second control circuit 324, and a second switching circuit 328.
- the power receiving device 32 may further include a secondary battery 325.
- the first antenna 311 includes a power transmission side lower coil 3161, a power transmission side upper coil 3162, a first primary inclusion part 3171, and a first secondary inclusion part 3172.
- the power transmission side lower coil may be referred to as a first lower coil.
- the power transmission side upper coil may be referred to as a first upper coil.
- the first primary inclusion 3171 is made of a first dielectric that covers the first lower coil 3161 and the first upper coil 3162.
- the first secondary inclusion 3172 is made of a second dielectric covering the first primary inclusion 3171.
- the second antenna 321 includes a power receiving side lower coil 3261, a power receiving side upper coil 3262, a second primary inclusion part 3271, and a second secondary inclusion part 3272.
- the power receiving side lower coil may be referred to as a second lower coil.
- the power receiving side upper coil may be referred to as a second upper coil.
- the second primary inclusion part 3271 is made of a first dielectric covering the second lower coil 3261 and the second upper coil 3262.
- the second secondary inclusion 3272 is made of a second dielectric that covers the second primary inclusion 3271.
- the first antenna 311 and the second antenna 321 are covered with a good conductor medium 33.
- the first secondary inclusion part and the second secondary inclusion part are collectively referred to as a covering part.
- the first primary inclusion part 3171, the first secondary inclusion part 3172, the second primary inclusion part 3271 and the second secondary inclusion part 3272 are made of a specific dielectric such as polyethylene, polyimide, polyamide, fluororesin, and acrylic.
- a dielectric having a ratio of about 2 to 10 and a dielectric loss tangent of 0.01 or less may be used.
- first lower coil 3161 and the first upper coil 3162 may be included in both the first primary inclusion part 3171 and the first secondary inclusion part 3172.
- second lower coil 3261 and the second upper coil 3262 may be included in both the second primary inclusion part 3271 and the second secondary inclusion part 3272.
- the first lower coil 3161 and the first upper coil 3162 are supplied with alternating positive and negative AC signals. Similarly, different positive and negative AC signals are applied to the second lower coil 3261 and the second upper coil 3262.
- FIG. 14 is a diagram showing a configuration of a modification of the first antenna according to the third embodiment of the present invention.
- the first antenna 31 one or both of the first lower coil 3161 and the first upper coil 3162 may be included only in the first secondary inclusion part 3172.
- the second antenna 32 one or both of the second lower coil 3261 and the second upper coil 3262 may be included only in the second secondary inclusion part 3272.
- the relative dielectric constant of the first dielectric constituting the first primary inclusion 3171 may be different from or the same as the relative dielectric constant of the second dielectric constituting the first secondary inclusion 3172. May be.
- the dielectric tangent of the first dielectric constituting the first primary inclusion 3171 may be different from or identical to the dielectric tangent of the second dielectric constituting the first secondary inclusion 3172. There may be. The same applies to the first dielectric that constitutes the second primary inclusion 3271 and the second dielectric that constitutes the second secondary inclusion 3272.
- both the first antenna 311 and the second antenna 321 have the primary inclusion portion and the secondary inclusion portion described above, but are not limited to this configuration.
- only one of the first antenna 311 and the second antenna 321 may have a first inclusion part and a second inclusion part.
- the power transmission system 3 according to the present embodiment may include the impedance adjustment unit described in the first embodiment.
- the capacitance components (C1, C2) of the coil are further increased, and the electric field is spread into the good conductor medium by the second dielectric. The effect of suppressing increases.
- the first switching circuit 318 and the second switching circuit 328 connect the power transmission unit and the power transmission circuit. This switching control is performed by the second control circuit 324. Thereafter, an AC power source (not shown) of the first power transmission circuit 312 outputs AC power at a predetermined frequency. The output AC power is supplied to the first coil 316 via the first impedance adjustment unit 319 and the first switching circuit 318 in the first power transmission circuit 312. The first antenna 311 outputs the AC power to the outside (good conductor medium 33) as electromagnetic energy. The second antenna 321 of the power receiving device 32 receives the output electromagnetic energy.
- the first impedance adjustment unit 319 and the second impedance adjustment unit 329 are adjusted so that the combined impedance of the first antenna 311, the second antenna 321, and the good conductor medium 33 resonates at the frequency of the transmission power. ing.
- the power received by the second antenna 321, that is, the second coil 326, is converted into the second switching circuit 328, the second impedance adjustment unit 329 in the second power transmission circuit 322, and the converter in the second power transmission circuit 322 ( (Not shown).
- the converter converts the alternating current into direct current, and supplies energy to the secondary battery 325 to complete power transmission.
- the second lower coil 3261 and the second upper coil 3261 are output by outputting power at a resonance frequency determined by the combined impedance of the first antenna 311, the second antenna 321, and the good conductor medium 33.
- the power input to the coil 3262 can be maximized.
- the first secondary inclusion 3172 and the second secondary inclusion 3272 suppress the expansion of the electric field into the good conductor medium 33. Thereby, the electromagnetic energy which diffuses and disappears in the good conductor medium 33 can be minimized.
- the first primary inclusion portion 3171 and the second primary inclusion portion 3271 are capacitive components between the first lower coil 3161 and the first upper coil 3162, and the first lower coil 3161 and the first primary inclusion portion 3271. There is an effect of reducing the dielectric loss in the vicinity of the coil while increasing the capacitance component between the upper coils 3162.
- the operation during communication will be described.
- the operation is the same in communication from the power receiving device 32 to the power transmitting device 31.
- the first switching circuit 318 and the second switching circuit 328 connect the power transmission unit and the wireless communication circuit. This switching control is performed by the first control circuit 314 and the second control circuit 324.
- the first wireless communication circuit 313 outputs a communication signal at a predetermined frequency.
- the output communication signal is output from the first antenna 311 to the outside (the good conductor medium 33) as electromagnetic energy via the first switching circuit 318.
- the second antenna 321 of the power receiving device 32 receives the output electromagnetic energy.
- a communication signal received by the second antenna 321 is input to the second wireless communication circuit 323 via the second switching circuit 328. As described above, transmission of the communication signal is completed.
- the frequency used for communication is a resonance frequency determined by the combined impedance of each impedance of the first antenna 311, the second antenna 321, and the good conductor medium 33 as in the case of power transmission.
- the power transmission system 3 according to the present embodiment can achieve higher power transmission efficiency than the power transmission system 1 according to the first embodiment and the power transmission system 2 according to the second embodiment.
- FIG. 15 is a diagram showing a configuration of the power transmission system 4 according to the fourth embodiment of the present invention.
- the submersible craft 15 includes a power transmission device 11, and the sensor 14 includes a power reception device 12.
- the first inclusion portion 117 and the second inclusion portion 127 are made of a good conductor.
- the spread of the electric field into the medium 13 is suppressed.
- a magnetic field generated by a predetermined good conductor medium 13 and a current flowing in the coil causes an eddy current in the good conductor medium 13.
- the eddy current creates a new magnetic field. By repeating such a phenomenon, the electric field and the magnetic field can be made substantially parallel to the coil surface. As a result, stable power supply and communication with high power transmission efficiency can be performed.
- FIG. 16 is a diagram showing a configuration of the power transmission system 5 according to the fifth embodiment of the present invention.
- the submersible craft 16 includes a power transmitting device 11, and the submersible craft 17 includes a power receiving device 12.
- the first inclusion part 117 and the second inclusion part 127 The spread of the electric field into the good conductor medium 13 is suppressed.
- a magnetic field generated by a predetermined good conductor medium 13 and a current flowing in the coil causes an eddy current in the good conductor medium 13.
- the eddy current creates a new magnetic field. By repeating such a phenomenon, the electric field and the magnetic field can be made substantially parallel to the coil surface. As a result, stable power supply and communication with high power transmission efficiency can be performed.
- the submersible craft 16 and the submersible craft 17 can supply power in both directions by using the power transmission device 11 as a power reception device and the power reception device 12 as a power transmission device.
- each of the submersible craft 16 and the submersible craft 17 may include both the power transmitting device 11 and the power receiving device 12.
- the submersible craft 16 provided with the power transmission device 11 may be a ship or a power supply source laid on the seabed.
- FIG. 17 is a diagram showing the configuration of the power transmission system 6 according to the sixth embodiment of the present invention.
- the power transmission device 11 is provided at the connection portion of the power cable 18, and the power reception device 12 is provided at the connection portion of the power cable 19.
- the technology of this embodiment even in seawater (good conductor medium 13), power can be supplied wirelessly.
- the power cables can be connected in a non-contact manner, the power cables can be easily replaced, and the reliability is improved without being worn.
- the power cable 18 and the power cable 19 can supply power bidirectionally by using the power transmission device 11 as a power reception device and the power reception device 12 as a power transmission device.
- Each of the power cable 18 and the power cable 19 may include both the power transmitting device 11 and the power receiving device 12.
- the power transmission device 11 and the power reception device 12 are equipped with a function of communicating information wirelessly. For this reason, it is not necessary to provide a mechanism for wireless communication separately, and a small and low-cost system can be obtained by using a mechanism common to power transmission.
- FIG. 18 is a diagram showing a simulation model for demonstrating the effect of the power transmission system 1 according to the first embodiment of the present invention. A simulation that demonstrates the effect of the power transmission system 1 according to the first embodiment using the simulation model shown in FIG. 18 will be described.
- the power transmission system 1 according to the first embodiment includes a power transmission device 41 and a power reception device 42.
- the power transmission device 41 and the power reception device 42 are covered with seawater 43 that acts as a good conductor medium.
- the power transmission device 41 includes a first antenna 411.
- the first antenna 411 includes a first coil 416 and a first inclusion part 417.
- the power receiving device 42 includes a second antenna 421.
- the second antenna 421 includes a second coil 426 and a second inclusion part 427.
- the first coil 416 and the second coil 426 are spiral coils.
- FIG. 19 is a schematic top view of the power transmission device 41 according to the first embodiment of the present invention.
- the first coil 416 has a structure in which two single-layer spiral coils each having 29 turns of a 2 mm-diameter conductor having an outer diameter of 220 mm and an inner diameter of 100 mm are opposed to each other by a distance of 3 mm.
- the power feeding port P is a power application terminal for generating an electric field in the coil. AC power is applied from the feed port P to the opposed helical coils.
- the internal dielectric (first inclusion) 417 is made of a fluororesin.
- the covering dielectric (power transmission device) 41 is made of acrylic.
- the size of the covering dielectric 41 is 255 mm in length, 255 mm in width, and 19 mm in height.
- the resonance frequency of the power transmission system 1 is about 1 MHz.
- the ratio (d1 / d2) of the outer coil size d2 and the coating dielectric size d1 (d1 / d2) is 1.16 which is larger than 1, sufficiently high power transmission efficiency can be obtained. Yes. If the ratio (d1 / d2) is larger than 1.16, higher power transmission efficiency can be obtained.
- the configuration of the power receiving device 42 is the same as that of the power transmitting device 41. However, the configuration shown here is an example, and the same effect can be obtained even if the power transmission device 41 and the power reception device 42 are not the same configuration.
- FIG. 20 is a diagram illustrating simulation results of power transmission efficiency in Example 1 of the present invention.
- the distance d between the power transmission device 41 and the power reception device 42 was 10 cm, and power transmission efficiency was simulated in seawater.
- the power transmission efficiency was a high value of 40% or more when the frequency (f) of the transmission power was around 1 MHz.
- 21A and 21B are diagrams illustrating electric fields in the vicinity of the power transmission device 41 and the power reception device 42 in the three-dimensional electromagnetic field simulation according to the first embodiment of the present invention.
- FIG. 21A shows a side sectional view.
- FIG. 21B shows a cross-sectional plan view.
- 22A and 22B are diagrams illustrating magnetic fields in the vicinity of the power transmission device 41 and the power reception device 42 in the three-dimensional electromagnetic field simulation according to the first embodiment of the present invention.
- FIG. 22A shows a side cross-sectional view.
- FIG. 22B shows a plan cross-sectional view.
- 23A and 23B are diagrams illustrating pointing vectors in the vicinity of the power transmission device 41 and the power reception device 42 in the three-dimensional electromagnetic field simulation according to the first embodiment of the present invention.
- FIG. 23A shows a side cross-sectional view.
- FIG. 23B shows a plan cross-sectional view.
- the electric field in the vicinity of the power transmitting device 41 and the power receiving device 42 in the three-dimensional electromagnetic field simulation of the first embodiment rotates along a plane parallel to the coil surface.
- the magnetic field is generated radially along a plane parallel to the coil surface, as shown in FIGS. 22A and 22B.
- a pointing vector (energy flow) is generated in a direction substantially perpendicular to the coil surface, as shown in FIGS. 23A and 23B, based on such electric field and magnetic field flows.
- FIGS. 24A and 24B are diagrams showing the simulation results of the pointing vector when the medium used in the power transmission system 1 according to the first embodiment of the present invention is changed from seawater to the atmosphere.
- FIG. 24A shows a side cross-sectional view.
- FIG. 24B shows a plan cross-sectional view.
- 24A and 24B show the simulation results of the pointing vector when the power transmitting device 41 and the power receiving device 42 of the power transmission system 1 according to this example are separated from each other by 10 cm in the atmosphere.
- FIGS. 24A and 24B when the medium used in the power transmission system 1 according to the first embodiment is changed from seawater to the atmosphere, no energy flow perpendicular to the power transmission / reception device surface occurs, and the energy spirals. The flow is like drawing.
- the phenomenon in which energy flow substantially perpendicular to the coil surface is a phenomenon peculiar to energy propagating in a good conductor medium, and is a phenomenon that does not occur when propagating in the atmosphere.
- Embodiments of the present invention utilize the phenomenon that an energy flow that is substantially perpendicular to the coil surface specific to energy propagating in a good conductor medium occurs.
- FIGS. 25A and 25B are diagrams showing simulation results of pointing vectors in the atmosphere when the related magnetic field resonance technique is used.
- FIG. 25A is a side cross-sectional view of the power transmission device 1001 and the power reception device 1002.
- FIG. 25B shows a plan sectional view.
- the power transmission efficiency in the case of FIGS. 25A and 25B is 90%.
- the magnetic field under the phase condition where the interlinkage magnetic flux passing through the power receiving device 1002 of the first coil and the second coil of the power transmitting device 1001 is maximum is the power transmitting device 41 in the three-dimensional electromagnetic field simulation of this embodiment shown in FIGS. 22A and 22B. And the same magnetic field in the vicinity of the power receiving device 42.
- the physical differences between the related magnetic field resonance technology and the power transmission system 1 according to this embodiment will be described below.
- the interlinkage magnetic flux passing through the first coil 416 of the power transmission device 41 and the interlinkage magnetic flux passing through the second coil 426 of the power reception device 42 are mutually connected.
- the magnetic field is maximized and a magnetic field parallel to the coil surface is generated.
- the resonance frequency is divided into two when the coupling is tightly coupled, and the linkage that penetrates the coils of the power transmission device 1001 and the power reception device 1002 at the higher resonance frequency. It is generally known that the phase of magnetic flux is reversed. In the same technology, it is generally known that the phase of the interlinkage magnetic flux passing through the coils of the power transmission device 41 and the power reception device 42 is in phase in a loosely coupled state where the resonance frequency is not divided.
- FIGS. 26A and 26B are diagrams showing the results of an actual experiment in seawater of the effect of the power transmission system 1 according to the first embodiment of the present invention.
- FIG. 26A shows the result in the case of low frequency (power supply use).
- FIG. 26B shows the result in the case of high frequency (communication use).
- an arrow R1 indicates a portion for communication use.
- Arrow R2 indicates the noise level.
- the distance d between the power transmission device 41 and the power reception device 42 is 10 cm. When power feeding was performed at a low frequency (about 1 MHz), the power transmission efficiency was a high value of 30% or more.
- FIG. 27 is a diagram showing a simulation model for demonstrating the effect of the power transmission system 3 according to the third embodiment of the present invention. A simulation that demonstrates the effect of the power transmission system 3 according to the third embodiment using the simulation model of FIG. 27 will be described.
- the power transmission system 3 according to the third embodiment includes a power transmission device 51 and a power reception device 52 as illustrated in FIG.
- the power transmission device 51 and the power reception device 52 are covered with a good conductor medium 53.
- the power transmission device 51 includes a first antenna 511.
- the first antenna 511 includes a first lower coil 5161, a first upper coil 5162, a first primary inclusion part 5171, and a first secondary inclusion part 5172.
- the first primary inclusion 5171 is made of a first dielectric that covers the first lower coil 5161 and the first upper coil 5162.
- the first secondary inclusion 5172 is made of a second dielectric that covers the first primary inclusion 5171.
- the power receiving device 52 includes a second antenna 521.
- the second antenna 521 includes a second lower coil 5261, a second upper coil 5262, a second primary inclusion part 5271, and a second secondary inclusion part 5272.
- the second primary inclusion 5271 is made of a first dielectric that covers the second lower coil 5261 and the second upper coil 5262.
- the second secondary inclusion 5272 is made of a second dielectric that covers the second primary inclusion 5271.
- the simulation model in the present embodiment has a structure in which the first secondary inclusion portion 5172 covers only the upper and lower surfaces (surfaces parallel to the coil surface) of the first primary inclusion portion 5171. ing. That is, the first primary inclusion part 5171 is sandwiched between the two first secondary inclusion parts 5172. On the other hand, the side surface (surface perpendicular to the coil surface) of the first primary inclusion portion 5171 is directly covered by the power transmission device 51. Further, in the simulation model in the present embodiment, the second secondary inclusion part 5272 covers only the upper and lower surfaces of the second primary inclusion part 5271. That is, the second primary inclusion part 5271 is sandwiched between two second secondary inclusion parts 5272. On the other hand, the side surface of the second primary inclusion portion 5271 is directly covered by the power receiving device 52.
- FIG. 28 is a schematic side view of the power transmission device 51 according to the second embodiment of the present invention.
- the length L1 is 260 mm
- the length L2 is 250 mm
- the length L3 is 0.5 mm
- the length L4 is 2.5 mm
- the length L5 is 1 mm
- the length L6 is 5 mm.
- the dimensions of the first primary inclusion part 5171 are 250 mm in length, 250 mm in width, and 0.5 mm in height.
- the first primary inclusion portion 5171 is made of a fluororesin.
- the first primary inclusion 5171 has a relative dielectric constant of 6.2 and a dielectric loss tangent of 0.0019.
- the first secondary inclusion portion 5172 is configured by using two fluororesins having dimensions of 250 mm in length, 250 mm in width, and 2.5 mm in height.
- the relative permittivity of the first secondary inclusion 5172 is 10.2 and the dielectric loss tangent is 0.0024.
- the dimensions of the power transmission device 51 are 260 mm in length, 260 mm in width, 26.5 mm in height, and 5 mm in thickness.
- the power transmission device 51 is made of acrylic.
- the relative permittivity of acrylic is 3.3, and the dielectric loss tangent is 0.04.
- the power receiving device 52 also performs a simulation with the same configuration as the power transmitting device 51 described above.
- FIG. 29 is a diagram of the first lower coil 5161 of the power transmission device 51 according to the second embodiment of the present invention as viewed from the power reception device 52 side.
- the first lower coil 5161 has a power feeding port P1.
- the lengths L11 and L12 are 208 mm.
- FIG. 30 is a diagram of the first upper coil 5162 of the power transmission device 51 according to the second embodiment of the present invention as viewed from the power reception device 52 side.
- the first upper coil 5162 has a power feeding port P2.
- the lengths L21 and L22 are 208 mm.
- the first lower coil 5161 is a spiral coil composed of wiring composed of an outer periphery of 208 mm and 50 conductors.
- the first lower coil 5161 has a wiring diameter of 1 mm and a wiring interval of 1 mm.
- the first upper coil 5162 has the same size as the first lower coil 5161.
- the first lower coil 5161 and the first upper coil 5162 are arranged with a distance of 0.5 mm.
- the outermost peripheral end of the first lower coil 5161 and the outermost peripheral end of the first upper coil 5162 serve as high-frequency power feeding ports P1 and P2.
- the direction of the spiral of the first lower coil 5161 and the direction of the spiral of the first upper coil 5162 are configured such that a magnetic field is generated in the same direction via the power supply ports P1 and P2.
- FIG. 31 is a diagram of the second lower coil 5261 of the power receiving device 52 according to the second embodiment of the present invention as viewed from the power transmitting device 51 side.
- the second lower coil 5261 has a power receiving port P3.
- the lengths L31 and L32 are 208 mm.
- FIG. 32 is a diagram of the second upper coil 5262 of the power receiving device 52 according to the second embodiment of the present invention as viewed from the power transmitting device 51 side.
- the second upper coil 5262 has a power receiving port P4.
- the lengths L31 and L32 are 208 mm.
- the second lower coil 5261 is a spiral coil composed of wiring composed of an outer periphery of 208 mm and 50 conductors.
- the diameter of the wiring of the second lower coil 5261 is 1 mm, and the distance between the wirings is 1 mm.
- the second upper coil 5262 has the same size as the second lower coil 5261.
- the second lower coil 5261 and the second upper coil 5262 are arranged at a distance of 0.5 mm.
- the outermost end of the second lower coil 5261 and the outermost end of the second upper coil 5262 serve as high-frequency power receiving ports P3 and P4.
- the direction of the spiral of the second lower coil 5261 and the direction of the spiral of the second upper coil 5262 are configured such that a magnetic field is generated in the same direction via the power receiving ports P3 and P4.
- FIG. 33 is a diagram illustrating simulation results of power transmission efficiency in Example 2 of the present invention.
- the simulation result of the power transmission efficiency is a high value of 72% or more as shown in FIG.
- the resonance frequency is about 140 kHz.
- the configuration of the power receiving device 52 in the present embodiment is the same as that of the power transmitting device 51. However, the configuration shown here is an example, and the power transmission device 51 and the power reception device 52 may not be the same configuration.
- FIG. 34 is a diagram showing a simulation result of the S parameter (S21) in the second embodiment of the present invention.
- Arrow R10 indicates the noise level.
- the S parameter S21 is defined by a ratio (power reflected from the input end / power incident on the input end).
- FIG. 34 shows the communication frequency (f21) as well as the power supply frequency (f11).
- a high S / N ratio is obtained at a communication frequency (f12) in a frequency band (f11 ⁇ 10 to f11 ⁇ 1000) that is 10 to 1000 times higher than the power supply frequency (f11).
- the power transmission system 3 can perform power supply with high power transmission efficiency and communication with a high communication rate.
- a power transmission system including a power transmission device and a power reception device The power transmission device is: A first antenna; Via the first antenna, power having a first resonance frequency determined by the impedance of the medium interposed between the power transmitting device and the power receiving device, the impedance of the first antenna, and the impedance of the second antenna is output.
- a first power transmission circuit that With The power receiving device is: The second antenna; A second power transmission circuit for receiving the power output by the power transmission device via the second antenna;
- a power transmission system comprising:
- the power transmission device outputs a communication signal having a second resonance frequency determined by the impedance of the medium, the impedance of the first antenna, and the impedance of the second antenna via the first antenna.
- a first wireless communication circuit The power transmission system according to claim 1, wherein the power reception device further includes a second wireless communication circuit that receives a communication signal output by the power transmission device via the second antenna.
- the first antenna has a first coil and a first inclusion portion having a dielectric covering the first coil
- the power transmission system according to claim 1 wherein the second antenna includes a second coil and a second inclusion portion having a dielectric covering the second coil.
- a capacitance component constituting the impedance of the first antenna is represented by C1
- a capacitance component constituting the impedance of the second antenna is represented by C2
- the first antenna, the second antenna, and the first antenna are represented by C2.
- the capacitance component of the capacitance formed by the medium existing between the second antennas is represented by C3, and the distance between the first antenna and the second antenna is represented by d.
- the power transmission system according to any one of appendices 1 to 4, wherein a relationship of 30 cm> C3 ⁇ d / (C1 + C2)> 0.5 cm is satisfied.
- the first power transmission circuit includes a first impedance adjustment unit configured to vary a capacitance component of the first power transmission circuit
- the second power transmission circuit includes a second impedance adjustment unit configured to vary a capacitance component of the second power transmission circuit
- a combined capacitance component of the capacitance component constituting the impedance of the first antenna and the capacitance component of the first power transmission circuit is represented as C10
- the capacitance component constituting the impedance of the second antenna and the second power transmission circuit When the combined capacitance component with the capacitance component is represented by C20
- the power transmission system according to any one of appendices 1 to 4, wherein a relationship of 30 cm> C3 ⁇ d / (C10 + C20)> 0.5 cm is satisfied.
- the first inclusion part is A first primary inclusion having a first dielectric covering the first coil; A first secondary inclusion having a second dielectric covering the first primary inclusion; With The second inclusion part is A second primary inclusion having a first dielectric covering the second coil; A second secondary inclusion having a second dielectric covering the second primary inclusion;
- Additional remark 13 The electric power transmission system of Additional remark 11 or Additional remark 12 whose relative dielectric constant of said 1st dielectric material is lower than the relative dielectric constant of said 2nd dielectric material, or is the same.
- the medium is The power transmission system according to any one of appendix 1 to appendix 13, wherein the electrical conductivity is higher than 1 ⁇ 10 ⁇ 4 and the relative dielectric constant is higher than 1.
- At least a part of the electric field generated in the medium rotates substantially parallel to the first coil surface of the power transmission device or the second coil surface of the power reception device, and the medium The at least part of the magnetic field generated in the coil is oriented substantially parallel to the first coil surface of the power transmission device or the second coil surface of the power reception device. Power transmission system.
- the interlinkage magnetic flux penetrating the first coil of the power transmitting device and the interlinkage magnetic flux penetrating the second coil of the power receiving device are oriented in opposite directions under a phase condition that maximizes the magnetic field.
- the power receiving device is: The power transmission system according to appendix 2, further comprising a second control circuit that controls which of the second power transmission circuit and the second wireless communication circuit is connected to the second antenna.
- a power transmission device for transmitting power through a medium interposed between a power transmission device and a power reception device, An antenna, A power transmission circuit that outputs power having a first resonance frequency determined by an impedance of the medium, an impedance of the antenna of the power transmission device, and an impedance of the antenna of the power reception device via the antenna of the power transmission device. apparatus.
- a power receiving device for receiving power through a medium interposed between the power transmitting device and the power receiving device, An antenna, A power transmission circuit that receives, via the antenna of the power receiving apparatus, power having a first resonance frequency determined by the impedance of the medium, the impedance of the antenna of the power transmitting apparatus, and the impedance of the antenna of the power receiving apparatus from the power transmitting apparatus And a power receiving device.
- a power transmission method for a power transmission device and a power reception device A first resonance frequency determined by an impedance of a medium interposed between the power transmission device and the power receiving device, an impedance of the antenna of the power transmission device, and an impedance of the antenna of the power reception device via the antenna of the power transmission device.
- Output power with A power transmission method comprising: receiving the output power via an antenna of the power receiving apparatus.
- a power transmission method for a power transmission device that transmits power through a medium interposed between the power transmission device and the power reception device, Outputting electric power having a first resonance frequency determined by the impedance of the medium, the impedance of the antenna of the power transmission device, and the impedance of the antenna of the power reception device via the antenna of the power transmission device.
- a power transmission method for a power receiving device that receives power via a medium interposed between the power transmitting device and the power receiving device, Receiving a power having a first resonance frequency determined by an impedance of the medium, an impedance of the antenna of the power transmission device, and an impedance of the antenna of the power reception device via the antenna of the power reception device.
- the present invention can be applied to a power transmission system, a power transmission device, a power reception device, and a power transmission method.
- Power transmission side switching circuit (first switching circuit) 119, 219, 319 ... power transmission side impedance adjustment unit (first impedance adjustment unit) 121, 221, 321, 421, 521 ... power reception side antenna (second antenna) 122, 222, 322 ...
- Power receiving side power transmission circuit (second power transmission circuit) 123, 223, 323...
- Power receiving side control circuit (second control circuit) 125, 225, 325 ... secondary batteries 126, 226, 326 ... power receiving side coil (second coil) 127...
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
特許文献2には、磁性体を用いて、送電装置と受電装置のインダクタンス値を増大させ、電力伝送の長距離化を図る電磁誘導を用いた技術が開示されている。
特許文献3には、Q値の高いコイルを用いて、同一の周波数で共鳴(磁界共鳴)させることで、送電装置と受電装置の間の相互インダクタンスを向上させ、電力伝送の長距離化を図る電磁誘導を用いた技術が開示されている。
大気中の電力伝送の場合、その媒質(大気)自身による電力消費はほとんどない。この場合の電力伝送効率の低下の要因は、主に、コイルでの導体損失、送電装置と受電装置の間の整合損、漏れ磁束などの反射損、そして放射損から成る。特に、特許文献2に記載されている技術では、Q値の高いコイルを用いて、送受電装置近傍にエネルギを溜める非放射現象とすることで、この放射損を効果的に抑制している。
ここでのコイル面は、コイルを流れる電流により形成されるループを外形として含む面のことである。
特許文献1~特許文献3に記載されている技術は、電力伝送または通信の何れか一方のみを行う技術である。電力伝送と通信の両方を行うことができる技術が求められている。
本発明の電力伝送システム1は、図1で示すように、少なくとも送電装置11及び受電装置12を備える。
送電装置11は、送電側アンテナ111、送電側電力伝送回路112、送電側無線通信回路113を備える。送電側アンテナは、第1アンテナと称する場合がある。送電側電力伝送回路は、第1電力伝送回路と称する場合がある。送電側無線通信回路は、第1無線通信回路と称する場合がある。
受電装置12は、受電側アンテナ121、受電側電力伝送回路122、受電側無線通信回路123を備える。受電側アンテナは、第2アンテナと称する場合がある。受電側電力伝送回路は、第2電力伝送回路と称する場合がある。受電側無線通信回路は、第2無線通信回路と称する場合がある。
第1アンテナ111及び第2アンテナ121は、良導体媒質(媒体)13に覆われている。
図2は、本発明の第一の実施形態による電力伝送システム1の構成を示す図である。
以下、本発明の第一の実施形態による電力伝送システム1を、図面を参照して説明する。
電力伝送システム1は、図1に示すように、送電装置11及び受電装置12を備える。送電装置11は、第1アンテナ111、第1電力伝送回路112、第1無線通信回路113、送電側制御回路114を備える。送電側制御回路は、第1制御回路と称する場合がある。
受電装置12は、第2アンテナ121、第2電力伝送回路122、第2無線通信回路123、受電側制御回路124を備える。受電側制御回路は、第2制御回路と称する場合がある。
第1アンテナ111及び第2アンテナ121は、良導体媒質13に覆われている。第1アンテナ111は、送電側コイル116及び送電側コイル116を覆う誘電体から成る送電側包含部117とを備える。送電側コイルは、第1コイルと称する場合がある。送電側包含部は、第1包含部と称する場合がある。受電側アンテナ121は、第1アンテナ111と同じく、受電側コイル126及び受電側包含部127を備える。受電側コイルは、第2コイルと称する場合がある。受電側包含部は、第2包含部と称する場合がある。第1コイル116、第2コイル126は、複数回巻いた銅線などの導体である。第1コイル116および第2コイル126は、ヘリカルコイルやスパイラルコイルであってもよい。しかしながら、第1コイル116および第2コイル126は、これらに限定されない。
電力伝送システム1は、図2に示すように、二次電池125を備えている。しかしながら、電力伝送システム1は、二次電池125を備えていなくてもよい。
また、第1コイル116と第2コイル126各々は、例えば、後述する図13のように上部コイルと下部コイルに分割されていてもよい。
本実施形態においては、電力伝送システム1における第1アンテナ111及び第2アンテナ121を総称して電力伝送部とする。第1コイル116及び第2コイル126を総称して電力伝送用コイルとする。電力伝送部は送電装置11から受電装置12へ電力を伝送すると共に、送電装置11と受電装置12との間で通信を行うアンテナとしても機能する。
送電側切替回路118は、図3で示すように、第1アンテナ111、第1電力伝送回路112、及び第1無線通信回路113の3つの機能部に接続されている。送電側切替回路は、第1切替回路と称する場合がある。
受電側切替回路128は、第2アンテナ121、第2電力伝送回路122、及び第2無線通信回路123の3つの機能部に接続されている。受電側切替回路は、第2切替回路と称する場合がある。
第1切替回路118および第2切替回路128は、スイッチやフィルタであってもよい。しかしながら、第1切替回路118および第2切替回路128は、本実施形態においては、これらに限定されない。電力伝送システム1は、第1切替回路118や第2切替回路128を備えていなくてもよい。
第1電力伝送回路112は、さらに、第1アンテナ111のインピーダンスを調整する送電側インピーダンス調整部119を備えている。送電側インピーダンス調整部は、第1インピーダンス調整部と称する場合がある。第2電力伝送回路122は、さらに、第2アンテナ121のインピーダンスを調整する受電側インピーダンス調整部129を備えている。受電側インピーダンス調整部は、第2インピーダンス調整部と称する場合がある。
第1アンテナ111における第1コイル116のインピーダンスは、主に、誘導成分(インダクタンス成分)L1と、第1コイル116と第1包含部117で形成される容量成分(キャパシタンス成分)C1から成る。誘導成分L1と容量成分C1は、コイルの形状、巻き数、銅線の太さ、及び、第1包含部117を構成する誘電体の誘電率やそのサイズ等によって一意に定まる。同様に、第2アンテナ121における第2コイル126のインピーダンスは、誘導成分L2と、第2コイル126と第2包含部127で形成される容量成分C2とから成る。
本実施形態においては、第1インピーダンス調整部119及び第2インピーダンス調整部129を総称して、単にインピーダンス調整部とする。
容量の可変手段には、バラクタダイオード(可変容量ダイオード)を用いることができるし、複数の容量をスイッチトランジスタと組み合わせて構成することもできる。インピーダンスを調整するインダクタL1’とL2’としては、移相器や、可変インダクタなどを用いることができる。
図5によると、インピーダンス整合がとられている場合に、上記C10[pF]、C20[pF],C3[pF],d[cm]が式(1)の条件を満たすときに、特に高い電力伝送効率が得られることがわかる。
本実施形態において数100kHz~1MHz程度の周波数帯の電力を考えた場合、第1コイル116、第2コイル126の外形面積が10cm2~30cm2程度、第1アンテナ111と第2アンテナ121の距離dが5cm~60cm程度の条件で、式(1)を満たすことができる。
図6Bは、第1包含部117のコイル面に沿う方向の大きさd1、および第1コイル116の外径d2を示す。図6Aによると、大きさd1を固定し、外径d2を可変して、比(d1/d2)を1.2以上にすることで、作製可能な最小比である1よりも5%以上の高い電力伝送効率を得ることができる。さらに、最小比よりも10%以上の高い電力伝送効率を得たい場合には、比(d1/d2)の値は1.4以上が好ましい。ただし、第2アンテナ121における第2コイル126の外径と第2包含部127の寸法についても第1コイル116の外径と第1包含部117の寸法と同様の変更を行った場合である。また、第1アンテナ111、第2アンテナ121ともに上記の条件を満たせば、より高い効果を得ることができる。
まず、電力伝送時の動作について述べる。電力伝送時には、第1切替回路118は、第1アンテナ111と第1電力伝送回路112を繋ぐ。この切替の制御は第1制御回路114が行う。第2切替回路128は、第2アンテナ121と第2電力伝送回路122を繋ぐ。この切替の制御は第2制御回路124が行う。その後、第1電力伝送回路112の交流電源(図示せず)が所定の周波数で交流電力を出力する。次に、出力された交流電力は、第1電力伝送回路112内の第1インピーダンス調整部119、および第1切替回路118を介して、第1コイル116に供給される。第1アンテナ111は、その交流電力を、電磁エネルギとして外部(良導体媒質13)へと出力する。受電装置12の第2アンテナ121は、出力された電磁エネルギを受け取る。ここで、第1インピーダンス調整部119及び第2インピーダンス調整部129は、第1アンテナ111、第2アンテナ121、良導体媒質13の各インピーダンスの合成インピーダンスが、伝送電力の周波数で共振するように調整されている。第2アンテナ121、すなわち、第2コイル126によって受け取られた電力は、第2切替回路128、第2電力伝送回路122内の第2インピーダンス調整部129、第2電力伝送回路122内のコンバータ(図示せず)に順に流入する。このコンバータによって交流から直流に変換されたエネルギが、二次電池125に供給される。以上により、電力伝送が完了する。
図8は、第一の実施形態による電力伝送システム1における電界ベクトルと磁界ベクトルに基づいて生じるポインティングベクトルV(エネルギの流れ)を示す図である。
図7は、電力伝送時において、第1アンテナ111と第2アンテナ121の間に生じる電界と磁界のシミュレーション結果を模式的に示した図である。図7に示すように、本実施形態の電力伝送システム1では、第1包含部117及び第2包含部127が良導体媒質13中への電界の拡がりを抑える。所定の良導体媒質13とコイルに流れる電流により発生する磁界が良導体媒質13に渦電流を生じさせる。その渦電流が新たな磁界を作り出す。このような現象が繰り返すことで、コイル面に対して電界と磁界をほぼ平行にすることができる。その結果、図8に示すように、第1アンテナ111から第2アンテナ121へのポインティングベクトルV(電磁エネルギの流れ)をコイル面に対してほぼ垂直に生じさせることが可能となる。
通信に用いた周波数は、電力伝送の時と同様に、第1アンテナ111と第2アンテナ121と良導体媒質13の各インピーダンスの合成インピーダンスで定まる共振周波数である。
図9で示すように、電力伝送に用いる周波数(f1)よりも、通信に用いる周波数(f2)を高くすることで、高い電力供給効率と、高い通信レートを得ることができる。特に、「1000>比(f2/f1)>10」の関係とすることで、高い電力供給効率と、高い通信レートを得ることができる。これは、電力伝送に用いる周波数(f1)を下げることで電力供給効率が高くなる一方で、通信に用いる周波数(f2)を下げると受信信号レベルが上がりS/N比は向上するが比帯域が減少するためである。
図10は、本発明の第二の実施形態による電力伝送システム2の構成を示す図である。
第二の実施形態による電力伝送システム2を、図面を参照しながら説明する。
図10において、電力伝送システム2は、送電装置21及び受電装置22を備えている。送電装置21は、第1アンテナ211、第1電力伝送回路212、第1無線通信回路213、第1制御回路214、第1切替回路218を備える。受電装置22は、第2アンテナ221、第2電力伝送回路222、第2無線通信回路223、第2制御回路224、第2切替回路228を備える。受電装置22は、さらに二次電池225は有していてもよい。
第1アンテナ211は、第1コイル216、第1コイル216を覆う第一誘電体から成る送電側一次包含部2171、及び送電側一次包含部2171を覆う第二誘電体から成る送電側二次包含部2172を備えている。送電側一次包含部は、第1の一次包含部と称する場合がある。送電側二次包含部は、第1の二次包含部と称する場合がある。第2アンテナ221は、第1アンテナ211と同様の構成を有する。すなわち、第2アンテナ221は、第2コイル226、受電側一次包含部2271、および受電側二次包含部2272を備えている。受電側一次包含部は、第2の一次包含部と称する場合がある。受電側二次包含部は、第2の二次包含部と称する場合がある。第1アンテナ211及び第2アンテナ221は、良導体媒質23に覆われている。
本実施形態においては、第1の一次包含部及び第2の一次包含部を総称して一次包含部とする。また、第1の二次包含部及び第2の二次包含部を総称して二次包含部とする。
本実施形態の電力伝送システム2は、第一の実施形態で説明したインピーダンス調整部を備えていてもよい。
図11によると、第二誘電体の誘電正接を第一誘電体の誘電正接よりも大きくすることで、より高い電力伝送効率が得られることがわかる。これは、第1の二次包含部2172(第2の二次包含部2272)を構成する第二誘電体によって、良導体媒質23への電界の拡がりを抑制する効果を得るとともに、第1の一次包含部2171(第2の一次包含部2271)を構成する第一誘電体の誘電正接を小さくすることで、送電側コイル216(受電側コイル226)近傍における誘電損失を低減させることができる効果に基づく。
図12の縦軸は、電力供給効率(arb.unit)を示す。図12の横軸は、第1の一次包含部2171の比誘電率に対する第1の二次包含部2172の比誘電率の比を示す。図11は、第一誘電体の誘電正接および第二誘電体の誘電正接が一定である場合を示す。
図12によると、第二誘電体の比誘電率を第一誘電体の比誘電率よりも大きくすることで、より高い電力伝送効率が得られることがわかる。
まず、電力伝送時の動作について述べる。電力伝送時には、第1切替回路218、第2切替回路228は、電力伝送部と電力伝送回路を繋ぐ。この切替の制御は第1制御回路214および第2制御回路224が行う。その後、第1電力伝送回路212の交流電源(図示せず)が、所定の周波数で交流電力を出力する。出力された交流電力は、第1電力伝送回路212内の第1インピーダンス調整部219、および第1切替回路218を介して、第1コイル216に供給される。第1アンテナ211は、その交流電力を、電磁エネルギとして外部(良導体媒質23)へ出力する。受電装置22の第2アンテナ221は、出力された電磁エネルギを受け取る。ここで、第1インピーダンス調整部219及び第2インピーダンス調整部229は、第1アンテナ211、第2アンテナ221、良導体媒質23の各インピーダンスの合成インピーダンスが、伝送電力の周波数で共振するように調整されている。第2アンテナ221、すなわち、第2コイル226によって受け取られた電力は、第2切替回路228、第2電力伝送回路222内の第2インピーダンス調整部229、および第2電力伝送回路222内のコンバータ(図示せず)に順に流入する。このコンバータで交流から直流に変換されエネルギが、二次電池225に供給される。以上により、電力伝送が完了する。
第1の二次包含部2172及び第2の二次包含部2272は、良導体媒質23中への電界の拡がりを抑える。これにより、良導体媒質23中に拡散して消滅する電磁エネルギを最小限に抑えることができる。
第1の一次包含部2171及び第2の一次包含部2271は、第1コイル216及び第2コイル226近傍における誘電損失を低減させることができる。
ここで、通信に用いた周波数は、電力伝送の時と同様に、第1アンテナ211と第2アンテナ221と良導体媒質23の各インピーダンスの合成インピーダンスで定まる共振周波数である。
図13は、本発明の第三の実施形態による電力伝送システム3の構成を示す図である。
第三の実施形態による電力伝送システム3を、図面を参照しながら説明する。
図13において、電力伝送システム3は、送電装置31及び受電装置32を備えている。送電装置31は、第1アンテナ311、第1電力伝送回路312、第1無線通信回路313、第1制御回路314、および第1切替回路318を備える。受電装置32は、第2アンテナ321、第2電力伝送回路322、第2無線通信回路323、第2制御回路324、および第2切替回路328を備える。受電装置32は、二次電池325をさらに有していてもよい。
第1アンテナ311は、送電側下部コイル3161、送電側上部コイル3162、第1の一次包含部3171、および第1の二次包含部3172を備えている。送電側下部コイルは、第1下部コイルと称する場合がある。送電側上部コイルは、第1上部コイルと称する場合がある。第1の一次包含部3171は、第1下部コイル3161と第1上部コイル3162を覆う第一誘電体から成る。第1の二次包含部3172は、第1の一次包含部3171を覆う第二誘電体から成る。第2アンテナ321は、受電側下部コイル3261、受電側上部コイル3262、第2の一次包含部3271、および第2の二次包含部3272を備えている。受電側下部コイルは、第2下部コイルと称する場合がある。受電側上部コイルは、第2上部コイルと称する場合がある。第2の一次包含部3271は、第2下部コイル3261と第2上部コイル3262を覆う第一誘電体から成る。第2の二次包含部3272は、第2の一次包含部3271を覆う第二誘電体から成る。第1アンテナ311及び第2アンテナ321は、良導体媒質33に覆われている。
本実施形態においては、第1の二次包含部及び第2の二次包含部を総称して、被覆部とする。
図14で示すように、第1アンテナ311において、第1下部コイル3161、および第1上部コイル3162の一方または両方が、第1の二次包含部3172にのみに包含されていてもよい。同様に、第2アンテナ321において、第2下部コイル3261、および第2上部コイル3262の一方または両方が、第2の二次包含部3272のみに包含されていてもよい。
本実施の形態による電力伝送システム3は、第一の実施形態で説明したインピーダンス調整部を備えていてもよい。
まず、電力伝送時の動作について述べる。電力伝送時には、第1切替回路318および第2切替回路328は、電力伝送部と電力伝送回路を繋ぐ。この切替の制御は第2制御回路324が行う。その後、第1電力伝送回路312の交流電源(図示せず)が所定の周波数で交流電力を出力する。出力された交流電力は、第1電力伝送回路312内の第1インピーダンス調整部319、および第1切替回路318を介して、第1コイル316に供給される。第1アンテナ311は、その交流電力を、電磁エネルギとして外部(良導体媒質33)へ出力する。受電装置32の第2アンテナ321は、出力された電磁エネルギを受け取る。ここで、第1インピーダンス調整部319及び第2インピーダンス調整部329は、第1アンテナ311、第2アンテナ321、良導体媒質33の各インピーダンスの合成インピーダンスが、伝送電力の周波数で共振するように調整されている。第2アンテナ321、すなわち、第2コイル326によって受け取られた電力は、第2切替回路328、第2電力伝送回路322内の第2インピーダンス調整部329、および第2電力伝送回路322内のコンバータ(図示せず)に順に流入する。このコンバータで交流から直流に変換されエネルギが、二次電池325に供給され、電力伝送が完了する。
第1の二次包含部3172及び第2の二次包含部3272は、良導体媒質33中への電界の拡がりを抑える。これにより、良導体媒質33中に拡散して消滅する電磁エネルギを最小限に抑えることができる。
第1の一次包含部3171及び第2の一次包含部3271は、コイルの容量成分である、第1下部コイル3161と第1上部コイル3162の間の容量成分、そして、第1下部コイル3161と第1上部コイル3162の間の容量成分を高めつつ、コイル近傍の誘電損失を低減させる効果がある。
ここで、通信に用いた周波数は、電力伝送の時と同様に、第1アンテナ311と第2アンテナ321と良導体媒質33の各インピーダンスの合成インピーダンスで定まる共振周波数である。
図15は、本発明の第四の実施形態による電力伝送システム4の構成を示す図である。
図15に示すように、第四の実施形態による電力伝送システム4において、潜水艇15は送電装置11を備え、センサ14は受電装置12を備えている。本実施形態の技術を用いることで、潮流が起こってセンサ14と潜水艇15の位置関係がほぼ密接した状態から変動した場合であっても、第1包含部117及び第2包含部127が良導体媒質13中への電界の拡がりを抑える。また、所定の良導体媒質13とコイルに流れる電流により発生する磁界が良導体媒質13に渦電流を生じさせる。さらに、その渦電流が新たな磁界を作り出す。このような現象を繰り返すことで、コイル面に対して電界と磁界をほぼ平行にすることができる。その結果、電力伝送効率のよい安定した電力供給と通信を行うことが可能になる。
図16は、本発明の第五の実施形態による電力伝送システム5の構成を示す図である。
図16に示すように、第五の実施形態による電力伝送システム5において、潜水艇16は送電装置11を備え、潜水艇17は受電装置12を備えている。本実施形態の技術を用いることで、潮流が起こって潜水艇16と潜水艇17の位置関係がほぼ密接した状態から変動した場合であっても、第1包含部117及び第2包含部127が良導体媒質13中への電界の拡がりを抑える。また、所定の良導体媒質13とコイルに流れる電流により発生する磁界が良導体媒質13に渦電流を生じさせる。さらに、その渦電流が新たな磁界を作り出す。このような現象を繰り返すことで、コイル面に対して電界と磁界をほぼ平行にすることができる。その結果、電力伝送効率のよい安定した電力供給と通信を行うことが可能になる。
送電装置11を備える潜水艇16は、船舶または海底に敷設された電力供給源等であってもよい。
図17は、本発明の第六の実施形態による電力伝送システム6の構成を示す図である。
図17に示すように、第六の実施形態による電力伝送システム6において、送電装置11は電源ケーブル18の接続部に備えられ、受電装置12は電源ケーブル19の接続部に備えられている。本実施形態の技術を用いることで、海水(良導体媒質13)の中であっても、無線で電力供給を行うことができる。その結果、電源ケーブル間を非接触で接続することが可能になり、電源ケーブルの交換が容易で、磨耗することなく信頼性も向上する。
図18に示すシミュレーションモデルを用いた第一の実施形態による電力伝送システム1の効果を実証したシミュレーションについて説明する。
第一の実施形態による電力伝送システム1は、図18に示すように、送電装置41及び受電装置42を備えている。送電装置41及び受電装置42は、良導体媒質として作用する海水43で覆われている。送電装置41は第1アンテナ411を備えている。第1アンテナ411は第1コイル416と第1包含部417を備えている。受電装置42は第2アンテナ421を備えている。第2アンテナ421は第2コイル426と第2包含部427を備えている。第1コイル416と第2コイル426は、スパイラルコイルから成る。
第1コイル416は、図19に示すように、直径2mmの導線を外径220mm、内径100mmで29巻きした単層スパイラルコイル2個を、距離3mm離して対向させた構造をしている。給電ポートPは、コイルに電界を発生させるための電力印加端子である。この対向させたヘリカルコイルに対して給電ポートPから交流電力を印加する。内部誘電体(第1包含部)417はフッ素樹脂で構成されている。被覆誘電体(送電装置)41はアクリルで構成されている。被覆誘電体41のサイズは、縦255mm、横255mm、高さ19mmである。電力伝送システム1の共振周波数は約1MHzである。本実施例では、スパイラルコイルの外径のサイズd2と、被覆誘電体のサイズd1の比(d1/d2)が、1より大きい1.16であっても、充分高い電力伝送効率が得られている。比(d1/d2)を、1.16より大きくすれば、さらに高い電力伝送効率が得られる。
受電装置42の構成は、送電装置41と同一である。ただし、ここで示した構成は一例であって、送電装置41と受電装置42が同一の構成でなくても、同様の効果が得られる。
送電装置41と受電装置42との距離dを10cmとし、海水中において電力伝送効率のシミュレーションを行った。その結果、電力伝送効率は、図20に示すように、伝送電力の周波数(f)が1MHz付近において、40%以上と高い値となった。
図22Aおよび22Bは、本発明の実施例1の三次元電磁界シミュレーションにおける送電装置41と受電装置42近傍の磁界を示す図である。図22Aは側断面図を示す。図22Bは平面断面図を示す。
図23Aおよび23Bは、本発明の実施例1の三次元電磁界シミュレーションにおける送電装置41と受電装置42近傍のポインティングベクトルを示す図である。図23Aは側断面図を示す。図23Bは平面断面図を示す。
実施例1の三次元電磁界シミュレーションにおける送電装置41と受電装置42近傍の電界は、図21Aおよび21Bに示すように、コイル面と平行な面に沿って回転している。磁界は、図22Aおよび22Bに示すように、コイル面と平行な面に沿って放射状に生成されている。ポインティングベクトル(エネルギの流れ)は、このような電界と磁界の流れに基づいて、図23Aおよび23Bに示すように、コイル面とほぼ垂直な方向に発生する。この結果、送電装置41と受電装置42との距離が10cm程度離れた海水中であっても、コイル面に対してほぼ垂直な方向にエネルギの流れが形成され、海水中での長距離化が可能となる。
図24Aおよび24Bは、大気中において、本実施例による電力伝送システム1の送電装置41と受電装置42を10cm離したときのポインティングベクトルのシミュレーション結果を示している。
図24Aおよび24Bからわかるように、実施例1による電力伝送システム1で使用した媒質を海水から大気に変更した場合、送受電装置面に対して垂直なエネルギの流れは生じず、エネルギは螺旋を描くような流れとなっている。すなわち、コイル面に対してほぼ垂直なエネルギの流れが生じる現象は、良導体媒質中を伝搬するエネルギ特有の現象であり、大気中を伝搬する際には生じない現象である。本発明の実施形態は、良導体媒質中を伝搬するエネルギ特有のコイル面に対してほぼ垂直なエネルギの流れが生じるという現象を利用している。
図25Aおよび25Bからわかるように、関連する磁界共鳴技術を用いた場合も、図24Aおよび24Bの場合と同様、コイル面に対して垂直なエネルギの流れは生じず、エネルギは螺旋を描くような流れとなっている。しかしながら、図25Aおよび25Bの場合における電力伝送効率は90%である。既に述べたように、この関連する技術による電力伝送システムを用いて、海水中において、無線電力伝送を試みても高い電力伝送効率は得られない。具体的には、シミュレーションの結果では、10cmの距離で10%程度の電力伝送効率しか得られないことがわかった。
関連する磁界共鳴技術と、本実施例による電力伝送システム1との物理的な相違点について、以下で説明する。
本実施例による電力伝送システム1では、図22Aおよび22Bで示したように、送電装置41の第1コイル416を貫く鎖交磁束と、受電装置42の第2コイル426を貫く鎖交磁束が互いに逆方向の向きとなることで、磁界が最大となり、コイル面に対して平行な磁界を生成する。
一方、関連する磁界共鳴を用いた無線電力伝送技術では、密結合にした場合に共振周波数が2つに分割し、高い方の共振周波数において、送電装置1001と受電装置1002のコイルを貫く鎖交磁束の位相が逆相となることが一般に知られている。また、同技術において、共振周波数が分割しない疎結合の状態においては、送電装置41と受電装置42のコイルを貫く鎖交磁束の位相が同相となることが一般に知られている。
本実施例が関連する磁界共鳴技術との本質的に違う点は、密結合状態ではなく、共振周波数が分割しない疎結合の状態で、送電装置41の第1コイル416と受電装置42の第2コイル426を貫く鎖交磁束の位相が逆相となることである。
送電装置41と受電装置42との距離dは10cmである。給電が低周波(約1MHz)で行われた場合、電力伝送効率は30%以上の高い値となった。また、通信が高周波(約90MHz)で行われた場合、ノイズレベルよりも30dB以上高い信号強度が得られ、また、比帯域も数MHz以上取れる。このため、高い通信レートの通信を行うことができる。
図27のシミュレーションモデルを用いた第三の実施形態による電力伝送システム3の効果を実証したシミュレーションについて説明する。
第三の実施形態による電力伝送システム3は、図27に示すように、送電装置51及び受電装置52を備えている。送電装置51及び受電装置52は、良導体媒質53で覆われている。送電装置51は第1アンテナ511を備えている。第1アンテナ511は、第1下部コイル5161、第1上部コイル5162、第1の一次包含部5171、および第1の二次包含部5172を備えている。第1の一次包含部5171は、第1下部コイル5161と第1上部コイル5162とを覆う第一誘電体から成る。第1の二次包含部5172は、第1の一次包含部5171を覆う第二誘電体から成る。受電装置52は第2アンテナ521を備えている。第2アンテナ521は、第2下部コイル5261と第2上部コイル5262、第2の一次包含部5271、および第2の二次包含部5272を備えている。第2の一次包含部5271は、第2下部コイル5261と第2上部コイル5262とを覆う第一誘電体から成る。第2の二次包含部5272は、第2の一次包含部5271を覆う第二誘電体から成る。
第1の一次包含部5171の寸法は、縦250mm、横250mm、高さ0.5mmである。第1の一次包含部5171は、フッ素樹脂からなる。第1の一次包含部5171の比誘電率は6.2であり、誘電正接は0.0019である。
第1の二次包含部5172は、寸法が縦250mm、横250mm、高さ2.5mmのフッ素樹脂を2つ用いて構成される。第1の二次包含部5172の比誘電率は10.2、誘電正接は0.0024である。
送電装置51の寸法は、縦260mm、横260mm、高さ26.5mm、厚さ5mmである。送電装置51はアクリルからなる。アクリルの比誘電率は3.3、誘電正接は0.04である。
本実施例においては、受電装置52も、上述した送電装置51と同一の構成としてシミュレーションを行っている。
また、図30は、本発明の実施例2における送電装置51の第1上部コイル5162を受電装置52側から見た図である。第1上部コイル5162は給電ポートP2を有する。図30において、長さL21およびL22は208mmである。
第1下部コイル5161は、外周辺208mm、50巻の導体から成る配線で構成されたスパイラルコイルである。第1下部コイル5161の配線の直径は1mm、配線の間隔は1mmである。
第1上部コイル5162は、第1下部コイル5161と同サイズとした。第1下部コイル5161と第1上部コイル5162は、0.5mm離して配置されている。第1下部コイル5161の最外周の端部と第1上部コイル5162の最外周の端部とが、高周波電力の給電ポートP1、P2となる。第1下部コイル5161の螺旋の向きと第1上部コイル5162の螺旋の向きは、給電ポートP1、P2を介して、同一方向に磁界が発生する向きで構成する。
図32は、本発明の実施例2における受電装置52の第2上部コイル5262を送電装置51側から見た図である。第2上部コイル5262は受電ポートP4を有する。図32において、長さL31およびL32は208mmである。
第2下部コイル5261は、外周辺208mm、50巻の導体から成る配線で構成されたスパイラルコイルである。第2下部コイル5261の配線の直径は1mm、配線の間隔は1mmである。
第2上部コイル5262は、第2下部コイル5261と同サイズとした。第2下部コイル5261と第2上部コイル5262は、0.5mmの距離を離して配置されている。第2下部コイル5261の最外周の端部と第2上部コイル5262の最外周の端部とが、高周波電力の受電ポートP3、P4となる。第2下部コイル5261の螺旋の向きと第2上部コイル5262の螺旋の向きは、受電ポートP3、P4を介して、同一方向に磁界が発生する向きで構成する。
送電装置51と受電装置52とが海水中で10cm離れている場合、電力伝送効率のシミュレーション結果は、図33に示すように、72%以上の高い値となった。なお、共振周波数は約140kHzである。
本実施例における受電装置52の構成は、送電装置51と同一の構成である。ただし、ここで示した構成は一例であって、送電装置51と受電装置52とが同一の構成でなくてもよい。
SパラメータのS21は、比(入力端から反射された電力/入力端に入射する電力)で定義される。図34は、給電の周波数(f11)と共に、通信の周波数(f21)も示している。給電周波数(f11)に対して、10~1000倍の周波数帯域(f11×10~f11×1000の帯域)の通信周波数(f12)で高いS/N比が得られている。これらの給電周波数(f11)と通信周波数(f12)を利用することで、電力伝送システム3は、高い電力伝送効率の給電と高い通信レートの通信を行うことができる。
以上、実施形態及び実施例を参照して本願発明を示し説明したが、本願発明は上記実施形態及び実施例に限定されない。当業者であれば、請求項によって画定される本願発明の範囲を逸脱しないで、構成や詳細に様々な変更をすることができることが理解されるであろう。
前記送電装置は、
第1アンテナと、
前記第1アンテナを介して、前記送電装置と前記受電装置との間に介在する媒体のインピーダンスと前記第1アンテナのインピーダンスと第2アンテナのインピーダンスとで定まる第1の共振周波数を有する電力を出力する第1電力伝送回路と、
を備え、
前記受電装置は、
前記第2アンテナと、
前記第2アンテナを介して、前記送電装置によって出力された電力を受け取る第2電力伝送回路と、
を備える電力伝送システム。
前記受電装置は、前記第2アンテナを介して、前記送電装置によって出力された通信信号を受け取る第2無線通信回路をさらに有する
付記1に記載の電力伝送システム。
前記第2アンテナは、第2コイルと、前記第2コイルを覆う誘電体を有する第2包含部とを有する
付記1に記載の電力伝送システム。
付記2に記載の電力伝送システム。
30cm>C3×d/(C1+C2)>0.5cmの関係を満たす
付記1から4のいずれか一に記載の電力伝送システム。
を備える付記1から4のいずれか一に記載の電力伝送システム。
を備える付記1から4のいずれか一に記載の電力伝送システム。
前記第2電力伝送回路は、前記第2電力伝送回路のキャパシタンス成分を可変するように構成された第2のインピーダンス調整部を備え、
前記第1アンテナのインピーダンスを構成するキャパシタンス成分と前記第1電力伝送回路のキャパシタンス成分との合成容量成分をC10と表し、前記第2アンテナのインピーダンスを構成するキャパシタンス成分と前記第2電力伝送回路のキャパシタンス成分との合成容量成分をC20で表す場合、
30cm>C3×d/(C10+C20)>0.5cmの関係を満たす
付記1から4のいずれか一に記載の電力伝送システム。
付記3に記載の電力伝送システム。
付記3に記載の電力伝送システム。
前記第1コイルを覆う第一誘電体を有する第1の一次包含部と、
前記第1の一次包含部を覆う第二誘電体を有する第1の二次包含部と、
を備え、
前記第2包含部は、
前記第2コイルを覆う第一誘電体を有する第2の一次包含部と、
前記第2の一次包含部を覆う第二誘電体を有する第2の二次包含部と、
を備える付記3に記載の電力伝送システム。
付記11に記載の電力伝送システム。
付記11または付記12に記載の電力伝送システム。
導電率が1×10-4より高く、かつ、比誘電率が1より高い
付記1から付記13の何れか一に記載の電力伝送システム。
付記1から付記14の何れか一に記載の電力伝送システム。
付記1から付記15の何れか一に記載の電力伝送システム。
付記16に記載の電力伝送システム。
前記第1アンテナに前記第1電力伝送回路と前記第1無線通信回路のどちらを接続するかを制御する第1制御回路
を備え、
前記受電装置は、
前記第2アンテナに前記第2電力伝送回路と前記第2無線通信回路のどちらを接続するかを制御する第2制御回路
を備える付記2に記載の電力伝送システム。
電力伝送を行う際には、前記第1アンテナに前記第1電力伝送回路を接続する第1切替回路と、
無線通信を行う際には、前記第1アンテナに前記第2無線通信回路を接続する第2切替回路と、
を備え、
前記受電装置は、
電力伝送を行う際には、前記第2アンテナに前記第2電力伝送回路を接続する第1切替回路と、
無線通信を行う際には、前記第2アンテナに前記第2無線通信回路を接続する第2切替回路と、
を備える付記2または18に記載の電力伝送システム。
アンテナと、
前記送電装置のアンテナを介して、前記媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を出力する電力伝送回路と
を備える送電装置。
アンテナと、
前記受電装置のアンテナを介して、前記送電装置から、前記媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を受け取る電力伝送回路と
を備える受電装置。
前記送電装置のアンテナを介して、前記送電装置と前記受電装置との間に介在する媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を出力し、
前記受電装置のアンテナを介して、前記出力された電力を受け取る
ことを含む電力伝送方法。
前記送電装置のアンテナを介して、前記媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を出力する
ことを含む電力伝送方法。
前記受電装置のアンテナを介して、前記媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を受け取る
ことを含む電力伝送方法。
11、21、31、51・・・送電装置
12、22、32、42、52・・・受電装置
13、23、33、53・・・良導体媒質(媒体)
14・・・センサ
15、16、17・・・潜水艇
18、19・・・電源ケーブル
41・・・送電装置(被覆誘電体)
43・・・海水
111、211、311、411、511・・・送電側アンテナ(第1アンテナ)
112、212、312・・・送電側電力伝送回路(第1電力伝送回路)
113、213、313・・・送電側無線通信回路(第1無線通信回路)
114、214、314・・・送電側制御回路(第1制御回路)
116、216、416・・・送電側コイル(第1コイル)
117・・・送電側包含部(第1包含部)
118、218、318・・・送電側切替回路(第1切替回路)
119、219、319・・・送電側インピーダンス調整部(第1インピーダンス調整部)121、221、321、421、521・・・受電側アンテナ(第2アンテナ)
122、222、322・・・受電側電力伝送回路(第2電力伝送回路)
123、223、323・・・受電側無線通信回路(第2無線通信回路)
124、224、324・・・受電側制御回路(第2制御回路)
125、225、325・・・二次電池
126、226、326・・・受電側コイル(第2コイル)
127・・・受電側包含部(第2包含部)
128、228、328・・・受電側切替回路(第2切替回路)
129、229、329・・・受電側インピーダンス調整部(第2インピーダンス調整部)
417・・・送電側一次包含部(第1の一次包含部、内部誘電体)
427、2271、3271、5271・・・受電側一次包含部(第2の一次包含部)
2171、3171、5171・・・送電側一次包含部(第1の一次包含部)
2172、3172、5172・・・送電側二次包含部(第1の二次包含部)
2272、3272、5272・・・受電側二次包含部(第2の二次包含部)
3161、5161・・・送電側下部コイル(第1下部コイル)
3162、5162・・・送電側上部コイル(第1上部コイル)
3261、5261・・・受電側下部コイル(第2下部コイル)
3262、5262・・・受電側上部コイル(第2上部コイル)
Claims (13)
- 送電装置と受電装置とを備える電力伝送システムであって、
前記送電装置は、
第1アンテナと、
前記第1アンテナを介して、前記送電装置と前記受電装置との間に介在する媒体のインピーダンスと前記第1アンテナのインピーダンスと第2アンテナのインピーダンスとで定まる第1の共振周波数を有する電力を出力する第1電力伝送回路と、
を備え、
前記受電装置は、
前記第2アンテナと、
前記第2アンテナを介して、前記送電装置によって出力された電力を受け取る第2電力伝送回路と、
を備える電力伝送システム。 - 前記送電装置は、前記第1アンテナを介して、前記媒体のインピーダンスと前記第1アンテナのインピーダンスと前記第2アンテナのインピーダンスとで定まる第2の共振周波数を有する通信信号を出力する第1無線通信回路をさらに有し、
前記受電装置は、前記第2アンテナを介して、前記送電装置によって出力された通信信号を受け取る第2無線通信回路をさらに有する
請求項1に記載の電力伝送システム。 - 前記第1アンテナは、第1コイルと、前記第1コイルを覆う誘電体を有する第1包含部と有し、
前記第2アンテナは、第2コイルと、前記第2コイルを覆う誘電体を有する第2包含部とを有する
請求項1に記載の電力伝送システム。 - 前記第1の共振周波数に対する前記第2の共振周波数の比は、10よりも大きく1000よりも小さい
請求項2に記載の電力伝送システム。 - 前記第1アンテナのインピーダンスを構成するキャパシタンス成分をC1で表し、前記第2アンテナのインピーダンスを構成するキャパシタンス成分をC2で表し、前記第1アンテナと前記第2アンテナと前記第1アンテナおよび前記第2アンテナの間に存在する前記媒体とで形成される容量のキャパシタンス成分をC3で表し、前記第1アンテナと前記第2アンテナとの距離をdで表す場合、
30cm>C3×d/(C1+C2)>0.5cmの関係を満たす
請求項1から4のいずれか一項に記載の電力伝送システム。 - 前記第1電力伝送回路は、前記第1電力伝送回路のインピーダンスを可変するように構成されたインピーダンス調整部
を備える請求項1から4のいずれか一項に記載の電力伝送システム。 - 前記第2電力伝送回路は、前記第2電力伝送回路のインピーダンスを可変するように構成されたインピーダンス調整部
を備える請求項1から4のいずれか一項に記載の電力伝送システム。 - 前記第1電力伝送回路は、前記第1電力伝送回路のキャパシタンス成分を可変するように構成された第1のインピーダンス調整部を備え、
前記第2電力伝送回路は、前記第2電力伝送回路のキャパシタンス成分を可変するように構成された第2のインピーダンス調整部を備え、
前記第1アンテナのインピーダンスを構成するキャパシタンス成分と前記第1電力伝送回路のキャパシタンス成分との合成容量成分をC10と表し、前記第2アンテナのインピーダンスを構成するキャパシタンス成分と前記第2電力伝送回路のキャパシタンス成分との合成容量成分をC20で表す場合、
30cm>C3×d/(C10+C20)>0.5cmの関係を満たす
請求項1から4のいずれか一項に記載の電力伝送システム。 - 送電装置と受電装置との間に介在する媒体を介して送電するための送電装置であって、
アンテナと、
前記送電装置のアンテナを介して、前記媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を出力する電力伝送回路と
を備える送電装置。 - 送電装置と受電装置との間に介在する媒体を介して受電するための受電装置であって、
アンテナと、
前記受電装置のアンテナを介して、前記送電装置から、前記媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を受け取る電力伝送回路と
を備える受電装置。 - 送電装置と受電装置とのための電力伝送方法であって、
前記送電装置のアンテナを介して、前記送電装置と前記受電装置との間に介在する媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を出力し、
前記受電装置のアンテナを介して、前記出力された電力を受け取る
ことを含む電力伝送方法。 - 送電装置と受電装置との間に介在する媒体を介して送電する送電装置のための電力伝送方法であって、
前記送電装置のアンテナを介して、前記媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を出力する
ことを含む電力伝送方法。 - 送電装置と受電装置との間に介在する媒体を介して受電する受電装置のための電力伝送方法であって、
前記受電装置のアンテナを介して、前記媒体のインピーダンスと前記送電装置のアンテナのインピーダンスと前記受電装置のアンテナのインピーダンスとで定まる第1の共振周波数を有する電力を受け取る
ことを含む電力伝送方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/768,308 US9887681B2 (en) | 2013-02-20 | 2014-02-20 | Power transmission system, transmission apparatus, receiving apparatus, and power transmission method |
JP2015501488A JP6172259B2 (ja) | 2013-02-20 | 2014-02-20 | 電力伝送システム、送電装置、受電装置、及び電力伝送方法 |
EP14753585.0A EP2961035B1 (en) | 2013-02-20 | 2014-02-20 | Power transmission system, transmission apparatus, receiving apparatus, and power transmission method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013031024 | 2013-02-20 | ||
JP2013-031024 | 2013-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129531A1 true WO2014129531A1 (ja) | 2014-08-28 |
Family
ID=51391315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053996 WO2014129531A1 (ja) | 2013-02-20 | 2014-02-20 | 電力伝送システム、送電装置、受電装置、及び電力伝送方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9887681B2 (ja) |
EP (1) | EP2961035B1 (ja) |
JP (1) | JP6172259B2 (ja) |
WO (1) | WO2014129531A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016201534A (ja) * | 2015-04-07 | 2016-12-01 | 昭和飛行機工業株式会社 | 水中非接触給電装置 |
WO2017013825A1 (ja) * | 2015-07-21 | 2017-01-26 | パナソニックIpマネジメント株式会社 | 送電装置 |
WO2018051936A1 (ja) * | 2016-09-15 | 2018-03-22 | 日本電気株式会社 | 無線給電装置及び無線給電方法 |
WO2018051934A1 (ja) * | 2016-09-14 | 2018-03-22 | 日本電気株式会社 | 無線給電装置 |
KR20230102622A (ko) * | 2021-12-30 | 2023-07-07 | 대진대학교 산학협력단 | 잠수정 수중 무선충전 시스템 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014185490A1 (ja) * | 2013-05-15 | 2017-02-23 | 日本電気株式会社 | 電力伝送システム、送電装置、受電装置、及び電力伝送方法 |
KR101943082B1 (ko) * | 2014-01-23 | 2019-04-18 | 한국전자통신연구원 | 무선 전력 송신 장치, 무선 전력 수신 장치, 및 무선 전력 전송 시스템 |
JP6737648B2 (ja) * | 2016-06-30 | 2020-08-12 | パナソニック株式会社 | 送電装置 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308140A (ja) * | 1996-05-13 | 1997-11-28 | Nec Corp | 生体計測用電力供給装置 |
JP2004166384A (ja) * | 2002-11-12 | 2004-06-10 | Sharp Corp | 非接触型給電システムにおける電磁結合特性調整方法、給電装置、および非接触型給電システム |
JP2007324532A (ja) * | 2006-06-05 | 2007-12-13 | Meleagros Corp | 電力伝送方法、電力伝送装置のコイルの選別方法および使用方法 |
JP2009302963A (ja) * | 2008-06-13 | 2009-12-24 | Rcs:Kk | 磁力波通信装置 |
JP2010141966A (ja) * | 2008-12-09 | 2010-06-24 | Hitachi Ltd | 非接触電力送信装置、非接触電力受信装置および非接触電力伝送システム |
JP2011022640A (ja) | 2009-07-13 | 2011-02-03 | Sony Corp | 無線伝送システム、電子機器 |
WO2011030804A1 (ja) * | 2009-09-08 | 2011-03-17 | 日本電気株式会社 | 無線電力変換器および無線通信装置 |
JP4772744B2 (ja) | 2007-05-17 | 2011-09-14 | 昭和飛行機工業株式会社 | 非接触給電装置用の信号伝送コイル通信装置 |
JP2011244530A (ja) * | 2010-05-14 | 2011-12-01 | Toyota Industries Corp | 共鳴型非接触給電システムの受電側設備 |
JP2012504387A (ja) | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | 無線エネルギー伝達システム |
JP2012050321A (ja) * | 2010-07-28 | 2012-03-08 | Semiconductor Energy Lab Co Ltd | 無線給電システム、及び無線給電方法 |
WO2014034491A1 (ja) * | 2012-08-31 | 2014-03-06 | 日本電気株式会社 | 電力伝送装置及び電力伝送方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62122435U (ja) * | 1986-01-23 | 1987-08-04 | ||
JP2007210402A (ja) * | 2006-02-08 | 2007-08-23 | Kawasaki Heavy Ind Ltd | 自律型無人潜水機およびその水中航行方法 |
US8212414B2 (en) * | 2008-07-10 | 2012-07-03 | Lockheed Martin Corporation | Resonant, contactless radio frequency power coupling |
EP3511730B1 (en) * | 2009-03-09 | 2023-05-31 | NuCurrent, Inc. | System and method for wireless power transfer in implantable medical devices |
KR101730824B1 (ko) | 2009-11-30 | 2017-04-27 | 삼성전자주식회사 | 무선 전력 트랜시버 및 무선 전력 시스템 |
US8441153B2 (en) * | 2010-06-22 | 2013-05-14 | General Electric Company | Contactless power transfer system |
US8946941B2 (en) * | 2010-09-14 | 2015-02-03 | Monterey Bay Aquarium Research Institute | Wireless power and data transfer device for harsh and extreme environments |
-
2014
- 2014-02-20 US US14/768,308 patent/US9887681B2/en active Active
- 2014-02-20 JP JP2015501488A patent/JP6172259B2/ja active Active
- 2014-02-20 EP EP14753585.0A patent/EP2961035B1/en active Active
- 2014-02-20 WO PCT/JP2014/053996 patent/WO2014129531A1/ja active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308140A (ja) * | 1996-05-13 | 1997-11-28 | Nec Corp | 生体計測用電力供給装置 |
JP2004166384A (ja) * | 2002-11-12 | 2004-06-10 | Sharp Corp | 非接触型給電システムにおける電磁結合特性調整方法、給電装置、および非接触型給電システム |
JP2007324532A (ja) * | 2006-06-05 | 2007-12-13 | Meleagros Corp | 電力伝送方法、電力伝送装置のコイルの選別方法および使用方法 |
JP4772744B2 (ja) | 2007-05-17 | 2011-09-14 | 昭和飛行機工業株式会社 | 非接触給電装置用の信号伝送コイル通信装置 |
JP2009302963A (ja) * | 2008-06-13 | 2009-12-24 | Rcs:Kk | 磁力波通信装置 |
JP2012504387A (ja) | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | 無線エネルギー伝達システム |
JP2010141966A (ja) * | 2008-12-09 | 2010-06-24 | Hitachi Ltd | 非接触電力送信装置、非接触電力受信装置および非接触電力伝送システム |
JP2011022640A (ja) | 2009-07-13 | 2011-02-03 | Sony Corp | 無線伝送システム、電子機器 |
WO2011030804A1 (ja) * | 2009-09-08 | 2011-03-17 | 日本電気株式会社 | 無線電力変換器および無線通信装置 |
JP2011244530A (ja) * | 2010-05-14 | 2011-12-01 | Toyota Industries Corp | 共鳴型非接触給電システムの受電側設備 |
JP2012050321A (ja) * | 2010-07-28 | 2012-03-08 | Semiconductor Energy Lab Co Ltd | 無線給電システム、及び無線給電方法 |
WO2014034491A1 (ja) * | 2012-08-31 | 2014-03-06 | 日本電気株式会社 | 電力伝送装置及び電力伝送方法 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016201534A (ja) * | 2015-04-07 | 2016-12-01 | 昭和飛行機工業株式会社 | 水中非接触給電装置 |
US10549652B2 (en) | 2015-07-21 | 2020-02-04 | Panasonic Intellectual Property Management Co., Ltd. | Power transmission device |
WO2017013825A1 (ja) * | 2015-07-21 | 2017-01-26 | パナソニックIpマネジメント株式会社 | 送電装置 |
JP2017028832A (ja) * | 2015-07-21 | 2017-02-02 | パナソニックIpマネジメント株式会社 | 送電装置 |
GB2568195B (en) * | 2016-09-14 | 2022-01-12 | Nec Corp | Wireless power supply device |
WO2018051934A1 (ja) * | 2016-09-14 | 2018-03-22 | 日本電気株式会社 | 無線給電装置 |
JP2018046668A (ja) * | 2016-09-14 | 2018-03-22 | 日本電気株式会社 | 無線給電装置 |
GB2568195A (en) * | 2016-09-14 | 2019-05-08 | Nec Corp | Wireless power supply device |
US10944292B2 (en) | 2016-09-14 | 2021-03-09 | Nec Corporation | Wireless power supply device |
JPWO2018051936A1 (ja) * | 2016-09-15 | 2019-06-24 | 日本電気株式会社 | 無線給電装置及び無線給電方法 |
GB2568200A (en) * | 2016-09-15 | 2019-05-08 | Nec Corp | Wireless power supply device and wireless power supply method |
US10951066B2 (en) | 2016-09-15 | 2021-03-16 | Nec Corporation | Wireless power supply device and wireless power supply method |
GB2568200B (en) * | 2016-09-15 | 2021-12-08 | Nec Corp | Wireless power supply device and wireless power supply method |
WO2018051936A1 (ja) * | 2016-09-15 | 2018-03-22 | 日本電気株式会社 | 無線給電装置及び無線給電方法 |
KR20230102622A (ko) * | 2021-12-30 | 2023-07-07 | 대진대학교 산학협력단 | 잠수정 수중 무선충전 시스템 |
KR102694125B1 (ko) * | 2021-12-30 | 2024-08-09 | 대진대학교 산학협력단 | 잠수정 수중 무선충전 시스템 |
Also Published As
Publication number | Publication date |
---|---|
EP2961035A4 (en) | 2016-10-19 |
JP6172259B2 (ja) | 2017-08-02 |
US20150365066A1 (en) | 2015-12-17 |
EP2961035A1 (en) | 2015-12-30 |
JPWO2014129531A1 (ja) | 2017-02-02 |
US9887681B2 (en) | 2018-02-06 |
EP2961035B1 (en) | 2019-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6172259B2 (ja) | 電力伝送システム、送電装置、受電装置、及び電力伝送方法 | |
JP6467919B2 (ja) | 電力伝送装置及び電力伝送方法 | |
US10038342B2 (en) | Power transfer system with shielding body, power transmitting device with shielding body, and power transfer method for power transmitting system | |
JP6237640B2 (ja) | 電力伝送装置及び電力伝送方法 | |
KR102552493B1 (ko) | 전자파 차폐 기능을 가지는 무선충전기 | |
JPWO2009037821A1 (ja) | 誘導電力伝送回路 | |
JP2010063324A (ja) | 誘導電力伝送回路 | |
JP2023517037A (ja) | ワイヤレス電力伝送用送信器、ワイヤレス電力伝送のシステムおよび方法 | |
KR20130128130A (ko) | 공진 결합 무선 전력 수신기 및 송신기 | |
WO2013153736A1 (ja) | 無線電力伝送装置、送電装置、および受電装置 | |
JP2013102593A (ja) | 磁気結合装置および磁気結合システム | |
KR20140013015A (ko) | 무선 전력 전송용의 송신 코일 | |
JP6098284B2 (ja) | 電力伝送システム、送電装置、受電装置、及び電力伝送方法 | |
US10944292B2 (en) | Wireless power supply device | |
US20240283298A1 (en) | Injection device, an extraction device, and a surface wave system for power transfer | |
JP2017005952A (ja) | 非接触電力送電装置、非接触電力受電装置、及び、非接触電力伝送システム | |
JP2016096667A (ja) | 給電通信構造及び給電通信用線路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14753585 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14768308 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015501488 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014753585 Country of ref document: EP |