WO2014109224A1 - Chip resistor - Google Patents
Chip resistor Download PDFInfo
- Publication number
- WO2014109224A1 WO2014109224A1 PCT/JP2013/084491 JP2013084491W WO2014109224A1 WO 2014109224 A1 WO2014109224 A1 WO 2014109224A1 JP 2013084491 W JP2013084491 W JP 2013084491W WO 2014109224 A1 WO2014109224 A1 WO 2014109224A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- layer
- barrier layer
- resistor
- ceramic substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
- H01C1/144—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
- H01C1/142—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
Definitions
- the present invention relates to a surface mount type chip resistor which is mounted on a circuit board by soldering.
- FIG. 5 is a cross-sectional view schematically showing a conventional general chip resistor.
- the chip resistor 21 shown in the figure is made of a rectangular parallelepiped ceramic substrate 22, a pair of surface electrodes 23 made of sintered silver or the like provided at both ends in the longitudinal direction of the upper surface of the ceramic substrate 22, and ruthenium oxide or the like.
- a resistor 24 provided between the pair of surface electrodes 23, an insulating protective layer 25 covering the resistor 24, and provided at both ends in the longitudinal direction of the lower surface of the ceramic substrate 22 made of sintered silver or the like.
- a pair of back surface electrodes 26 and a pair of end surface electrodes 27 provided on both end surfaces in the longitudinal direction of the ceramic substrate 22 to bridge the front surface electrode 23 and the back surface electrode 26.
- a plating layer 28 is attached to the front surface electrode 23, the end surface electrode 27, and the back surface electrode 26 that are continuous in a shape.
- the ceramic substrate 22 is obtained by dividing a large substrate along a vertical and horizontal dividing groove, and a large number of ceramic substrates 22 are obtained.
- the back electrode 26, the protective layer 25, and the like are collectively formed.
- the resistance value of the chip resistor 21 is adjusted by forming a trimming groove (not shown) in the resistor 24.
- the protective layer 25 generally has a two-layer structure, and an undercoat layer formed before adjusting the resistance value for trimming the resistor 24 and an overcoat layer formed after adjusting the resistance value are laminated. ing.
- the end surface electrode 27 is formed on a split surface of a strip-shaped substrate obtained by first dividing a large substrate on which a large number of protective layers 25 are formed.
- the strip-shaped substrate is separated into pieces ( The chip layer is divided into two parts, and the plated layer 28 is deposited on each chip.
- This plating layer 28 includes an innermost nickel (Ni) plating layer in close contact with the base electrode layer, and an outermost solder (Sn / Pb) plating layer or tin (Sn) plating layer exposed on the outer surface. It has a laminated structure of more than one layer.
- this type of chip resistor 21 is surface-mounted by mounting a back electrode 26 on a land provided on a circuit board and soldering, but the thermal environment changes to the chip resistor 21 after mounting. Is repeated (hereinafter referred to as heat shock), the solder joints are easily damaged by thermal stress and cracks are likely to occur. When a crack due to heat shock occurs in the solder joint, the solder joint is a place where the back electrode 26 of the chip resistor 21 and the land of the circuit board are electrically and mechanically connected. It may lead to poor conduction.
- a chip resistor has been proposed in which the back electrode has a two-layer structure of an inner layer made of baked silver and an outer layer made of a conductive resin so that thermal stress acting on the solder joint can be reduced (for example, , See Patent Document 1).
- the outer layer of the back electrode that contacts the solder joint on the land of the circuit board is made of a conductive resin, it acts on the solder joint compared to the case where the back electrode is made only of sintered silver. The effect of relaxing the thermal stress is expected.
- the present invention has been made in view of such a state of the art, and an object thereof is to provide a chip resistor that can prevent damage due to heat shock of the entire solder joint including the back electrode and the end electrode. It is in.
- a chip resistor of the present invention includes a pair of surface electrodes provided at both longitudinal ends of the surface of the ceramic substrate, and the ceramic substrate connected to the pair of surface electrodes.
- a resistor provided on the front surface, a pair of back electrodes provided on both ends in the longitudinal direction of the back surface of the ceramic substrate, an insulating protective layer covering the resistor, and provided on both end surfaces of the ceramic substrate
- the end face electrode is formed of a sputtered film containing chromium and the material of the barrier layer, and the barrier layer is a plating made of nickel or copper having a thickness of 8 ⁇ m to 30 ⁇ m. It was configured to be formed of layers.
- the barrier layer is subjected to thermal stress (heat shock). On the other hand, it becomes a cushion material, and fatigue and cracks due to the thermal stress of the entire solder joint including the back electrode and the end electrode can be prevented.
- the end face electrode is formed of a sputtered film containing chromium and a barrier layer material (nickel or copper) having good adhesion to the ceramic substrate, the boundary portion between the barrier layer and the end face electrode is strengthened. Also, it can cope with internal stress generated when the barrier layer is formed thick.
- the end face electrode, the front surface electrode, and the back surface electrode are covered with a thick (8 to 30 ⁇ m) barrier layer, so that the barrier layer becomes a cushioning material against thermal stress (heat shock). Fatigue and cracks due to the thermal stress of the entire solder joint including the back electrode and the end electrode can be prevented.
- the end face electrode is formed of a sputtered film containing chromium and a barrier layer material (nickel or copper) having good adhesion to the ceramic substrate, the boundary portion between the barrier layer and the end face electrode is strengthened. Further, fatigue and cracks due to internal stress generated when the barrier layer is formed thick can be prevented.
- this chip resistor does not require a complicated manufacturing process of the back electrode, and therefore it is easy to avoid an increase in cost. Therefore, a chip resistor that is resistant to heat shock and has a long service life can be provided at low cost.
- a chip resistor 1 according to an embodiment of the present invention is provided at both ends in the longitudinal direction of a rectangular parallelepiped ceramic substrate 2 and the back surface (lower surface in FIG. 1) of the ceramic substrate 2.
- a pair of backside electrodes 3, a pair of front surface electrodes 4 provided at both ends in the longitudinal direction of the surface of the ceramic substrate 2 (upper surface in FIG. 1), and both ends of the pair of surface electrodes 4 are overlapped with the ceramic substrate 2.
- a resistor 5 provided on the surface of the ceramic substrate 2, a pair of end face electrodes 6 provided on both end faces in the longitudinal direction of the ceramic substrate 2 to bridge the back electrode 3 and the surface electrode 4, and the resistor 5.
- Two-layer protective layer undercoat layer 7 and overcoat layer 8
- barrier layer 9 applied to the front electrode 4, the end face electrode 6 and the back electrode 3, and solder plating applied to the barrier layer 9 Layer 10 and It is.
- the ceramic substrate 2 is an insulating substrate containing alumina as a main component, and the ceramic substrate 2 is obtained by dividing a large-size substrate, which will be described later, along a vertical and horizontal dividing groove.
- the back electrode 3 is obtained by screen-printing Ag paste and drying and firing, and the front electrode 4 is also obtained by screen-printing Ag paste and drying and firing.
- the resistor 5 is obtained by screen-printing a resistor paste such as ruthenium oxide, drying and firing, and the resistance value of the chip resistor 1 is adjusted by forming a trimming groove (not shown) in the resistor 5. Has been.
- the end face electrode 6 is formed on the end face of the ceramic substrate 2 by sputtering, and is made of a sputtered film containing chromium (Cr) having good adhesion to the ceramic substrate 2 and a material of a barrier layer 9 described later.
- the barrier layer 9 is a plating layer made of nickel (Ni) or copper (Cu)
- the solder plating layer 10 is a plating layer made of tin (Sn) -lead (Pb), lead-free Sn, or the like.
- the chip resistor 1 is mounted on a land 31 provided on a circuit board 30 with the back electrode 3 facing downward, and is the outermost solder plating layer 10 covering the barrier layer 9.
- the barrier layer 9 is formed to have a thickness of 8 ⁇ m to 30 ⁇ m so as to cover the end face electrode 6, the front surface electrode 4, and the back surface electrode 3, the barrier layer 9 becomes a cushioning material against thermal stress (heat shock), Fatigue and cracks due to the thermal stress of the entire solder joint including the end face electrode 6 and the back face electrode 3 can be prevented.
- the end face electrode 6 covered with the barrier layer 9 is formed of a sputtered film containing chromium having good adhesion to the ceramic substrate 2 and the material of the barrier layer 9 (nickel or copper), the barrier layer 9 and the end face electrode 6 are strengthened, and fatigue and cracks due to internal stress generated when the barrier layer 9 is formed thick can be prevented.
- an unbaked back electrode 3 is formed by screen-printing and drying Ag paste on the back surface of a large substrate 40 on which a large number of ceramic substrates 2 are taken.
- the unfired surface electrode 4 is formed by screen-printing and drying an Ag / Pd paste on the surface of the large substrate 40.
- the large-sized substrate 40 is provided with a primary division groove and a secondary division groove (both not shown) in advance in a lattice shape, and each square divided by both division grooves is equivalent to one piece. This is the chip area.
- a resistor paste such as ruthenium oxide is screened on the surface of the large substrate 40 as a fourth step.
- an unfired resistor 5 is formed in each chip region as shown in FIG. At that time, both ends in the longitudinal direction of the resistor 5 are overlapped with the surface electrodes 4 provided at both ends in the longitudinal direction of each chip region.
- the resistor 5 is fired at a high temperature of about 850 ° C. Note that the firing of the third step described above may be omitted, and the back electrode 3, the front electrode 4 and the resistor 5 may be fired simultaneously in this fifth step. In this case, the firing step is reduced to reduce the cost. It becomes possible.
- the glass paste is baked at a high temperature of about 600 ° C. in the seventh step, as shown in FIG. Then, an undercoat layer 7 corresponding to the primary protective coat covering the resistor 5 is formed.
- the undercoat layer 7 and the resistor 5 are irradiated with laser to form a trimming groove (not shown), thereby adjusting to a desired resistance value.
- a ninth step after screen printing a glass paste or an epoxy resin paste so as to cover the undercoat layer 7, this is baked in the tenth step (for example, the glass paste is fired at about 600 ° C., The resin paste is heated and cured at about 200 ° C.) to form an overcoat layer 8 corresponding to a secondary protective coat covering the resistor 5 and the undercoat layer 7.
- This overcoat layer 8 is for protecting the resistor 5 from the external environment.
- the process up to this point is a batch process for the large-sized substrate 40 for taking a large number of pieces, but in the next eleventh step, the primary break processing is performed in which the large-sized substrate 40 is divided into strips along the primary dividing grooves by a break. I do. Thereby, the strip-shaped substrate 41 provided with a plurality of chip regions is obtained.
- This end face electrode 6 contains chromium (Cr) having good adhesion to the ceramic substrate 2 (large format substrate 40 or strip substrate 41) and nickel (Ni) which is a material of the barrier layer 9 formed in the next step.
- Cr chromium
- Ni nickel
- the thickness of the sputtered film is set to 500 mm or more in order to prevent erosion of the solder.
- the barrier layer 9 is a nickel plating layer covering the front electrode 4, the end face electrode 6 and the back electrode 3, and the film thickness is set to 8 ⁇ m to 30 ⁇ m so as to be a cushioning material against heat shock.
- the thickness of the barrier layer 9 is thinner than 8 ⁇ m, the cushioning effect becomes insufficient and it becomes difficult to prevent cracks.
- the thickness of the barrier layer 9 exceeds 30 ⁇ m, the barrier layer 9 Since the generated internal stress becomes excessively large, the thickness of the barrier layer 9 is preferably set to 8 ⁇ m to 30 ⁇ m.
- a solder plating layer 10 is formed by electrolytic plating so as to cover the barrier layer 9, thereby forming a two-layered plating layer (barrier layer 9 as shown in FIG. 4C). And the chip resistor 1 having the solder plating layer 10) are completed.
- the chip resistor 1 is connected to the pair of surface electrodes 4 provided at both ends in the longitudinal direction of the surface of the ceramic substrate 2 and the pair of surface electrodes 4.
- a resistor 5 provided on the surface of the ceramic substrate 2, a pair of back electrodes 3 provided at both longitudinal ends of the back surface of the ceramic substrate 2, and an insulating protective layer (undercoat layer) covering the resistor 5 7 and the overcoat layer 8
- a pair of end face electrodes 6 provided on both end faces of the ceramic substrate 2 to bridge the front face electrode 4 and the back face electrode 3, and the end face electrode 6, the front face electrode 4 and the back face
- a barrier layer 9 covering the electrode 3 and a solder plating layer 10 covering the barrier layer 9 are provided.
- the end face electrode 6 is formed of a sputtered film containing chromium and the material of the barrier layer 9, and the barrier Since the layer 9 is formed of a plating layer made of nickel or copper having a thickness of 8 ⁇ m to 30 ⁇ m, the barrier layer 9 serves as a cushioning material against thermal stress (heat shock), and solder bonding including the back electrode 3 and the end surface electrode 6 Fatigue and cracks resulting from the thermal stress of the entire part can be prevented.
- the end face electrode 6 covered with the barrier layer 9 is formed of a sputtered film containing chromium having good adhesion to the ceramic substrate 2 and the material of the barrier layer 9 (nickel or copper), the barrier layer 9 And the end face electrode 6 are strengthened, and fatigue and cracks due to internal stress generated when the barrier layer 9 is formed thick can be prevented.
- the barrier layer 9 is formed of a nickel plating layer and the end face electrode 6 is formed of a sputtered film containing chromium and nickel.
- the barrier layer 9 is made of a nickel plating layer.
- a copper (Cu) plating layer can also be used.
- the end face electrode containing chromium and copper is formed by sputtering Cr / Cu on the dividing surface of the strip-shaped substrate 41 in the twelfth step described above. 6 may be formed.
- the end face electrode 6 may contain titanium (Ti) or the like other than that as long as it contains at least chromium and the material of the barrier layer 9 (nickel or copper).
- the end face electrode 6 can be formed of a Cr—Ni—Cu sputtered film or a Cr—Ni—Ti sputtered film.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Non-Adjustable Resistors (AREA)
Abstract
Provided is a chip resistor capable of preventing damage due to heat shock over all of a solder join part containing a back-surface electrode and an end-face electrode. The chip resistor (1) is provided with: surface electrodes (4) provided to the surface of a ceramic substrate (2); a resistor body (5) connecting the pair of surface electrodes (4); a back-surface electrode (3) provided to the back surface of the ceramic substrate (2); an insulating protective layer (an undercoat layer (7) and an overcoat layer (8)) for coating the resistor body (5); a pair of end-face electrodes (6) bridging between the surface electrodes (4) and the back-surface electrode (3), the end-face electrodes (6) provided to both end faces of the ceramic substrate (2); a barrier layer (9) coating the end-face electrodes (6), the surface electrodes (4), and the back-surface electrode (3); and a solder plating (10) layer coating the barrier layer (9), the end-face electrodes (6) being formed of a spatter film containing chrome and the barrier layer (9) material, and the barrier layer (9) being formed of a plating layer comprising nickel or copper having a thickness of 8-30 µm.
Description
本発明は、回路基板上に半田付けによって実装される面実装タイプのチップ抵抗器に関するものである。
The present invention relates to a surface mount type chip resistor which is mounted on a circuit board by soldering.
図5は従来の一般的なチップ抵抗器を模式的に示す断面図である。同図に示すチップ抵抗器21は、直方体形状のセラミック基板22と、焼成銀等からなりセラミック基板22の図示上面の長手方向両端部に設けられた一対の表面電極23と、酸化ルテニウム等からなり一対の表面電極23間に跨って設けられた抵抗体24と、この抵抗体24を被覆する絶縁性の保護層25と、焼成銀等からなりセラミック基板22の図示下面の長手方向両端部に設けられた一対の裏面電極26と、セラミック基板22の長手方向両端面に設けられて表面電極23と裏面電極26とを橋絡する一対の端面電極27とを備えており、下地電極層としてコ字状に連続する表面電極23と端面電極27および裏面電極26にメッキ層28が被着されている。
FIG. 5 is a cross-sectional view schematically showing a conventional general chip resistor. The chip resistor 21 shown in the figure is made of a rectangular parallelepiped ceramic substrate 22, a pair of surface electrodes 23 made of sintered silver or the like provided at both ends in the longitudinal direction of the upper surface of the ceramic substrate 22, and ruthenium oxide or the like. A resistor 24 provided between the pair of surface electrodes 23, an insulating protective layer 25 covering the resistor 24, and provided at both ends in the longitudinal direction of the lower surface of the ceramic substrate 22 made of sintered silver or the like. A pair of back surface electrodes 26 and a pair of end surface electrodes 27 provided on both end surfaces in the longitudinal direction of the ceramic substrate 22 to bridge the front surface electrode 23 and the back surface electrode 26. A plating layer 28 is attached to the front surface electrode 23, the end surface electrode 27, and the back surface electrode 26 that are continuous in a shape.
かかるチップ抵抗器21において、セラミック基板22は大判基板を縦横の分割溝に沿って分割して多数個取りされたものであり、この大判基板に対して多数個分の表面電極23や抵抗体24、裏面電極26、保護層25等が一括して形成される。また、チップ抵抗器21の抵抗値の調整は、抵抗体24に図示せぬトリミング溝を形成することによって行われる。保護層25は一般的に2層構造になっており、抵抗体24をトリミングする抵抗値調整の前に形成されるアンダーコート層と、抵抗値調整の後に形成されるオーバーコート層とが積層されている。また、端面電極27は多数個分の保護層25が形成された大判基板を1次分割してなる短冊状基板の分割面に形成され、端面電極27を形成した後に短冊状基板を個片(チップ単体)に2次分割して各チップ単体にメッキ層28が被着されるようになっている。このメッキ層28は、下地電極層に密着する最内層のニッケル(Ni)メッキ層と、外表面に露出する最外層の半田(Sn/Pb)メッキ層または錫(Sn)メッキ層とを含む2層以上の積層構造になっている。
In the chip resistor 21, the ceramic substrate 22 is obtained by dividing a large substrate along a vertical and horizontal dividing groove, and a large number of ceramic substrates 22 are obtained. The back electrode 26, the protective layer 25, and the like are collectively formed. The resistance value of the chip resistor 21 is adjusted by forming a trimming groove (not shown) in the resistor 24. The protective layer 25 generally has a two-layer structure, and an undercoat layer formed before adjusting the resistance value for trimming the resistor 24 and an overcoat layer formed after adjusting the resistance value are laminated. ing. The end surface electrode 27 is formed on a split surface of a strip-shaped substrate obtained by first dividing a large substrate on which a large number of protective layers 25 are formed. After the end surface electrode 27 is formed, the strip-shaped substrate is separated into pieces ( The chip layer is divided into two parts, and the plated layer 28 is deposited on each chip. This plating layer 28 includes an innermost nickel (Ni) plating layer in close contact with the base electrode layer, and an outermost solder (Sn / Pb) plating layer or tin (Sn) plating layer exposed on the outer surface. It has a laminated structure of more than one layer.
ところで、この種のチップ抵抗器21は、回路基板に設けられたランド上に裏面電極26を搭載して半田接合することで面実装されるが、実装後にチップ抵抗器21への熱環境の変化が繰り返される(以後ヒートショックと呼ぶ)と、この半田接合部が熱応力で損傷してクラックを生じやすくなる。そして、半田接合部にヒートショックによるクラックが生じると、半田接合部はチップ抵抗器21の裏面電極26と回路基板のランドとを電気的かつ機械的に接続する箇所であるため、最悪の場合は導通不良に至ることもある。
By the way, this type of chip resistor 21 is surface-mounted by mounting a back electrode 26 on a land provided on a circuit board and soldering, but the thermal environment changes to the chip resistor 21 after mounting. Is repeated (hereinafter referred to as heat shock), the solder joints are easily damaged by thermal stress and cracks are likely to occur. When a crack due to heat shock occurs in the solder joint, the solder joint is a place where the back electrode 26 of the chip resistor 21 and the land of the circuit board are electrically and mechanically connected. It may lead to poor conduction.
そこで従来より、裏面電極を焼成銀からなる内層と導電性樹脂からなる外層との2層構造にし、半田接合部に作用する熱応力を緩和できるようにしたチップ抵抗器が提案されている(例えば、特許文献1参照)。かかる従来のチップ抵抗器では、回路基板のランド上で半田接合部と接触する裏面電極の外層が導電性樹脂からなるため、裏面電極が焼成銀のみからなる場合に比べると、半田接合部に作用する熱応力を緩和する効果が期待できる。
Therefore, conventionally, a chip resistor has been proposed in which the back electrode has a two-layer structure of an inner layer made of baked silver and an outer layer made of a conductive resin so that thermal stress acting on the solder joint can be reduced (for example, , See Patent Document 1). In such a conventional chip resistor, since the outer layer of the back electrode that contacts the solder joint on the land of the circuit board is made of a conductive resin, it acts on the solder joint compared to the case where the back electrode is made only of sintered silver. The effect of relaxing the thermal stress is expected.
しかしながら、特許文献1に記載された従来のチップ抵抗器では、回路基板のランドと裏面電極との半田接合部に作用する熱応力を緩和するように配慮されているものの、端面電極部分の半田接合部に作用する熱応力について何ら対策が施されていないため、ヒートショックについて長寿命の要求がある車載用電子機器等の回路基板に実装された場合、端面電極部分の半田接合部にヒートショックによるクラックが発生しやすくなる。また、近年の鉛フリー化に伴って使用される半田ペーストの融点が高くなると、回路基板への実装が高温でのリフロー条件となるため、リフロー時に裏面電極の樹脂成分が劣化してしまい、その部分で裏面電極が剥離してしまう虞がある。さらに、裏面電極が焼成銀と導電性樹脂の2層構造となっているため、製造工程が煩雑化して製造コストが上昇するという問題もあった。
However, in the conventional chip resistor described in Patent Document 1, although consideration is given to relieve the thermal stress acting on the solder joint between the land of the circuit board and the back electrode, the solder joint of the end face electrode portion is considered. No measures are taken for thermal stress acting on the parts, so when mounted on a circuit board such as an in-vehicle electronic device that has a long life requirement for heat shock, the solder joints of the end face electrode parts are affected by heat shock. Cracks are likely to occur. In addition, when the melting point of the solder paste used with the recent lead-free process becomes high, mounting on the circuit board becomes a reflow condition at a high temperature, so that the resin component of the back electrode deteriorates during reflow, There is a risk that the back electrode peels off at the portion. Furthermore, since the back electrode has a two-layer structure of baked silver and conductive resin, there is a problem that the manufacturing process becomes complicated and the manufacturing cost increases.
本発明は、このような従来技術の実情に鑑みてなされたものであり、その目的は、裏面電極と端面電極を含む半田接合部全体のヒートショックによる損傷を防止できるチップ抵抗器を提供することにある。
The present invention has been made in view of such a state of the art, and an object thereof is to provide a chip resistor that can prevent damage due to heat shock of the entire solder joint including the back electrode and the end electrode. It is in.
上記の目的を達成するために、本発明のチップ抵抗器は、セラミック基板の表面の長手方向両端部に設けられた一対の表面電極と、これら一対の表面電極に接続するように前記セラミック基板の表面に設けられた抵抗体と、前記セラミック基板の裏面の長手方向両端部に設けられた一対の裏面電極と、前記抵抗体を被覆する絶縁性の保護層と、前記セラミック基板の両端面に設けられて前記表面電極と前記裏面電極とを橋絡している一対の端面電極と、この端面電極と前記表面電極および前記裏面電極を被覆するバリヤー層と、このバリヤー層を被覆する半田メッキ層とを備え、前記端面電極はクロムと前記バリヤー層の材料を含有するスパッタ膜で形成されており、前記バリヤー層は8μm~30μm厚のニッケルまたは銅からなるメッキ層で形成されているという構成にした。
In order to achieve the above object, a chip resistor of the present invention includes a pair of surface electrodes provided at both longitudinal ends of the surface of the ceramic substrate, and the ceramic substrate connected to the pair of surface electrodes. A resistor provided on the front surface, a pair of back electrodes provided on both ends in the longitudinal direction of the back surface of the ceramic substrate, an insulating protective layer covering the resistor, and provided on both end surfaces of the ceramic substrate A pair of end surface electrodes that bridge the front surface electrode and the back surface electrode, a barrier layer that covers the end surface electrode, the front surface electrode, and the back surface electrode, and a solder plating layer that covers the barrier layer; The end face electrode is formed of a sputtered film containing chromium and the material of the barrier layer, and the barrier layer is a plating made of nickel or copper having a thickness of 8 μm to 30 μm. It was configured to be formed of layers.
このように構成されたチップ抵抗器では、端面電極と表面電極および裏面電極がメッキ厚を厚く(8μm~30μm)形成したバリヤー層によって覆われているため、バリヤー層が熱応力(ヒートショック)に対してクッション材となり、裏面電極と端面電極を含む半田接合部全体の熱応力に起因する疲労やクラックを防止することができる。しかも、端面電極が、セラミック基板との密着性の良いクロムとバリヤー層の材料(ニッケルまたは銅)とを含有するスパッタ膜で形成されているため、バリヤー層と端面電極との境界部分が強化され、バリヤー層を厚く形成したときに発生する内部応力にも対応できる。
In the chip resistor configured as described above, since the end face electrode, the front surface electrode, and the back surface electrode are covered with a barrier layer formed with a thick plating thickness (8 μm to 30 μm), the barrier layer is subjected to thermal stress (heat shock). On the other hand, it becomes a cushion material, and fatigue and cracks due to the thermal stress of the entire solder joint including the back electrode and the end electrode can be prevented. In addition, since the end face electrode is formed of a sputtered film containing chromium and a barrier layer material (nickel or copper) having good adhesion to the ceramic substrate, the boundary portion between the barrier layer and the end face electrode is strengthened. Also, it can cope with internal stress generated when the barrier layer is formed thick.
本発明のチップ抵抗器は、端面電極と表面電極および裏面電極が膜厚の厚い(8μm~30μm)バリヤー層によって覆われているため、バリヤー層が熱応力(ヒートショック)に対してクッション材となり、裏面電極と端面電極を含む半田接合部全体の熱応力に起因する疲労やクラックを防止することができる。しかも、端面電極が、セラミック基板との密着性の良いクロムとバリヤー層の材料(ニッケルまたは銅)とを含有するスパッタ膜で形成されているため、バリヤー層と端面電極との境界部分が強化され、バリヤー層を厚く形成したときに発生する内部応力に起因する疲労やクラックを防止することができる。また、このチップ抵抗器は、裏面電極の製造工程を特に煩雑化する必要がないため、コストアップも回避しやすくなっている。それゆえ、ヒートショックに強くて耐用寿命の長いチップ抵抗器を安価に提供することができる。
In the chip resistor of the present invention, the end face electrode, the front surface electrode, and the back surface electrode are covered with a thick (8 to 30 μm) barrier layer, so that the barrier layer becomes a cushioning material against thermal stress (heat shock). Fatigue and cracks due to the thermal stress of the entire solder joint including the back electrode and the end electrode can be prevented. In addition, since the end face electrode is formed of a sputtered film containing chromium and a barrier layer material (nickel or copper) having good adhesion to the ceramic substrate, the boundary portion between the barrier layer and the end face electrode is strengthened. Further, fatigue and cracks due to internal stress generated when the barrier layer is formed thick can be prevented. In addition, this chip resistor does not require a complicated manufacturing process of the back electrode, and therefore it is easy to avoid an increase in cost. Therefore, a chip resistor that is resistant to heat shock and has a long service life can be provided at low cost.
以下、発明の実施の形態について図面を参照しながら説明する。図1に示すように、本発明の実施形態例に係るチップ抵抗器1は、直方体形状のセラミック基板2と、このセラミック基板2の裏面(図1では下面)の長手方向両端部に設けられた一対の裏面電極3と、セラミック基板2の表面(図1では上面)の長手方向両端部に設けられた一対の表面電極4と、これら一対の表面電極4に両端部を重ね合わせてセラミック基板2の表面に設けられた抵抗体5と、セラミック基板2の長手方向両端面に設けられて裏面電極3と表面電極4とを橋絡している一対の端面電極6と、抵抗体5を被覆する2層構造の保護層(アンダーコート層7およびオーバーコート層8)と、表面電極4と端面電極6および裏面電極3に被着せしめたバリヤー層9と、バリヤー層9に被着せしめた半田メッキ層10とによって構成されている。
Hereinafter, embodiments of the invention will be described with reference to the drawings. As shown in FIG. 1, a chip resistor 1 according to an embodiment of the present invention is provided at both ends in the longitudinal direction of a rectangular parallelepiped ceramic substrate 2 and the back surface (lower surface in FIG. 1) of the ceramic substrate 2. A pair of backside electrodes 3, a pair of front surface electrodes 4 provided at both ends in the longitudinal direction of the surface of the ceramic substrate 2 (upper surface in FIG. 1), and both ends of the pair of surface electrodes 4 are overlapped with the ceramic substrate 2. A resistor 5 provided on the surface of the ceramic substrate 2, a pair of end face electrodes 6 provided on both end faces in the longitudinal direction of the ceramic substrate 2 to bridge the back electrode 3 and the surface electrode 4, and the resistor 5. Two-layer protective layer (undercoat layer 7 and overcoat layer 8), barrier layer 9 applied to the front electrode 4, the end face electrode 6 and the back electrode 3, and solder plating applied to the barrier layer 9 Layer 10 and It is.
セラミック基板2はアルミナを主成分とする絶縁基板であり、このセラミック基板2は後述する大判基板を縦横の分割溝に沿って分割して多数個取りされたものである。裏面電極3はAgペーストをスクリーン印刷して乾燥・焼成させたものであり、同じく表面電極4もAgペーストをスクリーン印刷して乾燥・焼成させたものである。抵抗体5は酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成させたものであり、この抵抗体5にトリミング溝(図示省略)を形成することによってチップ抵抗器1の抵抗値が調整されている。端面電極6はセラミック基板2の端面にスパッタリングにより形成されたものであり、セラミック基板2に対する密着性が良いクロム(Cr)と後述するバリヤー層9の材料を含有するスパッタ膜からなる。バリヤー層9はニッケル(Ni)または銅(Cu)からなるメッキ層であり、半田メッキ層10は錫(Sn)-鉛(Pb)や鉛フリーのSn等からなるメッキ層である。なお、チップ抵抗器1の製造時には、大判基板に対して多数個分の表面電極4や抵抗体5や裏面電極3やアンダーコート層7やオーバーコート層8等が一括して形成される。
The ceramic substrate 2 is an insulating substrate containing alumina as a main component, and the ceramic substrate 2 is obtained by dividing a large-size substrate, which will be described later, along a vertical and horizontal dividing groove. The back electrode 3 is obtained by screen-printing Ag paste and drying and firing, and the front electrode 4 is also obtained by screen-printing Ag paste and drying and firing. The resistor 5 is obtained by screen-printing a resistor paste such as ruthenium oxide, drying and firing, and the resistance value of the chip resistor 1 is adjusted by forming a trimming groove (not shown) in the resistor 5. Has been. The end face electrode 6 is formed on the end face of the ceramic substrate 2 by sputtering, and is made of a sputtered film containing chromium (Cr) having good adhesion to the ceramic substrate 2 and a material of a barrier layer 9 described later. The barrier layer 9 is a plating layer made of nickel (Ni) or copper (Cu), and the solder plating layer 10 is a plating layer made of tin (Sn) -lead (Pb), lead-free Sn, or the like. When manufacturing the chip resistor 1, a large number of front surface electrodes 4, resistors 5, back surface electrodes 3, undercoat layers 7, overcoat layers 8, and the like are collectively formed on a large substrate.
図2に示すように、このチップ抵抗器1は、回路基板30に設けられたランド31上に裏面電極3を下向きにした状態で搭載され、バリヤー層9を被覆する最外層の半田メッキ層10を半田32で接合することによって面実装される。そして、このバリヤー層9が端面電極6と表面電極4および裏面電極3を覆うように8μm~30μm厚に形成されているため、バリヤー層9が熱応力(ヒートショック)に対してクッション材となり、端面電極6や裏面電極3を含む半田接合部全体の熱応力に起因する疲労やクラックを防止することができる。しかも、バリヤー層9によって覆われた端面電極6が、セラミック基板2との密着性が良いクロムとバリヤー層9の材料(ニッケルまたは銅)とを含有するスパッタ膜で形成されているため、バリヤー層9と端面電極6との境界部分が強化され、バリヤー層9を厚く形成したときに発生する内部応力に起因する疲労やクラックも防止することができる。
As shown in FIG. 2, the chip resistor 1 is mounted on a land 31 provided on a circuit board 30 with the back electrode 3 facing downward, and is the outermost solder plating layer 10 covering the barrier layer 9. Are mounted by solder 32. Since the barrier layer 9 is formed to have a thickness of 8 μm to 30 μm so as to cover the end face electrode 6, the front surface electrode 4, and the back surface electrode 3, the barrier layer 9 becomes a cushioning material against thermal stress (heat shock), Fatigue and cracks due to the thermal stress of the entire solder joint including the end face electrode 6 and the back face electrode 3 can be prevented. Moreover, since the end face electrode 6 covered with the barrier layer 9 is formed of a sputtered film containing chromium having good adhesion to the ceramic substrate 2 and the material of the barrier layer 9 (nickel or copper), the barrier layer 9 and the end face electrode 6 are strengthened, and fatigue and cracks due to internal stress generated when the barrier layer 9 is formed thick can be prevented.
次に、このように構成されたチップ抵抗器1の製造工程について、図3と図4を参照しながら説明する。なお、第1工程から第10工程までは図3を参照して説明し、第11工程から第15工程までは図4を参照して説明する。
Next, the manufacturing process of the chip resistor 1 configured as described above will be described with reference to FIGS. The first to tenth steps will be described with reference to FIG. 3, and the eleventh to fifteenth steps will be described with reference to FIG.
まず、第1工程として、図3(a)に示すように、セラミック基板2が多数個取りされる大判基板40の裏面にAgペーストをスクリーン印刷して乾燥させることによって未焼成の裏面電極3を形成した後、第2工程として、大判基板40の表面にAg/Pdペーストをスクリーン印刷して乾燥させることによって未焼成の表面電極4を形成する。なお、大判基板40には予め1次分割溝と2次分割溝(いずれも図示省略)が格子状に設けられており、両分割溝によって区切られたマス目の1つ1つが1個分のチップ領域となる。
First, as shown in FIG. 3 (a), as shown in FIG. 3A, an unbaked back electrode 3 is formed by screen-printing and drying Ag paste on the back surface of a large substrate 40 on which a large number of ceramic substrates 2 are taken. After the formation, as a second step, the unfired surface electrode 4 is formed by screen-printing and drying an Ag / Pd paste on the surface of the large substrate 40. The large-sized substrate 40 is provided with a primary division groove and a secondary division groove (both not shown) in advance in a lattice shape, and each square divided by both division grooves is equivalent to one piece. This is the chip area.
次に、第3工程として、これら未焼成の裏面電極3と表面電極4を850℃程度の高温で焼成した後、第4工程として、大判基板40の表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥させることにより、図3(b)に示すように、各チップ領域に未焼成の抵抗体5を形成する。その際、抵抗体5の長手方向両端部は、各チップ領域の長手方向両端部に設けられている表面電極4に重ね合わせておく。そして、次なる第5工程で、この抵抗体5を850℃程度の高温で焼成する。なお、前述した第3工程の焼成を省略し、この第5工程で裏面電極3と表面電極4と抵抗体5とを同時に焼成しても良く、その場合は焼成工程を減らしてコストダウンを図ることが可能となる。
Next, after firing the unfired back electrode 3 and the front electrode 4 at a high temperature of about 850 ° C. as a third step, a resistor paste such as ruthenium oxide is screened on the surface of the large substrate 40 as a fourth step. By printing and drying, an unfired resistor 5 is formed in each chip region as shown in FIG. At that time, both ends in the longitudinal direction of the resistor 5 are overlapped with the surface electrodes 4 provided at both ends in the longitudinal direction of each chip region. In the next fifth step, the resistor 5 is fired at a high temperature of about 850 ° C. Note that the firing of the third step described above may be omitted, and the back electrode 3, the front electrode 4 and the resistor 5 may be fired simultaneously in this fifth step. In this case, the firing step is reduced to reduce the cost. It becomes possible.
次に、第6工程として、抵抗体5を覆う領域にガラスペーストをスクリーン印刷した後、第7工程でこのガラスペーストを600℃程度の高温で焼成することにより、図3(c)に示すように、抵抗体5を覆う1次保護コートに相当するアンダーコート層7を形成する。次に、第8工程として、アンダーコート層7および抵抗体5にレーザを照射して図示せぬトリミング溝を形成することにより、所望の抵抗値に調整する。
Next, as a sixth step, after a glass paste is screen-printed in a region covering the resistor 5, the glass paste is baked at a high temperature of about 600 ° C. in the seventh step, as shown in FIG. Then, an undercoat layer 7 corresponding to the primary protective coat covering the resistor 5 is formed. Next, as an eighth step, the undercoat layer 7 and the resistor 5 are irradiated with laser to form a trimming groove (not shown), thereby adjusting to a desired resistance value.
次に、第9工程として、アンダーコート層7を覆うようにガラスペーストあるいはエポキシ系等の樹脂ペーストをスクリーン印刷した後、これを第10工程で焼き付ける(例えばガラスペーストは600℃程度で焼成し、樹脂ペーストは200℃程度で加熱硬化させる)ことにより、抵抗体5とアンダーコート層7を覆う2次保護コートに相当するオーバーコート層8を形成する。このオーバーコート層8は抵抗体5を外部環境から保護するためのものである。こうしてアンダーコート層7およびオーバーコート層8を形成することによって、抵抗体5を被覆する2層構造の保護層が得られる。
Next, as a ninth step, after screen printing a glass paste or an epoxy resin paste so as to cover the undercoat layer 7, this is baked in the tenth step (for example, the glass paste is fired at about 600 ° C., The resin paste is heated and cured at about 200 ° C.) to form an overcoat layer 8 corresponding to a secondary protective coat covering the resistor 5 and the undercoat layer 7. This overcoat layer 8 is for protecting the resistor 5 from the external environment. By forming the undercoat layer 7 and the overcoat layer 8 in this way, a protective layer having a two-layer structure covering the resistor 5 is obtained.
ここまでの工程は多数個取り用の大判基板40に対する一括処理であるが、次なる第11工程では、ブレークによって大判基板40を1次分割溝に沿って短冊状に分割するという1次ブレーク加工を行う。これにより、複数個分のチップ領域が設けられた短冊状基板41を得る。
The process up to this point is a batch process for the large-sized substrate 40 for taking a large number of pieces, but in the next eleventh step, the primary break processing is performed in which the large-sized substrate 40 is divided into strips along the primary dividing grooves by a break. I do. Thereby, the strip-shaped substrate 41 provided with a plurality of chip regions is obtained.
そして、次なる第12工程で、短冊状基板41の分割面にCr/Niをスパッタリングすることにより、図4(a)に示すように、裏面電極3と表面電極4とを橋絡する端面電極6を形成する。この端面電極6は、セラミック基板2(大判基板40や短冊状基板41)との密着性が良いクロム(Cr)と、次工程で形成されるバリヤー層9の材料であるニッケル(Ni)を含有するスパッタ膜であり、その膜厚は半田食われを防止するために500Å以上に設定されている。
Then, in the next twelfth step, by sputtering Cr / Ni on the divided surface of the strip-shaped substrate 41, as shown in FIG. 4A, an end face electrode that bridges the back electrode 3 and the front electrode 4 6 is formed. This end face electrode 6 contains chromium (Cr) having good adhesion to the ceramic substrate 2 (large format substrate 40 or strip substrate 41) and nickel (Ni) which is a material of the barrier layer 9 formed in the next step. The thickness of the sputtered film is set to 500 mm or more in order to prevent erosion of the solder.
しかる後、第13工程として、ブレークによって短冊状基板41を2次分割溝に沿って分割するという2次ブレーク加工を行う。これにより、チップ抵抗器1と同等の大きさの個片(チップ単体)を得る。
Thereafter, as a thirteenth step, secondary break processing is performed in which the strip-shaped substrate 41 is divided along the secondary division grooves by a break. Thereby, an individual piece (chip alone) having the same size as the chip resistor 1 is obtained.
次に、第14工程として、個片化された各チップ単体のセラミック基板2に電解メッキを施すことにより、図4(b)に示すように、セラミック基板2の長手方向両端部に断面コ字状に連続するバリヤー層9を形成する。このバリヤー層9は表面電極4と端面電極6および裏面電極3を被覆するニッケルメッキ層であり、その膜厚はヒートショックに対するクッション材となるように8μm~30μmに設定されている。ここで、バリヤー層9の膜厚が8μmよりも薄くなると、クッション効果が不十分になってクラックを防止し難くなり、その反対にバリヤー層9の膜厚が30μmを越えると、バリヤー層9に発生する内部応力が大きくなり過ぎてしまうため、バリヤー層9の膜厚は8μm~30μmに設定することが好ましい。
Next, as a fourteenth step, by applying electrolytic plating to the individual ceramic substrate 2 of each chip, as shown in FIG. A continuous barrier layer 9 is formed. The barrier layer 9 is a nickel plating layer covering the front electrode 4, the end face electrode 6 and the back electrode 3, and the film thickness is set to 8 μm to 30 μm so as to be a cushioning material against heat shock. Here, if the thickness of the barrier layer 9 is thinner than 8 μm, the cushioning effect becomes insufficient and it becomes difficult to prevent cracks. Conversely, if the thickness of the barrier layer 9 exceeds 30 μm, the barrier layer 9 Since the generated internal stress becomes excessively large, the thickness of the barrier layer 9 is preferably set to 8 μm to 30 μm.
次に、第15工程として、このバリヤー層9を被覆するように半田メッキ層10を電解メッキで形成することにより、図4(c)に示すように、2層構造のメッキ層(バリヤー層9と半田メッキ層10)を有するチップ抵抗器1が完成する。
Next, as a fifteenth step, a solder plating layer 10 is formed by electrolytic plating so as to cover the barrier layer 9, thereby forming a two-layered plating layer (barrier layer 9 as shown in FIG. 4C). And the chip resistor 1 having the solder plating layer 10) are completed.
以上説明したように、本実施形態例に係るチップ抵抗器1は、セラミック基板2の表面の長手方向両端部に設けられた一対の表面電極4と、これら一対の表面電極4に接続するようにセラミック基板2の表面に設けられた抵抗体5と、セラミック基板2の裏面の長手方向両端部に設けられた一対の裏面電極3と、抵抗体5を被覆する絶縁性の保護層(アンダーコート層7およびオーバーコート層8)と、セラミック基板2の両端面に設けられて表面電極4と裏面電極3とを橋絡している一対の端面電極6と、この端面電極6と表面電極4および裏面電極3を被覆するバリヤー層9と、このバリヤー層9を被覆する半田メッキ10層とを備え、端面電極6がクロムとバリヤー層9の材料を含有するスパッタ膜で形成されていると共に、バリヤー層9が8μm~30μm厚のニッケルまたは銅からなるメッキ層で形成されているため、バリヤー層9が熱応力(ヒートショック)に対してクッション材となり、裏面電極3と端面電極6を含む半田接合部全体の熱応力に起因する疲労やクラックを防止することができる。しかも、バリヤー層9によって被覆された端面電極6が、セラミック基板2との密着性の良いクロムとバリヤー層9の材料(ニッケルまたは銅)を含有するスパッタ膜で形成されているため、バリヤー層9と端面電極6との境界部分が強化され、バリヤー層9を厚く形成したときに発生する内部応力に起因する疲労やクラックも防止できる。
As described above, the chip resistor 1 according to this embodiment is connected to the pair of surface electrodes 4 provided at both ends in the longitudinal direction of the surface of the ceramic substrate 2 and the pair of surface electrodes 4. A resistor 5 provided on the surface of the ceramic substrate 2, a pair of back electrodes 3 provided at both longitudinal ends of the back surface of the ceramic substrate 2, and an insulating protective layer (undercoat layer) covering the resistor 5 7 and the overcoat layer 8), a pair of end face electrodes 6 provided on both end faces of the ceramic substrate 2 to bridge the front face electrode 4 and the back face electrode 3, and the end face electrode 6, the front face electrode 4 and the back face A barrier layer 9 covering the electrode 3 and a solder plating layer 10 covering the barrier layer 9 are provided. The end face electrode 6 is formed of a sputtered film containing chromium and the material of the barrier layer 9, and the barrier Since the layer 9 is formed of a plating layer made of nickel or copper having a thickness of 8 μm to 30 μm, the barrier layer 9 serves as a cushioning material against thermal stress (heat shock), and solder bonding including the back electrode 3 and the end surface electrode 6 Fatigue and cracks resulting from the thermal stress of the entire part can be prevented. In addition, since the end face electrode 6 covered with the barrier layer 9 is formed of a sputtered film containing chromium having good adhesion to the ceramic substrate 2 and the material of the barrier layer 9 (nickel or copper), the barrier layer 9 And the end face electrode 6 are strengthened, and fatigue and cracks due to internal stress generated when the barrier layer 9 is formed thick can be prevented.
なお、上記の実施形態例では、バリヤー層9をニッケルメッキ層で形成すると共に、端面電極6をクロムとニッケルを含有するスパッタ膜で形成した場合について説明したが、バリヤー層9をニッケルメッキ層の代わりに銅(Cu)メッキ層とすることも可能であり、その場合、前述した第12工程で短冊状基板41の分割面にCr/Cuをスパッタリングすることにより、クロムと銅を含有する端面電極6を形成すれば良い。また、端面電極6は少なくともクロムとバリヤー層9の材料(ニッケルまたは銅)とを含有していれば、それ以外にもチタン(Ti)等を含有していても良く、例えば、バリヤー層9をニッケルメッキ層とした場合、端面電極6をCr-Ni-Cuのスパッタ膜で形成したり、Cr-Ni-Tiのスパッタ膜で形成することも可能である。
In the embodiment described above, the barrier layer 9 is formed of a nickel plating layer and the end face electrode 6 is formed of a sputtered film containing chromium and nickel. However, the barrier layer 9 is made of a nickel plating layer. Instead, a copper (Cu) plating layer can also be used. In this case, the end face electrode containing chromium and copper is formed by sputtering Cr / Cu on the dividing surface of the strip-shaped substrate 41 in the twelfth step described above. 6 may be formed. Further, the end face electrode 6 may contain titanium (Ti) or the like other than that as long as it contains at least chromium and the material of the barrier layer 9 (nickel or copper). When the nickel plating layer is used, the end face electrode 6 can be formed of a Cr—Ni—Cu sputtered film or a Cr—Ni—Ti sputtered film.
1 チップ抵抗器
2 セラミック基
3 裏面電極
4 表面電極
5 抵抗体
6 端面電極
7 アンダーコート層(保護層)
8 オーバーコート層(保護層)
9 バリヤー層
10 半田メッキ層
30 回路基板
31 ランド
32 半田
40 大判基板
41 短冊状基板 1Chip Resistor 2 Ceramic Base 3 Back Electrode 4 Front Electrode 5 Resistor 6 End Electrode 7 Undercoat Layer (Protective Layer)
8 Overcoat layer (protective layer)
9Barrier layer 10 Solder plating layer 30 Circuit board 31 Land 32 Solder 40 Large format board 41 Strip board
2 セラミック基
3 裏面電極
4 表面電極
5 抵抗体
6 端面電極
7 アンダーコート層(保護層)
8 オーバーコート層(保護層)
9 バリヤー層
10 半田メッキ層
30 回路基板
31 ランド
32 半田
40 大判基板
41 短冊状基板 1
8 Overcoat layer (protective layer)
9
Claims (1)
- セラミック基板の表面の長手方向両端部に設けられた一対の表面電極と、これら一対の表面電極に接続するように前記セラミック基板の表面に設けられた抵抗体と、前記セラミック基板の裏面の長手方向両端部に設けられた一対の裏面電極と、前記抵抗体を被覆する絶縁性の保護層と、前記セラミック基板の両端面に設けられて前記表面電極と前記裏面電極とを橋絡している一対の端面電極と、この端面電極と前記表面電極および前記裏面電極を被覆するバリヤー層と、このバリヤー層を被覆する半田メッキ層とを備え、
前記端面電極はクロムと前記バリヤー層の材料とを含有するスパッタ膜で形成されており、前記バリヤー層は8μm~30μm厚のニッケルまたは銅からなるメッキ層で形成されていることを特徴とするチップ抵抗器。 A pair of surface electrodes provided at both longitudinal ends of the surface of the ceramic substrate, a resistor provided on the surface of the ceramic substrate so as to be connected to the pair of surface electrodes, and a longitudinal direction of the back surface of the ceramic substrate A pair of back electrodes provided at both ends, an insulating protective layer covering the resistor, and a pair provided on both ends of the ceramic substrate to bridge the surface electrode and the back electrode An end face electrode, a barrier layer covering the end face electrode, the surface electrode and the back electrode, and a solder plating layer covering the barrier layer,
The end face electrode is formed of a sputtered film containing chromium and the material of the barrier layer, and the barrier layer is formed of a plated layer made of nickel or copper having a thickness of 8 μm to 30 μm. Resistor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-003427 | 2013-01-11 | ||
JP2013003427A JP2014135427A (en) | 2013-01-11 | 2013-01-11 | Chip resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014109224A1 true WO2014109224A1 (en) | 2014-07-17 |
Family
ID=51166881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/084491 WO2014109224A1 (en) | 2013-01-11 | 2013-12-24 | Chip resistor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014135427A (en) |
WO (1) | WO2014109224A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107359033A (en) * | 2016-03-15 | 2017-11-17 | 罗姆股份有限公司 | Chip resister and its manufacture method |
CN107426921A (en) * | 2017-09-07 | 2017-12-01 | 上海长园维安电子线路保护有限公司 | It is a kind of met Reflow Soldering from control type protector and its manufacture method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10083781B2 (en) | 2015-10-30 | 2018-09-25 | Vishay Dale Electronics, Llc | Surface mount resistors and methods of manufacturing same |
US10438729B2 (en) | 2017-11-10 | 2019-10-08 | Vishay Dale Electronics, Llc | Resistor with upper surface heat dissipation |
JP6777104B2 (en) | 2018-01-31 | 2020-10-28 | 日亜化学工業株式会社 | Light emitting device and its manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003045702A (en) * | 2001-07-31 | 2003-02-14 | Koa Corp | Chip resistor and manufacturing method therefor |
JP2009295813A (en) * | 2008-06-05 | 2009-12-17 | Hokuriku Electric Ind Co Ltd | Chip-like electric component and method of manufacturing the same |
JP2011165752A (en) * | 2010-02-05 | 2011-08-25 | Taiyosha Electric Co Ltd | Chip resistor |
-
2013
- 2013-01-11 JP JP2013003427A patent/JP2014135427A/en active Pending
- 2013-12-24 WO PCT/JP2013/084491 patent/WO2014109224A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003045702A (en) * | 2001-07-31 | 2003-02-14 | Koa Corp | Chip resistor and manufacturing method therefor |
JP2009295813A (en) * | 2008-06-05 | 2009-12-17 | Hokuriku Electric Ind Co Ltd | Chip-like electric component and method of manufacturing the same |
JP2011165752A (en) * | 2010-02-05 | 2011-08-25 | Taiyosha Electric Co Ltd | Chip resistor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107359033A (en) * | 2016-03-15 | 2017-11-17 | 罗姆股份有限公司 | Chip resister and its manufacture method |
CN107426921A (en) * | 2017-09-07 | 2017-12-01 | 上海长园维安电子线路保护有限公司 | It is a kind of met Reflow Soldering from control type protector and its manufacture method |
Also Published As
Publication number | Publication date |
---|---|
JP2014135427A (en) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024010234A (en) | chip resistor | |
JP2013074044A (en) | Chip resistor | |
JP5503034B2 (en) | Chip resistor | |
WO2014109224A1 (en) | Chip resistor | |
JP6499007B2 (en) | Chip resistor | |
WO2019087725A1 (en) | Chip resistor | |
WO2006093107A1 (en) | Chip resistor and manufacturing method thereof | |
JP6181500B2 (en) | Chip resistor and manufacturing method thereof | |
JP2011165752A (en) | Chip resistor | |
JP5115968B2 (en) | Chip resistor manufacturing method and chip resistor | |
JP2008311362A (en) | Ceramic electronic component | |
JP5706186B2 (en) | Chip resistor and manufacturing method thereof | |
US12027291B2 (en) | Chip component | |
JP5012432B2 (en) | Ceramic electronic components | |
JP4707890B2 (en) | Chip resistor and manufacturing method thereof | |
JP2007095926A (en) | Chip resistor | |
KR101771836B1 (en) | Chip resistor and chip resistor assembly | |
JP4729398B2 (en) | Chip resistor | |
JP2015061034A (en) | Chip resistor | |
JP7568530B2 (en) | Chip Components | |
JP6159286B2 (en) | Chip resistor and manufacturing method of chip resistor | |
JP3953325B2 (en) | Chip resistor and manufacturing method thereof | |
WO2022190879A1 (en) | Mounting structure for chip component | |
WO2021261504A1 (en) | Resistor | |
WO2022180979A1 (en) | Chip resistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13871124 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13871124 Country of ref document: EP Kind code of ref document: A1 |