Nothing Special   »   [go: up one dir, main page]

WO2014112127A1 - 鉄道車両用駆動制御装置 - Google Patents

鉄道車両用駆動制御装置 Download PDF

Info

Publication number
WO2014112127A1
WO2014112127A1 PCT/JP2013/051094 JP2013051094W WO2014112127A1 WO 2014112127 A1 WO2014112127 A1 WO 2014112127A1 JP 2013051094 W JP2013051094 W JP 2013051094W WO 2014112127 A1 WO2014112127 A1 WO 2014112127A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
short
current line
line
Prior art date
Application number
PCT/JP2013/051094
Other languages
English (en)
French (fr)
Inventor
隆志 高木
陽介 清水
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP2014557307A priority Critical patent/JPWO2014112127A1/ja
Priority to CN201380045639.5A priority patent/CN104602947A/zh
Priority to PCT/JP2013/051094 priority patent/WO2014112127A1/ja
Publication of WO2014112127A1 publication Critical patent/WO2014112127A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • Embodiments of the present invention relate to a railway vehicle drive control device.
  • PMSM Since PMSM has magnets embedded in the rotor, the rotor can spontaneously generate a rotating magnetic field. For this reason, unlike an induction motor (hereinafter referred to as IM) that has been widely used so far, a field winding is not required and it is not necessary to pass a current through the rotor. Therefore, PMSM has no copper loss in the rotor, and can obtain higher efficiency than IM.
  • IM induction motor
  • PMSM is characterized by generating a voltage (no load induced voltage) at the stator terminal by a rotating magnetic field even during inertial rotation without powering / regenerative control.
  • a voltage no load induced voltage
  • the instantaneous value of the no-load induced voltage generated in PMSM exceeds the DC voltage of the power converter, and the regenerative operation starts spontaneously.
  • the control device may be stopped due to overvoltage protection, or the main circuit equipment may be damaged or destroyed due to overvoltage, which may hinder normal railway operation.
  • a contactor is provided for the purpose of separating the circuit from the connection wiring between the power converter and the PMSM.
  • a vacuum circuit breaker is mainly used for the purpose of interrupting an alternating current.
  • the railroad vehicle drive control device of the embodiment is a railcar drive control device that performs drive control of a permanent magnet synchronous motor driven by three-phase AC.
  • the power conversion unit converts power supplied from an external power source via a feeder into the three-phase alternating current, and transmits the permanent through the U-phase alternating current line, the V-phase alternating current line, and the W-phase alternating current line.
  • Supply to magnet synchronous motor and a short circuit contact part is provided between a power converter and the permanent-magnet synchronous motor, and makes it a short circuit state which short-circuits a U-phase alternating current line, a V-phase alternating current line, and a W-phase alternating current line mutually.
  • FIG. 1 is a schematic configuration block diagram of a railway vehicle drive control apparatus according to the first embodiment.
  • FIG. 2 is a process flowchart of the first embodiment.
  • FIG. 3 is a schematic configuration block diagram of the railroad vehicle drive control apparatus of the second embodiment.
  • FIG. 4 is a process flowchart of the second embodiment.
  • FIG. 5 is a schematic configuration block diagram of a railway vehicle drive control device according to the third embodiment.
  • FIG. 1 is a schematic configuration block diagram of a railway vehicle drive control apparatus according to a first embodiment.
  • the railroad vehicle drive control device 10 is grounded (low potential side power source) via a pantograph 12 to which DC power is supplied from a DC feeder 11 (high potential side power source) and a line 13.
  • a circuit breaker 15, a filter reactor 16 and a filter capacitor 17 are connected in series between the two wheels 14.
  • a DC current detector 18 is provided in a DC current line connecting the wheel 14 and the filter capacitor 17.
  • the railcar drive control device 10 is connected in parallel with the filter capacitor 17 and is configured as an inverter to convert DC power into three-phase AC power (U phase, V phase, W phase). 19 is provided.
  • a permanent magnet synchronous motor (PMSM) 20 is connected to the power converter 19.
  • the U-phase AC current line 21U of the power converter 19 is provided with a first AC current detector 23-1 for detecting the U-phase current, and the W-phase AC current line 21W detects the W-phase current.
  • a second AC current detector 23-2 is provided.
  • a first short-circuit contactor 22-1 for short-circuiting the U-phase alternating current line 21U and the V-phase alternating current line 21V is connected between the U-phase alternating current line 21U and the V-phase alternating current line 21V.
  • a second short-circuit contactor 22-2 for short-circuiting the V-phase AC current line 21V and the W-phase AC current line 21W is connected. ing.
  • the first short-circuit contactor 22-1 and the second short-circuit contactor 22-2 function as the short-circuit contact portion 23, and each have a normally closed contact.
  • the reason why the first short-circuit contactor 22-1 and the second short-circuit contactor 22-2 have a normally closed contact is controlled by the control system of the railway vehicle drive control device 10 for some reason from the viewpoint of fail-safe. This is because it is possible to maintain the state on the safe side even when the state falls into the impossible state.
  • the role of the first short-circuit contactor 22-1 and the second short-circuit contactor 22-2, and the role of the short-circuit contact portion 23 will be described in detail later.
  • the railway vehicle drive control apparatus 10 includes a controller 24 that controls the railway vehicle drive control apparatus 10.
  • the controller 24 is configured as a microcomputer, functions as a MPU (not shown) for controlling the controller 24 as a whole, a ROM (not shown) for storing various data including a control program for the MPU in a non-volatile manner, and a working area for the MPU.
  • a RAM (not shown) that temporarily stores data
  • a flash ROM (not shown) that stores data to be held such as setting data in an updatable manner
  • an interface unit (not shown) that performs various interface operations are provided.
  • the controller 24 functions as a current calculation unit 24a, and receives the output signal of the DC current detector 18, the output signal of the first AC current detector 23-1, and the output signal of the second AC current detector 23-2.
  • the DC current Idc flowing through the DC current line, the U-phase current Iu flowing through the U-phase AC current line 21U, and the W-phase current Iw flowing through the W-phase AC current line 21W are constantly calculated.
  • the controller 24 functions as an abnormality detection unit 24b, detects whether the operation of the power converter 19 is abnormal based on the DC current IDC, the U-phase current Iu, and the W-phase current Iw, and detects an abnormality detection signal. Is output.
  • the controller 24 controls the short-circuit contactors 22-1 and 22-2 when an abnormality of the power conversion device 19 is detected based on the abnormality detection signal of the abnormality detection unit. That is, the controller 24 functions as a switch control command unit 24c that short-circuits the U-phase AC current line 21U, the V-phase AC current line 21V, and the W-phase AC current line 21W. As a result, the controller 24 can effectively prevent the induced voltage generated in the PMSM 20 from being applied to the filter capacitor 17.
  • the circuit breaker 15 is in a closed state (on state, connection state).
  • the DC power supplied from the DC feeder 11 is supplied to the input side of the power converter 19 through the pantograph 12, the circuit breaker 15, the filter reactor 16, and the filter capacitor 17. .
  • the power conversion device 19 controls on / off of a semiconductor element (for example, IGBT) as a switching element constituting the power conversion device 19. Thereby, the power converter 19 converts the DC power supplied from the DC feeder 11 into three-phase AC power having a desired frequency and voltage for driving the PMSM 20 and outputs the converted power.
  • a semiconductor element for example, IGBT
  • the PMSM 20 includes the short-circuit contactors 22-1 and 22-2 and the U-phase alternating current line 21U that are closed (on) under the control of the controller 24 functioning as the switch control command unit 24c.
  • Three-phase AC power is supplied through the V-phase AC current line 21V and the W-phase AC current line 21W.
  • the controller 24 controls the power converter 19 so that the instantaneous value peak value of the induced voltage of the PMSM 20 does not exceed the voltage of the filter capacitor 17, so that the regenerative operation (filter The charging operation of the capacitor 17 is not performed.
  • the first short-circuit contactor 22-1 and the second short-circuit contactor 22-1 The short-circuit contactor 22-2 is closed (ON state) to short-circuit the U-phase AC current line 21U, the V-phase AC current line 21V, and the W-phase AC current line 21W.
  • the three-phase line voltage (AC voltage) of the power conversion device 19 can be set to 0 V, the regenerative operation is not performed, and the above problem can be avoided. Further, the switching operation of the semiconductor elements constituting the power conversion device 19 is stopped, the circuit including the DC feeder 11 and the power conversion device 19 is disconnected by the circuit breaker 15, and the DC side circuit of the power conversion device 19 is short-circuited. Avoid entering a state.
  • FIG. 2 is a process flowchart of the first embodiment.
  • All of the value Iu and the three-phase line W-phase current effective value Iw detected by the second AC current detector 23-2 are values other than 0A.
  • DC current Idc, three-phase line U-phase current effective value Iu, and three-phase line W-phase current effective value Iw are all 0A.
  • the three-phase line U-phase current effective value Iu and the three-phase line W-phase current effective value Iw have values other than 0 A, but this AC current becomes a reactive power because it is controlled in a state where the power factor is almost zero.
  • the direct current Idc is 0A.
  • the controller 24 functions as the current calculation unit 24a, and always monitors the DC current Idc, the three-phase line U-phase current effective value Iu, and the three-phase line W-phase current effective value Iw (step S11). .
  • step S12 the controller 24 functions as the abnormality detection unit 24b, and determines whether or not the vehicle is coasting while it is not in power running control or regenerative control (step S12). If it is determined in step S12 that either powering control or regenerative control is being performed (step S12; No), the process proceeds to step S11 again.
  • step S12 If it is determined in step S12 that neither power running control nor regenerative control is being performed (step S12; Yes), the direct current Idc ⁇ 0A, the three-phase line U-phase current effective value Iu ⁇ 0A, and the three-phase line It is determined whether or not the W-phase current effective value Iw ⁇ 0A is satisfied (step S13).
  • step S13 If it is determined in step S13 that the DC current Idc ⁇ 0A, the three-phase line U-phase current effective value Iu ⁇ 0A, and the three-phase line W-phase current effective value Iw ⁇ 0A are not satisfied (step S13; No)
  • the controller 24 proceeds to step S11 again.
  • step S13 If it is determined in step S13 that the DC current Idc ⁇ 0A, the three-phase line U-phase current effective value Iu ⁇ 0A, and the three-phase line W-phase current effective value Iw ⁇ 0A (step S13; Yes).
  • the controller 24 functions as the switch control command unit 24c, and closes the first short-circuit contactor 22-1 and the second short-circuit contactor 22-2 (ON state) (step S14).
  • the U-phase alternating current line 21U, the V-phase alternating current line 21V, and the W-phase alternating current line 21W are short-circuited, and the three-phase line voltage (alternating voltage) of the power converter 19 is obtained.
  • the voltage can be set to 0 V, and the influence (unexpected regenerative operation) due to the PMSM induced voltage can be avoided.
  • a short circuit contactor is used instead of a circuit breaker for insulation, there is no need to consider insulation, and a small and inexpensive drive control device for a railway vehicle is provided. be able to.
  • FIG. 3 is a block diagram of a schematic configuration of a railway vehicle drive control apparatus according to a second embodiment.
  • the railroad vehicle drive control device 30 includes a circuit breaker 35 between a pantograph 32 to which AC power is supplied from an AC feeder 31 and a wheel 34 that is grounded via a track 33.
  • the primary winding 36A of the transformer 36 is connected in series.
  • An AC current detector 37 is provided on the secondary side winding 36 ⁇ / b> B of the transformer 36.
  • the secondary side winding 36B of the transformer 36 is configured as a converter, and a first power conversion device that converts AC power supplied from the AC feeder 31 into DC power via the primary side winding 36A. 38 is provided, and a filter capacitor 39 for removing harmonic current is provided on the output side of the first power converter 38.
  • the railcar drive control device 30 is connected in parallel with the filter capacitor 39, and is configured as an inverter to convert the DC power output from the first power converter 38 into three-phase AC power (U phase, V phase,
  • the 2nd power converter device 40 which converts into (W phase) is provided.
  • a permanent magnet synchronous motor (PMSM) 41 is connected to the second power converter 40.
  • the U-phase alternating current line 42U of the second power converter 40 is provided with a first alternating current detector 43-1 for detecting the U-phase current, and the W-phase alternating current line 42W has a W-phase current.
  • a second alternating current detector 43-2 is provided for detecting.
  • a first short-circuit contactor 44-1 for short-circuiting the U-phase AC current line 42U and the V-phase AC current line 42V is connected between the U-phase AC current line 42U and the V-phase AC current line 42V.
  • a second short-circuit contactor 44-2 for short-circuiting the V-phase AC current line 42V and the W-phase AC current line 42W is connected between the V-phase AC current line 42V and the W-phase AC current line 42W. ing.
  • first short-circuit contactor 44-1 and the second short-circuit contactor 44-2 function as the short-circuit contact portion 44, and each have a normally closed contact.
  • the reason why the first short-circuit contactor 44-1 and the second short-circuit contactor 44-2 have a normally-closed contact is the same as in the first embodiment. This is because the state can be maintained on the safe side even when the control system of the control device 30 falls into an uncontrollable state.
  • the railway vehicle drive control device 30 includes a controller 45 that controls the railway vehicle drive control device 30.
  • the controller 45 is configured as a microcomputer similarly to the controller 24 of the first embodiment. Further, the controller 45 functions as a current calculation unit 45a, and receives the output signal of the AC current detector 37, the output signal of the first AC current detector 43-1 and the output signal of the second AC current detector 42-2.
  • the AC current Iac flowing through the secondary winding 36B of the transformer 36, the U-phase current Iu1 flowing through the U-phase AC current line 42U, and the W-phase current Iw1 flowing through the W-phase AC current line 42W are always calculated.
  • controller 45 functions as an abnormality detection unit 45b and detects whether or not the operation of the second power conversion device 40 is abnormal based on the AC current Iac, the U-phase current Iu1, and the W-phase current Iw1. A detection signal is output.
  • the controller 45 controls the short-circuit contactors 44-1 and 44-2 when an abnormality of the second power conversion device 40 is detected based on the abnormality detection signal of the abnormality detection unit. That is, the controller 45 functions as a switch control command unit 45c that short-circuits the U-phase AC current line 42U, the V-phase AC current line 42V, and the W-phase AC current line 42W. As a result, the controller 45 effectively prevents the induced voltage generated in the PMSM 41 from being applied to the filter capacitor 39.
  • the control of the second power converter 40 is stopped (abnormal state) and the induced voltage of the PMSM 41 cannot be controlled,
  • the first short-circuit contactor 44-1 and the second short-circuit contactor 44-2 are closed (ON state), and the U-phase alternating current line 42U, the V-phase alternating current line 42V, and the W-phase alternating current line 42W are short-circuited.
  • the three-phase line voltage (AC voltage) of the second power converter 40 can be set to 0 V, and no regenerative operation is performed.
  • FIG. 4 is a process flowchart of the second embodiment.
  • the AC current Iac detected by the AC current detector 37 and the three-phase line U-phase current effective detected by the first AC current detector 43-1 are effective.
  • All of the value Iu and the three-phase line W-phase current effective value Iw detected by the second AC current detector 43-2 are values other than 0A.
  • AC current Iac, three-phase line U-phase current effective value Iu, and three-phase line W-phase current effective value Iw are all 0A.
  • the controller 45 functions as the current calculation unit 45a and constantly monitors the DC current Idc, the three-phase line U-phase current effective value Iu, and the three-phase line W-phase current effective value Iw (step S21). .
  • the controller 45 functions as the abnormality detection unit 45b, and determines whether or not the vehicle is in coasting traveling that is neither during power running control nor during regenerative control (step S22). If it is determined in step S22 that either powering control or regenerative control is being performed (step S22; No), the process proceeds to step S21 again.
  • the controller 45 functions as the abnormality detection unit 45b, and during alternating coasting that is not in power running control or regenerative control, the AC current Iac ⁇ 0A, the three-phase line U-phase current effective value Iu ⁇ 0A, and Then, it is determined whether or not the three-phase line W-phase current effective value Iw ⁇ 0A is satisfied (step S23).
  • step S23 If it is determined in step S23 that AC current Iac ⁇ 0A, three-phase line U-phase current effective value Iu ⁇ 0A, and three-phase line W-phase current effective value Iw ⁇ 0A are not satisfied (step S23; No)
  • the controller 45 shifts the process to step S21 again.
  • step S23 If it is determined in step S23 that the alternating current Iac ⁇ 0A, the three-phase line U-phase current effective value Iu ⁇ 0A, and the three-phase line W-phase current effective value Iw ⁇ 0A (step S23; Yes).
  • the controller 45 functions as the switch control command unit 24c, and closes the first short-circuit contactor 22-1 and the second short-circuit contactor 22-2 (ON state) (step S24).
  • the U-phase AC current line 42U, the V-phase AC current line 42V, and the W-phase AC current line 42W are short-circuited, and the three-phase voltage (AC voltage) of the power converter 19 is set to 0V. And the influence (unexpected regenerative operation) due to the PMSM induced voltage can be avoided.
  • the short-circuited U-phase AC current line 42U, V-phase AC current line 42V, and W-phase AC current line 42W are in a state of floating in potential.
  • the shorted U-phase AC current line 42U, V-phase AC current line 42V, and W-phase AC current line 42W are further grounded to make them more electrically stable and improve reliability. It is a form.
  • FIG. 5 is a schematic configuration block diagram of a railway vehicle drive control device according to the third embodiment. 5 differs from the first embodiment of FIG. 1 in that a short-circuit contact portion 22A having a third short-circuit contactor 22-3 between the W-phase AC current line 21W and the ground instead of the short-circuit contact portion 22. This is the point.
  • the controller 24 functions as the current calculation unit 24a and constantly monitors the DC current Idc, the three-phase line U-phase current effective value Iu, and the three-phase line W-phase current effective value Iw.
  • the controller 24 functions as the abnormality detection unit 24b, and determines whether or not the vehicle is in coasting traveling that is neither during power running control nor during regenerative control.
  • the processing is shifted again to monitoring of the DC current Idc, the three-phase line U-phase current effective value Iu, and the three-phase line W-phase current effective value Iw.
  • the controller 24 functions as the abnormality detection unit 24b when coasting traveling that is neither in the power running control nor the regenerative control, and the DC current Idc ⁇ 0A, the three-phase line U-phase current effective value Iu ⁇ . It is determined whether 0A and the three-phase line W-phase current effective value Iw ⁇ 0A, the AC current Iac ⁇ 0A, the three-phase line U-phase current effective value Iu ⁇ 0A, and the three-phase line W-phase If the current effective value Iw is not 0A, the controller 24 again shifts the processing to monitoring of the DC current Idc, the three-phase line U-phase current effective value Iu, and the three-phase line W-phase current effective value Iw.
  • the controller 24 controls the switch control command unit when the DC current Idc ⁇ 0A, the three-phase line U-phase current effective value Iu ⁇ 0A, and the three-phase line W-phase current effective value Iw ⁇ 0A.
  • the first short-circuit contactor 22-1, the second short-circuit contactor 22-2 and the third short-circuit contactor 22-3 are closed (ON state).
  • the U-phase AC current line 21U, the V-phase AC current line 21V, and the W-phase AC current line 21W are short-circuited, and the three-phase line voltage (AC voltage) of the power converter 19 is increased.
  • the voltage can be set to 0 V, and the U-phase AC current line 21U, the V-phase AC current line 21V, and the W-phase AC current line 21W are grounded.
  • the short-circuit point Therefore, compared with the case where the U-phase AC current line 21U, the V-phase AC current line 21V and the W-phase AC current line 21W are simply short-circuited while avoiding the influence (unexpected regenerative operation) caused by the PMSM induced voltage, the short-circuit point Therefore, the electrical potential becomes stable and the reliability can be improved.
  • the first short-circuit contactor that short-circuits the U-phase alternating current line and the V-phase alternating current line and the second short-circuit contact that short-circuits the V-phase alternating current line and the W-phase alternating current line.
  • a first short-circuit contactor that can short-circuit any two of the U-phase AC current line, V-phase AC current line, and W-phase AC current line, and two AC currents. You may make it provide the 2nd short circuit contactor which can short-circuit either the alternating current line other than a line, and any one of the two alternating current lines made short-circuitable by the 1st short circuit contactor.
  • the control program executed by the controller of the railway vehicle drive control apparatus of the present embodiment is a file in an installable format or executable format, and is a CD-ROM, flexible disk (FD), CD-R, DVD (Digital Versatile).
  • the program is recorded on a computer-readable recording medium such as a disk.
  • control program executed by the controller of the railway vehicle drive control device of the present embodiment is stored on a computer connected to a network such as the Internet, and is provided by being downloaded via the network. Also good.
  • control program executed by the controller of the railway vehicle drive control device of the present embodiment may be provided or distributed via a network such as the Internet.
  • you may comprise so that the control program performed with the controller of the drive control apparatus for rail vehicles of this embodiment may be provided by previously incorporating in ROM etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 実施形態の鉄道車両用駆動制御装置は、三相交流で駆動される永久磁石同期電動機の駆動制御を行う鉄道車両用駆動制御装置である。電力変換部は、き電線を介して外部の電源から供給された電力を前記三相交流に変換して、U相交流電流ライン、V相交流電流ライン及びW相交流電流ラインを介して前記永久磁石同期電動機に供給する。そして短絡接触部は、電力変換部と前記永久磁石同期電動機との間に設けられ、U相交流電流ライン、V相交流電流ライン及びW相交流電流ラインを互いに短絡する短絡状態とする。

Description

鉄道車両用駆動制御装置
 本発明の実施形態は、鉄道車両用駆動制御装置に関する。
 近年、回転子に永久磁石を埋め込んだ永久磁石同期電動機(Permanent Magnet Synchronous Motor:以下、PMSMという。)と、これを駆動制御する電力変換装置とを接続して構成される鉄道車両用駆動制御装置が普及してきている(例えば、特許文献1参照)。
 PMSMは回転子に磁石が埋め込まれているため、回転子により自発的に回転磁界を発生させることができる。そのため、これまで広く普及してきた誘導電動機(Induction Motor:以下、IMという。)とは異なり、界磁巻線が不要であり回転子に電流を流す必要がない。したがって、PMSMは回転子での銅損がなく、IMよりも高効率を得ることが可能になる。
 一方、PMSMは力行・回生制御を行っていない惰性回転時でも、回転磁界によって固定子端子に電圧(無負荷誘起電圧)を発生させる特徴がある。特に高速回転時には、PMSMで発生した無負荷誘起電圧の瞬時値が電力変換装置の直流電圧を超え、自発的に回生動作を開始してしまう。これより、過電圧保護による制御装置の停止や、過電圧による主回路機器の損傷、破壊などが発生し、正常な鉄道運行の妨げになる可能性がある。
 上記がPMSM駆動システムのデメリットであり、従来はこの事象に対応するために、電力変換装置とPMSM間の接続配線に回路を切り離す目的で、接触器を設けていた。
 この接触器としては、交流電流遮断を目的として真空遮断器を適用することが主流となっている。
特許第4382571号公報
 ところで、IMを用いた既存の鉄道車両用駆動システムでは、一つの電力変換装置に対して複数モータを並列接続することが可能であった。これに対し、PMSMを用いた鉄道車両用駆動システムでは、原理的に電力変換装置とPMSMとを1対1で設置する必要がある。
 従って、PMSMを用いた鉄道車両用駆動システムは、IMを用いた鉄道車両用駆動システムに対して接触器が追加されるだけでなく、電力変換装置もPMSM毎に設ける必要がある。すなわち、同期電動機駆動システムは誘導電動機駆動システムよりも効率が向上する反面、機器数が多く、装置の大型化、システムの高価格化が避けられなかった。
 ここで、PMSMを用いた鉄道車両用駆動システムのより一層の普及を図るためには、IMを用いた鉄道車両用駆動システムと同等まで装置外形を小型化し、低価格化を図ることが不可欠である。
 一方、過電圧保護による制御装置の停止や過電圧による主回路機器の破壊などが想定されるため、PMSMを用いた鉄道車両用駆動システムにおいては、接触器を設ける必要があった。
 実施形態の鉄道車両用駆動制御装置は、三相交流で駆動される永久磁石同期電動機の駆動制御を行う鉄道車両用駆動制御装置である。
 電力変換部は、き電線を介して外部の電源から供給された電力を前記三相交流に変換して、U相交流電流ライン、V相交流電流ライン及びW相交流電流ラインを介して前記永久磁石同期電動機に供給する。
 そして短絡接触部は、電力変換部と前記永久磁石同期電動機との間に設けられ、U相交流電流ライン、V相交流電流ライン及びW相交流電流ラインを互いに短絡する短絡状態とする。
図1は、第1実施形態の鉄道車両用駆動制御装置の概要構成ブロック図である。 図2は、第1実施形態の処理フローチャートである。 図3は、第2実施形態の鉄道車両用駆動制御装置の概要構成ブロック図である。 図4は、第2実施形態の処理フローチャートである。 図5は、第3実施形態の鉄道車両用駆動制御装置の概要構成ブロック図である。
 以下、実施形態について図面を参照して説明する。
[1]第1実施形態
 図1は、第1実施形態の鉄道車両用駆動制御装置の概要構成ブロック図である。
 鉄道車両用駆動制御装置10は、図1に示すように、直流き電線11(高電位側電源)から直流電力が供給されるパンタグラフ12と、線路13を介して接地(低電位側電源)された車輪14と、の間に、遮断器15、フィルタリアクトル16及びフィルタコンデンサ17が直列に接続されている。ここで、車輪14とフィルタコンデンサ17とを結ぶ直流電流ラインには、直流電流検出器18が設けられている。
 また、鉄道車両用駆動制御装置10は、フィルタコンデンサ17と並列に接続されるとともに、インバータとして構成されて直流電力を三相交流電力(U相、V相、W相)に変換する電力変換装置19が備えられている。この電力変換装置19には、永久磁石同期電動機(PMSM)20が接続されている。ここで、電力変換装置19のU相交流電流ライン21Uには、U相電流を検出する第1交流電流検出器23-1が設けられ、W相交流電流ライン21Wには、W相電流を検出する第2交流電流検出器23-2が設けられている。
 さらにU相交流電流ライン21UとV相交流電流ライン21Vとの間には、U相交流電流ライン21UとV相交流電流ライン21Vとを短絡するための第1短絡接触器22―1が接続され、V相交流電流ライン21VとW相交流電流ライン21Wとの間には、V相交流電流ライン21VとW相交流電流ライン21Wとを短絡するための第2短絡接触器22―2が接続されている。
 ここで、第1短絡接触器22―1及び第2短絡接触器22-2は、短絡接触部23として機能しており、それぞれ常閉接点を有している。第1短絡接触器22―1及び第2短絡接触器22-2が常閉接点を有しているのは、フェイルセーフの観点から、何らかの理由により鉄道車両用駆動制御装置10の制御系が制御不能状態に陥った場合でも安全側に状態を維持できるようにするためである。
 これらの第1短絡接触器22―1及び第2短絡接触器22―2の役割、ひいては、短絡接触部23の役割については後に詳述する。
 さらにまた、鉄道車両用駆動制御装置10は、鉄道車両用駆動制御装置10を制御するコントローラ24を備えている。
 次にコントローラ24の機能構成について説明する。
 コントローラ24は、マイクロコンピュータとして構成されており、コントローラ24全体を制御する図示しないMPU、MPUの制御プログラムを含む各種データを不揮発的に記憶する図示しないROMと、MPUのワーキングエリアとして機能し、各種データを一時的に記憶する図示しないRAMと、設定データ等の保持すべきデータを更新可能に記憶する図示しないフラッシュROMと、各種インタフェース動作を行う図示しないインタフェース部と、を備えている。
 そしてコントローラ24は、電流演算部24aとして機能し、直流電流検出器18の出力信号、第1交流電流検出器23-1の出力信号及び第2交流電流検出器23―2の出力信号が入力され、直流電流ラインを流れる直流電流Idc、U相交流電流ライン21Uを流れるU相電流Iu及びW相交流電流ライン21Wを流れるW相電流Iwを常時算出する。
 また、コントローラ24は、異常検知部24bとして機能し、直流電流IDC、U相電流Iu及びW相電流Iwに基づいて電力変換装置19の動作が異常であるか否かを検知して異常検知信号を出力する。
 さらにコントローラ24は、異常検知部の異常検知信号に基づいて、電力変換装置19の異常が検出された場合には、短絡接触器22-1、22-2を制御する。
 すなわちコントローラ24は、U相交流電流ライン21U、V相交流電流ライン21V及びW相交流電流ライン21Wを短絡させる開閉器制御指令部24cとして機能する。
 この結果、コントローラ24は、実効的にPMSM20において発生した誘起電圧がフィルタコンデンサ17に印加されるのを防止することができる。
 次に第1実施形態の動作を説明する。
 この場合において、遮断器15は、閉状態(オン状態、接続状態)となっているものとする。
 鉄道車両用駆動制御装置10において、直流き電線11から供給された直流電力は、パンタグラフ12、遮断器15、フィルタリアクトル16及びフィルタコンデンサ17を介して、電力変換装置19の入力側に供給される。
 電力変換装置19は、電力変換装置19を構成するスイッチング素子としての半導体素子(例えば、IGBT)のオン/オフを制御する。これにより、電力変換装置19は、直流き電線11から供給された直流電力をPMSM20を駆動するための所望の周波数及び電圧を有する三相交流電力に変換して出力する。
 したがって、PMSM20には、開閉器制御指令部24cとして機能しているコントローラ24の制御下で閉状態(オン状態)とされている短絡接触器22-1、22-2並びにU相交流電流ライン21U、V相交流電流ライン21V及びW相交流電流ライン21Wを介して三相交流電力が供給される。
 ところで、PMSM20は、永久磁石を内蔵しているため回転子(ロータ)の回転とともに誘起電圧を発生させることとなる。しかしながら、通常動作状態においては、コントローラ24が、PMSM20の誘起電圧の瞬時値ピーク値がフィルタコンデンサ17の電圧を超えないように電力変換装置19を制御しているため、実効的に回生動作(フィルタコンデンサ17の充電動作)がなされないようになっている。
 しかしながら、電力変換装置19の制御が停止した状態(異常状態)においては、PMSM20において発生する誘起電圧の上昇を抑制できず、ひいては、回生動作、すなわち、フィルタコンデンサ17の充電動作がなされて過電圧保護による制御装置(コントローラ24)の停止や、過電圧に起因する主回路機器の損傷、破壊の虞が有り、正常な鉄道運行を妨げる要因となり得る。
 そこで、本第1実施形態においては、電力変換装置19の制御が停止した状態(異常状態)となり、PMSM20の誘起電圧を制御できなくなった場合には、第1短絡接触器22-1及び第2短絡接触器22-2を閉状態(オン状態)として、U相交流電流ライン21U、V相交流電流ライン21V及びW相交流電流ライン21Wを短絡させる。
 この結果、電力変換装置19の三相線電圧(交流電圧)を0Vとすることができ、回生動作がなされることはなく、上記問題を回避することができる。
 さらに、電力変換装置19を構成している半導体素子のスイッチング動作を停止し、遮断器15によって直流き電線11と電力変換装置19を含む回路を切り離して、電力変換装置19の直流側回路が短絡状態となるのを回避する。
 次により詳細な動作を説明する。
 図2は、第1実施形態の処理フローチャートである。
 この場合において、通常、力行制御あるいは回生制御を行っている場合には、直流電流検出器18が検出する直流電流Idc、第1交流電流検出器23-1が検出する三相線U相電流実効値Iu、及び第2交流電流検出器23-2が検出する三相線W相電流実効値Iwの全てが0A以外の値となっている。
 一方、力行制御あるいは回生制御を行っていない惰行走行時には、直流電流Idc、三相線U相電流実効値Iu、三相線W相電流実効値Iwは全て0Aとなる。
 ところで、上述したように、惰行走行時でもPMSM20の誘起電圧の上昇が発生する状態の場合には、電力変換装置19を制御することにより、PMSM20において発生した誘起電圧を打ち消すような電流を流す必要がある。したがって、三相線U相電流実効値Iu及び三相線W相電流実効値Iwは、0A以外の値を持つが、この交流電流は力率がほぼ零の状態における制御となるため無効電力となり直流電流Idcは0Aとなる。
 以上のことから、まずコントローラ24は、電流演算部24aとして機能し、常時、直流電流Idc、三相線U相電流実効値Iu、三相線W相電流実効値Iwをモニタリングする(ステップS11)。
 次に、コントローラ24は、異常検知部24bとして機能し、力行制御中または回生制御中のいずれでもない惰行走行中であるか否かを判別する(ステップS12)。
 ステップS12の判別において、力行制御中または回生制御中のいずれかである場合には(ステップS12;No)、処理を再びステップS11に移行する。
 ステップS12の判別において、力行制御中または回生制御中のいずれでもない場合には(ステップS12;Yes)、直流電流Idc≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなったか否かを判別する(ステップS13)。
 ステップS13の判別において、直流電流Idc≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなっていない場合には(ステップS13;No)、コントローラ24は、処理を再びステップS11に移行する。
 ステップS13の判別において、直流電流Idc≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなっている場合には(ステップS13;Yes)、コントローラ24は、開閉器制御指令部24cとして機能し、第1短絡接触器22-1及び第2短絡接触器22-2を閉状態(オン状態)とする(ステップS14)。
 これにより、本第1実施形態によれば、U相交流電流ライン21U、V相交流電流ライン21V及びW相交流電流ライン21Wを短絡され、電力変換装置19の三相線電圧(交流電圧)を0Vとすることができ、PMSM誘起電圧による影響(予期しない回生動作)を避けることができる。
 さらに本第1実施形態によれば、絶縁のための遮断器ではなく、短絡接触器を用いているため、絶縁を考慮する必要が無く、小型で低廉な鉄道車両用の駆動制御装置を提供することができる。
[2]第2実施形態
 図3は、第2実施形態の鉄道車両用駆動制御装置の概要構成ブロック図である。
 鉄道車両用駆動制御装置30は、図3に示すように、交流き電線31から交流電力が供給されるパンタグラフ32と、線路33を介して接地された車輪34と、の間に、遮断器35及びトランス36の一次側巻線36Aが直列に接続されている。また、トランス36の二次側巻線36Bには、交流電流検出器37が設けられている。
 さらに、トランス36の二次側巻線36Bには、コンバータとして構成されて、一次側巻線36Aを介して、交流き電線31から供給された交流電力を直流電力に変換する第1電力変換装置38が設けられ、第1電力変換装置38の出力側には、高調波電流を除去するためのフィルタコンデンサ39が設けられている。
 また、鉄道車両用駆動制御装置30は、フィルタコンデンサ39と並列に接続されるとともに、インバータとして構成されて第1電力変換装置38が出力した直流電力を三相交流電力(U相、V相、W相)に変換する第2電力変換装置40が備えられている。この第2電力変換装置40には、永久磁石同期電動機(PMSM)41が接続されている。ここで、第2電力変換装置40のU相交流電流ライン42Uには、U相電流を検出する第1交流電流検出器43-1が設けられ、W相交流電流ライン42Wには、W相電流を検出する第2交流電流検出器43-2が設けられている。
 さらにU相交流電流ライン42UとV相交流電流ライン42Vとの間には、U相交流電流ライン42UとV相交流電流ライン42Vとを短絡するための第1短絡接触器44―1が接続され、V相交流電流ライン42VとW相交流電流ライン42Wとの間には、V相交流電流ライン42VとW相交流電流ライン42Wとを短絡するための第2短絡接触器44―2が接続されている。
 ここで、第1短絡接触器44―1及び第2短絡接触器44-2は、短絡接触部44として機能しており、それぞれ常閉接点を有している。第1短絡接触器44―1及び第2短絡接触器44-2が常閉接点を有しているのは、第1実施形態と同様に、フェイルセーフの観点から、何らかの理由により鉄道車両用駆動制御装置30の制御系が制御不能状態に陥った場合でも安全側に状態を維持できるようにするためである。
 これらの第1短絡接触器44―1及び第2短絡接触器44―2の役割については後に詳述する。
 さらにまた、鉄道車両用駆動制御装置30は、鉄道車両用駆動制御装置30を制御するコントローラ45を備えている。
 次にコントローラ45の機能構成について説明する。
 コントローラ45は、第1実施形態のコントローラ24と同様にマイクロコンピュータとして構成されている。
 さらに、コントローラ45は、電流演算部45aとして機能し、交流電流検出器37の出力信号、第1交流電流検出器43-1の出力信号及び第2交流電流検出器43―2の出力信号が入力され、トランス36の二次側巻線36Bを流れる交流電流Iac、U相交流電流ライン42Uを流れるU相電流Iu1及びW相交流電流ライン42Wを流れるW相電流Iw1を常時算出する。
 また、コントローラ45は、異常検知部45bとして機能し、交流電流Iac、U相電流Iu1及びW相電流Iw1に基づいて第2電力変換装置40の動作が異常であるか否かを検知して異常検知信号を出力する。
 さらにコントローラ45は、異常検知部の異常検知信号に基づいて、第2電力変換装置40の異常が検出された場合には、短絡接触器44-1、44-2を制御する。
 すなわち、コントローラ45は、U相交流電流ライン42U、V相交流電流ライン42V及びW相交流電流ライン42Wを短絡させる開閉器制御指令部45cとして機能する。
 これによりコントローラ45は、実効的にPMSM41において発生した誘起電圧がフィルタコンデンサ39に印加されるのを防止する。
 次に第2実施形態の詳細動作を説明する。
 本第2実施形態においても、第1実施形態と同様の理由から、第2電力変換装置40の制御が停止した状態(異常状態)となり、PMSM41の誘起電圧を制御できなくなった場合には、第1短絡接触器44-1及び第2短絡接触器44-2を閉状態(オン状態)として、U相交流電流ライン42U、V相交流電流ライン42V及びW相交流電流ライン42Wを短絡させる。
 この結果、第2電力変換装置40の三相線電圧(交流電圧)を0Vとすることができ、回生動作がなされることはない。
 図4は、第2実施形態の処理フローチャートである。
 この場合において、通常、力行制御あるいは回生制御を行っている場合には、交流電流検出器37が検出する交流電流Iac、第1交流電流検出器43-1が検出する三相線U相電流実効値Iu、及び第2交流電流検出器43-2が検出する三相線W相電流実効値Iwの全てが0A以外の値となっている。
 一方、力行制御あるいは回生制御を行っていない惰行走行時には、交流電流Iac、三相線U相電流実効値Iu、三相線W相電流実効値Iwは全て0Aとなる。
 ところで、上述したように、惰行走行時でもPMSM41の誘起電圧上昇が発生する状態の場合には、第2電力変換装置40を制御することにより、PMSM41において発生した誘起電圧を打ち消すような電流を流す必要がある。従って、三相線U相電流実効値Iu及び三相線W相電流実効値Iwは、0A以外の値を持つが、この交流電流は力率がほぼ零の状態における制御となるため無効電力となり交流電流Iacは0Aとなる。
 以上のことから、まずコントローラ45は、電流演算部45aとして機能し、常時、直流電流Idc、三相線U相電流実効値Iu、三相線W相電流実効値Iwをモニタリングする(ステップS21)。
 次に、コントローラ45は、異常検知部45bとして機能し、力行制御中または回生制御中のいずれでもない惰行走行中であるか否かを判別する(ステップS22)。
 ステップS22の判別において、力行制御中または回生制御中のいずれかである場合には(ステップS22;No)、処理を再びステップS21に移行する。
 次に、コントローラ45は、異常検知部45bとして機能し、力行制御中または回生制御中のいずれでもない惰行走行中に、交流電流Iac≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなったか否かを判別する(ステップS23)。
 ステップS23の判別において、交流電流Iac≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなっていない場合には(ステップS23;No)、コントローラ45は、処理を再びステップS21に移行する。
 ステップS23の判別において、交流電流Iac≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなっている場合には(ステップS23;Yes)、コントローラ45は、開閉器制御指令部24cとして機能し、第1短絡接触器22-1及び第2短絡接触器22-2を閉状態(オン状態)とする(ステップS24)。
 これにより、本第2実施形態によっても、U相交流電流ライン42U、V相交流電流ライン42V及びW相交流電流ライン42Wを短絡され、電力変換装置19の三相線電圧(交流電圧)を0Vとすることができ、PMSM誘起電圧による影響(予期しない回生動作)を避けることができる。
 さらに本第2実施形態によれば、絶縁のための遮断器ではなく、短絡接触器を用いているため、絶縁を考慮する必要が無く、小型で低廉な鉄道車両用の駆動制御装置を提供することができる。
[3]第3実施形態
 以上の各実施形態においては、短絡されたU相交流電流ライン42U、V相交流電流ライン42V及びW相交流電流ライン42Wは電位的に浮いた状態となっていたが、本第3実施形態は、短絡されたU相交流電流ライン42U、V相交流電流ライン42V及びW相交流電流ライン42Wを更に接地して、より電気的に安定とし、信頼性を向上する実施形態である。
 図5は、第3実施形態の鉄道車両用駆動制御装置の概要構成ブロック図である。
 図5において、図1の第1実施形態と異なる点は、短絡接触部22に代えて、W相交流電流ライン21Wとグランドとの間に第3短絡接触器22-3を有する短絡接触部22Aを設けた点である。
 次に第3実施形態の動作を説明する。
 本第3実施形態において、まずコントローラ24は、電流演算部24aとして機能し、常時、直流電流Idc、三相線U相電流実効値Iu、三相線W相電流実効値Iwをモニタリングする。
 次に、コントローラ24は、異常検知部24bとして機能し、力行制御中または回生制御中のいずれでもない惰行走行中であるか否かを判別する。
 そして、力行制御中または回生制御中のいずれかである場合には、処理を再び直流電流Idc、三相線U相電流実効値Iu及び三相線W相電流実効値Iwのモニタリングに移行する。
 一方、コントローラ24は、力行制御中または回生制御中のいずれでもない惰行走行中である場合には、異常検知部24bとして機能し、直流電流Idc≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなったか否かを判別するし、交流電流Iac≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなっていない場合には、コントローラ24は、処理を再び直流電流Idc、三相線U相電流実効値Iu及び三相線W相電流実効値Iwのモニタリングに移行する。
 また、コントローラ24は、直流電流Idc≠0A、三相線U相電流実効値Iu≠0A、かつ、三相線W相電流実効値Iw≠0Aとなっている場合には、開閉器制御指令部24cとして機能し、第1短絡接触器22-1、第2短絡接触器22-2及び第3短絡接触器22-3を閉状態(オン状態)とする。
 これにより、本第3実施形態によれば、U相交流電流ライン21U、V相交流電流ライン21V及びW相交流電流ライン21Wが短絡され、電力変換装置19の三相線電圧(交流電圧)を0Vとすることができるとともに、U相交流電流ライン21U、V相交流電流ライン21V及びW相交流電流ライン21Wは接地状態とされる。
 したがって、PMSM誘起電圧による影響(予期しない回生動作)を避けつつ、U相交流電流ライン21U、V相交流電流ライン21V及びW相交流電流ライン21Wを単に短絡している場合と比較し、短絡点の電位が定まるので、電気的に安定となり、信頼性を向上することができる。
 さらに本第3実施形態によっても、絶縁のための遮断器ではなく、短絡接触器を用いているため、絶縁を考慮する必要が無く、小型で低廉な鉄道車両用の駆動制御装置を提供することができる。
[4]実施形態の変形例
 以上の説明においては、交流電流検出に2個の電流検出器を用いていたが、三相全てに設置し3個の電流検出器を設置してもよい。
 また、以上の説明においては、U相交流電流ラインとV相交流電流ラインと、を短絡する第1短絡接触器及びV相交流電流ラインとW相交流電流ラインと、を短絡する第2短絡接触器を設けていたが、U相交流電流ライン、V相交流電流ライン及びW相交流電流ラインのうち、いずれか二つの交流電流ラインを短絡可能とする第1短絡接触器と、二つの交流電流ライン以外の交流電流ラインと、第1短絡接触器により短絡可能とされた二つの交流電流ラインのいずれか一方と、を短絡可能とする第2短絡接触器と、を備えるようにしてもよい。
 本実施形態の鉄道車両用駆動制御装置のコントローラで実行される制御プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
 また、本実施形態の鉄道車両用駆動制御装置のコントローラで実行される制御プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の鉄道車両用駆動制御装置のコントローラで実行される制御プログラムをインターネット等のネットワーク経由で提供又は配布するように構成しても良い。
 また、本実施形態の鉄道車両用駆動制御装置のコントローラで実行される制御プログラムを、ROM等に予め組み込んで提供するように構成してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
 10、30  鉄道車両用駆動制御装置
 11  直流き電線
 20、41  PMSM
 12  パンタグラフ
 13  線路
 14  車輪
 15  遮断器
 16  フィルタリアクトル
 17  フィルタコンデンサ
 18  直流電流検出器
 19  電力変換装置(電力変換部)
 21U、42U U相交流電流ライン
 21V、42V V相交流電流ライン
 21W、42W W相交流電流ライン
 22、22A、44  短絡接触部
 22-1、44-1  第1短絡接触器
 22-2、44-2  第2短絡接触器
 22-3  第3短絡接触器
 23-1  第1交流電流検出器
 23-2  第2交流電流検出器
 24、45  コントローラ
 24a、45a 電流演算部
 24b、45b 異常検知部
 24c、45c 開閉器制御指令部
 30  鉄道車両用駆動制御装置
 31  交流き電線
 32  パンタグラフ
 33  線路
 34  車輪
 35  遮断器
 36  トランス
 36A 一次側巻線
 36B 二次側巻線
 37  交流電流検出器
 38  第1電力変換装置(電力変換部、コンバータ)
 39  フィルタコンデンサ
 40  第2電力変換装置(電力変換部、インバータ)
 43-1  第1交流電流検出器
 43-2  第2交流電流検出器

Claims (8)

  1.  三相交流で駆動される永久磁石同期電動機の駆動制御を行う鉄道車両用駆動制御装置であって、
     き電線を介して外部の電源から供給された電力を前記三相交流に変換して、U相交流電流ライン、V相交流電流ライン及びW相交流電流ラインを介して前記永久磁石同期電動機に供給する電力変換部と、
     前記電力変換部と前記永久磁石同期電動機との間に設けられ、前記U相交流電流ライン、前記V相交流電流ライン及び前記W相交流電流ラインを互いに短絡する短絡状態とする短絡接触部と、
     を設けた鉄道車両用駆動制御装置。
  2.  前記短絡接触部は、常閉接点を介して交流電流ラインを短絡状態とする、
     請求項1記載の鉄道車両用駆動制御装置。
  3.  前記短絡接触部は、前記U相交流電流ライン、前記V相交流電流ライン及び前記W相交流電流ラインのうち、いずれか二つの交流電流ラインを短絡可能とする第1短絡接触器と、
     前記二つの交流電流ライン以外の交流電流ラインと、前記二つの交流電流ラインのいずれか一方と、を短絡可能とする第2短絡接触器と、
     を備えた請求項1または請求項2記載の鉄道車両用駆動制御装置。
  4.  前記永久磁石同期電動機において発生した誘起電圧が、前記電力変換部に印加される状態であるか否かを判別する判別部と、
     前記判別部により誘起電圧が印加される状態である場合に、前記短絡接触部を制御し、前記短絡状態とさせる制御部と、
     を備えた請求項1乃至請求項3のいずれかに記載の鉄道車両用駆動制御装置。
  5.  前記電源からの電力供給ラインに設置されて流れる電流を検知する第1電流検知部と、
     前記U相交流電流ライン、前記V相交流電流ライン及び前記W相交流電流ラインのうち、少なくとも二つの交流電流ラインに設置されてそれぞれを流れる電流を検知する複数の第2電流検知部と、
     を備え、
     前記判別部は、前記第1電流検知部及び前記複数の第2電流検知部の検知状態に基づいて、前記判別を行う、
     請求項4記載の鉄道車両用駆動制御装置。
  6.  前記短絡接触部は、前記短絡状態において、前記U相交流電流ライン、前記V相交流電流ライン及び前記W相交流電流ラインを接地する接地用短絡接触器を備えている、
     請求項1乃至請求項5のいずれかに記載の鉄道車両用駆動制御装置。
  7.  前記き電線は、直流き電線であり、
     前記電力変換部は、直流電力を変換して前記三相交流を出力するインバータを備えている、
     請求項1乃至請求項6のいずれかに記載の鉄道車両用駆動制御装置。
  8.  前記き電線は、交流き電線であり、
     前記電力変換部は、トランスと、
     前記トランスに接続され、交流電力を直流電力に変換するコンバータと、
     前記直流電力を変換して前記三相交流を出力するインバータと、
     を備えている、
     請求項1乃至請求項6のいずれかに記載の鉄道車両用駆動制御装置。
PCT/JP2013/051094 2013-01-21 2013-01-21 鉄道車両用駆動制御装置 WO2014112127A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014557307A JPWO2014112127A1 (ja) 2013-01-21 2013-01-21 鉄道車両用駆動制御装置
CN201380045639.5A CN104602947A (zh) 2013-01-21 2013-01-21 铁路车辆用驱动控制装置
PCT/JP2013/051094 WO2014112127A1 (ja) 2013-01-21 2013-01-21 鉄道車両用駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051094 WO2014112127A1 (ja) 2013-01-21 2013-01-21 鉄道車両用駆動制御装置

Publications (1)

Publication Number Publication Date
WO2014112127A1 true WO2014112127A1 (ja) 2014-07-24

Family

ID=51209245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051094 WO2014112127A1 (ja) 2013-01-21 2013-01-21 鉄道車両用駆動制御装置

Country Status (3)

Country Link
JP (1) JPWO2014112127A1 (ja)
CN (1) CN104602947A (ja)
WO (1) WO2014112127A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026780A (zh) * 2019-06-14 2022-02-08 株式会社日立制作所 三相交流电动机用驱动装置、具备该驱动装置的铁道车辆以及三相交流电动机的驱动方法
EP3808590A4 (en) * 2018-06-18 2022-03-30 Hitachi, Ltd. CONDITION MONITORING DEVICE AND TRANSPORT VEHICLE EQUIPPED THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198102A (ja) * 1982-05-13 1983-11-18 Nippon Air Brake Co Ltd 非常ブレ−キ判別回路
JP2002291288A (ja) * 2001-03-29 2002-10-04 Railway Technical Res Inst 永久磁石同期電動機及び多接点同時短絡接触器
JP2006223074A (ja) * 2005-02-14 2006-08-24 Hino Motors Ltd 電気制動装置
JP4382571B2 (ja) * 2004-05-13 2009-12-16 株式会社東芝 鉄道車両駆動制御装置
JP2010259202A (ja) * 2009-04-23 2010-11-11 Toshiba Corp 電気車制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182105A (ja) * 1994-12-21 1996-07-12 Toshiba Corp 電気車制御装置
JP2005253300A (ja) * 2005-05-18 2005-09-15 Toshiba Elevator Co Ltd 交流電動機駆動装置
JP4647684B2 (ja) * 2007-06-28 2011-03-09 三菱電機株式会社 電力変換装置
JP6043045B2 (ja) * 2010-06-28 2016-12-14 株式会社東芝 車両用制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198102A (ja) * 1982-05-13 1983-11-18 Nippon Air Brake Co Ltd 非常ブレ−キ判別回路
JP2002291288A (ja) * 2001-03-29 2002-10-04 Railway Technical Res Inst 永久磁石同期電動機及び多接点同時短絡接触器
JP4382571B2 (ja) * 2004-05-13 2009-12-16 株式会社東芝 鉄道車両駆動制御装置
JP2006223074A (ja) * 2005-02-14 2006-08-24 Hino Motors Ltd 電気制動装置
JP2010259202A (ja) * 2009-04-23 2010-11-11 Toshiba Corp 電気車制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3808590A4 (en) * 2018-06-18 2022-03-30 Hitachi, Ltd. CONDITION MONITORING DEVICE AND TRANSPORT VEHICLE EQUIPPED THEREOF
CN114026780A (zh) * 2019-06-14 2022-02-08 株式会社日立制作所 三相交流电动机用驱动装置、具备该驱动装置的铁道车辆以及三相交流电动机的驱动方法

Also Published As

Publication number Publication date
CN104602947A (zh) 2015-05-06
JPWO2014112127A1 (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
CA2711504C (en) Power conversion device
JP4647684B2 (ja) 電力変換装置
JP4120708B2 (ja) 電力変換装置
JP5352570B2 (ja) 回転機の制御装置,回転機系,車両,電気自動車または発電システム
CN102771042B (zh) 控制多相电机的方法和装置
KR101182881B1 (ko) 교류 전동기의 구동 제어 장치
JP2009065828A (ja) 不十分な電気制動を検出して安全ブレーキに転流する安全装置
KR101653866B1 (ko) 축전 장치를 탑재한 전력 변환 장치
JP2012010568A (ja) 車両用制御システム
CN105493395A (zh) 车辆用控制装置以及铁路车辆
WO2014112127A1 (ja) 鉄道車両用駆動制御装置
JP5681441B2 (ja) 車両用駆動制御装置
JP5172122B2 (ja) 鉄道車両用永久磁石同期電動機駆動システム
JP5784531B2 (ja) 永久磁石電動機駆動装置
US11701971B2 (en) Three-phase AC motor drive device, rail vehicle equipped with same, and three-phase AC motor drive method
JP3999226B2 (ja) 電動機制御装置
JP2010246235A (ja) 鉄道車両駆動制御装置
JP2014075938A (ja) 電気車用電力変換装置
JP4391339B2 (ja) 車両用補助電源装置
JP6847697B2 (ja) 電気車制御装置
JP2010220444A (ja) 永久磁石モータドライブ装置
JP2013116017A (ja) 車両用駆動制御装置
JP4252109B1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871434

Country of ref document: EP

Kind code of ref document: A1