Nothing Special   »   [go: up one dir, main page]

WO2014123025A1 - Method for producing biaxially oriented film, biaxially oriented film, and laminated film - Google Patents

Method for producing biaxially oriented film, biaxially oriented film, and laminated film Download PDF

Info

Publication number
WO2014123025A1
WO2014123025A1 PCT/JP2014/051742 JP2014051742W WO2014123025A1 WO 2014123025 A1 WO2014123025 A1 WO 2014123025A1 JP 2014051742 W JP2014051742 W JP 2014051742W WO 2014123025 A1 WO2014123025 A1 WO 2014123025A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
biaxially stretched
film
stretched film
mxd6
Prior art date
Application number
PCT/JP2014/051742
Other languages
French (fr)
Japanese (ja)
Inventor
真男 高重
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Publication of WO2014123025A1 publication Critical patent/WO2014123025A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a method for producing a biaxially stretched film, a biaxially stretched film, and a laminate film.
  • the object of the present invention is to provide a method for producing a biaxially stretched film, a biaxially stretched film, and a laminate film that are excellent in impact strength and tearability.
  • the method for producing a biaxially stretched film of the present invention is a method for producing a biaxially stretched film obtained by biaxially stretching nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6).
  • Ny6 and the melting point are 233 ° C. or higher and 238 ° C. with respect to 100% by mass of the raw material melt-kneaded at a mixing ratio of 40% by mass to 85% by mass and MXD6 of 15% by mass to 60% by mass.
  • the biaxial stretching step is preferably biaxially stretched by a tubular simultaneous biaxial stretching method.
  • the biaxially stretched film of the present invention is produced by the method for producing a biaxially stretched film of the present invention. And in this invention, it is preferable that impact strength is 50000 J / m or more. In the present invention, the Elmendorf tear strength is preferably 65 N / cm or less.
  • the laminate film of the present invention is characterized by having a laminated structure having a layer of the biaxially stretched film of the present invention.
  • a resin composition having a predetermined composition comprising Ny6 and MXD6 is biaxially stretched under a condition of a predetermined maximum strain rate, so that it has excellent tearability and high strength, and a predetermined heat history product is added. Therefore, it is possible to provide an excellent biaxially stretched film that does not cause an intralayer peeling phenomenon.
  • the biaxially stretched film according to this embodiment is obtained by biaxially stretching a polyamide resin composition composed of Ny6 and MXD6.
  • a simultaneous biaxial stretching method or a sequential biaxial stretching method can be used, but in order to keep the maximum strain rate during stretching within the range of the present invention, a tubular simultaneous biaxial stretching is used. It is particularly preferred to use the method.
  • the polyamide resin composition has a melting point of MXD6 of 100% by mass of virgin raw material melt-kneaded in a ratio of Ny6 and MXD6 of 40% by mass to 85% by mass: 15% by mass to 60% by mass. It is obtained by adding a heat history product of 233 ° C. or more and 238 ° C. or less at 5% by mass or more and 40% by mass or less.
  • the chemical formula of Ny6 is shown in the following chemical formula 1
  • the chemical formula of MXD6 is shown in the chemical formula 2 below.
  • the above-mentioned virgin raw material usually means a raw material that is not a mixed raw material having a history in which Ny6 and MXD6 are mixed and melt-kneaded. For example, even if Ny6 and MXD6 have a history of being melt-kneaded independently (for example, recycled products), they are virgin raw materials when they are not mixed and melt-kneaded.
  • the mixing ratio of Ny6 and MXD6 in the virgin raw material is that Ny6 is 40% by mass to 85% by mass and MXD6 is 15% by mass to 60% by mass from the viewpoint of impact strength and easy tearability of the biaxially stretched film. Is preferred.
  • MXD6 in a virgin raw material is less than 15 mass%, there exists a possibility that the effect of easy tearing may not fully be acquired.
  • MXD6 is more than 40% by mass, the impact strength is greatly lowered and the practicality becomes poor.
  • the heat history product is a blended product of Ny6 and MXD6, which has passed through the extruder once.
  • the melting point of MXD6 is 233 ° C. or more and 238 ° C. or less, preferably by a differential scanning calorimeter (DSC), preferably What was hold
  • the heat history product may be a product obtained by recycling the polyamide layer obtained by the present embodiment. Since such a heat history product functions as a compatibilizing agent having affinity for both Ny6 and MXD6, the occurrence of in-layer peeling can be prevented by adding such a heat history product to the polyamide resin mixture.
  • in-layer peeling refers to a phenomenon in which peeling occurs in a polyamide layer when a biaxially stretched film is laminated with an appropriate sealant film and then the seal portion is opened.
  • the mechanism of this delamination is not necessarily clear, but it is considered that Ny6 and MXD6 are oriented in layers in the polyamide layer, and delamination occurs at the interface.
  • the melting point of MXD6 in the heat history product composed of Ny6 and MXD6 refers to the melting point measured in the state before melt-kneading with the virgin raw material.
  • the melting point of MXD6 in the heat history product is less than 233 ° C., the impact strength of the polyamide layer decreases.
  • the melting point of MXD6 in the heat history product is 238 ° C. or higher, the effect of preventing in-layer peeling is reduced.
  • the content of the heat history product is 5% by mass or more and 40% by mass or less based on 100% by mass of the total amount of the virgin raw material.
  • the heat history product is less than 5% by mass, when it is used under severe conditions such as cold forming after being formed into a laminate film, it is easy to cause in-layer peeling in the polyamide layer.
  • the heat history product exceeds 40% by mass, the impact strength of the polyamide layer decreases.
  • the blending ratio of MXD6 in the heat history product is less than 15% by mass (the blending ratio of Ny6 is more than 85% by mass), the effect of preventing in-layer peeling of the polyamide layer tends to be low.
  • the mixing ratio of MXD6 in the heat history product exceeds 40% by mass (the mixing ratio of Ny6 is less than 60% by mass), the impact strength of the polyamide layer tends to decrease.
  • additives can be appropriately added to the polyamide layer.
  • additives include anti-blocking agents (such as inorganic fillers), water repellents (such as ethylene bis stearates), and lubricants (such as calcium stearate).
  • the biaxially stretched film of the present invention can be applied to various uses by laminating other laminate base materials.
  • the laminate substrate include an aluminum layer, a film including the aluminum layer, and a sealant layer.
  • the total thickness of the biaxially stretched film layer and the other laminate base material is preferably 200 ⁇ m or less. When the total thickness exceeds 200 ⁇ m, it is difficult to obtain excellent tearability.
  • an aluminum foil made of a soft material of pure aluminum or an aluminum-iron alloy can be used as the aluminum layer used in the laminate packaging material of this embodiment.
  • the aluminum foil is subjected to a pretreatment such as an undercoat treatment or a corona discharge treatment with a silane coupling agent or a titanium coupling agent, and then laminated on the ONy film.
  • the thickness of such an aluminum layer is preferably 5 ⁇ m or more and 50 ⁇ m or less. Thereby, oxygen, moisture, etc. can be prevented from permeating through the laminate packaging material.
  • the thickness of the aluminum layer is less than 5 ⁇ m, there is a possibility that oxygen, moisture, etc. may permeate through the laminate packaging material.
  • the thickness of the aluminum layer exceeds 50 ⁇ m, it may be difficult to obtain easy tearability.
  • various functional layers such as an antistatic layer, a printed layer, a barrier layer, and a strength reinforcing layer may be laminated.
  • the biaxially stretched film as described above can be suitably produced by a simultaneous biaxial stretching method using a tubular method. Specifically, it can be produced as follows. First, in the raw film manufacturing process, Ny6 is 40% by mass to 85% by mass, MXD6 is melt-kneaded at a blending ratio of 15% by mass to 60% by mass, and Ny6 is 40% by mass to 85% by mass. Hereinafter, MXD6 is blended in an amount of 15% by mass to 60% by mass and a heat history product having a melting point of MXD6 of 233 ° C. or more and 238 ° C. or less is 5% by mass to 40% by mass with respect to 100% by mass of the virgin raw material.
  • the raw fabric bubble is inserted between a pair of nip rolls, and then heated by a heater from the outside through a stretching furnace while gas is being injected into the air bubble. Air is blown from the outside to expand the raw fabric bubble, and taken up by a pair of downstream nip rolls, thereby performing simultaneous biaxial stretching in the MD direction and TD direction by the tubular method to form a stretched bubble.
  • the maximum strain rate is 2.5 sec ⁇ 1 or more in both the MD direction and the TD direction.
  • the maximum strain rate is preferably 3sec -1 or 15 sec -1 or less.
  • the maximum strain rate is calculated by calculating the rate of change in the MD direction and the TD direction at each position from the start of stretching to the end of stretching of the original fabric bubble, and indicates the maximum value.
  • the maximum strain rate can be controlled, for example, by adjusting the discharge amount when the melt is melt-extruded from the annular die, and the size (diameter and length) of the annular die and the drawing furnace.
  • Such a maximum strain rate can be specifically obtained by the following method. First, a film sample in the middle of stretching is collected. Then, a change in the folding diameter (width) of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the folding diameter (width) of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance.
  • a change in the thickness of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the thickness of the sample is created.
  • the time from the start of stretching can be calculated from the moving distance.
  • the maximum strain rate in the MD direction and the TD direction can be obtained by obtaining the slope of the portion where the slope of the curve is maximum. It should be noted that when either the MD direction or the TD direction becomes slower than 2.5 sec ⁇ 1 , the maximum strain rate decreases the impact strength (for example, decreases to less than 50000 J / m), and easily tears and linearly cuts. This causes the disadvantage of lowering.
  • the stretched film is put in a tenter type heat treatment furnace, and the biaxially stretched film of this embodiment is obtained by carrying out a heat setting process of heat setting at 160 to 215 ° C. Obtainable.
  • the obtained biaxially stretched film has an impact strength of 50,000 J / m or more, particularly 53000 J / m or more, and an Elmendorf tear strength of 65 N / cm or less, particularly 63 N / cm or less.
  • the melt of the polyamide resin composition having a predetermined composition composed of Ny6 and MXD6 is biaxially stretched under the condition of a predetermined maximum strain rate, so that it is excellent in easy tearing and impact strength.
  • a predetermined heat history product is added, an excellent biaxially stretched film that does not cause an in-layer peeling phenomenon can be provided.
  • the present invention is not limited to this. That is, the present invention has been described primarily with reference to specific embodiments, but with respect to the above-described embodiments without departing from the scope of the technical idea and object of the present invention, the material, quantity, and other details. In this configuration, those skilled in the art can make various modifications. Accordingly, the description of the materials, layer structures, and the like disclosed above is exemplary for easy understanding of the present invention, and does not limit the present invention. Descriptions with names excluding some or all of the limitations are included in the present invention. For example, in this embodiment, the tubular method is adopted as the simultaneous biaxial stretching method, but a tenter method may be used. Moreover, not only simultaneous biaxial stretching but it is good also as sequential biaxial stretching.
  • Example 1 To 100% by mass of virgin raw material with 70% by mass of Ny6 and 30% by mass of MXD6, 25% by mass of a heat history product having a melting point of MXD6 of 236 ° C was added, and after melt extrusion at 270 ° C, The raw film was prepared by cooling.
  • the film was heat-set at 210 ° C. with a heat treatment apparatus to produce a biaxially stretched film having a thickness of 15 ⁇ m.
  • the obtained biaxially stretched film had good stretch moldability and good thickness accuracy.
  • the polypropylene-type sealant film was laminated
  • the peel strength is about 7 N / 15 mm width, but suddenly decreases to about 1 to 2 N / 15 mm width in the middle of the peel test, it can be judged that peeling within the layer has occurred. . And the thing which did not show the behavior of peeling in a layer inside a biaxially stretched film was determined as "A”, and the thing which showed the behavior of peeling in a layer was determined as "B".
  • the tear strength was measured with a biaxially stretched film not laminated with a polypropylene sealant film. Based on the Elmendorf tear strength test (JISK 7128), the tear strength in the MD direction and the TD direction of the biaxially stretched film was measured. The tear strength of 70 N / cm or less was evaluated as “A”, and 71 N / cm or more was evaluated as “B”.
  • the impact strength (J / m) of the biaxially stretched film was measured using a film impact tester (manufactured by Toyo Seiki, 30 Kg-cm 1/2 inch hemispherical head). The measurement results were evaluated according to the following criteria. A: 50000 J / m or more B: Less than 50000 J / m
  • Example 2 Example 1 except that the heat history product of Example 1, the thickness of the biaxially stretched film, the conditions of the tubular biaxial stretching, and the temperature of heat setting in the tenter thermal test apparatus were changed as shown in Table 1 and below. In the same manner as in Example 1, a biaxially stretched film was obtained. And it evaluated similarly to Example 1.
  • FIG. ⁇ History product 15% by mass of heat history product with MXD6 melting point of 237 ° C. added to 100% by mass of virgin raw material ⁇
  • Heat setting temperature 213 °C
  • Example 3 Except for changing the blending ratio of the virgin raw material and the heat history product of Example 1, the conditions of tubular biaxial stretching, and the temperature of heat setting in the tenter thermal test apparatus as shown in Table 1 and below, the same as Example 1 Thus, a biaxially stretched film was obtained. And it evaluated similarly to Example 1.
  • FIG. ⁇ Virgin raw materials: Ny6 75% by mass, MXD6 25% by mass
  • History product 15% by mass of heat history product with MXD6 melting point of 237 ° C. added to 100% by mass of virgin raw material
  • Stretch ratio MD / TD 3.3 / 3.3 Maximum strain rate: MD direction 7.5 sec ⁇ 1 , TD direction 6.7 sec ⁇ 1 ⁇ Heat setting temperature: 213 °C
  • Example 4 Except for changing the blending ratio of the virgin raw material and the heat history product of Example 1, the conditions of tubular biaxial stretching, and the temperature of heat setting in the tenter thermal test apparatus as shown in Table 1 and below, the same as Example 1 Thus, a biaxially stretched film was obtained. And it evaluated similarly to Example 1.
  • FIG. ⁇ History product 15% by mass of heat history product with MXD6 melting point of 237 ° C. added to 100% by mass of virgin raw material ⁇
  • Stretch ratio MD / TD 3.5 / 3.5 • The maximum strain rate: MD direction 9.0sec -1, TD direction 8.2sec -1 ⁇ Heat setting temperature: 213 °C
  • Example 5 A biaxially stretched film was obtained in the same manner as in Example 1 except that the blending ratio of the virgin raw material and the heat history product of Example 1 and the conditions of tubular biaxial stretching were changed as shown in Table 1 and below. It was. And it evaluated similarly to Example 1.
  • FIG. ⁇ Virgin raw materials: Ny6 72% by mass, MXD6 28% by mass Thermal history products: For virgin material 100 wt%, the thermal history article 20 mass% additives, maximum strain rate: MD direction 2.8 sec -1, TD direction 2.5sec -1
  • Example 1 A biaxially stretched film was obtained in the same manner as in Example 1 except that the conditions of the tubular biaxial stretching of Example 1 were changed as shown in Table 1 and the following. And it evaluated similarly to Example 1.
  • Example 2 instead of the tubular biaxial stretching of Example 1, the film was stretched simultaneously in the longitudinal and lateral directions under the following conditions by the simultaneous biaxial stretching tenter method, and then heat-set in the same manner as in Example 1 to obtain a stretched film. It was. And it evaluated similarly to Example 1.
  • Example 3 instead of the tubular biaxial stretching of Example 1, after sequentially stretching in the longitudinal and lateral directions under the following conditions by a sequential biaxial stretching tenter method, the film was heat-fixed in the same manner as in Example 1 to determine the thickness dimension. A stretched film of 25 ⁇ m was obtained. And it evaluated similarly to Example 1.
  • FIG. ⁇ Thickness dimension 25 ⁇ m ⁇
  • Example 4 instead of the tubular biaxial stretching of Example 1, the film was sequentially stretched in the longitudinal and lateral directions under the following conditions by a sequential biaxial stretching tenter method, and then thermally fixed in the same manner as in Example 1 to have a thickness of 15 ⁇ m. A stretched film was obtained. And it evaluated similarly to Example 1.
  • the present invention can be used as a method for producing a biaxially stretched film having excellent impact strength and easy tearability, a biaxially stretched film, and a laminate film in food and pharmaceutical fields, industrial fields, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

In the present invention, 5-40 mass% inclusive of a thermal history article comprising Ny6 and MXD6 having a melting point of 233-238°C inclusive is added for every 100 mass% of a starting material resulting from melting and mixing at a proportioning ratio of 40-85 mass% inclusive of Ny6 and 15-60 mass% inclusive of MXD6, and then the result is subjected to melt extrusion, forming an original film. The original film is biaxially oriented in a manner such that the greatest strain rate in both an MD direction and TD direction is at least 2.5 sec-1, and then thermosetting is performed, obtaining a biaxially oriented film having an impact strength of at least 50000 J/m and an Elmendorf tear strength of no greater than 65 N/cm.

Description

二軸延伸フィルムの製造方法、二軸延伸フィルム、および、ラミネートフィルムBiaxially stretched film manufacturing method, biaxially stretched film, and laminate film
 本発明は、二軸延伸フィルムの製造方法、二軸延伸フィルム、および、ラミネートフィルムに関する。 The present invention relates to a method for producing a biaxially stretched film, a biaxially stretched film, and a laminate film.
 食品や医薬分野、電子部品などの工業用分野などにおいて、包材に易裂性を付与する技術に対する要求特性が高くなっている。特に、レトルト食品用包材や流動食用包材などの高熱処理を施す包材に対しても易裂性が望まれている。このような包材として、熱履歴品を所定量添加することで、易裂性を付与するとともに、フィルム面内での層内剥離を防止する構成が採られている(例えば、特許文献1参照)。
 特許文献1に記載の易裂性フィルムは、原料であるナイロン6(以後、Ny6ともいう)と、メタキシリレンアジパミド(以後、MXD6ともいう)との配合比を規定するとともに、これらの熱履歴品を所定量添加することで、易裂性を付与するとともに、フィルム面内での層内剥離を防止している。
In the fields of food and medicine, industrial fields such as electronic parts, and the like, the required characteristics for technologies that impart easy tearability to packaging materials are increasing. In particular, easy tearability is desired for packaging materials subjected to high heat treatment such as packaging materials for retort foods and packaging materials for liquid foods. As such a wrapping material, a configuration is adopted in which a predetermined amount of a heat history product is added to impart easy tearability and prevent delamination within the film plane (see, for example, Patent Document 1). ).
The easily tearable film described in Patent Document 1 defines the compounding ratio of nylon 6 (hereinafter also referred to as Ny6) which is a raw material and metaxylylene adipamide (hereinafter also referred to as MXD6). By adding a predetermined amount of the heat history product, easy tearability is imparted and in-layer peeling is prevented in the film plane.
特開2012-81676号公報JP 2012-81676 A
 しかしながら、近年、レトルト食品用包材や流動食用包材などの高熱処理を施す包材に対して、高い衝撃強度を保持しつつ、かつ、易裂性を有する、という相反する機能が要求されてきており、さらなる改善が望まれている。 However, in recent years, a contradictory function of maintaining high impact strength and being easily tearable has been required for packaging materials subjected to high heat treatment, such as retort food packaging materials and liquid food packaging materials. Therefore, further improvement is desired.
 本発明では、衝撃強度および易裂性に優れた二軸延伸フィルムの製造方法、二軸延伸フィルム、および、ラミネートフィルムを提供することを目的とする。 The object of the present invention is to provide a method for producing a biaxially stretched film, a biaxially stretched film, and a laminate film that are excellent in impact strength and tearability.
 本発明の二軸延伸フィルムの製造方法は、ナイロン6(以後、Ny6ともいう)およびメタキシリレンアジパミド(以後、MXD6ともいう)を二軸延伸してなる二軸延伸フィルムの製造方法であって、前記Ny6が40質量%以上85質量%以下、MXD6が15質量%以上60質量%以下の配合比で溶融混練された原料100質量%に対して、Ny6および融点が233℃以上238℃以下のMXD6からなる熱履歴品を5質量%以上40質量%以下で添加した後、溶融押出して原反フィルムを成形する原反フィルム製造工程と、前記原反フィルムを、MD方向およびTD方向の最大歪み速度がいずれも2.5sec-1以上で二軸延伸する二軸延伸工程と、を実施することを特徴とする。 The method for producing a biaxially stretched film of the present invention is a method for producing a biaxially stretched film obtained by biaxially stretching nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6). The Ny6 and the melting point are 233 ° C. or higher and 238 ° C. with respect to 100% by mass of the raw material melt-kneaded at a mixing ratio of 40% by mass to 85% by mass and MXD6 of 15% by mass to 60% by mass. After adding a heat history product consisting of the following MXD6 at 5% by mass or more and 40% by mass or less, an original film production process for forming an original film by melt extrusion, and the original film in MD and TD directions And a biaxial stretching step in which biaxial stretching is performed at a maximum strain rate of 2.5 sec −1 or more.
 そして、本発明では、前記二軸延伸工程後に、160℃以上215℃以下で熱固定する熱固定工程を実施する構成とすることが好ましい。
 また、本発明では、前記二軸延伸工程は、チューブラー式同時二軸延伸方法により二軸延伸する構成とすることが好ましい。
And in this invention, it is preferable to set it as the structure which implements the heat setting process of heat-setting at 160 degreeC or more and 215 degrees C or less after the said biaxial stretching process.
In the present invention, the biaxial stretching step is preferably biaxially stretched by a tubular simultaneous biaxial stretching method.
 本発明の二軸延伸フィルムは、本発明の二軸延伸フィルムの製造方法により製造されたことを特徴とする。
 そして、本発明では、衝撃強度が50000J/m以上であることが好ましい。
 また、本発明では、エレメンドルフ引裂強度が65N/cm以下であることが好ましい。
The biaxially stretched film of the present invention is produced by the method for producing a biaxially stretched film of the present invention.
And in this invention, it is preferable that impact strength is 50000 J / m or more.
In the present invention, the Elmendorf tear strength is preferably 65 N / cm or less.
 本発明のラミネートフィルムは、本発明の二軸延伸フィルムの層を有する積層構造であることを特徴とする。 The laminate film of the present invention is characterized by having a laminated structure having a layer of the biaxially stretched film of the present invention.
 本発明によれば、Ny6およびMXD6からなる所定の配合の樹脂組成物を所定の最大歪み速度の条件で二軸延伸するので、易裂性や高強度に優れ、かつ所定の熱履歴品を添加するので層内剥離現象も生じない優れた二軸延伸フィルムを提供できる。 According to the present invention, a resin composition having a predetermined composition comprising Ny6 and MXD6 is biaxially stretched under a condition of a predetermined maximum strain rate, so that it has excellent tearability and high strength, and a predetermined heat history product is added. Therefore, it is possible to provide an excellent biaxially stretched film that does not cause an intralayer peeling phenomenon.
 以下、本発明を実施するための最良の形態について詳述する。
[二軸延伸フィルムの構成]
 本実施形態に係る二軸延伸フィルムは、Ny6およびMXD6からなるポリアミド樹脂組成物を二軸延伸することで得られる。ここで、二軸延伸は、同時二軸延伸法や逐次二軸延伸法を用いることができるが、延伸する際の最大歪み速度を本発明範囲内にするために、チューブラー式同時二軸延伸法を用いることが特に好ましい。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
[Configuration of biaxially stretched film]
The biaxially stretched film according to this embodiment is obtained by biaxially stretching a polyamide resin composition composed of Ny6 and MXD6. Here, for the biaxial stretching, a simultaneous biaxial stretching method or a sequential biaxial stretching method can be used, but in order to keep the maximum strain rate during stretching within the range of the present invention, a tubular simultaneous biaxial stretching is used. It is particularly preferred to use the method.
 ポリアミド樹脂組成物は、Ny6およびMXD6の配合比が40質量%以上85質量%以下:15質量%以上60質量%以下の割合で溶融混練されたバージン原料100質量%に対して、MXD6の融点が233℃以上238℃以下の熱履歴品を5質量%以上40質量%以下で添加して得られる。
 ここで、前記Ny6の化学式を下記の化1に示し、またMXD6の化学式を下記の化2に示す。
The polyamide resin composition has a melting point of MXD6 of 100% by mass of virgin raw material melt-kneaded in a ratio of Ny6 and MXD6 of 40% by mass to 85% by mass: 15% by mass to 60% by mass. It is obtained by adding a heat history product of 233 ° C. or more and 238 ° C. or less at 5% by mass or more and 40% by mass or less.
Here, the chemical formula of Ny6 is shown in the following chemical formula 1, and the chemical formula of MXD6 is shown in the chemical formula 2 below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上述のバージン原料とは、通常は、Ny6とMXD6とが互いに混合され溶融混練された履歴を持つ混合原料ではない状態の原料を意味する。例えば、Ny6やMXD6が各々単独で溶融混練された履歴があっても(例えばリサイクル品)、これらが混合され溶融混練されていない場合は、バージン原料である。
 バージン原料におけるNy6とMXD6の配合割合は、二軸延伸フィルムの衝撃強度および易裂性の観点から、Ny6が40質量%以上85質量%以下、MXD6が15質量%以上60質量%以下であることが好ましい。なお、バージン原料におけるMXD6が15質量%より少ない場合には、易裂性付与の効果が十分に得られないおそれがある。また、MXD6が40質量%より多い場合には、衝撃強度が大幅に低下して実用性に乏しくなる。
The above-mentioned virgin raw material usually means a raw material that is not a mixed raw material having a history in which Ny6 and MXD6 are mixed and melt-kneaded. For example, even if Ny6 and MXD6 have a history of being melt-kneaded independently (for example, recycled products), they are virgin raw materials when they are not mixed and melt-kneaded.
The mixing ratio of Ny6 and MXD6 in the virgin raw material is that Ny6 is 40% by mass to 85% by mass and MXD6 is 15% by mass to 60% by mass from the viewpoint of impact strength and easy tearability of the biaxially stretched film. Is preferred. In addition, when MXD6 in a virgin raw material is less than 15 mass%, there exists a possibility that the effect of easy tearing may not fully be acquired. On the other hand, when MXD6 is more than 40% by mass, the impact strength is greatly lowered and the practicality becomes poor.
 熱履歴品とは、Ny6とMXD6の配合品で、一度押出機を通過したものをいい、本発明については、示差走査熱量計(DSC)でMXD6の融点が233℃以上238℃以下、好ましくは235℃以上237℃以下の範囲に保持されたものを用いる。なお、この熱履歴品は、本実施形態により得られたポリアミドの層をリサイクルしたものでもよい。このような熱履歴品は、Ny6とMXD6の双方に親和性のある相溶化剤として機能するので、かかる熱履歴品をポリアミド樹脂混合物に加えることで層内剥離の発生を防止できる。
 ここで、層内剥離とは、二軸延伸フィルムを適当なシーラントフィルムとラミネートして製造した後にシール部を開封すると、ポリアミドの層内で剥離を引き起こす現象をいう。この層内剥離の機構は必ずしも明確ではないが、ポリアミドの層内では、Ny6とMXD6が層状に配向しており、その界面で剥離が起こるものと考えられる。
 また、Ny6およびMXD6からなる熱履歴品におけるMXD6の融点とは、バージン原料と溶融混練される前の状態で測定された融点をいう。熱履歴品におけるMXD6の融点が233℃未満になると、ポリアミドの層の衝撃強度が低下する。また、熱履歴品におけるMXD6の融点が238℃以上になると、層内剥離を防止する効果が低くなる。
The heat history product is a blended product of Ny6 and MXD6, which has passed through the extruder once. For the present invention, the melting point of MXD6 is 233 ° C. or more and 238 ° C. or less, preferably by a differential scanning calorimeter (DSC), preferably What was hold | maintained in the range of 235 degreeC or more and 237 degrees C or less is used. The heat history product may be a product obtained by recycling the polyamide layer obtained by the present embodiment. Since such a heat history product functions as a compatibilizing agent having affinity for both Ny6 and MXD6, the occurrence of in-layer peeling can be prevented by adding such a heat history product to the polyamide resin mixture.
Here, in-layer peeling refers to a phenomenon in which peeling occurs in a polyamide layer when a biaxially stretched film is laminated with an appropriate sealant film and then the seal portion is opened. The mechanism of this delamination is not necessarily clear, but it is considered that Ny6 and MXD6 are oriented in layers in the polyamide layer, and delamination occurs at the interface.
In addition, the melting point of MXD6 in the heat history product composed of Ny6 and MXD6 refers to the melting point measured in the state before melt-kneading with the virgin raw material. When the melting point of MXD6 in the heat history product is less than 233 ° C., the impact strength of the polyamide layer decreases. In addition, when the melting point of MXD6 in the heat history product is 238 ° C. or higher, the effect of preventing in-layer peeling is reduced.
 熱履歴品の含有量は、バージン原料全量100質量%基準で5質量%以上40質量%以下である。熱履歴品が5質量%未満では、ラミネートフィルムとした後に冷間成形のような過酷な条件下で使用すると、ポリアミドの層で層内剥離を起こしやすくなる。また、熱履歴品が40質量%を超えると、ポリアミドの層の衝撃強度が低下する。
 熱履歴品におけるNy6とMXD6との配合割合は、衝撃強度および層内剥離防止効果の観点から、Ny6:MXD6=60質量%以上85質量%以下:15質量%以上40質量%以下であることが好ましい。なお、熱履歴品におけるMXD6の配合割合が15質量%未満(Ny6の配合割合が85質量%より多い)である場合、ポリアミドの層の層内剥離防止効果が低くなる傾向がある。熱履歴品におけるMXD6の配合割合が40質量%を越える(Ny6の配合割合が60質量%未満)場合、ポリアミドの層の衝撃強度が低下する傾向がある。
The content of the heat history product is 5% by mass or more and 40% by mass or less based on 100% by mass of the total amount of the virgin raw material. When the heat history product is less than 5% by mass, when it is used under severe conditions such as cold forming after being formed into a laminate film, it is easy to cause in-layer peeling in the polyamide layer. On the other hand, if the heat history product exceeds 40% by mass, the impact strength of the polyamide layer decreases.
The blending ratio of Ny6 and MXD6 in the thermal history product may be Ny6: MXD6 = 60% by mass or more and 85% by mass or less: 15% by mass or more and 40% by mass or less from the viewpoint of impact strength and anti-layer peeling effect. preferable. In addition, when the blending ratio of MXD6 in the heat history product is less than 15% by mass (the blending ratio of Ny6 is more than 85% by mass), the effect of preventing in-layer peeling of the polyamide layer tends to be low. When the mixing ratio of MXD6 in the heat history product exceeds 40% by mass (the mixing ratio of Ny6 is less than 60% by mass), the impact strength of the polyamide layer tends to decrease.
 なお、ポリアミドの層には、必要な添加剤を適宜添加することができる。このような添加剤として、例えばアンチブロッキング剤(無機フィラーなど)、はっ水剤(エチレンビスステアリン酸エステルなど)、滑剤(ステアリン酸カルシウムなど)を挙げることができる。 It should be noted that necessary additives can be appropriately added to the polyamide layer. Examples of such additives include anti-blocking agents (such as inorganic fillers), water repellents (such as ethylene bis stearates), and lubricants (such as calcium stearate).
 また、本発明の二軸延伸フィルムは、他のラミネート基材を積層することで種々の用途に適用できる。ラミネート基材としては、例えばアルミニウム層およびアルミニウム層を含むフィルム、シーラント層などが挙げられる。
 本実施形態のラミネート包材は、二軸延伸フィルムの層と他のラミネート基材との全体の厚みが200μm以下であることが好ましい。かかる全体の厚みが200μmを超える場合、優れた易裂性が得られにくくなるおそれがある。
The biaxially stretched film of the present invention can be applied to various uses by laminating other laminate base materials. Examples of the laminate substrate include an aluminum layer, a film including the aluminum layer, and a sealant layer.
In the laminate packaging material of this embodiment, the total thickness of the biaxially stretched film layer and the other laminate base material is preferably 200 μm or less. When the total thickness exceeds 200 μm, it is difficult to obtain excellent tearability.
 本実施形態のラミネート包材に使用するアルミニウム層としては、純アルミニウムまたはアルミニウム-鉄系合金の軟質材からなるアルミ箔を使用することができる。この場合、アルミニウム箔には、ラミネート性能を向上する観点から、シランカップリング剤やチタンカップリング剤などによるアンダーコート処理、あるいはコロナ放電処理などの前処理を施してから、ONyフィルムに積層することが好ましい。
 このようなアルミニウム層の厚さは5μm以上50μm以下であることが好ましい。これにより、酸素や水分などがラミネート包材中を透過することを防止できる。
 なお、アルミニウム層の厚さが5μm未満である場合、ラミネート包材中を酸素や水分などが透過してしまうおそれがある。一方、アルミニウム層の厚さが50μmを超える場合、易裂性が十分に得られにくくなるおそれがある。
As the aluminum layer used in the laminate packaging material of this embodiment, an aluminum foil made of a soft material of pure aluminum or an aluminum-iron alloy can be used. In this case, from the viewpoint of improving the laminating performance, the aluminum foil is subjected to a pretreatment such as an undercoat treatment or a corona discharge treatment with a silane coupling agent or a titanium coupling agent, and then laminated on the ONy film. Is preferred.
The thickness of such an aluminum layer is preferably 5 μm or more and 50 μm or less. Thereby, oxygen, moisture, etc. can be prevented from permeating through the laminate packaging material.
In addition, when the thickness of the aluminum layer is less than 5 μm, there is a possibility that oxygen, moisture, etc. may permeate through the laminate packaging material. On the other hand, when the thickness of the aluminum layer exceeds 50 μm, it may be difficult to obtain easy tearability.
 さらに、ラミネート基材やシーラント層の他、帯電防止層や印刷層、バリア層、強度補強層などの種々の機能層を積層してもよい。 Furthermore, in addition to the laminate base material and the sealant layer, various functional layers such as an antistatic layer, a printed layer, a barrier layer, and a strength reinforcing layer may be laminated.
[二軸延伸フィルムの製造方法]
 以上のような二軸延伸フィルムは、チューブラー法による同時二軸延伸法により好適に製造できる。具体的には、以下のようにして製造できる。
 まず、原反フィルム製造工程において、Ny6が40質量%以上85質量%以下、MXD6が15質量%以上60質量%以下の配合割合で溶融混練したバージン原料と、Ny6が40質量%以上85質量%以下、MXD6が15質量%以上60質量%以下の配合で、かつ、当該MXD6の融点が233℃以上238℃以下の熱履歴品とを、バージン原料100質量%に対して5質量%以上40質量%以下で添加して溶融混練し、このポリアミド樹脂組成物の溶融物を調製する。
 次に、ポリアミドの溶融物を環状ダイスから円筒状のフィルムとして溶融押し出しした後、引き続き急冷して原反フィルム(原反バブル)を作製する。
[Method for producing biaxially stretched film]
The biaxially stretched film as described above can be suitably produced by a simultaneous biaxial stretching method using a tubular method. Specifically, it can be produced as follows.
First, in the raw film manufacturing process, Ny6 is 40% by mass to 85% by mass, MXD6 is melt-kneaded at a blending ratio of 15% by mass to 60% by mass, and Ny6 is 40% by mass to 85% by mass. Hereinafter, MXD6 is blended in an amount of 15% by mass to 60% by mass and a heat history product having a melting point of MXD6 of 233 ° C. or more and 238 ° C. or less is 5% by mass to 40% by mass with respect to 100% by mass of the virgin raw material. % Or less and melt-kneaded to prepare a melt of this polyamide resin composition.
Next, after melt-extruding a polyamide melt as a cylindrical film from an annular die, it is then rapidly cooled to produce a raw fabric film (raw fabric bubble).
 この後、二軸延伸工程において、原反バブルを、一対のニップロール間に挿通した後、中に気体を圧入しながら延伸炉を通過させて外部からヒータで加熱すると共に、延伸開始点にエアーリングより外方からエアーを吹き付けて原反バブルを膨張させ、下流側の一対のニップロールで引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行い、延伸バブルを形成する。この際、最大歪み速度は、MD方向およびTD方向のいずれも2.5sec-1以上である。この最大歪み速度は、好ましくは3sec-1以上15sec-1以下である。
 ここで、最大歪み速度とは、原反バブルが延伸開始から延伸終了点までの各位置でのMD方向とTD方向の変化率を算出し、その最大値で示したものである。最大歪み速度の制御は、例えば、溶融物を環状ダイスから溶融押し出しする際の吐出量、環状ダイスや延伸炉の大きさ(直径や長さ)を調整することで行うことができる。
After this, in the biaxial stretching process, the raw fabric bubble is inserted between a pair of nip rolls, and then heated by a heater from the outside through a stretching furnace while gas is being injected into the air bubble. Air is blown from the outside to expand the raw fabric bubble, and taken up by a pair of downstream nip rolls, thereby performing simultaneous biaxial stretching in the MD direction and TD direction by the tubular method to form a stretched bubble. At this time, the maximum strain rate is 2.5 sec −1 or more in both the MD direction and the TD direction. The maximum strain rate is preferably 3sec -1 or 15 sec -1 or less.
Here, the maximum strain rate is calculated by calculating the rate of change in the MD direction and the TD direction at each position from the start of stretching to the end of stretching of the original fabric bubble, and indicates the maximum value. The maximum strain rate can be controlled, for example, by adjusting the discharge amount when the melt is melt-extruded from the annular die, and the size (diameter and length) of the annular die and the drawing furnace.
 このような最大歪み速度は、次のような方法により具体的に求めることができる。
 まず、延伸途中のフィルムサンプルを採取する。そして、このサンプルの移動方向の移動距離に対する、サンプルの折径(幅)の変化を計測して、移動距離とサンプルの折径(幅)との関係を示す曲線を作成する。ここで、移動距離からは、延伸開始からの時間が算出できる。また、サンプルの折径と、原反フィルム(未延伸フィルム)の折径(幅)と、TD方向の延伸倍率との関係は、下記式:
(サンプルの折径(幅))/(原反フィルムの折径(幅))=(TD方向の延伸倍率)
で表されることから、サンプルの折径(幅)を原反フィルムの折径(幅)で割ることにより、TD方向の延伸倍率が算出できる。そのため、移動距離とサンプルの折径との関係を示す曲線から、延伸開始からの時間とTD方向の延伸倍率との関係を示す曲線を作成することができる。
Such a maximum strain rate can be specifically obtained by the following method.
First, a film sample in the middle of stretching is collected. Then, a change in the folding diameter (width) of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the folding diameter (width) of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance. Moreover, the relationship between the folding diameter of the sample, the folding diameter (width) of the raw film (unstretched film), and the stretching ratio in the TD direction is expressed by the following formula:
(Folded diameter of sample (width)) / (Folded diameter of raw film (width)) = (Stretch ratio in TD direction)
Therefore, by dividing the folding diameter (width) of the sample by the folding diameter (width) of the original film, the stretching ratio in the TD direction can be calculated. Therefore, a curve indicating the relationship between the time from the start of stretching and the stretching ratio in the TD direction can be created from a curve indicating the relationship between the moving distance and the folding diameter of the sample.
 次いで、上述したサンプルについて、サンプルの移動方向の移動距離に対する、サンプルの厚みの変化を計測して、移動距離とサンプルの厚みとの関係を示す曲線を作成する。ここで、移動距離からは、延伸開始からの時間が算出できる。また、サンプルの厚みと、原反フィルムの厚みと、MD×TDの総合延伸倍率との関係は、下記式:
(原反フィルムの厚み)/(サンプルの厚み)=(MD×TDの総合延伸倍率)
で表されることから、原反フィルムの厚みからサンプルの厚みを割ることにより、MD×TDの総合延伸倍率が算出できる。また、MD×TDの総合延伸倍率と、TD方向の延伸倍率と、MD方向の延伸倍率との関係は、下記式:
(MD×TDの総合延伸倍率)/(TD方向の延伸倍率)=(MD方向の延伸倍率)
で表されることから、MD×TDの総合延伸倍率から前記算出したTD方向の延伸倍率を割ることにより、MD方向の延伸倍率が算出できる。そのため、移動距離とサンプルの厚みとの関係を示す曲線から、延伸開始からの時間とMD方向の延伸倍率との関係を示す曲線を作成することができる。
 以上のようにして作成できる2つの曲線により、延伸開始からの時間に対するMD方向およびTD方向の延伸倍率の変化状況を定量化できる。そして、これらの曲線において、曲線の傾きが最大となる箇所の傾きを求めることにより、MD方向およびTD方向の最大歪み速度を求めることができる。
 なお、この最大歪み速度は、MD方向およびTD方向のいずれかが2.5sec-1より遅くなると、衝撃強度が低下し(例えば50000J/m未満に低下し)、易裂性や直線カット性が低下するという不都合を生じる。
Next, for the sample described above, a change in the thickness of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the thickness of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance. Moreover, the relationship between the thickness of the sample, the thickness of the raw film, and the overall draw ratio of MD × TD is expressed by the following formula:
(Thickness of original film) / (Thickness of sample) = (Total draw ratio of MD × TD)
Therefore, the total draw ratio of MD × TD can be calculated by dividing the thickness of the sample from the thickness of the raw film. Moreover, the relationship between the MD × TD total draw ratio, the TD direction draw ratio, and the MD direction draw ratio is given by the following formula:
(MD × TD total draw ratio) / (TD direction draw ratio) = (MD direction draw ratio)
Therefore, by dividing the calculated stretching ratio in the TD direction from the total stretching ratio of MD × TD, the stretching ratio in the MD direction can be calculated. Therefore, a curve indicating the relationship between the time from the start of stretching and the stretching ratio in the MD direction can be created from the curve indicating the relationship between the moving distance and the thickness of the sample.
With the two curves that can be created as described above, the change state of the draw ratio in the MD direction and the TD direction with respect to the time from the start of drawing can be quantified. In these curves, the maximum strain rate in the MD direction and the TD direction can be obtained by obtaining the slope of the portion where the slope of the curve is maximum.
It should be noted that when either the MD direction or the TD direction becomes slower than 2.5 sec −1 , the maximum strain rate decreases the impact strength (for example, decreases to less than 50000 J / m), and easily tears and linearly cuts. This causes the disadvantage of lowering.
 そして、上述の二軸延伸工程後、延伸されたフィルムをテンター式熱処理炉に入れ、160以上215℃以下で熱固定を施す熱固定工程を実施することにより、本実施形態の二軸延伸フィルムを得ることができる。
 得られた二軸延伸フィルムは、衝撃強度が50000J/m以上、特に53000J/m以上の高強度で、かつエレメンドルフ引裂強度が65N/cm以下、特に63N/cm以下の易裂性である。
And after the above-mentioned biaxial stretching process, the stretched film is put in a tenter type heat treatment furnace, and the biaxially stretched film of this embodiment is obtained by carrying out a heat setting process of heat setting at 160 to 215 ° C. Obtainable.
The obtained biaxially stretched film has an impact strength of 50,000 J / m or more, particularly 53000 J / m or more, and an Elmendorf tear strength of 65 N / cm or less, particularly 63 N / cm or less.
 上述したように、上記実施形態では、Ny6およびMXD6からなる所定の配合のポリアミド樹脂組成物の溶融物を、所定の最大歪み速度の条件で二軸延伸するので、易裂性や衝撃強度に優れ、かつ所定の熱履歴品を添加するので層内剥離現象も生じない優れた二軸延伸フィルムを提供できる。 As described above, in the above embodiment, the melt of the polyamide resin composition having a predetermined composition composed of Ny6 and MXD6 is biaxially stretched under the condition of a predetermined maximum strain rate, so that it is excellent in easy tearing and impact strength. In addition, since a predetermined heat history product is added, an excellent biaxially stretched film that does not cause an in-layer peeling phenomenon can be provided.
 なお、本発明を実施するための最良の構成などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
 したがって、上記に開示した材質、層構成などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの材質などの限定の一部若しくは全部の限定を外した名称での記載は、本発明に含まれるものである。
 例えば、本実施形態では、同時二軸延伸方法としてチューブラー方式を採用したが、テンター方式でもよい。
 また、同時二軸延伸に限らず、逐次二軸延伸としてもよい。
Although the best configuration for carrying out the present invention has been disclosed in the above description, the present invention is not limited to this. That is, the present invention has been described primarily with reference to specific embodiments, but with respect to the above-described embodiments without departing from the scope of the technical idea and object of the present invention, the material, quantity, and other details. In this configuration, those skilled in the art can make various modifications.
Accordingly, the description of the materials, layer structures, and the like disclosed above is exemplary for easy understanding of the present invention, and does not limit the present invention. Descriptions with names excluding some or all of the limitations are included in the present invention.
For example, in this embodiment, the tubular method is adopted as the simultaneous biaxial stretching method, but a tenter method may be used.
Moreover, not only simultaneous biaxial stretching but it is good also as sequential biaxial stretching.
 次に、実施例および比較例により本発明をさらに詳細に説明する。ただし、本発明はこれらの例によって何等限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to these examples.
[実施例1]
 Ny6を70質量%、MXD6を30質量%の割合で溶融混練したバージン原料100質量%に対して、MXD6の融点が236℃の熱履歴品を25質量%添加し、270℃で溶融押出後、冷却して原反フィルムを作製した。
 Ny6;宇部興産株式会社製ナイロン6(UBEナイロン 1022FD(商品名)、相対粘度ηr=3.5)
 MXD6;三菱ガス化学株式会社製MXD6(MAXナイロン6007(商品名))
[Example 1]
To 100% by mass of virgin raw material with 70% by mass of Ny6 and 30% by mass of MXD6, 25% by mass of a heat history product having a melting point of MXD6 of 236 ° C was added, and after melt extrusion at 270 ° C, The raw film was prepared by cooling.
Ny6: nylon 6 manufactured by Ube Industries, Ltd. (UBE nylon 1022FD (trade name), relative viscosity ηr = 3.5)
MXD6; MXD6 manufactured by Mitsubishi Gas Chemical Co., Ltd. (MAX nylon 6007 (trade name))
 原反フィルムをチューブラー二軸延伸により、延伸倍率MD/TD=3.5/3.2、最大歪み速度MD5.0sec-1、TD3.5sec-1の条件で同時二軸延伸した後、テンター熱処理装置にて210℃の熱固定を実施して厚さ寸法が15μmの二軸延伸フィルムを作製した。なお、得られた二軸延伸フィルムの延伸成形性は良好で、厚み精度も良好であった。
 そして、得られた二軸延伸フィルムにポリプロピレン系シーラントフィルムを積層し、ラミネートフィルムを作製した。このラミネートフィルムに対し、下記評価を行った。その結果を、以下の表1に示す。
The original tubular biaxial stretch the fabric film, stretching ratio MD / TD = 3.5 / 3.2, the maximum strain rate MD5.0Sec -1, after simultaneous biaxial stretching under the condition of TD3.5Sec -1, tenter The film was heat-set at 210 ° C. with a heat treatment apparatus to produce a biaxially stretched film having a thickness of 15 μm. The obtained biaxially stretched film had good stretch moldability and good thickness accuracy.
And the polypropylene-type sealant film was laminated | stacked on the obtained biaxially stretched film, and the laminate film was produced. The following evaluation was performed on this laminate film. The results are shown in Table 1 below.
  (層内剥離)
 ラミネートフィルムから15mm幅の短冊状試験片を切り出し、その端部を手で数cmほど界面剥離を行い、二軸延伸フィルムとシーラントフィルムとに分離した。その後、各々のフィルム片を引張り試験機(インストロン万能試験機1123型)にセットして、300mm/minの速度でラミネート部分の剥離試験を行った(90度剥離)。なお、剥離試験の最中に二軸延伸フィルム内部で層内剥離が生ずると剥離強度が急激に減少するため、そのような挙動が発現したか否かで層内剥離発生の有無を判別できる。例えば、剥離試験の開始時は、剥離強度が7N/15mm幅程度であったものが、剥離試験の途中で急激に1~2N/15mm幅程度に減少すれば、層内剥離が生じたと判断できる。
 そして、二軸延伸フィルムの内部で層内剥離の挙動を示さないものを「A」と判定し、層内剥離の挙動を示したものを「B」と判定した。
(In-layer peeling)
A strip-shaped test piece having a width of 15 mm was cut out from the laminate film, and the end thereof was subjected to interfacial peeling by several cm by hand to separate it into a biaxially stretched film and a sealant film. Thereafter, each film piece was set in a tensile tester (Instron universal tester 1123 type), and a peel test of the laminate portion was performed at a speed of 300 mm / min (90 ° peel). In addition, since peeling strength will sharply reduce if the peeling in the layer occurs in the biaxially stretched film during the peeling test, it can be determined whether or not the peeling in the layer has occurred depending on whether or not such a behavior has occurred. For example, at the start of the peel test, if the peel strength is about 7 N / 15 mm width, but suddenly decreases to about 1 to 2 N / 15 mm width in the middle of the peel test, it can be judged that peeling within the layer has occurred. .
And the thing which did not show the behavior of peeling in a layer inside a biaxially stretched film was determined as "A", and the thing which showed the behavior of peeling in a layer was determined as "B".
 (易裂性:直線カット性)
 引裂強度の測定は、ポリプロピレン系シーラントフィルムを積層していない二軸延伸フィルムで実施した。エレメンドルフ引裂強度試験(JISK 7128)に基づき、二軸延伸フィルムのMD方向およびTD方向の引裂強度を測定した。
 そして、引裂強度が70N/cm以下を「A」、71N/cm以上を「B」として評価した。
(Easily tearable: straight cut)
The tear strength was measured with a biaxially stretched film not laminated with a polypropylene sealant film. Based on the Elmendorf tear strength test (JISK 7128), the tear strength in the MD direction and the TD direction of the biaxially stretched film was measured.
The tear strength of 70 N / cm or less was evaluated as “A”, and 71 N / cm or more was evaluated as “B”.
 (衝撃強度)
 二軸延伸フィルムの衝撃強度(J/m)は、フィルムインパクトテスター(東洋精機製、30Kg-cmの1/2インチ半球ヘッド)を用いて測定した。測定結果について、下記の基準で評価した。
  A:50000J/m以上
  B:50000J/m未満
(Impact strength)
The impact strength (J / m) of the biaxially stretched film was measured using a film impact tester (manufactured by Toyo Seiki, 30 Kg-cm 1/2 inch hemispherical head). The measurement results were evaluated according to the following criteria.
A: 50000 J / m or more B: Less than 50000 J / m
 (総合評価)
 各評価項目にて「B」が一つもない場合は総合評価を「A」とし、「B」が一つでもある場合は総合評価を「B」として評価を行った。
(Comprehensive evaluation)
When there was no “B” in each evaluation item, the overall evaluation was “A”, and when there was at least one “B”, the overall evaluation was “B”.
[実施例2]
 実施例1の熱履歴品、二軸延伸フィルムの厚さ寸法、チューブラー二軸延伸の条件およびテンター熱試験装置における熱固定の温度を、表1および以下の通りに変更した以外は、実施例1と同様にして二軸延伸フィルムを得た。そして、実施例1と同様に評価した。
 ・熱履歴品:バージン原料100質量%に対して、MXD6の融点が237℃の熱履歴品を15質量%添加
 ・厚さ寸法:25μm
 ・延伸倍率MD/TD=3.5/3.5
 ・最大歪み速度:MD方向3.5sec-1、TD方向3.1sec-1
 ・熱固定温度:213℃
[Example 2]
Example 1 except that the heat history product of Example 1, the thickness of the biaxially stretched film, the conditions of the tubular biaxial stretching, and the temperature of heat setting in the tenter thermal test apparatus were changed as shown in Table 1 and below. In the same manner as in Example 1, a biaxially stretched film was obtained. And it evaluated similarly to Example 1. FIG.
・ History product: 15% by mass of heat history product with MXD6 melting point of 237 ° C. added to 100% by mass of virgin raw material ・ Thickness dimension: 25 μm
-Stretch ratio MD / TD = 3.5 / 3.5
Maximum strain rate: MD direction 3.5 sec −1 , TD direction 3.1 sec −1
・ Heat setting temperature: 213 ℃
[実施例3]
 実施例1のバージン原料および熱履歴品の配合割合、チューブラー二軸延伸の条件およびテンター熱試験装置における熱固定の温度を、表1および以下の通りに変更した以外は、実施例1と同様にして二軸延伸フィルムを得た。そして、実施例1と同様に評価した。
 ・バージン原料:Ny6を75質量%、MXD6を25質量%
 ・熱履歴品:バージン原料100質量%に対して、MXD6の融点が237℃の熱履歴品を15質量%添加
 ・延伸倍率MD/TD=3.3/3.3
 ・最大歪み速度:MD方向7.5sec-1、TD方向6.7sec-1
 ・熱固定温度:213℃
[Example 3]
Except for changing the blending ratio of the virgin raw material and the heat history product of Example 1, the conditions of tubular biaxial stretching, and the temperature of heat setting in the tenter thermal test apparatus as shown in Table 1 and below, the same as Example 1 Thus, a biaxially stretched film was obtained. And it evaluated similarly to Example 1. FIG.
・ Virgin raw materials: Ny6 75% by mass, MXD6 25% by mass
・ History product: 15% by mass of heat history product with MXD6 melting point of 237 ° C. added to 100% by mass of virgin raw material ・ Stretch ratio MD / TD = 3.3 / 3.3
Maximum strain rate: MD direction 7.5 sec −1 , TD direction 6.7 sec −1
・ Heat setting temperature: 213 ℃
[実施例4]
 実施例1のバージン原料および熱履歴品の配合割合、チューブラー二軸延伸の条件およびテンター熱試験装置における熱固定の温度を、表1および以下の通りに変更した以外は、実施例1と同様にして二軸延伸フィルムを得た。そして、実施例1と同様に評価した。
 ・熱履歴品:バージン原料100質量%に対して、MXD6の融点が237℃の熱履歴品を15質量%添加
 ・延伸倍率MD/TD=3.5/3.5
 ・最大歪み速度:MD方向9.0sec-1、TD方向8.2sec-1
 ・熱固定温度:213℃
[Example 4]
Except for changing the blending ratio of the virgin raw material and the heat history product of Example 1, the conditions of tubular biaxial stretching, and the temperature of heat setting in the tenter thermal test apparatus as shown in Table 1 and below, the same as Example 1 Thus, a biaxially stretched film was obtained. And it evaluated similarly to Example 1. FIG.
・ History product: 15% by mass of heat history product with MXD6 melting point of 237 ° C. added to 100% by mass of virgin raw material ・ Stretch ratio MD / TD = 3.5 / 3.5
• The maximum strain rate: MD direction 9.0sec -1, TD direction 8.2sec -1
・ Heat setting temperature: 213 ℃
[実施例5]
 実施例1のバージン原料および熱履歴品の配合割合、および、チューブラー二軸延伸の条件を、表1および以下の通りに変更した以外は、実施例1と同様にして二軸延伸フィルムを得た。そして、実施例1と同様に評価した。
 ・バージン原料:Ny6を72質量%、MXD6を28質量%
 ・熱履歴品:バージン原料100質量%に対して、熱履歴品を20質量%添加
 ・最大歪み速度:MD方向2.8sec-1、TD方向2.5sec-1
[Example 5]
A biaxially stretched film was obtained in the same manner as in Example 1 except that the blending ratio of the virgin raw material and the heat history product of Example 1 and the conditions of tubular biaxial stretching were changed as shown in Table 1 and below. It was. And it evaluated similarly to Example 1. FIG.
・ Virgin raw materials: Ny6 72% by mass, MXD6 28% by mass
Thermal history products: For virgin material 100 wt%, the thermal history article 20 mass% additives, maximum strain rate: MD direction 2.8 sec -1, TD direction 2.5sec -1
[比較例1]
 実施例1のチューブラー二軸延伸の条件を、表1および以下の通りに変更した以外は、実施例1と同様にして二軸延伸フィルムを得た。そして、実施例1と同様に評価した。
 ・最大歪み速度:MD方向2.3sec-1、TD方向0.6sec-1
[Comparative Example 1]
A biaxially stretched film was obtained in the same manner as in Example 1 except that the conditions of the tubular biaxial stretching of Example 1 were changed as shown in Table 1 and the following. And it evaluated similarly to Example 1. FIG.
Maximum strain rate: MD direction 2.3 sec −1 , TD direction 0.6 sec −1
[比較例2]
 実施例1のチューブラー二軸延伸に代えて、同時二軸延伸テンター法により、縦方向および横方向に以下の条件で同時に延伸した後、実施例1と同様に熱固定して延伸フィルムを得た。そして、実施例1と同様に評価した。
 ・テンター法同時二軸延伸法
 ・最大歪み速度:MD方向0.5sec-1、TD方向0.5sec-1
[Comparative Example 2]
Instead of the tubular biaxial stretching of Example 1, the film was stretched simultaneously in the longitudinal and lateral directions under the following conditions by the simultaneous biaxial stretching tenter method, and then heat-set in the same manner as in Example 1 to obtain a stretched film. It was. And it evaluated similarly to Example 1. FIG.
-Tenter method simultaneous biaxial stretching method-Maximum strain rate: MD direction 0.5 sec -1 TD direction 0.5 sec -1
[比較例3]
 実施例1のチューブラー二軸延伸に代えて、逐次二軸延伸テンター法により、縦方向および横方向に以下の条件で順に延伸した後、実施例1と同様に熱固定して、厚さ寸法25μmの延伸フィルムを得た。そして、実施例1と同様に評価した。
 ・厚さ寸法:25μm
 ・テンター法逐次二軸延伸法
 ・最大歪み速度:MD方向0.3sec-1、TD方向0.3sec-1
[Comparative Example 3]
Instead of the tubular biaxial stretching of Example 1, after sequentially stretching in the longitudinal and lateral directions under the following conditions by a sequential biaxial stretching tenter method, the film was heat-fixed in the same manner as in Example 1 to determine the thickness dimension. A stretched film of 25 μm was obtained. And it evaluated similarly to Example 1. FIG.
・ Thickness dimension: 25μm
· Tenter successive biaxial stretching method, maximum strain rate: MD direction 0.3 sec -1, TD direction 0.3 sec -1
[比較例4]
 実施例1のチューブラー二軸延伸に代えて、逐次二軸延伸テンター法により、縦方向および横方向に以下の条件で順に延伸した後、実施例1と同様に熱固定して厚さ寸法15μmの延伸フィルムを得た。そして、実施例1と同様に評価した。
 ・厚さ寸法:15μm
 ・テンター法逐次二軸延伸法
 ・最大歪み速度:MD方向0.4sec-1、TD方向0.3sec-1
[Comparative Example 4]
Instead of the tubular biaxial stretching of Example 1, the film was sequentially stretched in the longitudinal and lateral directions under the following conditions by a sequential biaxial stretching tenter method, and then thermally fixed in the same manner as in Example 1 to have a thickness of 15 μm. A stretched film was obtained. And it evaluated similarly to Example 1. FIG.
・ Thickness dimension: 15μm
・ Tenter method sequential biaxial stretching method ・ Maximum strain rate: MD direction 0.4 sec −1 , TD direction 0.3 sec −1
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[結果]
 表1に示すように、比較例2では、テンター式同時二軸延伸法で二軸延伸していること、比較例3,4では、テンター式逐次延伸法で二軸延伸していることから、チューブラー式同時二軸延伸法で二軸延伸している本願発明範囲の最大歪み速度が得られていない。それ故、これらの比較例2~4では、衝撃強度が弱く、易裂性も十分ではなかった。また、比較例1では、チューブラー式同時二軸延伸法で二軸延伸しているが、最大歪み速度が本願発明の範囲外であるため、衝撃強度が劣っている。
 一方、実施例1~5では、チューブラー式同時二軸延伸法により本願発明の範囲内の最大歪み速度で二軸延伸しているため、易裂性およびフィルム衝撃強度が良好であった。
[result]
As shown in Table 1, in Comparative Example 2, it is biaxially stretched by the tenter type simultaneous biaxial stretching method, and in Comparative Examples 3 and 4, since it is biaxially stretched by the tenter type sequential stretching method, The maximum strain rate within the range of the present invention in which biaxial stretching is performed by the tubular simultaneous biaxial stretching method is not obtained. Therefore, in these Comparative Examples 2 to 4, the impact strength was weak and the tearability was not sufficient. In Comparative Example 1, biaxial stretching is performed by the tubular simultaneous biaxial stretching method, but the impact strength is inferior because the maximum strain rate is outside the scope of the present invention.
On the other hand, in Examples 1 to 5, biaxial stretching was performed at the maximum strain rate within the range of the present invention by the tubular simultaneous biaxial stretching method, so that easy tearability and film impact strength were good.
 本発明は、食品や医薬分野、工業用分野など、衝撃強度および易裂性に優れた二軸延伸フィルムの製造方法、二軸延伸フィルム、および、ラミネートフィルムとして利用できる。 The present invention can be used as a method for producing a biaxially stretched film having excellent impact strength and easy tearability, a biaxially stretched film, and a laminate film in food and pharmaceutical fields, industrial fields, and the like.

Claims (7)

  1.  ナイロン6(以後、Ny6ともいう)およびメタキシリレンアジパミド(以後、MXD6ともいう)を二軸延伸してなる二軸延伸フィルムの製造方法であって、
     前記Ny6が40質量%以上85質量%以下、前記MXD6が15質量%以上60質量%以下の配合比で溶融混練された原料100質量%に対して、Ny6および融点が233℃以上238℃以下のMXD6からなる熱履歴品を5質量%以上40質量%以下で添加した後、溶融押出して原反フィルムを成形する原反フィルム製造工程と、
     前記原反フィルムを、MD方向およびTD方向の最大歪み速度がいずれも2.5sec-1以上で二軸延伸する二軸延伸工程と、を実施する
     ことを特徴とする二軸延伸フィルムの製造方法。
    A method for producing a biaxially stretched film obtained by biaxially stretching nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6),
    The Ny6 and the melting point are 233 ° C. or more and 238 ° C. or less with respect to 100% by mass of the raw material melt-kneaded with a mixing ratio of 40% by mass to 85% by mass and MXD6 of 15% by mass to 60% by mass. After adding the heat history goods which consist of MXD6 in 5 mass% or more and 40 mass% or less, the original film production process which shape | molds an original film by melt-extrusion,
    A biaxial stretching step in which the original film is biaxially stretched at a maximum strain rate of 2.5 sec −1 or more in both the MD and TD directions. .
  2.  請求項1に記載の二軸延伸フィルムの製造方法であって、
     前記二軸延伸工程後に、160℃以上215℃以下で熱固定する熱固定工程を実施する
     ことを特徴とする二軸延伸フィルムの製造方法。
    A method for producing a biaxially stretched film according to claim 1,
    After the said biaxial stretching process, the heat setting process of heat-setting at 160 degreeC or more and 215 degrees C or less is implemented. The manufacturing method of the biaxial stretching film characterized by the above-mentioned.
  3.  請求項1または請求項2に記載の二軸延伸フィルムの製造方法であって、
     前記二軸延伸工程は、チューブラー式同時二軸延伸法により二軸延伸する
     ことを特徴とする二軸延伸フィルムの製造方法。
    A method for producing a biaxially stretched film according to claim 1 or 2,
    The method for producing a biaxially stretched film, wherein the biaxial stretching step is biaxially stretched by a tubular simultaneous biaxial stretching method.
  4.  請求項1から請求項3までのいずれか一項に記載の二軸延伸フィルムの製造方法により製造された
     ことを特徴とする二軸延伸フィルム。
    It manufactured with the manufacturing method of the biaxially stretched film as described in any one of Claim 1- Claim 3. The biaxially stretched film characterized by the above-mentioned.
  5.  請求項4に記載の二軸延伸フィルムであって、
     衝撃強度が50000J/m以上である
     ことを特徴とする二軸延伸フィルム。
    The biaxially stretched film according to claim 4,
    The biaxially stretched film characterized by having an impact strength of 50000 J / m or more.
  6.  請求項4または請求項5に記載の二軸延伸フィルムであって、
     エレメンドルフ引裂強度が65N/cm以下である
     ことを特徴とする二軸延伸フィルム。
    The biaxially stretched film according to claim 4 or 5, wherein
    The biaxially stretched film characterized by having an Elmendorf tear strength of 65 N / cm or less.
  7.  請求項4から請求項6までのいずれか一項に記載の二軸延伸フィルムの層を有する積層構造である
     ことを特徴とするラミネートフィルム。
    It is a laminated structure which has the layer of the biaxially stretched film as described in any one of Claim 4 to 6. The laminated film characterized by the above-mentioned.
PCT/JP2014/051742 2013-02-08 2014-01-28 Method for producing biaxially oriented film, biaxially oriented film, and laminated film WO2014123025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-023658 2013-02-08
JP2013023658A JP2014151566A (en) 2013-02-08 2013-02-08 Method for producing biaxially oriented film, biaxially oriented film, and laminated film

Publications (1)

Publication Number Publication Date
WO2014123025A1 true WO2014123025A1 (en) 2014-08-14

Family

ID=51299622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051742 WO2014123025A1 (en) 2013-02-08 2014-01-28 Method for producing biaxially oriented film, biaxially oriented film, and laminated film

Country Status (3)

Country Link
JP (1) JP2014151566A (en)
TW (1) TW201441014A (en)
WO (1) WO2014123025A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268209A (en) * 1994-03-30 1995-10-17 Mitsubishi Chem Corp Polyamide resin composition for forming film and biaxially oriented polyamide film made therefrom
JP2007039664A (en) * 2005-06-27 2007-02-15 Idemitsu Unitech Co Ltd Easily tearable oriented film, easily tearable laminate film, easily tearable bag, and process for producing the easily tearable oriented film
JP2008024744A (en) * 2006-07-18 2008-02-07 Idemitsu Unitech Co Ltd Easily tearable shrink film, easily tearable laminated film, easily tearable bag and process for producing easily tearable shrink film
WO2008020569A1 (en) * 2006-08-14 2008-02-21 Idemitsu Unitech Co., Ltd. Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
JP2008045015A (en) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268209A (en) * 1994-03-30 1995-10-17 Mitsubishi Chem Corp Polyamide resin composition for forming film and biaxially oriented polyamide film made therefrom
JP2007039664A (en) * 2005-06-27 2007-02-15 Idemitsu Unitech Co Ltd Easily tearable oriented film, easily tearable laminate film, easily tearable bag, and process for producing the easily tearable oriented film
JP2008024744A (en) * 2006-07-18 2008-02-07 Idemitsu Unitech Co Ltd Easily tearable shrink film, easily tearable laminated film, easily tearable bag and process for producing easily tearable shrink film
WO2008020569A1 (en) * 2006-08-14 2008-02-21 Idemitsu Unitech Co., Ltd. Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
JP2008045015A (en) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film

Also Published As

Publication number Publication date
TW201441014A (en) 2014-11-01
JP2014151566A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP5079275B2 (en) Method for preventing delamination of easily tearable shrink film
KR101295427B1 (en) Biaxially oriented nylon film, laminate wrapping material, process for production of biaxially oriented nylon film and process for production of laminate wrapping material
JP5226941B2 (en) Biaxially stretched nylon film for cold forming, laminate packaging material, and method for producing biaxially stretched nylon film for cold forming
JP5226942B2 (en) Biaxially stretched nylon film for cold forming, laminate packaging material, and method for producing biaxially stretched nylon film for cold forming
JP5739383B2 (en) Easy tear stretch film, easy tear laminate film, easy tear bag, and easy tear stretch film manufacturing method
JP5079268B2 (en) Method for preventing delamination of easily tearable stretched film
JP4970872B2 (en) Biaxially stretched nylon film, laminate packaging material, method for producing biaxially stretched nylon film, and method for producing laminate packaging material
JP2018095863A (en) Biaxially stretched polyamide resin film and laminate using the same
KR20060136317A (en) Easy-split stretched film, easy-split laminated film, easy-split bag, and manufacturing method for easy-split stretched film
WO2013099698A1 (en) Easy-to-tear laminated film and easy-to-tear packaging bag
WO2014123025A1 (en) Method for producing biaxially oriented film, biaxially oriented film, and laminated film
JP2014113789A (en) Method for producing multilayer stretched film and multilayer stretched film
JP2013028660A (en) Method for producing easily tearable biaxially oriented nylon film and easily tearable biaxially oriented nylon film
WO2014148279A1 (en) Method for manufacturing multilayer stretched film, and multilayer stretched film
JP2845680B2 (en) Easy tearable laminate film and easy tearable bag using the same
JP6904645B2 (en) Polyamide film
JPH0699491A (en) Easy tearing laminated film and easy tearing bag using the same
WO2014021418A1 (en) Easily-tearable biaxially-oriented nylon film, easily-tearable laminate film, easily-tearable laminate packaging material, and manufacturing method for easily-tearable biaxially-oriented nylon film
WO2013094414A1 (en) Easy-to-tear stretched film and method for manufacturing same
WO2014123026A1 (en) Method for producing biaxially oriented film, biaxially oriented film, and laminated film
JP5739384B2 (en) Easy tear film, easy tear laminate film, easy tear bag, and method for producing easy tear film
JPH0699489A (en) Easy tearing laminated film and easy tearing bag using the same
JPH06114930A (en) Manufacture of breakable film
JP2014028893A (en) Easy tearable biaxial oriented nylon film, easy tearable laminate film, easy tearable laminate package material, and production method of easy tearable biaxial oriented nylon film
JPH0699488A (en) Easy tearing film and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749255

Country of ref document: EP

Kind code of ref document: A1