Nothing Special   »   [go: up one dir, main page]

WO2014119750A1 - ガスバリア性フィルム - Google Patents

ガスバリア性フィルム Download PDF

Info

Publication number
WO2014119750A1
WO2014119750A1 PCT/JP2014/052324 JP2014052324W WO2014119750A1 WO 2014119750 A1 WO2014119750 A1 WO 2014119750A1 JP 2014052324 W JP2014052324 W JP 2014052324W WO 2014119750 A1 WO2014119750 A1 WO 2014119750A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
barrier layer
gas
layer
gas barrier
Prior art date
Application number
PCT/JP2014/052324
Other languages
English (en)
French (fr)
Inventor
伊東 宏明
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201480006796.XA priority Critical patent/CN104968492A/zh
Priority to JP2014559785A priority patent/JPWO2014119750A1/ja
Priority to US14/763,699 priority patent/US20150364720A1/en
Publication of WO2014119750A1 publication Critical patent/WO2014119750A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a gas barrier film, and more particularly to a gas barrier film used for an electronic device such as an organic electroluminescence (EL) element, a solar cell element, and a liquid crystal display.
  • EL organic electroluminescence
  • a gas barrier film formed by laminating a plurality of layers including thin films of metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide on the surface of a plastic substrate or film is used to block various gases such as water vapor and oxygen.
  • metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide
  • it is widely used for packaging of articles that require the use of, for example, packaging for preventing deterioration of foods, industrial products, pharmaceuticals, and the like.
  • a chemical deposition method in which an organic silicon compound typified by tetraethoxysilane (TEOS) is used and grown on a substrate while performing oxygen plasma oxidation under reduced pressure.
  • TEOS tetraethoxysilane
  • vapor phase methods such as a physical vapor deposition method (vacuum evaporation method or sputtering method) in which metal Si is evaporated using a semiconductor laser and deposited on a substrate in the presence of oxygen using a semiconductor laser.
  • inorganic vapor deposition methods have been preferably applied to the formation of inorganic films such as silicon oxide, silicon nitride, and silicon oxynitride, and examination of the composition range of inorganic films for obtaining good gas barrier properties. Many studies have been made on the layer structure including these inorganic films.
  • such a defect in the inorganic film causes the generation of a black spot called a dark spot that does not emit light, or the size of the dark spot grows under high temperature and high humidity. Will also affect.
  • Bonding of atoms is called a photon process using light energy having a wavelength of 100 to 200 nm called vacuum ultraviolet light (hereinafter also referred to as “VUV” or “VUV light”) having an energy larger than the bonding force between each atom of polysilazane.
  • VUV vacuum ultraviolet light
  • a silicon oxynitride film or a silicon oxide film can be formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by the action of only photons.
  • a method of controlling the film composition by the amount of amine added for example, JP 2012-16854 A
  • a method of adding alcohols or the like to the polysilazane coating solution in advance to promote the reaction in advance for example, Patent No. No. 3212400.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas barrier film having excellent storage stability, particularly storage stability under severe conditions (high temperature and high humidity conditions).
  • a gas barrier film comprising: a first barrier layer containing an inorganic compound; and a second barrier layer having a specific ratio of oxygen atoms to silicon atoms and nitrogen atoms to silicon atoms.
  • the present inventors have found that the above problems can be solved and have completed the present invention.
  • the present invention includes a base material, a first barrier layer containing an inorganic compound, at least silicon atoms and oxygen atoms, and an abundance ratio of oxygen atoms to silicon atoms (O / Si) of 1.4 to And a second barrier layer having a nitrogen atom to silicon atom ratio (N / Si) of 0 to 0.4 in this order.
  • FIG. 1 It is a schematic diagram which shows an example of the vacuum plasma CVD apparatus used for formation of the 1st barrier layer based on this invention, 101 is a plasma CVD apparatus, 102 is a vacuum chamber, 103 is a cathode electrode, 105 Is a susceptor, 106 is a heat medium circulation system, 107 is a vacuum exhaust system, 108 is a gas introduction system, 109 is a high-frequency power source, 110 is a base material, and 160 is a heating / cooling device. is there. It is a schematic diagram which shows an example of the other manufacturing apparatus used for formation of the 1st barrier layer based on this invention, 1 is a gas barrier film, 2 is a base material, 3 is a 1st barrier layer.
  • 31 is a manufacturing apparatus
  • 32 is a delivery roller
  • 33, 34, 35, and 36 are transport rollers
  • 39 and 40 are film forming rollers
  • 41 is a gas supply pipe
  • 42 is plasma
  • 43 and 44 are magnetic field generators
  • 45 is a winding roller.
  • 21 is an apparatus chamber
  • 22 is a Xe excimer lamp
  • 23 is a holder
  • 24 is a sample stage
  • 25 is a sample
  • 26 is light-shielding It is a board.
  • the present invention includes a base material, a first barrier layer containing an inorganic compound, at least silicon atoms and oxygen atoms, and an abundance ratio of oxygen atoms to silicon atoms (O / Si) of 1.4 to 2. And a second barrier layer having a nitrogen atom to silicon atom ratio (N / Si) of 0 to 0.4 in this order.
  • gas barrier film of the present invention is excellent in storage stability, particularly storage stability under high temperature and high humidity is unknown, but is considered to be as follows.
  • the chemical composition of the barrier layer obtained by modifying a barrier layer containing at least silicon atoms and oxygen atoms, particularly a layer containing polysilazane, has dangling bonds in the silicon atoms. It becomes a form susceptible to hydrolysis and the like under high temperature and high humidity such as dangling bonds, Si—OH, Si—H, and Si radicals. In order to reduce these effects, it is important to reduce the number of dangling bonds of silicon atoms as much as possible. However, the composition of the second barrier layer of the present invention reduces the number of dangling bonds of silicon atoms.
  • the gas barrier film of the present invention has a structure having at least two barrier layers. Even in such a structure, the gas barrier film is excellent in storage stability. In particular, it has been found that long-term storage stability, particularly storage stability under severe conditions such as high temperature and high humidity, is significantly reduced in a configuration having at least one barrier layer containing an inorganic compound in the lower layer. In such a configuration, the present invention provides a gas barrier film excellent in storage stability under severe conditions of high temperature and high humidity.
  • X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the gas barrier film of the present invention has a substrate, a first barrier layer, and a second barrier layer in this order.
  • the gas barrier film of the present invention may further contain other members.
  • the gas barrier film of the present invention is, for example, between the base material and the first barrier layer, between the first barrier layer and the second barrier layer, on the second barrier layer, or on the first barrier. You may have another member in the other surface of the base material in which the layer and the 2nd barrier layer are not formed.
  • the other members are not particularly limited, and members used for conventional gas barrier films can be used similarly or appropriately modified. Specific examples include an intermediate layer, a protective layer, a smooth layer, an anchor coat layer, a bleed-out prevention layer, a desiccant layer having moisture adsorbability, and a functionalized layer of an antistatic layer.
  • the gas barrier unit having the first barrier layer and the second barrier layer may be formed on one surface of the substrate or may be formed on both surfaces of the substrate.
  • the gas barrier unit may include a layer that does not necessarily have a gas barrier property.
  • a plastic film or a plastic sheet is preferably used as a substrate, and a film or sheet made of a colorless and transparent resin is more preferably used.
  • the plastic film used is not particularly limited in material, thickness and the like as long as it can hold the first barrier layer, the second barrier layer, and the like, and can be appropriately selected according to the purpose of use.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic
  • thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • the base material is preferably made of a heat resistant material. Specifically, a base material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • the gas barrier film according to the present invention is used in combination with, for example, a polarizing plate, it is preferable to arrange the gas barrier film so that the barrier layer of the gas barrier film faces the inside of the cell. More preferably, the barrier layer of the gas barrier film is disposed on the innermost side of the cell (adjacent to the element).
  • the substrate is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • an opaque material can be used as the base material.
  • the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
  • the thickness of the base material used for the gas barrier film according to the present invention is not particularly limited because it is appropriately selected depending on the application, but is typically 1 to 800 ⁇ m, preferably 10 to 200 ⁇ m.
  • These plastic films may have functional layers such as a transparent conductive layer, a primer layer, and a clear hard coat layer.
  • As the functional layer in addition to those described above, those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable.
  • the lower limit is not particularly limited, but is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the barrier layer is provided, may be polished to improve smoothness.
  • the above-mentioned base material may be an unstretched film or a stretched film.
  • the base material used in the present invention can be produced by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • various known treatments for improving adhesion such as corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, and smoothing described later. Layer stacking or the like may be performed, and it is preferable to combine the above treatments as necessary.
  • the 1st barrier layer concerning the present invention formed in the upper part of a substrate contains an inorganic compound. Although it does not specifically limit as an inorganic compound contained in a 1st barrier layer, For example, a metal oxide, a metal nitride, a metal carbide, a metal oxynitride, or a metal oxycarbide is mentioned.
  • oxides, nitrides, carbides, oxynitrides or oxycarbides containing one or more metals selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce and Ta in terms of gas barrier performance are preferably used, and an oxide, nitride or oxynitride of a metal selected from Si, Al, In, Sn, Zn and Ti is more preferable, and in particular, an oxide of at least one of Si and Al, Nitride or oxynitride is preferred.
  • suitable inorganic compounds include composites such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, titanium oxide, or aluminum silicate. You may contain another element as a secondary component.
  • the content of the inorganic compound contained in the first barrier layer is not particularly limited, but is preferably 50% by weight or more, more preferably 80% by weight or more, and 95% by weight in the first barrier layer. More preferably, it is more preferably 98% by weight or more, and most preferably 100% by weight (that is, the first barrier layer is made of an inorganic compound).
  • the first barrier layer contains an inorganic compound and thus has a gas barrier property.
  • the gas barrier property of the first barrier layer is calculated using a laminate in which the first barrier layer is formed on the substrate, the water vapor transmission rate (WVTR) is 0.1 g / (m 2 ⁇ day). Or less, more preferably 0.01 g / (m 2 ⁇ day) or less.
  • the method for forming the first barrier layer is not particularly limited, but a vacuum film-forming method such as physical vapor deposition (PVD method) or chemical vapor deposition (CVD), or a liquid containing an inorganic compound, preferably A method of modifying and forming a coating film formed by applying a liquid containing a silicon compound (hereinafter also simply referred to as a coating method) is preferred, and a physical vapor deposition method or a chemical vapor deposition method is more preferred. .
  • PVD method physical vapor deposition
  • CVD chemical vapor deposition
  • the physical vapor deposition method is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method.
  • a target material for example, a thin film such as a carbon film
  • Examples thereof include a DC sputtering method, an RF sputtering method, an ion beam sputtering method, and a magnetron sputtering method, a vacuum deposition method, and an ion plating method.
  • Sputtering is a method in which a target is placed in a vacuum chamber, a rare gas element (usually argon) ionized by applying a high voltage is collided with the target, and atoms on the target surface are ejected and adhered to the substrate.
  • a reactive sputtering method may be used in which an inorganic layer is formed by causing nitrogen and oxygen gas to flow into the chamber to react nitrogen and oxygen with an element ejected from the target by argon gas. .
  • the chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is a method of depositing a film by supplying a source gas containing a target thin film component onto a substrate and performing a chemical reaction on the surface of the substrate or in the gas phase. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like.
  • Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area.
  • the first barrier layer obtained by the vacuum plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure is a raw material (also referred to as a raw material) metal compound, decomposition gas, decomposition temperature, input power, etc. Selecting the conditions is preferable because the target compound can be produced.
  • silicon oxide is generated.
  • highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
  • a raw material compound it is preferable to use a silicon compound, a titanium compound, or an aluminum compound. These raw material compounds can be used alone or in combination of two or more.
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisopropoxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium dioxide.
  • examples thereof include isopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, and butyl titanate dimer.
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide
  • examples include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor.
  • the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
  • a desired first barrier layer can be obtained by appropriately selecting a source gas containing a source compound and a decomposition gas.
  • the first barrier layer formed by the CVD method is a layer containing oxide, nitride, oxynitride, or oxycarbide.
  • FIG. 1 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the first barrier layer according to the present invention.
  • the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface side inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105.
  • a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
  • a heat medium is disposed in the heat medium circulation system 106.
  • the heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 160 having a storage device is provided.
  • the heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 105.
  • the supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 105, and returns to the heating / cooling device 160.
  • the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105.
  • the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
  • the vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the vacuum plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heat medium is heated from room temperature. The temperature is raised to a set temperature, and a heat medium having the set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
  • the base material 110 as a film formation target is carried into the vacuum chamber 102 while maintaining the vacuum atmosphere in the vacuum chamber 102 and placed on the susceptor 105.
  • a large number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105.
  • the cathode electrode 103 is connected to a gas introduction system 108.
  • a CVD gas is introduced from the gas introduction system 108 into the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere.
  • the cathode electrode 103 is connected to a high frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to a ground potential.
  • a CVD gas is supplied from the gas introduction system 108 into the vacuum chamber 102, a high-frequency power source 109 is activated while a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed.
  • a first barrier layer which is a thin film grows on the surface of the substrate 110.
  • the distance between the susceptor 105 and the cathode electrode 103 is set as appropriate.
  • the flow rates of the raw material gas and the cracked gas are appropriately set in consideration of the raw material gas, the cracked gas type and the like.
  • the flow rate of the source gas is 30 to 300 sccm
  • the flow rate of the decomposition gas is 100 to 1000 sccm.
  • a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at a constant temperature.
  • the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film
  • the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the substrate 110.
  • the lower limit temperature and upper limit temperature vary depending on the material of the thin film to be formed, the material of the thin film already formed, etc., but the lower limit temperature is 50 ° C. or more in order to ensure the film quality with high gas barrier properties, and the upper limit temperature is the base material. It is preferable that it is below the heat-resistant temperature.
  • the correlation between the film quality of the thin film formed by the vacuum plasma CVD method and the film formation temperature, and the correlation between the damage to the film formation target (base material 110) and the film formation temperature are obtained in advance, and the lower limit temperature and upper limit temperature are It is determined.
  • the temperature of the substrate 110 during the vacuum plasma CVD process is preferably 50 to 250 ° C.
  • the relationship between the temperature of the heat medium supplied to the susceptor 105 and the temperature of the base material 110 when plasma is formed by applying a high frequency voltage of 13.56 MHz or higher to the cathode electrode 103 is measured in advance, and vacuum
  • the temperature of the heat medium supplied to the susceptor 105 is required.
  • the lower limit temperature (here, 50 ° C.) is stored, and a heat medium whose temperature is controlled to a temperature equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105.
  • the heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature of 50 ° C. is supplied to the susceptor 105.
  • a CVD gas a mixed gas of silane gas, ammonia gas, and nitrogen gas is supplied, and the SiN film is formed in a state in which the base material 110 is maintained at a temperature condition that is higher than the lower limit temperature and lower than the upper limit temperature.
  • the susceptor 105 Immediately after the startup of the vacuum plasma CVD apparatus 101, the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the activation, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature, and supplies it to the susceptor 105. In this case, the susceptor 105 and the base material 110 are heated and heated by the heat medium, and the base material 110 is maintained in the range of the lower limit temperature or higher and the upper limit temperature or lower.
  • the susceptor 105 When a thin film is continuously formed on a plurality of base materials 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (50 ° C.), the heating / cooling device 160 cools the heat medium and converts the heat medium at the set temperature into the susceptor. It supplies to 105. Thereby, a thin film can be formed, maintaining the base material 110 in the range below minimum temperature and below maximum temperature.
  • the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature.
  • a heat medium having a set temperature is supplied to the susceptor, and as a result, the substrate 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature.
  • the substrate 110 is unloaded from the vacuum chamber 102, the undeposited substrate 110 is loaded into the vacuum chamber 102, and a heat medium having a set temperature is supplied in the same manner as described above. While forming a thin film.
  • the first barrier layer preferably contains carbon, silicon, and oxygen as constituent elements.
  • a more preferable form is a layer that satisfies the following requirements (i) to (iii).
  • the first barrier layer is based on (i) the distance (L) from the surface of the first barrier layer in the film thickness direction of the first barrier layer and the total amount of silicon atoms, oxygen atoms, and carbon atoms.
  • Silicon distribution curve showing the relationship with the ratio of the amount of silicon atoms (silicon atomic ratio), the ratio of the amount of oxygen atoms to the total amount of L and silicon atoms, oxygen atoms, and carbon atoms (oxygen atomic ratio)
  • the carbon distribution curve showing the relationship between the L and the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (the atomic ratio of carbon).
  • the film thickness of the barrier layer In the region of 90% or more (upper limit: 100%) of the film thickness of the barrier layer, (oxygen atomic ratio), (silicon atomic ratio), (carbon atomic ratio) increase in this order (atomic ratio is O> Si> C) is preferred.
  • the above condition (i) is not satisfied, the gas barrier property and flexibility of the resulting gas barrier film may be insufficient.
  • the relationship among the above (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) is at least 90% or more (upper limit) of the film thickness of the first barrier layer. : 100%), and more preferably at least 93% or more (upper limit: 100%).
  • at least 90% or more of the film thickness of the first barrier layer does not have to be continuous in the first barrier layer, and simply satisfies the above-described relationship at 90% or more. Good.
  • the first barrier layer preferably has (ii) the carbon distribution curve has at least two extreme values.
  • the first barrier layer preferably has at least three extreme values in the carbon distribution curve, and more preferably has at least four extreme values, but may have five or more extreme values.
  • the extreme value of the carbon distribution curve is 1 or less, the gas barrier property may be insufficient when the obtained gas barrier film is bent.
  • the upper limit of the extreme value of the carbon distribution curve is not particularly limited. For example, it is preferably 30 or less, more preferably 25 or less, but the number of extreme values is also caused by the film thickness of the first barrier layer. Therefore, it cannot be specified in general.
  • the first barrier in the film thickness direction of the first barrier layer at one extreme value of the carbon distribution curve and an extreme value adjacent to the extreme value is preferably 200 nm or less, more preferably 100 nm or less, and 75 nm. It is particularly preferred that With such a distance between extreme values, a portion having a high carbon atom ratio (maximum value) exists in the first barrier layer at an appropriate period, so that appropriate flexibility is imparted to the first barrier layer. In addition, the generation of cracks when the gas barrier film is bent can be more effectively suppressed / prevented.
  • extreme value means a maximum value or a minimum value of an atomic ratio of an element to a distance (L) from the surface of the first barrier layer in the film thickness direction of the first barrier layer. That means.
  • maximum value means that the atomic ratio value of an element (oxygen, silicon, or carbon) changes from increasing to decreasing when the distance from the surface of the first barrier layer is changed.
  • the distance from the surface of the first barrier layer in the film thickness direction of the first barrier layer from the point is further changed within the range of 4 to 20 nm, rather than the atomic ratio value of the element at that point. This is the point where the atomic ratio value of the element at the position decreases by 3 at% or more.
  • the atomic ratio value of the element is reduced by 3 at% or more in any range when changing in the range of 4 to 20 nm.
  • the “minimum value” means that the value of the atomic ratio of an element (oxygen, silicon, or carbon) changes from a decrease to an increase when the distance from the surface of the first barrier layer is changed. The distance from the surface of the first barrier layer in the film thickness direction of the first barrier layer from the point is further changed within the range of 4 to 20 nm, rather than the value of the atomic ratio of the element at that point. This is the point at which the value of the atomic ratio of the element at the position increases by 3 at% or more.
  • the atomic ratio value of the element when changing in the range of 4 to 20 nm, the atomic ratio value of the element only needs to increase by 3 at% or more in any range.
  • the lower limit of the distance between the extreme values in the case of having at least three extreme values is particularly high because the smaller the distance between the extreme values, the higher the effect of suppressing / preventing crack generation when the gas barrier film is bent.
  • the thickness is preferably 10 nm or more, and more preferably 30 nm or more.
  • the first barrier layer has (iii) an absolute value of a difference between a maximum value and a minimum value of the atomic ratio of carbon in the carbon distribution curve (hereinafter also simply referred to as “C max ⁇ C min difference”) of 3 at. % Or more is preferable.
  • C max ⁇ C min difference an absolute value of a difference between a maximum value and a minimum value of the atomic ratio of carbon in the carbon distribution curve
  • the C max -C min difference is preferably 5 at% or more, more preferably 7 at% or more, and particularly preferably 10 at% or more.
  • the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values.
  • the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
  • the upper limit of the C max -C min difference is not particularly limited, but is preferably 50 at% or less, and is preferably 40 at% or less in consideration of the effect of suppressing / preventing crack generation when the gas barrier film is bent. It is more preferable that
  • the oxygen distribution curve of the first barrier layer preferably has at least one extreme value, more preferably has at least two extreme values, and further preferably has at least three extreme values.
  • the oxygen distribution curve has at least one extreme value
  • the gas barrier property when the obtained gas barrier film is bent is further improved as compared with a gas barrier film having no extreme value.
  • the upper limit of the extreme value of the oxygen distribution curve is not particularly limited, but is preferably 20 or less, more preferably 10 or less, for example. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the film thickness of the first barrier layer, and it cannot be defined unconditionally.
  • one extreme value of the oxygen distribution curve and the first barrier layer in the thickness direction of the first barrier layer at the extreme value adjacent to the extreme value is preferably 200 nm or less, and more preferably 100 nm or less. With such a distance between extreme values, the occurrence of cracks during bending of the gas barrier film can be more effectively suppressed / prevented.
  • the lower limit of the distance between the extreme values in the case of having at least three extreme values is not particularly limited, but considering the improvement effect of crack generation suppression / prevention when the gas barrier film is bent, the thermal expansion property, etc.
  • the thickness is preferably 10 nm or more, and more preferably 30 nm or more.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of oxygen in the oxygen distribution curve of the first barrier layer (hereinafter also simply referred to as “O max ⁇ O min difference”) is 3 at% or more. Preferably, it is 6 at% or more, and more preferably 7 at% or more. When the absolute value is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent is further improved.
  • the upper limit of the O max -O min difference is not particularly limited, but it is preferably 50 at% or less, and is preferably 40 at% or less in consideration of the effect of suppressing / preventing crack generation at the time of bending of the gas barrier film. It is more preferable that
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the first barrier layer (hereinafter also simply referred to as “Si max -Si min difference”) is 10 at% or less. Preferably, it is 7 at% or less, more preferably 3 at% or less. When the absolute value is 10 at% or less, the gas barrier property of the obtained gas barrier film is further improved.
  • the lower limit of Si max -Si min difference because the effect of improving the crack generation suppression / prevention during bending of Si max -Si min as gas barrier property difference is small film is high, is not particularly limited, and gas barrier property In consideration, it is preferably 1 at% or more, and more preferably 2 at% or more.
  • the total amount of carbon and oxygen atoms in the film thickness direction of the first barrier layer is substantially constant.
  • the 1st barrier layer exhibits moderate flexibility, and the crack generation at the time of bending of a gas barrier film is controlled and prevented more effectively.
  • the oxygen atoms and carbon atoms with respect to the distance (L) from the surface of the first barrier layer in the film thickness direction of the first barrier layer and the total amount of silicon atoms, oxygen atoms, and carbon atoms
  • the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the oxygen carbon distribution curve is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%.
  • the lower limit of the OC max -OC min difference since preferably as OC max -OC min difference is small, but is 0 atomic%, it is sufficient if more than 0.1 at%.
  • the silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are obtained by using X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination.
  • XPS X-ray photoelectron spectroscopy
  • rare gas ion sputtering such as argon in combination.
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is the distance (L from the surface of the first barrier layer in the film thickness direction of the first barrier layer in the film thickness direction). ) From the relationship between the etching rate and the etching time employed in the XPS depth profile measurement as “the distance from the surface of the first barrier layer in the film thickness direction of the first barrier layer”. The calculated distance from the surface of the first barrier layer can be employed.
  • the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve can be prepared under the following measurement conditions.
  • Etching ion species Argon (Ar + ) Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model name "VG Theta Probe", manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and its size: 800 ⁇ 400 ⁇ m oval.
  • the film thickness (dry film thickness) of the first barrier layer formed by the plasma CVD method is not particularly limited as long as the above (i) to (iii) are satisfied.
  • the film thickness per layer of the first barrier layer is preferably 20 to 3000 nm, more preferably 50 to 2500 nm, and particularly preferably 100 to 1000 nm. With such a film thickness, the gas barrier film can exhibit excellent gas barrier properties and the effect of suppressing / preventing cracking during bending.
  • each first barrier layer has the film thickness as described above.
  • the first barrier layer is in the film surface direction (parallel to the surface of the first barrier layer).
  • Direction is preferably substantially uniform.
  • the fact that the first barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve and the carbon are measured at any two measurement points on the film surface of the first barrier layer by XPS depth profile measurement.
  • the distribution curve and the oxygen carbon distribution curve are created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the atomic ratio of carbon in each carbon distribution curve The absolute value of the difference between the maximum value and the minimum value is the same or within 5 at%.
  • the carbon distribution curve is substantially continuous.
  • the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the carbon distribution curve is calculated from the etching rate and the etching time. The distance (x, unit: nm) from the surface of the first barrier layer in the film thickness direction of at least one layer of the first barrier layer and the atomic ratio of carbon (C, unit: at%) ), The condition expressed by the following formula 1 is satisfied.
  • the first barrier layer that satisfies all of the above conditions (i) to (iii) may include only one layer, or may include two or more layers. Further, when two or more such first barrier layers are provided, the materials of the plurality of first barrier layers may be the same or different.
  • the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are in a region of 90% or more of the film thickness of the first barrier layer.
  • the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first barrier layer is 20 to 45 at%. It is preferably 25 to 40 at%.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first barrier layer is preferably 45 to 75 at%, and preferably 50 to 70 at%. Is more preferable.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first barrier layer is preferably 0.5 to 25 at%, and 1 to 20 at%. More preferably.
  • the method for forming the first barrier layer is not particularly limited, and the conventional method and the method can be applied in the same manner or appropriately modified.
  • the first barrier layer is preferably a chemical vapor deposition (CVD) method, particularly a plasma chemical vapor deposition method (plasma CVD, PECVD (plasma-enhanced chemical vapor deposition), hereinafter simply referred to as “plasma CVD method”).
  • CVD chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • the plasma CVD method may be a Penning discharge plasma type plasma CVD method.
  • plasma discharge in a space between a plurality of film forming rollers it is preferable to generate plasma discharge in a space between a plurality of film forming rollers.
  • a pair of film forming rollers is used, and each of the pair of film forming rollers is used. More preferably, a substrate is placed and discharged between a pair of film forming rollers to generate plasma.
  • the film formation rate can be doubled compared to the plasma CVD method without using any roller, and since it is possible to form a film having a structure that is substantially the same, it is possible to at least double the extreme value in the carbon distribution curve, It is possible to efficiently form a layer that satisfies all of the above conditions (i) to (iii).
  • the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation.
  • the first barrier layer is preferably a layer formed by a continuous film formation process.
  • the gas barrier film according to the present invention preferably has the first barrier layer formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • an apparatus that can be used when the first barrier layer is manufactured by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source. It is preferable that the apparatus has a configuration capable of discharging between the film forming rollers. For example, in the case where the manufacturing apparatus shown in FIG. 2 is used, a roll-to-roll method using a plasma CVD method is used. Can also be manufactured.
  • FIG. 2 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the first barrier layer by this manufacturing method.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45.
  • a vacuum chamber (not shown).
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge into the space between the film forming roller 39 and the film forming roller 40 by supplying electric power from the plasma generating power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
  • the first barrier layer 3 can be formed on the surface of the substrate 2 by the CVD method, and the first barrier layer 3 is formed on the surface of the substrate 2 on the film formation roller 39. While the first barrier layer component is deposited, the first barrier layer component can be deposited on the surface of the substrate 2 also on the film forming roller 40, so that the first barrier is formed on the surface of the substrate 2. A layer can be formed efficiently.
  • magnetic field generators 43 and 44 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generating device 43 provided on one film forming roller 39 and a magnetic field generating device provided on the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between them and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell near the opposing surface of each film forming roller 39 and 40, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
  • the magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity.
  • By providing such magnetic field generators 43 and 44 the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 43 and 44 are opposed.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be converged on the magnetic field.
  • the material 2 is excellent in that the first barrier layer 3 that is a vapor deposition film can be efficiently formed.
  • the film formation roller 39 and the film formation roller 40 known rollers can be used as appropriate. As such film forming rollers 39 and 40, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 39 and 40 is preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity will not be deteriorated and it is possible to avoid applying the total amount of heat of the plasma discharge to the substrate 2 in a short time. It is preferable because damage to the material 2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the base material 2 is disposed on a pair of film forming rollers (the film forming roller 39 and the film forming roller 40) so that the surfaces of the base material 2 face each other.
  • the base material 2 By disposing the base material 2 in this manner, when the plasma is generated by performing discharge in the facing space between the film formation roller 39 and the film formation roller 40, the base existing between the pair of film formation rollers is present.
  • Each surface of the material 2 can be formed simultaneously. That is, according to such a manufacturing apparatus, the first barrier layer component is deposited on the surface of the base material 2 on the film forming roller 39 by the plasma CVD method, and the first film forming roller 40 further performs the first operation. Therefore, it is possible to efficiently form the first barrier layer on the surface of the substrate 2.
  • the winding roller 45 is not particularly limited as long as it can wind the gas barrier film 1 in which the first barrier layer 3 is formed on the substrate 2, and a known roller is appropriately used. Can be used.
  • gas supply pipe 41 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space.
  • the plasma generating power source 42 a known power source of a plasma generating apparatus can be used as appropriate.
  • a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used.
  • the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this.
  • the magnetic field generators 43 and 44 known magnetic field generators can be used as appropriate.
  • the base material 2 in addition to the base material used in the present invention, a material in which the first barrier layer 3 is previously formed can be used. As described above, by using the substrate 2 in which the first barrier layer 3 is formed in advance, the thickness of the first barrier layer 3 can be increased.
  • the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the transport of the film (base material) By appropriately adjusting the speed, the first barrier layer according to the present invention can be produced. That is, using the manufacturing apparatus 31 shown in FIG. 2, a discharge is generated between the pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber.
  • the film-forming gas (raw material gas or the like) is decomposed by plasma, and the first barrier layer 3 is formed on the surface of the base material 2 on the film-forming roller 39 and on the surface of the base material 2 on the film-forming roller 40.
  • a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 39 and 40, and the plasma is converged on the magnetic field.
  • the base material 2 passes the point A of the film forming roller 39 and the point B of the film forming roller 40 in FIG. 2, the maximum value of the carbon distribution curve is formed in the first barrier layer.
  • the base material 2 passes the points C1 and C2 of the film forming roller 39 and the points C3 and C4 of the film forming roller 40 in FIG. A local minimum is formed. For this reason, five extreme values are usually generated for two film forming rollers. Further, the distance between the extreme values of the first barrier layer (the surface of the first barrier layer in the thickness direction of the first barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value) (The absolute value of the difference in distance (L) from) can be adjusted by the rotation speed of the film forming rollers 39 and 40 (conveyance speed of the substrate). In such film formation, the substrate 2 is conveyed by the delivery roller 32, the film formation roller 39, and the like, respectively, so that the surface of the substrate 2 is formed by a roll-to-roll continuous film formation process. First barrier layer 3 is formed.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the first barrier layer 3 can be appropriately selected and used according to the material of the first barrier layer 3 to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • phenyltrimethoxysilane methyltriethoxy
  • Examples include silane and octamethylcyclotetrasiloxane.
  • hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of the handling properties of the compound and the gas barrier properties of the obtained first barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • organic compound gas containing carbon examples include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the type of the first barrier layer 3.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. It is excellent in that excellent barrier properties and flex resistance can be obtained by forming the first barrier layer 3 by not excessively increasing the ratio of the reaction gas. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • hexamethyldisiloxane organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O
  • one containing oxygen (O 2 ) as a reaction gas.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by plasma CVD to form a silicon-oxygen system
  • HMDSO, (CH 3 ) 6 Si 2 O hexamethyldisiloxane
  • O 2 oxygen
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, the first barrier layer that satisfies all the above conditions (i) to (iii) cannot be formed. Therefore, in the present invention, when the first barrier layer is formed, the stoichiometric amount of oxygen is set to 1 mole of hexamethyldisiloxane so that the reaction of the reaction formula 1 does not proceed completely.
  • the ratio is preferably less than 12 moles.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced.
  • the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
  • an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used.
  • the power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
  • the conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 20 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient film thickness as a 1st barrier layer, without impairing productivity.
  • a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. 2 as the first barrier layer according to the present invention.
  • the film is formed by the above. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently manufacture the first barrier layer in which the barrier performance is compatible.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
  • the first barrier layer according to the present invention is formed by a method (coating method) formed by modifying a coating film formed by applying a liquid containing an inorganic compound, preferably a liquid containing a silicon compound. May be.
  • a liquid containing an inorganic compound preferably a liquid containing a silicon compound.
  • the silicon compound will be described as an example of the inorganic compound, but the inorganic compound is not limited to the silicon compound.
  • the silicon compound is not particularly limited as long as a coating solution containing a silicon compound can be prepared.
  • perhydropolysilazane organopolysilazane, silsesquioxane, tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, Tetramethoxysilane, tetramethoxysilane, hexamethyldisiloxane, hexamethyldisilazane, 1,1-dimethyl-1-silacyclobutane, trimethylvinylsilane, methoxydimethylvinylsilane, trimethoxyvinylsilane, ethyltrimethoxysilane, dimethyldivinylsilane, dimethyl Ethoxyethynylsilane, diacetoxydimethylsilane, dimethoxymethyl-3,3,3-
  • silsesquioxane examples include Mayatels Q8 series and hydrogenated silsesquioxane containing no organic group.
  • polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane, etc. are preferable in terms of film formation, fewer defects such as cracks, and less residual organic matter, and high gas barrier performance.
  • Polysilazane is more preferable, and perhydropolysilazane is particularly preferable because the barrier performance is maintained even when bent and under high temperature and high humidity conditions.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • the polysilazane preferably has the following structure.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. .
  • R 1 , R 2 and R 3 may be the same or different.
  • examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms.
  • the aryl group include aryl groups having 6 to 30 carbon atoms.
  • non-condensed hydrocarbon group such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
  • non-condensed hydrocarbon group such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, nap
  • the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like.
  • the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with alkyl groups.
  • R 1 , R 2 and R 3 are preferably hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, phenyl, vinyl, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
  • n is an integer
  • the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group;
  • R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' and R 4 ' each represents a methyl group and R 5' represents a vinyl group;
  • R 1 ' , R 3' and R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
  • polysilazane has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 " , R 2" , R 3 " , R 4" , R 5 " , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. N “ , p " and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • the organopolysilazane in which a part of the hydrogen atom part bonded to Si is substituted with an alkyl group or the like has an improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • the ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Polysilazane is commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as the first barrier layer forming coating solution.
  • Examples of commercially available polysilazane solutions include Aquamica (registered trademark) NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, and NP110 manufactured by AZ Electronic Materials Co., Ltd. NP140, SP140 and the like.
  • polysilazane examples include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-23827), and a glycidol reaction.
  • a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide
  • glycidol-added polysilazane Japanese Patent Laid-Open No. 6-122852
  • alcohol-added polysilazane obtained by reacting alcohol
  • metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Fine particle added policy Zhang such (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
  • the content of polysilazane in the first barrier layer before the modification treatment may be 100% by weight when the total weight of the first barrier layer is 100% by weight.
  • the content of polysilazane in the layer is preferably 10% by weight or more and 99% by weight or less, and 40% by weight or more and 95% by weight or less. More preferably, it is 70 wt% or more and 95 wt% or less.
  • the method for forming the first barrier layer by the application method as described above is not particularly limited, and a known method can be applied. However, the first barrier layer formation containing a silicon compound and, if necessary, a catalyst in an organic solvent is possible. It is preferable to apply the coating liquid for coating by a known wet coating method, evaporate and remove the solvent, and then perform a modification treatment.
  • the solvent for preparing the first barrier layer forming coating solution is not particularly limited as long as it can dissolve the silicon compound, but water and reactive groups (for example, hydroxyl group) that easily react with the silicon compound.
  • the solvent includes an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben.
  • Hydrogen solvents Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to purposes such as the solubility of the silicon compound and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of the silicon compound in the first barrier layer-forming coating solution is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 5 to 50. % By weight, particularly preferably 10 to 40% by weight.
  • the first barrier layer forming coating solution preferably contains a catalyst in order to promote reforming.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by weight, more preferably 0.5 to 7% by weight, based on the silicon compound. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
  • the following additives can be used in the first barrier layer forming coating solution as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts in particular urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
  • a sol-gel method can be used for forming the first barrier layer.
  • the coating liquid used when forming the first barrier layer by the sol-gel method preferably contains a silicon compound and at least one of a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer. Further, the coating liquid preferably contains a sol-gel method catalyst, an acid, water, and an organic solvent. In the sol-gel method, the first barrier layer is obtained by polycondensation using such a coating solution.
  • the silicon compound an alkoxide represented by the general formula R A O Si (OR B ) p is preferably used.
  • R A and R B each independently represents an alkyl group having 1 to 20 carbon atoms
  • O represents an integer of 0 or more
  • p represents an integer of 1 or more.
  • Specific examples of the alkoxysilane include tetramethoxysilane (Si (OCH 3 ) 4 ), tetraethoxysilane (Si (OC 2 H 5 ) 4 ), and tetrapropoxysilane (Si (OC 3 H 7 ) 4. ), Tetrabutoxysilane (Si (OC 4 H 9 ) 4 ) and the like can be used.
  • the content of the polyvinyl alcohol-based resin and / or ethylene / vinyl alcohol copolymer in the coating solution is preferably in the range of 5 to 500 parts by weight with respect to 100 parts by weight of the total amount of the above silicon compound, and 20 to 200 parts by weight is more preferred.
  • a polyvinyl alcohol-type resin what is generally obtained by saponifying polyvinyl acetate can be used.
  • polyvinyl alcohol resin examples include partially saponified polyvinyl alcohol resin in which several tens of percent of acetate groups remain, completely saponified polyvinyl alcohol in which acetate groups do not remain, or modified polyvinyl alcohol in which OH groups have been modified. Any of these resins may be used.
  • Specific examples of the polyvinyl alcohol-based resin include Kuraray Poval (registered trademark) manufactured by Kuraray Co., Ltd., and Gohsenol (registered trademark) manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • a saponified product of a copolymer of ethylene and vinyl acetate that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer should be used.
  • a saponified product of a copolymer of ethylene and vinyl acetate that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer should be used.
  • Specific examples include partial saponification products in which several tens mol% of acetic acid groups remain to complete saponification products in which acetic acid groups remain only a few mol% or no acetic acid groups remain.
  • the preferable saponification degree is preferably 80 mol% or more, more preferably 90 mol% or more, and further preferably 95 mol% or more.
  • the content of the repeating unit derived from ethylene in the ethylene / vinyl alcohol copolymer is usually 0 to 50 mol%, preferably 20 to 45 mol%. It is preferable to use it.
  • ethylene content is usually 0 to 50 mol%, preferably 20 to 45 mol%. It is preferable to use it.
  • Specific examples of the above ethylene-vinyl alcohol copolymer include Kuraray Co., Ltd., EVAL (registered trademark) EP-F101 (ethylene content: 32 mol%), Nippon Synthetic Chemical Industry Co., Ltd., Soarnol (registered trademark). D2908 (ethylene content; 29 mol%) and the like can be used.
  • the sol-gel catalyst mainly a polycondensation catalyst, a tertiary amine that is substantially insoluble in water and soluble in an organic solvent is used.
  • a tertiary amine that is substantially insoluble in water and soluble in an organic solvent is used.
  • N, N-dimethylbenzylamine, tripropylamine, tributylamine, tripentylamine and the like can be used.
  • the acid include those used as a catalyst for the sol-gel method, mainly as a catalyst for hydrolysis of an alkoxide or a silane coupling agent.
  • the acid include mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as acetic acid and tartaric acid.
  • the coating solution preferably contains water in a proportion of preferably 0.1 to 100 mol, more preferably 0.8 to 2 mol with respect to 1 mol of the total molar amount of the alkoxide.
  • organic solvent used in the coating solution by the sol-gel method for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butanol and the like can be used.
  • ethylene / vinyl alcohol copolymer solubilized in a solvent for example, those commercially available as Soarnol (registered trademark, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) can be used.
  • Soarnol registered trademark, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • a silane coupling agent or the like can be added to the coating solution by the sol-gel method.
  • Method for applying first barrier layer forming coating solution As a method for applying the first barrier layer forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness per first barrier layer is preferably about 10 nm to 10 ⁇ m after drying, more preferably 15 nm to 1 ⁇ m, and further preferably 20 to 500 nm. preferable. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 10 ⁇ m or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
  • the coating film After applying the coating solution, it is preferable to dry the coating film.
  • the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable first barrier layer can be obtained. The remaining solvent can be removed later.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C.
  • the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the coating film obtained by applying the first barrier layer forming coating solution may include a step of removing moisture before or during the modification treatment.
  • a method for removing moisture a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature.
  • a preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is ⁇ 5 ° C.
  • the time for maintaining the dew point temperature of the first barrier layer is It is preferable to set appropriately depending on the film thickness. Under the condition that the film thickness of the first barrier layer is 1.0 ⁇ m or less, it is preferable that the dew point temperature is ⁇ 5 ° C. or less and the maintaining time is 1 minute or more.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher. It is preferable to perform a step of removing moisture before or during the modification treatment from the viewpoint of promoting the dehydration reaction of the first barrier layer converted to silanol.
  • the modification treatment of the first barrier layer formed by the coating method in the present invention refers to a conversion reaction of a silicon compound to silicon oxide, silicon oxynitride, or the like. Specifically, the gas barrier film of the present invention is entirely formed. The process which forms the inorganic thin film of the level which can contribute to expressing gas barrier property as.
  • the conversion reaction of the silicon compound to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method.
  • Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment, and heat treatment.
  • modification by heat treatment formation of a silicon oxide film or a silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or higher, so that it is difficult to adapt to a flexible substrate such as plastic. . For this reason, it is preferable to perform the heat treatment in combination with other reforming treatments.
  • a plasma treatment capable of a conversion reaction at a lower temperature or a conversion reaction by ultraviolet irradiation treatment is preferable.
  • a known method can be used for the plasma treatment that can be used as the reforming treatment, and an atmospheric pressure plasma treatment or the like can be preferably used.
  • the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum.
  • the film speed is high, and further, under a high pressure condition under atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free process is very short, so that a very homogeneous film can be obtained.
  • nitrogen gas or a gas containing Group 18 atoms of the long-period periodic table specifically helium, neon, argon, krypton, xenon, radon, or the like is used.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • the modification treatment can be efficiently performed by heat-treating the coating film containing the silicon compound in combination with another modification treatment, preferably an excimer irradiation treatment described later.
  • a layer is formed using a sol-gel method
  • the heating conditions are preferably 50 to 300 ° C., more preferably 70 to 200 ° C., preferably 0.005 to 60 minutes, more preferably 0.01 to 10 minutes. Condensation can be performed to form a first barrier layer.
  • the heat treatment for example, a method of heating a coating film by contacting a substrate with a heating element such as a heat block, a method of heating an atmosphere by an external heater such as a resistance wire, an infrared region such as an IR heater
  • a heating element such as a heat block
  • an external heater such as a resistance wire
  • an infrared region such as an IR heater
  • the temperature of the coating film during the heat treatment is preferably adjusted appropriately in the range of 50 to 250 ° C, and more preferably in the range of 50 to 120 ° C.
  • the heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 hour.
  • UV irradiation treatment As one of the modification treatment methods, treatment by ultraviolet irradiation is preferable. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures It is.
  • the substrate Due to this ultraviolet irradiation, the substrate is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated. The ceramicization is promoted, and the obtained first barrier layer becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
  • any commonly used ultraviolet ray generator can be used.
  • the ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
  • the irradiation intensity and the irradiation time are set within a range in which the substrate carrying the first barrier layer to be irradiated is not damaged.
  • a 2 kW (80 W / cm ⁇ 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm.
  • the distance between the substrate and the ultraviolet irradiation lamp can be set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the substrate temperature during ultraviolet irradiation treatment is 150 ° C. or more
  • the properties of the substrate are impaired, such as deformation of the substrate or deterioration of its strength.
  • a modification treatment at a higher temperature is possible.
  • the substrate temperature at the time of ultraviolet irradiation there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate.
  • ultraviolet ray generating means examples include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by M.D. Com Co., Ltd.), UV light laser, and the like, but are not particularly limited.
  • the ultraviolet rays from the generation source are reflected by the reflector and then applied to the first barrier layer. It is preferable to apply.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • the laminated body having the first barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with the above-described ultraviolet ray generation source.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the laminated body which has a 1st barrier layer on the surface is a elongate film form, it irradiates an ultraviolet-ray continuously in the drying zone equipped with the above ultraviolet-ray generation sources, conveying this. Can be made into ceramics.
  • the time required for the ultraviolet irradiation is generally from 0.1 second to 10 minutes, preferably from 0.5 second to 3 minutes, depending on the base material used and the composition and concentration of the first barrier layer.
  • the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
  • the treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes.
  • This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action.
  • the radiation source in the present invention may be any radiation source that emits light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), and has an emission line at about 185 nm.
  • Excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp)
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm, more preferably 50 to 10,000 volume ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1,000 to 4,000 volume ppm.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is less than 1 mW / cm 2 , the reforming efficiency may be greatly reduced. If it exceeds 10 W / cm 2 , the coating film may be ablated or the substrate may be damaged.
  • Irradiation energy amount of the VUV in the coated surface is preferably 10 ⁇ 10,000mJ / cm 2, more preferably 100 ⁇ 8,000mJ / cm 2, 200 ⁇ 6,000mJ More preferably, it is / cm 2 . Is less than 10 mJ / cm 2, there is a fear that the reforming becomes insufficient, 10,000 / cm 2 than the cracking or due to excessive modification concerns the thermal deformation of the substrate emerges.
  • the vacuum ultraviolet light used for the modification may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas).
  • the carbon-containing gas may be used alone, but is preferably used as a mixed gas in which a rare gas or H 2 is used as a main gas and a small amount of carbon-containing gas is added. Examples of plasma generation methods include capacitively coupled plasma.
  • Si—H bonds and N—H bonds in perhydropolysilazane are cleaved relatively easily by excitation with vacuum ultraviolet irradiation and the like. It is considered that they are recombined as N (a dangling bond of Si may be formed). That is, it is cured as a SiN y composition without being oxidized. In this case, the polymer main chain is not broken. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
  • Adjustment of the composition of the silicon oxynitride of the layer obtained by subjecting the polysilazane-containing layer to vacuum ultraviolet irradiation can be performed by controlling the oxidation state by appropriately combining the oxidation mechanisms (I) to (IV) described above. .
  • the SiO absorbance is calculated by absorption (absorbance) at about 1160 cm ⁇ 1
  • the SiN absorbance is about 840 cm ⁇ 1 . It shows that conversion to the ceramic close
  • the SiO / SiN ratio serving as an index of the degree of conversion to ceramic is preferably 0.3 or more, more preferably 0.5 or more. If it is less than 0.3, the expected gas barrier property may not be obtained.
  • a measuring method of silica conversion rate ( x in SiOx) it can measure using XPS method, for example.
  • the film composition of the first barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer.
  • the film composition can also be measured by cutting the first barrier layer and measuring the atomic composition ratio of the cut surface with an XPS surface analyzer.
  • the film density of the first barrier layer can be appropriately set according to the purpose.
  • the film density of the first barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . If it is out of this range, the density of the film is lowered, and the barrier property may be deteriorated or the film may be oxidized and deteriorated due to humidity.
  • the first barrier layer may be a single layer or a laminated structure of two or more layers.
  • each first barrier layer may have the same composition or a different composition.
  • the first barrier layer may be composed only of a layer formed by a vacuum film forming method, or only from a layer formed by a coating method. It may be a combination of a layer formed by a vacuum film forming method and a layer formed by a coating method.
  • the first barrier layer preferably contains a nitrogen element or a carbon element from the viewpoint of stress relaxation and absorption of ultraviolet rays used for forming the second barrier layer described later.
  • a nitrogen element or a carbon element from the viewpoint of stress relaxation and absorption of ultraviolet rays used for forming the second barrier layer described later.
  • the chemical composition of the first barrier layer can be controlled by the type and amount of the silicon compound and the like when forming the first barrier layer, and the conditions when modifying the layer containing the silicon compound.
  • the second barrier layer according to the present invention provided on the first barrier layer contains at least silicon atoms and oxygen atoms, and the abundance ratio of oxygen atoms to silicon atoms (O / Si) is 1.4 to 2.2, and the abundance ratio of nitrogen atoms to silicon atoms (N / Si) is 0 to 0.4.
  • the abundance ratio of oxygen atoms to silicon atoms (O / Si) is 1.4 to 2.2” means any depth of the second barrier layer measured by the apparatus and method described later. Even in terms of points, this means that there is no portion where O / Si is less than 1.4 or greater than 2.2.
  • the abundance ratio of nitrogen atoms to silicon atoms (N / Si) is 0 to 0.4” means any depth of the second barrier layer measured by the apparatus and method described later. , N / Si means that there is no portion showing a value exceeding 0.4.
  • the second barrier layer When the abundance ratio of oxygen atoms to silicon atoms (O / Si) in the second barrier layer is 1.4 or more, the second barrier layer hardly reacts with moisture under high temperature and high humidity, and the barrier property is improved. It becomes easy to form a film. On the other hand, if it is 2.2 or less, silanol groups (Si—OH) are reduced in the molecule, and it becomes difficult for moisture to pass therethrough and a sufficient barrier property cannot be obtained.
  • the O / Si is preferably 1.5 to 2.1, more preferably 1.7 to 2.0.
  • the second barrier layer becomes difficult to react with moisture under high temperature and high humidity, and the barrier property is improved. It becomes easy to form a film.
  • the N / Si is preferably 0 to 0.3, more preferably 0 to 0.2.
  • the O / Si and the N / Si can be controlled by the amount of additive compounds such as water, alcohol compounds and metal alkoxide compounds described later, the amount of irradiation energy of vacuum ultraviolet rays, the temperature during irradiation, and the like.
  • the O / Si and the N / Si can be measured by the following method. That is, the composition profile of the second barrier layer can be obtained by combining an Ar sputter etching apparatus and X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the profile distribution in the depth direction can be calculated by film processing by a FIB (focused ion beam) processing apparatus and by obtaining the actual film thickness by TEM (transmission electron microscope) and making it correspond to the XPS result.
  • FIB focused ion beam
  • FIG. 1 (FIB processing) Device: SII SMI2050 Processed ions: (Ga 30 kV) (TEM observation) Apparatus: JEOL JEM2000FX (acceleration voltage: 200 kV) Electron beam irradiation time: 5 to 60 seconds (element ratio in the depth direction of the film thickness from the surface of the second barrier layer)
  • the XPS measurement (attention to Si, O, N) at each depth obtained by sputtering from the surface of the second barrier layer described above and the result of tomographic plane observation by TEM are collated, and O / Si and N / The average value of Si was calculated.
  • the difference from the average value of the abundance ratio is preferably 0.4 or less.
  • the region from the outermost surface to the depth of 10 nm in the second barrier layer can be determined by X-ray photoelectron spectroscopy (XPS).
  • the formation method for obtaining the second barrier layer as described above is not particularly limited, but polysilazane and a compound other than polysilazane (hereinafter also simply referred to as an additive compound) are used from the viewpoints of productivity, simplicity, and the like.
  • a method of performing a modification treatment by irradiating the active layer with an active energy ray is preferable.
  • a method for forming such a second barrier layer will be described.
  • the method for forming the second barrier layer is not particularly limited, but a second barrier layer-forming coating solution containing an inorganic compound, preferably polysilazane, an additive compound, and, if necessary, a catalyst in an organic solvent is publicly known. Apply by wet coating method, remove this solvent by evaporating, then irradiate with active energy rays such as ultraviolet ray, electron beam, X-ray, ⁇ -ray, ⁇ -ray, ⁇ -ray, neutron beam, etc. The method of performing is preferred.
  • polysilazane A specific example of polysilazane is the same as the content described in the section of “First Barrier Layer” above, and thus description thereof is omitted here.
  • perhydropolysilazane is particularly preferable from the viewpoints of film forming properties, few defects such as cracks, few residual organic substances, and that barrier performance is maintained even when bent and under high temperature and high humidity conditions. .
  • the additive compound examples include at least one selected from the group consisting of water, alcohol compounds, phenol compounds, metal alkoxide compounds, alkylamine compounds, alcohol-modified polysiloxanes, alkoxy-modified polysiloxanes, and alkylamino-modified polysiloxanes.
  • Compounds At least one compound selected from the group consisting of alcohol compounds, phenol compounds, metal alkoxide compounds, alkylamine compounds, alcohol-modified polysiloxanes, alkoxy-modified polysiloxanes, and alkylamino-modified polysiloxanes is more preferable.
  • the alcohol compound used as the additive compound include, for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol, octanol, and isooctanol.
  • the alcohol compound undergoes a dehydrogenative condensation reaction between the Si—H group that can be included in the polysilazane skeleton and the OH group in the alcohol compound during the reforming process to form a Si—O—R bond. Therefore, the storage stability under high temperature and high humidity is further improved.
  • these alcohol compounds methanol, ethanol, 1-propanol, or 2-propanol having a small number of carbon atoms and a boiling point of 100 ° C. or less is more preferable.
  • phenol compound used as the additive compound include, for example, phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol.
  • the phenol compound also undergoes a dehydrogenative condensation reaction between the Si—H group that can be included in the polysilazane skeleton and the OH group in the phenol compound during the modification treatment, and Si—O. Since the —R bond is formed, the storage stability under high temperature and high humidity is further improved.
  • metal alkoxide compound used as the additive compound examples include beryllium (Be), boron (B), magnesium (Mg), aluminum (Al), silicon (Si), calcium (Ca), scandium (Sc), and titanium (Ti). , Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge) , Strontium (Sr), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Technetium (Tc), Ruthenium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag) , Cadmium (Cd), indium (In), tin (Sn), barium (Ba), lanthanum (La), selenium (Ce), praseodymium (Pr), neodymium (Nd), prom
  • metal alkoxide compounds include, for example, beryllium acetylacetonate, trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tri-tert borate.
  • Silsesquioxane can also be used as the metal alkoxide compound.
  • Silsesquioxane is a siloxane-based compound whose main chain skeleton is composed of Si—O bonds, and is also called T-resin, whereas ordinary silica is represented by the general formula [SiO 2 ].
  • Silsesquioxane (also referred to as polysilsesquioxane) is a compound represented by the general formula [RSiO 1.5 ].
  • a (RSi (OR ') 3 ) compound in which one alkoxy group of tetraalkoxysilane (Si (OR') 4 ) represented by tetraethoxysilane is replaced with an alkyl group or an aryl group.
  • the polysiloxane to be synthesized, and the molecular arrangement is typically amorphous, ladder-like, or cage-like (fully condensed cage-like).
  • Silsesquioxane may be synthesized or commercially available. Specific examples of the latter include X-40-2308, X-40-9238, X-40-9225, X-40-9227, x-40-9246, KR-500, KR-510 (all of which are Shin-Etsu Chemical) Kogyo Co., Ltd.), SR2400, SR2402, SR2405, FOX14 (perhydrosilcelsesquioxane) (all manufactured by Toray Dow Corning Co., Ltd.), SST-H8H01 (perhydrosilcelsesquioxane) (Gelest) Manufactured) and the like.
  • a compound having a branched alkoxy group is preferable from the viewpoint of reactivity and solubility, and a compound having a 2-propoxy group or a sec-butoxy group is more preferable.
  • metal alkoxide compounds having an acetylacetonate group are also preferred.
  • the acetylacetonate group is preferable because it has an interaction with the central element of the alkoxide compound due to the carbonyl structure, so that handling is easy.
  • a compound having a plurality of alkoxide groups or acetylacetonate groups is more preferable from the viewpoint of reactivity and film composition.
  • the central element of the metal alkoxide an element that easily forms a coordinate bond with a nitrogen atom in polysilazane is preferable, and Al, Fe, or B having high Lewis acidity is more preferable.
  • More preferable metal alkoxide compounds are, specifically, triisopropyl borate, aluminum trisec-butoxide, aluminum ethyl acetoacetate diisopropylate, calcium isopropoxide, titanium tetraisopropoxide, gallium isopropoxide, aluminum dioxide. Isopropylate mono sec-butyrate, aluminum ethyl acetoacetate di n-butyrate, or aluminum diethyl acetoacetate mono n-butyrate.
  • metal alkoxide compound a commercially available product or a synthetic product may be used.
  • commercially available products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate diisopropylate), ALCH-TR (aluminum tris).
  • Ethyl acetoacetate Ethyl acetoacetate
  • aluminum chelate M aluminum alkyl acetoacetate / diisopropylate
  • aluminum chelate D aluminum chelate
  • aluminum chelate A W
  • AL-M acetoalkoxy aluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.
  • Moth Chicks series manufactured by Matsumoto Fine Chemical Co., Ltd.
  • metal alkoxide compound when using a metal alkoxide compound, it is preferable to mix with the solution containing polysilazane in inert gas atmosphere. This is to prevent the metal alkoxide compound from reacting with moisture and oxygen in the atmosphere and causing intense oxidation.
  • alkylamine compound examples include primary amine compounds such as methylamine, ethylamine, propylamine, n-butylamine, sec-butylamine, tert-butylamine, 3-morpholinopropylamine; dimethylamine, diethylamine, Secondary amine compounds such as methylethylamine, dipropylamine, di (n-butyl) amine, di (sec-butyl) amine, di (tert-butyl) amine; trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, tripropyl Amines, tri (n-butyl) amine, tri (sec-butyl) amine, tri (tert-butyl) amine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, etc.
  • tertiary amine compounds Such as tertiary amine compounds.
  • a diamine compound can be used as the alkylamine compound.
  • the diamine compound include tetramethylmethanediamine, tetramethylethanediamine, tetramethylpropanediamine (tetramethyldiaminopropane), tetramethylbutanediamine, tetramethylpentanediamine, tetramethylhexanediamine, tetraethylmethanediamine, tetraethylethane.
  • Examples include diamine, tetraethylpropanediamine, tetraethylbutanediamine, tetraethylpentanediamine, tetraethylhexanediamine, N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH), and tetramethylguanidine.
  • TDAH N-tetramethyl-1,6-diaminohexane
  • modified polysiloxanes such as hydroxy-modified polysiloxanes having hydroxy groups, alkoxy-modified polysiloxanes having alkoxy groups, and alkylamino-modified polysiloxanes having alkylamino groups can be preferably used as additive compounds.
  • polysiloxanes represented by the following general formula (4) or general formula (5) can be preferably used.
  • R 4 to R 7 are each independently a hydrogen atom, a hydroxy group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylamino group, or a substituent. Or an unsubstituted aryl group, wherein at least one of R 4 and R 5 and at least one of R 6 and R 7 is a hydroxy group, an alkoxy group, or an alkylamino group, p and q are each independently an integer of 1 or more.
  • the modified polysiloxane may be a commercially available product or a synthetic product.
  • commercially available products include, for example, X-40-2651, X-40-2655A, KR-513, KC-89S, KR-500, X-40-9225, X-40-9246, X-40-9250 KR-401N, X-40-9227, X-40-9247, KR-510, KR9218, KR-213, X-40-2308, X-40-9238 (manufactured by Shin-Etsu Chemical Co., Ltd.), etc. Can be mentioned.
  • the degree of modification of the hydroxy group, alkoxy group or alkylamino group in the modified polysiloxane is preferably 5 mol% to 50 mol%, more preferably 7 mol% to 20 mol%, based on the number of moles of silicon atoms. More preferred is mol% to 12 mol%.
  • the polystyrene-reduced weight average molecular weight of the modified polysiloxane is preferably about 1,000 to 100,000, more preferably 2,000 to 50,000.
  • the solvent for preparing the second barrier layer-forming coating solution is not particularly limited as long as it can dissolve the polysilazane and the additive compound, but water and reactive groups that easily react with polysilazane (for example, , A hydroxyl group, an amine group, etc.) and an inert organic solvent with respect to polysilazane is preferred, and an aprotic organic solvent is more preferred.
  • an aprotic organic solvent for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, turben, etc.
  • Hydrocarbon solvents such as methylene chloride and trichloroethane; esters such as ethyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; and alicyclic ethers Ethers such as: for example, tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes) and the like.
  • the said solvent may be used independently or may be used with the form of a 2 or more types of mixture.
  • the concentration of polysilazane in the second barrier layer-forming coating solution is not particularly limited and varies depending on the layer thickness and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 5 to 50% by weight. %, Particularly preferably 10 to 40% by weight.
  • the amount of the additive compound used in the second coating solution for forming the barrier layer is preferably 1 to 50% by weight, more preferably 1 to 15% by weight based on the polysilazane. If it is this range, the 2nd barrier layer based on this invention can be obtained efficiently.
  • the second barrier layer forming coating solution preferably contains a catalyst in order to promote reforming.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • an amine catalyst it is preferable to use an amine catalyst.
  • concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by weight, more preferably 0.5 to 7% by weight, based on the silicon compound. By setting the amount of the catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
  • the amine catalyst can also serve as the additive compound.
  • the following additives may be used as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • Method for applying second barrier layer forming coating solution As a method of applying the second barrier layer forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness per second barrier layer is preferably about 10 nm to 10 ⁇ m after drying, more preferably 15 nm to 1 ⁇ m, and further preferably 20 to 500 nm. preferable. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 10 ⁇ m or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
  • the method for removing moisture from the coating film obtained by applying the second barrier layer forming coating solution is the same as that described in the section of “First Barrier Layer”. Description is omitted.
  • a preferable method for the modification treatment of the obtained coating film is the same as the contents described in (Ultraviolet irradiation treatment) and (Vacuum ultraviolet irradiation treatment: Excimer irradiation treatment) in the section of the “first barrier layer”. Therefore, explanation is omitted here.
  • the illuminance of the vacuum ultraviolet light on the surface of the coating film formed from the second barrier layer forming coating solution is preferably 1 mW / cm 2 to 10 W / cm 2 , and preferably 30 mW / cm 2. more preferably from ⁇ 200mW / cm 2, further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is less than 1 mW / cm 2 , the reforming efficiency may be greatly reduced. If it exceeds 10 W / cm 2 , the coating film may be ablated or the substrate may be damaged.
  • the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays on the coating film surface formed from the second barrier layer forming coating solution is preferably 10 to 10,000 mJ / cm 2 , and preferably 100 to 8,000 mJ. / Cm 2 is more preferable, and 200 to 6,000 mJ / cm 2 is even more preferable. Is less than 10 mJ / cm 2, there is a fear that the reforming becomes insufficient, 10,000 / cm 2 than the cracking or due to excessive modification concerns the thermal deformation of the substrate emerges.
  • the film density of the second barrier layer can be appropriately set according to the purpose.
  • the film density of the second barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . If it is out of this range, the density of the film is lowered, and the barrier property may be deteriorated or the film may be oxidized and deteriorated due to humidity.
  • the second barrier layer may be a single layer or a laminated structure of two or more layers.
  • each second barrier layer may have the same composition or a different composition as long as the above conditions are satisfied.
  • the abundance ratio of oxygen atoms to silicon atoms, the abundance ratio of nitrogen atoms to silicon atoms, and the average value and the maximum abundance ratio of oxygen atoms to silicon atoms in the region from the outermost surface to a depth of 10 nm is the type and amount of polysilazane and additive compound used in forming the second barrier layer, and polysilazane and addition It can be controlled by the conditions at the time of modifying the layer containing the compound.
  • the gas barrier film of the present invention may have an intermediate layer between the first barrier layer and the second barrier layer for the purpose of stress relaxation and the like.
  • a method of forming the intermediate layer a method of forming a polysiloxane modified layer can be applied.
  • a coating liquid containing polysiloxane is applied on the first barrier layer by a wet coating method and dried, and then the coating film obtained by drying is irradiated with vacuum ultraviolet light. This is a method of forming an intermediate layer.
  • the coating solution used for forming the intermediate layer preferably contains polysiloxane and an organic solvent.
  • the polysiloxane applicable to the formation of the intermediate layer is not particularly limited, but an organopolysiloxane represented by the following general formula (6) is particularly preferable.
  • organopolysiloxane represented by the following general formula (6) will be described as an example of polysiloxane.
  • R 8 to R 13 each independently represents an organic group having 1 to 8 carbon atoms. At this time, at least one of R 8 to R 13 is an alkoxy group or a hydroxyl group. M is an integer of 1 or more.
  • Examples of the organic group having 1 to 8 carbon atoms represented by R 8 to R 13 include halogenated alkyl groups such as ⁇ -chloropropyl group and 3,3,3-trifluoropropyl group, vinyl group, and phenyl group.
  • (Meth) acrylic acid ester groups such as ⁇ -methacryloxypropyl group, epoxy-containing alkyl groups such as ⁇ -glycidoxypropyl group, mercapto-containing alkyl groups such as ⁇ -mercaptopropyl group, ⁇ -aminopropyl group, etc.
  • Isocyanate-containing alkyl groups such as aminoalkyl groups and ⁇ -isocyanatopropyl groups, linear or branched alkyl groups such as methyl groups, ethyl groups, n-propyl groups and isopropyl groups, alicyclic groups such as cyclohexyl groups and cyclopentyl groups Linear or branched alkoxy such as alkyl group, methoxy group, ethoxy group, n-propoxy group, isopropoxy group Group, an acetyl group, a propionyl group, a butyryl group, valeryl group, an acyl group such as caproyl group, and a hydroxyl group.
  • an organopolysiloxane having m of 1 or more and a polystyrene equivalent weight average molecular weight of 1,000 to 20,000 is particularly preferred. If the weight average molecular weight in terms of polystyrene of the organopolysiloxane is 1,000 or more, the protective layer to be formed is hardly cracked, and water vapor barrier properties can be maintained. The intermediate layer is sufficiently cured, so that a sufficient hardness can be obtained as a protective layer.
  • examples of the organic solvent applicable to the formation of the intermediate layer include alcohol solvents, ketone solvents, amide solvents, ester solvents, aprotic solvents, and the like.
  • examples of the alcohol solvent include n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec- Pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene Glycol monobutyl ether and the like are preferable.
  • ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl.
  • ketone di-iso-butyl ketone, trimethylnonanone, cyclohexanone, 2-hexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, fenchon, acetylacetone, 2,4-hexanedione, 2 , 4-heptanedione, 3,5-heptanedione, 2,4-octanedione, 3,5-octanedione, 2,4-nonanedione, 3,5-nonanedione, 5-methyl-2,4-hexanedione, 2,2,6,6-tetrame Le-3,5-heptane dione, 1,1,1,5,5,5 beta-diketones such as hexafluoro-2,4-heptane dione and the like.
  • ketone solvents may be used alone or in combination of two or more.
  • amide solvents include formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide N, N-diethylacetamide, N-methylpropionamide, N-methylpyrrolidone, N-formylmorpholine, N-formylpiperidine, N-formylpyrrolidine, N-acetylmorpholine, N-acetylpiperidine, N-acetylpyrrolidine, etc. Can be mentioned. These amide solvents may be used alone or in combination of two or more.
  • ester solvents include diethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -valerolactone, n-propyl acetate, iso-propyl acetate, n-butyl acetate, and iso -Butyl, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-acetate -Nonyl, methyl acetoacetate, ethyl acetoacetate, ethylene glycol monomethyl ether acetate, methyl
  • Aprotic solvents include acetonitrile, dimethyl sulfoxide, N, N, N ′, N′-tetraethylsulfamide, hexamethylphosphoric triamide, N-methylmorpholone, N-methylpyrrole, N-ethylpyrrole, N -Methylpiperidine, N-ethylpiperidine, N, N-dimethylpiperazine, N-methylimidazole, N-methyl-4-piperidone, N-methyl-2-piperidone, N-methyl-2-pyrrolidone, 1,3-dimethyl Examples include -2-imidazolidinone and 1,3-dimethyltetrahydro-2 (1H) -pyrimidinone. These aprotic solvents may be used alone or in combination of two or more.
  • alcohol solvents are preferable among the above organic solvents.
  • Examples of the coating method for the coating liquid for forming the intermediate layer include spin coating, dipping, roller blade, and spraying.
  • the thickness of the intermediate layer formed by the coating liquid for forming the intermediate layer is preferably in the range of 100 nm to 10 ⁇ m. If the thickness of the intermediate layer is 100 nm or more, gas barrier properties under high temperature and high humidity can be ensured. Moreover, if the thickness of the intermediate layer is 10 ⁇ m or less, stable coating properties can be obtained when forming the intermediate layer, and high light transmittance can be realized.
  • the intermediate layer usually has a film density of 0.35 to 1.2 g / cm 3 , preferably 0.4 to 1.1 g / cm 3 , more preferably 0.5 to 1.0 g / cm 3. It is. If the film density is 0.35 g / cm 3 or more, sufficient mechanical strength of the coating film can be obtained.
  • the intermediate layer in the present invention is obtained by applying a coating solution containing polysiloxane onto the first barrier layer by a wet coating method and drying it, and then irradiating the dried coating film (polysiloxane coating film) with vacuum ultraviolet light. To form.
  • vacuum ultraviolet light used for the formation of the intermediate layer vacuum ultraviolet light by the same vacuum ultraviolet light irradiation treatment as described in the formation of the barrier layer can be applied.
  • the integrated light quantity of vacuum ultraviolet light for forming the intermediate layer by reforming polysiloxane film is preferably 500 mJ / cm 2 or more 10,000 / cm 2 or less. If the cumulative amount of vacuum ultraviolet light is 500 mJ / cm 2 or more, sufficient gas barrier performance can be obtained, and if it is 10,000 mJ / cm 2 or less, an intermediate layer having high smoothness without deforming the substrate. Can be formed.
  • the intermediate layer in the present invention is preferably formed through a heating step in which the heating temperature is 50 ° C. or higher and 200 ° C. or lower. If the heating temperature is 50 ° C. or higher, sufficient barrier properties can be obtained, and if it is 200 ° C. or lower, an intermediate layer having high smoothness can be formed without deforming the substrate.
  • a heating method using a hot plate, an oven, a furnace, or the like can be applied to this heating step.
  • the heating atmosphere may be any condition such as air, nitrogen atmosphere, argon atmosphere, vacuum, or reduced pressure with controlled oxygen concentration.
  • a polysiloxane coating film is formed on the polysilazane coating film that has been subjected to the vacuum ultraviolet light irradiation treatment, and after the vacuum ultraviolet light irradiation treatment is applied to the polysiloxane coating film, a heat treatment of 100 ° C. or higher and 250 ° C. or lower is performed. And the first barrier layer and the intermediate layer may be formed.
  • a protective layer containing an organic compound may be provided on the second barrier layer.
  • an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. Can do.
  • the gas barrier film of the present invention may have a desiccant layer (moisture adsorption layer).
  • a desiccant layer moisture adsorption layer
  • the material used for the desiccant layer include calcium oxide and organometallic oxide.
  • calcium oxide those dispersed in a binder resin or the like are preferable, and as a commercially available product, for example, AqvaDry (registered trademark) series manufactured by SAES Getter Co., Ltd. can be preferably used.
  • As the organic metal oxide OleDry (registered trademark) series manufactured by Futaba Electronics Co., Ltd. or the like can be used.
  • the gas barrier film of the present invention may have a smooth layer (underlayer, primer layer) between the surface of the substrate having the barrier layer, preferably between the substrate and the first barrier layer.
  • the smooth layer is provided in order to flatten the rough surface of the substrate on which the protrusions and the like exist, or to fill the unevenness and pinholes generated in the barrier layer with the protrusions on the substrate and to flatten the surface.
  • Such a smooth layer may be formed of any material, but preferably includes a carbon-containing polymer, and more preferably includes a carbon-containing polymer. That is, it is preferable that the gas barrier film of the present invention further has a smooth layer containing a carbon-containing polymer between the substrate and the first barrier layer.
  • the smooth layer also contains a carbon-containing polymer, preferably a curable resin.
  • the curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material or the like with an active energy ray such as an ultraviolet ray to be cured is heated. And thermosetting resins obtained by curing. These curable resins may be used alone or in combination of two or more.
  • Examples of the active energy ray-curable material used for forming the smooth layer include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, and polyester.
  • Examples include compositions containing polyfunctional acrylate monomers such as acrylates, polyether acrylates, polyethylene glycol acrylates, and glycerol methacrylates.
  • an organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series compound formed by bonding an organic compound having a polymerizable unsaturated group to silica fine particles
  • JSR Corporation ultraviolet curable material manufactured by JSR Corporation.
  • the method for forming the smooth layer is not particularly limited, but a coating solution containing a curable material is applied to a dry coating method such as a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method, or a vapor deposition method.
  • a dry coating method such as a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method, or a vapor deposition method.
  • active energy rays such as visible light, infrared rays, ultraviolet rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, electron beams, and / or heating.
  • a method of forming by curing is preferred.
  • an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a metal halide lamp or the like is preferably used to irradiate ultraviolet rays in a wavelength region of 100 to 400 nm, more preferably 200 to 400 nm.
  • a method of irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator can be used.
  • the smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
  • the surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (atomic force microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens of times with a stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of ⁇ m many times.
  • AFM atomic force microscope
  • the thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • an anchor coat layer may be formed as an easy-adhesion layer for the purpose of improving adhesion (adhesion).
  • the anchor coat agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene / vinyl alcohol resin, vinyl-modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. Can be used alone or in combination of two or more.
  • a commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” in 3% isopropyl alcohol) can be used.
  • the above-mentioned anchor coating agent is coated on a substrate by a known method such as a roll coating method, a gravure coating method, a knife coating method, a dip coating method, or a spray coating method, and the solvent, diluent and the like are removed by drying. Can be coated.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state).
  • a commercially available base material with an easy-adhesion layer may be used.
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • the gas barrier film of the present invention can further have a bleed-out preventing layer.
  • the bleed-out prevention layer has a smooth layer for the purpose of suppressing a phenomenon in which unreacted oligomers and the like migrate from the base material to the surface when the film having the smooth layer is heated to contaminate the contact surface.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • Compounds that can be included in the bleed-out prevention layer include polyunsaturated organic compounds having two or more polymerizable unsaturated groups in the molecule, or one polymerizable unsaturated group in the molecule.
  • Hard coat agents such as unitary unsaturated organic compounds can be mentioned.
  • the polyunsaturated organic compound for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dicyclopentanyl di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, ditrimethylolprop Tetra (meth) acrylate, di
  • Examples of monounsaturated organic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, and lauryl.
  • Matting agents may be added as other additives.
  • the matting agent inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
  • inorganic particles one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
  • the thickness of the bleed-out prevention layer is preferably 1 to 10 ⁇ m, and more preferably 2 to 7 ⁇ m. By making it 1 ⁇ m or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 ⁇ m or less, it becomes easy to adjust the balance of the optical properties of the smooth film, and the smooth layer is one of the transparent polymer films. When it is provided on this surface, curling of the barrier film can be easily suppressed.
  • the gas barrier film of the present invention can be continuously produced and wound into a roll form (so-called roll-to-roll production). In that case, it is preferable to stick and wind up a protective sheet on the surface in which the barrier layer was formed.
  • a protective sheet is applied in a place with a high degree of cleanliness. It is very effective to prevent the adhesion of dust. In addition, it is effective for preventing scratches on the surface of the barrier layer that enters during winding.
  • the protective sheet is not particularly limited, and general “protective sheet” and “release sheet” having a configuration in which a weakly adhesive layer is provided on a resin substrate having a thickness of about 100 ⁇ m can be used.
  • the gas barrier film of the present invention can be preferably used for a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
  • the device include electronic devices such as an organic EL element, a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV). From the viewpoint that the effect of the present invention can be obtained more efficiently, it is preferably used for an organic EL device or a solar cell, and particularly preferably used for an organic EL device.
  • the gas barrier film of the present invention can also be used for device film sealing. That is, it is a method of providing the gas barrier film of the present invention on the surface of the device itself as a support.
  • the device may be covered with a protective layer before providing the gas barrier film.
  • the gas barrier film of the present invention can also be used as a device substrate or a film for sealing by a solid sealing method.
  • the solid sealing method is a method in which after a protective layer is formed on a device, an adhesive layer and a gas barrier film are stacked and cured.
  • an adhesive agent A thermosetting epoxy resin, a photocurable acrylate resin, etc. are illustrated.
  • Organic EL device Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
  • the reflective liquid crystal display device has a configuration including a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarizing film in order from the bottom.
  • the gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate. In the case of color display, it is preferable to further provide a color filter layer between the reflective electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
  • the transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a ⁇ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarization It has a structure consisting of a film. In the case of color display, it is preferable to further provide a color filter layer between the lower transparent electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
  • the type of the liquid crystal cell is not particularly limited, but more preferably, a TN type (Twisted Nematic), an STN type (Super Twisted Nematic), a HAN type (Hybrid Aligned Nematic), a VA type (Vertical Alignment Electric), an EC type, a Bt type OCB type (Optically Compensated Bend), IPS type (In-Plane Switching), and CPA type (Continuous Pinwheel Alignment) are preferable.
  • a TN type Transmission Nematic
  • STN type Super Twisted Nematic
  • HAN type Hybrid Aligned Nematic
  • VA type Very Alignment Electric
  • an EC type a Bt type OCB type (Optically Compensated Bend)
  • IPS type In-Plane Switching
  • CPA type Continuous Pinwheel Alignment
  • the gas barrier film of the present invention can also be used as a sealing film for solar cell elements.
  • the gas barrier film of the present invention is preferably sealed so that the barrier layer is closer to the solar cell element.
  • the solar cell element in which the gas barrier film of the present invention is preferably used is not particularly limited. For example, it is a single crystal silicon solar cell element, a polycrystalline silicon solar cell element, a single junction type, or a tandem structure type.
  • Amorphous silicon-based solar cell elements III-V group compound semiconductor solar cell elements such as gallium arsenide (GaAs) and indium phosphorus (InP), II-VI group compound semiconductor solar cell elements such as cadmium tellurium (CdTe), I-III- such as copper / indium / selenium system (so-called CIS system), copper / indium / gallium / selenium system (so-called CIGS system), copper / indium / gallium / selenium / sulfur system (so-called CIGS system), etc.
  • Group VI compound semiconductor solar cell element dye-sensitized solar cell element, organic solar cell element, etc. And the like.
  • the solar cell element is a copper / indium / selenium system (so-called CIS system), a copper / indium / gallium / selenium system (so-called CIGS system), copper / indium / gallium / selenium / sulfur.
  • CIS system copper / indium / selenium system
  • CIGS system copper / indium / gallium / selenium system
  • sulfur copper / indium / gallium / selenium / sulfur.
  • a group I-III-VI compound semiconductor solar cell element such as a system (so-called CIGSS system) is preferable.
  • the gas barrier film of the present invention can also be used as an optical member.
  • the optical member include a circularly polarizing plate.
  • a circularly polarizing plate can be produced by laminating a ⁇ / 4 plate and a polarizing plate using the gas barrier film in the present invention as a substrate. In this case, the lamination is performed so that the angle formed by the slow axis of the ⁇ / 4 plate and the absorption axis of the polarizing plate is 45 °.
  • a polarizing plate one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used.
  • MD longitudinal direction
  • those described in JP-A-2002-865554 can be suitably used. .
  • first barrier layer (Preparation of polysilazane-containing coating solution) Dibutyl ether solution containing 20% by weight of non-catalytic perhydropolysilazane (manufactured by AZ Electronic Materials, Aquamica (registered trademark) NN120-20) and amine catalyst (N, N, N ′, N′-tetramethyl-) Perhydropolysilazane containing 1,6-diaminohexane (TMDAH) in a 20% by weight dibutyl ether solution (manufactured by AZ Electronic Materials Co., Ltd., Aquamica (registered trademark) NAX120-20) was mixed at a ratio of 4: 1.
  • the coating solution is diluted with a solvent mixed so that the weight ratio of dibutyl ether and 2,2,4-trimethylpentane is 65:35 so that the solid content of the coating solution is 5% by weight. did.
  • the coating solution obtained above was formed into a film having a thickness of 300 nm on a PET base material (125 ⁇ m thick) provided with a clear hard coat manufactured by Kimoto Co., Ltd. with a spin coater, and allowed to stand for 2 minutes. An additional heat treatment was performed on a hot plate at 80 ° C. for 1 minute to form a polysilazane coating film.
  • a vacuum ultraviolet ray irradiation treatment of 6000 mJ / cm 2 was performed according to the following method to form a first barrier layer.
  • reference numeral 21 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber.
  • the oxygen concentration can be maintained at a predetermined concentration.
  • Reference numeral 22 denotes an Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm
  • reference numeral 23 denotes an excimer lamp holder that also serves as an external electrode.
  • Reference numeral 24 denotes a sample stage. The sample stage 24 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 21 by a moving means (not shown).
  • the sample stage 24 can be maintained at a predetermined temperature by a heating means (not shown).
  • Reference numeral 25 denotes a sample on which a polysilazane coating film is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm.
  • Reference numeral 26 denotes a light shielding plate, which prevents the vacuum ultraviolet light from being applied to the coating layer of the sample during the aging of the Xe excimer lamp 22.
  • the energy irradiated to the coating film surface in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating light meter: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics Co., Ltd.
  • the sensor head is installed in the center of the sample stage 24 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 21 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the process, and the measurement was performed by moving the sample stage 24 at a speed of 0.5 m / min (V in FIG. 3).
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
  • the moving speed of the sample stage was adjusted to adjust the irradiation energy to 6000 mJ / cm 2 .
  • the vacuum ultraviolet irradiation was performed after aging for 10 minutes as in the case of irradiation energy measurement.
  • a PET base material (125 ⁇ m thick) provided with Kimoto's clear hard coat was set in a manufacturing apparatus 31 as shown in FIG. 2 and conveyed. Next, a magnetic field is applied between the film forming roller 39 and the film forming roller 40, and electric power is supplied to the film forming roller 39 and the film forming roller 40, respectively. Was discharged to generate plasma.
  • a film forming gas mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (which also functions as a discharge gas) as a source gas
  • HMDSO hexamethyldisiloxane
  • oxygen gas which also functions as a discharge gas
  • a gas barrier thin film was formed by a plasma CVD method to obtain a gas barrier film, and the thickness of the first barrier layer was 150 nm. It was.
  • a polysilazane coating film having a thickness of 150 nm is formed using the coating solution, and then the first barrier layer is formed at a dew point of 0 ° C. and an irradiation amount of 6000 mJ / cm 2 (coating method).
  • the second barrier layer was formed by performing a vacuum ultraviolet irradiation treatment in the same manner as described above. In this way, a gas barrier film 1-1 was produced.
  • Comparative Example 1-3 Production of gas barrier film 1-3
  • a transparent resin substrate with a hard coat layer (intermediate layer) manufactured by Kimoto Co., Ltd., polyethylene terephthalate (PET) film with a clear hard coat layer (CHC)
  • PET polyethylene terephthalate
  • CHC clear hard coat layer
  • the first barrier layer was formed by the above “formation of first barrier layer (coating method)”.
  • a second barrier layer was formed on the first barrier layer in the same manner as in Comparative Example 1-1 to produce a gas barrier film 1-3.
  • Comparative Example 1-4 Production of gas barrier film 1-4
  • a transparent resin substrate with a hard coat layer (intermediate layer) manufactured by Kimoto Co., Ltd., polyethylene terephthalate (PET) film with a clear hard coat layer (CHC)
  • PET polyethylene terephthalate
  • CHC clear hard coat layer
  • the first barrier layer was formed by the above “formation of first barrier layer (coating method)”.
  • a second barrier layer was formed on the first barrier layer in the same manner as in Comparative Example 1-2 to produce a gas barrier film 1-4.
  • Comparative Example 1-5 Production of gas barrier film 1-5)
  • a transparent resin substrate with a hard coat layer (intermediate layer) manufactured by Kimoto Co., Ltd., polyethylene terephthalate (PET) film with a clear hard coat layer (CHC)
  • PET polyethylene terephthalate
  • CHC clear hard coat layer
  • the first barrier layer was formed by the “formation of the first barrier layer (plasma CVD method)”.
  • a second barrier layer was formed on the first barrier layer in the same manner as in Comparative Example 1-1 to produce a gas barrier film 1-5.
  • Comparative Example 1-7 Production of gas barrier film 1-7)
  • a gas barrier film 1-7 was produced in the same manner as in Comparative Example 1-6, except that the second barrier layer was formed as follows.
  • a dibutyl ether solution containing 20% by weight of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., Aquamica (registered trademark) NN120-20) was diluted with dibutyl ether to a concentration of 5% by weight, ', N'-tetramethyl-1,6-diaminohexane (TMDAH) is added in an amount of 1% by weight with respect to perhydropolysilazane, and water is added in an amount of 5% by weight with respect to perhydropolysilazane.
  • TDAH N'-tetramethyl-1,6-diaminohexane
  • a coating solution was prepared.
  • a polysilazane coating film having a thickness of 150 nm is formed, and then the same as the formation of the first barrier layer (coating method) at a dew point of ⁇ 30 ° C. and an irradiation amount of 6000 mJ / cm 2 .
  • the second barrier layer was formed by vacuum ultraviolet irradiation treatment by the method.
  • Example 1-1 Production of Gas Barrier Film 1-8 A gas barrier film 1-8 was produced in the same manner as in Comparative Example 1-7, except that the amount of water was changed to an amount of 10% by weight based on perhydropolysilazane.
  • Comparative Example 1-8 Production of gas barrier film 1-9)
  • methanol manufactured by Kanto Chemical Co., Ltd., deer grade 1
  • perhydropolysilazane instead of water
  • Example 1-2 Production of gas barrier film 1-10)
  • a gas barrier film 1-10 was produced in the same manner as in Comparative Example 1-8, except that the amount of methanol was changed to 5% by weight with respect to perhydropolysilazane.
  • Example 1-3 Production of gas barrier film 1-11
  • a gas barrier film 1-11 was produced in the same manner as in Comparative Example 1-8, except that the amount of methanol was changed to 10% by weight based on perhydropolysilazane.
  • Comparative Example 1-9 Production of gas barrier film 1-12
  • Comparative Example 1 except that ALCH (produced by Kawaken Fine Chemical Co., Ltd., aluminum ethyl acetoacetate diisopropylate) was added to the coating solution in an amount of 1% by weight based on perhydropolysilazane instead of water.
  • ALCH produced by Kawaken Fine Chemical Co., Ltd., aluminum ethyl acetoacetate diisopropylate
  • Example 1-4 Production of gas barrier film 1-13
  • a gas barrier film 1-13 was produced in the same manner as in Comparative Example 1-9 except that the amount of ALCH was changed to 2% by weight with respect to perhydropolysilazane.
  • Example 1-5 Production of gas barrier film 1-14
  • a gas barrier film 1-14 was produced in the same manner as in Comparative Example 1-9 except that the amount of ALCH was changed to 4% by weight based on perhydropolysilazane.
  • Example 1-6 Production of gas barrier film 1-15
  • Comparative Example 1 except that AMD (Kawaken Fine Chemical Co., Ltd., aluminum diisopropylate monosecondary butyrate) was added to the coating solution in an amount of 1% by weight based on perhydropolysilazane instead of water.
  • AMD Korean Fine Chemical Co., Ltd., aluminum diisopropylate monosecondary butyrate
  • Example 1-7 Production of gas barrier film 1-16
  • a gas barrier film 1-16 was produced in the same manner as in Comparative Example 1-7, except that the amount of AMD was changed to 2% by weight with respect to perhydropolysilazane.
  • Example 1-8 Production of gas barrier film 1-17
  • a gas barrier film 1-17 was produced in the same manner as in Comparative Example 1-7, except that the amount of AMD was changed to 4% by weight with respect to perhydropolysilazane.
  • Example 1-9 Production of gas barrier film 1-19
  • a gas barrier film 1-19 was produced in the same manner as in Comparative Example 1-7, except that the amount of X-40-9225 was changed to 2% by weight with respect to perhydropolysilazane.
  • Example 1-10 Production of gas barrier film 1-20
  • a gas barrier film 1-20 was produced in the same manner as in Comparative Example 1-7, except that the amount of X-40-9225 was changed to 4% by weight with respect to perhydropolysilazane.
  • first barrier layer (sputtering method)
  • a transparent resin substrate with a hard coat layer (intermediate layer) (manufactured by Kimoto Co., Ltd., polyethylene terephthalate (PET) film with a clear hard coat layer (CHC)) is set in a vacuum chamber of a sputtering apparatus manufactured by ULVAC, Inc.
  • a vacuum was drawn to the ⁇ 4 Pa level, and 0.5 Pa was introduced as a discharge gas at a partial pressure of 0.5 Pa.
  • discharge plasma was generated on the silicon oxide (SiO x ) target, and a sputtering process was started.
  • the shutter was opened and formation of a silicon oxide film (SiO x ) on the film was started.
  • the shutter was closed to finish the film formation, and the first barrier layer was formed.
  • Example 1-11 Production of gas barrier film 1-22
  • a gas barrier film 1-22 was produced in the same manner as in Example 1-5, except that the first barrier layer was formed by the above-mentioned “formation of the first barrier layer (sputtering method)”.
  • Example 1-12 Production of gas barrier film 1-23
  • a gas barrier film 1-23 was produced in the same manner as in Example 1-6, except that the first barrier layer was formed by the above-described “formation of the first barrier layer (sputtering method)”.
  • Table 1 shows the O / Si and N / Si values obtained from the average values of the profiles in the depth direction for the second barrier layer of the gas barrier film produced above using the following apparatus and conditions.
  • the measurement resolution is 0.5 nm, and can be obtained by plotting the ratio of each element at each sampling point.
  • FIG. 1 (FIB processing) Device: SII SMI2050 Processed ions: (Ga 30 kV) (TEM observation) Apparatus: JEOL JEM2000FX (acceleration voltage: 200 kV) Electron beam irradiation time: 5 to 60 seconds (element ratio in the depth direction of the film thickness from the surface of the second barrier layer)
  • the XPS measurement (attention to Si, O, N) at each depth obtained by sputtering from the surface of the second barrier layer described above and the result of tomographic plane observation by TEM are collated, and O / Si and N / The average value of Si was calculated.
  • the average value of the abundance ratio of oxygen atoms to silicon atoms in the region from the outermost surface to a depth of 10 nm in the column of “surface O / Si” in Table 1), the depth from the outermost surface.
  • the average value of the ratio of oxygen atoms to silicon atoms in the region having a depth of 10 nm from the outermost surface and the average value of the ratio of oxygen atoms to silicon atoms in the region having a depth of more than 10 nm from the outermost surface was calculated (in the column of “Surface internal O / Si difference” in Table 1).
  • Evaluation of the water vapor barrier property was performed by depositing metal calcium having a thickness of 80 nm on a gas barrier film, and evaluating the time when the formed calcium was 50% area as 50% area time (see below). ). The 50% area time before and after the deterioration test was evaluated, and 50% area time after the deterioration test / 50% area time before the deterioration test was calculated as a retention rate (%) and shown in Table 1. As an index of retention rate, 70% or more was considered acceptable, and less than 70% was judged as nonconforming.
  • Vapor deposition device JEOL Ltd., vacuum evaporation device JEE-400 Constant temperature and humidity oven: Yamato Humidic Chamber IG47M (raw materials) Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation sample)
  • a vacuum vapor deposition device vacuum vapor deposition device JEE-400 manufactured by JEOL Ltd.
  • calcium metal was deposited on the surface of the second barrier layer of the produced gas barrier film in a size of 12 mm ⁇ 12 mm through a mask. At this time, the deposited film thickness was set to 80 nm.
  • the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed.
  • the vacuum state is released, and it is immediately transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum vapor-deposited surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX Corporation).
  • the water vapor barrier property evaluation sample was produced by irradiating ultraviolet rays to cure and adhere the resin to perform main sealing.
  • the obtained sample was stored under high temperature and high humidity of 85 ° C. and 85% RH, and the state in which metallic calcium was corroded with respect to the storage time was observed. Observation was obtained by linearly interpolating the time at which the area where metal calcium was corroded with respect to the metal calcium deposition area of 12 mm ⁇ 12 mm to 50% from the observation results, and the results before and after the deterioration test are shown in Table 1.
  • the gas barrier film according to the present invention is excellent in storage stability, particularly storage stability under severe conditions (high temperature and high humidity conditions).
  • the O / Si is 1.4 to whatever the point in each depth direction obtained by sputtering (XPS) from the surface of the second barrier layer.
  • XPS sputtering
  • ITO indium tin oxide
  • first electrode layer On the second barrier layer of each gas barrier film, ITO (indium tin oxide) having a thickness of 150 nm was formed by sputtering, and patterned by photolithography to form a first electrode layer. The pattern was such that the light emission area was 50 mm square.
  • the following coating liquid for forming a hole transport layer is extrusion coated in an environment of 25 ° C. and a relative humidity of 50% RH. Then, drying and heat treatment were performed under the following conditions to form a hole transport layer. The coating liquid for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
  • cleaning surface modification treatment of the barrier film was performed using a low pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • PEDOT / PSS polystyrene sulfonate
  • Baytron P AI 4083 manufactured by Bayer
  • ⁇ Drying and heat treatment conditions After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment.
  • the back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
  • the following coating solution for forming a white light emitting layer is applied by an extrusion coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. did.
  • the white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
  • ⁇ White luminescent layer forming coating solution> As a host material, 1.0 g of a compound represented by the following chemical formula HA, 100 mg of a compound represented by the following chemical formula DA as a dopant material, and 0.1 mg of a compound represented by the following chemical formula DB as a dopant material. 2 mg of a compound represented by the following chemical formula DC as a dopant material was dissolved in 0.2 mg and 100 g of toluene to prepare a white light emitting layer forming coating solution.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
  • ⁇ Drying and heat treatment conditions After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.
  • the following electron transport layer forming coating solution was applied by an extrusion coater under the following conditions, and then dried and heat-treated under the following conditions to form an electron transport layer.
  • the coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
  • the electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 wt% solution as a coating solution for forming an electron transport layer.
  • An electron injection layer was formed on the electron transport layer formed above.
  • the substrate was put into a decompression chamber and decompressed to 5 ⁇ 10 ⁇ 4 Pa.
  • cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
  • Aluminum is used as the second electrode forming material on the electron injection layer formed as described above, except for the portion that becomes the extraction electrode of the first electrode 22 under a vacuum of 5 ⁇ 10 ⁇ 4 Pa.
  • a mask pattern was formed by vapor deposition so as to have an extraction electrode so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
  • each laminate including the second electrode was moved again to a nitrogen atmosphere, and cut to a specified size using an ultraviolet laser to produce an organic EL element.
  • Crimping conditions Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured separately using a thermocouple), a pressure of 2 MPa, and 10 seconds.
  • sealing As a sealing member, a 30 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) is laminated with a polyethylene terephthalate (PET) film (12 ⁇ m thickness) using a dry lamination adhesive (two-component reaction type urethane adhesive). (Adhesive layer thickness 1.5 ⁇ m) was prepared.
  • PET polyethylene terephthalate
  • thermosetting adhesive was uniformly applied to the aluminum surface of the prepared sealing member with a thickness of 20 ⁇ m along the adhesive surface (shiny surface) of the aluminum foil using a dispenser to form an adhesive layer.
  • thermosetting adhesive containing the following components was used as the thermosetting adhesive.
  • DGEBA Bisphenol A diglycidyl ether
  • DIY dicyandiamide
  • epoxy adduct curing accelerator Bisphenol A diglycidyl ether
  • DGEBA Bisphenol A diglycidyl ether
  • DIY dicyandiamide
  • epoxy adduct curing accelerator Bisphenol A diglycidyl ether
  • the sealing member is closely attached and arranged so as to cover the joint between the take-out electrode and the electrode lead, and using a pressure roll, pressure bonding conditions, a pressure roll temperature of 120 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / min. And sealed tightly.
  • the gas barrier film produced according to the examples of the present invention has the effect of reducing the occurrence of dark spots by using it as a sealing film for organic EL elements, and has a very high gas barrier property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 保存安定性、特に過酷な条件(高温高湿条件)下での保存安定性に優れるガスバリア性フィルムを提供する。 本発明は、基材と、無機化合物を含む第1のバリア層と、少なくともケイ素原子および酸素原子を含有し、かつケイ素原子に対する酸素原子の存在比(O/Si)が1.4~2.2であり、ケイ素原子に対する窒素原子の存在比(N/Si)が0~0.4である第2のバリア層と、をこの順で含む、ガスバリア性フィルムである。

Description

ガスバリア性フィルム
 本発明は、ガスバリア性フィルムに関し、より詳細には、有機エレクトロルミネッセンス(EL)素子や太陽電池素子、液晶表示等の電子デバイスに用いられるガスバリア性フィルムに関するものである。
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を含む複数の層を積層して形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、例えば、食品や工業用品および医薬品等の変質を防止するための包装用途に広く用いられている。
 包装用途以外にも、フレキシブル性を有する太陽電池素子、有機エレクトロルミネッセンス(EL)素子、液晶表示素子等のフレキシブル電子デバイスへの展開が要望され、多くの検討がなされている。しかし、これらフレキシブル電子デバイスにおいては、ガラス基材レベルの非常に高いガスバリア性が要求されるため、現状では十分な性能を有するガスバリア性フィルムは未だ得られていない。
 この様なガスバリア性フィルムを形成する方法としては、テトラエトキシシラン(TEOS)に代表される有機ケイ素化合物を用いて、減圧下の酸素プラズマ酸化しながら基板上に成長させる化学堆積法(プラズマCVD法:Chemical Vapor Deposition)や半導体レーザーを用いて金属Siを蒸発させ酸素の存在下で基板上に堆積する物理堆積法(真空蒸着法やスパッタ法)といった気相法が知られている。
 これらの気相法による無機製膜方法は、酸化ケイ素や窒化ケイ素、酸窒化ケイ素等の無機膜の形成に好ましく適用されてきており、良好なガスバリア性を得るための無機膜の組成範囲の検討、およびこれら無機膜を含む層構成の検討が多くなされている。
 さらに、上述のような気相法では欠陥を有さない膜を形成することは非常に困難であり、例えば製膜レートを極端に低くして欠陥の生成を抑制する必要がある。このため、生産性が要求される工業的レベルにおいては、フレキシブル電子デバイスに要求されるガスバリア性は得られていない。気相法による無機膜の膜厚を単純に増加させたり、無機膜を複数層積層するといった検討もなされたが、欠陥が連続成長したり、かえってクラックが増加したりするため、ガスバリア性の向上には至っていない。
 このような無機膜の欠陥は、例えば有機EL素子の場合、ダークスポットと呼ばれる発光しない黒点の発生を招いたり、高温高湿下においてダークスポットのサイズが成長したりと、素子自体の耐久性にも影響を与えてしまう。
 一方で、これまでの気相法による製膜に加え、ガスバリア層形成方法の一つとして、前述の気相法による無機膜上に無機前駆体化合物の溶液を塗布し、乾燥して形成した塗布層を、熱によって改質することで、上述の気層法によって製膜された無機膜の欠陥部を効果的に修復し、さらには積層した膜自体がガスバリア性を向上させる検討がなされており、特に、無機前駆体化合物としてポリシラザンを用いることで、前述した欠陥部の修復によって高度なガスバリア性を発現させようとする検討を行っている(例えば、国際公開第2012/014653号)。
 しかし、ポリシラザンの熱改質または湿熱改質による緻密な酸窒化ケイ素膜あるいは酸化ケイ素膜の形成には450℃以上の高温が必要であり、プラスチック等のフレキシブル基材に適用することは不可能であった。
 このような問題を解決する手段として、ポリシラザン溶液から塗布形成した塗膜に真空紫外光照射を施すことにより、酸窒化ケイ素膜あるいは酸化ケイ素膜を形成する方法が提案されている。
 ポリシラザンの各原子間結合力より大きいエネルギーを有する真空紫外光(以下、「VUV」、「VUV光」ともいう)と呼ばれる波長100~200nmの光エネルギーを用いて、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸窒化ケイ素膜あるいは酸化ケイ素膜の形成を行うことができる。
 具体的には、通常、樹脂フィルム基材の上にポリシラザンを塗布し、同様に紫外線照射を行った場合、照射した面の表面近傍が改質されバリア層(窒素高濃度層)を形成する。同時に基材側からの水分持ち込みと推定される酸化挙動が起き、バリア層下の内部は酸化膜(酸化ケイ素層)となる挙動が報告されている(例えば、国際公開第2011/007543号)。
 また、膜組成をアミンの添加量によって制御する方法(例えば、特開2012-16854号公報)や、ポリシラザン塗布液中に予めアルコール類などを加え、事前に反応を促進させる方法(例えば、特許第3212400号公報)などが開示されている。
 しかしながら、上記の特許文献に記載の技術では、あまり温度が高くない条件における高湿下では長期間の保存に耐えるが、高温高湿下では加水分解等によりバリア層(ガスバリア層)が変質する場合があり、その結果、ガスバリア性が徐々に低下するという問題があった。特に、バリア層(ガスバリア層)を2層以上有するガスバリア性フィルムにおいて、その問題は顕著であった。
 本発明は、上記事情を鑑みてなされたものであり、保存安定性、特に過酷な条件(高温高湿条件)下での保存安定性に優れるガスバリア性フィルムを提供することを目的とする。
 本発明者は、上記の問題を解決すべく、鋭意研究を行った。その結果、無機化合物を含む第1のバリア層と、ケイ素原子に対する酸素原子の存在比およびケイ素原子に対する窒素原子の存在比が特定の範囲にある第2のバリア層と、を含むガスバリア性フィルムによって、上記課題が解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、基材と、無機化合物を含む第1のバリア層と、少なくともケイ素原子および酸素原子を含有し、かつケイ素原子に対する酸素原子の存在比(O/Si)が1.4~2.2であり、ケイ素原子に対する窒素原子の存在比(N/Si)が0~0.4である第2のバリア層と、をこの順で含む、ガスバリア性フィルムである。
本発明に係る第1のバリア層の形成に用いられる真空プラズマCVD装置の一例を示す模式図であり、101はプラズマCVD装置であり、102は真空槽であり、103はカソード電極であり、105はサセプタであり、106は熱媒体循環系であり、107は真空排気系であり、108はガス導入系であり、109は高周波電源であり、110は基材であり、160は加熱冷却装置である。 本発明に係る第1のバリア層の形成に用いられる他の製造装置の一例を示す模式図であり、1はガスバリア性フィルムであり、2は基材であり、3は第1のバリア層であり、31は製造装置であり、32は送り出しローラーであり、33、34、35、36は搬送ローラーであり、39、40は成膜ローラーであり、41はガス供給管であり、42はプラズマ発生用電源であり、43、44は磁場発生装置であり、45は巻取りローラーである。 真空紫外線照射装置の一例を示す模式図であり、21は装置チャンバであり、22はXeエキシマランプであり、23はホルダーであり、24は試料ステージであり、25は試料であり、26は遮光板である。
 本発明は、基材と、無機化合物を含む第1のバリア層と、少なくともケイ素原子および酸素原子を含有し、かつケイ素原子に対する酸素原子の存在比(O/Si)が1.4~2.2であり、ケイ素原子に対する窒素原子の存在比(N/Si)が0~0.4である第2のバリア層と、をこの順で含む、ガスバリア性フィルムである。
 このような構成とすることにより、長期の保存安定性、特に高温高湿下という過酷な条件下での保存安定性に優れたガスバリア性フィルムが得られる。
 なぜ、本発明のガスバリア性フィルムが保存安定性、特に高温高湿下での保存安定性に優れるのか、詳細な理由は不明であるが、以下のような理由であると考えられる。
 少なくともケイ素原子および酸素原子を含有するバリア層、特にポリシラザンを含む層を改質処理して得られるバリア層の化学組成は、ケイ素原子において未結合手が存在し、そのような未結合手は、ダングリングボンド、Si-OH、Si-H、Siラジカル等の高温高湿下において加水分解等の影響を受けやすい形態となる。こうした影響を低減するために、ケイ素原子の未結合手をできるだけ低減させることが重要となるが、本願発明の第2のバリア層の組成であれば、ケイ素原子の未結合手が低減されており、高温高湿下で保存した際の加水分解等に伴う化学組成の変化や膜密度の低下などの現象が起こりにくく、保存安定性に優れたガスバリア性フィルムとなる。本発明のガスバリア性フィルムは、少なくとも2層のバリア層を有する構成となっているが、このような構成であっても、保存安定性に優れるガスバリア性フィルムとなる。また、特に、無機化合物を含むバリア層を下層に少なくとも1層有する構成において、長期の保存安定性、特に高温高湿下という過酷な条件下での保存安定性が顕著に低下することがわかっており、このような構成において、本発明は高温高湿下という過酷な条件下での保存安定性に優れたガスバリア性フィルムが得られる。
 なお、上記のメカニズムは推定によるものであり、本発明は上記メカニズムに何ら限定されるものではない。
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
 <ガスバリア性フィルム>
 本発明のガスバリア性フィルムは、基材、第1のバリア層、および第2のバリア層をこの順に有する。本発明のガスバリア性フィルムは、他の部材をさらに含むものであってもよい。本発明のガスバリア性フィルムは、例えば、基材と第1のバリア層との間、第1のバリア層と第2のバリア層との間、第2のバリア層の上、または第1のバリア層および第2のバリア層が形成されていない基材の他方の面に、他の部材を有していてもよい。ここで、他の部材としては、特に制限されず、従来のガスバリア性フィルムに使用される部材が同様にしてあるいは適宜修飾して使用できる。具体的には、中間層、保護層、平滑層、アンカーコート層、ブリードアウト防止層、水分吸着性を有するデシカント性層や帯電防止層の機能化層などが挙げられる。
 第1のバリア層および第2のバリア層を有するガスバリア性ユニットは、基材の一方の表面上に形成されていてもよく、基材の両方の表面上に形成されていてもよい。また、該ガスバリア性ユニットは、ガスバリア性を必ずしも有しない層を含んでいてもよい。
 〔基材〕
 本発明に係るガスバリア性フィルムは、基材として、プラスチックフィルムまたはプラスチックシートが好ましく用いられ、無色透明な樹脂からなるフィルムまたはシートがより好ましく用いられる。用いられるプラスチックフィルムは、第1のバリア層および第2のバリア層等を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
 本発明に係るガスバリア性フィルムを有機EL素子等の電子デバイスの基板として使用する場合は、前記基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の基材が使用される。
 本発明に係るガスバリア性フィルムを例えば偏光板と組み合わせて使用する場合、ガスバリア性フィルムのバリア層がセルの内側に向くように配置することが好ましい。より好ましくは、ガスバリア性フィルムのバリア層がセルの最も内側に(素子に隣接して)配置する。
 本発明に係るガスバリア性フィルムは、有機EL素子等の電子デバイスとして利用されることから、基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。
 ただし、本発明に係るガスバリア性フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、基材として不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。
 本発明に係るガスバリア性フィルムに用いられる基材の厚みは、用途によって適宜選択されるため特に制限がないが、典型的には1~800μmであり、好ましくは10~200μmである。これらのプラスチックフィルムは、透明導電層、プライマー層、クリアハードコート層等の機能層を有していても良い。機能層については、上述したもののほか、特開2006-289627号公報の段落番号「0036」~「0038」に記載されているものを好ましく採用できる。
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特に制限されないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともバリア層を設ける側を研摩し、平滑性を向上させておいてもよい。
 また、上記に挙げた基材は、未延伸フィルムでもよく、延伸処理されたフィルムでもよい。
 本発明で用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。
 基材の少なくとも本発明に係る第1のバリア層を設ける側には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理や、後述する平滑層の積層等を行ってもよく、必要に応じて上記処理を組み合わせて行うことが好ましい。
 〔第1のバリア層〕
 基材の上部に形成される本発明に係る第1のバリア層は、無機化合物を含む。第1のバリア層に含まれる無機化合物としては、特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物または金属酸炭化物が挙げられる。中でも、ガスバリア性能の点で、Si、Al、In、Sn、Zn、Ti、Cu、CeおよびTaから選ばれる1種以上の金属を含む、酸化物、窒化物、炭化物、酸窒化物または酸炭化物などを好ましく用いることができ、Si、Al、In、Sn、ZnおよびTiから選ばれる金属の酸化物、窒化物または酸窒化物がより好ましく、特にSiおよびAlの少なくとも1種の、酸化物、窒化物または酸窒化物が好ましい。好適な無機化合物として、具体的には、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、酸化チタン、またはアルミニウムシリケートなどの複合体が挙げられる。副次的な成分として他の元素を含有してもよい。
 第1のバリア層に含まれる無機化合物の含有量は特に限定されないが、第1のバリア層中、50重量%以上であることが好ましく、80重量%以上であることがより好ましく、95重量%以上であることがさらに好ましく、98重量%以上であることが特に好ましく、100重量%である(すなわち、第1のバリア層は無機化合物からなる)ことが最も好ましい。
 第1のバリア層は無機化合物を含むことで、ガスバリア性を有する。ここで、第1のバリア層のガスバリア性は、基材上に第1のバリア層を形成させた積層体で算出した際、水蒸気透過度(WVTR)が0.1g/(m2・day)以下であることが好ましく、0.01g/(m2・day)以下であることがより好ましい。
 第1のバリア層の形成方法は、特に制限されないが、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの真空成膜法、または無機化合物を含む液、好ましくはケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成する方法(以下、単に塗布法とも称する)が好ましく、物理気相成長法または化学気相成長法がより好ましい。
 以下、真空成膜法および塗布法について説明する。
 <真空成膜法>
 物理気相成長法(Physical Vapor Deposition、PVD法)は、気相中で物質の表面に物理的手法により、目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、例えば、スパッタ法(DCスパッタ法、RFスパッタ法、イオンビームスパッタ法、およびマグネトロンスパッタ法等)、真空蒸着法、イオンプレーティング法などが挙げられる。
 スパッタ法は、真空チャンバ内にターゲットを設置し、高電圧をかけてイオン化した希ガス元素(通常はアルゴン)をターゲットに衝突させて、ターゲット表面の原子をはじき出し、基材に付着させる方法である。このとき、チャンバ内に窒素ガスや酸素ガスを流すことにより、アルゴンガスによってターゲットからはじき出された元素と、窒素や酸素とを反応させて無機層を形成する、反応性スパッタ法を用いてもよい。
 化学気相成長法(Chemical Vapor Deposition、CVD法)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面または気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。
 真空プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られる第1のバリア層は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の化合物を製造できるため好ましい。
 例えば、ケイ素化合物を原料化合物として用い、分解ガスに酸素を用いれば、ケイ素酸化物が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。
 原料化合物としては、ケイ素化合物、チタン化合物、またはアルミニウム化合物を用いることが好ましい。これら原料化合物は、単独でもまたは2種以上組み合わせても用いることができる。
 これらのうち、ケイ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。また、後述の好適な形態である(i)~(iii)の要件を満たすバリア層の形成の際に用いられる原料化合物であるケイ素化合物が挙げられる。
 チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソプロポキシド、チタンn-ブトキシド、チタンジイソプロポキシド(ビス-2,4-ペンタンジオネート)、チタンジイソプロポキシド(ビス-2,4-エチルアセトアセテート)、チタンジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。
 アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ-s-ブトキシド等が挙げられる。
 また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気などが挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガスなどの不活性ガスと混合してもよい。
 原料化合物を含む原料ガスと、分解ガスを適宜選択することで所望の第1のバリア層を得ることができる。CVD法により形成される第1のバリア層は、酸化物、窒化物、酸窒化物または酸炭化物を含む層である。
 以下、CVD法のうち、好適な形態である真空プラズマCVD法について具体的に説明する。
 図1は、本発明に係る第1のバリア層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。
 図1において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。
 加熱冷却装置160は、熱媒体の温度を測定し、熱媒体を記憶された設定温度まで加熱または冷却し、サセプタ105に供給するように構成されている。供給された熱媒体はサセプタ105の内部を流れ、サセプタ105を加熱または冷却して加熱冷却装置160に戻る。このとき、熱媒体の温度は、設定温度よりも高温または低温になっており、加熱冷却装置160は熱媒体を設定温度まで加熱または冷却し、サセプタ105に供給する。かくて冷却媒体はサセプタと加熱冷却装置160の間を循環し、サセプタ105は、供給された設定温度の熱媒体によって加熱または冷却される。
 真空槽102は真空排気系107に接続されており、この真空プラズマCVD装置101によって成膜処理を開始する前に、予め真空槽102の内部を真空排気すると共に、熱媒体を加熱して室温から設定温度まで昇温させておき、設定温度の熱媒体をサセプタ105に供給する。サセプタ105は使用開始時には室温であり、設定温度の熱媒体が供給されると、サセプタ105は昇温される。
 一定時間、設定温度の熱媒体を循環させた後、真空槽102内の真空雰囲気を維持しながら真空槽102内に成膜対象である基材110を搬入し、サセプタ105上に配置する。
 カソード電極103のサセプタ105に対向する面には多数のノズル(孔)が形成されている。
 カソード電極103はガス導入系108に接続されており、ガス導入系108からカソード電極103にCVDガスを導入すると、カソード電極103のノズルから真空雰囲気の真空槽102内にCVDガスが噴出される。
 カソード電極103は高周波電源109に接続されており、サセプタ105および真空槽102は接地電位に接続されている。
 ガス導入系108から真空槽102内にCVDガスを供給し、加熱冷却装置160から一定温度の熱媒体をサセプタ105に供給しながら高周波電源109を起動し、カソード電極103に高周波電圧を印加すると、導入されたCVDガスのプラズマが形成される。プラズマ中で活性化されたCVDガスがサセプタ105上の基材110の表面に到達すると、基材110の表面に薄膜である第1のバリア層が成長する。
 この際のサセプタ105とカソード電極103との距離は、適宜設定される。
 また、原料ガスおよび分解ガスの流量は、原料ガスおよび分解ガス種等を考慮して適宜設定される。一実施形態として、原料ガスの流量は、30~300sccmであり、分解ガスの流量は100~1000sccmである。
 薄膜成長中は、加熱冷却装置160から一定温度の熱媒体がサセプタ105に供給されており、サセプタ105は、熱媒体によって加熱または冷却され、一定温度に維持された状態で薄膜が形成される。一般に、薄膜を形成する際の成長温度の下限温度は、薄膜の膜質により決まっており、上限温度は、基材110上に既に形成されている薄膜のダメージの許容範囲により決まっている。下限温度や上限温度は形成する薄膜の材質や、既に形成されている薄膜の材質等によって異なるが、ガスバリア性の高い膜質を確保するために下限温度は50℃以上であり、上限温度は基材の耐熱温度以下であることが好ましい。
 真空プラズマCVD法で形成される薄膜の膜質と成膜温度の相関関係と、成膜対象物(基材110)が受けるダメージと成膜温度の相関関係とを予め求め、下限温度・上限温度が決定される。例えば、真空プラズマCVDプロセス中の基材110の温度は50~250℃であることが好ましい。
 さらに、カソード電極103に13.56MHz以上の高周波電圧を印加してプラズマを形成した場合の、サセプタ105に供給する熱媒体の温度と基材110の温度との関係が予め測定されており、真空プラズマCVDプロセス中に基材110の温度を、下限温度以上、上限温度以下に維持するために、サセプタ105に供給する熱媒体の温度が求められる。
 例えば、下限温度(ここでは50℃)が記憶され、下限温度以上の温度に温度制御された熱媒体がサセプタ105に供給されるように設定されている。サセプタ105から還流された熱媒体は、加熱または冷却され、50℃の設定温度の熱媒体がサセプタ105に供給される。例えば、CVDガスとして、シランガスとアンモニアガスと窒素ガスの混合ガスが供給され、基材110が、下限温度以上、上限温度以下の温度条件に維持された状態で、SiN膜が形成される。
 真空プラズマCVD装置101の起動直後は、サセプタ105は室温であり、サセプタ105から加熱冷却装置160に還流された熱媒体の温度は設定温度よりも低い。したがって、起動直後は、加熱冷却装置160は還流された熱媒体を加熱して設定温度に昇温させ、サセプタ105に供給することになる。この場合、サセプタ105および基材110は熱媒体によって加熱、昇温され、基材110は、下限温度以上、上限温度以下の範囲に維持される。
 複数枚の基材110に連続して薄膜を形成すると、プラズマから流入する熱によってサセプタ105が昇温する。この場合、サセプタ105から加熱冷却装置160に還流される熱媒体は下限温度(50℃)よりも高温になっているため、加熱冷却装置160は熱媒体を冷却し、設定温度の熱媒体をサセプタ105に供給する。これにより、基材110を下限温度以上、上限温度以下の範囲に維持しながら薄膜を形成することができる。
 このように、加熱冷却装置160は、還流された熱媒体の温度が設定温度よりも低温の場合には熱媒体を加熱し、設定温度よりも高温の場合は熱媒体を冷却し、いずれの場合も設定温度の熱媒体をサセプタに供給しており、その結果、基材110は下限温度以上、上限温度以下の温度範囲が維持される。
 薄膜が所定膜厚に形成されたら、基材110を真空槽102の外部に搬出し、未成膜の基材110を真空槽102内に搬入し、上記と同様に、設定温度の熱媒体を供給しながら薄膜を形成する。
 また、本発明に係るCVD法により形成される第1のバリア層の好適な一実施形態として、第1のバリア層は構成元素に炭素、ケイ素、および酸素を含むことが好ましい。より好適な形態は、以下の(i)~(iii)の要件を満たす層である。
 (i)第1のバリア層の膜厚方向における前記第1のバリア層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記第1のバリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C);
 (ii)前記炭素分布曲線が少なくとも2つの極値を有する;
 (iii)前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値(以下、単に「Cmax-Cmin差」とも称する)が3at%以上である。
 以下、(i)~(iii)の要件について説明する。
 該第1のバリア層は、(i)前記第1のバリア層の膜厚方向における前記第1のバリア層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記第1のバリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C)ことが好ましい。前記の条件(i)を満たさない場合、得られるガスバリア性フィルムのガスバリア性や屈曲性が不十分となる場合がある。ここで、上記炭素分布曲線において、上記(酸素の原子比)、(ケイ素の原子比)および(炭素の原子比)の関係は、第1のバリア層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。ここで、該第1のバリア層の膜厚の少なくとも90%以上とは、第1のバリア層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。
 また、該第1のバリア層は、(ii)前記炭素分布曲線が少なくとも2つの極値を有することが好ましい。該第1のバリア層は、前記炭素分布曲線が少なくとも3つの極値を有することがより好ましく、少なくとも4つの極値を有することがさらに好ましいが、5つ以上有していてもよい。前記炭素分布曲線の極値が1つ以下である場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性が不十分となる場合がある。なお、炭素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは30以下、より好ましくは25以下であるが、極値の数は、第1のバリア層の膜厚にも起因するため、一概に規定することはできない。
 ここで、少なくとも3つの極値を有する場合においては、前記炭素分布曲線の有する1つの極値および該極値に隣接する極値における前記第1のバリア層の膜厚方向における前記第1のバリア層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離であれば、第1のバリア層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、第1のバリア層に適度な屈曲性を付与し、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。なお、本明細書において「極値」とは、前記第1のバリア層の膜厚方向における前記第1のバリア層の表面からの距離(L)に対する元素の原子比の極大値または極小値のことをいう。また、本明細書において「極大値」とは、第1のバリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が増加から減少に変わる点であって、かつその点の元素の原子比の値よりも、該点から第1のバリア層の膜厚方向における第1のバリア層の表面からの距離をさらに4~20nmの範囲で変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。すなわち、4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少していればよい。同様にして、本明細書において「極小値」とは、第1のバリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が減少から増加に変わる点であり、かつその点の元素の原子比の値よりも、該点から第1のバリア層の膜厚方向における第1のバリア層の表面からの距離をさらに4~20nmの範囲で変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。すなわち、4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上増加していればよい。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、極値間の距離が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されないが、第1のバリア層の屈曲性、クラックの抑制/防止効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。
 さらに、該第1のバリア層は、(iii)前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値(以下、単に「Cmax-Cmin差」とも称する)が3at%以上であることが好ましい。前記絶対値が3at%未満では、得られるガスバリア性フィルムを屈曲させた場合に、ガスバリア性が不十分となる場合がある。Cmax-Cmin差は5at%以上であることが好ましく、7at%以上であることがより好ましく、10at%以上であることが特に好ましい。上記Cmax-Cmin差とすることによって、ガスバリア性をより向上することができる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。ここで、Cmax-Cmin差の上限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。
 本発明において、前記第1のバリア層の前記酸素分布曲線が少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。前記酸素分布曲線が極値を少なくとも1つ有する場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性が極値を有さないガスバリア性フィルムと比較してより向上する。なお、酸素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは20以下、より好ましくは10以下である。酸素分布曲線の極値の数においても、第1のバリア層の膜厚に起因する部分があり一概に規定できない。また、少なくとも3つの極値を有する場合においては、前記酸素分布曲線の有する1つの極値および該極値に隣接する極値における前記第1のバリア層の膜厚方向における第1のバリア層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。このような極値間の距離の距離であれば、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。
 加えて、前記第1のバリア層の前記酸素分布曲線における酸素の原子比の最大値および最小値の差の絶対値(以下、単に「Omax-Omin差」とも称する)が3at%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることがさらに好ましい。前記絶対値が3at%以上であれば、得られるガスバリア性フィルムのフィルムを屈曲させた場合におけるガスバリア性がより向上する。ここで、Omax-Omin差の上限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。
 前記第1のバリア層の前記ケイ素分布曲線におけるケイ素の原子比の最大値および最小値の差の絶対値(以下、単に「Simax-Simin差」とも称する)が10at%以下であることが好ましく、7at%以下であることがより好ましく、3at%以下であることがさらに好ましい。前記絶対値が10at%以下である場合、得られるガスバリア性フィルムのガスバリア性がより向上する。ここで、Simax-Simin差の下限は、Simax-Simin差が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されないが、ガスバリア性などを考慮すると、1at%以上であることが好ましく、2at%以上であることがより好ましい。
 第1のバリア層の膜厚方向に対する炭素および酸素原子の合計量はほぼ一定であることが好ましい。これにより、第1のバリア層は適度な屈曲性を発揮し、ガスバリア性フィルムの屈曲時のクラック発生がより有効に抑制・防止される。より具体的には、第1のバリア層の膜厚方向における該第1のバリア層の表面からの距離(L)とケイ素原子、酸素原子、および炭素原子の合計量に対する、酸素原子および炭素原子の合計量の比率(酸素および炭素の原子比)との関係を示す酸素炭素分布曲線において、前記酸素炭素分布曲線における酸素および炭素の原子比の合計の最大値および最小値の差の絶対値(以下、単に「OCmax-OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満であれば、得られるガスバリア性フィルムのガスバリア性がより向上する。なお、OCmax-OCmin差の下限は、OCmax-OCmin差が小さいほど好ましいため、0at%であるが、0.1at%以上であれば十分である。
 前記ケイ素分布曲線、前記酸素分布曲線、前記炭素分布曲線、および前記酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記第1のバリア層の膜厚方向における前記第1のバリア層の表面からの距離(L)に概ね相関することから、「第1のバリア層の膜厚方向における第1のバリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される第1のバリア層の表面からの距離を採用することができる。なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線および酸素炭素分布曲線は、下記測定条件にて作成することができる。
 (測定条件)
 エッチングイオン種:アルゴン(Ar+
 エッチング速度(SiO2熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO2換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名"VG Theta Probe"
 照射X線:単結晶分光AlKα
 X線のスポットおよびそのサイズ:800×400μmの楕円形。
 上記のプラズマCVD法により形成される第1のバリア層の膜厚(乾燥膜厚)は、上記(i)~(iii)を満たす限り、特に制限されない。例えば、該第1のバリア層の1層当たりの膜厚は、20~3000nmであることが好ましく、50~2500nmであることがより好ましく、100~1000nmであることが特に好ましい。このような膜厚であれば、ガスバリア性フィルムは、優れたガスバリア性および屈曲時のクラック発生抑制/防止効果を発揮できる。なお、上記のプラズマCVD法により形成される第1のバリア層が2層以上から構成される場合には、各第1のバリア層が上記したような膜厚を有することが好ましい。
 本発明において、膜面全体において均一でかつ優れたガスバリア性を有する第1のバリア層を形成するという観点から、前記第1のバリア層が膜面方向(第1のバリア層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、第1のバリア層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により第1のバリア層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線および前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。
 さらに、本発明においては、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記第1のバリア層のうちの少なくとも1層の膜厚方向における該第1のバリア層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式1で表される条件を満たすことをいう。
Figure JPOXMLDOC01-appb-M000001
 本発明に係るガスバリア性フィルムにおいて、上記条件(i)~(iii)を全て満たす第1のバリア層は、1層のみを備えていてもよいし2層以上を備えていてもよい。さらに、このような第1のバリア層を2層以上備える場合には、複数の第1のバリア層の材質は、同一であってもよいし異なっていてもよい。
 前記ケイ素分布曲線、前記酸素分布曲線、および前記炭素分布曲線において、ケイ素の原子比、酸素の原子比、および炭素の原子比が、該第1のバリア層の膜厚の90%以上の領域において前記(i)で表される条件を満たす場合には、前記第1のバリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の含有量の原子比率は、20~45at%であることが好ましく、25~40at%であることがより好ましい。また、前記第1のバリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の含有量の原子比率は、45~75at%であることが好ましく、50~70at%であることがより好ましい。さらに、前記第1のバリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の含有量の原子比率は、0.5~25at%であることが好ましく、1~20at%であることがより好ましい。
 本発明では、第1のバリア層の形成方法は特に制限されず、従来と方法を同様にしてあるいは適宜修飾して適用できる。第1のバリア層は、好ましくは化学気相成長(CVD)法、特に、プラズマ化学気相成長法(プラズマCVD、PECVD(plasma-enhanced chemical vapor deposition)、以下、単に「プラズマCVD法」とも称する)により形成され、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により形成されることがより好ましい。
 以下では、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により、基材上に第1のバリア層を形成する方法を以下に説明する。
 ≪プラズマCVD法による第1のバリア層の形成方法≫
 本発明に係る第1のバリア層を基材の表面上に形成させる方法としては、ガスバリア性の観点から、プラズマCVD法を採用することが好ましい。なお、前記プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であってもよい。
 また、プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同一である構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)~(iii)を全て満たす層を形成することが可能となる。
 また、このようにして一対の成膜ローラー間に放電する際には、前記一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリア性フィルムにおいては、前記第1のバリア層が連続的な成膜プロセスにより形成された層であることが好ましい。
 また、本発明に係るガスバリア性フィルムは、生産性の観点から、ロールツーロール方式で前記基材の表面上に前記第1のバリア層を形成させることが好ましい。また、このようなプラズマCVD法により第1のバリア層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。
 以下、図2を参照しながら、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法による第1のバリア層の形成方法について、より詳細に説明する。なお、図2は、本製造方法より第1のバリア層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。
 図2に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。
 このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間に放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39および40)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39および40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材2の表面上に第1のバリア層3を形成することが可能であり、成膜ローラー39上において基材2の表面上に第1のバリア層成分を堆積させつつ、さらに成膜ローラー40上においても基材2の表面上に第1のバリア層成分を堆積させることもできるため、基材2の表面上に第1のバリア層を効率よく形成することができる。
 成膜ローラー39および成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置43および44がそれぞれ設けられている。
 成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43および44は、一方の成膜ローラー39に設けられた磁場発生装置43と他方の成膜ローラー40に設けられた磁場発生装置44との間で磁力線がまたがらず、それぞれの磁場発生装置43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。
 また、成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43、44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置43と他方の磁場発生装置44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、それぞれの磁場発生装置43、44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材2を用いて効率的に蒸着膜である第1のバリア層3を形成することができる点で優れている。
 成膜ローラー39および成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39および40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39および40の直径としては、放電条件、チャンバのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材2にかかることを回避できることから、基材2へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。
 このような製造装置31においては、基材2の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、基材2が配置されている。このようにして基材2を配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材2のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて基材2の表面上に第1のバリア層成分を堆積させ、さらに成膜ローラー40上にて第1のバリア層成分を堆積させることができるため、基材2の表面上に第1のバリア層を効率よく形成することが可能となる。
 このような製造装置に用いる送り出しローラー32および搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、基材2上に第1のバリア層3を形成したガスバリア性フィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。
 また、ガス供給管41および真空ポンプとしては、原料ガス等を所定の速度で供給または排出することが可能なものを適宜用いることができる。
 また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。
 さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置43、44としては適宜公知の磁場発生装置を用いることができる。さらに、基材2としては、本発明で用いられる基材の他に、第1のバリア層3を予め形成させたものを用いることができる。このように、基材2として第1のバリア層3を予め形成させたものを用いることにより、第1のバリア層3の膜厚を厚くすることも可能である。
 このような図2に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルム(基材)の搬送速度を適宜調整することにより、本発明に係る第1のバリア層を製造することができる。すなわち、図2に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー39および40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材2の表面上および成膜ローラー40上の基材2の表面上に、第1のバリア層3がプラズマCVD法により形成される。この際、成膜ローラー39、40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材2が、図2中の成膜ローラー39のA地点および成膜ローラー40のB地点を通過する際に、第1のバリア層で炭素分布曲線の極大値が形成される。これに対して、基材2が、図2中の成膜ローラー39のC1およびC2地点、ならびに成膜ローラー40のC3およびC4地点を通過する際に、第1のバリア層で炭素分布曲線の極小値が形成される。このため、2つの成膜ローラーに対して、通常、5つの極値が生成する。また、第1のバリア層の極値間の距離(炭素分布曲線の有する1つの極値および該極値に隣接する極値における第1のバリア層の膜厚方向における第1のバリア層の表面からの距離(L)の差の絶対値)は、成膜ローラー39、40の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材2が送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材2の表面上に第1のバリア層3が形成される。
 前記ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。第1のバリア層3の形成に用いる前記成膜ガス中の原料ガスとしては、形成する第1のバリア層3の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られる第1のバリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、第1のバリア層3の種類に応じて適切な原料ガスが選択される。
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
 前記成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成される第1のバリア層3によって、優れたバリア性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
 以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CH36Si2O)と、反応ガスとしての酸素(O2)を含有するものとを用い、ケイ素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CH36Si2O)と、反応ガスとしての酸素(O2)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式1で表されるような反応が起こり、二酸化ケイ素が生成する。
Figure JPOXMLDOC01-appb-C000002
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、上記条件(i)~(iii)を全て満たす第1のバリア層を形成することができなくなってしまう。そのため、本発明において、第1のバリア層を形成する際には、上記反応式1の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバ内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサンおよび酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が第1のバリア層中に取り込まれ、上記条件(i)~(iii)を全て満たす第1のバリア層を形成することが可能となって、得られるガスバリア性フィルムにおいて優れたガスバリア性および耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
 また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~50Paの範囲とすることが好ましい。
 また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39および40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。
 基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。ライン速度が0.25m/min以上であれば、基材に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、第1のバリア層として十分な膜厚を確保することができる点で優れている。
 上記したように、本実施形態のより好ましい態様としては、本発明に係る第1のバリア層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、バリア性能とが両立する第1のバリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。
 <塗布法>
 本発明に係る第1のバリア層は、無機化合物を含有する液、好ましくはケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成する方法(塗布法)で形成されてもよい。以下、無機化合物としてケイ素化合物を例に挙げて説明するが、前記無機化合物はケイ素化合物に限定されるものではない。
 (ケイ素化合物)
 前記ケイ素化合物としては、ケイ素化合物を含有する塗布液の調製が可能であれば特に限定はされない。
 具体的には、例えば、パーヒドロポリシラザン、オルガノポリシラザン、シルセスキオキサン、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,1-ジメチル-1-シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、ジメトキシメチル-3,3,3-トリフルオロプロピルシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、アリールトリメトキシシラン、エトキシジメチルビニルシラン、アリールアミノトリメトキシシラン、N-メチル-N-トリメチルシリルアセトアミド、3-アミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリールオキシジメチルビニルシラン、ジエチルビニルシラン、ブチルトリメトキシシラン、3-アミノプロピルジメチルエトキシシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、3-トリフルオロアセトキシプロピルトリメトキシシラン、ジアリールジメトキシシラン、ブチルジメトキシビニルシラン、トリメチル-3-ビニルチオプロピルシラン、フェニルトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、3-アクリロキシプロピルジメトキシメチルシラン、3-アクリロキシプロピルトリメトキシシラン、ジメチルイソペンチロキシビニルシラン、2-アリールオキシエチルチオメトキシトリメチルシラン、3-グリシドキシプロピルトリメトキシシラン、3-アリールアミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ジメチルエチキシフェニルシラン、ベンゾイロキシトリメチルシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、ジメチルエトキシ-3-グリシドキシプロピルシラン、ジブトキシジメチルシラン、3-ブチルアミノプロピルトリメチルシラン、3-ジメチルアミノプロピルジエトキシメチルシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジメチル-p-トリルビニルシラン、p-スチリルトリメトキシシラン、ジエチルメチルフェニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフェニルシラン、デシルメチルジメトキシシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、オクチロキシトリメチルシラン、フェニルトリビニルシラン、テトラアリールオキシシラン、ドデシルトリメチルシラン、ジアリールメチルフェニルシラン、ジフェニルメチルビニルシラン、ジフェニルエトキシメチルシラン、ジアセトキシジフェニルシラン、ジベンジルジメチルシラン、ジアリールジフェニルシラン、オクタデシルトリメチルシラン、メチルオクタデシルジメチルシラン、ドコシルメチルジメチルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,4-ビス(ジメチルビニルシリル)ベンゼン、1,3-ビス(3-アセトキシプロピル)テトラメチルジシロキサン、1,3,5-トリメチル-1,3,5-トリビニルシクロトリシロキサン、1,3,5-トリス(3,3,3-トリフルオロプロピル)-1,3,5-トリメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラエトキシ-1,3,5,7-テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げることができる。これらケイ素化合物は、単独でもまたは2種以上組み合わせても用いることができる。
 上記シルセスキオキサンとしては、例えば、Mayaterials製Q8シリーズおよび有機基を含まない水素化シルセスキオキサン等が挙げられる。
 中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましく、ガスバリア性能が高く、屈曲時および高温高湿条件下であってもバリア性能が維持されることから、ポリシラザンがより好ましく、パーヒドロポリシラザンが特に好ましい。
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO2、Si34、および両方の中間固溶体SiOxy等のセラミック前駆体無機ポリマーである。
 具体的には、ポリシラザンは、好ましくは下記の構造を有する。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(I)において、R1、R2およびR3は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1、R2およびR3は、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R1~R3に場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SO3H)、カルボキシル基(-COOH)、ニトロ基(-NO2)などがある。なお、場合によって存在する置換基は、置換するR1~R3と同じとなることはない。例えば、R1~R3がアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R1、R2およびR3は、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基または3-(トリメトキシシリルプロピル)基である。
 また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R1、R2およびR3のすべてが水素原子であるパーヒドロポリシラザンである。
 または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(II)において、R1'、R2'、R3'、R4'、R5'およびR6'は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1'、R2'、R3'、R4'、R5'およびR6'は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
 また、上記一般式(II)において、n'およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n'およびpは、同じであってもあるいは異なるものであってもよい。
 上記一般式(II)のポリシラザンのうち、R1'、R3'およびR6'が各々水素原子を表し、R2'、R4'およびR5'が各々メチル基を表す化合物;R1'、R3'およびR6'が各々水素原子を表し、R2'、R4'が各々メチル基を表し、R5'がビニル基を表す化合物;R1'、R3'、R4'およびR6'が各々水素原子を表し、R2'およびR5'が各々メチル基を表す化合物が好ましい。
 または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(III)において、R1"、R2"、R3"、R4"、R5"、R6"、R7"、R8"およびR9"は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1"、R2"、R3"、R4"、R5"、R6"、R7"、R8"およびR9"は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
 また、上記一般式(III)において、n"、p"およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n"、p"およびqは、同じであってもあるいは異なるものであってもよい。
 上記一般式(III)のポリシラザンのうち、R1"、R3"およびR6"が各々水素原子を表し、R2"、R4"、R5"およびR8"が各々メチル基を表し、R9"が(トリエトキシシリル)プロピル基を表し、R7"がアルキル基または水素原子を表す化合物が好ましい。
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択してよく、混合して使用することもできる。
 パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造とが存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま第1のバリア層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標) NN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。
 本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。
 ポリシラザンを用いる場合、改質処理前の第1のバリア層中におけるポリシラザンの含有率としては、第1のバリア層の全重量を100重量%としたとき、100重量%でありうる。また、第1のバリア層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10重量%以上99重量%以下であることが好ましく、40重量%以上95重量%以下であることがより好ましく、特に好ましくは70重量%以上95重量%以下である。
 上記のような第1のバリア層の塗布法による形成方法は、特に制限されず、公知の方法が適用できるが、有機溶剤中にケイ素化合物および必要に応じて触媒を含む第1のバリア層形成用塗布液を公知の湿式塗布方法により塗布し、この溶剤を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。
 (第1のバリア層形成用塗布液)
 第1のバリア層形成用塗布液を調製するための溶剤としては、ケイ素化合物を溶解できるものであれば特に制限されないが、ケイ素化合物と容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ケイ素化合物に対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ケイ素化合物の溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
 第1のバリア層形成用塗布液におけるケイ素化合物の濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80重量%、より好ましくは5~50重量%、特に好ましくは10~40重量%である。
 第1のバリア層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N',N'-テトラメチル-1,3-ジアミノプロパン、N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1~10重量%、より好ましくは0.5~7重量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。
 第1のバリア層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、またはポリシロキサン等である。
 また、特開2005-231039号公報に記載のように第1のバリア層の形成にゾルゲル法を用いることができる。ゾルゲル法により第1のバリア層を形成する際に用いられる塗布液は、ケイ素化合物、ならびにポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体の少なくとも1種を含むことが好ましい。さらに、塗布液は、ゾルゲル法触媒、酸、水、および、有機溶剤を含むことが好ましい。ゾルゲル法では、かような塗布液を用いて重縮合することにより第1のバリア層が得られる。ケイ素化合物としては、一般式RA OSi(ORBpで表されるアルコキシドを用いることが好ましい。ここで、RAおよびRBはそれぞれ独立して、炭素数1~20のアルキル基を表し、Oは、0以上の整数を表し、pは、1以上の整数を表す。上記のアルコキシシランの具体例としては、例えば、テトラメトキシシラン(Si(OCH34)、テトラエトキシシラン(Si(OC254)、テトラプロポキシシラン(Si(OC374)、テトラブトキシシラン(Si(OC494)等を使用することができる。塗布液において、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体を組み合わせて使用する場合、それぞれの配合割合としては、重量比で、ポリビニルアルコール系樹脂:エチレン・ビニルアルコール共重合体=10:0.05~10:6であることが好ましい。また、ポリビニルアルコール系樹脂および/またはエチレン・ビニルアルコール共重合体の塗布液中の含有量は、上記のケイ素化合物の合計量100重量部に対して5~500重量部の範囲が好ましく、20~200重量部がより好ましい。ポリビニルアルコール系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。上記のポリビニルアルコール系樹脂としては、酢酸基が数十%残存している部分ケン化ポリビニルアルコール系樹脂、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、または、OH基が変性された変性ポリビニルアルコール系樹脂のいずれでもよい。ポリビニルアルコール系樹脂の具体例としては、株式会社クラレ製のクラレポバール(登録商標)、日本合成化学工業株式会社製のゴーセノール(登録商標)等を使用することができる。また、本発明において、エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン-酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。具体的には、酢酸基が数十モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないかまたは酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではないが、ガスバリア性の観点から好ましいケン化度は、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。また、上記のエチレン・ビニルアルコール共重合体中のエチレンに由来する繰り返し単位の含量(以下「エチレン含量」ともいう)は、通常0~50モル%、好ましくは20~45モル%であるものを使用することが好ましい。上記のエチレン・ビニルアルコール共重合体の具体例としては、株式会社クラレ製、エバール(登録商標)EP-F101(エチレン含量;32モル%)、日本合成化学工業株式会社製、ソアノール(登録商標)D2908(エチレン含量;29モル%)等を使用することができる。ゾルゲル法触媒、主として、重縮合触媒としては、水に実質的に不溶であり、かつ有機溶媒に可溶な第三級アミンが用いられる。具体的には、例えば、N、N-ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン等を使用することができる。また、酸としては、上記ゾルゲル法の触媒、主として、アルコキシドやシランカップリング剤などの加水分解のための触媒として用いられるものが挙げられる。上記の酸としては、例えば、硫酸、塩酸、硝酸などの鉱酸、および酢酸、酒石酸などの有機酸等を使用することができる。さらに、塗布液には、上記のアルコキシドの合計モル量1モルに対して好ましくは0.1~100モル、より好ましくは0.8~2モルの割合の水を含有させることが好ましい。
 ゾルゲル法による塗布液に用いられる有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール等を用いることができる。また、溶媒中に可溶化されたエチレン・ビニルアルコール共重合体は、例えば、ソアノール(登録商標、日本合成化学工業株式会社製)として市販されているものを使用することができる。さらに、ゾルゲル法による塗布液には、例えば、シランカップリング剤等も添加することができる。
 (第1のバリア層形成用塗布液を塗布する方法)
 第1のバリア層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 塗布厚さは、目的に応じて適切に設定され得る。例えば、第1のバリア層1層当たりの塗布厚さは、乾燥後の厚さが10nm~10μm程度であることが好ましく、15nm~1μmであることがより好ましく、20~500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適な第1のバリア層が得られうる。なお、残存する溶媒は後に除去されうる。
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
 第1のバリア層形成用塗布液を塗布して得られた塗膜は、改質処理前または改質処理中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-5℃(温度25℃/湿度10%)以下であり、維持される時間は第1のバリア層の膜厚によって適宜設定することが好ましい。第1のバリア層の膜厚が1.0μm以下の条件においては、露点温度は-5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去する工程を行うことは、シラノールに転化した第1のバリア層の脱水反応を促進する観点から好ましい。
 <塗布法により形成された第1のバリア層の改質処理>
 本発明における塗布法により形成された第1のバリア層の改質処理とは、ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応を指し、具体的には本発明のガスバリア性フィルムが全体としてガスバリア性を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。
 ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応は、公知の方法を適宜選択して適用することができる。改質処理としては、具体的には、プラズマ処理、紫外線照射処理、加熱処理が挙げられる。ただし、加熱処理による改質の場合、ケイ素化合物の置換反応による酸化ケイ素膜または酸窒化ケイ素層の形成には450℃以上の高温が必要であるため、プラスチック等のフレキシブル基板においては、適応が難しい。このため、熱処理は他の改質処理と組み合わせて行うことが好ましい。
 したがって、改質処理としては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマ処理や紫外線照射処理による転化反応が好ましい。
 (プラズマ処理)
 本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等をあげることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、さらには通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子を含むガス、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
 (加熱処理)
 ケイ素化合物を含有する塗膜を他の改質処理、好適には後述のエキシマ照射処理等と組み合わせて、加熱処理することで、改質処理を効率よく行うことが出来る。
 また、ゾルゲル法を用いて層形成する場合には、加熱処理を用いることが好ましい。加熱条件としては、好ましくは50~300℃、より好ましくは70~200℃の温度で、好ましくは0.005~60分間、より好ましくは0.01~10分間、加熱・乾操することにより、縮合が行われ、第1のバリア層を形成することができる。
 加熱処理としては、例えば、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が上げられるが特に限定はされない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。
 加熱処理時の塗膜の温度としては、50~250℃の範囲に適宜調整することが好ましく、50~120℃の範囲であることがより好ましい。
 また、加熱時間としては、1秒~10時間の範囲が好ましく、10秒~1時間の範囲がより好ましい。
 (紫外線照射処理)
 改質処理の方法の1つとして、紫外線照射による処理が好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸窒化ケイ素膜を形成することが可能である。
 この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するO2とH2Oや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られる第1のバリア層が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。
 紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。
 なお、本発明でいう紫外線とは、一般には、10~400nmの波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理以外の紫外線照射処理の場合は、好ましくは210~375nmの紫外線を用いる。
 紫外線の照射は、照射される第1のバリア層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。
 基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm2、好ましくは50~200mW/cm2になるように基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。
 一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製など)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線を第1のバリア層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから第1のバリア層に当てることが好ましい。
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、第1のバリア層を表面に有する積層体を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、第1のバリア層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や第1のバリア層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましく、その際の熱処理条件の詳細は上述したとおりである。
 本発明においての放射線源は、100~180nmの波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
 紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~20,000体積ppmとすることが好ましく、より好ましくは50~10,000体積ppmである。また、転化プロセスの間の水蒸気濃度は、好ましくは1,000~4,000体積ppmの範囲である。
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm2~10W/cm2であると好ましく、30mW/cm2~200mW/cm2であることがより好ましく、50mW/cm2~160mW/cm2であるとさらに好ましい。1mW/cm2未満では、改質効率が大きく低下する懸念があり、10W/cm2を超えると、塗膜にアブレーションを生じたり、基材にダメージを与えたりする懸念が出てくる。
 塗膜面における真空紫外線の照射エネルギー量(照射量)は、10~10,000mJ/cm2であることが好ましく、100~8,000mJ/cm2であることがより好ましく、200~6,000mJ/cm2であることがさらに好ましい。10mJ/cm2未満では、改質が不十分となる懸念があり、10,000mJ/cm2超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。
 また、改質に用いられる真空紫外光は、CO、CO2およびCH4の少なくとも一種を含むガス(以下、炭素含有ガスとも称する)で形成されたプラズマにより発生させてもよい。さらに、炭素含有ガスは、単独で使用してもよいが、希ガスまたはH2を主ガスとして、炭素含有ガスを少量添加した混合ガスとして使用することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。
 次に、好適な形態であるケイ素化合物がパーヒドロポリシラザンである場合に、真空紫外線照射工程でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。
 (I)脱水素、それに伴うSi-N結合の形成
 パーヒドロポリシラザン中のSi-H結合やN-H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi-Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiNy組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si-H結合やN-H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはH2として膜外に放出される。
 (II)加水分解・脱水縮合によるSi-O-Si結合の形成
 パーヒドロポリシラザン中のSi-N結合は水により加水分解され、ポリマー主鎖が切断されてSi-OHを形成する。二つのSi-OHが脱水縮合してSi-O-Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰となると脱水縮合しきれないSi-OHが残存し、SiO2.1~SiO2.3の組成で示されるガスバリア性の低い硬化膜となる。
 (III)一重項酸素による直接酸化、Si-O-Si結合の形成
 真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi-O-Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
 (IV)真空紫外線照射・励起によるSi-N結合切断を伴う酸化
 真空紫外線のエネルギーはパーヒドロポリシラザン中のSi-Nの結合エネルギーよりも高いため、Si-N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi-O-Si結合やSi-O-N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
 ポリシラザンを含有する層に真空紫外線照射を施した層の酸窒化ケイ素の組成の調整は、上述の(I)~(IV)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。
 ここで、ケイ素化合物として好適なポリシラザンにおける場合、シリカ転化(改質処理)では、Si-H、N-H結合の切断と、Si-O結合の生成が起こり、シリカ等のセラミックスに転化するが、この転化の度合はIR測定によって、以下に定義する式(1)により、SiO/SiN比で半定量的に評価することができる。
Figure JPOXMLDOC01-appb-M000006
 ここで、SiO吸光度は約1160cm-1、SiN吸光度は約840cm-1での吸収(吸光度)により算出する。SiO/SiN比が大きいほど、シリカ組成に近いセラミックスへの転化が進んでいることを示す。
 ここで、セラミックスへの転化度合の指標となるSiO/SiN比は好ましくは0.3以上、より好ましくは0.5以上とすることが好ましい。0.3未満では、期待するガスバリア性が得られないことがある。また、シリカ転化率(SiOxにおけるx)の測定方法としては、例えば、XPS法を用いて測定することができる。
 第1のバリア層の膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、第1のバリア層を切断して、切断面をXPS表面分析装置で原子組成比を測定することでも膜組成を測定することができる。
 また、第1のバリア層の膜密度は、目的に応じて適切に設定され得る。例えば、第1のバリア層の膜密度は、1.5~2.6g/cm3の範囲にあることが好ましい。この範囲を外れると、膜の緻密さが低下しバリア性の劣化や、湿度による膜の酸化劣化が起こる場合がある。
 該第1のバリア層は、単層でもよいし2層以上の積層構造であってもよい。
 該第1のバリア層が2層以上の積層構造である場合、各第1のバリア層は同じ組成であっても異なる組成であってもよい。また、第1のバリア層が2層以上の積層構造である場合、第1のバリア層は真空成膜法により形成される層のみからなってもよいし、塗布法により形成される層のみからなってもよいし、真空成膜法により形成される層と塗布法により形成される層との組み合わせであってもよい。
 また、前記第1のバリア層は、応力緩和性や、後述の第2のバリア層の形成で使用される紫外線を吸収させるなどの観点から、窒素元素または炭素元素を含むことも好ましい。これらの元素を含むことで、応力緩和や紫外線吸収などの性質を有するようになり、第1のバリア層と第2のバリア層との密着性を向上させることでガスバリア性が向上するなどの効果が得られ好ましい。
 第1のバリア層における化学組成は、第1のバリア層を形成する際にケイ素化合物等の種類および量、ならびにケイ素化合物を含む層を改質する際の条件等により、制御することができる。
 〔第2のバリア層〕
 第1のバリア層の上部に設けられる本発明に係る第2のバリア層は、少なくともケイ素原子および酸素原子を含有し、かつケイ素原子に対する酸素原子の存在比(O/Si)が1.4~2.2であり、ケイ素原子に対する窒素原子の存在比(N/Si)が0~0.4である。
 本発明において、「ケイ素原子に対する酸素原子の存在比(O/Si)が1.4~2.2である」とは、後述する装置および方法で測定した第2のバリア層のどの深さの点においても、O/Siが1.4未満、または2.2を超える値を示す部分がないことを意味する。同様に、「ケイ素原子に対する窒素原子の存在比(N/Si)が0~0.4である」とは、後述する装置および方法で測定した第2のバリア層のどの深さの点においても、N/Siが0.4を超える値を示す部分がないことを意味する。
 第2のバリア層におけるケイ素原子に対する酸素原子の存在比(O/Si)が1.4以上であると、高温高湿下において第2のバリア層が水分と反応しにくくなり、バリア性が向上した膜を形成しやすくなる。一方、2.2以下であると、分子内にシラノール基(Si-OH)が低減されるため、水分の通り道ができにくくなり十分なバリア性が得られなくなる。該O/Siは好ましくは1.5~2.1であり、より好ましくは1.7~2.0である。
 第2のバリア層におけるケイ素原子に対する窒素原子の存在比(N/Si)が0.4以下であると、高温高湿下において第2のバリア層が水分と反応しくくなり、バリア性が向上した膜を形成しやすくなる。該N/Siは好ましくは0~0.3であり、より好ましくは0~0.2である。
 該O/Siおよび該N/Siは、後述の水、アルコール化合物、金属アルコキシド化合物等の添加化合物の添加量、真空紫外線の照射エネルギー量、照射時の温度等により制御することができる。
 該O/Siおよび該N/Siは、下記の方法で測定することができる。すなわち、第2のバリア層の組成プロファイルは、Arスパッタエッチング装置とX線光電子分光法(XPS)とを組み合わせることで求めることができる。また、深さ方向のプロファイル分布は、FIB(収束イオンビーム)加工装置による膜加工、およびTEM(透過型電子顕微鏡)により実膜厚を求めXPSの結果と対応させることで算出できる。
 本発明においては、以下に示す装置および手法を用いた。
 (スパッタ条件)
 イオン種:Arイオン
 加速電圧:1kV
 (X線光電子分光測定条件)
 装置:VGサイエンティフィックス社製ESCALAB-200R
 X線アノード材:Mg
 出力:600W(加速電圧15kV、エミッション電流40mA)
 尚、測定の分解能は0.5nmでありこれに応じた各サンプリング点において、各元素比をプロットすることで得られる。
 (FIB加工)
 装置:SII製SMI2050
 加工イオン:(Ga 30kV)
 (TEM観察)
 装置:日本電子製JEM2000FX(加速電圧:200kV)
 電子線照射時間:5秒から60秒
 (第2のバリア層の表面からの膜厚の深さ方向の元素比)
 上述の第2のバリア層表面からのスパッタにより得られた各深さでのXPS測定(Si、O、Nに注目)とTEMによる断層面観察の結果を照合させて、O/SiおよびN/Siの平均値を算出した。
 また、第2のバリア層においては、最表面から深さが10nmまでの領域におけるケイ素原子に対する酸素原子の存在比の平均値と、最表面から深さが10nmを超える領域におけるケイ素原子に対する酸素原子の存在比の平均値との差が0.4以下であることが好ましい。かような構成であれば、第2のバリア層の表面部分と内部とで組成変化が少なくなり、高温高湿下における保存安定性がさらに優れたガスバリア性フィルムとなる。この平均値の差はより好ましくは0.3以下であり、さらに好ましくは0.2以下である。
 第2のバリア層における最表面から深さが10nmまでの領域は、X線光電子分光法(XPS)により決定することができる。
 また、 上記の最表面から深さが10nmまでの領域におけるケイ素原子に対する酸素原子の存在比の平均値、および最表面から深さが10nmを超える領域におけるケイ素原子に対する酸素原子の存在比の平均値は、上記で説明したArスパッタエッチング装置とX線光電子分光法(XPS)とを組み合わせた方法により算出することができる。
 上記したような第2のバリア層を得るための形成方法は、特に制限されないが、生産性、簡便性などの観点から、ポリシラザンと、ポリシラザン以外の化合物(以下、単に添加化合物とも称する)とを含む層に、活性エネルギー線を照射して改質処理する方法が好ましい。以下、かような第2のバリア層の形成方法について説明する。
 <第2のバリア層の形成方法>
 第2のバリア層の形成方法は特に制限されないが、有機溶剤中に、無機化合物、好ましくはポリシラザンと、添加化合物と、必要に応じて触媒を含む第2のバリア層形成用塗布液を公知の湿式塗布方法により塗布し、この溶剤を蒸発させて除去し、次いで、紫外線、電子線、X線、α線、β線、γ線、中性子線等の活性エネルギー線を照射して改質処理を行う方法が好ましい。
 ポリシラザンの具体的な例は、上記「第1のバリア層」の項で説明した内容と同様であるので、ここでは説明を省略する。中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさ、屈曲時および高温高湿条件下であってもバリア性能が維持されることなどの観点から、パーヒドロポリシラザンが特に好ましい。
 添加化合物の例としては、水、アルコール化合物、フェノール化合物、金属アルコキシド化合物、アルキルアミン化合物、アルコール変性ポリシロキサン、アルコキシ変性ポリシロキサン、およびアルキルアミノ変性ポリシロキサンからなる群より選択される少なくとも1種の化合物が挙げられる。なかでも、アルコール化合物、フェノール化合物、金属アルコキシド化合物、アルキルアミン化合物、アルコール変性ポリシロキサン、アルコキシ変性ポリシロキサン、およびアルキルアミノ変性ポリシロキサンからなる群より選択される少なくとも1種の化合物がより好ましい。
 添加化合物として用いられる前記アルコール化合物の具体的な例としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、オクタノール、イソオクタノール、2-エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、tert-ノニルアルコール、デカノール、ドデカノール、ドデカヘキサノール、ドデカオクタノール、アリルアルコール、オレイルアルコールなどが挙げられる。アルコール化合物は、改質処理の際、ポリシラザンの骨格に含まれうるSi-H基と、アルコール化合物中のOH基との間で脱水素縮合反応が起こり、Si-O-R結合が形成されるため、高温高湿下での保存安定性がより向上する。これらアルコール化合物の中でも、炭素数が少なく、かつ沸点が100℃以下であるメタノール、エタノール、1-プロパノール、または2-プロパノールがより好ましい。
 添加化合物として用いられる前記フェノール化合物の具体的な例としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、α-ナフトール、β-ナフトールなどが挙げられる。フェノール化合物も上記のアルコール化合物と同様に、改質処理の際、ポリシラザンの骨格に含まれうるSi-H基と、フェノール化合物中のOH基との間で脱水素縮合反応が起こり、Si-O-R結合が形成されるため、高温高湿下での保存安定性がより向上する。
 添加化合物として用いられる金属アルコキシド化合物としては、ベリリウム(Be)、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロジウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)、鉛(Pb)、ラジウム(Ra)等の長周期型周期表の第2~14族元素のアルコキシドが挙げられる。
 金属アルコキシド化合物のさらに具体的な例としては、例えば、ベリリウムアセチルアセトネート、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn-プロピル、ホウ酸トリイソプロピル、ホウ酸トリn-ブチル、ホウ酸トリtert-ブチル、マグネシウムエトキシド、マグネシウムエトキシエトキシド、マグネシウムメトキシエトキシド、マグネシウムアセチルアセトネート、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリn-プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリsec-ブトキシド、アルミニウムトリtert-ブトキシド、アルミニウムアセチルアセトナート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテートジn-ブチレート、アルミニウムジエチルアセトアセテートモノn-ブチレート、アルミニウムジイソプロピレートモノsec-ブチレート、アルミニウムトリスアセチルアセトネート、アルミニウムトリスエチルアセトアセテート、ビス(エチルアセトアセテート)(2,4-ペンタンジオナト)アルミニウム、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムオキサイドイソプロポキサイドトリマー、アルミニウムオキサイドオクチレートトリマー、カルシウムメトキシド、カルシウムエトキシド、カルシウムイソプロポキシド、カルシウムアセチルアセトネート、スカンジウムアセチルアセトネート、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラノルマルプロポキシド、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトライソブトキシド、チタンジイソプロポキシジノルマルブトキシド、チタンジtert-ブトキシジイソプロポキシド、チタンテトラtert-ブトキシド、チタンテトライソオクチロキシド、チタンテトラステアリルアルコキシド、バナジウムトリイソブトキシドオキシド、トリス(2,4-ペンタンジオナト)クロム、クロムn-プロポキシド、クロムイソプロポキシド、マンガンメトキシド、トリス(2,4-ペンタンジオナト)マンガン、鉄メトキシド、鉄エトキシド、鉄n-プロポキシド、鉄イソプロポキシド、トリス(2,4-ペンタンジオナト)鉄、コバルトイソプロポキシド、トリス(2,4-ペンタンジオナト)コバルト、ニッケルアセチルアセトネート、銅メトキシド、銅エトキシド、銅イソプロポキシド、銅アセチルアセトネート、亜鉛エトキシド、亜鉛エトキシエトキシド、亜鉛メトキシエトキシド、ガリウムメトキシド、ガリウムエトキシド、ガリウムイソプロポキシド、ガリウムアセチルアセトナート、ゲルマニウムメトキシド、ゲルマニウムエトキシド、ゲルマニウムイソプロポキシド、ゲルマニウムn-ブトキシド、ゲルマニウムtert-ブトキシド、エチルトリエトキシゲルマニウム、ストロンチウムイソプロポキシド、イットリウムn-プロポキシド、イットリウムイソプロポキシド、イットリウムアセチルアセトネート、ジルコニウムエトキシド、ジルコニウムn-プロポキシド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムtert-ブトキシド、テトラキス(2,4-ペンタンジオナト)ジルコニウム、ニオブエトキシド、ニオブn-ブトキシド、ニオブtert-ブトキシド、モリブデンエトキシド、モリブデンアセチルアセトネート、パラジウムアセチルアセトネート、銀アセチルアセトネート、カドミウムアセチルアセトネート、トリス(2,4-ペンタンジオナト)インジウム、インジウムイソプロポキシド、インジウムイソプロポキシド、インジウムn-ブトキシド、インジウムメトキシエトキシド、スズn-ブトキシド、スズtert-ブトキシド、スズアセチルアセトネート、バリウムジイソプロポキシド、バリウムtert-ブトキシド、バリウムアセチルアセトネート、ランタンイソプロポキシド、ランタンメトキシエトキシド、ランタンアセチルアセトネート、セリウムn-ブトキシド、セリウムtert-ブトキシド、セリウムアセチルアセトネート、プラセオジムメトキシエトキシド、プラセオジムアセチルアセトネート、ネオジムメトキシエトキシド、ネオジムアセチルアセトネート、ネオジムメトキシエトキシド、サマリウムイソプロポキシド、サマリウムアセチルアセトネート、ユーロピウムアセチルアセトネート、ガドリニウムアセチルアセトネート、テルビウムアセチルアセトネート、ホルミウムアセチルアセトネート、イッテルビウムアセチルアセトネート、ルテチウムアセチルアセトネート、ハフニウムエトキシド、ハフニウムn-ブトキシド、ハフニウムtert-ブトキシド、ハフニウムアセチルアセトネート、タンタルメトキシド、タンタルエトキシド、タンタルn-ブトキシド、タンタルブトキシド、タンタルテトラメトキシドアセチルアセトネート、タングステンエトキシド、イリジウムアセチルアセトネート、イリジウムジカルボニルアセチルアセトネート、タリウムエトキシド、タリウムアセチルアセトネート、鉛アセチルアセトネート、および下記構造を有する化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 また、金属アルコキシド化合物として、シルセスキオキサンも用いることができる。
 シルセスキオキサン(Silsesquioxane)は、主鎖骨格がSi-O結合からなるシロキサン系の化合物であり、Tレジンとも呼ばれるもので、通常のシリカが一般式〔SiO2〕で表されるのに対し、シルセスキオキサン(ポリシルセスキオキサンとも称する)は一般式〔RSiO1.5〕で表される化合物である。通常はテトラエトキシシランに代表されるテトラアルコキシシラン(Si(OR')4)の1つのアルコキシ基をアルキル基またはアリール基に置き換えた(RSi(OR')3)化合物の加水分解-重縮合で合成されるポリシロキサンであり、分子配列の形状として、代表的には無定形、ラダー状、かご状(完全縮合ケージ状)がある。
 シルセスキオキサンは、合成されてもあるいは市販品であってもよい。後者の具体例としては、X-40-2308、X-40-9238、X-40-9225、X-40-9227、x-40-9246、KR-500、KR-510(いずれも、信越化学工業株式会社製)、SR2400、SR2402、SR2405、FOX14(パーヒドロシルセルセスキオキサン)(いずれも、東レ・ダウコーニング株式会社製)、SST-H8H01(パーヒドロシルセルセスキオキサン)(Gelest社製)等が挙げられる。
 これら金属アルコキシド化合物の中でも、反応性、溶解性等の観点から分岐状のアルコキシ基を有する化合物が好ましく、2-プロポキシ基、またはsec-ブトキシ基を有する化合物がより好ましい。
 また、アセチルアセトナート基を有する金属アルコキシド化合物もまた好ましい。アセチルアセトナート基は、カルボニル構造によりアルコキシド化合物の中心元素と相互作用を有するため、取り扱い性が容易になり好ましい。さらに好ましくは上記のアルコキシド基、またはアセチルアセトナート基を複数種有する化合物が反応性や膜組成の観点からより好ましい。
 また、金属アルコキシドの中心元素としては、ポリシラザン中の窒素原子と配位結合を形成しやすい元素が好ましく、ルイス酸性が高いAl、Fe、またはBがより好ましい。
 さらに好ましい金属アルコキシド化合物は、具体的には、ホウ酸トリイソプロピル、アルミニウムトリsec-ブトキシド、アルミニウムエチルアセトアセテート・ジイソプロピレート、カルシウムイソプロポキシド、チタンテトライソプロポキシド、ガリウムイソプロポキシド、アルミニウムジイソプロピレートモノsec-ブチレート、アルミニウムエチルアセトアセテートジn-ブチレート、またはアルミニウムジエチルアセトアセテートモノn-ブチレートである。
 金属アルコキシド化合物は、市販品を用いてもよいし合成品を用いてもよい。市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)、オルガチックスシリーズ(マツモトファインケミカル株式会社製)等が挙げられる。
 なお、金属アルコキシド化合物を用いる場合は、ポリシラザンを含む溶液と不活性ガス雰囲気下で混合することが好ましい。金属アルコキシド化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。
 前記アルキルアミン化合物の具体例としては、例えば、メチルアミン、エチルアミン、プロピルアミン、n-ブチルアミン、sec-ブチルアミン、tert-ブチルアミン、3-モルホリノプロピルアミン等の第1級アミン化合物;ジメチルアミン、ジエチルアミン、メチルエチルアミン、ジプロピルアミン、ジ(n-ブチル)アミン、ジ(sec-ブチル)アミン、ジ(tert-ブチル)アミン等の第2級アミン化合物;トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリプロピルアミン、トリ(n-ブチル)アミン、トリ(sec-ブチル)アミン、トリ(tert-ブチル)アミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエタノールアミン等の第3級アミン化合物などが挙げられる。
 また、前記アルキルアミン化合物として、ジアミン化合物が使用できる。ジアミン化合物の具体例としては、テトラメチルメタンジアミン、テトラメチルエタンジアミン、テトラメチルプロパンジアミン(テトラメチルジアミノプロパン)、テトラメチルブタンジアミン、テトラメチルペンタンジアミン、テトラメチルヘキサンジアミン、テトラエチルメタンジアミン、テトラエチルエタンジアミン、テトラエチルプロパンジアミン、テトラエチルブタンジアミン、テトラエチルペンタンジアミン、テトラエチルヘキサンジアミン、N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH)、テトラメチルグアニジン等が挙げられる。
 また、ヒドロキシ基を有するヒドロキシ変性ポリシロキサン、アルコキシ基を有するアルコキシ変性ポリシロキサン、およびアルキルアミノ基を有するアルキルアミノ変性ポリシロキサンなどの変性ポリシロキサンも、添加化合物として好ましく用いることができる。
 変性ポリシロキサンは、下記一般式(4)または一般式(5)で示されるポリシロキサン類を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000008
 前記一般式(4)および一般式(5)中、R4~R7は、それぞれ独立して、水素原子、ヒドロキシ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルアミノ基、または置換もしくは無置換のアリール基であり、この際、R4およびR5の少なくとも1つ、ならびにR6およびR7の少なくとも1つは、ヒドロキシ基、アルコキシ基、またはアルキルアミノ基であり、
 pおよびqは、それぞれ独立して、1以上の整数である。
 変性ポリシロキサンは、市販品を用いてもよいし合成品を用いてもよい。市販品の例としては、例えば、X-40-2651、X-40-2655A、KR-513、KC-89S,KR-500、X-40-9225、X-40-9246、X-40-9250、KR-401N、X-40-9227、X-40-9247、KR-510、KR9218、KR-213、X-40-2308、X-40-9238(以上、信越化学工業株式会社製)等が挙げられる。
 前記変性ポリシロキサンにおけるヒドロキシ基、アルコキシ基、またはアルキルアミノ基の変性度は、ケイ素原子のモル数に対し、5モル%~50モル%が好ましく、7モル%~20モル%がより好ましく、8モル%~12モル%がさらに好ましい。
 変性ポリシロキサンのポリスチレン換算の重量平均分子量は、1,000~100,000程度が好ましく、2,000~50,000がより好ましい。
 (第2のバリア層形成用塗布液)
 第2のバリア層形成用塗布液を調製するための溶剤としては、上記ポリシラザンおよび添加化合物を溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性有機溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン含有炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
 第2のバリア層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80重量%、より好ましくは5~50重量%、特に好ましくは10~40重量%である。
 第2のバリア層形成用塗布液における添加化合物の使用量は、ポリシラザンに対して1~50重量%であることが好ましく、1~15重量%であることがより好ましい。この範囲であれば、本発明に係る第2のバリア層を効率的に得ることができる。
 第2のバリア層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N',N'-テトラメチル-1,3-ジアミノプロパン、N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1~10重量%、より好ましくは0.5~7重量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。なお、これら触媒のうち、アミン触媒は、上記の添加化合物としての役割を担うこともできる。
 第2のバリア層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。
 (第2のバリア層形成用塗布液を塗布する方法)
 第2のバリア層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 塗布厚さは、目的に応じて適切に設定され得る。例えば、第2のバリア層1層当たりの塗布厚さは、乾燥後の厚さが10nm~10μm程度であることが好ましく、15nm~1μmであることがより好ましく、20~500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
 塗布液を塗布した後の塗膜の乾燥方法、乾燥温度、乾燥時間、および乾燥雰囲気は、上記「第1のバリア層」の項で説明した内容と同様であるので、ここでは説明を省略する。
 また、第2のバリア層形成用塗布液を塗布して得られた塗膜の水分を除去する方法も、上記「第1のバリア層」の項で説明した内容と同様であるので、ここでは説明を省略する。
 得られた塗膜の改質処理の好ましい方法は、上記「第1のバリア層」の項の(紫外線照射処理)、および(真空紫外線照射処理:エキシマ照射処理)で説明した内容と同様であるので、ここでは説明を省略する。
 なお、真空紫外線照射工程において、第2のバリア層形成用塗布液から形成された塗膜面での該真空紫外線の照度は1mW/cm2~10W/cm2であると好ましく、30mW/cm2~200mW/cm2であることがより好ましく、50mW/cm2~160mW/cm2であるとさらに好ましい。1mW/cm2未満では、改質効率が大きく低下する懸念があり、10W/cm2を超えると、塗膜にアブレーションを生じたり、基材にダメージを与えたりする懸念が出てくる。
 また、第2のバリア層形成用塗布液から形成された塗膜面における真空紫外線の照射エネルギー量(照射量)は、10~10,000mJ/cm2であることが好ましく、100~8,000mJ/cm2であることがより好ましく、200~6,000mJ/cm2であることがさらに好ましい。10mJ/cm2未満では、改質が不十分となる懸念があり、10,000mJ/cm2超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。
 第2のバリア層の膜密度は、目的に応じて適切に設定され得る。例えば、第2のバリア層の膜密度が、1.5~2.6g/cm3の範囲にあることが好ましい。この範囲を外れると、膜の緻密さが低下しバリア性の劣化や、湿度による膜の酸化劣化が起こる場合がある。
 該第2のバリア層は、単層でもよいし2層以上の積層構造であってもよい。
 該第2のバリア層が2層以上の積層構造である場合、各第2のバリア層は、上記を満たしていれば、同じ組成であっても異なる組成であってもよい。
 第2のバリア層における、ケイ素原子に対する酸素原子の存在比、ケイ素原子に対する窒素原子の存在比、および最表面から深さが10nmまでの領域におけるケイ素原子に対する酸素原子の存在比の平均値と最表面から深さが10nmを超える領域におけるケイ素原子に対する酸素原子の存在比の平均値との差は、第2のバリア層を形成する際に用いるポリシラザンおよび添加化合物の種類および量、ならびにポリシラザンおよび添加化合物を含む層を改質する際の条件等により、制御することができる。
 〔中間層〕
 本発明のガスバリア性フィルムは、応力緩和などを目的として、第1のバリア層と第2のバリア層との間に中間層を有していてもよい。該中間層を形成する方法としては、ポリシロキサン改質層を形成する方法を適用することができる。この方法は、ポリシロキサンを含有した塗布液を、湿式塗布法により第1のバリア層上に塗布して乾燥した後、その乾燥して得られた塗膜に真空紫外光を照射することによって、中間層を形成する方法である。
 中間層を形成するために用いる塗布液は、ポリシロキサンおよび有機溶媒を含有することが好ましい。
 中間層の形成に適用可能なポリシロキサンとしては、特に制限はないが、下記一般式(6)で表されるオルガノポリシロキサンが、特に好ましい。
 本実施形態ではポリシロキサンとして、下記一般式(6)で表されるオルガノポリシロキサンを例に説明する。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(6)において、R8~R13は、それぞれ独立して、炭素数1~8の有機基を表し、この際、R8~R13の少なくとも1つは、アルコキシ基または水酸基であり、mは1以上の整数である。
 R8~R13で表される炭素数1~8の有機基としては、例えば、γ-クロロプロピル基、3,3,3-トリフロロプロピル基等のハロゲン化アルキル基、ビニル基、フェニル基、γ-メタクリルオキシプロピル基等の(メタ)アクリル酸エステル基、γ-グリシドキシプロピル基等のエポキシ含有アルキル基、γ-メルカプトプロピル基等のメルカプト含有アルキル基、γ-アミノプロピル基等のアミノアルキル基、γ-イソシアネートプロピル基等のイソシアネート含有アルキル基、メチル基、エチル基、n-プロピル基、イソプロピル基等の直鎖状もしくは分岐状のアルキル基、シクロヘキシル基、シクロペンチル基等の脂環状アルキル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等の直鎖状若しくは分岐状アルコキシ基、アセチル基、プロピオニル基、ブチリル基、バレリル基、カプロイル基等のアシル基、水酸基等が挙げられる。
 上記一般式(6)において、mが1以上であり、かつ、ポリスチレン換算の重量平均分子量が1,000~20,000であるオルガノポリシロキサンが特に好ましい。該オルガノポリシロキサンのポリスチレン換算の重量平均分子量が、1,000以上であれば、形成する保護層に亀裂が生じ難く、水蒸気バリア性を維持することができ、20,000以下であれば、形成される中間層の硬化が充分となり、そのため得られる保護層として十分な硬度が得られる。
 また、中間層形成に適用可能な有機溶媒としては、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、非プロトン系溶媒等が挙げられる。
 ここで、アルコール系溶媒としては、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどが好ましい。
 ケトン系溶媒としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン、シクロヘキサノン、2-ヘキサノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン、フェンチョンなどのほか、アセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオン、2,4-オクタンジオン、3,5-オクタンジオン、2,4-ノナンジオン、3,5-ノナンジオン、5-メチル-2,4-ヘキサンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、1,1,1,5,5,5-ヘキサフルオロ-2,4-ヘプタンジオンなどのβ-ジケトン類などが挙げられる。これらのケトン系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。
 アミド系溶媒としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン、N-ホルミルモルホリン、N-ホルミルピペリジン、N-ホルミルピロリジン、N-アセチルモルホリン、N-アセチルピペリジン、N-アセチルピロリジンなどが挙げられる。これらアミド系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。
 エステル系溶媒としては、ジエチルカーボネート、炭酸エチレン、炭酸プロピレン、炭酸ジエチル、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。これらエステル系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。
 非プロトン系溶媒としては、アセトニトリル、ジメチルスルホキシド、N,N,N',N'-テトラエチルスルファミド、ヘキサメチルリン酸トリアミド、N-メチルモルホロン、N-メチルピロール、N-エチルピロール、N-メチルピペリジン、N-エチルピペリジン、N,N-ジメチルピペラジン、N-メチルイミダゾール、N-メチル-4-ピペリドン、N-メチル-2-ピペリドン、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチルテトラヒドロ-2(1H)-ピリミジノンなどを挙げることができる。これら非プロトン系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。
 中間層の形成に用いる有機溶媒としては、上記の有機溶媒のなかではアルコール系溶媒が好ましい。
 中間層形成用の塗布液の塗布方法としては、スピンコート法、ディッピング法、ローラーブレード法、スプレー法などが挙げられる。
 中間層形成用の塗布液により形成する中間層の厚さとしては、100nm~10μmの範囲が好ましい。中間層の厚さが100nm以上であれば、高温高湿下でのガスバリア性を確保することができる。また、中間層の厚さが10μm以下であれば、中間層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
 また、中間層は、その膜密度が通常0.35~1.2g/cm3であり、好ましくは0.4~1.1g/cm3、さらに好ましくは0.5~1.0g/cm3である。膜密度が0.35g/cm3以上であれば、十分な塗膜の機械的強度を得ることができる。
 本発明における中間層は、ポリシロキサンを含む塗布液を、湿式塗布法により第1のバリア層上に塗布して乾燥した後、その乾燥した塗膜(ポリシロキサン塗膜)に真空紫外光を照射することによって形成する。
 この中間層の形成に用いる真空紫外光としては、前述のバリア層の形成で説明したものと同様の真空紫外光照射処理による真空紫外光を適用することができる。
 また、本発明においては、ポリシロキサン膜を改質して中間層を形成する際の真空紫外光の積算光量としては、500mJ/cm2以上10,000mJ/cm2以下であることが好ましい。真空紫外光の積算光量が500mJ/cm2以上であれば十分なガスバリア性能を得ることができ、10,000mJ/cm2以下であれば、基材に変形を与えることなく平滑性の高い中間層を形成することができる。
 また、本発明における中間層は、加熱温度が50℃以上200℃以下の加熱工程を経て形成されることが好ましい。加熱温度が50℃以上であれば十分なバリア性を得ることができ、200℃以下であれば基材に変形を与えることなく平滑性の高い中間層を形成することができる。この加熱工程には、ホットプレート、オーブン、ファーネスなどを使用する加熱方法を適用することができる。また、その加熱雰囲気としては、大気下、窒素雰囲気、アルゴン雰囲気、真空下、酸素濃度をコントロールした減圧下など、いずれの条件でもよい。
 例えば、第1のバリア層の形成に際して成膜した改質前のポリシラザン塗膜上にポリシロキサン塗膜を成膜し、ポリシラザン塗膜とポリシロキサン塗膜とに同時に真空紫外光を照射した後、100℃以上250℃以下の加熱処理を施すことで、第1のバリア層と中間層とを形成するようにしてもよい。また、真空紫外光照射処理が施されたポリシラザン塗膜上にポリシロキサン塗膜を成膜し、ポリシロキサン塗膜に真空紫外光照射処理を施した後、100℃以上250℃以下の加熱処理を施して、第1のバリア層と中間層とを形成するようにしてもよい。
 このように、ポリシラザン塗膜(第1のバリア層となる)をポリシロキサン塗膜(中間層となる)で覆った状態で、100℃以上の加熱処理を施す場合には、加熱処理による熱応力によって第1のバリア層に微小なひび割れが発生することを防ぐことができ、第1のバリア層の水蒸気バリア性能を安定させることができる。
 〔保護層〕
 本発明に係るガスバリア性フィルムは、第2のバリア層の上部に、有機化合物を含む保護層を設けてもよい。保護層に用いられる有機化合物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。
 〔デシカント性層〕
 本発明のガスバリア性フィルムは、デシカント性層(水分吸着層)を有してもよい。デシカント性層として用いられる材料としては、例えば、酸化カルシウムや有機金属酸化物などが挙げられる。酸化カルシウムとしては、バインダー樹脂などに分散されたものが好ましく、市販品としては、例えば、サエスゲッター社のAqvaDry(登録商標)シリーズなどを好ましく用いることができる。また、有機金属酸化物としては、双葉電子工業株式会社製のOleDry(登録商標)シリーズなどを用いることができる。
 〔平滑層(下地層、プライマー層)〕
 本発明のガスバリア性フィルムは、基材のバリア層を有する面、好ましくは基材と第1のバリア層との間に平滑層(下地層、プライマー層)を有していてもよい。平滑層は突起等が存在する基材の粗面を平坦化するために、あるいは、基材に存在する突起により、バリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、いずれの材料で形成されてもよいが、炭素含有ポリマーを含むことが好ましく、炭素含有ポリマーから構成されることがより好ましい。すなわち、本発明のガスバリア性フィルムは、基材と第1のバリア層との間に、炭素含有ポリマーを含む平滑層をさらに有することが好ましい。
 また、平滑層は、炭素含有ポリマー、好ましくは硬化性樹脂を含む。前記硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。
 平滑層の形成に用いられる活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、JSR株式会社製の紫外線硬化性材料である有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、上記のような組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している活性エネルギー線硬化性材料であれば特に制限はない。
 平滑層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、または蒸着法等のドライコーティング法により塗布し塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射および/または加熱により、前記塗膜を硬化させて形成する方法が好ましい。活性エネルギー線を照射する方法としては、例えば超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い好ましくは100~400nm、より好ましくは200~400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する方法が挙げられる。
 平滑層の平滑性は、JIS B0601:2001で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上30nm以下であることが好ましい。
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
 平滑層の膜厚としては、特に制限されないが、0.1~10μmの範囲が好ましい。
 〔アンカーコート層〕
 本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレン・ビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化性ポリマー溶液(信越化学工業株式会社製、「X-12-2400」の3%イソプロピルアルコール溶液)を用いることができる。
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート法、グラビアコート法、ナイフコート法、ディップコート法、スプレーコート法等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5g/m2(乾燥状態)程度が好ましい。なお、市販の易接着層付き基材を用いてもよい。
 または、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。
 〔ブリードアウト防止層〕
 本発明のガスバリア性フィルムは、ブリードアウト防止層をさらに有することができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
 ブリードアウト防止層に含ませることが可能な化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等のハードコート剤を挙げることができる。
 ここで、多価不飽和有機化合物としては、例え、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
 また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2-メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
 その他の添加剤として、マット剤を含有してもよい。マット剤としては、平均粒子径が0.1~5μm程度の無機粒子が好ましい。
 このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。
 ブリードアウト防止層の厚さとしては、1~10μmが好ましく、2~7μmであることがより好ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面に設けた場合におけるバリアフィルムのカールを抑え易くすることができるようになる。
 《ガスバリア性フィルムの包装形態》
 本発明のガスバリア性フィルムは、連続生産しロール形態に巻き取ることができる(いわゆるロール・トゥ・ロール生産)。その際、バリア層を形成した面に保護シートを貼合して巻き取ることが好ましい。特に、本発明のガスバリア性フィルムを有機薄膜デバイスの封止材として用いる場合、表面に付着したゴミ(例えば、パーティクル)が原因で欠陥となる場合が多く、クリーン度の高い場所で保護シートを貼合してゴミの付着を防止することは非常に有効である。併せて、巻取り時に入るバリア層表面への傷の防止に有効である。
 保護シートとしては、特に限定するものではないが、膜厚100μm程度の樹脂基板に弱粘着性の接着層を付与した構成の一般的な「保護シート」、「剥離シート」を用いることができる。
 〔電子デバイス〕
 本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく用いることができる。前記デバイスの例としては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスを挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子または太陽電池に好ましく用いられ、有機EL素子に特に好ましく用いられる。
 本発明のガスバリア性フィルムは、また、デバイスの膜封止に用いることができる。すなわち、デバイス自体を支持体として、その表面に本発明のガスバリア性フィルムを設ける方法である。ガスバリア性フィルムを設ける前にデバイスを保護層で覆ってもよい。
 本発明のガスバリア性フィルムは、デバイスの基板や固体封止法による封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリア性フィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。
 <有機EL素子>
 ガスバリア性フィルムを用いた有機EL素子の例は、特開2007-30387号公報に詳しく記載されている。
 <液晶表示素子>
 反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、そして偏光膜からなる構成を有する。本発明におけるガスバリア性フィルムは、前記透明電極基板および上基板として使用することができる。カラー表示の場合には、さらにカラーフィルター層を反射電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。透過型液晶表示装置は、下から順に、バックライト、偏光板、λ/4板、下透明電極、下配向膜、液晶層、上配向膜、上透明電極、上基板、λ/4板および偏光膜からなる構成を有する。カラー表示の場合には、さらにカラーフィルター層を下透明電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。液晶セルの種類は特に限定されないが、より好ましくはTN型(Twisted Nematic)、STN型(Super Twisted Nematic)またはHAN型(Hybrid Aligned Nematic)、VA型(Vertically Alignment)、ECB型(Electrically Controlled Birefringence)、OCB型(Optically Compensated Bend)、IPS型(In-Plane Switching)、CPA型(Continuous Pinwheel Alignment)であることが好ましい。
 <太陽電池>
 本発明のガスバリア性フィルムは、太陽電池素子の封止フィルムとしても用いることができる。ここで、本発明のガスバリア性フィルムは、バリア層が太陽電池素子に近い側となるように封止することが好ましい。本発明のガスバリア性フィルムが好ましく用いられる太陽電池素子としては、特に制限はないが、例えば、単結晶シリコン系太陽電池素子、多結晶シリコン系太陽電池素子、シングル接合型、またはタンデム構造型等で構成されるアモルファスシリコン系太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池素子、カドミウムテルル(CdTe)等のII-VI族化合物半導体太陽電池素子、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池素子、色素増感型太陽電池素子、有機太陽電池素子等が挙げられる。中でも、本発明においては、上記太陽電池素子が、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池素子であることが好ましい。
 <その他>
 その他の適用例としては、特表平10-512104号公報に記載の薄膜トランジスタ、特開平5-127822号公報、特開2002-48913号公報等に記載のタッチパネル、特開2000-98326号公報に記載の電子ペーパー等が挙げられる。
 <光学部材>
 本発明のガスバリア性フィルムは、光学部材としても用いることができる。光学部材の例としては円偏光板等が挙げられる。
 (円偏光板)
 本発明におけるガスバリア性フィルムを基板としλ/4板と偏光板とを積層し、円偏光板を作製することができる。この場合、λ/4板の遅相軸と偏光板の吸収軸とのなす角が45°になるように積層する。このような偏光板は、長手方向(MD)に対し45°の方向に延伸されているものを用いることが好ましく、例えば、特開2002-865554号公報に記載のものを好適に用いることができる。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「重量部」あるいは「重量%」を表す。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で行う。
 〔第1のバリア層の形成(塗布法)〕
 (ポリシラザン含有塗布液の調製)
 無触媒のパーヒドロポリシラザンを20重量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20重量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの重量比が65:35となるように混合した溶媒で、塗布液の固形分が5重量%になるように、塗布液を希釈調製した。
 上記で得られた塗布液を、スピンコーターにて株式会社きもと製のクリアハードコートを施したPET基材(125μm厚)上に厚さが300nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間追加加熱処理を行い、ポリシラザン塗膜を形成した。
 ポリシラザン塗膜を形成した後、下記の方法に従って、6000mJ/cm2の真空紫外線照射処理を施して、第1のバリア層を形成した。
 〈真空紫外線照射条件・照射エネルギーの測定〉
 真空紫外線照射は、図3に模式図で示した装置を用いて行った。
 図3において、21は装置チャンバであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバ内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。22は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ、23は外部電極を兼ねるエキシマランプのホルダーである。24は試料ステージである。試料ステージ24は、図示しない移動手段により装置チャンバ21内を水平に所定の速度で往復移動することができる。また、試料ステージ24は図示しない加熱手段により、所定の温度に維持することができる。25はポリシラザン塗膜が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。26は遮光板であり、Xeエキシマランプ22のエージング中に試料の塗布層に真空紫外光が照射されないようにしている。
 真空紫外線照射工程で塗膜表面に照射されるエネルギーは、浜松ホトニクス株式会社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを試料ステージ24中央に設置し、かつ、装置チャンバ21内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ24を0.5m/minの速度(図3のV)で移動させて測定を行った。測定に先立ち、Xeエキシマランプ12の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。
 この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで6000mJ/cm2の照射エネルギーとなるように調整した。尚、真空紫外線照射に際しては、照射エネルギー測定時と同様に、10分間のエージング後に行った。
 〔第1のバリア層の形成(プラズマCVD法)〕
 株式会社きもと製のクリアハードコートを施したPET基材(125μm厚)を、図2に示されるような製造装置31にセットして、搬送させた。次いで、成膜ローラー39と成膜ローラー40との間に磁場を印加すると共に、成膜ローラー39と成膜ローラー40にそれぞれ電力を供給して、成膜ローラー39と成膜ローラー40との間に放電してプラズマを発生させた。次いで、形成された放電領域に、成膜ガス(原料ガスとしてヘキサメチルジシロキサン(HMDSO)と反応ガスとして酸素ガス(放電ガスとしても機能する)との混合ガスを供給し、基材2上に、プラズマCVD法にてガスバリア性の薄膜(第1のバリア層)を形成し、ガスバリア性フィルムを得た。第1のバリア層の厚みは、150nmであった。成膜条件は、以下の通りとした。
 (成膜条件)
 原料ガスの供給量:50sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)
 酸素ガスの供給量:500sccm(0℃、1気圧基準)
 真空チャンバ内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 フィルムの搬送速度:1.0m/min。
 (比較例1-1:ガスバリア性フィルム1-1の作製)
 基材として、ハードコート層(中間層)付透明樹脂基材(株式会社きもと製、クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム)を準備した。その基材上に直接、第2のバリア層のみを形成した。第2のバリア層はパーヒドロポリシラザンを20重量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)をジブチルエーテルで5重量%の濃度まで希釈し塗布液を調製した後、該塗布液を用いて厚さ150nmにポリシラザン塗膜を成膜し、その後、露点0℃にて6000mJ/cm2の照射量で、上記第1のバリア層の形成(塗布法)と同様の方法で真空紫外線照射処理を施して、第2のバリア層を形成した。このようにして、ガスバリア性フィルム1-1を作製した。
 (比較例1-2:ガスバリア性フィルム1-2の作製)
 アミン触媒としてN,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH)を、パーヒドロポリシラザンに対して1重量%となる量を加え、さらに紫外線照射処理時の露点を-30℃としたこと以外は、比較例1-1と同様にして、第2のバリア層を形成した。このようにして、ガスバリア性フィルム1-2を作製した。
 (比較例1-3:ガスバリア性フィルム1-3の作製)
 基材として、ハードコート層(中間層)付透明樹脂基材(株式会社きもと製、クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム)を準備した。その基材上に、上記「第1のバリア層の形成(塗布法)」により、第1のバリア層を形成した。その後、第1のバリア層上に、比較例1-1と同様の方法で第2のバリア層を形成し、ガスバリア性フィルム1-3を作製した。
 (比較例1-4:ガスバリア性フィルム1-4の作製)
 基材として、ハードコート層(中間層)付透明樹脂基材(株式会社きもと製、クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム)を準備した。その基材上に、上記「第1のバリア層の形成(塗布法)」により、第1のバリア層を形成した。その後、第1のバリア層上に、比較例1-2と同様の方法で第2のバリア層を形成し、ガスバリア性フィルム1-4を作製した。
 (比較例1-5:ガスバリア性フィルム1-5の作製)
 基材として、ハードコート層(中間層)付透明樹脂基材(株式会社きもと製、クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム)を準備した。その基材上に、上記「第1のバリア層の形成(プラズマCVD法)」により、第1のバリア層を形成した。その後、第1のバリア層上に、比較例1-1と同様の方法で第2のバリア層を形成し、ガスバリア性フィルム1-5を作製した。
 (比較例1-6:ガスバリア性フィルム1-6の作製)
 基材として、ハードコート層(中間層)付透明樹脂基材(株式会社きもと製、クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム)を準備した。その基材上に、上記「第1のバリア層の形成(プラズマCVD法)」により、第1のバリア層を形成した。その後、第1のバリア層上に、比較例1-2と同様の方法で第2のバリア層を形成し、ガスバリア性フィルム1-6を作製した。
 (比較例1-7:ガスバリア性フィルム1-7の作製)
 以下のようにして第2のバリア層を形成したこと以外は、比較例1-6と同様にして、ガスバリア性フィルム1-7を作製した。
 パーヒドロポリシラザンを20重量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)をジブチルエーテルで5重量%濃度まで希釈した後、アミン触媒としてN,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH)をパーヒドロポリシラザンに対して1重量%となる量で加え、さらに水をパーヒドロポリシラザンに対して5重量%となる量で加え、塗布液を調製した。該塗布液を用いて厚さ150nmにポリシラザン塗膜を成膜し、その後、露点-30℃にて6000mJ/cm2の照射量で、上記第1のバリア層の形成(塗布法)と同様の方法で真空紫外線照射処理を施して、第2のバリア層を形成した。
 (実施例1-1:ガスバリア性フィルム1-8の作製)
 水の量をパーヒドロポリシラザンに対して10重量%となる量に変更したこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-8を作製した。
 (比較例1-8:ガスバリア性フィルム1-9の作製)
 水の代わりに、メタノール(関東化学株式会社製、鹿1級)をパーヒドロポリシラザンに対して1重量%となる量で塗布液に加えたこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-9を作製した。
 (実施例1-2:ガスバリア性フィルム1-10の作製)
 メタノールの量をパーヒドロポリシラザンに対して5重量%となる量に変更したこと以外は、比較例1-8と同様にして、ガスバリア性フィルム1-10を作製した。
 (実施例1-3:ガスバリア性フィルム1-11の作製)
 メタノールの量をパーヒドロポリシラザンに対して10重量%に変更したこと以外は、比較例1-8と同様にして、ガスバリア性フィルム1-11を作製した。
 (比較例1-9:ガスバリア性フィルム1-12の作製)
 水の代わりに、ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)をパーヒドロポリシラザンに対して1重量%となる量で塗布液に加えたこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-12を作製した。
 (実施例1-4:ガスバリア性フィルム1-13の作製)
 ALCHの量を、パーヒドロポリシラザンに対して2重量%となる量に変更したこと以外は、比較例1-9と同様にして、ガスバリア性フィルム1-13を作製した。
 (実施例1-5:ガスバリア性フィルム1-14の作製)
 ALCHの量を、パーヒドロポリシラザンに対して4重量%に変更したこと以外は、比較例1-9と同様にして、ガスバリア性フィルム1-14を作製した。
 (実施例1-6:ガスバリア性フィルム1-15の作製)
 水の代わりに、AMD(川研ファインケミカル株式会社製、アルミニウムジイソプロピレート・モノセカンダリーブチレート)をパーヒドロポリシラザンに対して1重量%となる量で塗布液に加えたこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-15を作製した。
 (実施例1-7:ガスバリア性フィルム1-16の作製)
 AMDの量を、パーヒドロポリシラザンに対して2重量%となる量に変更したこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-16を作製した。
 (実施例1-8:ガスバリア性フィルム1-17の作製)
 AMDの量を、パーヒドロポリシラザンに対して4重量%となる量に変更したこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-17を作製した。
 (比較例1-10:ガスバリア性フィルム1-18の作製)
 水の代わりに、X-40-9225(信越化学工業株式会社製、分子末端にアルコキシシリル基を有するポリメチルシルセスキオキサン誘導体)を、パーヒドロポリシラザンに対して1重量%となる量で塗布液に加えたこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-18を作製した。
 (実施例1-9:ガスバリア性フィルム1-19の作製)
 X-40-9225の量を、パーヒドロポリシラザンに対して2重量%となる量に変更したこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-19を作製した。
 (実施例1-10:ガスバリア性フィルム1-20の作製)
 X-40-9225の量を、パーヒドロポリシラザンに対して4重量%となる量に変更したこと以外は、比較例1-7と同様にして、ガスバリア性フィルム1-20を作製した。
 (比較例1-11:ガスバリア性フィルム1-21の作製)
 第1のバリア層を下記のように形成したこと以外は、比較例1-9と同様にして、ガスバリア性フィルム1-21を作製した。
 〔第1のバリア層の形成(スパッタ法)〕
 ハードコート層(中間層)付透明樹脂基材(きもと株式会社製、クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム)を、株式会社アルバック製スパッタ装置の真空槽内にセットし、10-4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始し酸化ケイ素(SiOx)ターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化ケイ素膜(SiOx)形成を開始した。100nmの膜が堆積したところでシャッターを閉じて成膜を終了し、第1のバリア層を形成した。
 (実施例1-11:ガスバリア性フィルム1-22の作製)
 第1のバリア層を、上記「第1のバリア層の形成(スパッタ法)」の方法で形成したこと以外は、実施例1-5と同様にして、ガスバリア性フィルム1-22を作製した。
 (実施例1-12:ガスバリア性フィルム1-23の作製)
 第1のバリア層を、上記「第1のバリア層の形成(スパッタ法)」の方法で形成したこと以外は、実施例1-6と同様にして、ガスバリア性フィルム1-23を作製した。
 《膜組成元素比の評価(O/SiおよびN/Siの深さ方向のプロファイル》
 以下の装置および条件により、上記で作製したガスバリア性フィルムの第2のバリア層について、深さ方向のプロファイルの平均値から、O/SiおよびN/Siを求め表1に示した。
 (スパッタ条件)
 イオン種:Arイオン
 加速電圧:1kV
 (X線光電子分光測定条件)
 装置:VGサイエンティフィックス社製ESCALAB-200R
 X線アノード材:Mg
 出力:600W(加速電圧15kV、エミッション電流40mA)。
 尚、測定の分解能は0.5nmでありこれに応じた各サンプリング点において、各元素比をプロットすることで得られる。
 (FIB加工)
 装置:SII製SMI2050
 加工イオン:(Ga 30kV)
 (TEM観察)
 装置:日本電子製JEM2000FX(加速電圧:200kV)
 電子線照射時間:5秒から60秒
 (第2のバリア層の表面からの膜厚の深さ方向の元素比)
 上述の第2のバリア層表面からのスパッタにより得られた各深さでのXPS測定(Si、O、Nに注目)とTEMによる断層面観察の結果を照合させて、O/SiおよびN/Siの平均値を算出した。
 また、上記と同様にして、最表面から深さが10nmまでの領域におけるケイ素原子に対する酸素原子の存在比の平均値(表1中の「表面O/Si」の欄)、最表面から深さが10nmを超える領域におけるケイ素原子に対する酸素原子の存在比の平均値(表1中の「内部O/Si」の欄)、最表面から深さが10nmまでの領域におけるケイ素原子に対する窒素原子の存在比の平均値(表1中の「表面N/Si」の欄)、および最表面から深さが10nmを超える領域におけるケイ素原子に対する窒素原子の存在比の平均値(表1中の「内部N/Si」の欄)を測定した。また、最表面から深さが10nmまでの領域におけるケイ素原子に対する酸素原子の存在比の平均値と、最表面から深さが10nmを超える領域におけるケイ素原子に対する酸素原子の存在比の平均値との差を算出した(表1中の「表面内部O/Si差」の欄)。
 《水蒸気バリア性の評価》
 上記で作製したガスバリア性フィルムについて、85℃、85%RHの高温高湿下に1,000hr曝したサンプル(劣化試験後サンプル)を各々準備した。
 水蒸気バリア性の評価は、80nm厚の金属カルシウムをガスバリア性フィルム上に蒸着製膜し、製膜したカルシウムが50%の面積になる時間を50%面積時間として評価することで行った(下記参照)。劣化試験前後の50%面積時間を評価し、劣化試験後の50%面積時間/劣化試験前の50%面積時間を保持率(%)として算出し、表1に示した。保持率の指標としては70%以上あれば許容とし、70%未満は不適合と判断した。
 (金属カルシウム製膜装置)
 蒸着装置:日本電子株式会社製、真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 (原材料)
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリア性評価試料の作製)
 真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、作製したガスバリアフィルムの第2のバリア層表面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着させた。この際、蒸着膜厚は80nmとなるようにした。
 その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス株式会社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気バリア性評価試料を作製した。
 得られた試料を85℃、85%RHの高温高湿下で保存し、保存時間に対して金属カルシウムが腐食して行く様子を観察した。観察は12mm×12mmの金属カルシウム蒸着面積に対する金属カルシウムが腐食した面積が50%になる時間を観察結果から直線で内挿して求め、劣化試験前後について結果を表1に示した。
 各実施例および各比較例のガスバリア性フィルムの評価結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000010
 上記表1から明らかなように、本発明の実施例により作製したガスバリア性フィルムは、高温高湿下に長時間さらされても組成変化に伴うガスバリア性の低下がほとんど起きないことが明らかになった。
 よって、上記表1から、本発明に係るガスバリア性フィルムは、保存安定性、特に過酷な条件(高温高湿条件)下での保存安定性に優れることがわかった。
 なお、本発明の第2のバリア層においては、第2のバリア層表面からのスパッタ(XPS)により得られた各深さ方向のどの点を測定しても、O/Siは1.4~2.2であり、N/Siは0~0.4であった。
 《有機薄膜電子デバイスの作製》
 ガスバリア性フィルム1-1~1-23を封止フィルムとして用いて、有機薄膜電子デバイスである有機EL素子を作製した。
 〔有機EL素子の作製〕
 (第1電極層の形成)
 各ガスバリア性フィルムの第2のバリア層上に、厚さ150nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
 (正孔輸送層の形成)
 第1電極層が形成された各ガスバリア性フィルムの第1電極層の上に、以下に示す正孔輸送層形成用塗布液を、25℃、相対湿度50%RHの環境下で、押出し塗布機で塗布した後、下記の条件で乾燥および加熱処理を行い、正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚みが50nmになるように塗布した。
 正孔輸送層形成用塗布液を塗布する前に、バリア性フィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm2、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。
 〈正孔輸送層形成用塗布液の準備〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
 〈乾燥および加熱処理条件〉
 正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
 (発光層の形成)
 上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥および加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は乾燥後の厚みが40nmになるように塗布した。
 〈白色発光層形成用塗布液〉
 ホスト材として下記化学式H-Aで表される化合物1.0gと、ドーパント材として下記化学式D-Aで表される化合物を100mg、ドーパント材として下記化学式D-Bで表される化合物を0.2mg、ドーパント材として下記化学式D-Cで表される化合物を0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
Figure JPOXMLDOC01-appb-C000011
 〈塗布条件〉
 塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
 〈乾燥および加熱処理条件〉
 白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
 (電子輸送層の形成)
 上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥および加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の厚みが30nmになるように塗布した。
 〈塗布条件〉
 塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
 〈電子輸送層形成用塗布液〉
 電子輸送層は下記化学式E-Aで表される化合物を2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5重量%溶液とし電子輸送層形成用塗布液とした。
Figure JPOXMLDOC01-appb-C000012
 〈乾燥および加熱処理条件〉
 電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
 (電子注入層の形成)
 上記で形成した電子輸送層上に、電子注入層を形成した。まず、基板を減圧チャンバに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
 (第2電極の形成)
 上記で形成した電子注入層の上であって、第1電極22の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
 (裁断)
 以上のように、第2電極までが形成された各積層体を、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子を作製した。
 (電極リード接続)
 作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
 圧着条件:温度170℃(別途熱電対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。
 (封止)
 封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)ものを用意した。
 用意した封止部材のアルミニウム面に熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布し、接着剤層を形成した。
 このとき、熱硬化性接着剤としては以下の成分を含むエポキシ系接着剤を用いた。
 ビスフェノールAジグリシジルエーテル(DGEBA)、ジシアンジアミド(DICY)、エポキシアダクト系硬化促進剤。
 封止部材を、取り出し電極および電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて圧着条件、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。
 《有機EL素子の評価》
 上記作製した有機EL素子について、下記の方法に従って、耐久性の評価を行った。
 〔耐久性の評価〕
 (加速劣化処理)
 上記作製した各有機EL素子を、85℃、85%RHの環境下で500時間の加速劣化処理を施した後、下記のダークスポットに関する評価を行った。
 (ダークスポット(DS、黒点)の評価)
 加速劣化処理を施した有機EL素子に対し、1mA/cm2の電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS-804、レンズMP-ZE25-200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方スケール相当に切り抜き、ダークスポットの発生面積比率を求め、下記の基準に従って耐久性を評価した。評価ランクが、△であれば実用的な特性、○であればより実用的な特性、◎であれば全く問題のない好ましい特性であると判定した。
 ◎:ダークスポット発生率が、0.3%未満である
 ○:ダークスポット発生率が、0.3%以上1.0%未満である
 △:ダークスポット発生率が、1.0%以上2.0%未満である
 ×:ダークスポット発生率が、2.0%以上5.0%未満である
 ××:ダークスポット発生率が、5.0%以上である。
 ダークスポットの評価結果を、下記表2に示す。
Figure JPOXMLDOC01-appb-T000013
 上記表2から明らかなように、本発明の実施例により作製したガスバリア性フィルムは、有機EL素子の封止フィルムとして用いることでダークスポットの発生を低減させる効果があり、非常に高いガスバリア性を有していることが分かる。
 なお、本出願は、2013年1月31日に出願された日本特許出願第2013-017257号に基づいており、その開示内容は、参照により全体として引用されている。

Claims (5)

  1.  基材と、
     無機化合物を含む第1のバリア層と、
     少なくともケイ素原子および酸素原子を含有し、かつケイ素原子に対する酸素原子の存在比(O/Si)が1.4~2.2であり、ケイ素原子に対する窒素原子の存在比(N/Si)が0~0.4である第2のバリア層と、
    をこの順で含む、ガスバリア性フィルム。
  2.  前記第2のバリア層は、最表面から深さが10nmまでの領域におけるケイ素原子に対する酸素原子の存在比の平均値と、最表面から深さが10nmを超える領域におけるケイ素原子に対する酸素原子の存在比の平均値との差が0.4以下である、請求項1に記載のガスバリア性フィルム。
  3.  前記第2のバリア層は、
     ポリシラザンと、
     アルコール化合物、フェノール化合物、金属アルコキシド化合物、アルキルアミン化合物、アルコール変性ポリシロキサン、アルコキシ変性ポリシロキサン、およびアルキルアミノ変性ポリシロキサンからなる群より選択される少なくとも1種の化合物と、
    を含有する層を、活性エネルギー線照射により改質処理して形成される、請求項1または2に記載のガスバリア性フィルム。
  4.  前記第1のバリア層は、化学気相成長法または物理気相成長法により形成される、請求項1~3のいずれか1項に記載のガスバリア性フィルム。
  5.  請求項1~4のいずれか1項に記載のガスバリア性フィルムを有する、有機EL素子。
PCT/JP2014/052324 2013-01-31 2014-01-31 ガスバリア性フィルム WO2014119750A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480006796.XA CN104968492A (zh) 2013-01-31 2014-01-31 气体阻隔性膜
JP2014559785A JPWO2014119750A1 (ja) 2013-01-31 2014-01-31 ガスバリア性フィルム
US14/763,699 US20150364720A1 (en) 2013-01-31 2014-01-31 Gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-017257 2013-01-31
JP2013017257 2013-01-31

Publications (1)

Publication Number Publication Date
WO2014119750A1 true WO2014119750A1 (ja) 2014-08-07

Family

ID=51262447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052324 WO2014119750A1 (ja) 2013-01-31 2014-01-31 ガスバリア性フィルム

Country Status (4)

Country Link
US (1) US20150364720A1 (ja)
JP (1) JPWO2014119750A1 (ja)
CN (1) CN104968492A (ja)
WO (1) WO2014119750A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060053A1 (ja) * 2014-10-15 2016-04-21 シャープ株式会社 エレクトロルミネッセンス装置、及び製造方法
WO2016152488A1 (ja) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 ガスバリアーフィルム
KR20190062270A (ko) * 2017-11-28 2019-06-05 주식회사 엘지화학 배리어 필름

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044275A1 (en) * 2013-09-27 2015-04-02 Bayer Materialscience Ag Fabrication of igzo oxide tft on high cte, low retardation polymer films for lcd-tft applications
WO2015098672A1 (ja) * 2013-12-26 2015-07-02 住友化学株式会社 積層フィルムおよびフレキシブル電子デバイス
KR102393372B1 (ko) * 2014-11-11 2022-05-03 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
JP2017081143A (ja) * 2015-10-22 2017-05-18 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP6641217B2 (ja) * 2016-03-30 2020-02-05 東京応化工業株式会社 金属酸化物膜形成用塗布剤及び金属酸化物膜を有する基体の製造方法
WO2017223173A1 (en) * 2016-06-21 2017-12-28 Bridgestone Americas Tire Operations, Llc Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners
US11697260B2 (en) 2016-06-30 2023-07-11 Bridgestone Americas Tire Operations, Llc Methods for treating inner liners, inner liners resulting therefrom and tires containing such inner liners
WO2018112179A1 (en) 2016-12-15 2018-06-21 Bridgestone Americas Tire Operations, Llc Sealant layer with barrier, tire containing same, and related processes
US11697306B2 (en) 2016-12-15 2023-07-11 Bridgestone Americas Tire Operations, Llc Sealant-containing tire and related processes
KR102619426B1 (ko) * 2017-01-18 2023-12-29 피닉스 엘엘씨 고출력 이온빔 발생기 시스템 및 방법
JP6668287B2 (ja) * 2017-04-04 2020-03-18 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 膜形成組成物およびそれを用いた膜形成方法
JP2019184827A (ja) * 2018-04-10 2019-10-24 シャープ株式会社 液晶表示装置及びその製造方法
WO2020049916A1 (ja) * 2018-09-06 2020-03-12 住友重機械工業株式会社 クライオポンプおよびクライオパネル
US11746418B2 (en) 2018-12-03 2023-09-05 Moxtek, Inc. Chemical vapor deposition of thick inorganic coating on a polarizer
DE102019217131A1 (de) * 2019-11-06 2021-05-06 Robert Bosch Gmbh Verfahren zur Herstellung eines Bauteil-Thermoplast-Verbundes
DE102019217123A1 (de) * 2019-11-06 2021-05-06 Robert Bosch Gmbh Verfahren zur Herstellung eines Bauteil-Kunststoff-Verbundes
DE102019217128A1 (de) * 2019-11-06 2021-05-06 Robert Bosch Gmbh Verfahren zur Herstellung eines Bauteil-Elastomer-Verbundes
CN114966871B (zh) * 2022-05-11 2024-07-23 山东大学 适于多种地形的瞬变电磁接收线圈搭载车及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511325B2 (ja) * 1995-04-19 2004-03-29 三井化学株式会社 ガスバリヤー性フィルム
JP2007237702A (ja) * 2006-03-13 2007-09-20 Fujifilm Corp ガスバリアフィルムおよびこれを用いた有機デバイス
JP2012000599A (ja) * 2010-06-21 2012-01-05 Konica Minolta Holdings Inc バリアフィルム及びその製造方法、有機電子デバイス及びその製造方法
JP2012016854A (ja) * 2010-07-07 2012-01-26 Konica Minolta Holdings Inc ガスバリア性フィルム、及び有機光電変換素子、有機エレクトロルミネッセンス素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511325B2 (ja) * 1972-07-19 1976-01-16
JP3307471B2 (ja) * 1993-02-24 2002-07-24 東燃ゼネラル石油株式会社 セラミックコーティング用組成物及びコーティング方法
JP3385060B2 (ja) * 1993-04-20 2003-03-10 東燃ゼネラル石油株式会社 珪素−窒素−酸素−(炭素)−金属系セラミックス被覆膜の形成方法
JPH09320030A (ja) * 1996-05-29 1997-12-12 Fuji Photo Film Co Ltd 磁気記録媒体およびその製造方法
JP2000053917A (ja) * 1998-08-11 2000-02-22 Jsr Corp コーティング用組成物およびコーティングフィルム
CN101040005A (zh) * 2004-10-12 2007-09-19 东丽株式会社 气体阻隔性树脂组合物和气体阻隔性薄膜
US9011994B2 (en) * 2009-04-09 2015-04-21 Sumitomo Chemical Company, Limited Gas-barrier multilayer film
JP5857452B2 (ja) * 2011-06-03 2016-02-10 コニカミノルタ株式会社 バリアーフィルムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511325B2 (ja) * 1995-04-19 2004-03-29 三井化学株式会社 ガスバリヤー性フィルム
JP2007237702A (ja) * 2006-03-13 2007-09-20 Fujifilm Corp ガスバリアフィルムおよびこれを用いた有機デバイス
JP2012000599A (ja) * 2010-06-21 2012-01-05 Konica Minolta Holdings Inc バリアフィルム及びその製造方法、有機電子デバイス及びその製造方法
JP2012016854A (ja) * 2010-07-07 2012-01-26 Konica Minolta Holdings Inc ガスバリア性フィルム、及び有機光電変換素子、有機エレクトロルミネッセンス素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060053A1 (ja) * 2014-10-15 2016-04-21 シャープ株式会社 エレクトロルミネッセンス装置、及び製造方法
CN107079544A (zh) * 2014-10-15 2017-08-18 夏普株式会社 电致发光装置及制造方法
US10014489B2 (en) 2014-10-15 2018-07-03 Sharp Kabushiki Kaisha Electroluminescent device and manufacturing method
CN107079544B (zh) * 2014-10-15 2018-10-09 夏普株式会社 电致发光装置及制造方法
WO2016152488A1 (ja) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 ガスバリアーフィルム
JPWO2016152488A1 (ja) * 2015-03-20 2017-12-28 コニカミノルタ株式会社 ガスバリアーフィルム
KR20190062270A (ko) * 2017-11-28 2019-06-05 주식회사 엘지화학 배리어 필름
KR102141632B1 (ko) 2017-11-28 2020-08-06 주식회사 엘지화학 배리어 필름

Also Published As

Publication number Publication date
JPWO2014119750A1 (ja) 2017-01-26
CN104968492A (zh) 2015-10-07
US20150364720A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2014119750A1 (ja) ガスバリア性フィルム
JP6274213B2 (ja) ガスバリア性フィルム
JP6504284B2 (ja) ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
JP6056854B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP6252493B2 (ja) ガスバリア性フィルム
WO2015002156A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
JPWO2014192700A1 (ja) ガスバリア性フィルムおよびその製造方法
JP6319316B2 (ja) ガスバリア性フィルムの製造方法
KR101881244B1 (ko) 가스 배리어성 필름 및 그것을 사용한 전자 디바이스
JP6060848B2 (ja) ガスバリア性フィルム
WO2015119260A1 (ja) 変性ポリシラザン、当該変性ポリシラザンを含む塗布液および当該塗布液を用いて製造されるガスバリア性フィルム
WO2014119754A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
WO2015029795A1 (ja) ガスバリア性フィルムの製造方法
WO2015146886A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
WO2015029732A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
JPWO2015146886A6 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
WO2015053055A1 (ja) 機能性膜
JP6295865B2 (ja) ガスバリア性フィルム
WO2014188981A1 (ja) ガスバリア性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559785

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763699

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746572

Country of ref document: EP

Kind code of ref document: A1