Nothing Special   »   [go: up one dir, main page]

WO2014128945A1 - 有機発光材料及び有機発光素子 - Google Patents

有機発光材料及び有機発光素子 Download PDF

Info

Publication number
WO2014128945A1
WO2014128945A1 PCT/JP2013/054652 JP2013054652W WO2014128945A1 WO 2014128945 A1 WO2014128945 A1 WO 2014128945A1 JP 2013054652 W JP2013054652 W JP 2013054652W WO 2014128945 A1 WO2014128945 A1 WO 2014128945A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivative
organic light
donor
acceptor
emitting material
Prior art date
Application number
PCT/JP2013/054652
Other languages
English (en)
French (fr)
Inventor
荒谷 介和
広貴 佐久間
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/054652 priority Critical patent/WO2014128945A1/ja
Priority to JP2015501208A priority patent/JPWO2014128945A1/ja
Publication of WO2014128945A1 publication Critical patent/WO2014128945A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic light emitting material and an organic light emitting device.
  • organic LEDs include fluorescent materials and phosphorescent materials.
  • Many phosphorescence materials of heavy metal complexes have been reported which can utilize all the excited states formed in the organic LED for high efficiency.
  • Patent Document 1 reports a delayed fluorescent material that is enhanced in efficiency using delayed fluorescence.
  • the conventional delayed fluorescent material has a problem that high efficiency can not always be obtained.
  • An object of the present invention is to provide an organic light emitting material using highly efficient delayed fluorescence.
  • An organic light emitting material comprising a donor and an acceptor, wherein the donor and the acceptor are linked, an aromatic ring is linked to the donor or the acceptor, and the donor, the acceptor or the aromatic is An organic light-emitting material having a substituent at a position closest to a connector in a group ring.
  • An organic light emitting material comprising a donor and an acceptor, wherein the donor and the acceptor are linked, and a plurality of aromatic rings are linked to the donor or the acceptor, and the plurality of aromatic rings And an adjacent aromatic ring is bonded at two or more places.
  • the position of the substituent has not been studied in the conventional delayed fluorescent material.
  • positions of substituents are specified.
  • General formula (1) of the organic luminescent material in this invention is shown.
  • D is a donor
  • A is an acceptor
  • Ar1-4 is an aromatic ring. As will be described in detail later, it has a substituent at the closest part of the bond that bonds with the donor.
  • X is a bond, and represents a case where there is no bond, a substituted or unsubstituted phenyl group, an aromatic group, an alkyl group or the like.
  • n is an integer of 1 or more.
  • the donor is a site having an electron donating property. Specific examples thereof include carbazole derivatives, triallylamino derivatives, phenoxazine derivatives, fluorene derivatives, spirotriphenylamine derivatives, naphthalene derivatives, phenyl groups substituted with electron donating groups, and the like.
  • the acceptor is a site having an electron withdrawing property.
  • Specific examples thereof include triazine derivatives, pyridine derivatives, oxadiazole derivatives, silole derivatives, pyrazine derivatives, pyridazine derivatives, and phenyl groups substituted with an electron-withdrawing group.
  • the aromatic ring include benzene ring, pyridine ring and bipyridine.
  • the substituent include an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an amino group, a phenyl group and an acyl group. Alkyl groups are particularly desirable.
  • the carbazole derivative of the donor and the triazine derivative of the acceptor are linked.
  • An aromatic ring is linked to the carbazole derivative.
  • the aromatic ring is also linked to the triazine derivative.
  • an alkyl group is present at a position closest to the link between the carbazole derivative of the donor and the aromatic ring.
  • a mixed film of 6 wt% of this material with respect to mCP (1,3-dicarbazolylbenzene) was produced on a quartz substrate by vapor deposition.
  • the external luminous efficiency of this film was excited by light of 337 nm and measured at room temperature using an absolute quantum yield measurement device.
  • the energy difference ( ⁇ ST) between the singlet excitation energy and the triplet excitation energy of this molecule was calculated by the molecular orbital method using density functional theory, taking into consideration the molecular structure change in the excited state. As a result, ⁇ ST was 0.02 eV.
  • the ⁇ ST of this molecule was calculated to be 0.08 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured.
  • the external luminous efficiency of this mixed film and the external luminous efficiency of the mixed film of Example 1 were measured, the external luminous efficiency of the mixed film of Example 1 was 1.3 times the external luminous efficiency of the mixed film of Comparative Example 1
  • the Highly efficient light emission can be achieved by using a light emitting material of the general formula (1) into which a substituent suppressing a structural change in an excited state is introduced.
  • the high efficiency emission was obtained in Example 1 is considered to be because ⁇ ST became smaller and delayed fluorescence was more likely to occur.
  • the ⁇ ST of this material was calculated to be 0.05 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured. As a result, the external luminous efficiency was 1.2 times that of the mixed film of Comparative Example 1.
  • the ⁇ ST of this material was calculated to be 0.05 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured. As a result, the external light emission efficiency was 1.2 times that of the mixed film of Comparative Example 1.
  • the carbazole derivative of the donor and the triazine derivative of the acceptor are linked.
  • An aromatic ring is linked to the carbazole derivative.
  • the aromatic ring is also linked to the triazine derivative.
  • an alkyl group is present at a position closest to the connecting point of the triazine derivative of the acceptor and the aromatic ring.
  • the ⁇ ST of this material was calculated to be 0.07 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured. As a result, the external light emission efficiency was 1.1 times that of the mixed film of Comparative Example 1.
  • the carbazole derivative of the donor and the triazine derivative of the acceptor are linked.
  • An aromatic ring is linked to the carbazole derivative.
  • the aromatic ring is also linked to the triazine derivative.
  • an alkyl group is present at a position closest to the link between the carbazole derivative of the donor and the aromatic ring.
  • an alkyl group is present at a position closest to the linking of one aromatic ring and the other aromatic ring.
  • Example 6 The structural formula of the light emitting material of Example 6 is
  • the triallylamino derivative of the donor and the triazine derivative of the acceptor are linked.
  • An aromatic ring is linked to the triallylamino derivative.
  • the aromatic ring is also linked to the triazine derivative.
  • an alkyl group is present at a position closest to the linking of the triallylamino derivative of the donor and the aromatic ring.
  • an alkyl group is present at a position closest to the linking of one aromatic ring and the other aromatic ring.
  • the ⁇ ST of this material was calculated to be 0.05 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured.
  • the ⁇ ST of this material was calculated to be 0.1 eV.
  • a mixed film was produced in the same manner as in Example 1 except for the above, and the external quantum yield was measured.
  • Example 7 The external luminous efficiency of the mixed film of Example 6 was 1.2 times compared to the external luminous efficiency of the mixed film of Comparative Example 2. Compared to the material of Comparative Example 2, planarization of the structure in the excited state is suppressed, ⁇ ST is reduced, and it is considered that the efficiency is improved.
  • Example 7 and Comparative Example 3 The structural formula of the luminescent material of Example 7 is
  • the fluorene derivative of the donor and the triazine derivative of the acceptor are linked.
  • An aromatic ring is linked to the triazine derivative.
  • an alkyl group is present at a position closest to the junction of the fluorene derivative of the donor and the triazine derivative of the acceptor.
  • an alkyl group is present at a position closest to the linking of one aromatic ring and the other aromatic ring.
  • the ⁇ ST of this material was calculated to be 0.04 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured.
  • the ⁇ ST of this material was calculated to be 0.1 eV.
  • a mixed film was produced in the same manner as in Example 1 except for the above, and the external quantum yield was measured.
  • Example 8 and Comparative Example 4 The structural formula of the luminescent material of Example 8 is
  • the carbazole derivative of the donor and the triazine derivative of the acceptor are linked.
  • An aromatic ring is linked to the triazine derivative.
  • an alkyl group is present at a position closest to the junction of the carbazole derivative of the donor and the triazine derivative of the acceptor.
  • an alkyl group is present at a position closest to the connecting point of the triazine derivative of the acceptor and the aromatic ring.
  • an alkyl group is present at a position closest to the linking of one aromatic ring and the other aromatic ring.
  • the ⁇ ST of this material was calculated to be 0.02 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured.
  • the ⁇ ST of this material was calculated to be 0.12 eV.
  • a mixed film was produced in the same manner as in Example 1 except for the above, and the external quantum yield was measured.
  • Example 9 The external luminous efficiency of the mixed film of Example 8 was 1.4 times as large as the external luminous efficiency of the mixed film of Comparative Example 4. Compared to the material of Comparative Example 4, planarization of the structure in the excited state is suppressed, ⁇ ST is reduced, and it is considered that the efficiency is improved.
  • Example 9 and Comparative Example 5 The structural formula of the luminescent material of Example 9 is
  • the carbazole derivative of the donor and the pyridine derivative of the acceptor are linked.
  • An aromatic ring is linked to the carbazole derivative.
  • the aromatic ring is also linked to the triazine derivative.
  • an alkyl group is present at a position closest to the link between the carbazole derivative of the donor and the aromatic ring.
  • the ⁇ ST of this material was calculated to be 0.02 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured.
  • the ⁇ ST of this material was calculated to be 0.08 eV.
  • a mixed film was produced in the same manner as in Example 1 except for the above, and the external quantum yield was measured.
  • the external luminous efficiency of the mixed film of Example 9 was 1.4 times as large as the external luminous efficiency of the mixed film of Comparative Example 5.
  • ⁇ ST is reduced and it is considered that the efficiency is improved.
  • Example 10 and Comparative Example 6 The structural formula of the light emitting material of Example 10 is
  • the ⁇ ST of this material was calculated to be 0.02 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured.
  • the ⁇ ST of this material was calculated to be 0.06 eV.
  • a mixed film was produced in the same manner as in Example 1 except for the above, and the external quantum yield was measured.
  • Example 11 The external luminous efficiency of the mixed film of Example 10 was 1.3 times as large as the external luminous efficiency of the mixed film of Comparative Example 6. By using a material having a substituent that suppresses the structural change in the excited state as compared with the material of Comparative Example 6, it is considered that ⁇ ST becomes smaller and the efficiency is improved.
  • Example 11 and Comparative Example 7 The structural formula of the light emitting material of Example 11 is
  • the carbazole derivative of the donor and the silole derivative of the acceptor are linked.
  • An aromatic ring is linked to the carbazole derivative.
  • the aromatic ring is also linked to the silole derivative.
  • an alkyl group is present at a position closest to the link between the carbazole derivative of the donor and the aromatic ring.
  • the ⁇ ST of this material was calculated to be 0.04 eV.
  • a mixed film was produced in the same manner as in Example 1, and the external light emission efficiency was measured.
  • the ⁇ ST of this material was calculated to be 0.08 eV.
  • a mixed film was produced in the same manner as in Example 1 except for the above, and the external quantum yield was measured.
  • the external luminous efficiency of the mixed film of Example 10 was 1.2 times as large as the external luminous efficiency of the mixed film of Comparative Example 6.
  • ⁇ ST becomes smaller and the efficiency is improved.
  • highly efficient light emission can be obtained by using a material having a substituent which suppresses a structural change in an excited state.
  • the structural formula does not show all the patterns, but as a donor, carbazole derivative, triallylamino derivative, phenoxazine derivative, fluorene derivative, spirotriphenylamine derivative, naphthalene derivative, electron donating group substituted Any of the phenyl groups can be used.
  • the acceptor any of a triazine derivative, a pyridine derivative, an oxadiazole derivative, a silole derivative, a pyrazine derivative, a pyridazine derivative, and a phenyl group substituted with an electron-withdrawing group can be used.
  • a substituent any of an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an amino group, a phenyl group and an acyl group can be used.
  • the dopant can be localized in the vicinity of the surface when a film is formed by a coating method by using a light emitting material having a structure as shown in Formula 23 and Formula 24, and a laminated light emitting layer is formed by one application. Can. By doing so, the dopant does not come in contact with the hole transport layer, and the hole transport layer becomes less susceptible. Therefore, the range of material selection of the hole transport layer is expanded.
  • white light emission can be obtained by mixing multiple color dopants. In that case, high efficiency can be achieved by forming the laminated light emitting layer by one application.
  • FIG. 1 is a cross-sectional view of an embodiment of the organic light emitting device in the present invention.
  • the substrate 1 is a glass substrate.
  • the present invention is not limited to the glass substrate, and a plastic substrate or a metal substrate provided with a suitable water permeability lowering protective film can also be used.
  • the light extraction layer a layer having a scattering property or a layer having a microlens can be used.
  • the lower electrode 2 is an anode.
  • Transparent electrodes such as ITO and IZO are used.
  • the invention is not limited thereto, and a laminate of Al, Ag or the like, a combination of Mo, Cr, a transparent electrode and a light diffusion layer, or the like can also be used.
  • the lower electrode is not limited to the anode, and a cathode can also be used. In that case, Al, Mo, a laminate of Al and Li, an alloy such as AlNi, or the like is used.
  • a transparent electrode such as ITO or IZO may be used.
  • the upper electrode 8 is a cathode.
  • a laminate of Al, an electron injecting LiF, a fluoride of an alkali metal such as Li20, an oxide or the like is used.
  • a co-evaporation product of Al and an alkali metal is also used.
  • a laminate of a transparent electrode such as ITO or IZO and an electron injecting electrode such as MgAg or Li can be used.
  • MgAg or Ag thin film can be used alone.
  • a buffer layer may be provided in order to reduce damage due to sputtering.
  • a metal oxide such as molybdenum oxide or vanadium oxide is used.
  • the lower electrode is a cathode as described above
  • the upper electrode is an anode.
  • a transparent electrode such as ITO or IZO is used.
  • a metal thin film such as an Ag thin film can be used.
  • a buffer layer may be provided in order to reduce damage caused by sputtering.
  • a metal oxide such as molybdenum oxide or vanadium oxide is used.
  • the hole injection layer 3 is a layer for injecting holes from the lower electrode 2.
  • a single layer or a plurality of layers may be provided.
  • the hole injection layer 3 is preferably a conductive polymer such as PEDOT (poly (3,4-ethylenedioxythiophene)): PSS (polystyrene sulfonate).
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonate
  • polypyrrole-based and triphenylamine-based polymer materials can be used.
  • phthalocyanine compounds and starburst amine compounds which are often used in combination with a low molecular weight (weight average molecular weight of 10000 or less) material system are also applicable.
  • the hole transport layer 4 is a layer for efficiently injecting holes from the hole injection layer 3 to the light emitting layer.
  • the hole transport layer homopolymers or copolymers of fluorene, carbazole, arylamine and the like are used.
  • the copolymer materials having a thiophene type or a pyrrole type as a skeleton can also be used. Further, polymers having a skeleton such as fluorene, carbazole, arylamine, thiophene or pyrrole in the side chain can also be used.
  • the polymer is not limited, and a starburst amine compound, an arylamine compound, a stilbene derivative, a hydrazone derivative, a thiophene derivative and the like can be used. Also, polymers containing the above materials may be used. Further, the present invention is not limited to these materials, and two or more of these materials may be used in combination.
  • the light emitting layer 5 is a layer for obtaining light emission of a desired light emission color.
  • the light emitting layer 5 contains a host and a dopant.
  • a dopant at least one type uses an organic light emitting material using delayed fluorescence.
  • the dopant may be only one type, but two or three types may be used.
  • the light emitting layer 5 may contain a hole transport material or an electron transport material in addition to the host and the dopant.
  • a fluorescent material and a phosphorescent material may be partially used. They are used to improve charge balance in the light emitting layer.
  • the light emitting layer may also contain a binder polymer.
  • a triphenylamine derivative a carbazole derivative, a fluorene derivative or an arylsilane derivative
  • metal complexes of 8-quinolinol can also be used.
  • binder polymers such as polycarbonate, polystyrene, acrylic resin, polyamide and gelatin can also be used in combination.
  • the hole blocking layer 6 is a layer for preventing transfer of holes from the light emitting layer to the electron transporting layer.
  • Examples of the material of the hole blocking layer include bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (hereinafter, BAlq), tris (8-quinolinolato) aluminum (hereinafter, Alq3), Tris (2,4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane (hereinafter, 3TPYMB), 1,4-bis (triphenylsilyl) benzene (hereinafter, UGH2), oxadiazole derivative, triazole derivative A fullerene derivative, a phenanthroline derivative, a quinoline derivative, a benzimidazole derivative, a triazine derivative or the like can be used.
  • the electron transport layer 7 is a layer for transporting electrons to the light emitting layer via the hole blocking layer.
  • Examples of the material of the electron transport layer include bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (hereinafter, BAlq), tris (8-quinolinolato) aluminum (hereinafter, Alq3), and Tris.
  • 3TPYMB (2,4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • a glass substrate was used as the substrate 1 and ITO was used as the lower electrode 2.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonate
  • a triphenylamine-based polymer was used for the hole transport layer 4
  • mCP 1, 3-dicarbazolylbenzene
  • the material represented by the following formula (40) was used for the dopant.
  • the dopant is 1% by weight to the host.
  • the coating liquid for forming the light emitting layer 5 was prepared using toluene as a solvent so that the weight ratio of solid content to the solvent was 1%.
  • the light emitting layer 5 was formed by spin coating using this coating solution.
  • Comparative Example 8 the material of the following formula (41) was used as the dopant.
  • An organic light emitting device was manufactured in the same manner as Example 12 except for the above.
  • D1 and D2 are donors, A1 and A2 are acceptors, X is a linking moiety, and Ar1-8 is an aromatic ring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 本発明の目的は、高効率な遅延蛍光を用いた有機発光材料を提供することである。 本発明は、ドナーとアクセプターを備えた有機発光材料であって、前記ドナーと前記アクセプターは連結しており、前記ドナーまたは前記アクセプターに芳香族環が連結しており、前記ドナー、前記アクセプターまたは前記芳香族環において、連結手に最も近い位置に置換基を有する。

Description

有機発光材料及び有機発光素子
 本発明は、有機発光材料及び有機発光素子に関する。
 有機LED(有機発光ダイオード)の発光材料には、蛍光材料と燐光材料がある。高効率化のため、有機LED内で形成されるすべての励起状態を活用できる、重金属錯体の燐光発光材料が多く報告されてきた。最近では、それに加えて、遅延蛍光を用いて高効率化する遅延蛍光材料が特許文献1にて報告されている。
WO2011/070963
 従来の遅延蛍光材料には、必ずしも高効率が得られないという課題があった。本発明の目的は、高効率な遅延蛍光を用いた有機発光材料を提供することである。
 上記課題を解決するための本発明の特徴は以下の通りである。
(1)ドナーとアクセプターを備えた有機発光材料であって、前記ドナーと前記アクセプターは連結しており、前記ドナーまたは前記アクセプターに芳香族環が連結しており、前記ドナー、前記アクセプターまたは前記芳香族環において、連結手に最も近い位置に置換基を有する有機発光材料。
(2)ドナーとアクセプターを備えた有機発光材料であって、前記ドナーと前記アクセプターは連結しており、前記ドナーまたは前記アクセプターに複数の芳香族環が連結しており、前記複数の芳香族環において、隣り合う芳香族環が2か所以上で結合されていることを特徴とする有機発光材料。
 本発明により、高効率発光を実現した有機発光材料及び有機発光素子を提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
有機発光素子の一実施の形態における断面図である。
 以下、図面等により本発明を詳細に説明する。
 従来の遅延蛍光材料では、置換基の位置について検討されていなかった。本発明では、高効率な発光を実現するため、置換基の位置を特定している。本発明における有機発光材料の一般式(1)を示す。
Figure JPOXMLDOC01-appb-C000001
 Dはドナー、Aはアクセプター、Ar1-4は芳香族環である。後で詳細に説明するが、ドナーと結合する結合の最も近い部分に置換基を有する。Xは結合手であり、ない場合や、置換、無置換のフェニル基、芳香族基、アルキル基などを表わす。nは1以上の整数である。ドナーとは電子供与性を有する部位のことである。具体的には、カルバゾール誘導体、トリアリルアミノ誘導体、フェノキサジン誘導体、フルオレン誘導体、スピロトリフェニルアミン誘導体、ナフタレン誘導体、電子供与性基で置換されたフェニル基などがあげられる。アクセプターとは電子吸引性を有する部位である。具体的には、トリアジン誘導体、ピリジン誘導体、オキサジアゾール誘導体、シロール誘導体、ピラジン誘導体、ピリダジン誘導体、電子吸引性基で置換されたフェニル基などがあげられる。芳香族環はベンゼン環、ピリジン環、ビピリジン等が上げられる。置換基はアルキル基、ハロアルキル基、アルコキシ基、アルキルチオ基、アミノ基、フェニル基、アシル基などがあげられる。アルキル基が特に望ましい。
 このような分子構造とすることにより、ドナーと結合する芳香族環との平面構造化が起こりにくくなり、励起状態の構造安定化が起こりにくくなる。そのため、高効率化に必要な一重項励起状態のエネルギーと三重項励起エネルギーのエネルギー差が小さくなり、高効率発光が得られる。
<実施例1~5と比較例1>
 実施例1の発光材料の構造式は以下の式(2)
Figure JPOXMLDOC01-appb-C000002
 で表される。式(2)では、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。また、芳香族環において、ドナーのカルバゾール誘導体と芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料をmCP(1,3―ジカルバゾリルベンゼン)に対して、6wt%となるような混合膜を石英基板上に蒸着法で作製した。
 この膜の外部発光効率を、337nmの光で励起し、絶対量子収率測定装置を用いて、室温にて測定した。また、この分子の1重項励起エネルギーと3重項励起エネルギーのエネルギー差(ΔST)を密度汎関数法を用いた分子軌道法により、励起状態での分子構造変化を考慮して計算した。その結果、ΔSTは0.02eVであった。
 比較例1の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000003
 で表される。式(3)では、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。しかし、アルキル基は存在していない点で、式(3)は式(2)と異なっている。
 この分子のΔSTを計算したところ、0.08eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。この混合膜の外部発光効率と実施例1の混合膜の外部発光効率を測定したところ、実施例1の混合膜の外部発光効率は、比較例1の混合膜の外部発光効率の1.3倍であった。励起状態での構造変化を抑制する置換基を導入した、一般式(1)の発光材料を用いることにより、高効率発光できる。実施例1で高効率発光が得られたのは、ΔSTが小さくなり、遅延蛍光が起こりやすくなったためと考えられる。
 実施例2の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000004
 で表される。式(4)では、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。また、2つの芳香族環において、一方の芳香族環と他方の芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.05eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。その結果、外部発光効率は比較例1の混合膜と比較して、1.2倍であった。
 実施例3の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000005
 で表される。式(5)では、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。また、2つの芳香族環において、近傍の芳香族環と2つ以上の結合を有している。
 この材料のΔSTを計算したところ、0.05eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。その結果、外部発光効率は、比較例1の混合膜と比べて、1.2倍であった。
 実施例4の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000006
 で表される。式(6)では、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。また、芳香族環において、アクセプターのトリアジン誘導体と芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.07eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。その結果、外部発光効率は、比較例1の混合膜と比べて、1.1倍であった。
 実施例5の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000007
 で表される。式(7)では、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。また、芳香族環において、ドナーのカルバゾール誘導体と芳香族環の連結手に最も近い位置にアルキル基が存在している。また、2つの芳香族環において、一方の芳香族環と他方の芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.02eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。その結果、外部発光効率は、比較例1の混合膜と比べて、1.4倍であった。
<実施例6と比較例2>
 実施例6の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000008
 で表される。式(8)では、ドナーのトリアリルアミノ誘導体とアクセプターのトリアジン誘導体が連結している。トリアリルアミノ誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。また、芳香族環において、ドナーのトリアリルアミノ誘導体と芳香族環の連結手に最も近い位置にアルキル基が存在している。また、2つの芳香族環において、一方の芳香族環と他方の芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.05eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。
 比較例2の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000009
 で表される。式(9)では、ドナーのトリアリルアミノ誘導体とアクセプターのトリアジン誘導体が連結している。トリアリルアミノ誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。しかし、アルキル基は存在していない点で、式(9)は式(8)と異なっている。
 この材料のΔSTを計算したところ、0.1eVであった。その他は実施例1と同様に、混合膜を作製し、外部量子収率を測定した。
 実施例6の混合膜の外部発光効率は、比較例2の混合膜の外部発光効率と比較して、1.2倍であった。比較例2の材料と比較して、励起状態での構造の平面化が抑制され、ΔSTが小さくなり、高効率化したと考えられる。
<実施例7と比較例3>
 実施例7の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000010
 で表される。式(10)では、ドナーのフルオレン誘導体とアクセプターのトリアジン誘導体が連結している。トリアジン誘導体には芳香族環が連結している。また、ドナーのフルオレン誘導体において、ドナーのフルオレン誘導体とアクセプターのトリアジン誘導体の連結手に最も近い位置にアルキル基が存在している。また、2つの芳香族環において、一方の芳香族環と他方の芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.04eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。
 比較例2の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000011
 で表される。式(11)では、ドナーのフルオレン誘導体とアクセプターのトリアジン誘導体が連結している。トリアジン誘導体には芳香族環が連結している。しかし、アルキル基は存在していない点で、式(11)は式(10)と異なっている。
 この材料のΔSTを計算したところ、0.1eVであった。その他は実施例1と同様に、混合膜を作製し、外部量子収率を測定した。
 実施例7の混合膜の外部発光効率は、比較例3の混合膜の外部発光効率と比較して、1.2倍であった。比較例3の材料と比較して、励起状態での構造の平面化が抑制され、ΔSTが小さくなり、高効率化したと考えられる。
<実施例8と比較例4>
 実施例8の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000012
 で表される。式(12)では、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体が連結している。トリアジン誘導体には芳香族環が連結している。また、ドナーのカルバゾール誘導体において、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体の連結手に最も近い位置にアルキル基が存在している。また、芳香族環において、アクセプターのトリアジン誘導体と芳香族環の連結手に最も近い位置にアルキル基が存在している。また、2つの芳香族環において、一方の芳香族環と他方の芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.02eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。
 比較例4の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000013
 で表される。式(13)では、ドナーのカルバゾール誘導体とアクセプターのトリアジン誘導体が連結している。トリアジン誘導体には芳香族環が連結している。しかし、アルキル基は存在していない点で、式(13)は式(12)と異なっている。
 この材料のΔSTを計算したところ、0.12eVであった。その他は実施例1と同様に、混合膜を作製し、外部量子収率を測定した。
 実施例8の混合膜の外部発光効率は、比較例4の混合膜の外部発光効率と比較して、1.4倍であった。比較例4の材料と比較して、励起状態での構造の平面化が抑制され、ΔSTが小さくなり、高効率化したと考えられる。
<実施例9と比較例5>
 実施例9の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000014
 で表される。式(14)では、ドナーのカルバゾール誘導体とアクセプターのピリジン誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。また、芳香族環において、ドナーのカルバゾール誘導体と芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.02eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。
 比較例5の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000015
 で表される。式(15)では、ドナーのカルバゾール誘導体とアクセプターのピリジン誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。トリアジン誘導体にも芳香族環が連結している。しかし、アルキル基は存在していない点で、式(15)は式(14)と異なっている。
 この材料のΔSTを計算したところ、0.08eVであった。その他は実施例1と同様に、混合膜を作製し、外部量子収率を測定した。
 実施例9の混合膜の外部発光効率は、比較例5の混合膜の外部発光効率と比較して、1.4倍であった。比較例5の材料と比較して、励起状態での構造変化を抑制する置換基を有する材料を用いることにより、ΔSTが小さくなり、高効率化したと考えられる。
<実施例10と比較例6>
 実施例10の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000016
 で表される。式(16)では、ドナーのカルバゾール誘導体とアクセプターのオキサジアゾール誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。また、芳香族環において、ドナーのカルバゾール誘導体と芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.02eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。
 比較例6の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000017
 で表される。式(17)では、ドナーのカルバゾール誘導体とアクセプターのオキサジアゾール誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。しかし、アルキル基は存在していない点で、式(17)は式(16)と異なっている。
 この材料のΔSTを計算したところ、0.06eVであった。その他は実施例1と同様に、混合膜を作製し、外部量子収率を測定した。
 実施例10の混合膜の外部発光効率は、比較例6の混合膜の外部発光効率と比較して、1.3倍であった。比較例6の材料と比較して、励起状態での構造変化を抑制する置換基を有する材料を用いることにより、ΔSTが小さくなり、高効率化したと考えられる。
<実施例11と比較例7>
 実施例11の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000018
 で表される。式(18)では、ドナーのカルバゾール誘導体とアクセプターのシロール誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。シロール誘導体にも芳香族環が連結している。また、芳香族環において、ドナーのカルバゾール誘導体と芳香族環の連結手に最も近い位置にアルキル基が存在している。
 この材料のΔSTを計算したところ、0.04eVであった。その他は実施例1と同様に混合膜を作製し、外部発光効率を測定した。
 比較例7の発光材料の構造式は
Figure JPOXMLDOC01-appb-C000019
 で表される。式(19)では、ドナーのカルバゾール誘導体とアクセプターのシロール誘導体が連結している。カルバゾール誘導体には芳香族環が連結している。シロール誘導体にも芳香族環が連結している。しかし、アルキル基は存在していない点で、式(19)は式(18)と異なっている。
 この材料のΔSTを計算したところ、0.08eVであった。その他は実施例1と同様に、混合膜を作製し、外部量子収率を測定した。
 実施例10の混合膜の外部発光効率は、比較例6の混合膜の外部発光効率と比較して、1.2倍であった。比較例6の材料と比較して、励起状態での構造変化を抑制する置換基を有する材料を用いることにより、ΔSTが小さくなり、高効率化したと考えられる。
<その他の実施例(1)>
 その他の実施例の高効率発光が得られる発光材料の構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039



 これらのように励起状態での構造変化を抑制する置換基を有する材料を用いることにより、高効率発光が得られる。
 ここまで、構造式で全てのパターンを示していないが、ドナーとして、カルバゾール誘導体、トリアリルアミノ誘導体、フェノキサジン誘導体、フルオレン誘導体、スピロトリフェニルアミン誘導体、ナフタレン誘導体、電子供与性基で置換されたフェニル基のいずれかを用いることができる。また、アクセプターとして、トリアジン誘導体、ピリジン誘導体、オキサジアゾール誘導体、シロール誘導体、ピラジン誘導体、ピリダジン誘導体、電子吸引性基で置換されたフェニル基のいずれかを用いることができる。置換基として、アルキル基、ハロアルキル基、アルコキシ基、アルキルチオ基、アミノ基、フェニル基、アシル基のいずれかを用いることができる。
 これらドナー、アクセプター、置換基を様々なパターンで組合せることができ、
(A)ドナーにおいて、ドナーと芳香族環の連結手に最も近い位置に置換基を有する、
(B)ドナーにおいて、ドナーとアクセプターの連結手に最も近い位置に置換基を有する、
(C)アクセプターにおいて、アクセプターと芳香族環の連結手に最も近い位置に置換基を有する、
(D)アクセプターにおいて、アクセプターとドナーの連結手に最も近い位置に置換基を有する、
(E)芳香族環において、芳香族環とドナーの連結手に最も近い位置に置換基を有する、
(F)芳香族環において、芳香族環とアクセプターの連結手に最も近い位置に置換基を有する、
(G)芳香族環において、一方の芳香族環と他方の芳香族環の連結手に最も近い位置に置換基を有する、
(H)複数の芳香族環において、隣り合う芳香族環が2か所以上で結合されている
のいずれか1つ以上の特徴を有することで、平面構造化が起こりにくくなり、励起状態の構造安定化が起こりにくくなる。また、置換基の数が多いほど立体障害により、平面構造化が起こりにくくなる。同様に、また、置換基の大きさが大きいほど立体障害により、平面構造化が起こりにくくなる。
 式23、式24のような構造の発光材料を用いることにより、塗布法で製膜した際に、ドーパントが表面近傍に局在化させることができ、1回塗布で積層発光層を形成することができる。そのようにすることにより、ドーパントが正孔輸送層に接することがなくなり、正孔輸送層の影響を受けにくくなる。そのため、正孔輸送層の材料選択の幅が広がる。
 また、多色のドーパントを混合させることにより、白色発光が得られる。その場合、1回塗布で積層発光層を形成することにより、高効率化できる。
 式24のような構造とすることにより、ドーパントが表面近傍に局在化するとともに、ドーパントの遷移双極子が発光層表面にほぼ平行にできる。そうすることにより、光取出し効率が大きくなり、全体として発光効率を高くすることができる。
<実施例12と比較例8>
 図1は本発明における有機発光素子の一実施の形態における断面図である。
 基板1はガラス基板である。但し、ガラス基板に限るものではなく、適切な透水性低下保護膜を施したプラスティック基板や金属基板も用いることができる。また、光取出し層を有していてもよい。光取出し層には散乱性を有する層やマイクロレンズを有する層を用いることができる。
 下部電極2は陽極である。ITO,IZOなどの透明電極が用いられる。但し、それらに限られるものではなく、Al,Agなどの積層体やMo,Crや透明電極と光拡散層との組合せなども用いることができる。また、下部電極は陽極に限るものではなく、陰極も用いることができる。その場合はAl、Mo,やAlとLiの積層体やAlNiなどの合金などが用いられる。また、ITO,IZOなどの透明電極を用いてもよい。
 上部電極8は陰極である。Alと電子注入性のLiF、Li20などのアルカリ金属のフッ化物、酸化物などの積層体が用いられる。また、Alとアルカリ金属の共蒸着物も用いられる。またITO,IZOなどの透明電極とMgAg、Liなどの電子注入性電極の積層体を用いることもできる。但し、それらに限られるものではなく、MgAgやAg薄膜単独でも用いることができる。また、ITO,IZOをスパッタ法で形成する際には、スパッタによるダメージを緩和するため、バッファー層を設けることがある。バッファー層には、酸化モリブデン、酸化バナジウムなどの金属酸化物を用いる。上記のように下部電極が陰極となる場合には、上部電極は陽極となる。その場合には、ITO,IZOなどの透明電極が用いられる。また、Ag薄膜などの金属薄膜を用いることができる。ITO,IZOなどの透明電極をスパッタ法で形成する際には、スパッタによるダメージを緩和するため、バッファー層を設けることがある。バッファー層には、酸化モリブデン、酸化バナジウムなどの金属酸化物を用いる。
 正孔注入層3は下部電極2から正孔を注入するための層である。単層もしくは複数層設けてもよい。正孔注入層3としては、PEDOT(ポリ(3、4-エチレンジオキシチオフェン)):PSS(ポリスチレンスルホネート)等の導電性高分子が好ましい。その他にも、ポリピロール系やトリフェニルアミン系のポリマー材料を用いることができる。また、低分子(重量平均分子量10000以下)材料系と組合せてよく用いられる、フタロシアニン類化合物やスターバーストアミン系化合物も適用可能である。
 正孔輸送層4は正孔注入層3から発光層に効率よく正孔を注入するための層である。正孔輸送層としては、フルオレン、カルバゾール、アリールアミンなどの単独あるいは共重合体が用いられる。共重合体としては、チオフェン系、ピロール系を骨格に有する材料でも用いることができる。また、側鎖にフルオレン、カルバゾール、アリールアミン、チオフェン、ピロールなどの骨格を有するポリマーも用いることができる。また、ポリマーに限ることはなく、スターバーストアミン系化合物やアリールアミン系化合物、スチルベン誘導体、ヒドラゾン誘導体、チオフェン誘導体なども用いることができる。また、上記の材料を含むポリマをもちいてもよい。また、これらの材料に限られるものではなく、これらの材料を2種以上併用しても差し支えない。
 発光層5は所望の発光色の発光を得るための層である。発光層5はホスト及びドーパントを含む。ドーパントとして、少なくとも一種類は遅延蛍光を用いた有機発光材料を用いる。ドーパントは1種類だけでもよいが、2種類、3種類を用いてもよい。2種類、3種類を混合して白色は発光させる場合には、発光層5はホスト、ドーパント以外に正孔輸送材料或いは電子輸送材料を含んでいてもよい。また、蛍光材料、燐光発光材料を一部用いてもよい。それらは、発光層中のチャージバランスを向上させるために用いられる。また、発光層はバインダポリマを含んでもよい。
 ホストとして、トリフェニルアミン誘導体、カルバゾール誘導体、フルオレン誘導体またはアリールシラン誘導体などを用いることが好ましい。また、8-キノリノールの金属錯体なども用いることができる。また、ポリカーボネート、ポリスチレン、アクリル樹脂、ポリアミド、ゼラチンなどのバインダポリマも合わせて用いることができる。
 正孔阻止層6は正孔が発光層から電子輸送層に移動するのを防ぐための層である。正孔阻止層の材料としては、例えば、ビス(2-メチル-8-キノリノラト)-4-(フェニルフェノラト)アルミニウム(以下、BAlq)や、トリス(8-キノリノラト)アルミニウム(以下、Alq3)、Tris(2、4、6-trimethyl-3-(pyridin-3-yl)phenyl)borane(以下、3TPYMB)、1、4-Bis(triphenylsilyl)benzene(以下、UGH2)、オキサジアゾール誘導体、トリアゾール誘導体、フラーレン誘導体、フェナントロリン誘導体、キノリン誘導体、ベンズイミダゾール誘導体、トリアジン誘導体等を用いることができる。
 電子輸送層7は電子を、正孔阻止層を介して発光層に輸送するための層である。電子輸送層の材料としては、例えば、ビス(2-メチル-8-キノリノラト)-4-(フェニルフェノラト)アルミニウム(以下、BAlq)や、トリス(8-キノリノラト)アルミニウム(以下、Alq3)、Tris(2、4、6-trimethyl-3-(pyridin-3-yl)phenyl)borane(以下、3TPYMB)、1、4-Bis(triphenylsilyl)benzene(以下、UGH2)、オキサジアゾール誘導体、トリアゾール誘導体、フラーレン誘導体、フェナントロリン誘導体、キノリン誘導体、ベンズイミダゾール誘導体、トリアジン誘導体等を用いることができる。
 本実施例では、各層に以下のような材料を用いた。
 基板1にはガラス基板を用い、下部電極2には、ITOを用いた。正孔注入層3には、PEDOT(ポリ(3、4-エチレンジオキシチオフェン)):PSS(ポリスチレンスルホネート)を用いた。正孔輸送層4には、トリフェニルアミン系ポリマを用いた。
 発光層5のホストには、mCP(1,3―ジカルバゾリルベンゼン)を用いた。また、ドーパントには以下の式(40)で表される材料を用いた。
Figure JPOXMLDOC01-appb-C000040
 発光層5において、ドーパントはホストに対して、重量比で1%である。発光層5を形成するための塗液は溶媒にトルエンを用い、溶媒に対して、固形分の重量比が1%となるように作製した。この塗液を用い、スピンコート法を用いて、発光層5を形成した。
 正孔阻止層6には、3TPYMBを用いた。電子輸送層7には、Alq3を用いた。
上部電極8には、LiF/Alの積層構造を用いた。
 実施例12の下部電極2に+電位を上部電極8に-電位を印加したところ、発光が得られた。また、輝度100cd/m2での電流効率を測定した。
 比較例8では、ドーパントに以下の式(41)の材料を用いた。それ以外は、実施例12と同様に有機発光素子を作製した。
Figure JPOXMLDOC01-appb-C000041
 比較例8の下部電極2に+電位を上部電極9に-電位を印加したところ、発光が得られた。また、輝度100cd/m2での電流効率を測定したところ、実施例12の有機発光素子の電流効率は比較例8の有機発光素子の1.3倍であった。
<その他の実施例(2)>
 これまで式(1)に基づき説明してきたが、これに限らず、
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 のような構造でも良い。
 D1、D2はドナー、A1、A2はアクセプター、Xは連結部、Ar1-8は芳香族環である。
1…基板、2…下部電極、3…正孔注入層、4…正孔輸送層、5…発光層、6…正孔阻止層、7…電子輸送層、8…上部電極、

Claims (10)

  1.  ドナーとアクセプターを備えた有機発光材料であって、
     前記ドナーと前記アクセプターは連結しており、
     前記ドナーまたは前記アクセプターに芳香族環が連結しており、
     前記ドナー、アクセプターまたは芳香族環において、連結手に最も近い位置に置換基を有する有機発光材料。
  2.  請求項1に記載の有機発光材料であって、
     前記ドナーはカルバゾール誘導体、トリアリルアミノ誘導体、フェノキサジン誘導体、フルオレン誘導体、スピロトリフェニルアミン誘導体、ナフタレン誘導体のいずれかであり、
     前記アクセプターはトリアジン誘導体、ピリジン誘導体、オキサジアゾール誘導体、シロール誘導体、ピラジン誘導体、ピリダジン誘導体、電子吸引性基で置換されたフェニル基のいずれかであることを特徴とする有機発光材料。
  3.  請求項1または2に記載の有機発光材料であって、
     前記置換基がアルキル基、ハロアルキル基、アルコキシ基、アルキルチオ基、アミノ基、フェニル基、アシル基のいずれかであることを特徴とする有機発光材料。
  4.  請求項1乃至3のいずれかに記載の有機発光材料であって、
     前記連結手は前記ドナーと前記芳香族環の連結手であることを特徴とする有機発光材料。
  5.  請求項1乃至3のいずれかに記載の有機発光材料であって、
     前記連結手は前記アクセプターと前記芳香族環の連結手であることを特徴とする有機発光材料。
  6.  請求項1乃至3のいずれかに記載の有機発光材料であって、
     前記連結手は前記ドナーと前記アクセプターの連結手であることを特徴とする有機発光材料。
  7.  請求項1乃至3のいずれかに記載の有機発光材料であって、
     前記ドナーまたは前記アクセプターに複数の芳香族環が連結しており、
     前記連結手は前記複数の芳香族環の間の連結手であることを特徴とする有機発光材料。
  8.  ドナーとアクセプターを備えた有機発光材料であって、
     前記ドナーと前記アクセプターは連結しており、
     前記ドナーまたは前記アクセプターに複数の芳香族環が連結しており、
     前記複数の芳香族環において、隣り合う芳香族環が2か所以上で結合されていることを特徴とする有機発光材料。
  9.  請求項8に記載の有機発光材料であって、
     前記ドナーはカルバゾール誘導体、トリアリルアミノ誘導体、フェノキサジン誘導体、フルオレン誘導体、スピロトリフェニルアミン誘導体のいずれかであり、
     前記アクセプターはトリアジン誘導体、ピリジン誘導体、オキサジアゾール誘導体、シロール誘導体、ピラジン誘導体、ピリダジン誘導体、電子吸引性基で置換されたフェニル基のいずれかであることを特徴とする有機発光材料。
  10.  請求項1乃至9のいずれかに記載の有機発光材料を用いて製造されたことを特徴とする有機発光素子。
PCT/JP2013/054652 2013-02-25 2013-02-25 有機発光材料及び有機発光素子 WO2014128945A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/054652 WO2014128945A1 (ja) 2013-02-25 2013-02-25 有機発光材料及び有機発光素子
JP2015501208A JPWO2014128945A1 (ja) 2013-02-25 2013-02-25 有機発光材料及び有機発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054652 WO2014128945A1 (ja) 2013-02-25 2013-02-25 有機発光材料及び有機発光素子

Publications (1)

Publication Number Publication Date
WO2014128945A1 true WO2014128945A1 (ja) 2014-08-28

Family

ID=51390768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054652 WO2014128945A1 (ja) 2013-02-25 2013-02-25 有機発光材料及び有機発光素子

Country Status (2)

Country Link
JP (1) JPWO2014128945A1 (ja)
WO (1) WO2014128945A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129113A (ja) * 2013-11-14 2015-07-16 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料、及びデバイス
CN106928436A (zh) * 2017-03-28 2017-07-07 中国科学院长春应用化学研究所 一种主链含砜单元的聚合物及其制备方法和应用
KR20170094358A (ko) * 2014-12-12 2017-08-17 메르크 파텐트 게엠베하 가용성 기를 갖는 유기 화합물
KR20170105557A (ko) * 2015-01-20 2017-09-19 시노라 게엠베하 유기 분자, 특히 광전자 구성성분에 사용하기 위한 유기 분자
CN108148088A (zh) * 2016-11-21 2018-06-12 环球展览公司 有机电致发光材料和装置
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN110818642A (zh) * 2018-12-10 2020-02-21 广州华睿光电材料有限公司 一种杂环芳胺化合物及其在有机电子器件上的应用
US10590080B2 (en) 2013-06-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2020059862A1 (ja) * 2018-09-21 2020-03-26 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10734586B2 (en) 2016-03-30 2020-08-04 Samsung Display Co., Ltd. Organic light emitting device
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN113710770A (zh) * 2019-04-25 2021-11-26 日铁化学材料株式会社 有机电场发光元件
US20220020932A1 (en) * 2018-11-15 2022-01-20 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11239439B2 (en) 2015-03-23 2022-02-01 Hodogaya Chemical Co., Ltd. Material for organic electroluminescent device, light-emitting material, and organic electroluminescent device
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
EP3967685A4 (en) * 2019-04-25 2023-01-11 NIPPON STEEL Chemical & Material Co., Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11706977B2 (en) 2018-01-11 2023-07-18 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590827B (zh) * 2019-09-30 2023-02-03 武汉天马微电子有限公司 一种有机电致发光化合物及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292860A (ja) * 1998-04-02 1999-10-26 Mitsubishi Chemical Corp トリアミン系化合物及びその製造方法
WO2011070963A1 (ja) * 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565743B2 (ja) * 2011-07-15 2014-08-06 国立大学法人九州大学 有機エレクトロルミネッセンス素子およびそれに用いる化合物
JP6249150B2 (ja) * 2013-01-23 2017-12-20 株式会社Kyulux 発光材料およびそれを用いた有機発光素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292860A (ja) * 1998-04-02 1999-10-26 Mitsubishi Chemical Corp トリアミン系化合物及びその製造方法
WO2011070963A1 (ja) * 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590080B2 (en) 2013-06-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US11059781B2 (en) 2013-06-26 2021-07-13 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US10851055B2 (en) 2013-06-26 2020-12-01 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US11739061B2 (en) 2013-06-26 2023-08-29 Idemitsu Kosan Co., Ltd Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US12077500B2 (en) 2013-06-26 2024-09-03 Idemitsu Kosan Co., Ltd Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
JP2015129113A (ja) * 2013-11-14 2015-07-16 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料、及びデバイス
KR102493553B1 (ko) * 2014-12-12 2023-01-30 메르크 파텐트 게엠베하 가용성 기를 갖는 유기 화합물
JP2018501354A (ja) * 2014-12-12 2018-01-18 メルク パテント ゲーエムベーハー 溶解性基を有する有機化合物
US10683453B2 (en) 2014-12-12 2020-06-16 Merck Patent Gmbh Organic compounds with soluble groups
KR20170094358A (ko) * 2014-12-12 2017-08-17 메르크 파텐트 게엠베하 가용성 기를 갖는 유기 화합물
KR20170105557A (ko) * 2015-01-20 2017-09-19 시노라 게엠베하 유기 분자, 특히 광전자 구성성분에 사용하기 위한 유기 분자
KR102147712B1 (ko) * 2015-01-20 2020-08-25 시노라 게엠베하 유기 분자, 특히 광전자 구성성분에 사용하기 위한 유기 분자
US10669473B2 (en) 2015-01-20 2020-06-02 Cynora Gmbh Organic molecules for use in optoelectronic components
US11239439B2 (en) 2015-03-23 2022-02-01 Hodogaya Chemical Co., Ltd. Material for organic electroluminescent device, light-emitting material, and organic electroluminescent device
EP3275969B1 (en) * 2015-03-23 2023-10-04 Hodogaya Chemical Co., Ltd. Material for organic electroluminescent device, light-emitting material, and organic electroluminescent device
US10734586B2 (en) 2016-03-30 2020-08-04 Samsung Display Co., Ltd. Organic light emitting device
US11925111B2 (en) 2016-03-30 2024-03-05 Samsung Display Co., Ltd. Organic light emitting device
US11145819B2 (en) 2016-03-30 2021-10-12 Samsung Display Co., Ltd. Organic light emitting device
JP7241944B2 (ja) 2016-03-30 2023-03-17 三星ディスプレイ株式會社 有機電界発光素子
JP2022081534A (ja) * 2016-03-30 2022-05-31 三星ディスプレイ株式會社 有機電界発光素子
CN108148088A (zh) * 2016-11-21 2018-06-12 环球展览公司 有机电致发光材料和装置
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN106928436B (zh) * 2017-03-28 2019-06-21 中国科学院长春应用化学研究所 一种主链含砜单元的聚合物及其制备方法和应用
CN106928436A (zh) * 2017-03-28 2017-07-07 中国科学院长春应用化学研究所 一种主链含砜单元的聚合物及其制备方法和应用
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11706977B2 (en) 2018-01-11 2023-07-18 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
WO2020059862A1 (ja) * 2018-09-21 2020-03-26 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
US11944009B2 (en) 2018-09-21 2024-03-26 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US20220020932A1 (en) * 2018-11-15 2022-01-20 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN110818642B (zh) * 2018-12-10 2021-09-10 广州华睿光电材料有限公司 一种杂环芳胺化合物及其在有机电子器件上的应用
CN110818642A (zh) * 2018-12-10 2020-02-21 广州华睿光电材料有限公司 一种杂环芳胺化合物及其在有机电子器件上的应用
EP3960835A4 (en) * 2019-04-25 2023-01-18 NIPPON STEEL Chemical & Material Co., Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT
CN113710770A (zh) * 2019-04-25 2021-11-26 日铁化学材料株式会社 有机电场发光元件
EP3967685A4 (en) * 2019-04-25 2023-01-11 NIPPON STEEL Chemical & Material Co., Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT

Also Published As

Publication number Publication date
JPWO2014128945A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2014128945A1 (ja) 有機発光材料及び有機発光素子
JP7060565B2 (ja) 遅延蛍光を示す有機発光化合物
JP6496392B2 (ja) 電子輸送化合物
KR102181998B1 (ko) 지연 형광을 갖는 유기 전계발광 디바이스
KR102191957B1 (ko) 유기 일렉트로루미네선스 소자
KR102218567B1 (ko) 인광성 화합물
JP5662402B2 (ja) 三重項状態への直接注入を利用するoled
KR100904070B1 (ko) 유기광전소자용 화합물 및 이를 이용한 유기광전소자
JP6357422B2 (ja) 有機電界発光素子
Jeong et al. Recent progress in the use of fluorescent and phosphorescent organic compounds for organic light-emitting diode lighting
KR102051151B1 (ko) 카르바졸-이미다졸-카르벤 리간드를 함유하는 헤테로렙틱 이리듐 착물 및 발광 디바이스에서의 이의 적용
KR101877327B1 (ko) 유기 전계 발광 소자
JP2013536196A (ja) Oledのためのビカルバゾール化合物
KR102454040B1 (ko) 지연 형광 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치
KR102440238B1 (ko) 공간 전하 이동 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치
KR102413966B1 (ko) 유기 발광 소자
TW201704209A (zh) 有機電致發光元件
KR20090008736A (ko) 아자보라페난스린 또는 옥사보라페난스린 유도체 및 이를이용한 유기전자소자
KR20180122617A (ko) 유기 전계 발광 소자
JP5624953B2 (ja) 有機発光層材料,有機発光層材料を用いた有機発光層形成用塗液,有機発光層形成用塗液を用いた有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法
KR20190128208A (ko) 유기 전계 발광 소자
KR101405725B1 (ko) 유기 발광 소자 및 이의 제조방법
TW202003504A (zh) 有機電場發光元件
WO2015092840A1 (ja) 有機発光素子
KR20180122645A (ko) 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875631

Country of ref document: EP

Kind code of ref document: A1