Nothing Special   »   [go: up one dir, main page]

WO2014103231A1 - Mach-zehnder optical modulator, optical communication system, and control method for mach-zehnder optical modulator - Google Patents

Mach-zehnder optical modulator, optical communication system, and control method for mach-zehnder optical modulator Download PDF

Info

Publication number
WO2014103231A1
WO2014103231A1 PCT/JP2013/007363 JP2013007363W WO2014103231A1 WO 2014103231 A1 WO2014103231 A1 WO 2014103231A1 JP 2013007363 W JP2013007363 W JP 2013007363W WO 2014103231 A1 WO2014103231 A1 WO 2014103231A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mach
waveguides
input
light
Prior art date
Application number
PCT/JP2013/007363
Other languages
French (fr)
Japanese (ja)
Inventor
峰斗 佐藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014554116A priority Critical patent/JPWO2014103231A1/en
Publication of WO2014103231A1 publication Critical patent/WO2014103231A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Definitions

  • the present invention relates to a Mach-Zehnder optical modulator, an optical communication system, and a control method for the Mach-Zehnder optical modulator.
  • the band of the element is an important factor.
  • an optical element for example, an optical modulator
  • the band is limited mainly due to the CR time constant limitation due to the influence of the resistance component R and the capacitance C of the element.
  • these optical elements utilize the interaction between light and electricity, the required voltage and the capacity of the element are determined by the electric field strength and the interaction length. In general, when the interaction length is long, the electric field intensity per unit length is small, but conversely, the capacitance of the element increases. Therefore, for example, in an optical modulator, power consumption, extinction characteristics, and bandwidth are in a trade-off relationship. Therefore, in such an optical element, an eclectic design in consideration of the trade-off relationship described above has to be performed.
  • Patent Document 1 proposes a structure including a plurality of electrodes for applying a voltage for modulating one or both of input light guided through a waveguide along the waveguide. Thereby, long electrodes can be electrically separated and driven independently, and the capacitance of the element can be reduced.
  • a drive unit is provided, and the drive unit applies a voltage to each of the plurality of electrodes in accordance with an electric signal input thereto.
  • the drive unit applies a voltage to each of the plurality of electrodes in accordance with an electric signal input thereto.
  • an electric signal input to the driving unit is referred to as a driving electric signal.
  • a unit UI of 10 Gb / s is obtained from several ps which is a propagation time when propagating through a waveguide of about several hundred ⁇ m.
  • timing control in the ps order is realized by a general circuit in which a phase interpolator circuit and a D-flip flop circuit are combined, for example.
  • Patent Document 2 there is a general method for detecting a phase difference between driving electric signals input to a plurality of Mach-Zehnder type modulators in a lithium niobate (hereinafter referred to as LN) modulator. It is disclosed.
  • an electrode or element is driven with a signal on which a low-frequency signal (several kHz to MHz) having a predetermined phase is superimposed, and a component of the optical output that responds to the low-frequency signal is monitored.
  • the phase difference between the drive electrical signals input to each of the plurality of Mach-Zehnder type modulators is controlled based on the monitored result.
  • Patent Document 3 includes a Mach-Zehnder type modulator, and a Mach-Zehnder so that the monitor light at a position away from the spectrum center wavelength of the CS-RZ (Carrier-suppressed Return-to-Zero) signal light by a predetermined frequency is minimized.
  • the phase shift between the signals of the drive system input to each type modulator is controlled.
  • the related technique has a problem that the timing between a plurality of drive electric signals cannot be controlled with high accuracy.
  • the method described in Patent Document 2 only a slow change due to a temperature change or a change with time of a component can be detected. For this reason, the timing between a plurality of drive electric signals cannot be controlled with an accuracy within a range of several ps to 100 ps.
  • the method described in Patent Document 3 uses a phenomenon peculiar to the CS-RZ modulation method and cannot be applied to timing control between a plurality of drive electric signals in the electrode division structure.
  • An object of the present invention is to provide a Mach-Zehnder type optical modulator, an optical communication system, and a control method for the Mach-Zehnder type optical modulator that control timing between a plurality of drive electric signals with higher accuracy.
  • a Mach-Zehnder optical modulator includes a demultiplexing unit that demultiplexes input light, first and second waveguides that guide each demultiplexed input light, and first and second waveguides.
  • Multiplexing means for multiplexing and outputting each input light guided through the waveguide, a signal generation circuit for generating a signal, and one of the first and second waveguides for modulating the input light according to the signal Alternatively, a plurality of electrodes arranged along both sides, a driving unit that applies a signal to each of the plurality of electrodes according to a signal generated by the signal generation circuit, and an intensity of output light output from the multiplexing unit are detected. Detection means, and control means for controlling the timing of applying the signal to each of the plurality of electrodes based on the intensity of the output light detected by the detection means.
  • the method for controlling a Mach-Zehnder optical modulator demultiplexes input light, guides each input light demultiplexed by the first and second waveguides, and first and second waveguides.
  • Each of the input light guided by the first and second waveguides is combined and output as output light, and the first and second waveguides are guided by a plurality of electrodes provided along one or both of the first and second waveguides.
  • a voltage for modulating one or both of the input lights to be waved is applied, and the timing of applying a signal to each of the plurality of electrodes is controlled according to the intensity of the output light.
  • An optical communication system includes an optical transmitter that outputs an optical signal modulated by a Mach-Zehnder optical modulator, a transmission path through which the optical signal propagates, and an optical receiver that receives a previous signal via the transmission path
  • the Mach-Zehnder optical modulator includes: a demultiplexing unit that demultiplexes the input light; first and second waveguides that guide the demultiplexed input light; and the first and second waveguides Multiplexing means for multiplexing and outputting each input light guided through the waveguide, a signal generation circuit for generating a signal, and the first and second waveguides for modulating the input light according to the signal
  • a plurality of electrodes arranged along one or both, a driving means for applying a signal to each of the plurality of electrodes according to a signal generated by the signal generation circuit, and detecting the intensity of output light output from the multiplexing means Based on the intensity of the output light detected by the detection means detected by the detection means.
  • a control means for controlling the timing of applying
  • a Mach-Zehnder type optical modulator includes a demultiplexing unit that demultiplexes input light into two, first and second waveguides that guide the demultiplexed input light, and first and second waveguides.
  • a multiplexing means for multiplexing and outputting each input light guided through two waveguides, and a voltage for modulating one or both of the respective input lights guided through the first and second waveguides
  • Driving means for applying a predetermined voltage to the electrodes connected to the electrodes according to a plurality of electrical signals, and timing for inputting a plurality of signals to the driving means based on the intensity of the output light detected by the detecting means
  • control means for controlling.
  • the input light is demultiplexed into two, the input light demultiplexed by the first and second waveguides is guided, and the first and second The first and second waveguides are combined by the electrodes provided along one or both of the first and second waveguides.
  • a voltage for modulating one or both of the input lights that are guided in the light is applied, and the timing at which at least one of a plurality of signals applied to the electrodes is applied to the electrodes according to the intensity of the output light is controlled. .
  • the present invention it is possible to provide a Mach-Zehnder optical modulator, an optical communication system, and a control method for the Mach-Zehnder optical modulator that control timings between a plurality of drive electrical signals with higher accuracy.
  • FIG. 6 is a constellation diagram illustrating a relationship between a phase difference in a state where a plurality of drive electrical signals are in phase and output light amplitude.
  • FIG. 6 is a constellation diagram illustrating a relationship between a phase difference in a state where a plurality of drive electric signals are out of phase and output light amplitude. It is a figure which shows the relationship between a drive electrical signal and the intensity
  • 3 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the first embodiment. It is a figure which shows the example of a pattern of a drive electrical signal.
  • FIG. 3 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the first embodiment. It is a figure which shows the example of a pattern of a drive electrical signal.
  • 5 is a diagram showing the relationship between the time average of output light intensity and the phase difference between driving electric signals for each signal type when the delay time is 0 to 2T baud .
  • the delay time is 0 ⁇ 0.5 T baud
  • the relationship between the phase difference between the time average and the driving electric signal of the output light intensity is a diagram illustrating each type of signal.
  • 6 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the second embodiment. It is a functional block diagram showing a Mach-Zehnder type optical modulator according to a third embodiment. 10 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the third embodiment.
  • FIG. 10 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the third embodiment. It is a functional block diagram showing a Mach-Zehnder type optical modulator according to a fourth embodiment. It is a flowchart which shows operation
  • FIG. 10 is a functional block diagram illustrating a Mach-Zehnder optical modulator according to a fifth embodiment. 5 is a diagram for explaining a control method of a Mach-Zehnder optical modulator 4000. FIG. 5 is a diagram for explaining an example of a control method of a Mach-Zehnder optical modulator 4000.
  • FIG. 5 is a diagram for explaining an example of a control method of a Mach-Zehnder optical modulator 4000.
  • FIG. It is a functional block diagram which shows the optical transmitter which concerns on 6th Embodiment. It is a functional block diagram which shows the optical communication system which concerns on 7th Embodiment.
  • a Mach-Zehnder optical modulator 1000 according to the first embodiment shown in FIG. 1 includes a modulation unit 100, a branching unit 200, a detection unit 300, drive units 401 and 402, a control unit 500, and a signal generation circuit. 600.
  • the modulation unit 100 further includes a demultiplexing unit 110, a plurality of electrodes 121 and 122, a multiplexing unit 130, and waveguides 141 and 142.
  • the demultiplexing unit 110 demultiplexes the input light.
  • the demultiplexing unit 110 branches light introduced from the outside, and gives a predetermined phase difference to the other light with respect to the branched light.
  • the demultiplexing unit 110 is connected to the waveguides 141 and 142, one light output from the demultiplexing unit 110 is introduced into the waveguide 141, and the other light is introduced into the waveguide 142.
  • the predetermined phase difference can be set to ⁇ / 2, for example.
  • the demultiplexing unit 110 can be realized by, for example, an MMI (Multi-Mode Interference). Alternatively, it can be realized with a Y branch.
  • MMI Multi-Mode Interference
  • the waveguides 141 and 142 guide the light introduced from the demultiplexing unit 110 to the multiplexing unit 130.
  • the electrodes 121 and 122 are disposed along one or both of the first and second waveguides 141 and 142 in order to modulate the input light according to the signal generated by the signal generation circuit 600.
  • the electrodes 121 and 122 are connected to the corresponding drive units 401 and 402, respectively, and the waveguides 141 and 142 are input according to the drive electric signal input when the input light passes through the vicinity of the electrodes 121 and 122, respectively. Apply voltage to As a result, the refractive indexes of the waveguides 141 and 142 change, and the phase of the input light passing therethrough is modulated.
  • the electrodes are described as two electrodes 121 and 122, but the number of electrodes may be three or more.
  • the multiplexing unit 130 multiplexes and outputs each input light guided through the first and second waveguides 141 and 142.
  • the multiplexing unit 130 introduces two lights, and gives a predetermined phase difference to the other light with respect to one of the introduced lights. Next, the one light and the other light are combined, and the combined light is output to the outside.
  • the multiplexing unit 130 has its input connected to the waveguides 141 and 142 and its output connected to the branching unit 200. Then, the light guided through the waveguide 141 is introduced into the multiplexing unit 130 as one light, and the light guided through the waveguide 142 is introduced into the multiplexing unit 130 as the other light.
  • the predetermined phase difference can be set to ⁇ / 2, for example.
  • the predetermined phase difference in the demultiplexing unit 110 and the multiplexing unit 130 is not limited to ⁇ / 2.
  • the multiplexing unit 130 can be realized by, for example, an MMI (Multi-Mode Interface).
  • the branching unit 200 is connected to the output of the multiplexing unit 130 and branches the light output from the multiplexing unit 130 into two. Then, the branching unit 200 outputs one of the branched lights to the detection unit 300 and the other to the outside.
  • the branch unit 200 can be realized by an MMI, a Y branch, a directional coupler, or the like. However, the Mach-Zehnder optical modulator 1000 does not necessarily include the branching unit 200.
  • the detection unit 300 detects the intensity of the output light output from the multiplexing unit 130.
  • the detection unit 300 has an input connected to the output of the branch unit 200 and an output connected to the control unit 500. Then, the detection unit 300 detects one intensity of the light branched by the branch unit 200. Next, the detection unit 300 converts the detected light intensity into an electric signal, and outputs the converted electric signal to the control unit 500.
  • the detection unit 300 can be realized by, for example, a PD (Photo Detector) and an ADC (Analog-to-Digital Converter). In this case, the light into which the PD is introduced is converted into an electric signal, and the converted electric signal is input to the ADC.
  • the ADC converts the amplitude of the input electrical signal into a digital signal, and outputs the converted digital signal to the control unit 500.
  • the output of the signal generation circuit 600 is connected to the drive unit 401 and the control unit 500.
  • the signal generation circuit 600 receives an external input signal (not shown) and generates a drive electric signal in accordance with the input signal. Next, the generated drive electric signal is output to the drive unit 401 and the control unit 500.
  • the input of the control unit 500 is connected to the detection unit 300 and the signal generation circuit 600, and the output is connected to the drive unit 402. Then, the control unit 500 controls the timing of applying a signal to each of the plurality of electrodes 121 and 122 based on the intensity of the signal light detected by the detection unit 300.
  • FIG. 1 shows an example in which the timing at which a signal is applied to each of the plurality of electrodes 121 and 122 is controlled by controlling the timing at which a plurality of drive electrical signals are input to each of the plurality of drive units 401 and 402.
  • at least one of a plurality of drive electrical signals output from the signal generation circuit 600 is input to the control unit 500, and the control unit 500 detects the phase of the input drive electrical signal. You may make it shift according to the intensity
  • the drive units 401 and 402 are provided corresponding to the plurality of electrodes 121 and 122, respectively, and outputs thereof are connected to the plurality of electrodes 121 and 122, respectively.
  • the input of the drive unit 401 is connected to the output of the signal generation unit 600, and the input of the drive unit 402 is connected to the output of the control unit 500.
  • Each of the drive units 401 and 402 applies a signal to each of the plurality of electrodes 121 and 122 in accordance with the signal generated by the signal generation circuit 600.
  • each of the drive units 401 and 402 applies a predetermined voltage to the electrodes 121 and 122 to be connected in accordance with a drive electrical signal input from the signal generation circuit 600 and the control unit 500.
  • one drive electric signal is input to the drive unit 401, but two or more drive electric signals may be input to one drive unit.
  • the electrodes 121 and 122 can be push-pull driven by the drive electric signal. In this way, the electrodes 121 and 122 change the electric field strength of a part of the waveguides 141 and 142.
  • the configuration of the Mach-Zehnder optical modulator 1000 has been described above.
  • the operation of the Mach-Zehnder optical modulator 1000 according to the first embodiment will be described with reference to FIG.
  • the demultiplexing unit 110 demultiplexes the input light (S1).
  • the waveguides 141 and 142 guide the demultiplexed input light (S2).
  • the combining unit 130 combines the input light guided through the waveguides 141 and 142, and outputs the combined light as output light (S3).
  • a voltage for modulating one or both of the input lights guided through the first and second waveguides is applied (S4).
  • the controller 500 controls the timing of applying a signal to each of the plurality of electrodes 121 and 122 according to the intensity of the output light (S5). For example, the control unit 500 shifts the phase of the driving electric signal input according to the intensity of the output light, and outputs the shifted driving electric signal to the driving unit 402.
  • m electrodes (m is an arbitrary integer equal to or greater than 1)
  • the total time during which light propagates between the electrode 121 and the electrode 122 is ⁇ t1
  • the driving electric signal output by the driving unit 401 is the driving electric signal SG1
  • the driving electric signal output by the driving unit 402 is the driving electric signal SG2.
  • the drive electrical signal SG2 waveform has the same phase pattern as the drive electrical signal SG1 and the phase is delayed by the delay time ⁇ t1.
  • a state where the phase difference ⁇ t between the drive electric signal (k) and the drive electric signal (k + 1) input to each electrode is equal to the propagation time ⁇ tk is referred to as a “phase-matched state”.
  • the lengths of the two electrodes 121 and 122 are equal, the drive electric signals SG1 and SG2 have the same waveform pattern, and the amplitude and offset are equal. It is assumed that the length of the electrode and the amplitude and offset of the drive electric signal are adjusted so that the amount of phase change in each of the electrodes 121 and 122 is 0 to ⁇ / 2.
  • the amount of phase change provided by the electrodes 121 and 122 that is, the entire Mach-Zehnder optical modulator 1000 is 0 to ⁇ . This is based on the principle that the phases of the light changed by the electrode 121 and the electrode 122 are added in a state where the phases of the driving electric signal SG1 and the driving electric signal SG2 are matched.
  • Push-pull drive of the drive units 401 and 402 changes the phase of light passing through the waveguides 141 and 142. That is, the symbol of light passing through the waveguide 141 moves from the first quadrant to the second quadrant in FIG. 2A. On the other hand, the symbol of light passing through the waveguide 142 moves from the fourth quadrant of FIG. 2A to the third quadrant. Due to such a phase change, the intensity and phase of the light combined by the combining unit 130 are modulated. For this reason, the symbol of the light combined by the combining unit 130 appears as a change on the I axis in FIG. 2A. That is, the modulator operates so that the symbol of the output light travels between +1 (0) and ⁇ 1 ( ⁇ ) on the I axis in accordance with the pattern of the drive electric signal.
  • FIG. 2B shows a case of 0.5 UI, that is, a 1 ⁇ 2 bit shift, so that the timing is correct for the drive electrical signals SG1 and SG2 for half of one bit. Therefore, the symbol of the output light of the multiplexing unit 130 operates so as to go back and forth between +1 (0) and ⁇ 1 ( ⁇ ) on the I axis. However, the remaining half of the time is given by the electrode 122 to the phase given by the electrode 121 because the timing at which light passes through the electrode 122 and the timing at which voltage is applied to the electrode 122 do not match. The phase is not added.
  • the timing at which the phase is given by the electrode 122 is not the moment when the phase of ⁇ / 2 is turned by the electrode 121, but by ⁇ / 4 When it comes back.
  • the phase imparted by the electrodes 121 and 122 to the light passing through the waveguide 141 is 3 ⁇ / 4 in total.
  • phase change by the electrode 122 returns to 0, the application of the phase by the electrode 121 does not return to 0. That is, since the phase of the drive electrical signal SG1 is 1 ⁇ 2 bit earlier than the phase of the drive electrical signal SG2, the phase applied by the electrode 121 is ⁇ / 4. As a result, the phase imparted by the electrodes 121 and 122 to the light passing through the waveguide 141 is ⁇ / 4 in total. In this way, symbols whose output light amplitudes are + 1 / ⁇ 2 and ⁇ 1 / ⁇ 2 are generated as errors.
  • the relationship between the drive electrical signal (voltage (V)) and the output light intensity (arbitrary unit, au: arbitrary unit) from the multiplexing unit 130 will be described with reference to FIG.
  • V voltage
  • au arbitrary unit
  • the amplitudes and offsets of the drive electric signals SG1 and SG2 were made equal, and a PRBS (Pseudorandom Binary Bit Sequence) pattern was input.
  • the baud rate is 10G
  • the phase shift between the drive electrical signal SG1 and the drive electrical signal SG2 is 0 and 0.5 UI.
  • the propagation time ⁇ t1 is set to 0 and the drive electric signal SG2 is relative to the drive electric signal SG1 (ns (ns ()) so that the correspondence between the waveforms becomes clear between the drive electric signal SG1 and the drive electric signal SG2. Nanosecond)). That is, the state in which the phase of the drive electrical signal SG2 and the phase of the drive electrical signal SG1 are in agreement is defined as the state in which the phase is in agreement, and in the state in which the phase is not in agreement, only the phase deviation from the desired state is displayed. Yes.
  • the drive electrical signal SG2 is input to the electrode 122 with a delay of ⁇ t1 from the timing shown in FIG. That is, the phase of the drive electrical signal SG2 is delayed by ⁇ t1 from the drive electrical signal SG1.
  • the Mach-Zehnder optical modulator 1000 includes a detection unit 300 that detects the intensity of output light output from the multiplexing unit 130, and a plurality of electrodes 141 and 142 based on the intensity of output light detected by the detection unit 300, respectively. And a control unit 500 that controls the timing of applying a signal to.
  • the intensity of the output light output from the multiplexing unit 130 changes even when the phase between the drive electrical signals does not match with an accuracy of 100 ps or less as shown in FIG.
  • the control unit 500 controls the timing at which a plurality of drive electrical signals are input to the plurality of drive units 401 and 402, respectively. If it is assumed that the timings of the drive electrical signals are matched, the timing shift between the signals generated from the location where the drive electrical signal is input to the drive unit to the electrode can be detected. That is, by controlling the timing at which a plurality of drive electrical signals are input to each of the plurality of drive units based on the light intensity detected by the detection unit 300, an electrical propagation delay corresponding to the path from the drive unit to the electrode is included. Thus, the timing between the plurality of drive electrical signals corresponding to each of the plurality of electrodes can be controlled.
  • One of the plurality of drive electric signals is input to the control unit 500, but this is not the only case.
  • Two or more driving electric signals may be input to the controller 500.
  • the control unit 500 performs control based on the detected light intensity when two or more input drive electric signals are input to the drive unit 402. For example, the phase of each of the two or more drive electric signals input to the control unit 500 is shifted based on the output light intensity, and then the shifted drive electric signal is output to the drive unit 402.
  • the case of two electrodes has been described. However, three or more electrodes may be provided. In that case, a plurality of drive units connected to each of the plurality of electrodes are also provided.
  • the configuration of the Mach-Zehnder optical modulator according to the second embodiment is the configuration described in the first embodiment shown in FIG. 1, and the operations of the signal generation circuit and the control unit are different from those of the first embodiment.
  • the second embodiment will be described with reference to FIG.
  • the signal generation circuit 600 receives a predetermined bit string (not shown) and generates a plurality of drive electric signals corresponding to the input predetermined bit string.
  • control unit 500 controls the timing at which the drive electrical signal is input to the drive unit 402 so that the time average of the light intensity detected by the detection unit 300 is maximized.
  • control of the control unit 500 will be described in detail.
  • FIG. 5 shows an example of the time change of the amplitude of the drive electric signal.
  • the data pattern in FIG. 5 is 1000, patterns such as 1100, 1010, and 1110 can be expressed.
  • FIGS. 6A and 6B show the relationship between the time average of the output light intensity from the multiplexing unit 130 detected by the detection unit 300 and the phase difference between the phase of the drive electrical signal SG1 and the phase of the drive electrical signal SG2.
  • 1000, 1010, and PRBS which are characterized by changes in the intensity of output light
  • the output light intensity (au) sampled at about 533 MHz, which is 1/10 or less with respect to a data baud rate of 10 GHz is plotted on the vertical axis.
  • the output light intensity which the detection part 300 detects is a time average.
  • 6A and 6B show the difference (hereinafter referred to as delay time) from the ideal phase difference of the drive electrical signal SG2 with respect to the drive electrical signal SG1.
  • delay time the difference between the phase of the drive electrical signal SG1 and the phase of the drive electrical signal SG2, that is, the delay time of the drive electrical signal SG2 with respect to the drive electrical signal SG1 is the same as the light propagation time.
  • the time average of the output light intensity from the multiplexing unit 130 detected by the detection unit 300 decreases monotonously as the delay time increases for each signal pattern. I understand that. However, when the delay time exceeds 1T baud , the time average of the output light intensity detected by the detection unit 300 first converges to about 1 ⁇ 2 when the phase is matched in 1000 patterns.
  • the drive electrical signal input to the drive unit in 1000 patterns is 1100 when the timings of the drive electrical signal SG1 and the drive electrical signal SG2 are shifted by 1T baud .
  • the drive electric signal input to the drive unit is 1010.
  • the probability of occurrence of 1 and 0 in the drive electric signal is halved.
  • the time average of the output light intensity is about 1 ⁇ 2 of the intensity when the phase is matched.
  • PRBS has patterns of various lengths, the appearance probability of 1 and 0 varies in the vicinity of 1 ⁇ 2.
  • the pattern 1010 is shifted by 1T baud , the relationship between the drive electric signals SG1 and SG2 is completely in phase. For this reason, the intensity of the output light from the multiplexing unit 130 becomes 0, and returns to the original intensity when shifted by 1T baud .
  • the control unit 500 controls the timing at which a plurality of drive electrical signals are input to the drive unit 402 so that the time average of the light intensity detected by the detection unit 300 is maximized.
  • the timing between the drive electric signals SG1 and SG2 can be an ideal phase difference.
  • the control unit 500 may shift the phase of the drive electrical signal input and output the phase-shifted drive electrical signal to the drive unit 402.
  • FIG. 6B also shows the relationship between the time average of the output light intensity from the multiplexing unit 130 detected by the detection unit 300 and the phase difference between the phase of the drive electrical signal SG1 and the phase of the drive electrical signal SG2.
  • the difference (delay time) from the ideal phase difference of SG2 is shifted by ⁇ 0.5T baud in the vicinity of 0 with respect to the drive electrical signal SG1.
  • the 1010 pattern has a greater attenuation of light intensity with respect to the delay time than the 1000 pattern and the PRBS pattern.
  • the 1010 pattern includes many frequency components with the fastest speed, and is highly sensitive to a difference from an ideal phase difference. For this reason, the delay time corresponding to a minute change in output light intensity is the smallest in 1010 patterns. That is, the change in the output light intensity with respect to the change in the delay time at 1010 as the predetermined bit string is large.
  • the control unit 500 can control the difference between the ideal phase difference related to the drive electrical signal SG2 with respect to the drive electrical signal SG1 and the current phase difference with high accuracy.
  • bit string including a lower frequency component than 1010 can be used as the bit string.
  • the change in the delay time corresponding to the change in the output light intensity is relatively large.
  • the dynamic range of the phase difference between the drive electrical signals SG1 and SG2 that can be controlled by the control unit 500 is increased by using a bit string including a low frequency component.
  • Examples of a bit string including a low frequency component include PRBS having a mark ratio of about 1/2 and 1000 patterns.
  • the waveform is merely an example of the waveform, and the drive electric signal waveform applicable to the present embodiment is not limited to this.
  • the operation of the Mach-Zehnder optical modulator 1000 according to the second embodiment will be described with reference to FIG. The description of the same operation as that of the Mach-Zehnder optical modulator 1000 according to the first embodiment is omitted.
  • the operation up to applying a voltage for modulating one or both of the input lights guided through the first and second waveguides (S4) is the same.
  • the timing of applying a signal to each of the plurality of electrodes is controlled so that the time average of the intensity of the output light is maximized (S6).
  • the signal applied to each of the plurality of electrodes may be a signal in which a signal having a predetermined amplitude and a signal having an amplitude higher than the predetermined amplitude are alternately repeated.
  • the timing at which the control unit 500 inputs a plurality of drive electric signals to each of the plurality of drive units is controlled so that the time average of the intensity of the output light from the multiplexing unit 130 detected by the detection unit 300 is maximized.
  • This makes it possible to make the timing between the drive electrical signals SG1 and SG2 equal to the light propagation time. As a result, a high-speed and large-scale detection device such as a high-speed oscilloscope is not required.
  • the drive electric signal can be a signal that alternately repeats a signal having a predetermined amplitude and a signal having a higher amplitude than the predetermined amplitude.
  • a Mach-Zehnder optical modulator 2000 according to the third embodiment shown in FIG. 8 is different from the Mach-Zehnder optical modulator 1000 according to the second embodiment in that it further includes a switching unit 700.
  • the first driving electric signal is a driving electric signal corresponding to PRBS having a predetermined bit string of 1000 or a mark ratio of 1/2
  • the second driving electric signal is a driving electric signal corresponding to a predetermined bit string of 1010.
  • the switching unit 700 switches the drive electrical signal output from the signal generation circuit 600.
  • the switching unit 700 controls the signal generation circuit 600 to switch the drive electrical signal output from the signal generation circuit 600 to either the first drive electrical signal or the second drive electrical signal. Can do.
  • the switching unit 700 switches the signal input to the plurality of electrodes 121 and 122 to a voltage corresponding to one of the first driving electric signal and the second driving electric signal.
  • the control unit 500 controls the timing of applying a signal to each of the plurality of electrodes 121 and 122 according to the intensity of the output light (S5) is the same as that of the Mach-Zehnder optical modulator 1000 according to the first embodiment. It is. Thereafter, the control unit 500 controls the timing of applying the signal to each of the plurality of electrodes 121 and 122 using a signal that includes a higher frequency component than the signal (S7).
  • S4, S5, and S7 in FIG. 9 will be described in more detail with reference to FIG.
  • the switching unit 700 controls the signal generation circuit 600 based on the time average of the intensity of the output light from the multiplexing unit 130 detected by the detection unit 300
  • the signal generation circuit 600 outputs the first drive electric signal (S8).
  • the controller 500 controls the timing of applying signals to each of the plurality of electrodes 121 and 122 according to the intensity of the output light (S9).
  • the switching unit 700 switches the drive electrical signal output from the signal generation circuit 600 to the second drive electrical signal (S10). It is desirable to switch the drive electrical signal output from the signal generation circuit 600 to the second drive electrical signal in accordance with the time average of the intensity of the output light from the multiplexing unit 130 detected by the detection unit 300.
  • a threshold is set in advance for the time average of the intensity of the output light, and when the time average of the intensity of the output light detected by the detection unit 300 exceeds the threshold, the switching unit 700 switches the drive electrical signal. be able to.
  • the threshold value may be determined as 75% of the maximum intensity, for example.
  • the control unit 500 controls the timing of applying a signal to each of the plurality of electrodes 121 and 122 according to the intensity of the output light (S11).
  • the signal generation circuit 600 outputs the second driving electric signal, whereby the timing between the driving electric signals can be controlled with high accuracy. Further, when the signal generation circuit 600 outputs the first drive electric signal, the dynamic range of the phase difference between the drive electric signals that can be controlled can be increased.
  • the Mach-Zehnder optical modulator 2000 according to the third embodiment includes a switching unit 700 that switches the drive electric signal output from the signal generation circuit 600 based on the time average of the intensity of the output light detected by the detection unit 300. Thus, it is possible to perform control according to the phase difference between the drive electrical signals in consideration of the advantages of using the first drive electrical signal and using the second drive electrical signal.
  • the phase difference between the driving electric signals is roughly set by using the first driving electric signal, and then the set phase difference is set.
  • the phase difference between the drive electric signals SG1 and SG2 can be set quickly.
  • the Mach-Zehnder type optical modulator 3000 includes a pair of Mach-Zehnder type interferometers, and includes an electrode 150 and a drive unit 800. Different from the vessel 1000.
  • the signal generation circuit 600 receives a predetermined bit string (not shown) and outputs a plurality of drive electric signals corresponding to the predetermined bit string to the drive unit 800 and the control unit 500.
  • the electrode 150 applies a voltage for modulating one or both of the input light guided through the waveguides 141 and 142.
  • a plurality of electrodes 150 may be provided along the waveguides 141 and 142 as in the Mach-Zehnder type optical modulator 1000, but in the present embodiment, it will be described as one for convenience.
  • the drive unit 800 is connected to the electrode 150 and the signal generation circuit 600, and a drive electric signal from the signal generation circuit 600 is input thereto. Then, a predetermined voltage is applied to the electrode 150 connected in accordance with the drive electric signal output from the signal generation circuit 600.
  • the phase change is applied to the electrodes 121 and 122, whereas in the Mach-Zehnder optical modulator 3000, a plurality of drive electric signals are added by the drive unit 800.
  • the driving unit 800 applies a voltage corresponding to the added driving electric signal to the electrode 150.
  • the input of the control unit 500 is connected to the detection unit 300 and the signal generation circuit 600, and the output of the control unit 500 is connected to the drive unit 800. Then, the control unit 500 controls the timing of inputting a plurality of drive electric signals to the drive unit 800 based on the intensity of the signal light detected by the detection unit 300.
  • the demultiplexing unit 110 demultiplexes the input light into two (S21).
  • the waveguides 141 and 142 guide the demultiplexed input light (S22).
  • the combining unit 130 combines the input light guided through the waveguides 141 and 142, and outputs the combined light as output light (S23).
  • a voltage for modulating one or both of the input lights guided through the first and second waveguides is applied (S24).
  • the controller 500 controls the timing of applying at least one signal among the plurality of signals applied to the electrode 150 according to the intensity of the output light (S25).
  • the control unit 500 drives at least one signal among a plurality of drive electric signals input to the drive unit 800 based on the intensity of the output light detected by the detection unit 300.
  • the timing input to the unit 800 it is possible to adjust the deviation of the other driving electrical signal from the ideal timing with respect to one driving electrical signal.
  • the control unit 500 controls the timing at which at least one of the plurality of drive electric signals is input to the drive unit 800 based on the light intensity detected by the detection unit 300, so that the drive unit It is possible to control the timing between the drive electrical signals so as to compensate for the delay caused by up to 800 electrical wirings and circuits.
  • FIG. 13 is a block diagram schematically illustrating a configuration of an optical modulator 4000 according to the fifth embodiment.
  • the Mach-Zehnder type optical modulator 4000 includes a demultiplexing unit 110, waveguides 141 and 142, m (m is an integer of 2 or more) electrodes 161, electrodes 162,. A wave portion 130 is included. Further, the Mach-Zehnder optical modulator 4000 includes a branching unit 200, detection units 300, m ⁇ n control units 5011, 5012,... 501n, 5021, 5022,. 502n, 50m1, 50m2, ..., 50mn, a signal generation circuit 600, m drive units 801, 802, ... 80m.
  • the description of the same configuration as the Mach-Zehnder optical modulator 1000 is omitted.
  • electrodes 161, electrodes 162,..., 16 m are provided along the waveguides 141 and 142. These electrodes apply a voltage for modulating one or both of the input lights guided through the waveguides 141 and 142.
  • Each of the n control units 5011, 5012,..., 501n has an input connected to the signal generation circuit 600 and an output connected to the drive unit 801.
  • the control units 5011, 5012,..., 501n each receive the drive electric signal output from the signal generation circuit 600, and drive a plurality of drive electric signals based on the light intensity detected by the detection unit 300.
  • the timing input to the unit 801 is controlled.
  • the drive electric signal whose timing is controlled is output to the connected drive unit 801.
  • the other control units (m ⁇ 1) ⁇ n are the same as the control units 5011, 5012,.
  • the control unit 500 shifts the phase of the drive electrical signal and outputs the drive electrical signal with the phase shifted to the drive unit 801.
  • the number of drive electric signals input to each of the drive units 801, 802,..., 80m may be different for each drive unit.
  • the number of control units can be changed in accordance with the number of drive electrical signals.
  • the drive unit 801 is connected to the signal generation circuit 600 and the control units 5011, 5012, ..., 501n.
  • the drive unit 801 multiplexes a plurality of drive electrical signals input from the signal generation circuit 600 and the control units 5011, 5012,..., 501n, and a voltage corresponding to the multiplexed drive electrical signal is applied to the electrode 161. Apply.
  • the operations of the other m ⁇ 1 drive units 802,..., 80m are the same as those of the drive unit 801.
  • the signal generation circuit 600 includes drive units 801, 802,..., 80m and m ⁇ n control units 5011, 5012,... 501n, 5021, 5021,. ..Up to m ⁇ n driving electric signals are supplied to 50 mn.
  • the number of electrodes and the number of drive electric signals to be multiplexed are generalized, but the same applies to the number of Mach-Zehnder optical modulators.
  • the present invention can be applied even when two sets of Mach-Zehnder optical modulators known as general IQ modulator configurations are provided.
  • the principle described in the first to fourth embodiments is similarly established between any two signals, and any two Phase adjustment between two signals is possible.
  • FIG. 14 illustrates a method for controlling the Mach-Zehnder optical modulator 4000.
  • the following two examples will be described.
  • the “A. Sequential detection” method shown in FIG. 14 will be described.
  • the timing of one of the drive electrical signals input to the drive unit 801 among the maximum of m ⁇ n drive electrical signals composed of m electrodes and n drive electrical signals is used as a reference.
  • m ⁇ n control units 5011, 5012,... 501n, 5021, 5022,... 502n,..., 50m1, ... 50mn are one of drive electric signals input to the drive unit 801.
  • a deviation from an ideal phase difference with respect to this reference is sequentially detected, and an optimum delay time is set.
  • the operation of setting the delay time is the same as that of the Mach-Zehnder type optical modulator 1000.
  • FIG. 15 This is shown in a graph in which the horizontal axis of FIG. 15 is the electrode number of the Mach-Zehnder optical modulator 4000 and the vertical axis is the propagation delay time (ps (picosecond)) from the reference timing.
  • ps picosecond
  • m 7.
  • the timing at which the voltage corresponding to the drive electrical signal is applied to each of the plurality of electrodes 161, electrodes 162,... 167 can be matched to the light propagation delay time in order.
  • the example in which the drive electric signal is applied in order from the electrode with the smallest electrode number is described according to an example in which the timing is matched with the light propagation delay time, but the present invention is not limited to this.
  • the timing at which the drive electrical signal is input to the drive unit can be matched with the light propagation delay time from any source other than the reference drive electrical signal.
  • one of the drive electric signals applied to the electrodes provided on the most downstream side in the light traveling direction along the waveguides 141 and 142 is defined as a drive electric signal SG in FIG.
  • any one of the control units 50m1, 50m2,..., 50mn corresponding to the drive electrical signal SG controls the phase of the drive electrical signal SG.
  • the delay time with respect to the reference corresponding to each of the plurality of electrodes sandwiched between the two points is calculated, and each drive electric signal is driven by the drive unit.
  • the input timing is set. This is shown in a graph in which the horizontal axis of FIG.
  • ps propagation delay time
  • m 7.
  • the timing of the drive electrical signal input to the drive unit 801 is used as a reference, and the timing of the drive electrical signal SG input to the drive unit 807 is linearly interpolated.
  • This method has the advantage that the detection of the phase shift can be performed only once and the error generated by each detection is included only twice compared with the method of “A. Sequential detection” described above.
  • the optical transmitter 10000 includes a light source 5000 and a Mach-Zehnder optical modulator 6000.
  • the light source 5000 outputs continuous light.
  • the Mach-Zehnder optical modulator 6000 is connected to the light source 5000, and continuous light from the light source 5000 is introduced.
  • the Mach-Zehnder optical modulator 6000 is any one of the Mach-Zehnder optical modulators 1000, 2000, 3000, and 4000.
  • the light source 5000 outputs continuous light.
  • the Mach-Zehnder type optical modulator 6000 continuous light output from the light source 5000 is introduced as input light.
  • the Mach-Zehnder type optical modulator 6000 modulates the intensity or phase of the input light and outputs the modulated light to the outside.
  • Mach-Zehnder type optical modulator 6000 there is one Mach-Zehnder type optical modulator 6000 has been described, but two or more Mach-Zehnder type optical modulators 6000 can be provided, and a plurality of them can be connected in a nested manner.
  • FIG. 18 shows a configuration of an optical communication system according to the seventh embodiment.
  • the optical communication system includes an optical transmitter 10000, an optical receiver 20000, an optical fiber 30000 serving as a transmission path, an optical amplifier 40000a, and an optical amplifier 40000b.
  • the optical transmitter 10000 includes any one of the Mach-Zehnder type optical modulators 1000, 2000, 3000, and 4000, and is, for example, four-phase shift keying (Quadrature Phase Shift Keying: hereinafter referred to as QPSK) as an optical signal.
  • QPSK Quadrature Phase Shift Keying
  • An optical fiber 30000 is optically connected between the optical transmitter 10000 and the optical receiver 20000.
  • An optical amplifier 40000a and an optical amplifier 40000b are inserted into the optical fiber 30000 to amplify the propagating optical signal.
  • the optical receiver 20000 demodulates the optical signal into an electrical signal.
  • the optical transmission / reception system can transmit an optical signal using the optical transmitter 10000.
  • Modulation unit 110 Demultiplexing unit 121, 122, 150, 161, 162 Electrode 130 Multiplexing unit 141, 142 Waveguide 200 Branching unit 300 Detection unit 401, 402, 800, 801, 802 Drive unit 500, 5011, 5012, 5021 , 5022 control unit 600 signal generation circuit 700 switching unit 1000, 2000, 3000, 4000, 6000 Mach-Zehnder type optical modulator 5000 light source 10,000 optical transmitter 20000 optical receiver 30000 fiber 40000a, 40000b optical amplifier

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Timing among a plurality of electrical drive signals cannot be controlled with higher precision; therefore, this Mach-Zehnder optical modulator has: a splitting means for splitting light that is input; first and second waveguides that guide the waves of each split input light; a multiplexing means for multiplexing and outputting each input light that has been guided in the first and second waveguides; a signal generating circuit for generating a signal for transmission; a plurality of electrodes disposed along either or both of the first and second waveguides for modulating the input light according to the signal; a drive means that applies the signal to each of the plurality of electrodes according to the signal generated by the signal generating circuit; a detection means for detecting the intensity of output light that the multiplexing means outputs; and a control means for controlling the timing for applying the signal to each of the plurality of electrodes on the basis of the intensity of the output light detected by the detection means.

Description

マッハツェンダ型光変調器、光通信システム及びマッハツェンダ型光変調器の制御方法Mach-Zehnder optical modulator, optical communication system, and control method for Mach-Zehnder optical modulator
本発明はマッハツェンダ型光変調器、光通信システム及びマッハツェンダ型光変調器の制御方法に関する。 The present invention relates to a Mach-Zehnder optical modulator, an optical communication system, and a control method for the Mach-Zehnder optical modulator.
インターネットや映像配信等の広帯域マルチメディア通信サービスの需要が爆発的に増加している。これに伴い、幹線系やメトロ系では、より長距離伝送が可能で、より大容量かつ高信頼な高密度波長多重光ファイバ通信システムの導入が進んでいる。こうした光ファイバを使用した通信システムでは、光ファイバ1本当たりの伝送帯域利用効率を高めることが求められる。光ファイバ1本当たりの伝送帯域利用効率を高めるためには、データのシンボル周波数を大きくするか、多値数を大きくする必要がある。 The demand for broadband multimedia communication services such as the Internet and video distribution has increased explosively. Along with this, the introduction of high-density, wavelength-multiplexed optical fiber communication systems capable of longer-distance transmission, higher capacity, and higher reliability in the trunk line system and the metro system has been advanced. In a communication system using such an optical fiber, it is required to increase the transmission band utilization efficiency per optical fiber. In order to increase the transmission band utilization efficiency per optical fiber, it is necessary to increase the data symbol frequency or increase the multi-value number.
データのシンボル周波数を大きくして動作させるためには、素子の帯域が重要な要素となる。光ファイバ通信システムで一般的に用いられる光素子(例えば、光変調器)を例とすると、主に抵抗成分Rと素子の容量Cの影響によるCR時定数制限のために、帯域が制限される。これらの光素子は光と電気の相互作用を利用しているため、電界強度と相互作用長によって必要な電圧と素子の容量が決まる。一般に相互作用長が長ければ、単位長さ当りの電界強度は少なくて済むが、逆に素子の容量は増加する。そのため例えば光変調器では、消費電力及び消光特性と帯域とがトレ-ドオフの関係となる。よってこのような光素子では上述のトレードオフの関係を考慮した折衷的な設計を行わざるを得なかった。 In order to operate with the data symbol frequency increased, the band of the element is an important factor. Taking an optical element (for example, an optical modulator) generally used in an optical fiber communication system as an example, the band is limited mainly due to the CR time constant limitation due to the influence of the resistance component R and the capacitance C of the element. . Since these optical elements utilize the interaction between light and electricity, the required voltage and the capacity of the element are determined by the electric field strength and the interaction length. In general, when the interaction length is long, the electric field intensity per unit length is small, but conversely, the capacitance of the element increases. Therefore, for example, in an optical modulator, power consumption, extinction characteristics, and bandwidth are in a trade-off relationship. Therefore, in such an optical element, an eclectic design in consideration of the trade-off relationship described above has to be performed.
これに対し上記トレードオフの関係を解決する手法が提案されている。例えば特許文献1では導波路を導波する入力光の一方または双方を変調するための電圧を印加するための電極を、導波路に沿って複数備える構造が提案されている。これにより長い電極を電気的に分離して独立に駆動し、素子の容量を減らすことができる。 On the other hand, a method for solving the trade-off relationship has been proposed. For example, Patent Document 1 proposes a structure including a plurality of electrodes for applying a voltage for modulating one or both of input light guided through a waveguide along the waveguide. Thereby, long electrodes can be electrically separated and driven independently, and the capacitance of the element can be reduced.
このような電極分割構造では駆動部が備えられ、駆動部が入力される電気信号に応じて複数の電極それぞれに電圧を印加する。ここで複数の電極それぞれに電圧が印加されるタイミングを適切に合わせるために、複数の電気信号それぞれが駆動部に入力されるタイミングを高精度に制御する必要がある。以下簡便のために、駆動部に入力される電気信号を駆動電気信号と呼ぶ。 In such an electrode division structure, a drive unit is provided, and the drive unit applies a voltage to each of the plurality of electrodes in accordance with an electric signal input thereto. Here, in order to appropriately match the timing at which the voltage is applied to each of the plurality of electrodes, it is necessary to control the timing at which each of the plurality of electrical signals is input to the driving unit with high accuracy. Hereinafter, for the sake of simplicity, an electric signal input to the driving unit is referred to as a driving electric signal.
例えば数100μm程度の間隔の電極分割構造により10Gb/s程度の変調信号を出力する場合、数100μm程度の導波路を伝搬する際の伝搬時間である数psから、10Gb/sの1UI(Unit Interval)である100ps以下の範囲で、複数の電気信号それぞれが駆動部に入力されるタイミングを制御する必要がある。このようなpsオーダーでのタイミングの制御は、例えば位相インターポレータ回路とD-フリップフロップ回路とを組み合わせた一般的な回路により実現されている。 For example, when a modulation signal of about 10 Gb / s is output by an electrode division structure having an interval of about several hundred μm, a unit UI of 10 Gb / s is obtained from several ps which is a propagation time when propagating through a waveguide of about several hundred μm. ) Within a range of 100 ps or less, it is necessary to control the timing at which each of the plurality of electrical signals is input to the drive unit. Such timing control in the ps order is realized by a general circuit in which a phase interpolator circuit and a D-flip flop circuit are combined, for example.
特許文献2では、ニオブ酸リチウム(以下、LNと表記)変調器において、複数のマッハツェンダ(Mach-Zehnder)型変調器それぞれに入力される駆動電気信号間の位相差を検出する一般的な方法が開示されている。この方法は、所定の位相の低周波信号(数kHz~MHz)を重畳した信号で電極又は素子を駆動し、光出力のその低周波信号に応答する成分をモニターする方法である。モニターした結果により、複数のマッハツェンダ型変調器それぞれに入力される駆動電気信号間の位相差を制御している。 In Patent Document 2, there is a general method for detecting a phase difference between driving electric signals input to a plurality of Mach-Zehnder type modulators in a lithium niobate (hereinafter referred to as LN) modulator. It is disclosed. In this method, an electrode or element is driven with a signal on which a low-frequency signal (several kHz to MHz) having a predetermined phase is superimposed, and a component of the optical output that responds to the low-frequency signal is monitored. The phase difference between the drive electrical signals input to each of the plurality of Mach-Zehnder type modulators is controlled based on the monitored result.
また特許文献3ではマッハツェンダ型変調器を備え、CS-RZ(Carrier-Suppressed Return-to-Zero)信号光のスペクトル中心波長から所定の周波数離れた位置でのモニター光が最小となるように、マッハツェンダ型変調器それぞれに入力される駆動系の信号間の位相ずれを制御している。 Further, Patent Document 3 includes a Mach-Zehnder type modulator, and a Mach-Zehnder so that the monitor light at a position away from the spectrum center wavelength of the CS-RZ (Carrier-suppressed Return-to-Zero) signal light by a predetermined frequency is minimized. The phase shift between the signals of the drive system input to each type modulator is controlled.
国際公開第2011/043079号International Publication No. 2011/043079 特開2010-204689号公報JP 2010-20689 A 特開2003-279912号公報JP 2003-279912 A
しかしながら、関連する技術では高精度に複数の駆動電気信号間のタイミングを制御することができないという問題があった。特許文献2に記載の方法では構成要素の温度変化や経時変化に起因した遅い変化しか検出ができない。このため数ps~100ps以下の範囲での精度で複数の駆動電気信号間のタイミングを制御することができない。また特許文献3に記載の方法は、CS-RZ変調方式に特有の現象を用いており、電極分割構造における複数の駆動電気信号間のタイミングの制御には適用できない。 However, the related technique has a problem that the timing between a plurality of drive electric signals cannot be controlled with high accuracy. In the method described in Patent Document 2, only a slow change due to a temperature change or a change with time of a component can be detected. For this reason, the timing between a plurality of drive electric signals cannot be controlled with an accuracy within a range of several ps to 100 ps. The method described in Patent Document 3 uses a phenomenon peculiar to the CS-RZ modulation method and cannot be applied to timing control between a plurality of drive electric signals in the electrode division structure.
本発明の目的は、より高精度に複数の駆動電気信号間のタイミングを制御するマッハツェンダ型光変調器、光通信システム、及びマッハツェンダ型光変調器の制御方法を提供することである。 An object of the present invention is to provide a Mach-Zehnder type optical modulator, an optical communication system, and a control method for the Mach-Zehnder type optical modulator that control timing between a plurality of drive electric signals with higher accuracy.
本発明に係るマッハツェンダ型光変調器は、入力光を分波する分波手段と、分波された各入力光を導波する第1および第2の導波路と、第1および第2の導波路を導波した各入力光を合波して出力する合波手段と、信号を生成する信号生成回路と、信号に応じて入力光を変調するために第1および第2の導波路の一方または双方に沿って配置された複数の電極と、信号生成回路で生成された信号に応じて複数の電極それぞれに信号を印加する駆動手段と、合波手段が出力する出力光の強度を検出する検出手段と、検出手段が検出した出力光の強度に基づいて複数の電極それぞれに前記信号を印加するタイミングを制御する制御手段と、を有する。 A Mach-Zehnder optical modulator according to the present invention includes a demultiplexing unit that demultiplexes input light, first and second waveguides that guide each demultiplexed input light, and first and second waveguides. Multiplexing means for multiplexing and outputting each input light guided through the waveguide, a signal generation circuit for generating a signal, and one of the first and second waveguides for modulating the input light according to the signal Alternatively, a plurality of electrodes arranged along both sides, a driving unit that applies a signal to each of the plurality of electrodes according to a signal generated by the signal generation circuit, and an intensity of output light output from the multiplexing unit are detected. Detection means, and control means for controlling the timing of applying the signal to each of the plurality of electrodes based on the intensity of the output light detected by the detection means.
本発明に係るマッハツェンダ型光変調器の制御方法は、入力光を分波し、第1および第2の導波路により分波された各入力光を導波し、第1および第2の導波路を導波した各入力光を合波して出力光として出力し、第1および第2の導波路の一方または双方に沿って複数備えられた電極により、第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加し、出力光の強度に応じて複数の電極それぞれに信号を印加するタイミングを制御する。 The method for controlling a Mach-Zehnder optical modulator according to the present invention demultiplexes input light, guides each input light demultiplexed by the first and second waveguides, and first and second waveguides. Each of the input light guided by the first and second waveguides is combined and output as output light, and the first and second waveguides are guided by a plurality of electrodes provided along one or both of the first and second waveguides. A voltage for modulating one or both of the input lights to be waved is applied, and the timing of applying a signal to each of the plurality of electrodes is controlled according to the intensity of the output light.
本発明に係る光通信システムは、マッハツェンダ型光変調器で変調された光信号を出力する光送信器と、光信号が伝搬する伝送路と、伝送路を介して前信号を受信する光受信器と、を備え、マッハツェンダ型光変調器は、入力光を分波する分波手段と、分波された各入力光を導波する第1および第2の導波路と、第1および第2の導波路を導波した各入力光を合波して出力する合波手段と、信号を生成する信号生成回路と、信号に応じて入力光を変調するために第1および第2の導波路の一方または双方に沿って配置された複数の電極と、信号生成回路で生成された信号に応じて複数の電極それぞれに信号を印加する駆動手段と、合波手段が出力する出力光の強度を検出する検出手段と、検出手段が検出した出力光の強度に基づいて複数の電極それぞれに信号を印加するタイミングを制御する制御手段と、を有する。 An optical communication system according to the present invention includes an optical transmitter that outputs an optical signal modulated by a Mach-Zehnder optical modulator, a transmission path through which the optical signal propagates, and an optical receiver that receives a previous signal via the transmission path The Mach-Zehnder optical modulator includes: a demultiplexing unit that demultiplexes the input light; first and second waveguides that guide the demultiplexed input light; and the first and second waveguides Multiplexing means for multiplexing and outputting each input light guided through the waveguide, a signal generation circuit for generating a signal, and the first and second waveguides for modulating the input light according to the signal A plurality of electrodes arranged along one or both, a driving means for applying a signal to each of the plurality of electrodes according to a signal generated by the signal generation circuit, and detecting the intensity of output light output from the multiplexing means Based on the intensity of the output light detected by the detection means detected by the detection means. A control means for controlling the timing of applying a signal to each of the.
本発明に係るマッハツェンダ型光変調器は、入力光を2つに分波する分波手段と、分波された各入力光を導波する第1および第2の導波路と、第1および第2の導波路を導波した各入力光を合波して出力する合波手段と、第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加するための電極と、合波手段が出力する出力光を分岐する分岐手段と、分岐手段により分岐された一方の出力光の強度を検出する検出手段と、電気信号を複数生成する信号生成回路と、電極に接続され、複数の電気信号に応じて接続された電極に所定の電圧を印加する駆動手段と、検出手段が検出した出力光の強度に基づいて駆動手段に複数の信号を入力するタイミングを制御する制御手段と、を有する。 A Mach-Zehnder type optical modulator according to the present invention includes a demultiplexing unit that demultiplexes input light into two, first and second waveguides that guide the demultiplexed input light, and first and second waveguides. A multiplexing means for multiplexing and outputting each input light guided through two waveguides, and a voltage for modulating one or both of the respective input lights guided through the first and second waveguides Electrodes for branching, branching means for branching the output light output from the multiplexing means, detection means for detecting the intensity of one of the output lights branched by the branching means, and a signal generation circuit for generating a plurality of electrical signals Driving means for applying a predetermined voltage to the electrodes connected to the electrodes according to a plurality of electrical signals, and timing for inputting a plurality of signals to the driving means based on the intensity of the output light detected by the detecting means And control means for controlling.
本発明に係るマッハツェンダ型光変調器の制御方法は、入力光を2つに分波し、第1および第2の導波路により分波された各入力光を導波し、第1および第2の導波路を導波した各入力光を合波して出力光として出力し、第1および第2の導波路の一方または双方に沿って備えられた電極により、第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加し、出力光の強度に応じて電極に印加する複数の信号のうち少なくとも1つを前記電極に印加するタイミングを制御する。 According to the control method of the Mach-Zehnder optical modulator according to the present invention, the input light is demultiplexed into two, the input light demultiplexed by the first and second waveguides is guided, and the first and second The first and second waveguides are combined by the electrodes provided along one or both of the first and second waveguides. A voltage for modulating one or both of the input lights that are guided in the light is applied, and the timing at which at least one of a plurality of signals applied to the electrodes is applied to the electrodes according to the intensity of the output light is controlled. .
本発明によれば、より高精度に複数の駆動電気信号間のタイミングを制御するマッハツェンダ型光変調器、光通信システム、及びマッハツェンダ型光変調器の制御方法を提供することができる。 According to the present invention, it is possible to provide a Mach-Zehnder optical modulator, an optical communication system, and a control method for the Mach-Zehnder optical modulator that control timings between a plurality of drive electrical signals with higher accuracy.
第1の実施形態に係るマッハツェンダ型光変調器を示す機能ブロック図である。1 is a functional block diagram showing a Mach-Zehnder optical modulator according to a first embodiment. 複数の駆動電気信号間の位相が合っている状態の位相差と出力光振幅との関係を示すコンスタレーション図である。FIG. 6 is a constellation diagram illustrating a relationship between a phase difference in a state where a plurality of drive electrical signals are in phase and output light amplitude. 複数の駆動電気信号間の位相が合っていない状態の位相差と出力光振幅との関係を示すコンスタレーション図である。FIG. 6 is a constellation diagram illustrating a relationship between a phase difference in a state where a plurality of drive electric signals are out of phase and output light amplitude. 駆動電気信号と出力光の強度との関係を示す図である。It is a figure which shows the relationship between a drive electrical signal and the intensity | strength of output light. 第1の実施形態に係るマッハツェンダ型光変調器の動作を示すフローチャートである。3 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the first embodiment. 駆動電気信号のパターン例を示す図である。It is a figure which shows the example of a pattern of a drive electrical signal. 遅延時間が0~2Tbaudにおける、出力光強度の時間平均と駆動電気信号間の位相差との関係を、信号の種類ごとに示す図である。FIG. 5 is a diagram showing the relationship between the time average of output light intensity and the phase difference between driving electric signals for each signal type when the delay time is 0 to 2T baud . 遅延時間が0±0.5Tbaudにおける、出力光強度の時間平均と駆動電気信号間の位相差との関係を、信号の種類ごとに示す図である。In the delay time is 0 ± 0.5 T baud, the relationship between the phase difference between the time average and the driving electric signal of the output light intensity is a diagram illustrating each type of signal. 第2の実施形態に係るマッハツェンダ型光変調器の動作を示すフローチャートである。6 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the second embodiment. 第3の実施形態に係るマッハツェンダ型光変調器を示す機能ブロック図である。It is a functional block diagram showing a Mach-Zehnder type optical modulator according to a third embodiment. 第3の実施形態に係るマッハツェンダ型光変調器の動作を示すフローチャートである。10 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the third embodiment. 第3の実施形態に係るマッハツェンダ型光変調器の動作を示すフローチャートである。10 is a flowchart showing the operation of the Mach-Zehnder optical modulator according to the third embodiment. 第4の実施形態に係るマッハツェンダ型光変調器を示す機能ブロック図である。It is a functional block diagram showing a Mach-Zehnder type optical modulator according to a fourth embodiment. 第4の実施形態に係るマッハツェンダ型光変調器の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the Mach-Zehnder type | mold optical modulator which concerns on 4th Embodiment. 第5の実施形態に係るマッハツェンダ型光変調器を示す機能ブロック図である。FIG. 10 is a functional block diagram illustrating a Mach-Zehnder optical modulator according to a fifth embodiment. マッハツェンダ型光変調器4000の制御方法を説明する図である。5 is a diagram for explaining a control method of a Mach-Zehnder optical modulator 4000. FIG. マッハツェンダ型光変調器4000の制御方法の一例を説明する図である。5 is a diagram for explaining an example of a control method of a Mach-Zehnder optical modulator 4000. FIG. マッハツェンダ型光変調器4000の制御方法の一例を説明する図である。5 is a diagram for explaining an example of a control method of a Mach-Zehnder optical modulator 4000. FIG. 第6の実施形態に係る光送信器を示す機能ブロック図である。It is a functional block diagram which shows the optical transmitter which concerns on 6th Embodiment. 第7の実施形態に係る光通信システムを示す機能ブロック図である。It is a functional block diagram which shows the optical communication system which concerns on 7th Embodiment.
以下図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。 Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary.
まず第1の実施形態に係るマッハツェンダ型光変調器1000の構成について説明する。図1に示した第1の実施形態に係るマッハツェンダ型光変調器1000は、変調部100と、分岐部200と、検出部300と、駆動部401および402と、制御部500と、信号生成回路600とを有する。変調部100は、さらに、分波部110と、複数の電極121および122と、合波部130と、導波路141および142と、を有する。 First, the configuration of the Mach-Zehnder optical modulator 1000 according to the first embodiment will be described. A Mach-Zehnder optical modulator 1000 according to the first embodiment shown in FIG. 1 includes a modulation unit 100, a branching unit 200, a detection unit 300, drive units 401 and 402, a control unit 500, and a signal generation circuit. 600. The modulation unit 100 further includes a demultiplexing unit 110, a plurality of electrodes 121 and 122, a multiplexing unit 130, and waveguides 141 and 142.
分波部110は、入力光を分波する。例えば分波部110は、外部から導入された光を分岐し、分岐した一方の光に対して他方の光に所定の位相差を付与する。具体的には分波部110は、導波路141と142とに接続され、分波部110より出力された一方の光が導波路141に導入され、他方の光が導波路142に導入される。ここで所定の位相差を例えばπ/2とすることができる。分波部110は例えばMMI(Multi-Mode Interference)で実現することができる。またはY分岐でも実現できる。 The demultiplexing unit 110 demultiplexes the input light. For example, the demultiplexing unit 110 branches light introduced from the outside, and gives a predetermined phase difference to the other light with respect to the branched light. Specifically, the demultiplexing unit 110 is connected to the waveguides 141 and 142, one light output from the demultiplexing unit 110 is introduced into the waveguide 141, and the other light is introduced into the waveguide 142. . Here, the predetermined phase difference can be set to π / 2, for example. The demultiplexing unit 110 can be realized by, for example, an MMI (Multi-Mode Interference). Alternatively, it can be realized with a Y branch.
導波路141および142は、分波部110より導入された光を合波部130まで導波する。 The waveguides 141 and 142 guide the light introduced from the demultiplexing unit 110 to the multiplexing unit 130.
電極121および122は、信号生成回路600が生成した信号に応じて入力光を変調するために第1および第2の導波路141、142の一方または双方に沿って配置される。そして、例えば電極121および122は、それぞれ対応する駆動部401および402に接続され、入力光が電極121、122それぞれの近傍を通過する際に入力される駆動電気信号に応じて導波路141および142に電圧を印加する。これにより、導波路141および142の屈折率が変化し、通過する入力光の位相が変調される。本実施形態では、電極を電極121および122の2つとして説明するが、電極は3つ以上であってもよい。 The electrodes 121 and 122 are disposed along one or both of the first and second waveguides 141 and 142 in order to modulate the input light according to the signal generated by the signal generation circuit 600. For example, the electrodes 121 and 122 are connected to the corresponding drive units 401 and 402, respectively, and the waveguides 141 and 142 are input according to the drive electric signal input when the input light passes through the vicinity of the electrodes 121 and 122, respectively. Apply voltage to As a result, the refractive indexes of the waveguides 141 and 142 change, and the phase of the input light passing therethrough is modulated. In the present embodiment, the electrodes are described as two electrodes 121 and 122, but the number of electrodes may be three or more.
合波部130は、第1および第2の導波路141、142を導波した各入力光を合波して出力する。例えば合波部130は、2つの光が導入され、導入された光の一方に対して他方の光に所定の位相差を付与する。次いで、一方の光と他方の光を合波し、合波した光を外部へ出力する。合波部130はその入力が導波路141および142に接続され、出力が分岐部200と接続される。そして、導波路141を導波する光が一方の光として合波部130に導入され、導波路142を導波する光が他方の光として合波部130に導入される。ここで、所定の位相差を例えばπ/2とすることができる。但し、分波部110および合波部130における所定の位相差はπ/2に限ったものではない。合波部130は、例えばMMI(Multi-Mode Interference)で実現することができる。 The multiplexing unit 130 multiplexes and outputs each input light guided through the first and second waveguides 141 and 142. For example, the multiplexing unit 130 introduces two lights, and gives a predetermined phase difference to the other light with respect to one of the introduced lights. Next, the one light and the other light are combined, and the combined light is output to the outside. The multiplexing unit 130 has its input connected to the waveguides 141 and 142 and its output connected to the branching unit 200. Then, the light guided through the waveguide 141 is introduced into the multiplexing unit 130 as one light, and the light guided through the waveguide 142 is introduced into the multiplexing unit 130 as the other light. Here, the predetermined phase difference can be set to π / 2, for example. However, the predetermined phase difference in the demultiplexing unit 110 and the multiplexing unit 130 is not limited to π / 2. The multiplexing unit 130 can be realized by, for example, an MMI (Multi-Mode Interface).
分岐部200は、合波部130の出力に接続され、合波部130が出力する光を2つに分岐する。そして分岐部200は分岐後の光の一方を検出部300に、他方を外部に出力する。分岐部200はMMIやY分岐、方向性結合器等により実現することができる。但し、マッハツェンダ型光変調器1000は、分岐部200を必ずしも備える必要はない。 The branching unit 200 is connected to the output of the multiplexing unit 130 and branches the light output from the multiplexing unit 130 into two. Then, the branching unit 200 outputs one of the branched lights to the detection unit 300 and the other to the outside. The branch unit 200 can be realized by an MMI, a Y branch, a directional coupler, or the like. However, the Mach-Zehnder optical modulator 1000 does not necessarily include the branching unit 200.
検出部300は合波部130が出力する出力光の強度を検出する。検出部300は入力が分岐部200の出力に接続され、出力が制御部500に接続される。そして検出部300は、分岐部200により分岐された光の一方の強度を検出する。次いで検出部300は検出した光の強度を電気信号に変換し、変換した電気信号を制御部500に出力する。検出部300は例えばPD(Photo Detector)とADC(Analog-to-Digital Converter)とで実現することができる。この場合、PDが導入された光を電気信号に変換し、変換後の電気信号をADCに入力する。ADCは入力された電気信号の振幅を、デジタル信号に変換し、変換したデジタル信号を制御部500に出力する。 The detection unit 300 detects the intensity of the output light output from the multiplexing unit 130. The detection unit 300 has an input connected to the output of the branch unit 200 and an output connected to the control unit 500. Then, the detection unit 300 detects one intensity of the light branched by the branch unit 200. Next, the detection unit 300 converts the detected light intensity into an electric signal, and outputs the converted electric signal to the control unit 500. The detection unit 300 can be realized by, for example, a PD (Photo Detector) and an ADC (Analog-to-Digital Converter). In this case, the light into which the PD is introduced is converted into an electric signal, and the converted electric signal is input to the ADC. The ADC converts the amplitude of the input electrical signal into a digital signal, and outputs the converted digital signal to the control unit 500.
信号生成回路600はその出力が駆動部401および制御部500に接続される。そして信号生成回路600は図示しない外部からの入力信号が入力され、入力信号に応じて駆動電気信号を生成する。次いで生成した駆動電気信号を駆動部401および制御部500に出力する。 The output of the signal generation circuit 600 is connected to the drive unit 401 and the control unit 500. The signal generation circuit 600 receives an external input signal (not shown) and generates a drive electric signal in accordance with the input signal. Next, the generated drive electric signal is output to the drive unit 401 and the control unit 500.
制御部500の入力は検出部300および信号生成回路600に接続され、出力が駆動部402に接続される。そして制御部500は、検出部300が検出した信号光の強度に基づいて複数の電極121、122それぞれに信号を印加するタイミングを制御する。図1では、複数の駆動部401、402それぞれに複数の駆動電気信号を入力するタイミングを制御することにより、複数の電極121、122それぞれに信号を印加するタイミングを制御する例を示している。タイミングを制御する例として、信号生成回路600より出力される複数の駆動電気信号の少なくとも一つが制御部500に入力され、制御部500は入力された駆動電気信号の位相を検出部300が検出した光の強度に応じてシフトするようにしてもよい。この場合制御部500は位相をシフトした駆動電気信号を駆動部402に出力する。 The input of the control unit 500 is connected to the detection unit 300 and the signal generation circuit 600, and the output is connected to the drive unit 402. Then, the control unit 500 controls the timing of applying a signal to each of the plurality of electrodes 121 and 122 based on the intensity of the signal light detected by the detection unit 300. FIG. 1 shows an example in which the timing at which a signal is applied to each of the plurality of electrodes 121 and 122 is controlled by controlling the timing at which a plurality of drive electrical signals are input to each of the plurality of drive units 401 and 402. As an example of controlling the timing, at least one of a plurality of drive electrical signals output from the signal generation circuit 600 is input to the control unit 500, and the control unit 500 detects the phase of the input drive electrical signal. You may make it shift according to the intensity | strength of light. In this case, the control unit 500 outputs a drive electric signal whose phase is shifted to the drive unit 402.
駆動部401、402は、複数の電極121、122それぞれに対応して設けられ、その出力が複数の電極121、122それぞれと接続される。また駆動部401の入力は信号生成部600の出力に接続され、駆動部402の入力は制御部500の出力に接続される。そして駆動部401、402それぞれは、信号生成回路600で生成された信号に応じて複数の電極121、122それぞれに信号を印加する。図1では一例として駆動部401、402それぞれは、接続される電極121、122に信号生成回路600および制御部500より入力される駆動電気信号に応じて所定の電圧を印加する。ここで、駆動部401に1つの駆動電気信号が入力されているが、2つ以上の駆動電気信号が1つの駆動部に入力されてもよい。 The drive units 401 and 402 are provided corresponding to the plurality of electrodes 121 and 122, respectively, and outputs thereof are connected to the plurality of electrodes 121 and 122, respectively. The input of the drive unit 401 is connected to the output of the signal generation unit 600, and the input of the drive unit 402 is connected to the output of the control unit 500. Each of the drive units 401 and 402 applies a signal to each of the plurality of electrodes 121 and 122 in accordance with the signal generated by the signal generation circuit 600. In FIG. 1, as an example, each of the drive units 401 and 402 applies a predetermined voltage to the electrodes 121 and 122 to be connected in accordance with a drive electrical signal input from the signal generation circuit 600 and the control unit 500. Here, one drive electric signal is input to the drive unit 401, but two or more drive electric signals may be input to one drive unit.
例えば駆動電気信号を差動出力とすることで、電極121および122は駆動電気信号によりプッシュプル駆動することができる。このようにして電極121および122は、導波路141および142の一部の電界強度を変化させる。以上、マッハツェンダ型光変調器1000の構成について説明した。 For example, by using a drive electric signal as a differential output, the electrodes 121 and 122 can be push-pull driven by the drive electric signal. In this way, the electrodes 121 and 122 change the electric field strength of a part of the waveguides 141 and 142. The configuration of the Mach-Zehnder optical modulator 1000 has been described above.
第1の実施形態に係るマッハツェンダ型光変調器1000の動作を図4を用いて説明する。まず分波部110に光が入力される。分波部110は入力光を分波する(S1)。導波路141および142は分波された各入力光を導波する(S2)。合波部130は導波路141および142を導波した入力光を合波し、合波した光を出力光として出力する(S3)。そして、第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加する(S4)。次いで、制御部500は、出力光の強度に応じて複数の電極121、122それぞれに信号を印加するタイミングを制御する(S5)。例えば、制御部500は、出力光の強度に応じて入力される駆動電気信号の位相をシフトし、シフト後の駆動電気信号を駆動部402に出力する。 The operation of the Mach-Zehnder optical modulator 1000 according to the first embodiment will be described with reference to FIG. First, light is input to the demultiplexing unit 110. The demultiplexing unit 110 demultiplexes the input light (S1). The waveguides 141 and 142 guide the demultiplexed input light (S2). The combining unit 130 combines the input light guided through the waveguides 141 and 142, and outputs the combined light as output light (S3). Then, a voltage for modulating one or both of the input lights guided through the first and second waveguides is applied (S4). Next, the controller 500 controls the timing of applying a signal to each of the plurality of electrodes 121 and 122 according to the intensity of the output light (S5). For example, the control unit 500 shifts the phase of the driving electric signal input according to the intensity of the output light, and outputs the shifted driving electric signal to the driving unit 402.
次に駆動部401および402が電極121および122をプッシュプル駆動した場合を例として用いて、信号生成回路600が出力する駆動電気信号の位相と、合波部130が出力する光の強度と、の関係を説明する。ここでm個(mは1以上の任意の整数)の電極のうちの、光の進行方向に沿って第k番目の電極と第(k+1)番目の電極との間を光が伝播する伝搬時間をΔtkとする。また電極121と電極122との間を光が伝搬する時間の合計をΔt1とし、駆動部401が出力する駆動電気信号を駆動電気信号SG1、駆動部402が出力する駆動電気信号を駆動電気信号SG2とする。この場合、駆動電気信号SG1と駆動電気信号SG2との位相が合っている場合、駆動電気信号SG2波形は、駆動電気信号SG1と同一の位相パターンで、かつ位相が遅延時間Δt1だけ遅れることを意味する。以下、それぞれの電極へ入力される駆動電気信号(k)と駆動電気信号(k+1)との間の位相差Δtが伝播時間Δtkに等しい状態を、「位相が合っている状態」と称する。 Next, using the case where the drive units 401 and 402 push-pull drive the electrodes 121 and 122 as an example, the phase of the drive electrical signal output from the signal generation circuit 600, the intensity of the light output from the multiplexing unit 130, The relationship will be described. Here, of m electrodes (m is an arbitrary integer equal to or greater than 1), the propagation time for light to propagate between the kth electrode and the (k + 1) th electrode along the light traveling direction. Is Δtk. In addition, the total time during which light propagates between the electrode 121 and the electrode 122 is Δt1, the driving electric signal output by the driving unit 401 is the driving electric signal SG1, and the driving electric signal output by the driving unit 402 is the driving electric signal SG2. And In this case, when the drive electrical signal SG1 and the drive electrical signal SG2 are in phase, the drive electrical signal SG2 waveform has the same phase pattern as the drive electrical signal SG1 and the phase is delayed by the delay time Δt1. To do. Hereinafter, a state where the phase difference Δt between the drive electric signal (k) and the drive electric signal (k + 1) input to each electrode is equal to the propagation time Δtk is referred to as a “phase-matched state”.
図2Aを用いて、位相が合っている状態(Δt1-Δt=0)でマッハツェンダ型光変調器1000を動作させた際の、合波部130からの出力光について説明する。ここでは例として、2つの電極121と電極122の長さが等しく、駆動電気信号SG1とSG2が同一の波形パターンで、かつその振幅及びオフセットが等しいとする。そして、電極121および122それぞれでの位相変化量が0~π/2となるように、電極の長さ、及び駆動電気信号の振幅とオフセットが調整されているとする。この場合、電極121および122、すなわちマッハツェンダ型光変調器1000全体が付与する位相変化量は、0~πとなる。これは、駆動電気信号SG1と駆動電気信号SG2とで位相が合っている状態では、電極121および電極122それぞれにより変化した光の位相が加算されるという原理に基づいている。 With reference to FIG. 2A, output light from the multiplexing unit 130 when the Mach-Zehnder optical modulator 1000 is operated in a state where the phases are matched (Δt1−Δt = 0) will be described. Here, as an example, it is assumed that the lengths of the two electrodes 121 and 122 are equal, the drive electric signals SG1 and SG2 have the same waveform pattern, and the amplitude and offset are equal. It is assumed that the length of the electrode and the amplitude and offset of the drive electric signal are adjusted so that the amount of phase change in each of the electrodes 121 and 122 is 0 to π / 2. In this case, the amount of phase change provided by the electrodes 121 and 122, that is, the entire Mach-Zehnder optical modulator 1000 is 0 to π. This is based on the principle that the phases of the light changed by the electrode 121 and the electrode 122 are added in a state where the phases of the driving electric signal SG1 and the driving electric signal SG2 are matched.
駆動部401および402をプッシュプル駆動することにより導波路141および142を通過する光の位相が変化する。すなわち、導波路141を通過する光のシンボルは、図2Aの第1象限から第2象限へ移動する。一方、導波路142を通過する光のシンボルは、図2Aの第4象限から第3象限へ移動する。このような位相の変化により、合波部130により合波された光の強度及び位相が変調される。このため合波部130により合波された光のシンボルは図2A中I軸上の変化として現れる。すなわち、変調器は、その出力光のシンボルが駆動電気信号のパターンに応じて+1(0)と-1(π)の間をI軸上で行き来するよう動作する。 Push-pull drive of the drive units 401 and 402 changes the phase of light passing through the waveguides 141 and 142. That is, the symbol of light passing through the waveguide 141 moves from the first quadrant to the second quadrant in FIG. 2A. On the other hand, the symbol of light passing through the waveguide 142 moves from the fourth quadrant of FIG. 2A to the third quadrant. Due to such a phase change, the intensity and phase of the light combined by the combining unit 130 are modulated. For this reason, the symbol of the light combined by the combining unit 130 appears as a change on the I axis in FIG. 2A. That is, the modulator operates so that the symbol of the output light travels between +1 (0) and −1 (π) on the I axis in accordance with the pattern of the drive electric signal.
次に図2Bを用いての位相が合っていない際の、合波部130からの出力光について説明する。ここでは一例として、駆動電気信号SG1と駆動電気信号SG2とが1/2ビットずれた場合を用いて説明する。すなわち、1UIを1ビット分の位相として、Δt1-Δt=0.5UIの場合を用いて説明する。 Next, the output light from the multiplexing unit 130 when the phase is not matched using FIG. 2B will be described. Here, as an example, a case where the drive electrical signal SG1 and the drive electrical signal SG2 are shifted by 1/2 bit will be described. That is, the case where Δt1−Δt = 0.5 UI is assumed with 1 UI as a phase for one bit.
図2Bは、0.5UI、すなわち1/2ビットずれている場合であるので、1ビットの半分の間、駆動電気信号SG1およびSG2とでタイミングが合っている。従って、合波部130の出力光のシンボルは+1(0)と-1(π)の間をI軸上で行き来するような動作をする。しかし残りの半分の時間は、電極122を光が通過するタイミングと電極122に電圧が印加されるタイミングとが一致していないため、電極121によって付与された位相に対して電極122によって付与される位相が足し算されない。本例では駆動電気信号SG1に対して駆動電気信号SG2が1/2ビット遅れているため、電極122で位相が付与されるタイミングは、電極121でπ/2位相が回った瞬間ではなく、π/4戻った時になる。結果として、導波路141を通過する光に対して電極121および122が付与する位相は、合計で3π/4となる。 FIG. 2B shows a case of 0.5 UI, that is, a ½ bit shift, so that the timing is correct for the drive electrical signals SG1 and SG2 for half of one bit. Therefore, the symbol of the output light of the multiplexing unit 130 operates so as to go back and forth between +1 (0) and −1 (π) on the I axis. However, the remaining half of the time is given by the electrode 122 to the phase given by the electrode 121 because the timing at which light passes through the electrode 122 and the timing at which voltage is applied to the electrode 122 do not match. The phase is not added. In this example, since the drive electrical signal SG2 is delayed by 1/2 bit with respect to the drive electrical signal SG1, the timing at which the phase is given by the electrode 122 is not the moment when the phase of π / 2 is turned by the electrode 121, but by π / 4 When it comes back. As a result, the phase imparted by the electrodes 121 and 122 to the light passing through the waveguide 141 is 3π / 4 in total.
さらに、電極122による位相の変化が0に戻ったときは、電極121による位相の付与は0には戻らない。すなわち、駆動電気信号SG1の位相が駆動電気信号SG2の位相に対して1/2ビット分早いため、電極121によって付与される位相はπ/4となる。結果として、導波路141を通過する光に対して電極121および122が付与する位相は、合計でπ/4となる。このようにして、出力光の振幅が+1/√2と-1/√2となるのシンボルがエラーとして生成されてしまう。 Further, when the phase change by the electrode 122 returns to 0, the application of the phase by the electrode 121 does not return to 0. That is, since the phase of the drive electrical signal SG1 is ½ bit earlier than the phase of the drive electrical signal SG2, the phase applied by the electrode 121 is π / 4. As a result, the phase imparted by the electrodes 121 and 122 to the light passing through the waveguide 141 is π / 4 in total. In this way, symbols whose output light amplitudes are + 1 / √2 and −1 / √2 are generated as errors.
次に図3を用いて駆動電気信号(電圧(V))と合波部130からの出力光強度(任意単位、a.u.:arbitrary unit)との関係について説明する。条件として、駆動電気信号SG1及びSG2の振幅およびオフセットを等しくし、且つPRBS(Pseudorandom Binary Bit Sequence:擬似乱数バイナリビットシーケンス)パターンを入力した。ボーレートは10Gとし、駆動電気信号SG1と駆動電気信号SG2との位相ずれが0と0.5UIの場合を示している。ここで図3では、駆動電気信号SG1と駆動電気信号SG2との間で波形の対応が明確になるように、伝搬時間Δt1を0として駆動電気信号SG2を駆動電気信号SG1に対する相対時間(ns(ナノ秒))で表している。すなわち、駆動電気信号SG2の位相と駆動電気信号SG1の位相とが一致している状態を位相が合っている状態とし、位相が合っていない状態は望ましい状態からの位相のずれだけを表示している。実際には駆動電気信号SG2は、図3で示したタイミングよりもΔt1だけ遅らせて電極122に入力される。すなわち、駆動電気信号SG2は駆動電気信号SG1よりもΔt1だけ位相が遅延する。 Next, the relationship between the drive electrical signal (voltage (V)) and the output light intensity (arbitrary unit, au: arbitrary unit) from the multiplexing unit 130 will be described with reference to FIG. As conditions, the amplitudes and offsets of the drive electric signals SG1 and SG2 were made equal, and a PRBS (Pseudorandom Binary Bit Sequence) pattern was input. The baud rate is 10G, and the phase shift between the drive electrical signal SG1 and the drive electrical signal SG2 is 0 and 0.5 UI. Here, in FIG. 3, the propagation time Δt1 is set to 0 and the drive electric signal SG2 is relative to the drive electric signal SG1 (ns (ns ()) so that the correspondence between the waveforms becomes clear between the drive electric signal SG1 and the drive electric signal SG2. Nanosecond)). That is, the state in which the phase of the drive electrical signal SG2 and the phase of the drive electrical signal SG1 are in agreement is defined as the state in which the phase is in agreement, and in the state in which the phase is not in agreement, only the phase deviation from the desired state is displayed. Yes. In practice, the drive electrical signal SG2 is input to the electrode 122 with a delay of Δt1 from the timing shown in FIG. That is, the phase of the drive electrical signal SG2 is delayed by Δt1 from the drive electrical signal SG1.
この結果から、駆動電気信号SG1の位相と駆動電気信号SG2の位相との差が光の伝搬時間と異なる場合(位相が合っていない状態)は、合波部130の出力光に本来は生成されないはずの中間の値が生じることがわかる。 From this result, when the difference between the phase of the drive electrical signal SG1 and the phase of the drive electrical signal SG2 is different from the propagation time of the light (a state where the phases are not matched), it is not originally generated in the output light of the multiplexing unit 130. It can be seen that an expected intermediate value occurs.
以上のようにマッハツェンダ型光変調器1000は合波部130が出力する出力光の強度を検出する検出部300と、検出部300が検出した出力光の強度に基づいて複数の電極141、142それぞれに信号を印加するタイミングを制御する制御部500とを備える。これにより、図3に示したように駆動電気信号間の位相が100ps以下の精度で合っていない場合であっても合波部130が出力する出力光の強度が変化するため、100ps以下の精度で駆動電気信号間のタイミングずれを検出し、従来に比してより高精度に複数の駆動電気信号間のタイミングを制御することが可能となる。 As described above, the Mach-Zehnder optical modulator 1000 includes a detection unit 300 that detects the intensity of output light output from the multiplexing unit 130, and a plurality of electrodes 141 and 142 based on the intensity of output light detected by the detection unit 300, respectively. And a control unit 500 that controls the timing of applying a signal to. As a result, the intensity of the output light output from the multiplexing unit 130 changes even when the phase between the drive electrical signals does not match with an accuracy of 100 ps or less as shown in FIG. Thus, it is possible to detect the timing deviation between the drive electric signals and control the timing between the plurality of drive electric signals with higher accuracy than in the prior art.
また駆動部に駆動電気信号が入力される箇所から電極までの時間差が出力光の強度に影響を与える。合波部130が出力する出力光の強度に基づいて、制御部500が複数の駆動部401、402それぞれに複数の駆動電気信号を入力するタイミングを制御することにより、信号生成回路600の出力時において駆動電気信号間のタイミングが合っていると仮定すれば、駆動部に駆動電気信号が入力される箇所から電極までに発生する信号間のタイミングずれを検出することができる。すなわち、検出部300が検出した光の強度に基づいて複数の駆動部それぞれに複数の駆動電気信号を入力するタイミングを制御することにより、駆動部から電極までの経路に応じた電気伝搬遅延まで含めて、複数の電極それぞれに対応する複数の駆動電気信号間のタイミングを制御することができる。 In addition, the time difference from the location where the drive electrical signal is input to the drive unit to the electrode affects the intensity of the output light. Based on the intensity of the output light output from the multiplexing unit 130, the control unit 500 controls the timing at which a plurality of drive electrical signals are input to the plurality of drive units 401 and 402, respectively. If it is assumed that the timings of the drive electrical signals are matched, the timing shift between the signals generated from the location where the drive electrical signal is input to the drive unit to the electrode can be detected. That is, by controlling the timing at which a plurality of drive electrical signals are input to each of the plurality of drive units based on the light intensity detected by the detection unit 300, an electrical propagation delay corresponding to the path from the drive unit to the electrode is included. Thus, the timing between the plurality of drive electrical signals corresponding to each of the plurality of electrodes can be controlled.
なお制御部500に複数の駆動電気信号のうち一つが入力されているが、これにかぎるものではない。2つ以上の駆動電気信号が制御部500に入力されてもよい。この場合制御部500は入力される2つ以上の駆動電気信号が駆動部402に入力されるタイミングを検出した光の強度に基づいて制御する。例えば、制御部500に入力される2つ以上の駆動電気信号それぞれの位相を、出力光強度に基づいてシフトし、次いでシフトした後の駆動電気信号を駆動部402に出力する。 One of the plurality of drive electric signals is input to the control unit 500, but this is not the only case. Two or more driving electric signals may be input to the controller 500. In this case, the control unit 500 performs control based on the detected light intensity when two or more input drive electric signals are input to the drive unit 402. For example, the phase of each of the two or more drive electric signals input to the control unit 500 is shifted based on the output light intensity, and then the shifted drive electric signal is output to the drive unit 402.
また、第1の実施形態では電極が2つの場合について説明したが、電極は3つ以上備えられていてもよい。その場合、複数の電極それぞれに接続される駆動部も複数備えられることになる。 In the first embodiment, the case of two electrodes has been described. However, three or more electrodes may be provided. In that case, a plurality of drive units connected to each of the plurality of electrodes are also provided.
次に第2の実施形態について説明する。第2の実施形態に係るマッハツェンダ型光変調器の構成は図1に示す第1の実施形態に記載の構成であり、第1の実施形態とは信号生成回路および制御部の動作が異なる。そこで、図1を用いて第2の実施形態を説明する。 Next, a second embodiment will be described. The configuration of the Mach-Zehnder optical modulator according to the second embodiment is the configuration described in the first embodiment shown in FIG. 1, and the operations of the signal generation circuit and the control unit are different from those of the first embodiment. The second embodiment will be described with reference to FIG.
第2の実施形態に係る信号生成回路600は、図示しない所定のビット列が入力され、入力された所定のビット列に対応する駆動電気信号を複数生成する。 The signal generation circuit 600 according to the second embodiment receives a predetermined bit string (not shown) and generates a plurality of drive electric signals corresponding to the input predetermined bit string.
また、制御部500は検出部300が検出した光の強度の時間平均が最大となるように、駆動電気信号が駆動部402に入力されるタイミングを制御する。 In addition, the control unit 500 controls the timing at which the drive electrical signal is input to the drive unit 402 so that the time average of the light intensity detected by the detection unit 300 is maximized.
以下、制御部500の制御について詳細に説明する。 Hereinafter, the control of the control unit 500 will be described in detail.
まず図5に駆動電気信号の振幅の時間変化の例を示す。ここでは一例として、4ビットの駆動電気信号で説明する。すなわちボーレートの1パルス幅をTbaudとしたとき、Tpatt=4Tbaudの周期で繰り返される。図5のデータパターンは1000であるが、1100、1010、1110等のパターンが表現できる。 First, FIG. 5 shows an example of the time change of the amplitude of the drive electric signal. Here, as an example, a 4-bit drive electric signal will be described. That is, when one pulse width of the baud rate is set to T baud , the cycle is repeated at a period of T patt = 4T baud . Although the data pattern in FIG. 5 is 1000, patterns such as 1100, 1010, and 1110 can be expressed.
次に検出部300が検出する合波部130からの出力光強度の時間平均と、駆動電気信号SG1の位相と駆動電気信号SG2の位相との位相差と、の関係について図6A、図6Bを用いて説明する。ここでは、信号の種類として、出力光の強度の変化に特徴があった1000、1010およびPRBSそれぞれを所定のビット列として例示している。また一例としてデータのボーレート:10GHzに対して1/10以下の533MHz程度でサンプリングし、平均化、規格化した出力光強度(a.u.)を縦軸にとっている。このため本実施形態では、検出部300が検出する出力光強度が時間平均となっている。図6A、図6Bの横軸は駆動電気信号SG1に対する、駆動電気信号SG2の理想的な位相差からの差(以下、遅延時間と表記)を示している。例えば差が0であることは、駆動電気信号SG1の位相と駆動電気信号SG2の位相との差、すなわち、駆動電気信号SG1に対する駆動電気信号SG2の遅延時間が光の伝搬時間と同じであることを示す。 Next, FIGS. 6A and 6B show the relationship between the time average of the output light intensity from the multiplexing unit 130 detected by the detection unit 300 and the phase difference between the phase of the drive electrical signal SG1 and the phase of the drive electrical signal SG2. It explains using. Here, 1000, 1010, and PRBS, which are characterized by changes in the intensity of output light, are exemplified as predetermined bit strings as signal types. Further, as an example, the output light intensity (au) sampled at about 533 MHz, which is 1/10 or less with respect to a data baud rate of 10 GHz, is plotted on the vertical axis. For this reason, in this embodiment, the output light intensity which the detection part 300 detects is a time average. 6A and 6B show the difference (hereinafter referred to as delay time) from the ideal phase difference of the drive electrical signal SG2 with respect to the drive electrical signal SG1. For example, when the difference is 0, the difference between the phase of the drive electrical signal SG1 and the phase of the drive electrical signal SG2, that is, the delay time of the drive electrical signal SG2 with respect to the drive electrical signal SG1 is the same as the light propagation time. Indicates.
図6AによるとSG2の遅延時間が1Tbaudまでは、各信号パターンともに、遅延時間が大きくなるにつれて、検出部300が検出する合波部130からの出力光強度の時間平均も単調に減少していることがわかる。しかし遅延時間が1Tbaudを超えると、まず1000のパターンにおいて、検出部300が検出する出力光強度の時間平均は、位相が合っているときの約1/2に収束していく。 According to FIG. 6A, until the delay time of SG2 reaches 1T baud , the time average of the output light intensity from the multiplexing unit 130 detected by the detection unit 300 decreases monotonously as the delay time increases for each signal pattern. I understand that. However, when the delay time exceeds 1T baud , the time average of the output light intensity detected by the detection unit 300 first converges to about ½ when the phase is matched in 1000 patterns.
この理由は以下である。すなわち、1000パターンにおいて駆動部に入力される駆動電気信号は、駆動電気信号SG1と駆動電気信号SG2のタイミングが1Tbaudずれた場合、1100となる。また2Tbaudずれた場合、駆動部に入力される駆動電気信号は1010となる。このように駆動電気信号中の1と0の出現確立が1/2となる。このため出力光強度の時間平均は位相が合っているときの約1/2の強度になる。 The reason for this is as follows. That is, the drive electrical signal input to the drive unit in 1000 patterns is 1100 when the timings of the drive electrical signal SG1 and the drive electrical signal SG2 are shifted by 1T baud . In addition, when there is a shift of 2T baud, the drive electric signal input to the drive unit is 1010. Thus, the probability of occurrence of 1 and 0 in the drive electric signal is halved. For this reason, the time average of the output light intensity is about ½ of the intensity when the phase is matched.
PRBSは様々な長さのパターンが存在しているため、1と0の出現確率は1/2近傍でばらつく。一方、1010のパターンは1Tbaudずれると駆動電気信号SG1とSG2の関係が完全に逆位相のタイミングとなる。このため合波部130からの出力光の強度は0になり、1Tbaudずれると元の強度に戻る。 Since PRBS has patterns of various lengths, the appearance probability of 1 and 0 varies in the vicinity of ½. On the other hand, if the pattern 1010 is shifted by 1T baud , the relationship between the drive electric signals SG1 and SG2 is completely in phase. For this reason, the intensity of the output light from the multiplexing unit 130 becomes 0, and returns to the original intensity when shifted by 1T baud .
以上のように図6Aに示すように検出部300が検出する出力光強度の時間平均が、遅延時間の変化に対して単一の極大値を持つことが分かる。したがって、PRBSまたは1000といったパターンを用い、制御部500が検出部300により検出される光強度の時間平均が最大となるよう複数の駆動電気信号が駆動部402に入力されるタイミングを制御することで、駆動電気信号SG1、SG2間のタイミングを理想の位相差とすることができる。駆動電気信号のタイミングを制御する一例として、制御部500が入力される駆動電気信号の位相をシフトし、位相をシフトした駆動電気信号を駆動部402に出力することもできる。 As described above, as shown in FIG. 6A, it is understood that the time average of the output light intensity detected by the detection unit 300 has a single maximum value with respect to the change in the delay time. Therefore, by using a pattern such as PRBS or 1000, the control unit 500 controls the timing at which a plurality of drive electrical signals are input to the drive unit 402 so that the time average of the light intensity detected by the detection unit 300 is maximized. The timing between the drive electric signals SG1 and SG2 can be an ideal phase difference. As an example of controlling the timing of the drive electrical signal, the control unit 500 may shift the phase of the drive electrical signal input and output the phase-shifted drive electrical signal to the drive unit 402.
一方図6Bも検出部300が検出する合波部130からの出力光強度の時間平均と、駆動電気信号SG1の位相と駆動電気信号SG2の位相との位相差と、の関係を示す。一例として駆動電気信号SG1に対して、SG2の理想的な位相差からの差(遅延時間)を0近傍で±0.5Tbaudずらしている。 On the other hand, FIG. 6B also shows the relationship between the time average of the output light intensity from the multiplexing unit 130 detected by the detection unit 300 and the phase difference between the phase of the drive electrical signal SG1 and the phase of the drive electrical signal SG2. As an example, the difference (delay time) from the ideal phase difference of SG2 is shifted by ± 0.5T baud in the vicinity of 0 with respect to the drive electrical signal SG1.
図6Bから分かるように、1010パターンは、1000パターンやPRBSパターンと比べて、遅延時間に対する光強度の減衰が大きい。これは矩形パルスをフーリエ級数展開した際、1010パターンは最も速度の早い周波数成分が多く含まれ、理想的な位相差との差に対する感度が高いからである。このため出力光強度の微小な変化に対応する遅延時間は1010パターンが最も小さい。つまり、所定のビット列として1010における遅延時間の変化に対する出力光強度の変化が大きいことになる。これを利用して、制御部500は、駆動電気信号SG1に対する駆動電気信号SG2に関する理想的な位相差と現在の位相差との差を高精度に制御することができる。 As can be seen from FIG. 6B, the 1010 pattern has a greater attenuation of light intensity with respect to the delay time than the 1000 pattern and the PRBS pattern. This is because, when a rectangular pulse is expanded in a Fourier series, the 1010 pattern includes many frequency components with the fastest speed, and is highly sensitive to a difference from an ideal phase difference. For this reason, the delay time corresponding to a minute change in output light intensity is the smallest in 1010 patterns. That is, the change in the output light intensity with respect to the change in the delay time at 1010 as the predetermined bit string is large. Using this, the control unit 500 can control the difference between the ideal phase difference related to the drive electrical signal SG2 with respect to the drive electrical signal SG1 and the current phase difference with high accuracy.
また、ビット列として1010と比較して低い周波数成分を含むビット列を用いることもできる。図6Bに示すように、このようなビット列において出力光強度の変化に対応する、遅延時間の変化が比較的大きい。このため低い周波数成分を含むビット列を用いることにより制御部500が制御しうる、駆動電気信号SG1、SG2間の位相差のダイナミックレンジが大きくなる。低い周波数成分を含むビット列としてはマーク率1/2程度のPRBSや1000パターン等がある。 Also, a bit string including a lower frequency component than 1010 can be used as the bit string. As shown in FIG. 6B, in such a bit string, the change in the delay time corresponding to the change in the output light intensity is relatively large. For this reason, the dynamic range of the phase difference between the drive electrical signals SG1 and SG2 that can be controlled by the control unit 500 is increased by using a bit string including a low frequency component. Examples of a bit string including a low frequency component include PRBS having a mark ratio of about 1/2 and 1000 patterns.
ここでは駆動電気信号SG1及びSG2が4ビットのパルス信号である場合を説明したが、あくまで波形の一例であって、本実施形態に適用可能な駆動電気信号波形はこれに限定されない。 Although the case where the drive electric signals SG1 and SG2 are 4-bit pulse signals has been described here, the waveform is merely an example of the waveform, and the drive electric signal waveform applicable to the present embodiment is not limited to this.
第2の実施形態に係るマッハツェンダ型光変調器1000の動作について図7を用いて説明する。第1の実施形態に係るマッハツェンダ型光変調器1000と同じ動作については説明を省略する。第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加する(S4)までの動作は同じである。その後、出力光の強度の時間平均が最大となるように、複数の電極それぞれに信号を印加するタイミングを制御する(S6)。ここで、複数の電極それぞれに印加する信号を、所定の振幅の信号と前記所定の振幅よりも高い振幅の信号とを交互に繰り返す信号としてもよい。 The operation of the Mach-Zehnder optical modulator 1000 according to the second embodiment will be described with reference to FIG. The description of the same operation as that of the Mach-Zehnder optical modulator 1000 according to the first embodiment is omitted. The operation up to applying a voltage for modulating one or both of the input lights guided through the first and second waveguides (S4) is the same. Thereafter, the timing of applying a signal to each of the plurality of electrodes is controlled so that the time average of the intensity of the output light is maximized (S6). Here, the signal applied to each of the plurality of electrodes may be a signal in which a signal having a predetermined amplitude and a signal having an amplitude higher than the predetermined amplitude are alternately repeated.
図3に示したような位相ずれがある場合、駆動電気信号SG1(実線)と駆動電気信号SG2(破線)間の位相差を検出するためには、ボーレート相当以上の周波数の信号をモニターできる高速なオシロスコープが必要となる。しかし図6A、図6Bに示したように合波部130の出力光の強度がボーレートより低い周波数でサンプリングされ且つ時間平均されても、駆動電気信号SG1とSG2との間における現在の位相差と理想的な位相差との差が出力光の強度の変化として現れる。そこで、検出部300により検出された合波部130からの出力光の強度の時間平均が最大となるように、制御部500が複数の駆動部それぞれに複数の駆動電気信号を入力するタイミングを制御する。これにより、駆動電気信号SG1とSG2との間のタイミングと光の伝搬時間とを等しくすることが可能となる。結果、高速なオシロスコープのような高速で大掛かりな検出装置が不要となる。 In the case where there is a phase shift as shown in FIG. 3, in order to detect the phase difference between the drive electrical signal SG1 (solid line) and the drive electrical signal SG2 (broken line), a high speed capable of monitoring a signal having a frequency equal to or higher than the baud rate. An oscilloscope is required. However, as shown in FIGS. 6A and 6B, even if the output light intensity of the multiplexing unit 130 is sampled at a frequency lower than the baud rate and is time-averaged, the current phase difference between the drive electrical signals SG1 and SG2 The difference from the ideal phase difference appears as a change in the intensity of the output light. Thus, the timing at which the control unit 500 inputs a plurality of drive electric signals to each of the plurality of drive units is controlled so that the time average of the intensity of the output light from the multiplexing unit 130 detected by the detection unit 300 is maximized. To do. This makes it possible to make the timing between the drive electrical signals SG1 and SG2 equal to the light propagation time. As a result, a high-speed and large-scale detection device such as a high-speed oscilloscope is not required.
また、例えば1010パターンのように、駆動電気信号を所定の振幅の信号とその所定の振幅よりも高い振幅の信号とを交互に繰り返す信号とすることができる。これにより、そのような信号を用いない場合と比較して、駆動電気信号間における現在の位相差と理想的な位相差との差に対する出力光の強度の変化が大きいことを利用し、理想的な位相差と駆動電気信号間の位相差との差を高精度に制御することができる。 Further, as in the 1010 pattern, for example, the drive electric signal can be a signal that alternately repeats a signal having a predetermined amplitude and a signal having a higher amplitude than the predetermined amplitude. This makes it possible to take advantage of the fact that the change in the intensity of the output light with respect to the difference between the current phase difference and the ideal phase difference between the drive electrical signals is greater than when no such signal is used, It is possible to control the difference between the accurate phase difference and the phase difference between the drive electrical signals with high accuracy.
第3の実施形態について説明する。図8に示した第3の実施形態に係るマッハツェンダ型光変調器2000は、切替部700をさらに有する点で、第2の実施形態に係るマッハツェンダ型光変調器1000と異なる。 A third embodiment will be described. A Mach-Zehnder optical modulator 2000 according to the third embodiment shown in FIG. 8 is different from the Mach-Zehnder optical modulator 1000 according to the second embodiment in that it further includes a switching unit 700.
また、信号生成回路600が出力する駆動電気信号には第1の駆動電気信号と、第1の駆動電気信号に比べて高い周波数成分を多く含む第2の駆動電気信号とが少なくとも設定される。第1の駆動電気信号としては所定のビット列が1000またはマーク率1/2のPRBSに対応する駆動電気信号とし、第2の駆動電気信号としては所定のビット列が1010に対応する駆動電気信号とする。 In addition, at least the first driving electric signal and the second driving electric signal including a higher frequency component than the first driving electric signal are set in the driving electric signal output from the signal generation circuit 600. The first driving electric signal is a driving electric signal corresponding to PRBS having a predetermined bit string of 1000 or a mark ratio of 1/2, and the second driving electric signal is a driving electric signal corresponding to a predetermined bit string of 1010. .
切替部700は、信号生成回路600が出力する駆動電気信号を切替える。例えば、切替部700は信号生成回路600を制御することにより、信号生成回路600が出力する駆動電気信号を第1の駆動電気信号または第2の駆動電気信号のいずれか一方へ切り替えるようにすることができる。これにより切替部700は、複数の電極121、122に入力される信号を第1の駆動電気信号または第2の駆動電気信号のいずれか一方に対応する電圧に切替える。 The switching unit 700 switches the drive electrical signal output from the signal generation circuit 600. For example, the switching unit 700 controls the signal generation circuit 600 to switch the drive electrical signal output from the signal generation circuit 600 to either the first drive electrical signal or the second drive electrical signal. Can do. Thereby, the switching unit 700 switches the signal input to the plurality of electrodes 121 and 122 to a voltage corresponding to one of the first driving electric signal and the second driving electric signal.
次に第3の実施形態に係るマッハツェンダ型光変調器2000の動作を、図9を用いて説明する。制御部500が出力光の強度に応じて複数の電極121、122それぞれに信号を印加するタイミングを制御する(S5)までの動作は第1の実施形態に係るマッハツェンダ型光変調器1000と同じ動作である。その後制御部500は信号に比べて高い周波数成分を多く含む信号を用いて複数の電極121、122それぞれに信号を印加するタイミングを制御する(S7)。 Next, the operation of the Mach-Zehnder optical modulator 2000 according to the third embodiment will be described with reference to FIG. The operation until the control unit 500 controls the timing of applying a signal to each of the plurality of electrodes 121 and 122 according to the intensity of the output light (S5) is the same as that of the Mach-Zehnder optical modulator 1000 according to the first embodiment. It is. Thereafter, the control unit 500 controls the timing of applying the signal to each of the plurality of electrodes 121 and 122 using a signal that includes a higher frequency component than the signal (S7).
図9のS4、S5、S7の動作を、図10を用いてさらに詳細に説明する。ここでは一例として、切替部700が、検出部300により検出された合波部130からの出力光の強度の時間平均に基づいて信号生成回路600を制御する場合について説明する。S3の動作の後、信号生成回路600は第1の駆動電気信号を出力する(S8)。そして制御部500が出力光の強度に応じて複数の電極121、122それぞれに信号を印加するタイミングを制御する(S9)。 The operations of S4, S5, and S7 in FIG. 9 will be described in more detail with reference to FIG. Here, as an example, the case where the switching unit 700 controls the signal generation circuit 600 based on the time average of the intensity of the output light from the multiplexing unit 130 detected by the detection unit 300 will be described. After the operation of S3, the signal generation circuit 600 outputs the first drive electric signal (S8). Then, the controller 500 controls the timing of applying signals to each of the plurality of electrodes 121 and 122 according to the intensity of the output light (S9).
その後切替部700は信号生成回路600が出力する駆動電気信号を第2の駆動電気信号に切替える(S10)。検出部300が検出した合波部130からの出力光の強度の時間平均に応じて信号生成回路600が出力する駆動電気信号を第2の駆動電気信号に切替えるようにすることが望ましい。ここで例えば出力光の強度の時間平均に予め閾値を定めておき、検出部300が検出する出力光の強度の時間平均が閾値を超えた場合、切替部700が駆動電気信号を切替えるようにすることができる。閾値は例えば最大強度の75%といったように決めればよい。ついで制御部500が出力光の強度に応じて複数の電極121、122それぞれに信号を印加するタイミングを制御する(S11)。 Thereafter, the switching unit 700 switches the drive electrical signal output from the signal generation circuit 600 to the second drive electrical signal (S10). It is desirable to switch the drive electrical signal output from the signal generation circuit 600 to the second drive electrical signal in accordance with the time average of the intensity of the output light from the multiplexing unit 130 detected by the detection unit 300. Here, for example, a threshold is set in advance for the time average of the intensity of the output light, and when the time average of the intensity of the output light detected by the detection unit 300 exceeds the threshold, the switching unit 700 switches the drive electrical signal. be able to. The threshold value may be determined as 75% of the maximum intensity, for example. Next, the control unit 500 controls the timing of applying a signal to each of the plurality of electrodes 121 and 122 according to the intensity of the output light (S11).
第2の実施形態で説明したように、信号生成回路600が第2の駆動電気信号を出力することにより高精度に駆動電気信号間のタイミングを制御することができる。また信号生成回路600が第1の駆動電気信号を出力することにより、制御することが可能な駆動電気信号間の位相差のダイナミックレンジを大きくすることが可能となる。ここで第3の実施形態に係るマッハツェンダ型光変調器2000は、検出部300が検出した出力光の強度の時間平均に基づいて信号生成回路600が出力する駆動電気信号を切替える切替部700を有することにより、第1の駆動電気信号を用いた場合と第2の駆動電気信号を用いた場合の利点を考慮して駆動電気信号間の位相差に応じた制御が可能となる。例えば、出力光の強度の時間平均が駆動電気信号間の位相差を表すことから、第1の駆動電気信号を用いることでおおまかに駆動電気信号間の位相差を設定し、次いで設定した位相差の近傍で第2の駆動電気信号を用いて出力光の強度の最大値を見つけることで、駆動電気信号SG1、SG2間の位相差を迅速に設定することができる。 As described in the second embodiment, the signal generation circuit 600 outputs the second driving electric signal, whereby the timing between the driving electric signals can be controlled with high accuracy. Further, when the signal generation circuit 600 outputs the first drive electric signal, the dynamic range of the phase difference between the drive electric signals that can be controlled can be increased. Here, the Mach-Zehnder optical modulator 2000 according to the third embodiment includes a switching unit 700 that switches the drive electric signal output from the signal generation circuit 600 based on the time average of the intensity of the output light detected by the detection unit 300. Thus, it is possible to perform control according to the phase difference between the drive electrical signals in consideration of the advantages of using the first drive electrical signal and using the second drive electrical signal. For example, since the time average of the intensity of the output light represents the phase difference between the driving electric signals, the phase difference between the driving electric signals is roughly set by using the first driving electric signal, and then the set phase difference is set. By finding the maximum value of the intensity of the output light using the second drive electric signal in the vicinity of, the phase difference between the drive electric signals SG1 and SG2 can be set quickly.
第4の実施形態について図11を用いて説明する。 A fourth embodiment will be described with reference to FIG.
第4の実施形態に係るマッハツェンダ型光変調器3000は、1組のマッハツェンダ型干渉計により構成され、電極150と、駆動部800と、を有する点で第1の実施形態に係るマッハツェンダ型光変調器1000とは異なる。 The Mach-Zehnder type optical modulator 3000 according to the fourth embodiment includes a pair of Mach-Zehnder type interferometers, and includes an electrode 150 and a drive unit 800. Different from the vessel 1000.
本実施形態において信号生成回路600は図示しない所定のビット列が入力され、所定のビット列に対応する複数の駆動電気信号を駆動部800および制御部500に出力する。 In the present embodiment, the signal generation circuit 600 receives a predetermined bit string (not shown) and outputs a plurality of drive electric signals corresponding to the predetermined bit string to the drive unit 800 and the control unit 500.
電極150は、導波路141および142を導波する入力光の一方または双方を変調するための電圧を印加する。マッハツェンダ型光変調器1000のように、電極150が導波路141および142に沿って複数備えられてもよいが、本実施形態では簡便のために1つとして説明する。 The electrode 150 applies a voltage for modulating one or both of the input light guided through the waveguides 141 and 142. A plurality of electrodes 150 may be provided along the waveguides 141 and 142 as in the Mach-Zehnder type optical modulator 1000, but in the present embodiment, it will be described as one for convenience.
駆動部800は、電極150と信号生成回路600とに接続され、信号生成回路600からの駆動電気信号が入力される。そして、信号生成回路600が出力する駆動電気信号に応じて接続された電極150に所定の電圧を印加する。 The drive unit 800 is connected to the electrode 150 and the signal generation circuit 600, and a drive electric signal from the signal generation circuit 600 is input thereto. Then, a predetermined voltage is applied to the electrode 150 connected in accordance with the drive electric signal output from the signal generation circuit 600.
マッハツェンダ型光変調器1000では電極121および122で位相の変化が付与されていたのに対し、マッハツェンダ型光変調器3000では複数の駆動電気信号が駆動部800で加算される。次いで駆動部800は加算した駆動電気信号に応じた電圧を電極150に印加する。 In the Mach-Zehnder optical modulator 1000, the phase change is applied to the electrodes 121 and 122, whereas in the Mach-Zehnder optical modulator 3000, a plurality of drive electric signals are added by the drive unit 800. Next, the driving unit 800 applies a voltage corresponding to the added driving electric signal to the electrode 150.
制御部500の入力は検出部300および信号生成回路600に接続され、制御部500の出力は駆動部800に接続されている。そして制御部500は、検出部300が検出した信号光の強度に基づいて駆動部800に複数の駆動電気信号を入力するタイミングを制御する。 The input of the control unit 500 is connected to the detection unit 300 and the signal generation circuit 600, and the output of the control unit 500 is connected to the drive unit 800. Then, the control unit 500 controls the timing of inputting a plurality of drive electric signals to the drive unit 800 based on the intensity of the signal light detected by the detection unit 300.
マッハツェンダ型光変調器3000の動作について図12を用いて説明する。まず分波部110に光が入力される。分波部110は入力光を2つに分波する(S21)。導波路141および142は分波された各入力光を導波する(S22)。合波部130は導波路141および142を導波した入力光を合波し、合波した光を出力光として出力する(S23)。そして、第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加する(S24)。次いで、制御部500は、出力光の強度に応じて電極150に印加する複数の信号のうち、少なくとも1つの信号を電極150に印加するタイミングを制御する(S25)。 The operation of the Mach-Zehnder optical modulator 3000 will be described with reference to FIG. First, light is input to the demultiplexing unit 110. The demultiplexing unit 110 demultiplexes the input light into two (S21). The waveguides 141 and 142 guide the demultiplexed input light (S22). The combining unit 130 combines the input light guided through the waveguides 141 and 142, and outputs the combined light as output light (S23). Then, a voltage for modulating one or both of the input lights guided through the first and second waveguides is applied (S24). Next, the controller 500 controls the timing of applying at least one signal among the plurality of signals applied to the electrode 150 according to the intensity of the output light (S25).
ここで駆動部800に入力される複数の駆動電気信号と合波部130より出力される光強度の関係は、マッハツェンダ型光変調器1000の場合と同じである。したがってマッハツェンダ型光変調器3000においても、制御部500が検出部300により検出された出力光の強度に基づいて、駆動部800に入力される複数の駆動電気信号のうち、少なくとも1つの信号の駆動部800に入力されるタイミングを制御することにより、一方の駆動電気信号に対する他方の駆動電気信号の理想的なタイミングからのずれを調整することが可能となる。マッハツェンダ型光変調器3000では複数の駆動電気信号を駆動部800で加算していることから、一方の駆動電気信号に対する他方の駆動電気信号の理想的なタイミングからのずれは、信号生成回路600から駆動部800までの電気配線や回路に起因した遅延により生ずる。そのため、制御部500が検出部300により検出された光の強度に基づいて複数の駆動電気信号のうち少なくとも一つが駆動部800に入力されるタイミングを制御することで、信号生成回路600から駆動部800までの電気配線や回路に起因した遅延を補償するよう駆動電気信号間のタイミングを制御することが可能となる。 Here, the relationship between the plurality of drive electric signals input to the drive unit 800 and the light intensity output from the multiplexing unit 130 is the same as in the case of the Mach-Zehnder type optical modulator 1000. Therefore, also in the Mach-Zehnder optical modulator 3000, the control unit 500 drives at least one signal among a plurality of drive electric signals input to the drive unit 800 based on the intensity of the output light detected by the detection unit 300. By controlling the timing input to the unit 800, it is possible to adjust the deviation of the other driving electrical signal from the ideal timing with respect to one driving electrical signal. In the Mach-Zehnder optical modulator 3000, a plurality of drive electric signals are added by the drive unit 800, so that the deviation from the ideal timing of the other drive electric signal with respect to one drive electric signal is from the signal generation circuit 600. This is caused by a delay due to the electrical wiring and circuits to the driving unit 800. Therefore, the control unit 500 controls the timing at which at least one of the plurality of drive electric signals is input to the drive unit 800 based on the light intensity detected by the detection unit 300, so that the drive unit It is possible to control the timing between the drive electrical signals so as to compensate for the delay caused by up to 800 electrical wirings and circuits.
本実施の形態では、1つのマッハツェンダ干渉計内の1対の電極へ2つの駆動電気信号を多重して印加する例について説明したが、多重する駆動電気信号の数、配線等はこの例に限られない。3つ以上の駆動電気信号が多重される場合には、任意の2つの信号間で、上述した原理が同様に成立する。また制御部500を1つとして説明したが、制御部500は駆動電気信号の数に応じて複数備えられてもよい。 In this embodiment, an example in which two drive electric signals are multiplexed and applied to a pair of electrodes in one Mach-Zehnder interferometer has been described. However, the number of drive electric signals to be multiplexed, wiring, etc. are limited to this example. I can't. When three or more drive electrical signals are multiplexed, the above-described principle is similarly established between any two signals. Moreover, although the description has been given assuming that the number of control units 500 is one, a plurality of control units 500 may be provided according to the number of drive electric signals.
第5の実施形態に係るマッハツェンダ型光変調器4000について図を用いて説明する。図13は、第5の実施の形態にかかる光変調器4000の構成を模式的に示すブロック図である。 A Mach-Zehnder optical modulator 4000 according to a fifth embodiment will be described with reference to the drawings. FIG. 13 is a block diagram schematically illustrating a configuration of an optical modulator 4000 according to the fifth embodiment.
本実施の形態に係るマッハツェンダ型光変調器4000は、分波部110、導波路141および142、m個(mは、2以上の整数)の電極161、電極162、・・・、16m、合波部130を有する。さらに、マッハツェンダ型光変調器4000は、分岐部200、検出部300、m×n個(nは、2以上の整数)の制御部5011、5012、・・・501n、5021、5022、・・・502n、50m1、50m2、・・・、50mn、信号生成回路600、m個の駆動部801、802、・・・80mと、を有する。以下、マッハツェンダ型光変調器1000と同じ構成については説明を省略する。 The Mach-Zehnder type optical modulator 4000 according to the present embodiment includes a demultiplexing unit 110, waveguides 141 and 142, m (m is an integer of 2 or more) electrodes 161, electrodes 162,. A wave portion 130 is included. Further, the Mach-Zehnder optical modulator 4000 includes a branching unit 200, detection units 300, m × n control units 5011, 5012,... 501n, 5021, 5022,. 502n, 50m1, 50m2, ..., 50mn, a signal generation circuit 600, m drive units 801, 802, ... 80m. Hereinafter, the description of the same configuration as the Mach-Zehnder optical modulator 1000 is omitted.
m個(mは、2以上の整数)の電極161、電極162、・・・、16mは、導波路141および142に沿って備えられる。これらの電極は、導波路141および142を導波する各入力光の一方または双方を変調するための電圧を印加する。 m (m is an integer of 2 or more) electrodes 161, electrodes 162,..., 16 m are provided along the waveguides 141 and 142. These electrodes apply a voltage for modulating one or both of the input lights guided through the waveguides 141 and 142.
n個の制御部5011、5012、・・・、501nは、それぞれの入力が信号生成回路600と接続され、それぞれの出力が駆動部801と接続される。そして、制御部5011、5012、・・・、501nは、信号生成回路600が出力する駆動電気信号がそれぞれ入力され、検出部300が検出した光の強度に基づいて、複数の駆動電気信号が駆動部801に入力されるタイミングを制御する。次いで、タイミングを制御した駆動電気信号を、接続される駆動部801に出力する。(m-1)×n個の他の制御部も、制御部5011、5012、・・・と同様であるため説明を省略する。制御部500は、タイミングを制御する一例として、駆動電気信号の位相をシフトし、位相をシフトした駆動電気信号を駆動部801に出力する。 Each of the n control units 5011, 5012,..., 501n has an input connected to the signal generation circuit 600 and an output connected to the drive unit 801. The control units 5011, 5012,..., 501n each receive the drive electric signal output from the signal generation circuit 600, and drive a plurality of drive electric signals based on the light intensity detected by the detection unit 300. The timing input to the unit 801 is controlled. Next, the drive electric signal whose timing is controlled is output to the connected drive unit 801. The other control units (m−1) × n are the same as the control units 5011, 5012,. As an example of controlling the timing, the control unit 500 shifts the phase of the drive electrical signal and outputs the drive electrical signal with the phase shifted to the drive unit 801.
なお、駆動部801、802、・・・、80mそれぞれに入力される駆動電気信号の数は、駆動部毎に異なっていてもよい。この場合駆動電気信号の数に応じて制御部の数も変更されうる。 Note that the number of drive electric signals input to each of the drive units 801, 802,..., 80m may be different for each drive unit. In this case, the number of control units can be changed in accordance with the number of drive electrical signals.
駆動部801は、信号生成回路600および制御部5011、5012、・・・、501nと接続される。そして駆動部801は、信号生成回路600および制御部5011、5012、・・・、501nより入力される複数の駆動電気信号を多重し、多重した後の駆動電気信号に応じた電圧を電極161に印加する。他のm-1個の駆動部802、・・・、80mの動作も、駆動部801と同様である。 The drive unit 801 is connected to the signal generation circuit 600 and the control units 5011, 5012, ..., 501n. The drive unit 801 multiplexes a plurality of drive electrical signals input from the signal generation circuit 600 and the control units 5011, 5012,..., 501n, and a voltage corresponding to the multiplexed drive electrical signal is applied to the electrode 161. Apply. The operations of the other m−1 drive units 802,..., 80m are the same as those of the drive unit 801.
信号生成回路600は、駆動部801、802、・・・、80mおよびm×n個の制御部5011、5012、・・・501n、5021、5021、・・・502n、・・・、50m1、・・・50mnに最大m×n個の駆動電気信号を供給する。 The signal generation circuit 600 includes drive units 801, 802,..., 80m and m × n control units 5011, 5012,... 501n, 5021, 5021,. ..Up to m × n driving electric signals are supplied to 50 mn.
本実施形態は、電極の個数mが2以上の整数である第1~3の実施形態と、1つの電極に対して多重化される駆動電気信号の数nが2以上の場合である第4の実施形態と、を含む。 In the present embodiment, the first to third embodiments in which the number m of electrodes is an integer of 2 or more, and the fourth embodiment in which the number n of drive electric signals multiplexed for one electrode is 2 or more. Embodiments.
本実施形態では、電極の個数や多重化される駆動電気信号の数を一般化して説明したが、マッハツェンダ型光変調器の個数に関しても同様である。特に一般的なIQ変調器構成として知られる2組のマッハツェンダ型光変調器を有する場合であっても、本発明を適用することができる。以上のように、変調器や電極、駆動電気信号の個数が複数となる場合には、任意の2つの信号間で第1~4の実施形態で説明した原理が同様に成立し、任意の2つの信号間の位相調整が可能である。 In this embodiment, the number of electrodes and the number of drive electric signals to be multiplexed are generalized, but the same applies to the number of Mach-Zehnder optical modulators. In particular, the present invention can be applied even when two sets of Mach-Zehnder optical modulators known as general IQ modulator configurations are provided. As described above, when the number of modulators, electrodes, and drive electric signals is plural, the principle described in the first to fourth embodiments is similarly established between any two signals, and any two Phase adjustment between two signals is possible.
図14に、マッハツェンダ型光変調器4000の制御方法を説明する。ここでは次の二つを例として説明する。 FIG. 14 illustrates a method for controlling the Mach-Zehnder optical modulator 4000. Here, the following two examples will be described.
まず一つ目として図14で示した、「A.逐次検出」の方法について説明する。一例として、m個の電極とn個の駆動電気信号で構成された、最大m×n通りの駆動電気信号のうち、駆動部801に入力される駆動電気信号の1つのタイミングを基準とする。m×n個の制御部5011、5012、・・・501n、5021、5022、・・・502n、・・・、50m1、・・・50mnは、駆動部801に入力される駆動電気信号の1つを基準として、この基準に対する理想的な位相差とのずれを逐次検出し、最適な遅延時間を設定していく。この遅延時間を設定する動作はマッハツェンダ型光変調器1000の場合と同じである。 First, the “A. Sequential detection” method shown in FIG. 14 will be described. As an example, the timing of one of the drive electrical signals input to the drive unit 801 among the maximum of m × n drive electrical signals composed of m electrodes and n drive electrical signals is used as a reference. m × n control units 5011, 5012,... 501n, 5021, 5022,... 502n,..., 50m1, ... 50mn are one of drive electric signals input to the drive unit 801. As a reference, a deviation from an ideal phase difference with respect to this reference is sequentially detected, and an optimum delay time is set. The operation of setting the delay time is the same as that of the Mach-Zehnder type optical modulator 1000.
この様子を、図15の横軸をマッハツェンダ型光変調器4000の電極の番号とし、縦軸を上記基準となるタイミングからの伝搬遅延時間(ps(ピコ秒))としたグラフに示す。ここでは例としてm=7としている。図15に示すように、複数の電極161、電極162、・・・、167それぞれに駆動電気信号に対応する電圧が印加されるタイミングを順番に光の伝搬遅延時間に合わせることができる。 This is shown in a graph in which the horizontal axis of FIG. 15 is the electrode number of the Mach-Zehnder optical modulator 4000 and the vertical axis is the propagation delay time (ps (picosecond)) from the reference timing. Here, as an example, m = 7. As shown in FIG. 15, the timing at which the voltage corresponding to the drive electrical signal is applied to each of the plurality of electrodes 161, electrodes 162,... 167 can be matched to the light propagation delay time in order.
図15において、電極の番号が若い電極から順に駆動電気信号が印加されるタイミングを光の伝搬遅延時間に合わせていく例を用いて説明したが、これに限られない。すなわち、基準となる駆動電気信号以外のいずれからであっても、駆動電気信号が駆動部に入力されるタイミングを光の伝搬遅延時間に合わせることができる。 In FIG. 15, the example in which the drive electric signal is applied in order from the electrode with the smallest electrode number is described according to an example in which the timing is matched with the light propagation delay time, but the present invention is not limited to this. In other words, the timing at which the drive electrical signal is input to the drive unit can be matched with the light propagation delay time from any source other than the reference drive electrical signal.
次に2つ目として図14で示した、「B.線形補間」の方法について説明する。一例として、m個の電極とn個の駆動電気信号で構成された、最大m×n通りの駆動電気信号のうち、駆動部801に入力される駆動電気信号の1つのタイミングを基準とする。 Next, a second method “B. Linear interpolation” shown in FIG. 14 will be described. As an example, the timing of one of the drive electrical signals input to the drive unit 801 among the maximum of m × n drive electrical signals composed of m electrodes and n drive electrical signals is used as a reference.
例えば導波路141および142に沿って光の進行方向の最下流に備えられた電極に印加される駆動電気信号のうち1つを図14中の駆動電気信号SGとする。まず駆動電気信号SGに対応する制御部50m1、50m2、・・・、50mnのいずれか1つは、駆動電気信号SGの位相を制御する。次に、この2点間の遅延時間に基づいて線形に補間することによって、この2点に挟まれた複数の電極それぞれに対応する、基準に対する遅延時間を算出し、駆動電気信号それぞれが駆動部に入力されるタイミングを設定していく。この様子を、図16の横軸をマッハツェンダ型光変調器4000の電極の番号とし、縦軸を上記基準となるタイミングからの伝搬遅延時間(ps)としたグラフに示す。ここでは例としてm=7としている。グラフ中では例として、駆動部801に入力される駆動電気信号のタイミングを基準とし、駆動部807に入力される駆動電気信号SGのタイミングとの間を線形に補間する。この方法は、前述した「A.逐次検出」の方法に比べて、位相ずれの検出が1回で済むという点と、毎回の検出で生じる誤差が2回しか含まれないという利点がある。 For example, one of the drive electric signals applied to the electrodes provided on the most downstream side in the light traveling direction along the waveguides 141 and 142 is defined as a drive electric signal SG in FIG. First, any one of the control units 50m1, 50m2,..., 50mn corresponding to the drive electrical signal SG controls the phase of the drive electrical signal SG. Next, by linearly interpolating based on the delay time between the two points, the delay time with respect to the reference corresponding to each of the plurality of electrodes sandwiched between the two points is calculated, and each drive electric signal is driven by the drive unit. The input timing is set. This is shown in a graph in which the horizontal axis of FIG. 16 is the electrode number of the Mach-Zehnder optical modulator 4000 and the vertical axis is the propagation delay time (ps) from the reference timing. Here, as an example, m = 7. In the graph, as an example, the timing of the drive electrical signal input to the drive unit 801 is used as a reference, and the timing of the drive electrical signal SG input to the drive unit 807 is linearly interpolated. This method has the advantage that the detection of the phase shift can be performed only once and the error generated by each detection is included only twice compared with the method of “A. Sequential detection” described above.
上記に、マッハツェンダ型光変調器4000の制御方法に関して2種述べたが、あくまでも例であって、本発明を限定するものではない。 Although two types of control methods for the Mach-Zehnder type optical modulator 4000 have been described above, they are merely examples and do not limit the present invention.
第6の実施形態に係る光送信器10000について図17を用いて説明する。光送信器10000は、光源5000と、マッハツェンダ型光変調器6000を有する。 An optical transmitter 10000 according to the sixth embodiment will be described with reference to FIG. The optical transmitter 10000 includes a light source 5000 and a Mach-Zehnder optical modulator 6000.
光源5000は連続光を出力する。マッハツェンダ型光変調器6000は、光源5000と接続され、光源5000からの連続光が導入される。マッハツェンダ型光変調器6000は、マッハツェンダ型光変調器1000、2000、3000、4000のいずれか1つである。 The light source 5000 outputs continuous light. The Mach-Zehnder optical modulator 6000 is connected to the light source 5000, and continuous light from the light source 5000 is introduced. The Mach-Zehnder optical modulator 6000 is any one of the Mach-Zehnder optical modulators 1000, 2000, 3000, and 4000.
次に光送信器10000の動作について説明する。まず、光源5000が連続光を出力する。マッハツェンダ型光変調器6000は、光源5000が出力した連続光が入力光として導入される。そしてマッハツェンダ型光変調器6000は、入力光を強度または位相変調し、変調後の光を外部へ出力する。 Next, the operation of the optical transmitter 10000 will be described. First, the light source 5000 outputs continuous light. In the Mach-Zehnder type optical modulator 6000, continuous light output from the light source 5000 is introduced as input light. The Mach-Zehnder type optical modulator 6000 modulates the intensity or phase of the input light and outputs the modulated light to the outside.
本実施形態では、マッハツェンダ型光変調器6000が一つの場合について説明したが、二つ以上のマッハツェンダ型光変調器6000を有し、それらをネスト(入れ子)型に複数接続することもできる。 In the present embodiment, the case where there is one Mach-Zehnder type optical modulator 6000 has been described, but two or more Mach-Zehnder type optical modulators 6000 can be provided, and a plurality of them can be connected in a nested manner.
第7の実施形態に係る光通信システムについて図18を用いて説明する。
光通信システムは、上述第6の実施形態で示した光送信器10000を用いた光送受信システムである。図18は、第7の実施形態に係る光通信システムの構成を示す。
An optical communication system according to the seventh embodiment will be described with reference to FIG.
The optical communication system is an optical transmission / reception system using the optical transmitter 10000 shown in the sixth embodiment. FIG. 18 shows a configuration of an optical communication system according to the seventh embodiment.
光通信システムは、光送信器10000、光受信器20000、伝送路となる光ファイバ30000、光増幅器40000aおよび光増幅器40000bを有する。 The optical communication system includes an optical transmitter 10000, an optical receiver 20000, an optical fiber 30000 serving as a transmission path, an optical amplifier 40000a, and an optical amplifier 40000b.
光送信器10000は、マッハツェンダ型光変調器1000、2000、3000、4000のいずれかを有し、光信号として、例えば四位相偏移変調(Quadrature Phase Shift Keying:以下、QPSKと表記)された、QPSK光信号を出力する。 The optical transmitter 10000 includes any one of the Mach-Zehnder type optical modulators 1000, 2000, 3000, and 4000, and is, for example, four-phase shift keying (Quadrature Phase Shift Keying: hereinafter referred to as QPSK) as an optical signal. A QPSK optical signal is output.
光送信器10000と光受信器20000との間は、光ファイバ30000により光学的に接続される。光ファイバ30000には、光増幅器40000aおよび光増幅器40000bが挿入され、伝搬する光信号を増幅する。光受信器20000は、光信号を電気信号に復調する。 An optical fiber 30000 is optically connected between the optical transmitter 10000 and the optical receiver 20000. An optical amplifier 40000a and an optical amplifier 40000b are inserted into the optical fiber 30000 to amplify the propagating optical signal. The optical receiver 20000 demodulates the optical signal into an electrical signal.
光送受信システムは、以上の構成により、光送信器10000を用いた光信号の伝送が可能である。 With the above configuration, the optical transmission / reception system can transmit an optical signal using the optical transmitter 10000.
なお、本発明は上記実施の形態に限られたものではなく、実施形態を組合せてもよい。また、請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。 The present invention is not limited to the above-described embodiment, and the embodiments may be combined. Further, it goes without saying that various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the present invention.
この出願は、2012年12月25日に出願された日本出願特願2012-281062を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-281062 filed on Dec. 25, 2012, the entire disclosure of which is incorporated herein.
 100  変調部
 110  分波部
 121、122、150、161、162  電極
 130  合波部
 141、142  導波路
 200  分岐部
 300  検出部
 401、402、800、801、802  駆動部
 500、5011、5012、5021、5022  制御部
 600  信号生成回路
 700  切替部
 1000、2000、3000、4000、6000  マッハツェンダ型光変調器
 5000  光源
 10000  光送信器
 20000  光受信器
 30000  ファイバ
 40000a、40000b  光増幅器
100 Modulation unit 110 Demultiplexing unit 121, 122, 150, 161, 162 Electrode 130 Multiplexing unit 141, 142 Waveguide 200 Branching unit 300 Detection unit 401, 402, 800, 801, 802 Drive unit 500, 5011, 5012, 5021 , 5022 control unit 600 signal generation circuit 700 switching unit 1000, 2000, 3000, 4000, 6000 Mach-Zehnder type optical modulator 5000 light source 10,000 optical transmitter 20000 optical receiver 30000 fiber 40000a, 40000b optical amplifier

Claims (12)

  1. 入力光を分波する分波手段と、
    分波された各入力光を導波する第1および第2の導波路と、
    前記第1および第2の導波路を導波した各入力光を合波して出力する合波手段と、
    信号を生成する信号生成回路と、
    前記信号に応じて前記入力光を変調するために前記第1および第2の導波路の一方または双方に沿って配置された複数の電極と、
    前記信号生成回路で生成された信号に応じて前記複数の電極それぞれに信号を印加する駆動手段と、
    前記合波手段が出力する出力光の強度を検出する検出手段と、
    前記検出手段が検出した出力光の強度に基づいて前記複数の電極それぞれに前記信号を印加するタイミングを制御する制御手段と、
    を有するマッハツェンダ型光変調器。
    A demultiplexing means for demultiplexing the input light;
    First and second waveguides for guiding each of the demultiplexed input lights;
    A multiplexing means for multiplexing and outputting the respective input lights guided through the first and second waveguides;
    A signal generation circuit for generating a signal;
    A plurality of electrodes disposed along one or both of the first and second waveguides to modulate the input light in response to the signal;
    Driving means for applying a signal to each of the plurality of electrodes according to a signal generated by the signal generation circuit;
    Detection means for detecting the intensity of the output light output by the multiplexing means;
    Control means for controlling the timing of applying the signal to each of the plurality of electrodes based on the intensity of the output light detected by the detection means;
    A Mach-Zehnder optical modulator.
  2. 前記制御手段は前記出力光の強度の時間平均が最大となるように前記タイミングを制御する
    請求項1に記載のマッハツェンダ型光変調器。
    The Mach-Zehnder optical modulator according to claim 1, wherein the control unit controls the timing so that a time average of the intensity of the output light is maximized.
  3. 前記信号生成回路は1010を含むビット列に対応する信号を生成する請求項1または2に記載のマッハツェンダ型光変調器。 The Mach-Zehnder optical modulator according to claim 1, wherein the signal generation circuit generates a signal corresponding to a bit string including 1010.
  4. 前記信号は少なくとも第1の信号と第1の信号に比べて高い周波数成分を多く含む第2の信号とからなり、
    前記複数の電極に入力される信号を前記第1の信号または前記第2の信号のいずれか一方への切替を行う切替手段を有する、
    請求項1から3の何れか1項に記載のマッハツェンダ型光変調器。
    The signal is composed of at least a first signal and a second signal containing a lot of high frequency components compared to the first signal,
    A switching means for switching a signal input to the plurality of electrodes to either the first signal or the second signal;
    The Mach-Zehnder optical modulator according to any one of claims 1 to 3.
  5. 前記切替手段は前記出力光の強度の時間平均に基づいて前記切替を行う
    請求項4に記載のマッハツェンダ型光変調器。
    5. The Mach-Zehnder optical modulator according to claim 4, wherein the switching unit performs the switching based on a time average of the intensity of the output light.
  6. 入力光を分波し、
    第1および第2の導波路により分波された各入力光を導波し、
    前記第1および第2の導波路を導波した各入力光を合波して出力光として出力し、
    前記第1および第2の導波路の一方または双方に沿って複数備えられた電極により、前記第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加し、
    前記出力光の強度に応じて前記複数の電極それぞれに信号を印加するタイミングを制御する
    マッハツェンダ型光変調器の制御方法。
    Demultiplex the input light,
    Guides each input light demultiplexed by the first and second waveguides,
    The input lights guided through the first and second waveguides are combined and output as output light,
    A voltage for modulating one or both of the input lights guided through the first and second waveguides by a plurality of electrodes provided along one or both of the first and second waveguides. Applied,
    A method for controlling a Mach-Zehnder optical modulator, which controls timing of applying a signal to each of the plurality of electrodes according to the intensity of the output light.
  7. 前記出力光の強度の時間平均が最大となるように前記タイミングを制御する
    請求項6に記載のマッハツェンダ型光変調器の制御方法。
    The method of controlling a Mach-Zehnder optical modulator according to claim 6, wherein the timing is controlled so that a time average of the intensity of the output light is maximized.
  8. 前記複数の電極それぞれに印加される信号を所定の振幅の信号と前記所定の振幅よりも高い振幅の信号とを交互に繰り返す信号とする
    請求項6または7に記載のマッハツェンダ型光変調器の制御方法。
    The control of the Mach-Zehnder optical modulator according to claim 6 or 7, wherein a signal applied to each of the plurality of electrodes is a signal in which a signal having a predetermined amplitude and a signal having an amplitude higher than the predetermined amplitude are alternately repeated. Method.
  9. 前記信号により前記タイミングを制御した後、前記信号に含まれる周波数成分よりも高い周波数成分をより多く含む信号を用いて前記タイミングを制御する
    請求項6に記載のマッハツェンダ型変調器の制御方法。
    The method of controlling a Mach-Zehnder modulator according to claim 6, wherein the timing is controlled using a signal including more frequency components higher than frequency components included in the signal after the timing is controlled by the signal.
  10. マッハツェンダ型光変調器で変調された光信号を出力する光送信器と、
    前記光信号が伝搬する伝送路と、前記伝送路を介して前記光信号を受信する光受信器と、を備え、
    前記マッハツェンダ型光変調器は、
    入力光を分波する分波手段と、
    分波された各入力光を導波する第1および第2の導波路と、
    前記第1および第2の導波路を導波した各入力光を合波して出力する合波手段と、
    信号を生成する信号生成回路と、
    前記信号に応じて前記入力光を変調するために前記第1および第2の導波路の一方または双方に沿って配置された複数の電極と、
    前記信号生成回路で生成された信号に応じて前記複数の電極それぞれに信号を印加する駆動手段と、
    前記合波手段が出力する出力光の強度を検出する検出手段と、
    前記検出手段が検出した出力光の強度に基づいて前記複数の電極それぞれに前記信号を印加するタイミングを制御する制御手段と、
    を有する光通信システム。
    An optical transmitter that outputs an optical signal modulated by a Mach-Zehnder optical modulator;
    A transmission path through which the optical signal propagates, and an optical receiver that receives the optical signal through the transmission path,
    The Mach-Zehnder optical modulator is
    A demultiplexing means for demultiplexing the input light;
    First and second waveguides for guiding each of the demultiplexed input lights;
    A multiplexing means for multiplexing and outputting the respective input lights guided through the first and second waveguides;
    A signal generation circuit for generating a signal;
    A plurality of electrodes disposed along one or both of the first and second waveguides to modulate the input light in response to the signal;
    Driving means for applying a signal to each of the plurality of electrodes according to a signal generated by the signal generation circuit;
    Detection means for detecting the intensity of the output light output by the multiplexing means;
    Control means for controlling the timing of applying the signal to each of the plurality of electrodes based on the intensity of the output light detected by the detection means;
    An optical communication system.
  11. 入力光を2つに分波する分波手段と、
    分波された各入力光を導波する第1および第2の導波路と、
    前記第1および第2の導波路を導波した各入力光を合波して出力する合波手段と、
    前記第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加するための電極と、
    前記合波手段が出力する出力光を分岐する分岐手段と、
    前記分岐手段により分岐された一方の出力光の強度を検出する検出手段と、
    電気信号を複数生成する信号生成回路と、
    前記電極に接続され、前記複数の電気信号に応じて接続された前記電極に所定の電圧を印加する駆動手段と、
    前記検出手段が検出した出力光の強度に基づいて前記駆動手段に前記複数の信号を入力するタイミングを制御する制御手段と、
    を有するマッハツェンダ型光変調器。
    A demultiplexing means for demultiplexing the input light into two;
    First and second waveguides for guiding each of the demultiplexed input lights;
    A multiplexing means for multiplexing and outputting the respective input lights guided through the first and second waveguides;
    An electrode for applying a voltage for modulating one or both of each input light guided through the first and second waveguides;
    Branching means for branching the output light output by the multiplexing means;
    Detecting means for detecting the intensity of one of the output lights branched by the branching means;
    A signal generation circuit for generating a plurality of electrical signals;
    Driving means connected to the electrodes and applying a predetermined voltage to the electrodes connected in response to the plurality of electrical signals;
    Control means for controlling the timing of inputting the plurality of signals to the drive means based on the intensity of the output light detected by the detection means;
    A Mach-Zehnder optical modulator.
  12. 入力光を2つに分波し、
    第1および第2の導波路により分波された各入力光を導波し、
    前記第1および第2の導波路を導波した各入力光を合波して出力光として出力し、
    前記第1および第2の導波路の一方または双方に沿って備えられた電極により、前記第1および第2の導波路を導波する各入力光の一方または双方を変調するための電圧を印加し、
    前記出力光の強度に応じて前記電極に印加する複数の信号のうち少なくとも1つを前記電極に印加するタイミングを制御する
    マッハツェンダ型光変調器の制御方法。
    Split the input light into two,
    Guides each input light demultiplexed by the first and second waveguides,
    The input lights guided through the first and second waveguides are combined and output as output light,
    A voltage for modulating one or both of the input lights guided through the first and second waveguides is applied by an electrode provided along one or both of the first and second waveguides. And
    A method for controlling a Mach-Zehnder optical modulator, which controls timing of applying at least one of a plurality of signals applied to the electrode to the electrode according to the intensity of the output light.
PCT/JP2013/007363 2012-12-25 2013-12-16 Mach-zehnder optical modulator, optical communication system, and control method for mach-zehnder optical modulator WO2014103231A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014554116A JPWO2014103231A1 (en) 2012-12-25 2013-12-16 Mach-Zehnder optical modulator, optical communication system, and control method for Mach-Zehnder optical modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-281062 2012-12-25
JP2012281062 2012-12-25

Publications (1)

Publication Number Publication Date
WO2014103231A1 true WO2014103231A1 (en) 2014-07-03

Family

ID=51020355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007363 WO2014103231A1 (en) 2012-12-25 2013-12-16 Mach-zehnder optical modulator, optical communication system, and control method for mach-zehnder optical modulator

Country Status (2)

Country Link
JP (1) JPWO2014103231A1 (en)
WO (1) WO2014103231A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159204A1 (en) * 2020-02-11 2021-08-19 Reflex Photonics Inc. Methods, devices, and architectures for inter-spacecraft optical communication
WO2024202992A1 (en) * 2023-03-31 2024-10-03 富士通株式会社 Optical transmission device, delay control circuit, and delay control method
WO2024214457A1 (en) * 2023-04-11 2024-10-17 富士通株式会社 Optical transmitter and timing adjustment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294883A (en) * 2003-03-27 2004-10-21 Fujitsu Ltd Control apparatus for optical modulator
JP2009027517A (en) * 2007-07-20 2009-02-05 Ntt Electornics Corp Optical transmission circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294883A (en) * 2003-03-27 2004-10-21 Fujitsu Ltd Control apparatus for optical modulator
JP2009027517A (en) * 2007-07-20 2009-02-05 Ntt Electornics Corp Optical transmission circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOYUKI YAMASE ET AL.: "10-Gb/s In-line Centipede Electrode Inp MZM and Low- Power CMOS Driver with Quasi-Travelling Wave Generation", THE 16TH OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE,OECC2011, pages 61 - 62 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159204A1 (en) * 2020-02-11 2021-08-19 Reflex Photonics Inc. Methods, devices, and architectures for inter-spacecraft optical communication
WO2024202992A1 (en) * 2023-03-31 2024-10-03 富士通株式会社 Optical transmission device, delay control circuit, and delay control method
WO2024214457A1 (en) * 2023-04-11 2024-10-17 富士通株式会社 Optical transmitter and timing adjustment method

Also Published As

Publication number Publication date
JPWO2014103231A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5451872B2 (en) Light modulator
JP4646048B2 (en) Single sideband signal light generation method and single sideband signal light generation circuit
US8116635B2 (en) Polarization multiplexing and transmitting apparatus
JP4893570B2 (en) Multilevel optical phase modulator
JP4983466B2 (en) Optical modulation device, optical modulation method, and optical transmission device
JP4522417B2 (en) Light modulation apparatus and light modulation method
JP5353387B2 (en) Method and apparatus for driving optical modulator, and optical transmitter using the same
JP5321677B2 (en) Method and system for setting phase modulation timing of xPSK transmitter
JP2008092172A (en) Optical transmitter
US8611760B2 (en) Optical modulation device and optical modulation method
US9122084B2 (en) Phase modulation apparatus
WO2008023480A1 (en) Mach-zehnder light modulator, mach-zehnder light modulating method, light transmitter, light modulator, light transmitting apparatus, and light receiving apparatus
EP1716648B1 (en) System for generating optical return-to-zero signals with alternating bi-phase shift and frequency chirp
JP5068240B2 (en) Optical transmission system, transmitter and receiver
JP2009027517A (en) Optical transmission circuit
WO2014103231A1 (en) Mach-zehnder optical modulator, optical communication system, and control method for mach-zehnder optical modulator
US8472812B2 (en) Optical communication system, optical communication method and optical communication apparatus
US20230006760A1 (en) Method and apparatus for optical pulse sequence generation
JP4809270B2 (en) Optical transmission apparatus and method
US8165473B2 (en) Optical-time-division-multiplexing differential phase shift keying signal generating apparatus
JP6900764B2 (en) Optical transmitter
JP5691426B2 (en) Optical transmitter and polarization bit interleave signal generation method
Vanhoecke et al. Multi-level optical signal generation using a segmented-electrode InP IQ-MZM with integrated CMOS binary drivers
JP4255319B2 (en) Phase control device and optical transmission device
JP2005006176A (en) Optical phase detection apparatus, optical phase control apparatus, and optical transmission apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869294

Country of ref document: EP

Kind code of ref document: A1