Nothing Special   »   [go: up one dir, main page]

WO2014199621A1 - 無線通信システムにおけるハンドオーバ制御方法、中継装置およびターゲットセル選択方法 - Google Patents

無線通信システムにおけるハンドオーバ制御方法、中継装置およびターゲットセル選択方法 Download PDF

Info

Publication number
WO2014199621A1
WO2014199621A1 PCT/JP2014/003058 JP2014003058W WO2014199621A1 WO 2014199621 A1 WO2014199621 A1 WO 2014199621A1 JP 2014003058 W JP2014003058 W JP 2014003058W WO 2014199621 A1 WO2014199621 A1 WO 2014199621A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
information
relay device
handover
Prior art date
Application number
PCT/JP2014/003058
Other languages
English (en)
French (fr)
Inventor
昌志 中田
佳央 植田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP14811167.7A priority Critical patent/EP3010282B1/en
Priority to JP2015522537A priority patent/JP6090612B2/ja
Priority to US14/897,166 priority patent/US10743223B2/en
Publication of WO2014199621A1 publication Critical patent/WO2014199621A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a handover control technique in a radio communication system, and more particularly to a handover target cell selection method in a relay apparatus.
  • HNB Home Node B
  • UE User User Equipment
  • HNB Home Node B
  • a wireless area covered by one HNB is a narrow range such as in an office or a user's house, it is also called a small cell, a micro cell, a femto cell, a pico cell, or the like.
  • femtocell is used as including these cells. A large number of such femtocells are generally set in a macrocell that covers a wide area.
  • PSC Primary Scrambling Code
  • UMTS Universal Mobile Telecommunications System
  • PCI Physical Cell Identity
  • PSCs are used redundantly for a large number of femtocells set in a macro cell, and Cell Identity cannot be uniquely linked from the PSC. This is the cause of PSC ambiguity.
  • A) PSC ambiguity resolution in RNC According to the supplementary document C.2 (pages 75 to 76) of Non-Patent Document 1, first, as a first step, the UE connected to the HNB of the femtocell is In the process of handing over (handing out) to a macro cell, information necessary for the RNC is stored in a database. Subsequently, as a second step, the target cell (femto cell) is specified by using information in the database when the UE hands in.
  • the UE located in the femto cell transmits a measurement report (Measurement Report) to the HNB, and in response, the HNB transmits a handover request message to the RNC via the HNBGW.
  • the RNC stores and learns the information of the handover request message in a database.
  • This database information includes femto cell logical cell identification information (Cell Identity) and its PSC, macro cell Cell Identity under RNC and its PSC, and the time difference between the femto cell and macro cell reference time measured by the UE (Delta Observed) Time Difference: Delta_OTD) is included.
  • the RNC when receiving the Measurement Report from the UE located in the macro cell, acquires the Cell Identity of the femto cell serving as the handover target from the database information, and performs handover to the HNB of the femto cell via the HNBGW. Send a request message.
  • the Cell identity of the femto cell is set, and this Cell identity is the Cell identity set in the UE History information in the handover request message in the first step handout.
  • Non-Patent Document 1 PSC ambiguity resolution in HNBGW According to the supplementary material C.3 (pages 76-77) of Non-Patent Document 1, it is basically the same as the method solved by RNC in Chapter C.2, but the database The storage location is HNBGW.
  • a handover request message is transmitted from the HNB as described above.
  • the HNBGW receives the handover request message, it builds database information from the message and forwards the handover request message to the RNC.
  • the database information includes femto cell logical cell identification information (Cell Identity) and its PSC, Cell ⁇ Identity of the macro cell under the RNC and its PSC, and delta_OTD information related to the femto cell and its neighboring macro cell.
  • delta_OTD represents the time difference between the reference time of the macro cell and the femto cell measured by the UE.
  • the UE transmits a Measurement Report to the RNC, and the RNC transmits a handover request message including the Measurement Report to the HNBGW.
  • the HNBGW selects the handover target femto cell from the Cell Identities set in the UE History Information of the handover request message and the constructed database information, and transmits the handover request message to the HNB of the femto cell.
  • 3GPP TS 25.467 V11.1.0 (2012-12) UTRAN Architecture for 3G Home Node B (HNB) Stage 2 (Release 11) Applicable location: Annex C 3GPP TR 37.803 V11.1.0 (2012-12) Universal Mobile Telecommunications System System (UMTS) and LTE LTE Mobile Mobility Node for B Home (Node B) (HNB) and Home Enhanced Node B (HeNB) (Release 11) UE Mobility
  • the above-described PSC ambiguity solving methods A and B are applicable when the HNB registered in the HNBGW is composed of one cell as shown in FIG. As shown in FIG. 2, in a configuration in which HNBGWb is registered in HNBGWa and a plurality of HNBb1 and NBHNBb2 are connected under HNBGWb, a case where a handover target cell cannot be specified may occur as described below.
  • the Cell Identity set in the UE History Information of the handover request message at the time of handout HNBGWb CellbIdentity or HNBb2 Cell Identity is set.
  • HNBGWa When Cell Identity of HNBGWb is set in UE History Information, HNBGWa can identify Cell Identity of HNBGWb, but HNBGWb cannot identify which HNB under its control is a handover target cell. A. 2) When the Cell Identity of HNBb2 is set in UE History Information, HNBGWa knows only the Cell Identity of HNBGWb and does not know the HNB Cell Identity under its control. Even if it sees Identity, it does not know which HNB or HNBGWb should transmit a handover request message.
  • the Cell Identity ⁇ set in the UE History Information of the handover request message at the time of handout is set in the HNBGWb Cell Identity or Cell Identity of HNBb2 is set.
  • B. 1 When Cell Identity of HNBGWb is set in UE History Information, HNBGWa does not know which HNB under HNBGWb is handed out, so it cannot know PSC of HNBb2 cell and transmits from UE The OTD of the cell of HNBb2 cannot be specified from the measured result. For this reason, the delta_OTD regarding the femtocell of HNBb2 and the macro cell under the RNC cannot be calculated.
  • B. 2 When Cell Identity of HNBb2 is set in UE History Information, HNBGWa has only information of Cell Identity of HNBb2 and does not know PSC of HNBb2. Therefore, the OTD of the cell of HNBb2 cannot be specified from the measured result. As a result, it is impossible to calculate delta_OTD related to the femtocell of HNBb2 and the macro cell under the RNC.
  • the HNBGWa cannot acquire information that can identify the HNBGWb and the HNBb2 from the handover request message received in the second step, even if referring to the database information. That is, with the database information of HNBGWa constructed by handout, hand-in to the femtocell under HNBGWb shown in FIG. 2 cannot be realized.
  • Non-Patent Documents 1 and 2 can be put into practical use only in a configuration in which a base station connected to the HNBGW has one cell as shown in FIG.
  • a network configuration having a multi-stage configuration of HNBGW-HNB as shown in FIG. 2 there are cases where a target cell in the hand-in phase cannot be specified.
  • an object of the present invention is to provide a handover control method, a relay device, and a target cell selection method that can specify a target cell in the hand-in phase even in a network configuration in which relay devices are connected in multiple stages. It is in.
  • a base station control device and a first relay device are connected to a communication network, and at least one first base station is connected under the base station control device.
  • a handover control method in a wireless communication system in which at least a second relay device is connected to at least one second base station under the second relay device, wherein the first relay device is the second relay device.
  • the first relay An apparatus specifies the target cell for the handover using the cell information.
  • a relay device is a relay device that is connected to a communication network to which a base station control device is connected and has at least a lower level relay device connected thereto, and has at least one first subordinate to the base station control device.
  • Storage means for storing cell information of a cell to which a base station is connected, at least one second base station is connected under the lower relay apparatus, and controlled by the second base station under the lower relay apparatus;
  • Control means for specifying a handover target cell using the cell information in a hand-in phase in which a radio station performs handover from the first base station to which the radio station is wirelessly connected to the second base station.
  • a base station control device and a first relay device are connected to a communication network, and at least one first base station is connected under the base station control device.
  • a method of selecting a target cell in the first relay device in a wireless communication system in which at least a second relay device is connected to the subordinate and at least one second base station is connected to the second relay device the storage means Stores cell information of a cell controlled by a second base station under the control of the second relay device, and the control means performs handover from the first base station to which the radio station is wirelessly connected to the second base station.
  • the handover target cell is selected using the cell information.
  • a base station control device and a first relay device are connected to a communication network, and at least one first base station is connected under the base station control device, and the subordinates of the first relay device are connected. At least a second relay device, and at least one second base station connected to the second relay device, wherein the first relay device is subordinate to the second relay device.
  • the first relay device includes The handover target cell is specified using cell information.
  • the first relay device acquires the cell information of the second base station under the second relay device, and uses the acquired cell information in the hand-in phase to the cell of the second base station.
  • the target cell connected under the second relay device on the target cell side.
  • FIG. 1 is a configuration diagram showing a system architecture for explaining the background art.
  • FIG. 2 is a configuration diagram showing a system architecture for explaining the problems of the background art.
  • FIG. 3 is a block diagram showing an example of the architecture of a wireless communication system according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a schematic configuration of the first relay device in the present embodiment.
  • FIG. 5 is a block diagram showing a schematic configuration of the second relay device in the present embodiment.
  • FIG. 6 is a sequence diagram showing a handover control operation of the wireless communication system according to the present embodiment.
  • FIG. 7 is a schematic diagram showing an example of database storage information in the present embodiment.
  • FIG. 8 is a block diagram showing an example of the architecture of a wireless communication system for explaining an embodiment of the present invention.
  • FIG. 9 is a sequence diagram illustrating a handover target cell selection method according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram for explaining the format of the HNB registration request message in the first embodiment.
  • FIG. 11 is a schematic diagram for explaining the format of the HNB configuration update message in the first embodiment.
  • FIG. 12 is a flowchart showing the cell information registration operation in the first embodiment.
  • FIG. 13 is a schematic system configuration diagram showing the sequence of the hand-in phase in the first embodiment.
  • FIG. 14 is a flowchart showing a search and cell characteristic operation using the database in the first embodiment.
  • FIG. 15 is a flowchart showing the filtering operation in FIG.
  • FIG. 16 is a flowchart showing the handout operation in the first embodiment.
  • FIG. 10 is a schematic diagram for explaining the format of the HNB registration request message in the first embodiment.
  • FIG. 11 is a schematic diagram for explaining the format of the HNB configuration update message in the first embodiment.
  • FIG. 12 is
  • FIG. 17 is a sequence diagram illustrating a handout phase in the handover target cell selection method according to the second embodiment of the present invention.
  • FIG. 18 is a schematic system configuration diagram showing the sequence of the handout phase in the second embodiment.
  • FIG. 19 is a flowchart showing the cell information registration operation in the second embodiment.
  • FIG. 20 is a flowchart showing cell information registration operation at the time of handout in the second embodiment.
  • a base station controller connected to a network connects a plurality of first base stations, and a first relay device connected to the same network is connected to a base station It is assumed that the second relay device is connected, and the second relay device is connected to a plurality of second base stations.
  • the radio station performs hand-in from the first base station under the control of the base station controller to the second base station under the second relay device as follows. First, the first relay device acquires cell information of a second base station that is under the second relay device.
  • the first relay device uses the registered cell information to connect to the subordinate of the second relay device on the target cell side.
  • the second base station that is the selected target cell can be specified.
  • FIG. 3 shows an example of a multistage network configuration to which a wireless communication system according to an embodiment of the present invention is applied.
  • one base station 10 and one relay device (second relay device 2) are connected under the control of one relay device (first relay device 1).
  • first relay device a plurality of base stations and a plurality of relay devices may be connected under the first relay device 1, and no base station is installed under the first relay device 1. Form may be sufficient.
  • the base station 10 controls the cell 11, and the second relay apparatus 2 connects a plurality of base stations (here, three base stations 4-6) under the control of the base station 4-6. 7-9 are controlled respectively.
  • the first relay device 1 is connected to the base station control device 14 and the core network 15, and the base station 12 connected to the base station control device 14 controls the cell 13.
  • the cell 13 is a cell covering a wide range, and it is assumed that the cell 7-9 and the cell 11 are adjacent to the cell 13.
  • the cell 13 is a macro cell, and the cells 7-9 and 11 are femto cells adjacent to the macro cell 13.
  • the radio station 16 is a mobile station, user terminal, portable terminal, or the like that can move between cells.
  • the cell 7-9 subordinate to the second relay device 2 is treated as one virtual cell 3 constructed by the second relay device 2 when viewed from the base station control device 14.
  • a virtual cell is a cell as one management unit viewed from the base station control device 14 or the first relay device 1, and a plurality of base stations or first relay devices 1 in the cell managed by the base station control device 14.
  • cell information related to the cells 7-9 subordinate to the second relay device 2 is registered in the database of the first relay device 1 by some method.
  • the radio station 16 wirelessly connected to the base station 12 of the cell 13 hands in from the cell 13 to the cell 9
  • the first relay device 1 is registered in the database when receiving the handover request from the base station control device 14.
  • the cell information it is possible to know that the target cell of the handover is the cell 9 under the second relay device 2 and to transmit a handover request to the base station 6 through the second relay device 2 .
  • the first relay device 1 includes a communication unit 101, a lower-level device communication unit 102, a protocol message construction unit 103, a database 104, and a control unit 105.
  • the first relay device 1 can exchange messages with the base station control device 14 and the core network 15 by the communication unit 101, and can exchange messages with the subordinate base station and the second relay device by the lower-level device communication unit 102.
  • the protocol message construction unit 103 constructs and analyzes a protocol message exchanged between the base station control device 14, the core network 15, the subordinate base station 10, and the second relay device 2. A specific example of the protocol message will be described in an embodiment described later.
  • the database 104 has the following information: 1) a registration table that correlates the PSC of the cell and the address of the base station or the second relay device 2 that constructs the cell from the cell identification information (Cell Identity); 2) Store and manage neighboring cell information of relay apparatus 2; 3) virtual cell identification information (Cell Identity) mapped from cell 13 to virtual cell (Cell ⁇ ⁇ Identity); and 4) delta_OTD table.
  • mapping information from the cell 13 to the virtual cell (Cell Identity) is manually given by the operator as an O & M system parameter of the first relay device 1.
  • the virtual cell identification information is the base station, the second relay device, or the second relay in which the PSC of the handover target cell in the Measurement Report received from the UE by the base station control device 14 is the subordinate of the first relay device 1.
  • Cell Identity is Cell Identity set as a handover destination (Target Cell Identity) in the handover table of the base station control device 14.
  • the first relay device 1 receives a base station registration request message from a subordinate base station or the second relay device 2 through the lower-level device communication unit 102
  • information included in the message is stored in a database. 104. Details of the database 104 will be described later (see FIG. 7).
  • the control unit 105 controls the operation of the first relay device 1 and executes operations such as database information construction, protocol processing, and handover request message routing, as will be described later.
  • the functions equivalent to the protocol message construction unit 103 and the control unit 105 can also be realized by executing a program stored in a memory (not shown) on a computer (processor).
  • the second relay device 2 includes a host device communication unit 201, a base station communication unit 202, a protocol message construction unit 203, a subordinate base station information storage unit 204, and a control unit 205. Protocol messages are exchanged between the relay device, subordinate base stations, and UEs.
  • the second relay device 2 exchanges messages with the first relay device 1 by the higher-level device communication unit 201, and the base station communication unit 202 receives a measurement report from a subordinate base station and transmits a protocol message.
  • the protocol message construction unit 203 constructs and analyzes a protocol message exchanged between the first relay device 1 and a subordinate base station. A specific example of the protocol message will be described in an embodiment described later.
  • the subordinate base station information storage unit 204 stores base station information (cell information) of the base stations 4-6 subordinate to the second relay device 2.
  • the cell information includes cell identification information, PSC, address, neighboring cell information, and the like.
  • the control unit 205 controls the operation of the second relay device 2 and executes operations such as cell information notification processing and handover request message routing, as will be described later.
  • the functions equivalent to the protocol message construction unit 203 and the control unit 205 can also be realized by executing a program stored in a memory (not shown) on a computer (processor).
  • handover control As shown in FIG. 6, handover control according to the present embodiment is divided into cell information registration / update operation and handover target cell selection operation after receiving a measurement report from the terminal.
  • the control unit 205 of the second relay device 2 reads cell information of the subordinate base station 4-6 (cell 7-9) from the subordinate base station information storage unit 204, and the protocol message construction unit 203 reads the cell information. Is transmitted to the first relay device 1 through the higher-level device communication unit 201 (operation S20).
  • the cell information may be notified by any method, but there are a method of using a registration request / update message and a method of using a protocol message in the handout phase as will be described later.
  • control unit 105 of the first relay device 1 When the control unit 105 of the first relay device 1 receives the cell information notification message through the lower-level device communication unit 102, the control unit 105 extracts cell information from the received message, and subordinates the base station subordinate to the database 104 and the subordinate cell of the second relay device 2. The information regarding is registered in a predetermined table format (operation S21). The control unit 105 can update the registration information in the database 104 every time there is a notification of cell information from the second relay device 2.
  • the control unit 105 searches the database 104 using cell information such as target cell identification information and source cell identification information included in the handover request message, and performs handover.
  • the second relay device 2 and the target cell 9 to which the request message is to be transferred are specified (operation S24).
  • control unit 105 transmits a handover request message to the base station 6 of the target cell 9 through the lower-level device communication unit 102 (operation S25), and from the source cell 13 to the target cell 9 Is executed (operation S26).
  • the database 104 provided in the first relay device 1 stores, as an example, a base station registration table, a virtual cell ID table, and a cell information / time difference table. .
  • the base station registration table is constructed by registering the cell identification information, PSC and address based on the registration request / update message or handover request message received from the base station or relay device under the first relay device 1 It is a table that was made.
  • the cell identity of the cell 11, the PSC and the address of the base station 10 are registered as one record.
  • the cell identity of the virtual cell, the PSC, and the address of the second relay device 2 are not registered.
  • the Cell identity of each cell 7-9, the PSC, and the address of the second relay device 2 are registered for each base station 4-6 under the control of the second relay device 2.
  • the virtual cell ID table is stored under the control of the first relay device 1 or the second relay device 2 based on the registration request / update message or the handover request message received from the base station or relay device under the first relay device 1. It was constructed by registering the mapping between the neighboring macro cell of a certain base station and virtual cells corresponding to a plurality of cells of the base station under the control of the first relay device 1 or the second relay device 2 as seen from the macro cell. It is a table. One macro cell may be mapped to a plurality of virtual cells, or a plurality of macro cells may be mapped to one same virtual cell. In the network of this embodiment shown in FIG. 3, since one virtual cell 3 exists in the macro cell 13, the mCell_ID of the macro cell 13 is mapped to the vCell_ID of the virtual cell 3.
  • the cell information / time difference table is obtained by using a registration request / update message or a handover request message received from a base station or relay device under the control of the first relay device 1, the base station registration table, and the virtual cell ID table.
  • information on the femtocell and macrocell identification information, PSC
  • delta_OTD time difference of reference time between macro-femtocell
  • list additional information
  • the cell identification information regarding the cell 7-9 under the control of the second relay device 2 the cell information including the PSC information and the address information, or in addition to these, the OTD Cell information including information, information indicating a relationship with a neighboring cell, and the like is registered in the database of the upper first relay apparatus 1.
  • the radio station 16 wirelessly connected to the base station 12 of the cell 13 hands in from the cell 13 to the cell 9
  • the first relay device 1 is registered in the database when receiving the handover request from the base station control device 14.
  • the target cell of the handover is the cell 9 under the second relay device 2 even if the PSC is used redundantly, and the base station 6 through the second relay device 2
  • a handover request can be transmitted to
  • the wireless communication system shown in FIG. 8 has a network configuration corresponding to the system shown in FIG. 3. Corresponding devices are denoted by the same reference numerals, and detailed description of each device is omitted.
  • GW (gateway) 1 and GW2 in FIG. 8 are the first relay device 1 and second relay device 2 in FIG. 3, HNB (Home NodeB) 4-6 and 10 are the base stations 4-6 and 10, and the base station 12 Corresponds to the NodeB 12, the base station controller 14 corresponds to the RNC (RadioRadNetwork Controller) 14, and the UE 16 corresponds to the radio station 16.
  • the macro cell 13 corresponds to the cell 13, and the cells 7-9 and 11 correspond to the femto cells 7-9 and 11, respectively.
  • a plurality of HNBs and a plurality of GWs can be connected under the control of GW1, and FIG. 8 only shows one HNB and GW, respectively, in order to avoid the complexity of the drawing. Absent. It is also possible to connect only one or more GWs without being connected to the HNB.
  • the radio base station system generally includes a Node B 12 that is a public radio base station covering a wide range and an RNC 14 that controls a plurality of Node Bs.
  • the NodeB 12 constructs the macro cell 13 as a communication area.
  • the RNC 14 that controls the NodeB 12 is connected to the core network 15 including MSC (Mobile Switching Center), SGSN (Serving GPRS Support Node), etc., and can be connected to the GW 1 as described later.
  • MSC Mobile Switching Center
  • SGSN Serving GPRS Support Node
  • the HNBs 4-6 and 10 are small radio base stations that generally cover a narrow range in one node.
  • the installation location of the HNB is not only a general home but also a condominium, a commercial building, a shopping mall, a downtown streetlight, and the like, and a wide communication area can be constructed by one or a plurality of HNBs.
  • GW2 is a gateway device that enables a plurality of HNBs to be directly connected, and relays between an HNB system composed of a plurality of HNB4-6 and GW1.
  • GW2 functions as one HNB similar to HNB10 for GW1.
  • the cell identification information (Cell9Identity) allocated to GW2 is virtually one cell (virtual cell 3) even though there are cells 7-9 constructed by HNB4-6 under GW2. Is considered.
  • the UE 16 can perform inter-cell handover while receiving a reference signal (pilot signal) from a neighboring cell.
  • a handover operation between the macro cell 13 and the femto cell 9 will be described in detail.
  • the femtocell 9 is a source cell and the macrocell 13 is a target cell.
  • the macrocell 13 is a source cell and the femtocell 9 is a target cell.
  • GW1 holds HNB identification information (ID), cell identification information (Cell Identity), and PSC information assigned to HNB one by one.
  • the HNB 10 constructs a single cell 11, and a PSC value different from that of an adjacent cell is set in the cell 11.
  • GW 1 holds HNB identification information, cell identification information Cell Identity, and PSC information assigned to GW 2 one by one.
  • the PSC allocated to the GW 2 does not have to be the same as the PSC value of the cell 7-9 of the subordinate HNB 4-6, and the GW 2 may not hold the PSC information.
  • the HNB identification information and cell identification information are included in the message received from the subordinate apparatus, and the GW1 determines whether the subordinate apparatus is HNB or GW from the HNB identification information and cell identification information. Is also possible.
  • the GW 2 can be connected to a plurality of HNBs (4, 5, 6), and holds cell identification information and PSC information allocated to each of the subordinate HNBs. Although the same value may be used for the PSC, neighboring cells are generally set to different PSC values in order for the UE 16 to identify the cell.
  • GW2 can treat cells 7, 8, and 9 together as if it were one virtual cell 3.
  • GW2 registration message 3GPP TS 25.469 V11.1.0 (2012-12) UTRAN ⁇ Iuh interface Home Node B (HNB) Application Part (HNBAP) signalling (Release 11)
  • the PSC is an optional parameter that does not always need to be set, the GW 2 may not set the PSC information of the virtual cell 3 in the registration message of the GW 2.
  • the RNC 14 can be connected not only to one NodeB 12 but also to a plurality of NodeBs, and the cell 13 constructed by the NodeB 12 is larger than the cells 7, 8, 9, 11, and may include some or all of them. Is possible.
  • RNC14 is connected with GW1 via the core network 15, it is not limited to this, RNC14 and GW1 may be directly connected.
  • the database information of GW1 is constructed using cell information included in the HNB registration request / update message received from GW2.
  • the control unit 205 of the GW 2 includes a cell including cell identification information of the subordinate HNB 4-6 (cell 7-9), information on the PSC and neighboring cells (PSC and delta_OTD, etc.) from the subordinate base station information storage unit 204.
  • the information is read, an HNB registration message (HNB REGISTER REQUEST) is constructed by the protocol message construction unit 203, and is transmitted to the GW 1 through the higher-level device communication unit 201 (operation S30).
  • the HNB registration message will be described later (see FIG. 10).
  • control unit 105 of the GW1 When the control unit 105 of the GW1 receives the HNB registration message through the lower-level device communication unit 102, the control unit 105 extracts cell information from the HNB registration message, and registers information on the subordinate cells of the subordinate HNB and the GW2 in the database 104 in a predetermined table format. (Operation S31).
  • the control unit 205 of the GW 2 changes the subordinate base station information storage unit when there is a change in the configuration of the subordinate HNB system (addition or removal of the HNB), Cell Identity, PSC, neighboring macro cell, or Delta_OTD information with the neighboring macro cell.
  • the information of 204 is updated (operation S32), the protocol message construction unit 203 constructs an HNB update message (HNB CONFIGURATION ⁇ UPDATE) using the updated cell information, and transmits it to the GW1 through the host device communication unit 201 (operation S33). ).
  • the control unit 105 of the GW 1 updates the registration information in the database 104 every time an HNB update message is received from the GW 2 (Operation S34). The HNB update message will be described later (see FIG. 11).
  • the control unit 105 searches the database 104 using cell information such as target cell identification information and source cell identification information included in the handover request message, and forwards the handover request message.
  • the GW 2 and the femtocell 9 to be specified are specified (operation S37).
  • control unit 105 transmits a handover request message to the HNB 6 of the femto cell 9 that is the target cell through the lower apparatus communication unit 102 (operation S38), and from the macro cell 13 to the femto cell 9 Is executed (operation S39).
  • HNB registration request / update message When an HNB registration message is used as a message for transmitting cell information from GW2 to GW1, one or more combinations of HNB cell identification information (Cell Identity) and PSC may be set. Is possible. Furthermore, it is possible to include delta_OTD information between each HNB and one or more neighboring cells.
  • Cell Identity HNB cell identification information
  • PSC PSC cell identification information
  • Local Cell Information includes cell identification information Cell-ID and PSC of each subordinate cell
  • Neighbor Information includes adjacent cell information (PSC and delta_OTD) of each subordinate cell.
  • cell identification information Cell-ID and PSC of a plurality of femtocells 7-9 and PSC and delta_OTD of a macro cell 13 adjacent to Neighbor Information are stored in Local Cell Information.
  • Cell ID may be included in the neighboring cell information of subordinate cells in NeighborbInformation, and in this case, the accuracy of the above-described database search (operation S37 in FIG. 9) is increased.
  • the macro cell ID can be acquired in the registration of the cell information / time difference table in the above-described operations S31 / S34.
  • the GW 2 can know the delta_OTD between the subordinate HNB and the macro cell 13 by measuring neighboring cells of the subordinate HNB. In that case, when it deviates more than a predetermined threshold value from delta_OTD notified the first time or last time, you may send as update information. In consideration of the possibility of deviation of several chips due to the drift of the cell reference signal due to the radio wave propagation distance or long-time operation, the value of delta ⁇ OTD for determining whether or not they are the same can be widened. For example, if the width for delta_OTD is 1000 and the delta_OTD value is 10000, it is determined that the cells have the same delta_OTD information from 9000 to 11000. In this case, it is desirable that the predetermined threshold value for comparison has a width equal to or less than the width of delta_OTD.
  • a width is determined so that the delta OTD is determined to be the same, a shift occurs in the OTD due to a propagation distance difference due to a different location for handover within the cell, and as a result, a shift also occurs in the delta_OTD information Even if it is, it can determine with the same cell and can raise the probability of specifying a target cell. The same effect can be obtained even if the cell reference signal is slightly shifted from the transmission timing of the cell reference signal due to long-term operation of the cell.
  • a message other than the HNB registration message can be used as a message for transmitting cell information from GW2 to GW1.
  • the Sector Information of the HNB update message includes Sector ⁇ List of all HNBs under GW2, Sector2List additionally connected to GW2, Sector List to be changed, and Sector List to be deleted. Can also be transmitted.
  • Sector Information stores cell identification information Cell-ID and PSC, and PSC and delta_OTD of the macro cell 13 adjacent to Neighbor Information.
  • HNB REGISTER REQUEST the cell information registration operation using the HNB registration message
  • the HNB REGISTER REQUEST message mainly includes the following information: -HNB ID -Cell Identity -PSC -Macrocell information of neighboring HNBs under HNB or GW2. Other information is not directly related to the present embodiment and will be omitted.
  • the protocol message construction unit 103 determines whether the registered node is an HNB having only a single cell or a GW 2 having a plurality of cells (operation S303). For this identification determination, parameters of the HNB REGISTER REQUEST message, for example, the IP Address and port number of the transmission source of the received message can be used. Other than this, it can also be distinguished from, for example, character string information, cell identification information (Cell Identity), or PSC information included in the HNB ID.
  • Cell Identity cell identification information
  • PSC information included in the HNB ID.
  • the control unit 105 registers the combination of Cell Identity, PSC and Address of the HNB in the base station registration table of the database 104 ( Operation S304).
  • the protocol message construction unit 103 determines whether the received HNB
  • control unit 105 determines whether or not a macro cell adjacent to the HNB / GW is set in the received HNB REGISTER REQUEST message (operation S307).
  • the control unit 105 stores the macro cell information in the vicinity thereof in addition to the HNB / GW information (operation S308). In this way, the table information illustrated in FIG. 7 can be registered in the database 104.
  • UE 16 while NodeB12 wirelessly connected within macrocell 13, a PSC Cell9 from the pilot signal of the femtocell 9, the PSC Cell13 from the pilot signal of the macrocell 13, respectively receive. At this time, the UE 16 transmits a Measurement Report message to the RNC 14 based on a measurement result such as the pilot reception power of the femtocell 9 being larger than that of the macrocell 13 (operation S35).
  • the Measurement Report contains the Event the Result (event results) Measured the Result (measurement result), the Event the Result is set PSC Cell9 femtocells 9, the Measured the Result, information on the femtocell 9 (PSC Cell9 , The time difference OTD cell9 of the reference time between the UE 16 and the femtocell 9) and the information about the macro cell 13 (PSC Cell13 , time difference OTD cell13 of the reference time between the UE 16 and the macro cell 13) are set.
  • the time difference OTD treated here is the SFN (System Frame Number) of the physical channel called the primary CCPCH (Common Control Physical Channel) of the femtocell 9 and the macrocell 13 and the Frame Offset of the UE16 RLC Transparent Mode COUNT-C. Chip Offset.
  • SFN System Frame Number
  • CCPCH Common Control Physical Channel
  • RRC Radio Resource Control
  • Tm Tm
  • the RNC 14 When receiving the Measurement Report message, the RNC 14 uses the handover routing table provided therein, and from the PSC Cell 9 of the Event Result, the target cell is a cell under the control of the GW 1 (in this case, any cell included in the virtual cell 3). And a RANAP: Relocation Required (handover request) message is transmitted to the core network 15 (operation S36).
  • Relocation Required message 1) Target ID (target identification information) 2) Target Cell Identity 3) UE History Information (terminal history information) 4) Source RNC to Target RNC Transparent Container Is set.
  • the identification information of GW1 is set as the Target ID
  • the cell identification information (virtual cell ID) under the control of GW1 is set as the Target Cell Identity.
  • the UE History Information includes a set of the cell identity of the cell where the UE 16 is located as the IE Cell Identity and the time the UE 16 stayed in the cell as the IE UE Stayed in Cell. It is set for each.
  • Measurement Report received from the UE 16 is set in the Source RNC to Target RNC Transparent Container.
  • the GW 1 receives a RANAP: Relocation Request (handover request) message from the core network 15 (operation S36).
  • RANAP Relocation Request message 1) Target Cell Identity 2) UE History Information 3) Source RNC to Target RNC Transparent Container Is set.
  • Cell Identity indicating a cell (virtual cell) under GW1 is set in Target Cell Identity
  • Measurement Report received from UE 16 is set in Source RNC to Target RNC Transparent Container.
  • the control unit 105 compares the received RANAP: Relocation Request message information with the information registered in the database 104, and the Cell of the femtocell 9 that the HNB 6 constructs as HandoverHandTarget Cell.
  • the Identity is specified, and the GW 2 to which the HNB 6 is connected is selected as a message transmission destination (Operation S37).
  • the control unit 105 sets the Cell Identity of the femtocell 9 as the Target Cell Identity, and transmits a RANAP: Relocation Request message in which the GW2 address is set as the destination address from the lower apparatus communication unit 102 (Operation S38).
  • the control unit 205 of the GW 2 that has received this RANAP: Relocation Request message shows that it is a hand-in procedure from the Target Cell Identity of the message to the femtocell 9 of the HNB 6.
  • the control unit 105 determines that the Target Cell Identity included in the received message is It is confirmed whether it is included in the HNB registration table of the database 104 (operation S311). If not included (operation S311; NO), the control unit 105 further confirms whether or not the measurement report is correctly set (operation S312). For example, whether or not two or more OTD (Observed Time Difference) information is set for the cell corresponding to the Target PSC set in Event Result, which is event information indicating the handover destination such as Intra-Frequency Measurement Event 1a, 1c, 1e Check if.
  • OTD Observed Time Difference
  • control unit 105 executes filtering using the cell information / time difference table in database 104 according to various information set in the RANAP: Relocation Request message. (Operation S313). This filtering process will be described later.
  • control unit 105 checks the number of records remaining after filtering (number of candidates) (operation S314), and if the number of candidates is 1, selects the cell-identity of the femtocell corresponding to the candidate (operation S315). ). If the number of candidates is two or more, the delta_OTD calculated from the OTD information included in the Measured Result of the RANAP: Relocation Request message, and the delta_OTD (other-f) of the additional information of the remaining candidates, that is, the OTD for other cells By comparing the difference with the OTD related to the femtocell, only one candidate that most closely matches is selected, and the Cell Identity of the femtocell is specified (operation S316).
  • any delta_OTD information is neighboring cell information excluding the target cell and the macro cell, the femto cell can be identified with a higher probability as the neighboring cell information matches the delta_OTD information.
  • a specific example of a method for calculating delta_OTD from OTD information included in Measured Result will be described later.
  • the control unit 105 sets the determined cell identity to the Target cell identity of the RANAP: Relocation request message, and corresponds to the cell identity from the HNB registration table.
  • the address of the HNB / GW to be acquired is acquired and set as the destination.
  • the RANAP: RelocationReRequest message can be transmitted to the HNB 6 of the femtocell 9 and the handover to the femtocell 9 can be executed (operation S317).
  • the control unit 105 determines that handover has failed and transmits RANAP: Relocation Failure to the core network 15. Then, the handover is rejected (operation S318). Further, if the Target Cell Identity included in the received RANAP: Relocation Request message is included in the HNB registration table of the database 104 (operation S311: YES), the Target Cell Identity is already a unique cell in the RNC 14 or the core network 15. It is determined that it has been specified, and a RANAP: Relocation Request message is transmitted to the address of the HNB / GW corresponding to the Cell Identity acquired from the HNB registration table (operation S319).
  • OTD is the difference between the SFN of the P-CCPCH, which is the cell reference time, and the RLC-Transparent-Mode-Count-C, which is the UE reference time, and consists of IE-COUNT-C-SFN-high, OFF, and Tm.
  • the OTD information is included in the Measured Result of the Measurement Report transmitted from the UE in a set with the PSC for each cell measured by the UE.
  • the PSC of the macro cell 13 is generally included in the Measured Result of the Measurement Report
  • the PSC of the femtocell 9 is included in the Event Result of the Measurement Report
  • OTD_macro, OTD_femto, and delta OTD (mf) are calculated by the following formulas: Is done.
  • OTD_macro (COUNT-C-SFN high (macro) * 256 + OFF (macro)) * 38400 + Tm (macro)
  • OTD_macro OFF (macro) * 38400 + Tm (macro)
  • filtering processing (operation S313 in FIG. 14) using the cell information / time difference table illustrated in FIG. 7 will be described with reference to FIG.
  • a filtering process procedure using a femto cell PSC, a macro cell ID, a virtual cell ID, and a set of PSC and delta_OTD as a filtering key will be described.
  • the order of application of these filtering keys is arbitrary, and FIG. The processing order shown is an example.
  • processing using the femtocell PSC as a filtering key is as follows. Only candidates that match the PSC of Event Result included in the RANAP: Relocation Request message of the cell information / time difference table are left (operation S330).
  • the process using the macro cell ID as a filtering key is as follows. It is confirmed whether or not UTRAN Cell Identity is set in the first entry of UE History Information (operation S331). If UTRAN Cell Identity is set in the first entry of UE ⁇ History Information (operation S331; YES), the macro cell identification information of the cell information / time difference table is included in the first entry of UE History Information included in the RANAP: Relocation Request message. Only candidates that match the set cell identification information are left (operation S332).
  • Processing using virtual cell identification information as a filtering key is as follows. Only candidates whose virtual cell identification information in the cell information / time difference table matches the target cell identification information (Target Cell Identity) included in the RANAP: Relocation Request message are left (S333). Subsequently, the control unit 105 determines whether or not at least one candidate remains in the cell information / time difference table (operation S334). If no candidate remains (operation S334; NO), the state before the filtering process of operation S333 is executed is returned (operation S335). If a candidate remains (operation S334; YES), the process proceeds to the next process as it is.
  • the processing using the combination of PSC and delta_OTD as a filtering key is as follows. First, the control unit 105 calculates delta_OTD from Measured Results of the received RANAP: Relocation Request message (operation S336). The calculation of delta_OTD is as described above. Subsequently, only the candidate whose ⁇ macro cell PSC, delta_OTD (m-f) ⁇ in the cell information / time difference table matches ⁇ PSC, calculated delta_OTD (m-f) ⁇ obtained from Measured Results is left (operation S337).
  • the value of delta_OTD for determining whether or not they are the same can also have a width. For example, when the width for delta_OTD is 1000 and the delta_OTD value is 10000, cells having the same delta_OTD information may be determined when the value of delta_OTD is 9000 to 11000.
  • the control unit 105 of the GW 1 determines whether or not the transmission source is the GW 2 (operation S402). Whether the transmission source is GW or HNB can be grasped from the transmission source address, SCTP (Stream Control Transmission Protocol) Link information, lower layer information, and the like. If the transmission source is GW2 (operation S402; YES), it is determined whether or not UTRAN Cell Identity is set in the UE History information (operation S403). If it has been set (operation S403; YES), PSC information corresponding to the Cell identity of UE History Information is searched from the HNB registration table (operation S404).
  • Measurement Report it is determined whether or not the measurement report (Measurement Report) is correctly set in the RANAP: “Relocation” Required message (operation S405). Specifically, it is the same as the determination method described in operation S312 of FIG. If Measurement Report is set correctly (operation S405; YES), the target cell identification information set in the RANAP: Relocation Required message or the macro coverage around the HNB / GW that is the source of the RANAP: Relocation Required message It is determined whether or not the cell identification information of the information is included in the virtual cell ID table (operation S406). If included (operation S406; YES), at least one virtual cell identification information corresponding to the cell identification information of the target cell identification information or the macro coverage information is acquired from the virtual cell ID table (operation S407).
  • control unit 105 calculates delta_OTD from the measurement report of the received RANAP: Relocation Required message (operation S408).
  • a specific example of the calculation method is as described above.
  • control unit 105 stores the cell identification information and PSC of the HNB, the virtual cell ID list, the cell identification information and PSC of the macro cell, the delta_OTD between the macro cell and the femto cell, and the Measured Results in the cell information / time difference table of the database 104.
  • a PSC of another cell included and a list of delta_OTDs of the other cell and the femto cell are stored (operation S409). Thereafter, the rest of the normal handout procedure is executed (operation S410).
  • the GW 2 notifies the host GW 1 of the cell information related to the cell 7-9 subordinate to the GW 2 using the HNB registration / update message. Using this, the GW 1 constructs a database relating to cell information.
  • the GW 1 refers to the cell information registered in the database.
  • the target cell of the handover is the femtocell 9 under the control of GW2, and a handover request can be transmitted to the HNB 6 through the GW2.
  • the GW 1 since the GW 2 transmits the cell identification information and the PSC information of the HNB to the GW 1, the GW 1 can store that the cell identification information of the HNB and the PSC information are information under the GW 2. Therefore, the GW 1 can specify the target cell in the hand-in, can determine the transmission destination of the handover request message, and can maintain the wireless communication connection without disconnection even when the UE 16 moves.
  • the target cell identification information in the handover request message correctly identifies the target cell in the hand-in phase. If it can, the destination address of the handover request message can be uniquely determined from the database without using the cell information / time difference table.
  • the database of GW 1 holds virtual cell identification information corresponding to macro cell identification information as a virtual cell ID table, filtering of cell information / time difference table by target cell identification information of a handover request message in the hand-in phase. It is possible to increase the probability of specifying the target cell.
  • the message transmitted from GW2 to GW1 includes delta_OTD information between the femtocell and the macrocell, GW1 can construct a cell information / time difference table, and GW1 can identify a target cell in the hand-in phase. It becomes possible.
  • the message sent by GW2 to GW1 is updated each time a femtocell is added or removed, or a cell-identity change, a PSC change, a neighboring macrocell change, or a delta_OTD change between a femtocell and a macrocell is detected.
  • Information can be sent. Therefore, the GW 1 can construct the latest cell information / time difference table.
  • GW2 has a mechanism in which GW2 transmits a message to GW1 only when a predetermined threshold value is exceeded in consideration of changes in delta_OTD between femtocells and macrocells. This eliminates the need for frequent transmission of update messages when the GW 1 constructs the latest cell information / time difference table, which contributes to a reduction in network load.
  • the GW 1 determines the same cell from the information in the cell information / time difference table, since it is determined as the same cell if it is within a certain threshold, there is a slight fluctuation of delta_OTD between the femto cell and the macro cell. Even if it exists, the target cell can be specified.
  • the database information of GW1 is constructed using a handover request message when the terminal UE16 hands out from the femtocell 9 to the macrocell 13.
  • the cell information registration / update operation in the handout phase will be described with reference to FIGS. 17 and 18.
  • the registration / update operation FIGS. 17 and 18 of 4.1 cell information while UE16 is HNB6 and wireless connection femtocell within 9, PSC the PSC Cell9 from the pilot signal of the femtocell 9, from the pilot signal of the macrocell 13 Cell13 is received. Then, based on the measurement result that the pilot reception power of the macro cell 13 is larger than the pilot reception power of the femtocell 9, a measurement report (Measurement Report) is transmitted to the GW 2 through the HNB 6 (Operation S40).
  • This Measurement Report includes an Event Result (measured result) and a Measured Result (measurement result).
  • the PSC Cell 13 of the macro cell 13 is set in the Event Result, and information related to the macro cell 13 (PSC Cell 13,
  • the time difference OTD cell13 of the reference time between the UE 16 and the macro cell 13 and the information about the femtocell 9 (PSC Cell9 , the time difference OTD cell9 of the reference time between the UE16 and the mafemto cell 9) are set.
  • the time difference OTD treated here is the SFN (System Frame Number) of the physical channel called the primary CCPCH (Common Control Physical Channel) of the femtocell 9 and the macrocell 13 and the Frame Offset of the UE16 RLC Transparent Mode COUNT-C. Chip Offset.
  • SFN System Frame Number
  • CCPCH Common Control Physical Channel
  • RRC Radio Resource Control
  • Protocol specification Protocol specification
  • the GW 2 Upon receiving the Measurement Report message, the GW 2 receives the RANAP: Relocation Required (handover) as described in 3GPP TS 25.413 V11.2.0 (2012-12) UTRAN Iu interface Radio Access Network Application Part (RANAP) signaling (Release 11).
  • Request message is constructed and transmitted to GW 1 (operation S41).
  • the identification information of the RNC 14 is set as the Target ID
  • the cell identification information of the macro cell 13 is set as the Target Cell Identity.
  • the combination of the identification information of the femtocell 9 in which the UE 16 is located and the PSC is set as the IE Cell Identity.
  • the GW 1 When the RANAP: Relocation Requested (handover request) message is received, the GW 1 builds the HNB registration table and the cell information / time difference table of the database 104 from the content of the received RANAP: Relocation Request message (operation S42). Furthermore, the GW 1 transmits a RANAP: Relocation Required message to the core network 15 (Operation S43).
  • the configuration of the RANAP: Relocation Required message in operation S43 is the same as the RANAP: Relocation Required message in operation S41 except for the following points.
  • the PSC information of the cell before handover (here, PSC Cell9 ) included in the RANAP: Relocation Required message in operation S41 is deleted
  • the UE Cell Information in the RANAP: Relocation Required message in operation S43 includes the IE Cell Identity.
  • Cell identification information of the cell in which UE 16 is located here, Cell 9
  • the past cell stay time of UE 16 here, Time Cell 9
  • the RNC 14 When the RNC 14 receives the RANAP: Relocation Request message from the GW 1 through the core network 15, the normal handover process is executed thereafter. Note that the handover request message may be transmitted directly from the GW 1 to the RNS 14 without passing through the core network 15.
  • the registration procedure of the cell information in the second embodiment is the same as the procedure of removing the operations S305 and S306 from the registration procedure (operations S301 to S308) in the first embodiment shown in FIG.
  • the control unit 105 sets the combination of the HNB's Cell Identity, PSC, and Address to the base station of the database 104. Register in the registration table (operation S304).
  • operation S304 When the registration of operation S304 is completed, or when the registered HNB is GW2 having a plurality of femtocells (operation S303; YES), the control unit 105 macroblocks adjacent to the HNB / GW in the received HNB REGISTER REQUEST message. Is determined (operation S307). The determination as to whether or not Local Cell information is included in the HNB REGISTER REQUEST message (Operation S305) and registration of the HNB registration table (Operation S306) are not executed.
  • the handout procedure in the second embodiment differs from the handout procedure (operations S401 to S410) of the first embodiment shown in FIG. 16 only in operation S404.
  • the control unit 105 of the GW 1 determines whether or not the transmission source is the GW 2 (operation S402). Whether the transmission source is GW or HNB can be grasped from the transmission source address, SCTP (Stream Control Transmission Protocol) Link information, lower layer information, and the like. If the transmission source is GW2 (operation S402; YES), it is determined whether or not UTRAN Cell Identity is set in the UE History information (operation S403). If set (operation S403; YES), the HNB cell identification information and the PSC and GW2 address information are stored in the HNB registration table of the database 104 (operation S404a).
  • Measurement Report it is determined whether or not the measurement report (Measurement Report) is correctly set in the RANAP: “Relocation” Required message (operation S405). Specifically, it is the same as the determination method described in operation S312 of FIG. If Measurement Report is set correctly (operation S405; YES), the target cell identification information set in the RANAP: Relocation Required message or the macro coverage around the HNB / GW that is the source of the RANAP: Relocation Required message It is determined whether or not the cell identification information of the information is included in the virtual cell ID table (operation S406). If included (operation S406; YES), at least one virtual cell identification information corresponding to the cell identification information of the target cell identification information or the macro coverage information is acquired from the virtual cell ID table (operation S407).
  • control unit 105 calculates delta_OTD from the measurement report of the received RANAP: Relocation Required message (operation S408).
  • a specific example of the calculation method is as described above.
  • control unit 105 stores the cell identification information and PSC of the HNB, the virtual cell ID list, the cell identification information and PSC of the macro cell, the delta_OTD between the macro cell and the femto cell, and the Measured Results in the cell information / time difference table of the database 104.
  • a PSC of another cell included and a list of delta_OTDs of the other cell and the femto cell are stored (operation S409). Thereafter, the rest of the normal handout procedure is executed (operation S410).
  • the GW 1 since the GW 2 transmits the cell identification information and the PSC information of the HNB to the GW 1, the GW 1 can store that the cell identification information of the HNB and the PSC information are information under the GW 2. Therefore, the GW 1 can specify the target cell in the hand-in, can determine the transmission destination of the handover request message, and can be maintained without disconnecting the wireless communication connection even when the UE 16 moves.
  • the IE Cell Identity and Time UE Stayed In Cell IE in the UE History Information in the RANAP Relocation Required message transmitted from the GW2 to the GW1 in the handout phase Set IE Cell Identity and Time UE Stayed In Cell IE.
  • the existing IE Cell Identity and Time UE Stayed In Cell IE are set in IE Cell Identity and Time UE Stayed In Cell IE in the UE History Information in the RANAP: Relocation Required message transmitted from the GW1 to the RNC14. Therefore, it is not necessary to add a new parameter to the handover request message transmitted from the GW 1 to the RNC 14, and the normal handover request message setting at the time of handout can be used in the core network 15 or the RNC 14.
  • the target cell identification information in the handover request message correctly identifies the target cell in the hand-in phase. If it can, the destination address of the handover request message can be uniquely determined from the database without using the cell information / time difference table.
  • the cell information / time difference table corresponds to the macro cell that is the target cell or the neighboring macro cell of HNB / GW2.
  • the virtual cell ID list to be stored can also be stored.
  • the cell information / time difference table can be filtered by the target cell identification information of the RANAP Relocation Request message, and the probability of specifying the target cell can be increased.
  • GW1 In the HNB registration procedure of HNB / GW2, GW1 automatically constructs a combination of cell identification information and address information of HNB / GW2 having the cell identification information in internal database 104. Therefore, in the hand-in phase, RANAP Relocation When the target cell identification information of the Request message correctly identifies the target cell, the transmission destination address of the RANAP Relocation Request message can be determined from the database 104.
  • GW1 In the handout phase, GW1 automatically stores in the internal database 104 the combination of the cell identification information of the HNB from the UE History Information of the RANAP: Relocation Required message and the address information of the GW2 that is the source of the RANAP: Relocation ⁇ Required message.
  • the target cell identification information of the RANAP Relocation Request message can correctly identify the target cell, the destination address of the RANAP Relocation Request message can be determined from the database 104. .
  • GW1 provides a width for determining the same in the delta_OTD information of the cell information / time difference table, an OTD shift caused by a propagation distance difference between handover points in the cell occurs. As a result, delta_OTD information Even if a deviation occurs, it can be determined that the GW1 is the same cell, and the specific probability of the target cell can be increased. The same effect can be obtained even if the transmission timing of the reference signal of the cell is slightly shifted due to long-term operation of the cell.
  • IE ⁇ UE History Information is not set in the RANAP Relocation Required message transmitted from the GW 1 to the core network 15 in the operation S43 of FIG.
  • the GW 1 since the GW 2 transmits the cell identification information and the PSC information of the HNB to the GW 1, the GW 1 can store that the cell identification information and the PSC information of the HNB are information under the GW 2. Therefore, the GW 1 can specify the target cell in the hand-in, can determine the transmission destination of the handover request message, and can be maintained without disconnecting the wireless communication connection even when the UE 16 moves.
  • the IERANCell Identity and Time UE Stayed In Cell IE in the UE History Information in the RANAP Relocation Required message transmitted from the GW2 to the GW1 in the handout phase Set IE Cell Identity and Time UE Stayed In Cell IE.
  • the existing IE Cell Identity and Time UE Stayed In Cell IE are set in IE Cell Identity and Time UE Stayed In Cell IE in the UE History Information in the RANAP: Relocation Required message transmitted from the GW1 to the RNC14. Accordingly, it is not necessary to add a new parameter to the handover request message transmitted from the GW 1 to the RNC 14, and the normal handover request message setting at the time of handout can be used in the core network 15 or the RNC 14.
  • the fourth embodiment in the handout phase, only the PSC and OTD information of the source cell and the PSC and OTD information of the target cell are included in the Measured Result of the Measurement Report of the RANAP Relocation Required message described in operation S41 of FIG. Set.
  • the operation is performed on IE UE History Information of the RANAP Relocation Required message that GW1 transmits to core network 15 in operation S43 of FIG. The same value as that set in S41 can be set.
  • the PSC set in the Event Result of the Measurement Report of the RANAP Relocation Required message is the PSC of the target cell
  • the PSC associated with the first Cell Identity of the UE History Information is the value of the Measurement Report of the RANAP Relocation Required message. It is the other PSC that is not the PSC set in Event Result.
  • the mapping between the HNB cell PSC which is the source cell and the cell identification information of the HNB is acquired, stored in the HNB registration table, and used as information for creating the cell information / time difference table. it can.
  • the GW1 since GW2 transmits HNB cell identification information and PSC information to GW1, GW1 confirms that the HNB cell identification information and PSC information are information under GW2. I can remember. Therefore, the GW 1 can specify the target cell in the hand-in, can determine the transmission destination of the handover request message, and can be maintained without disconnecting the wireless communication connection even when the UE 16 moves.
  • the database of GW1 holds the subordinate HNB / GW address information having cell identification information as an HNB registration table. For this reason, if the target cell identification information of the handover request message is correctly specified in the hand-in phase, the destination address of the handover request message can be uniquely set without using the cell information / time difference table. Can be determined from the database.
  • GW1 automatically constructs in the internal database 104 a combination of cell identification information and address information of HNB / GW2 having the cell identification information in the HNB / GW2 HNB registration procedure. Therefore, in the hand-in phase, when the target cell identification information of the RANAP Relocation Request message correctly identifies the target cell, the destination address of the RANAP Relocation Request message can be determined from the database 104.
  • GW1 In the handout phase, GW1 automatically stores in the internal database 104 the combination of the cell identification information of the HNB from the UE History Information of the RANAP: Relocation Required message and the address information of the GW2 that is the source of the RANAP: Relocation Required message. To construct. Therefore, in the hand-in phase, when the target cell identification information of the RANAP Relocation Request message correctly identifies the target cell, the destination address of the RANAP Relocation Request message can be determined from the database 104.
  • the relationship between the GW 2 to be accommodated and the plurality of HNBs to be accommodated is that GW1 has one or more cells under GW2 as one cell. If managed, it may have the following form.
  • HNB system in which GW and HNB are configured in multiple stages. It can be used in a corporate GW or the like, and as a configuration, a plurality of GWs may exist in the middle.
  • a radio network system composed of an RNC connected to the GW and a plurality of NodeBs.
  • a relay system consisting of a Donor base station and a Relay base station. The Donor base station may perform wired or wireless connection with one or more Relay base stations, and the Donor base station may also construct a cell.
  • C / U separation base station system C-Plane control is aggregated in one typical system, and there are multiple U-Plane Radio Points.
  • the present invention can also be applied to the system forms a) to d) described above.
  • HeNBGW and HeNB are one femto base station system
  • the second HeNBGW of the in-company network is connected to the first HeNBGW of the operator network, and a plurality of HeNBs are further connected thereunder.
  • the first HeNBGW manages a combination of physical cell identification information (PCI: Physical Cell Identity) and logical cell identification information (Cell Identity) of cells under the second HeNBGW, and the macro eNB and HeNB It can be applied to Hand-in / out operation using Delta_OTD.
  • PCI Physical Cell Identity
  • Cell Identity logical cell identification information
  • Intra Frequency Measurement such as Event 1a or Event 1c is used as the cell measurement of the UE.
  • Inter Frequency Measurement or OTDOA measurement can also be used.
  • the HNB cell may exist as a beacon cell that broadcasts only the system information of the HNB cell even at the different frequency. It is also possible to use only the value of Tm as delta_OTD information.
  • a cell information / time difference table is constructed by inter-device communication of GW1, RNC14, and HNB.
  • the cell information / time difference table is constructed from the information set in the message.
  • GW1, RNC14, HNB and GW2 each hold the reference time, the direct device It is possible to recognize timing differences through inter-communication.
  • the cell information / time difference table can be constructed by the GW1.
  • the cell information / time difference table is constructed as the system parameters of GW1.
  • the cell information / time difference table and the HNB registration table are constructed by the GW 1 itself from the inter-device message transmission / reception and the inter-device synchronization function.
  • the information can be set through an external interface. For example, if there is a test terminal that can be manually input or another node collects information on the second relay device or collects field network information including the second relay device, the test terminal or Information may be sent from another node to the first relay device.
  • cell information / time difference tables are constructed in GW1 and GW2, respectively.
  • the cell information / time difference table is constructed as the database 104 held by the GW 1, but a similar mechanism can be provided in the GW 2.
  • the processing of the base station and the relay device described above may be performed by a logic circuit prepared according to the purpose.
  • a program in which processing contents are described as a procedure is recorded on a recording medium that can be read by the base station or the relay device, and the program recorded on the recording medium is read and executed by the base station or the relay device, respectively. It may be.
  • the recording media that can be read by the base station and the relay device include ROMs that are built in the base station and the relay device, in addition to transferable recording media such as floppy disks (registered trademark), magneto-optical disks, DVDs, and CDs. , Memory such as RAM, HDD, and the like.
  • the programs recorded on the recording medium are read by a CPU (not shown) in the base station or relay apparatus, and the same processing as described above is performed under the control of the CPU.
  • the CPU operates as a computer that executes a program read from a recording medium on which the program is recorded.
  • a base station control device and a first relay device are connected to a communication network, at least one first base station is connected under the base station control device, and at least a second relay device is connected under the first relay device And a handover control method in a wireless communication system in which at least one second base station is connected under the control of the second relay device, The first relay device acquires cell information of a cell controlled by a second base station under the second relay device; In a hand-in phase in which a radio station performs handover from the first base station to which the radio station is wirelessly connected to the second base station, the first relay device uses the cell information to identify a target cell for the handover.
  • a handover control method characterized by the above.
  • the handover control method according to supplementary note 1, wherein the cell information includes logical cell identification information and physical cell identification information for identifying a cell of the subordinate second base station.
  • the first relay apparatus specifies the target cell using physical cell identification information and the cell information of the target cell included in a handover request message received from the base station control apparatus.
  • the handover control method according to 2.
  • the cell information further includes physical cell identification information used by a neighboring cell controlled by the second base station, and time difference information of a reference time between the cell and the neighboring cell.
  • the handover control method according to Supplementary Note 2 or 3, (Appendix 5)
  • the first relay device includes physical cell identification information of the target cell included in a handover request message received from the base station control device, time difference information of a reference time between the target cell and the source cell, and the cell
  • the handover control method according to appendix 4, wherein the target cell is specified using information.
  • Appendix 6 The handover control method according to any one of appendix 1-5, wherein the first relay device inputs the cell information from the outside.
  • Appendix 7) Appendix 6 characterized in that the second relay device notifies the first relay device of the cell information using a base station registration message or a base station update message for transmitting information on a subordinate second base station. The handover control method described.
  • the second relay apparatus notifies the cell information to the first relay apparatus using a handover request message in a handout phase for performing handover from the second base station to the first base station. 6.
  • the handover control method according to 6. (Appendix 9) In the handover request message in the handout phase, the physical cell identification information of the source cell of the handover is set in the information element related to the history information of the radio station, and the handover is transmitted from the first relay apparatus to the base station control apparatus 9.
  • the first relay apparatus includes logical cell identification information related to a cell of the base station immediately below and the cell of the second base station, address information of the base station directly below, the second base station, and the second relay apparatus; Is stored in the base station registration table Searching the base station registration table using the logical cell identification information of the target cell of the handover request message received from the base station control device, and specifying the destination address of the target cell and the handover request message; 10.
  • the handover control method according to any one of appendix 1-9, wherein (Appendix 11)
  • the first relay device includes logical cell identification information of a cell of the first base station, logical cell identification information of at least one virtual cell including the at least one second base station, and a cell of the first base station.
  • the cell information table further includes physical cell identification information used by an adjacent cell of the cell of the second base station, and physical cell identification information used by a cell of the second base station adjacent to the cell of the first base station.
  • the cell information table further includes physical cell identification information used by other cells excluding the cell of the second base station and the cell of the first base station, and the cells of the other cell and the second base station.
  • the handover control method according to appendix 11 or 12, wherein (Appendix 14) Any one of Supplementary Notes 4, 5, 12, and 13, wherein the first relay device and the second relay device set a width for determining that the time difference information of the reference time between cells is the same.
  • the handover control method according to claim 1. (Appendix 15) 15. The handover control method according to any one of supplementary notes 1-14, wherein the first relay device specifies a route to the handover target cell using the cell information.
  • a relay device connected to a communication network to which a base station control device is connected, and at least a lower level relay device connected thereto, wherein at least one first base station is connected under the base station control device; At least one second base station is connected to the subordinate relay device, Storage means for storing cell information of a cell controlled by a second base station under the lower relay apparatus; In a hand-in phase in which a radio station performs a handover from the first base station to which the radio station is wirelessly connected, a control unit that specifies a target cell for the handover using the cell information;
  • a relay apparatus comprising: (Appendix 17) The relay apparatus according to supplementary note 16, wherein the cell information includes logical cell identification information and physical cell identification information for identifying a cell of the subordinate second base station.
  • the supplementary note 17 is characterized in that the control means specifies the target cell using physical cell identification information of the target cell and the cell information included in a handover request message received from the base station control device.
  • the relay device described. The cell information further includes physical cell identification information used by a neighboring cell controlled by the second base station, and time difference information of a reference time between the cell and the neighboring cell.
  • the relay device according to Supplementary Note 17 or 18. The control means includes physical cell identification information of the target cell included in a handover request message received from the base station control device, time difference information of a reference time between the target cell and the source cell, and the cell information. 20.
  • (Appendix 21) 21 The relay device according to any one of appendix 16-20, wherein the control means inputs the cell information from the outside.
  • the appendix 21 is characterized in that the control means receives the cell information from the subordinate relay apparatus using a base station registration message or a base station update message that transmits information on a subordinate second base station. Relay device.
  • the supplementary note 21 is characterized in that the control means receives the cell information from the lower relay apparatus using a handover request message in a handout phase for performing handover from the second base station to the first base station. The relay device described.
  • the storage means includes logical cell identification information relating to a cell of a base station immediately below the relay device and a cell of the second base station, address information of the base station directly below, the second base station, and the lower relay device; Is stored in the base station registration table
  • the control means searches the base station registration table using the logical cell identification information of the target cell of the handover request message received from the base station control device, and identifies the destination address of the target cell and the handover request message To 25.
  • the storage means includes logical cell identification information of the cell of the first base station, logical cell identification information of at least one virtual cell including the at least one second base station, and adjacent to the cell of the first base station.
  • a cell information table that associates the logical cell identification information of the cell of the second base station with The control means searches the cell information table using the logical cell identification information of the target cell of the handover request message received from the base station control device, and narrows down the target cell candidates. 26.
  • the cell information table further includes physical cell identification information used by an adjacent cell of the cell of the second base station, and physical cell identification information used by a cell of the second base station adjacent to the cell of the first base station. And time difference information of a reference time between the cell of the second base station and its neighboring cells,
  • the control means searches the cell information table using physical cell identification information of a target cell of the handover request message and time difference information of a reference time between the target cell and the source cell, thereby Further refine the cell candidates, 27.
  • the relay device according to appendix 26, wherein: (Appendix 28)
  • the cell information table further includes physical cell identification information used by other cells excluding the cell of the second base station and the cell of the first base station, and the cells of the other cell and the second base station. Difference information of the reference time between and
  • the control means searches the cell information table using physical cell identification information of a target cell of the handover request message and time difference information of a reference time between the target cell and the source cell, thereby Further refine the cell candidates, 28.
  • the relay device according to appendix 26 or 27, wherein (Appendix 29) 29.
  • the relay apparatus according to any one of appendices 19, 20, 27, and 28, wherein the control means sets a width for determining that the time difference information of the reference time between cells is the same.
  • (Appendix 30) 30 The relay device according to any one of supplementary notes 16-29, wherein the control means specifies a route to the handover target cell using the cell information.
  • a base station control device and a first relay device are connected to a communication network, at least one first base station is connected under the base station control device, and at least a second relay device is connected under the first relay device
  • a storage unit stores cell information of a cell controlled by a second base station under the control of the second relay device;
  • the control means selects a target cell for the handover using the cell information in a hand-in phase in which a radio station performs handover from the first base station to which the radio station is wirelessly connected to the second base station.
  • the target cell selection method according to supplementary note 31, wherein the cell information includes logical cell identification information and physical cell identification information for identifying a cell of the subordinate second base station.
  • the supplementary note 32 is characterized in that the control means specifies the target cell using physical cell identification information and the cell information of the target cell included in a handover request message received from the base station control device.
  • the cell information further includes physical cell identification information used by a neighboring cell controlled by the second base station, and time difference information of a reference time between the cell and the neighboring cell.
  • the target cell selection method according to Supplementary Note 32 or 33.
  • the control means includes physical cell identification information of the target cell included in a handover request message received from the base station control device, time difference information of a reference time between the target cell and the source cell, and the cell information. 35.
  • the target cell selection method according to supplementary note 36 wherein the cell information is received from the lower relay apparatus using a base station registration message or a base station update message for transmitting information related to a subordinate second base station. .
  • Method. (Appendix 39)
  • physical cell identification information of the source cell of the handover is set in an information element related to the history information of the radio station, and the control means transmits a handover to the base station control device 39.
  • the target cell selection method according to supplementary note 38, wherein normal stay time information is set in an information element related to history information of the wireless station in the request message.
  • the storage means includes logical cell identification information related to the cell of the base station immediately below the relay apparatus and the cell of the second base station, and address information of the base station directly below, the second base station, and the second relay apparatus And a base station registration table that associates
  • the control means searches the base station registration table using the logical cell identification information of the target cell of the handover request message received from the base station control device, and identifies the destination address of the target cell and the handover request message To 40.
  • the target cell selection method according to any one of supplementary notes 31-39, wherein: (Appendix 41)
  • the storage means includes logical cell identification information of the cell of the first base station, logical cell identification information of at least one virtual cell including the at least one second base station, and adjacent to the cell of the first base station.
  • a cell information table that associates the logical cell identification information of the cell of the second base station with The control means searches the cell information table using the logical cell identification information of the target cell of the handover request message received from the base station control device, and narrows down the target cell candidates. 41.
  • the target cell selection method according to any one of supplementary notes 31-40, wherein: (Appendix 42)
  • the cell information table further includes physical cell identification information used by an adjacent cell of the cell of the second base station, and physical cell identification information used by a cell of the second base station adjacent to the cell of the first base station. And time difference information of a reference time between the cell of the second base station and its neighboring cells,
  • the control means searches the cell information table using physical cell identification information of a target cell of the handover request message and time difference information of a reference time between the target cell and the source cell, thereby Further refine the cell candidates, 42.
  • the target cell selection method according to appendix 41, wherein: (Appendix 43)
  • the cell information table further includes physical cell identification information used by other cells excluding the cell of the second base station and the cell of the first base station, and the cells of the other cell and the second base station. Difference information of the reference time between and
  • the control means searches the cell information table using physical cell identification information of a target cell of the handover request message and time difference information of a reference time between the target cell and the source cell, thereby Further refine the cell candidates, 43.
  • the target cell selection method according to appendix 41 or 42, wherein (Appendix 44) 44.
  • the target cell selection method according to any one of appendices 34, 35, 42 and 43, wherein the control means sets a width for determining that the time difference information of the reference time between cells is the same. (Appendix 45) 45.
  • the relay device according to any one of appendices 31 to 44, wherein the control means specifies a route to the handover target cell using the cell information.
  • a base station control device and a first relay device are connected to a communication network, at least one first base station is connected under the base station control device, and at least a second relay device is connected under the first relay device
  • a wireless communication system in which a radio station performs handover from the first base station to which the radio station is wirelessly connected to the second base station.
  • the present invention is applicable to handover control in a mobile communication system having a cell configuration.
  • First repeater (GW) Second relay device (GW) 3 Virtual cell 4-6 Base station (HNB) 7-9 cell (femtocell) 10 Base station (HNB) 11 cells (femtocell) 12 Base station (NodeB) 13 cells (macro cell) 14 Base station controller (RNC) 15 Core network 101 Communication unit 102 Lower device communication unit 103 Protocol message construction unit 104 Database 105 Control unit 201 Upper device communication unit 202 Base station communication unit 203 Protocol message construction unit 204 Subordinate base station information storage unit 205 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】中継装置が多段接続されたネットワーク形態であっても、ハンドインフェーズでのターゲットセルを特定することができるハンドオーバ制御方法、中継装置およびターゲットセル選択方法を提供する。 【解決手段】通信ネットワークに基地局制御装置(14)および第1中継装置(1)が接続され、基地局制御装置の配下に少なくとも1つの第1基地局(12)が接続され、第1中継装置の配下に少なくとも第2中継装置(2)が接続され、第2中継装置の配下に少なくとも1つの第2基地局(4-6)が接続された無線通信システムにおいて、第1中継装置が、第2中継装置の配下の第2基地局が制御するセルのセル情報を取得し、無線局(16)が無線接続中の第1基地局(12)から第2基地局(6)へハンドオーバするハンドインフェーズにおいて、第1中継装置が、セル情報を用いてハンドオーバのターゲットセルを特定する。

Description

無線通信システムにおけるハンドオーバ制御方法、中継装置およびターゲットセル選択方法
 本発明は無線通信システムにおけるハンドオーバ制御技術に係り、特に中継装置におけるハンドオーバのターゲットセル選択方法に関する。
 3GPP(3rd Generation Partnership Project)では、オフィス内あるいはユーザ宅内に設置可能な小型基地局としてHNB(Home Node B)を定義し、HNBを通してユーザ端末(UE: User Equipment)の事業者ネットワークへのアクセスを可能にしている。1つのHNBがカバーする無線エリアはオフィス内あるいはユーザ宅内等の狭い範囲であるから、スモールセル、マイクロセル、フェムトセル、ピコセルなどとも呼ばれる。以下、便宜上、これらのセルを含むものとして「フェムトセル」を用いるものとする。このようなフェムトセルは、一般に、広いエリアをカバーするマクロセル(Macrocell)内に多数設定されている。
 3GPPではセルの物理セル識別情報としてPSC(Primary Scrambling Code)が定義され、各セルがそれぞれ異なるPSCを使用することでセルの識別が可能であり、PSCからセルの論理セル識別情報(Cell Identity)に結びつけている。しかしながら、物理セル識別情報の個数には限りがあるたとえば、UMTS (Universal Mobile Telecommunications System)ではPSCは最大512個、LTE(Long Term Evolution) Systemでは、PCI(Physical Cell Identity)は最大504個である。このために、マクロセル内に多数設定されるフェムトセルに対してはPSCが重複利用されており、PSCからCell Identityを一意に結びつけることはできない。このことがPSCの多義性の原因となっている。具体的には、3GPP Release 9より前のレガシーUE、すなわち無線接続中のセル以外のセルのシステム情報(System Information)を取得する機能(SI Acquisition機能)をサポートしていないUEの場合、ハンドオーバ元であるマクロネットワークのRNC(Radio Network Controller)は、当該UEにより報告されたPSCに対応するターゲットセルをユニークに決定することができない。このようなPSCの多義性(= PSC Confusion)を解決する方法(Disambiguation)が非特許文献1および2に開示されている。
 以下、図1に示すシステムを一例として、RNCとHNBGW(HNB Gateway)におけるPSC 多義性解決方法について説明する。
 A)RNCにおけるPSC多義性解決
 非特許文献1の補足資料C.2項(75~76ページ)によれば、まず、第1ステップとして、フェムトセルのHNBに接続しているUEがフェムトセルからマクロセルへハンドオーバ(ハンドアウト)するプロセスにおいて、RNCが必要な情報をデータベースに記憶しておく。続いて、第2ステップとして、UEがハンドインするときにデータベースの情報を利用することでターゲットセル(フェムトセル)の特定を行う。
 具体的には、第1ステップにおいて、フェムトセルに位置するUEはHNBに測定報告(Measurement Report)を送信し、それを受けてHNBはハンドオーバ要求メッセージをHNBGWを経由してRNCへ送信する。RNCはハンドオーバ要求メッセージの情報をデータベースに記憶し学習する。このデータベース情報には、フェムトセルの論理セル識別情報(Cell Identity)とそのPSC、RNC配下のマクロセルのCell IdentityとそのPSC、およびUEにより測定されたフェムトセルとマクロセルの基準時刻の時間差(Delta Observed Time Difference:Delta_OTD)が含まれる。
 続いて、第2ステップにおいて、マクロセルに位置するUEからMeasurement Reportを受けとると、RNCはデータベース情報からハンドオーバターゲットとなるフェムトセルのCell Identityを取得し、HNBGWを経由して当該フェムトセルのHNBへハンドオーバ要求メッセージを送信する。このハンドオーバ要求メッセージには、フェムトセルのCell Identityが設定されているが、このCell Identityは、第1ステップのハンドアウトにおけるハンドオーバ要求メッセージのUE History Informationに設定されたCell Identityである。
 B)HNBGWにおけるPSC多義性解決
 非特許文献1の補足資料C.3項(76~77ページ)によれば、基本的にはC.2章のRNCで解決する方法と同様であるが、データベースの保存場所がHNBGWである点が異なる。
 まず、第1ステップにおいて、上述したようにHNBからハンドオーバ要求メッセージが送信されるが、HNBGWはハンドオーバ要求メッセージを受信すると、そのメッセージからデータベース情報を構築し、ハンドオーバ要求メッセージをRNCへ転送する。データベース情報には、フェムトセルの論理セル識別情報(Cell Identity)とそのPSC、RNC配下のマクロセルのCell IdentityとそのPSC、およびフェムトセルとその隣接マクロセルに関するdelta_OTD情報が含まれる。delta_OTDは、UEにより測定されたマクロセルとフェムトセルの基準時刻の時間差を表す。
 続いて、第2ステップにおいて、UEはRNCにMeasurement Reportを送信し、RNCはHNBGWへMeasurement Reportを含むハンドオーバ要求メッセージを送信する。HNBGWは、ハンドオーバ要求メッセージのUE History Informationに設定されたCell IdentityとMeasurement Reportと構築したデータベース情報とからハンドオーバターゲットのフェムトセルを選択し、当該フェムトセルのHNBへハンドオーバ要求メッセージを送信する。
3GPP TS 25.467 V11.1.0 (2012-12) UTRAN Architecture for 3G Home Node B (HNB) Stage 2 (Release 11) 該当箇所:Annex C 3GPP TR 37.803 V11.1.0 (2012-12) Universal Mobile telecommunications System (UMTS) and LTE; Mobility enhancements for Home Node B (HNB) and Home enhanced Node B (HeNB) (Release 11) 該当箇所: 6.1.3章 Legacy UE Mobility
 しかしながら、上述したPSC多義性解決方法AおよびBは、図1に示すようにHNBGWに登録されたHNBが1セルから構成される場合に適用可能である。図2に示すように、HNBGWaにHNBGWbが登録され、さらにHNBGWbの配下に複数のHNBb1, HNBb2が接続されているような構成では、次に述べるようにハンドオーバターゲットセルを特定できない場合が生じうる。
 図2に示すシステムに対してRNCにおけるPSC多義性解決方法Aを適用すると、RNCがデータベースを構築する第1ステップでは、ハンドアウト時のハンドオーバ要求メッセージのUE History Informationに設定されたCell Identityには、HNBGWbのCell IdentityもしくはHNBb2のCell Identityが設定される。
 A.1)UE History InformationにHNBGWbのCell Identityが設定されている場合、HNBGWaはHNBGWbのCell Identityを特定できるが、HNBGWbは配下のどのHNBがハンドオーバターゲットセルかを識別できない。
 A.2)UE History InformationにHNBb2のCell Identityが設定されている場合、HNBGWaが知っているのはHNBGWbのCell Identityだけであり、その配下にあるHNBのCell Identityを知らないので、HNBGWaはHNBb2のCell Identityをみても、どのHNBまたはHNBGWbにハンドオーバ要求メッセージを送信すればよいか分からない。
 このように、ハンドアウトによって構築したRNCのデータベース情報では、図2に示すHNBGWb配下のフェムトセルへのハンドインを実現することができない。
 図2に示すシステムに対してHNBGWにおけるPSC多義性解決方法Bを適用すると、データベースを構築する第1ステップでは、ハンドアウト時のハンドオーバ要求メッセージのUE History Informationに設定されたCell Identity にはHNBGWbのCell IdentityもしくはHNBb2のCell Identityが設定される。
 B.1)UE History InformationにHNBGWbのCell Identityが設定されている場合、HNBGWaはHNBGWb配下のどのHNBからのハンドアウトであるのかが分からないのでHNBb2のセルのPSCを知ることができず、UEから送信されたMeasured ResultからHNBb2のセルのOTDを特定する事ができない。このためにHNBb2のフェムトセルとRNC配下のマクロセルとに関するdelta_OTDを算出する事ができない。
 B.2)UE History InformationにHNBb2のCell Identityが設定されている場合、HNBGWaはHNBb2のCell Identityしか情報がなくHNBb2のPSCが分からない。そのため、Measured ResultからHNBb2のセルのOTDを特定する事ができない。その結果、HNBb2のフェムトセルとRNC配下のマクロセルとに関するdelta_OTDを算出する事ができない。
 このために、HNBGWaは、第2ステップにおいて受信するハンドオーバ要求メッセージから、データベース情報を参照してもHNBGWbおよびHNBb2を特定可能な情報を取得することができない。すなわち、ハンドアウトによって構築したHNBGWaのデータベース情報では、図2に示すHNBGWb配下のフェムトセルへのハンドインを実現することができない。
 上述したように、非特許文献1および2に記載されたようなPSC多義性解決方法は、図1に示すようなHNBGWに接続される基地局が一つのセルを持つという構成においてのみ実用化可能であり、図2に示すようなHNBGW-HNBの多段構成を有するネットワーク形態では、ハンドインフェーズでのターゲットセルを特定できない場合がある。
 そこで、本発明の目的は、中継装置が多段接続されたネットワーク形態であっても、ハンドインフェーズでのターゲットセルを特定することができるハンドオーバ制御方法、中継装置およびターゲットセル選択方法を提供することにある。
 本発明によるハンドオーバ制御方法は、通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムにおけるハンドオーバ制御方法であって、前記第1中継装置が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を取得し、無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記第1中継装置が、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する、ことを特徴とする。
 本発明による中継装置は、基地局制御装置が接続された通信ネットワークに接続され、配下に少なくとも下位中継装置が接続された中継装置であって、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記下位中継装置の配下に少なくとも1つの第2基地局が接続されており、前記下位中継装置の配下の第2基地局が制御するセルのセル情報を格納する格納手段と、無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する制御手段と、を有することを特徴とする。
 本発明によるターゲットセル選択方法は、通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムにおける前記第1中継装置におけるターゲットセル選択方法であって、格納手段が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を格納し、制御手段が、無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記セル情報を用いて前記ハンドオーバのターゲットセルを選択する、ことを特徴とする。
 本発明による無線通信システムは、通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムであって、前記第1中継装置が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を取得し、無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記第1中継装置が、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する、ことを特徴とする。
 本発明によれば、第1中継装置が第2中継装置配下にある第2基地局のセル情報を取得し、第2基地局のセルへのハンドインフェーズにおいて、取得したセル情報を用いることで、ターゲットセル側の第2中継装置の配下に接続されたターゲットセルの特定が可能となる。
図1は背景技術を説明するためのシステムアーキテクチャを示す構成図である。 図2は背景技術の課題を説明するためのシステムアーキテクチャを示す構成図である。 図3は本発明の一実施形態による無線通信システムのアーキテクチャの一例を示す構成図である。 図4は本実施形態における第1中継装置の概略的構成を示すブロック図である。 図5は本実施形態における第2中継装置の概略的構成を示すブロック図である。 図6は本実施形態による無線通信システムのハンドオーバ制御動作を示すシーケンス図である。 図7は本実施形態におけるデータベースの格納情報の一例を示す模式図である。 図8は本発明の実施例を説明するための無線通信システムのアーキテクチャの一例を示す構成図である。 図9は本発明の第1実施例によるハンドオーバターゲットセル選択方法を示すシーケンス図である。 図10は第1実施例におけるHNB登録要求メッセージのフォーマットを説明するための模式図である。 図11は第1実施例におけるHNB構成更新メッセージのフォーマットを説明するための模式図である。 図12は第1実施例におけるセル情報の登録動作を示すフローチャートである。 図13は第1実施例におけるハンドインフェーズのシーケンスを示す模式的なシステム構成図である。 図14は第1実施例におけるデータベースを用いた検索およびセル特性動作を示すフローチャートである。 図15は図14におけるフィルタリング動作を示すフローチャートである。 図16は第1実施例におけるハンドアウト動作を示すフローチャートである。 図17は本発明の第2実施例によるハンドオーバターゲットセル選択方法におけるハンドアウトフェーズを示すシーケンス図である。 図18は第2実施例におけるハンドアウトフェーズのシーケンスを示す模式的なシステム構成図である。 図19は第2実施例におけるセル情報の登録動作を示すフローチャートである。 図20は第2実施例におけるハンドアウト時のセル情報登録動作を示すフローチャートである。
 本発明の実施形態を適用するネットワークは、ネットワーク接続された基地局制御装置がその配下に複数の第1基地局を接続し、同じネットワークに接続された第1中継装置がその配下に基地局と第2中継装置とを接続し、さらに第2中継装置がその配下に複数の第2基地局を接続しているものとする。このような多段構成のネットワークにおいて、無線局が基地局制御装置の配下の第1基地局から第2中継装置配下の第2基地局へのハンドインは次のように実行される。まず、第1中継装置は第2中継装置配下にある第2基地局のセル情報を取得する。そして、無線局が第2基地局のセルにハンドインするハンドオーバ要求を受信したときに、第1中継装置は、登録したセル情報を用いることで、ターゲットセル側の第2中継装置の配下に接続されたターゲットセルである第2基地局を特定することができる。以下、本発明の一実施形態および実施例について詳細に説明する。
 1.一実施形態
 1.1)システム構成
 図3は本発明の一実施形態による無線通信システムが適用される多段ネットワーク形態の一例を示すものである。ただし、説明の複雑化を回避するために、1つの中継装置(第1中継装置1)の配下に1つの基地局10と1つの中継装置(第2中継装置2)とが接続されているものとする。これに限定されることなく、第1中継装置1の配下に複数の基地局および複数の中継装置が接続されていてもよいし、第1中継装置1の配下にはひとつも基地局が設置されない形態でもよい。
 図3において、基地局10はセル11を制御し、第2中継装置2は、その配下に複数の基地局(ここでは3つの基地局4-6)を接続し、基地局4-6がセル7-9をそれぞれ制御する。
 第1中継装置1は基地局制御装置14およびコアネットワーク15に接続され、基地局制御装置14に接続した基地局12がセル13を制御するものとする。セル13は広い範囲をカバーするセルであり、セル7-9およびセル11がセル13に隣接しているものとする。たとえば、セル13がマクロセル、セル7-9およびセル11がマクロセル13に隣接するフェムトセルである。また、無線局16はセル間を移動可能な移動局、ユーザ端末、携帯端末などである。
 なお、図3において、第2中継装置2の配下にあるセル7-9は、基地局制御装置14からみて、第2中継装置2が構築した一つの仮想セル3として取り扱われる。仮想セルとは、基地局制御装置14あるいは第1中継装置1からみた一つの管理単位としてのセルであって、基地局制御装置14が管理するセル内で複数の基地局あるいは第一中継装置1または第2中継装置2が制御する複数のセルが仮想的に一つのセルとしてみなされたものをいう。したがって、基地局制御装置14からみた場合、仮想セル3だけでなく、セル7-9にセル11を加えてひとまとめにしたものも1つの仮想セルとして取り扱うことができる。
 本実施形態によれば、第2中継装置2の配下のセル7-9に関するセル情報が何らかの方法で第1中継装置1のデータベースに登録される。セル13の基地局12に無線接続中の無線局16がセル13からセル9へハンドインする場合、第1中継装置1は、基地局制御装置14から当該ハンドオーバ要求を受信すると、データベースに登録されたセル情報を参照することで、当該ハンドオーバのターゲットセルが第2中継装置2配下のセル9であると知ることができ、第2中継装置2を通して基地局6へハンドオーバ要求を送信することができる。
 1.2)中継装置の構成
 図4に示すように、第1中継装置1は、通信部101と、下位装置通信部102と、プロトコルメッセージ構築部103、データベース104および制御部105を有する。
 第1中継装置1は、通信部101によって基地局制御装置14およびコアネットワーク15とメッセージを交換し、下位装置通信部102によって配下の基地局および第2中継装置とメッセージを交換することができる。
 プロトコルメッセージ構築部103は、基地局制御装置14、コアネットワーク15、配下の基地局10および第2中継装置2との間で交換するプロトコルメッセージの構築および解析を行う。プロトコルメッセージの具体例については、後述する実施例において説明する。
 データベース104は次の情報:1)セル識別情報(Cell Identity)から当該セルのPSCと当該セルを構築する基地局あるいは第2中継装置2のアドレスとを対応づける登録テーブル;2)基地局あるいは第2中継装置2の近隣のセル情報;3)セル13から仮想セル(Cell Identity)にマッピングされる仮想セル識別情報(Cell Identity);および4)delta_OTDテーブル、を格納し管理する。このうち、情報3)において、セル13から仮想セル(Cell Identity)へのマッピング情報は、第1中継装置1のO&Mのシステムパラメータとしてオペレータにより手動で与えられる。また、仮想セル識別情報(Cell Identity)は、基地局制御装置14がUEから受信したMeasurement ReportにおけるハンドオーバターゲットセルのPSCが第1中継装置1の配下の基地局、第2中継装置あるいは第2中継装置の配下の基地局の何れかのセルを示す場合に、基地局制御装置14のハンドオーバテーブルにおけるハンドオーバ先(Target Cell Identity)として設定されるCell Identityである。後述するように、基地局登録において、第1中継装置1が下位装置通信部102を通して配下の基地局あるいは第2中継装置2から基地局登録要求メッセージを受信すると、当該メッセージに含まれる情報がデータベース104に記録される。なお、データベース104の詳細については後述する(図7参照)。
 制御部105は第1中継装置1の動作を制御し、後述するように、データベース情報の構築、プロトコル処理、ハンドオーバ要求メッセージのルーティング等の動作を実行する。なお、プロトコルメッセージ構築部103および制御部105と同等の機能は、図示しないメモリに格納されたプログラムをコンピュータ(プロセッサ)上で実行することにより実現することもできる。
 図5に示すように、第2中継装置2は、上位装置通信部201と、基地局通信部202と、プロトコルメッセージ構築部203、配下基地局情報格納部204および制御部205を有し、上位中継装置、配下の基地局およびUEとの間でプロトコルメッセージのやりとりを行う。
 第2中継装置2は、上位装置通信部201によって第1中継装置1とメッセージを交換し、基地局通信部202によって配下の基地局からの測定報告の受信やプロトコルメッセージの送信を行う。
 プロトコルメッセージ構築部203は、第1中継装置1および配下の基地局との間で交換するプロトコルメッセージの構築および解析を行う。プロトコルメッセージの具体例については、後述する実施例において説明する。
 配下基地局情報格納部204は、当該第2中継装置2の配下にある基地局4-6の基地局情報(セル情報)を格納する。セル情報は、セル識別情報、PSC、アドレスおよび隣接セル情報などが含まれる。
 制御部205は第2中継装置2の動作を制御し、後述するように、セル情報の通知処理、ハンドオーバ要求メッセージのルーティング等の動作を実行する。なお、プロトコルメッセージ構築部203および制御部205と同等の機能は、図示しないメモリに格納されたプログラムをコンピュータ(プロセッサ)上で実行することにより実現することもできる。
 1.3)ハンドオーバ制御
 図6に示すように、本実施形態によるハンドオーバ制御は、セル情報の登録/更新動作と端末からの測定報告を受けた後のハンドオーバターゲットセルの選択動作とに分けられる。
 <セル情報の登録/更新>
 図6において、第2中継装置2の制御部205は、配下基地局情報格納部204から配下の基地局4-6(セル7-9)のセル情報を読み出し、プロトコルメッセージ構築部203においてセル情報の通知メッセージを構築し、上位装置通信部201を通して第1中継装置1へ送信する(動作S20)。セル情報の通知はどのような方法でもよいが、後述するように、登録要求/更新メッセージを利用する方法やハンドアウトフェーズのプロトコルメッセージを利用する方法などがある。
 第1中継装置1の制御部105は、下位装置通信部102を通してセル情報通知メッセージを受信すると、当該受信メッセージからセル情報を取り出し、データベース104に配下の基地局および第2中継装置2の配下セルに関する情報を所定のテーブル形式で登録する(動作S21)。制御部105は、第2中継装置2からセル情報の通知があるごとに、データベース104の登録情報を更新することができる。
 <ハンドオーバターゲットセルの選択>
 図6において、基地局制御装置14は、セル13に位置するUEから測定報告(Measurement Report)を受信すると(動作S22)、当該測定報告からターゲットセル識別情報および送信先を特定し、ハンドオーバのソースセルであるセル13に関する情報と測定報告情報とを含むハンドオーバ要求メッセージを第1中継装置1へ送信する(動作S23)。
 第1中継装置1がハンドオーバ要求メッセージを通信部101により受信すると、制御部105はハンドオーバ要求メッセージに含まれるターゲットセル識別情報やソースセル識別情報等のセル情報を用いてデータベース104を検索し、ハンドオーバ要求メッセージを転送すべき第2中継装置2ならびにターゲットセル9を特定する(動作S24)。
 こうしてターゲットセル9までの経路が特定されると、制御部105は下位装置通信部102を通してハンドオーバ要求メッセージをターゲットセル9の基地局6へ送信し(動作S25)、ソースセル13からターゲットセル9へのハンドイン処理が実行される(動作S26)。
 1.4)データベース情報
 図7に示すように、第1中継装置1に設けられたデータベース104には、一例として、基地局登録テーブル、仮想セルIDテーブルおよびセル情報・時間差テーブルが格納されている。
 基地局登録テーブルは、第1中継装置1の配下にある基地局あるいは中継装置から受信した登録要求/更新メッセージあるいはハンドオーバ要求メッセージに基づいて、そのセル識別情報、PSCおよびアドレスを登録することで構築されたテーブルである。図3に示す本実施形態のネットワークでは、たとえば基地局10に関して、そのセル11のCell Identity、PSCおよび基地局10のアドレスが1つのレコードとして登録される。また、第2中継装置2に関して、仮想セルのCell Identity、PSCおよび第2中継装置2のアドレスは登録されない。また、第2中継装置2の配下の基地局4-6のそれぞれについて、各セル7-9のCell Identity、PSCおよび第2中継装置2のアドレスが登録される。
 仮想セルIDテーブルは、第1中継装置1の配下にある基地局あるいは中継装置から受信した登録要求/更新メッセージあるいはハンドオーバ要求メッセージに基づいて、第1中継装置1または第2中継装置2の配下にある基地局の隣接マクロセルと、前記マクロセルからみた第1中継装置1または第2中継装置2の配下にある基地局の複数のセルに対応する仮想セルと、のマッピングを登録することで構築されたテーブルである。1つのマクロセルから複数の仮想セルにマッピングされてもよいし、複数のマクロセルが1つの同じ仮想セルにマッピングされてもよい。図3に示す本実施形態のネットワークではマクロセル13内に1つの仮想セル3が存在するので、マクロセル13のmCell_IDから仮想セル3のvCell_IDにマッピングされる。
 セル情報・時間差テーブルは、第1中継装置1の配下にある基地局あるいは中継装置から受信した登録要求/更新メッセージあるいはハンドオーバ要求メッセージと上記基地局登録テーブルおよび仮想セルIDテーブルとを用いて、各フェムトセルに関して、当該フェムトセルおよびマクロセルの情報(識別情報、PSC)と、マクロセルとのdelta_OTD(マクロ-フェムトセル間の基準時刻の時間差)と、他のセルとのdelta_OTDのリスト(付加情報)と、から構成される。なお、delta_OTDの具体的な算出方法については実施例において説明する。
 1.5)効果
 上述したように、本実施形態によれば、第2中継装置2の配下のセル7-9に関するセル識別情報、PSC情報およびアドレス情報を含むセル情報、あるいはこれらに加えてOTD情報、隣接セルとの関係を示す情報等をも含むセル情報が、上位の第1中継装置1のデータベースに登録される。セル13の基地局12に無線接続中の無線局16がセル13からセル9へハンドインする場合、第1中継装置1は、基地局制御装置14から当該ハンドオーバ要求を受信すると、データベースに登録されたセル情報を参照することで、PSCが重複使用されていても、当該ハンドオーバのターゲットセルが第2中継装置2配下のセル9であると知ることができ、第2中継装置2を通して基地局6へハンドオーバ要求を送信することができる。
 2.無線通信システム
 以下、一例として、図8に示す無線通信システムを用いて本発明の各実施例について詳細に説明する。図8に示す無線通信システムは図3に示すシステムに対応したネットワーク形態を有するものとし、対応する装置には同一の参照番号を付して各装置の詳細な説明は省略する。
 図8と図3との構成要素の対応は以下の通りである。図8におけるGW(ゲートウェイ)1およびGW2が図3における第1中継装置1および第2中継装置2に、HNB(Home NodeB)4-6および10が基地局4-6および10に、基地局12がNodeB12に、基地局制御装置14がRNC(Radio Network Controller)14に、UE16が無線局16に、それぞれ対応する。また、マクロセル13がセル13に、セル7-9および11がフェムトセル7-9および11にそれぞれ対応する。既に述べたように、GW1の配下には複数のHNB、複数のGWを接続することができ、図8は図面の煩雑さを回避するためにそれぞれ1つのHNBおよびGWを図示しているに過ぎない。HNBが接続されず一つ以上のGWのみを接続する事も可能である。
 図8において、無線基地局システムは、一般に広い範囲をカバーする公衆無線基地局であるNodeB12と複数のNodeBを制御するRNC14とから構成される。NodeB12は通信エリアとしてマクロセル13を構築する。NodeB12を制御するRNC14は、MSC(Mobile Switching Center)やSGSN(Serving GPRS Support Node)などを含むコアネットワーク15に接続し、後述するようにGW1に接続可能である。
 HNB4-6および10は、ひとつのノードでは一般に狭い範囲をカバーする小型無線基地局である。HNBの設置場所は、一般家庭のみならず、マンション、商業ビル、ショッピングモール、繁華街の街灯等であり、一つもしくは複数のHNBによって広い通信エリアを構築することができる。
 GW2は、複数のHNBを直接接続する事を可能とするゲートウェイ装置であり、複数のHNB4-6からなるHNBシステムとGW1との間を中継する。GW2は、GW1にとって、HNB10と同様の1つのHNBとして機能する。言い換えれば、GW2の配下にはHNB4-6がそれぞれ構築するセル7-9が存在するにも拘わらず、GW2に割り当てられるセル識別情報(Cell Identity)は仮想的に一つのセル(仮想セル3)とみなされる。
 UE16は、近隣のセルから参照信号(パイロット信号)を受信しながらセル間ハンドオーバを実行することができ、以下、マクロセル13とフェムトセル9との間のハンドオーバ動作について詳細に説明する。なお、ハンドアウトフェーズではフェムトセル9がソースセル、マクロセル13がターゲットセルであり、ハンドインフェーズではマクロセル13がソースセル、フェムトセル9がターゲットセルである。
 GW1は、HNBにひとつずつ割り当てられたHNB識別情報(ID)、セル識別情報(Cell Identity)およびPSC情報を保持する。HNB10は唯一のセル11を構築し、セル11には隣り合うセルとは異なるPSC値が設定されている。同様に、GW1はGW2にひとつずつ割り当てられたHNB識別情報、セル識別情報Cell Identity、PSC情報を保持する。ただし、GW2に割り当てられるPSCは、配下のHNB4-6のセル7-9のPSC値と同じである必要はなく、またGW2はPSC情報を保持しなくともよい。
 また、HNBやGW2の登録時に、HNB識別情報やセル識別情報が配下装置から受信するメッセージに含まれていて、GW1はHNB識別情報やセル識別情報から配下装置がHNBかGWかを判別することも可能である。
 GW2は複数のHNB(4,5,6)と接続可能であり、これら配下のHNBにそれぞれひとつずつ割り当てられたセル識別情報およびPSC情報を保持する。PSCは同じ値が利用されてもよいがUE16がセルを識別するために、隣り合うセルは一般的に異なるPSC値に設定される。GW2はセル7、8、9をまとめて一つの仮想セル3であるかのように取り扱うことができ、GW1へ登録する際に、GW2の登録メッセージ(3GPP TS 25.469 V11.1.0 (2012-12) UTRAN Iuh interface Home Node B (HNB) Application Part (HNBAP) signalling (Release 11)参照)において仮想セル3の識別情報を設定する。ただし、PSCは常に設定されなくともよいオプションパラメータであるので、GW2は仮想セル3のPSC情報をGW2の登録メッセージに設定しなくともよい。
 また、RNC14は一つのNodeB12だけでなく複数のNodeBと接続することができ、NodeB12が構築するセル13は、セル7、8、9、11に比べ大きく、一部もしくはその全てを包含することも可能である。また、RNC14はコアネットワーク15を介してGW1と接続しているが、これに限定されるものではなく、RNC14とGW1とが直接接続されていてもよい。
 3.第1実施例
 本発明の第1実施例によれば、GW1のデータベース情報は、GW2から受信するHNB登録要求/更新メッセージに含まれるセル情報を用いて構築される。
 <セル情報の登録/更新>
 図9において、GW2の制御部205は、配下基地局情報格納部204から配下のHNB4-6(セル7-9)のセル識別情報、PSCおよび隣接セルに関する情報(PSCおよびdelta_OTD等)を含むセル情報を読み出し、プロトコルメッセージ構築部203によりHNB登録メッセージ(HNB REGISTER REQUEST)を構築し、上位装置通信部201を通してGW1へ送信する(動作S30)。HNB登録メッセージについては後述する(図10参照)。
 GW1の制御部105は、下位装置通信部102を通してHNB登録メッセージを受信すると、当該HNB登録メッセージからセル情報を取り出し、データベース104に配下のHNBおよびGW2の配下セルに関する情報を所定のテーブル形式で登録する(動作S31)。GW2の制御部205は、配下のHNBシステムの構成(HNBの増設、減設)の変更、Cell Identity、PSC、近隣マクロセルおよび近隣マクロセルとのDelta_OTD情報の変更があると、配下基地局情報格納部204の情報を更新し(動作S32)、プロトコルメッセージ構築部203が更新されたセル情報を用いてHNB更新メッセージ(HNB CONFIGURATION UPDATE)を構築し、上位装置通信部201を通してGW1へ送信する(動作S33)。GW1の制御部105は、GW2からHNB更新メッセージを受信するごとに、データベース104の登録情報を更新する(動作S34)。HNB更新メッセージについては後述する(図11参照)。
 <ハンドオーバターゲットセルの選択>
 続いて、RNC14は、セル13に位置するUE16から測定報告(Measurement Report)を受信すると(動作S35)、当該測定報告からターゲットセル識別情報および送信先を特定し、ソースセルであるマクロセル13に関する情報と測定報告情報とを含むハンドオーバ要求メッセージをGW1へ送信する(動作S36)。
 GW1がハンドオーバ要求メッセージを通信部101により受信すると、制御部105はハンドオーバ要求メッセージに含まれるターゲットセル識別情報、ソースセル識別情報等のセル情報を用いてデータベース104を検索し、ハンドオーバ要求メッセージを転送すべきGW2ならびにフェムトセル9を特定する(動作S37)。
 こうしてターゲットセル9までの経路が特定されると、制御部105は下位装置通信部102を通してハンドオーバ要求メッセージをターゲットセルであるフェムトセル9のHNB6へ送信し(動作S38)、マクロセル13からフェムトセル9へのハンドイン処理が実行される(動作S39)。
 3.1)HNB登録要求/更新メッセージ
 GW2からGW1へセル情報を送信するメッセージとしてHNB登録メッセージを用いると、HNBのセル識別情報(Cell Identity)とPSCの組合せを一つないし複数設定することが可能である。さらに、各HNBと一つないし複数の近隣セルとのdelta_OTD情報を含める事も可能である。
 図10に示すように、HNB登録メッセージのLocal Cell Informationに、GW2の配下にある複数のセルに関する情報が格納される。すなわち、Local Cell Informationに各配下セルのセル識別情報Cell-IDおよびPSCが、さらにNeighbour Informationに各配下セルの隣接セル情報(PSCおよびdelta_OTD)がそれぞれ含まれる。本実施例では、Local Cell Informationに複数のフェムトセル7-9のセル識別情報Cell-IDおよびPSCと、Neighbour Informationに隣接するマクロセル13のPSCおよびdelta_OTDとが格納される。さらに、Neighbour Informationにおける配下セルの隣接セル情報にCell IDが含まれてもよく、その場合には上述したデータベース検索(図9の動作S37)の精度が高くなる。また、上述した動作S31/S34におけるセル情報・時間差テーブルの登録において、マクロセルIDを取得することも可能となる。
 GW2は、配下のHNBとマクロセル13とのdelta_OTDを配下のHNBの近隣セル測定等で知ることができる。その際、初回ないし前回に通知したdelta_OTDから所定の閾値以上ずれた場合に、更新情報として送付してもよい。なお、電波伝搬距離や長時間運用によるCellの基準信号のドリフトによって数チップずれる可能性を考慮し、同じか否かの判定のためのdelta OTDの値に幅を持たせることができる。例えば、delta_OTDのための幅が1000、delta_OTD値が10000の場合、delta_OTDの値が9000から11000までは同じdelta_OTDの情報を持つセルと判定する。この場合、比較のための所定の閾値は、delta_OTDの幅と同等ないしそれ以下の幅を持つことが望ましい。
 また、delta OTDが同一と判定される幅を設けているため、セル内でハンドオーバする場所が異なることによる伝搬距離差に起因してOTDにズレが生じ、その結果、delta_OTD情報にもズレが生じたとしても、同一セルと判定する事ができ、ターゲットセルを特定する確率を高めることができる。また、セルの長時間運用によってセルの基準信号の送信タイミングに対して多少ズレたとしても同様の効果が得られる。
 GW2からGW1へセル情報を送信するメッセージとして、HNB登録メッセージ以外のメッセージを用いることもできる。たとえば、図11に示すように、HNB更新メッセージのSector Informationに、GW2の配下の全てのHNBのSector Listと、GW2に追加接続されるSector List、変更されるSector Listおよび削除されるSector Listとを載せて送信することも可能である。Sector Informationには、登録メッセージの場合と同様に、セル識別情報Cell-IDおよびPSCと、Neighbour Informationに隣接するマクロセル13のPSCおよびdelta_OTDとが格納される。
 以下、HNB登録メッセージ(HNB REGISTER REQUEST)を用いたセル情報の登録動作について説明する。
 3.2)セル情報の登録フェーズ
 図12において、まず、GW2がHNB REGISTER REQUESTメッセージをGW1へ送信したとする。HNB REGISTER REQUESTメッセージには、図10に例示するように、主に以下の情報が含まれる:
- HNB ID
- Cell Identity
- PSC
- HNBまたはGW2配下のHNBの近隣のMacrocell情報。
その他の情報は本実施例には直接関係しないので省略する。
 GW1の下位装置通信部102がHNB REGISTER REQUESTメッセージを受信すると(動作S301)、制御部105は通常のHNB登録手順を実施する(動作S302)。
 続いて、プロトコルメッセージ構築部103は、登録されたノードが単一セルのみを有するHNBであるか複数のセルを有するGW2であるかを判定する(動作S303)。この識別判定は、HNB REGISTER REQUESTメッセージのパラメータ、例えば当該受信メッセージの送信元のIP Addressやポート番号を用いることができる。これ以外でも、たとえばHNB IDに含まれる文字列情報、セル識別情報(Cell Identity)あるいはPSC情報からも見分けることができる。
 登録されたノードが単一のフェムトセルを有するHNBであれば(動作S303;NO)、制御部105は、HNBのCell Identity、PSCおよびAddressの組合せをデータベース104の基地局登録テーブルに登録する(動作S304)。
 登録されたノードが複数のフェムトセルを有することを可能とするGW2であれば(動作S303;YES)、プロトコルメッセージ構築部103は、受信したHNB REGISTER REQUESTメッセージにLocal Cell Informationが含まれているか否かを判定する(動作S305)。Local Cell Informationが含まれていれば(動作S305;YES)、制御部105は、HNBのCell Identity、PSCおよびGW2のAddressの組合せをデータベース104の基地局登録テーブルに登録する(動作S306)。なお、各HNBと少なくとも1つの近隣セルとのdelta_OTD情報が含まれていれば、当該delta_OTD情報をセル情報・時間差テーブルに登録してもよい。Local Cell Informationが含まれていない場合(動作S305;NO)あるいは上記動作S304が完了した場合には、動作S306は実行されない。
 続いて、制御部105は、受信したHNB REGISTER REQUESTメッセージにHNB/GWに隣接するマクロセルが設定されているか否かを判定する(動作S307)。マクロセルが設定されている場合には(動作S307;YES)、制御部105は、HNB/GWの情報に加えて、その近隣のマクロセル情報をデータベースに保存する(動作S308)。このようにして、図7に例示するようなテーブル情報をデータベース104に登録することができる。
 3.3)ハンドインフェーズ
 次に、図13~図15を参照しながら、UE16がマクロセル13からフェムトセル9へハンドオーバするハンドインフェーズの動作を説明する。なお、図13に示す動作S35~S38は、図9に示す動作S35~S38にそれぞれ対応している。
 図13において、UE16はマクロセル13内でNodeB12と無線接続しながら、フェムトセル9のパイロット信号からPSCCell9を、マクロセル13のパイロット信号からPSCCell13を、それぞれ受信する。このとき、フェムトセル9のパイロット受信電力の方がマクロセル13のそれよりも大きいなどの測定結果に基づき、UE16はRNC14へMeasurement Report(測定報告)メッセージを送信する(動作S35)。
 Measurement Reportには、Event Result(イベント結果)とMeasured Result(測定結果)とが含まれ、Event Resultにはフェムトセル9のPSCCell9が設定され、Measured Resultには、フェムトセル9に関する情報(PSCCell9、UE16とフェムトセル9との基準時刻の時間差OTDcell9)と、マクロセル13に関する情報(PSCCell13、UE16とマクロセル13との基準時刻の時間差OTDcell13)と、が設定される。ここで扱われる時間差OTDとは、フェムトセル9とマクロセル13のプライマリCCPCH(Common Control Physical Channel)という物理チャネルのSFN(System Frame Number)と、UE16のRLC Transparent ModeのCOUNT-CとのFrame OffsetとChip Offsetである。3GPP TS25.331 V11.4.0 (2013-1) Radio Resource Control (RRC); Protocol specification (Release 11)では、当該OTDはCOUNT-C-SFN high, OFFおよびTmの3つのパラメータで表現される。
 Measurement Reportメッセージを受信すると、RNC14は、内部に設けられたハンドオーバルーティングテーブルを用いて、Event ResultのPSCCell9から、ターゲットセルがGW1の配下のセル(ここでは仮想セル3に含まれるいずれかのセル)であると判断し、コアネットワーク15へRANAP:Relocation Required(ハンドオーバ要求)メッセージを送信する(動作S36)。このRelocation Requiredメッセージには、
1)Target ID(ターゲット識別情報)
2)Target Cell Identity(ターゲットセル識別情報)
3)UE History Information(端末履歴情報)
4)Source RNC to Target RNC Transparent Container(ソース-ターゲットRNC間トランスペアレントコンテナ)
が設定される。ここでは、Target IDにはGW1の識別情報が、Target Cell IdentityにはGW1の配下のセル識別情報(仮想セルID)がそれぞれ設定される。さらに、UE History Informationには、IE Cell IdentityとしてUE16が在圏したセルのCell Identityと、IE UE Stayed in Cellとして当該セルにUE16が滞在した時間とのセットが、UE16が過去に在圏したセルごとに、設定される。また、Source RNC to Target RNC Transparent ContainerにはUE16から受信したMeasurement Reportが設定される。
 GW1は、コアネットワーク15からRANAP:Relocation Request(ハンドオーバ要求)メッセージを受信する(動作S36)。RANAP:Relocation Requestメッセージには、
1)Target Cell Identity
2)UE History Information
3)Source RNC to Target RNC Transparent Container
が設定される。ここでは、Target Cell Identity にGW1配下のセル(仮想セル)を示す Cell Identityが設定され、Source RNC to Target RNC Transparent ContainerにはUE16から受信したMeasurement Reportが設定される。
 GW1がRANAP:Relocation Requestメッセージを受信すると、制御部105は受信したRANAP:Relocation Requestメッセージの情報とデータベース104に登録された情報とを比較し、Handover Target CellとしてHNB6が構築するフェムトセル9のCell Identityを特定し、HNB6が接続されるGW2をメッセージの送信先として選択する(動作S37)。
 続いて、制御部105は、Target Cell Identityとしてフェムトセル9のCell Identityを設定し、 宛先としてGW2のアドレスを設定したRANAP:Relocation Requestメッセージを下位装置通信部102から送信する(動作S38)。このRANAP:Relocation Requestメッセージを受信したGW2の制御部205は、当該メッセージのTarget Cell IdentityからHNB6のフェムトセル9へのハンドイン手順であることが分かる。
 3.4)ハンドオーバ先の選択
 図14において、GW1は、通信部101でコアネットワーク15からRANAP:Relocation Requestメッセージを受信すると(動作S310)、制御部105は当該受信メッセージに含まれるTarget Cell Identityがデータベース104のHNB登録テーブルに含まれるか否かを確認する(動作S311)。含まれていなければ(動作S311;NO)、制御部105は、さらにMeasurement Reportが正しく設定されているか否かを確認する(動作S312)。例えばIntra-Frequency Measurement Event 1a, 1c, 1eなどハンドオーバ先を示すイベント情報であってEvent Resultに設定されたTarget PSCに対応するセルに対する2つ以上のOTD(Observed Time Difference)情報が設定されているかどうかを確認する。
 Measurement Reportが正しく設定されていれば(動作S312;YES)、制御部105は、RANAP:Relocation Requestメッセージに設定されている各種情報によってデータベース104内のセル情報・時間差テーブルを用いてフィルタリングを実行する(動作S313)。このフィルタリング処理については後述する。
 続いて、制御部105は、フィルタリング後に残ったレコード数(候補数)をチェックし(動作S314)、候補数が1であれば、当該候補に対応するフェムトセルのCell Identityを選択する(動作S315)。候補数が2以上であれば、RANAP:Relocation RequestメッセージのMeasured Resultに含まれるOTD情報から計算されたdelta_OTDと、残った候補の付加情報のdelta_OTD(other-f)、すなわち他のセルに関するOTDとフェムトセルに関するOTDとの差、を比較することで、最も多く合致する候補を1つだけ選択し、フェムトセルのCell Identityを特定する(動作S316)。いずれのdelta_OTD情報もターゲットセルおよびマクロセルを除く近隣セル情報であるから、delta_OTD情報が合致する近隣セル情報が多ければ多いほど高い確率でフェムトセルを特定できる。なお、Measured Resultに含まれるOTD情報からdelta_OTDを計算する方法の具体例は後述する。
 こうして、動作S315およびS316によりフェムトセルのCell Identityが決定されると、制御部105は決定されたCell IdentityをRANAP:Relocation RequestメッセージのTarget Cell Identityに設定し、HNB登録テーブルから当該Cell Identityに対応するHNB/GWのアドレスを取得して宛先として設定する。こうして、RANAP:Relocation Requestメッセージをフェムトセル9のHNB6へ送信することができ、フェムトセル9へのハンドオーバを実行することができる(動作S317)。
 Measurement Reportが正しく設定されていない場合(動作S312;NO)あるいは動作S314で候補数が0である場合には、制御部105はハンドオーバ失敗と判断し、RANAP: Relocation Failureをコアネットワーク15に送信してハンドオーバを拒否する(動作S318)。また、受信したRANAP:Relocation Requestメッセージに含まれるTarget Cell Identityがデータベース104のHNB登録テーブルに含まれていれば(動作S311:YES)、Target Cell Identityは既にRNC14またはコアネットワーク15で一意なセルとして特定されていると判断し、HNB登録テーブルから取得した当該Cell Identityに対応するHNB/GWのアドレスに向けてRANAP: Relocation Requestメッセージを送信する(動作S319)。
 <delta_OTDの計算方法>
 上述した動作S316におけるMeasured Resultsからdelta_OTDを算出する方法の具体例を以下に示す。なお、この計算方法は、上記動作S313のフィルタリング処理でも用いられる(後述する図15の動作S336参照)。
 OTDは、セルの基準時刻であるP-CCPCHのSFNとUEの基準時刻であるRLC Transparent Mode Count-Cとの差であり、IE COUNT-C-SFN high, OFFおよびTmから構成される。OTD情報はUEによって測定されたセル毎のPSCとセットで、UEから送信されるMeasurement ReportのMeasured Resultに含められる。マクロセル13のPSCは一般的にMeasurement ReportのMeasured Resultに含まれ、フェムトセル9のPSCはMeasurement ReportのEvent Resultに含まれており、OTD_macro、OTD_femto、delta OTD(m-f)は以下の計算式によって算出される。
OTD_macro =(COUNT-C-SFN high (macro)*256 + OFF(macro))* 38400 + Tm(macro) 
OTD_femto =(COUNT-C-SFN high (femto)*256 + OFF(femto))* 38400 + Tm(femto) 
delta_OTD(m-f) = [(OTD_macro - OTD_femto) + 4096*38400] mod (4096*38400)
 なお、3GPP TS25.215 version 11.0.0 Physical layer-Measurements (FDD) (Release 11)の定義に基づき、以下のように算出してもよい。
OTD_macro = OFF(macro)*38400 + Tm(macro) 
OTD_femto = OFF(femto)*38400 + Tm(femto) 
delta_OTD(m-f) = [(OTD_macro - OTD_femto) + 256*38400] mod (256*38400)
 <フィルタリング処理S313>
 以下、図7に例示されたセル情報・時間差テーブルを用いたフィルタリング処理(図14の動作S313)について、図15を参照しながら説明する。以下、フィルタリングキーとして、フェムトセルPSC、マクロセルID、仮想セルID、および、PSCとdelta_OTDの組を用いたフィルタリング処理手順について説明するが、これらのフィルタリングキーの適用順は任意であり、図15に示す処理順は一例である。
 図15において、フェムトセルのPSCをフィルタリングキーとする処理は以下の通りである。セル情報・時間差テーブルのRANAP: Relocation Requestメッセージに含まれるEvent ResultのPSCに合致する候補のみを残す(動作S330)。
 マクロセルIDをフィルタリングキーとする処理は以下の通りである。UTRAN Cell IdentityがUE History Informationの第1エントリに設定されているか否かを確認する(動作S331)。UTRAN Cell IdentityがUE History Informationの第1エントリに設定されていれば(動作S331;YES)、セル情報・時間差テーブルのマクロセル識別情報がRANAP: Relocation Requestメッセージに含まれるUE History Informationの第1エントリに設定されたセル識別情報と合致する候補のみを残す(動作S332)。
 仮想セル識別情報をフィルタリングキーとする処理は以下の通りである。セル情報・時間差テーブルにおける仮想セル識別情報のいずれかが、RANAP: Relocation Requestメッセージに含まれるターゲットセル識別情報(Target Cell Identity)に合致する候補のみ残す(S333)。続いて、制御部105は、セル情報・時間差テーブルに少なくとも一つの候補が残るか否かを判定する(動作S334)。候補が残らない場合には(動作S334;NO)、動作S333のフィルタリング処理を実行する前の状態に戻す(動作S335)。候補が残っていれば(動作S334;YES)、そのまま次の処理へ進む。
 PSCとdelta_OTDの組をフィルタリングキーとする処理は以下の通りである。まず、制御部105は受信したRANAP: Relocation RequestメッセージのMeasured Resultsからdelta_OTDを計算する(動作S336)。delta_OTDの計算は上述したとおりである。続いて、セル情報・時間差テーブルの{マクロセルPSC、delta_OTD(m-f)}が、Measured Resultsから得られた{PSC、計算されたdelta_OTD(m-f)}と合致する候補のみ残す(動作S337)。なお、既に述べたように、delta_OTDの比較において、電波伝搬距離や長時間運用によるセルの基準信号のドリフトによって数チップずれる可能性を考慮し、同じか否かの判定のためのdelta_OTDの値に幅を持たせることもできる。例えば、delta_OTDのための幅が1000、delta_OTD値が10000の場合、delta_OTDの値が9000から11000までは同じdelta_OTDの情報を持つセルと判定してもよい。
 3.5)ハンドアウトフェーズ
 次に、フェムトセル9に在圏するUE16がマクロセル13へハンドアウトする場合の動作を簡単に説明する。ただし、上述したようにHNB登録フェーズにおいてNeighbour InformationにマクロセルIDが含まれる場合には、以下のハンドアウトフェーズによるセル情報取得は不要となる。また、マクロセルIDが含まれない場合でも、図15に示すフィルタリング処理によりセル特定は可能である。
 図16において、GW1の制御部105は、下位装置からRANAP: Relocation Requiredメッセージを受信すると(動作S401)、その送信元がGW2か否かを判定する(動作S402)。送信元がGWかHNBかは、送信元アドレス、SCTP(Stream Control Transmission Protocol) Link情報、下位レイヤの情報等から把握できる。送信元がGW2であれば(動作S402;YES)、UE History InformationにUTRAN Cell Identityが設定されているか否かを判定する(動作S403)。設定されていれば(動作S403;YES)、HNB登録テーブルからUE History InformationのCell Identityに対応するPSC情報を検索する(動作S404)。
 続いて、RANAP: Relocation Requiredメッセージにおいて測定報告(Measurement Report)が正しく設定されているか否かを判定する(動作S405)。具体的には、図14の動作S312で述べた判定方法と同様である。Measurement Reportが正しく設定されていれば(動作S405;YES)、RANAP: Relocation Requiredメッセージにおいて設定されるターゲットセル識別情報あるいは当該RANAP: Relocation Requiredメッセージの送信元であるHNB/GWの周辺にあるマクロカバレッジ情報のセル識別情報が仮想セルIDテーブルに含まれるか否かを判定する(動作S406)。含まれる場合には(動作S406;YES)、ターゲットセル識別情報またはマクロカバレッジ情報のセル識別情報に対応する少なくとも1つの仮想セル識別情報を仮想セルIDテーブルから取得する(動作S407)。
 動作S407により仮想セル識別情報のリストを取得した場合あるいはターゲットセル識別情報あるいは送信元であるHNB/GWの周辺にあるマクロカバレッジ情報のセル識別情報が仮想セルIDテーブルに含まれない場合(動作S406;NO)、制御部105は、受信したRANAP: Relocation Requiredメッセージの測定報告からdelta_OTDを算出する(動作S408)。計算方法の具体例は上述したとおりである。
 こうして、制御部105はデータベース104のセル情報・時間差テーブルに、HNBのセル識別情報およびPSC、仮想セルIDリスト、マクロセルのセル識別情報およびPSC、マクロセルとフェムトセルとのdelta_OTD、および、Measured Resultsに含まれる他のセルのPSCと当該他のセルとフェムトセルとのdelta_OTDのリストを格納する(動作S409)。以下、通常のハンドアウト手順の残りを実行する(動作S410)。
 3.6)効果
 上述したように、本発明の第1実施例によれば、GW2がHNB登録/更新メッセージを用いて、GW2の配下のセル7-9に関するセル情報を上位のGW1へ通知し、これを用いてGW1がセル情報に関するデータベースを構築する。マクロセル13のNodeB12に無線接続中のUE16がマクロセル13からGW2配下のフェムトセル9へハンドインする場合、GW1は、RNC14から当該ハンドオーバ要求を受信すると、データベースに登録されたセル情報を参照することで、当該ハンドオーバのターゲットセルがGW2配下のフェムトセル9であると知ることができ、GW2を通してHNB6へハンドオーバ要求を送信することができる。
 より具体的には、GW2がHNBのセル識別情報およびPSC情報をGW1へ送信しているので、GW1が、HNBのセル識別情報とPSC情報がGW2配下の情報であることを記憶できる。したがって、ハンドインにおいてGW1がターゲットセルを特定できるとともに、ハンドオーバ要求メッセージの送信先を決定することができ、UE16の移動においても無線通信接続が切れることなく維持することが可能となる。
 また、GW1のデータベースは、セル識別情報をもつ配下のHNB/GWのアドレス情報をHNB登録テーブルとして保持しているために、ハンドインフェーズにおいてハンドオーバ要求メッセージのターゲットセル識別情報が正しくターゲットセルを特定できている場合には、セル情報・時間差テーブルを利用することなく、一意にハンドオーバ要求メッセージの送信先アドレスをデータベースから決定することができる。
 さらに、GW1のデータベースは、マクロセル識別情報に対応する仮想セル識別情報を仮想セルIDテーブルとして保持しているため、ハンドインフェーズにおいて、ハンドオーバ要求メッセージのターゲットセル識別情報によるセル情報・時間差テーブルのフィルタリングが可能となり、ターゲットセルを特定する確率を高めることが可能である。
 さらに、GW2がGW1に送信するメッセージはフェムトセルとマクロセルとのdelta_OTD情報を含むので、GW1がセル情報・時間差テーブルを構築することができ、ハンドインフェーズにおいて、GW1がターゲットセルを特定することが可能となる。
 また、GW2がGW1に送信するメッセージは、フェムトセルの増設、減設、あるいはCell Identity変更、PSC変更、近隣マクロセルの変化、フェムトセルとマクロセルとのdelta_OTDの変化を検出するたびに、更新された情報を送信することができる。したがって、GW1が最新のセル情報・時間差テーブルを構築することができる。
 また、GW2は、フェムトセルとマクロセルとのdelta_OTDの変化を考慮して、所定の閾値を超える場合にのみGW2がGW1へメッセージを送信する、という仕組みを設けている。これによって、GW1が最新のセル情報・時間差テーブルを構築する上で、頻繁に更新メッセージを送信する必要がなくなり、ネットワーク負荷の軽減に貢献する。
 また、GW1がセル情報・時間差テーブルの情報から同一セルとして判定するときにも、ある一定閾値以内であれば同じセルという判定をしているので、フェムトセルとマクロセルとのdelta_OTDの多少の揺らぎがあってもターゲットセルを特定することができる。
 また、HNBのフェムトセル識別情報、HNBが接続するGW2のAddress情報およびセル情報・時間差テーブルのGW1による管理が容易になり、非特許文献1、2に記載されているようなハンドインフェーズ前のハンドアウトフェーズが不要となる。
 4.第2実施例
 本発明の第2実施例によれば、GW1のデータベース情報は、端末UE16がフェムトセル9からマクロセル13へのハンドアウトする際のハンドオーバ要求メッセージを利用して構築される。以下、図17および図18を参照しながら、ハンドアウトフェーズにおけるセル情報の登録/更新動作について説明する。
 4.1)セル情報の登録/更新動作
 図17および図18において、UE16はフェムトセル9内でHNB6と無線接続しながら、フェムトセル9のパイロット信号からPSCCell9を、マクロセル13のパイロット信からPSCCell13を、それぞれ受信する。そして、マクロセル13のパイロット受信電力の方がフェムトセル9のパイロット受信電力よりも大きいなどの測定結果に基づき、HNB6を通してGW2へ測定報告(Measurement Report)を送信する(動作S40)。
 このMeasurement Reportには、Event Result(イベント結果)とMeasured Result(測定結果)とが含まれ、Event Resultにはマクロセル13のPSCCell13が設定され、Measured Resultには、マクロセル13に関する情報(PSCCell13、UE16とマクロセル13との基準時刻の時間差OTDcell13)と、フェムトセル9に関する情報(PSCCell9、UE16とマフェムトセル9との基準時刻の時間差OTDcell9)と、が設定される。ここで扱われる時間差OTDとは、フェムトセル9とマクロセル13のプライマリCCPCH(Common Control Physical Channel)という物理チャネルのSFN(System Frame Number)と、UE16のRLC Transparent ModeのCOUNT-CとのFrame OffsetとChip Offsetである。3GPP TS25.331 V11.4.0 (2013-1) Radio Resource Control (RRC); Protocol specification (Release 11)では、当該OTDはCOUNT-C-SFN high, OFFおよび Tmの3つのパラメータで表現される。
 Measurement Reportメッセージを受信すると、GW2は、3GPP TS 25.413 V11.2.0 (2012-12) UTRAN Iu interface Radio Access Network Application Part (RANAP) signalling (Release 11)に記載されているようにRANAP:Relocation Required(ハンドオーバ要求)メッセージを構築し、GW1へ送信する(動作S41)。このRelocation Requiredメッセージには、
1)Target ID(ターゲット識別情報)
2)Target Cell Identity(ターゲットセル識別情報)
3)UE History Information(端末履歴情報)
4)Source RNC to Target RNC Transparent Container(ソース-ターゲットRNC間トランスペアレントコンテナ)
が設定される。ここでは、Target IDにはRNC14の識別情報が、Target Cell Identityにはマクロセル13のセル識別情報がそれぞれ設定される。さらに、UE History Informationには、IE Cell IdentityとしてUE16が在圏したフェムトセル9の識別情報およびPSCの組合せが設定される。
 RANAP:Relocation Required(ハンドオーバ要求)メッセージを受信すると、GW1は当該受信したRANAP:Relocation Requestメッセージの内容からデータベース104のHNB登録テーブルおよびセル情報・時間差テーブルを構築する(動作S42)。さらに、GW1は、コアネットワーク15へRANAP:Relocation Requiredメッセージを送信する(動作S43)。この動作S43におけるRANAP:Relocation Requiredメッセージの構成は動作S41におけるRANAP: Relocation Requiredメッセージとは、以下の点を除いて同等である。
 すなわち、動作S41におけるRANAP: Relocation Requiredメッセージに含まれていたハンドオーバ前セルのPSC情報(ここではPSCCell9)は削除され、動作S43におけるRANAP:Relocation RequiredメッセージのUE History Informationには、IE Cell IdentityにUE16が在圏したセルのセル識別情報(ここではCell9)が、IE UE Stayed in CellにUE16の過去のセル滞在時間(ここでは、TimeCell9)が、それぞれ在圏したセルの数だけ設定される。
 RNC14は、GW1からコアネットワーク15を通してRANAP: Relocation Requestメッセージを受信すると、それ以降、通常のハンドオーバ処理が実行される。なお、GW1からRNS14へ、コアネットワーク15を通さずに、直接にハンドオーバ要求メッセージが送信されてもよい。
 <セル情報の登録>
 図19に示すように、第2実施例におけるセル情報の登録手順は、図12に示す第1実施例の登録手順(動作S301~S308)から動作S305およびS306を除いた手順と同じである。
 すなわち、図19において、登録されたHNBが単一のフェムトセルを有するHNBであれば(動作S303;NO)、制御部105は、HNBのCell Identity、PSCおよびAddressの組合せをデータベース104の基地局登録テーブルに登録する(動作S304)。動作S304の登録が完了した場合あるいは登録されたHNBが複数のフェムトセルを有するGW2である場合(動作S303;YES)、制御部105は、受信したHNB REGISTER REQUESTメッセージにHNB/GWに隣接するマクロセルが設定されているか否かを判定する(動作S307)。HNB REGISTER REQUESTメッセージにLocal Cell Informationが含まれているか否かの判定(動作S305)およびHNB登録テーブルの登録(動作S306)は実行されない。
 <ハンドアウト時のセル情報登録>
 図20に示すように、第2実施例におけるハンドアウト手順は、図16に示す第1実施例のハンドアウト手順(動作S401~S410)のうち動作S404のみが異なっている。
 図20において、GW1の制御部105は、下位装置からRANAP: Relocation Requiredメッセージを受信すると(動作S401)、その送信元がGW2か否かを判定する(動作S402)。送信元がGWかHNBかは、送信元アドレス、SCTP(Stream Control Transmission Protocol) Link情報、下位レイヤの情報等から把握できる。送信元がGW2であれば(動作S402;YES)、UE History InformationにUTRAN Cell Identityが設定されているか否かを判定する(動作S403)。設定されていれば(動作S403;YES)、HNBのセル識別情報およびPSCとGW2のアドレス情報とをデータベース104のHNB登録テーブルに格納する(動作S404a)。
 続いて、RANAP: Relocation Requiredメッセージにおいて測定報告(Measurement Report)が正しく設定されているか否かを判定する(動作S405)。具体的には、図14の動作S312で述べた判定方法と同様である。Measurement Reportが正しく設定されていれば(動作S405;YES)、RANAP: Relocation Requiredメッセージにおいて設定されるターゲットセル識別情報あるいは当該RANAP: Relocation Requiredメッセージの送信元であるHNB/GWの周辺にあるマクロカバレッジ情報のセル識別情報が仮想セルIDテーブルに含まれるか否かを判定する(動作S406)。含まれる場合には(動作S406;YES)、ターゲットセル識別情報またはマクロカバレッジ情報のセル識別情報に対応する少なくとも1つの仮想セル識別情報を仮想セルIDテーブルから取得する(動作S407)。
 動作S407により仮想セル識別情報のリストを取得した場合あるいはターゲットセル識別情報あるいは送信元であるHNB/GWの周辺にあるマクロカバレッジ情報のセル識別情報が仮想セルIDテーブルに含まれない場合(動作S406;NO)、制御部105は、受信したRANAP: Relocation Requiredメッセージの測定報告からdelta_OTDを算出する(動作S408)。計算方法の具体例は上述したとおりである。
 こうして、制御部105はデータベース104のセル情報・時間差テーブルに、HNBのセル識別情報およびPSC、仮想セルIDリスト、マクロセルのセル識別情報およびPSC、マクロセルとフェムトセルとのdelta_OTD、および、Measured Resultsに含まれる他のセルのPSCと当該他のセルとフェムトセルとのdelta_OTDのリストを格納する(動作S409)。以下、通常のハンドアウト手順の残りを実行する(動作S410)。
 4.2)ハンドインフェーズ
 上述したようにデータベース104のHNB登録テーブル、仮想セルIDテーブルおよびセル情報・時間差テーブルが構築され、このデータベース情報を利用することで、第1実施例と同様に、図13および図14で説明したハンドイン手順を実行することができる。
 4.3)効果
 上述したように、本発明の第2実施例によれば、以下の効果を得ることができる。
 まず、GW2からGW1へ通知されるハンドオーバ要求メッセージを用いて、GW2の配下のセル7-9に関するセル情報を上位のGW1へ通知し、これを用いてGW1がセル情報に関するデータベースを構築する。マクロセル13のNodeB12に無線接続中のUE16がマクロセル13からGW2配下のフェムトセル9へハンドインする場合、GW1は、RNC14から当該ハンドオーバ要求を受信すると、データベースに登録されたセル情報を参照することで、当該ハンドオーバのターゲットセルがGW2配下のフェムトセル9であると知ることができ、GW2を通してHNB6へハンドオーバ要求を送信することができる。
 より具体的には、GW2がHNBのセル識別情報およびPSC情報をGW1へ送信しているので、GW1が、HNBのセル識別情報とPSC情報がGW2配下の情報であることを記憶できる。したがって、ハンドインにおいてGW1がターゲットセルを特定できるとともに、ハンドオーバ要求メッセージの送信先を決定することができ、UE16の移動においても無線通信接続が切れることなく維持されうる。
 また、ハンドアウトフェーズにおいてGW2からGW1に送信されるRANAP: Relocation Requiredメッセージ内のUE History InformationにおけるIE Cell IdentityとTime UE Stayed In Cell IEとに、HNBのセル識別情報およびPSC情報に加えて、既存のIE Cell IdentityとTime UE Stayed In Cell IEも設定する。さらに、GW1がRNC14へ送信するRANAP: Relocation Requiredメッセージ内のUE History InformationにおけるIE Cell IdentityおよびTime UE Stayed In Cell IEには、既存のIE Cell IdentityとTime UE Stayed In Cell IEのみを設定する。したがって、GW1からRNC14へ送信されるハンドオーバ要求メッセージに新たなパラメータを追加する必要がなくなり、コアネットワーク15やRNC14において通常通りのハンドアウト時のハンドオーバ要求メッセージ設定が利用できる。
 また、GW1のデータベースは、セル識別情報をもつ配下のHNB/GWのアドレス情報をHNB登録テーブルとして保持しているために、ハンドインフェーズにおいてハンドオーバ要求メッセージのターゲットセル識別情報が正しくターゲットセルを特定できている場合には、セル情報・時間差テーブルを利用することなく、一意にハンドオーバ要求メッセージの送信先アドレスをデータベースから決定することができる。
 GW1は、マクロセルの識別情報に対応する仮想セルIDテーブルを内部データベース104に保持しているので、ハンドアウトフェーズにおいて、セル情報・時間差テーブルにターゲットセルであるマクロセルまたはHNB/GW2の近隣マクロセルに対応する仮想セルIDリストも記憶することができる。これにより、ハンドインフェーズにおいて、RANAP Relocation Requestメッセージのターゲットセル識別情報によるセル情報・時間差テーブルのフィルタリングが可能となり、ターゲットセルを特定する確率を高めることができる。
 GW1は、HNB/GW2のHNB登録手順において、セル識別情報と当該セル識別情報をもつHNB/GW2のアドレス情報との組み合わせを自動的に内部データベース104に構築するので、ハンドインフェーズにおいて、RANAP Relocation Requestメッセージのターゲットセル識別情報が正しくターゲットセルを特定できている場合には、RANAP Relocation Requestメッセージの送信先アドレスをデータベース104から決定することが可能となる。
 GW1は、ハンドアウトフェーズにおいて、RANAP: Relocation RequiredメッセージのUE History InformationからHNBのセル識別情報と、RANAP: Relocation Requiredメッセージの送信元であるGW2のアドレス情報との組み合わせを自動的に内部データベース104に構築するので、ハンドインフェーズにおいて、RANAP Relocation Requestメッセージのターゲットセル識別情報が正しくターゲットセルを特定できている場合には、RANAP Relocation Requestメッセージの送信先アドレスをデータベース104から決定することが可能となる。
 さらに、GW1はセル情報・時間差テーブルのdelta_OTD情報において、同一と判定する際の幅を設けているので、セル内のハンドオーバ地点による伝搬距離差に起因するOTDのズレが生じ、その結果、delta_OTD情報にもズレが生じたとしても、GW1が同一のセルと判定することができ、ターゲットセルの特定確率を高めることが可能となる。また、セルの長時間運用によってセルの基準信号の送信タイミングに多少ズレが生じたとしても、同様の効果が得られる。
 5.他の実施例
 HNBのセル識別情報およびPSCとの組合せをGW1が知る方法としては、上述した第1実施例のようにHNB登録/更新メッセージを利用する方法、第2実施例のようにUE History InformationのIE Time UE Stayed in Cellを利用する方法があるが、ネットワークアーキテクチャあるいはアクセス方式によって他の方法を採用することも可能である。以下、他の実施例について説明する。
 5.1)第3実施例
 本発明の第3実施例によれば、UE History Informationに一つのCell IdentityとPSCの組合せを設定する。
 図18に示すハンドアウトシーケンスにおいて、動作S41のRANAP:Relocation Requiredメッセージでは、IE UE History InformationにCell IdentityとTime UE Stayed in Cellの組合せが複数設定可能である。上述した第2実施例では、本来設定のUE History Informationの情報に加えて、Time UE Stayed in Cell IEにHNBのPSCとセル識別情報との組合せを追加で設定している。
 これに対して、HNBのセル識別情報とPSCの組合せのみを一つだけ設定する、という方法も可能である。この場合、図18の動作S43において、GW1がコアネットワーク15に送信するRANAP Relocation RequiredメッセージではIE UE History Informationが設定されない。
 第3実施例によれば、GW2がHNBのセル識別情報およびPSC情報をGW1へ送信しているので、GW1が、HNBのセル識別情報とPSC情報がGW2配下の情報であることを記憶できる。したがって、ハンドインにおいてGW1がターゲットセルを特定できるとともに、ハンドオーバ要求メッセージの送信先を決定することができ、UE16の移動においても無線通信接続が切れることなく維持されうる。
 さらに、ハンドアウトフェーズにおいてGW2からGW1に送信されるRANAP: Relocation Requiredメッセージ内のUE History InformationにおけるIE Cell IdentityとTime UE Stayed In Cell IEとに、HNBのセル識別情報およびPSC情報に加えて、既存のIE Cell IdentityとTime UE Stayed In Cell IEも設定する。さらに、GW1がRNC14へ送信するRANAP: Relocation Requiredメッセージ内のUE History InformationにおけるIE Cell IdentityおよびTime UE Stayed In Cell IEには、既存のIE Cell IdentityとTime UE Stayed In Cell IEのみを設定する。したがって、GW1からRNC14へ送信されるハンドオーバ要求メッセージに新たなパラメータを追加する必要なくなり、コアネットワーク15やRNC14において通常通りのハンドアウト時のハンドオーバ要求メッセージ設定が利用できる。
 5.2)第4実施例
 本発明の第4実施例によれば、Measured Resultにおいて含められる測定情報のセルとして、ソースセルとターゲットセルの2セルのみを設定する。
 第4実施例によれば、ハンドアウトフェーズにおいて、図18の動作S41に記載されたRANAP Relocation RequiredメッセージのMeasurement ReportのMeasured ResultにソースセルのPSCおよびOTD情報とターゲットセルのPSCおよびOTD情報のみを設定する。この場合、IE UE History Informationは、既存設定のUE History Informationの情報のみを設定すればよいので、図18の動作S43においてGW1がコアネットワーク15に送信するRANAP Relocation RequiredメッセージのIE UE History Informationに動作S41で設定されたものと同じ値を設定することができる。
 また、RANAP Relocation RequiredメッセージのMeasurement ReportのEvent Resultに設定されているPSCはターゲットセルのPSCであるから、UE History Informationの最初のCell Identityに対応付けられるPSCは、RANAP Relocation RequiredメッセージのMeasurement ReportのEvent Resultに設定されたPSCではない、もう一方のPSCである。
 このようにして、ソースセルであるHNBのセルPSCとHNBのセル識別情報とのマッピングを取得し、HNB登録テーブルに保存すると共に、セル情報・時間差テーブルを作成するための情報として利用する事ができる。
 本発明の第4実施例によれば、GW2がHNBのセル識別情報およびPSC情報をGW1へ送信しているので、GW1が、HNBのセル識別情報とPSC情報がGW2配下の情報であることを記憶できる。したがって、ハンドインにおいてGW1がターゲットセルを特定できるとともに、ハンドオーバ要求メッセージの送信先を決定することができ、UE16の移動においても無線通信接続が切れることなく維持されうる。
 また、GW1のデータベースは、セル識別情報をもつ配下のHNB/GWのアドレス情報をHNB登録テーブルとして保持している。このために、ハンドインフェーズにおいてハンドオーバ要求メッセージのターゲットセル識別情報が正しくターゲットセルを特定できている場合には、セル情報・時間差テーブルを利用することなく、一意にハンドオーバ要求メッセージの送信先アドレスをデータベースから決定することができる。
 GW1は、HNB/GW2のHNB登録手順において、セル識別情報と当該セル識別情報をもつHNB/GW2のアドレス情報との組み合わせを自動的に内部データベース104に構築する。したがって、ハンドインフェーズにおいて、RANAP Relocation Requestメッセージのターゲットセル識別情報が正しくターゲットセルを特定できている場合には、RANAP Relocation Requestメッセージの送信先アドレスをデータベース104から決定することが可能となる。
 GW1は、ハンドアウトフェーズにおいて、RANAP: Relocation RequiredメッセージのUE History InformationからHNBのセル識別情報と、RANAP: Relocation Requiredメッセージの送信元であるGW2のアドレス情報との組み合わせを自動的に内部データベース104に構築する。したがって、ハンドインフェーズにおいて、RANAP Relocation Requestメッセージのターゲットセル識別情報が正しくターゲットセルを特定できている場合には、RANAP Relocation Requestメッセージの送信先アドレスをデータベース104から決定することが可能となる。
 5.3)第5実施例
 本発明の第5実施例によれば、収容するGW2と収容される複数のHNBとの関係は、GW1にとってGW2の配下の一つ以上のセルが一つのセルとして管理されるのであれば、以下の形態を持ってもよい。
 a)GWとHNBが多段構成されるHNBシステム。企業内GW等で利用することができ、構成としては複数のGWが中間に存在しても良い。
 b)GW配下に接続されるRNCと複数のNodeBとで構成される無線ネットワークシステム。
 c)Donor基地局とRelay基地局からなるリレーシステム。Donor基地局は一つないし複数のRelay基地局と有線ないし無線接続を行い、Donor基地局もセルを構築してもよい。
 d)C/U分離基地局システム。C-Plane制御は代表的な一つのシステムで集約し、U-PlaneのRadio Pointは複数存在する。
 上述したa)~d)のシステム形態であっても、本発明は適用可能である。
 5.4)第6実施例
 上述した第1~第5実施例ではWCDMA技術をベースとして記載しているが、LTE(Long Term Evolution)やGSM、WiFi等他の無線システムであっても適用可能である。
 たとえばLTEではHeNBGWとHeNBとが一つのフェムト基地局システムであり、オペレータネットワークの第1HeNBGWに企業内ネットワークの第2HeNBGWが接続され、さらにその配下にHeNBが複数接続される。このような形態であっても、第1HeNBGWは第2HeNBGW配下のセルの物理セル識別情報(PCI: Physical Cell Identity)と論理セル識別情報(Cell Identity)との組み合わせを管理し、マクロeNBとHeNBとのDelta_OTDを利用してHand-in/out動作に適用可能である。
 5.5)第7実施例
 上述した第2実施例では、UEのセル測定としてEvent 1aやEvent 1c等のIntra Frequency Measurementを利用したが、Inter Frequency Measurementや、OTDOA measurementを利用することもできる。異周波数ハンドオーバの場合、HNBのセルは、異周波においてもHNBセルのシステム情報のみを報知するビーコンセルとして存在してもよい。delta_OTD情報としてTmの値のみ利用する事も考えられる。
 5.6)第8実施例
 本発明の第8実施例によれば、GW1、RNC14、HNBの装置間通信によるセル情報・時間差テーブルを構築する。
 上述した第1~第7実施例において、セル情報・時間差テーブルは、メッセージに設定されている情報から構築したが、GW1、RNC14、HNBおよびGW2はそれぞれ基準時刻を保持しているので、直接装置間通信によってタイミングの違いを認識する事が可能である。装置間通信に各セルの基準時刻の情報も付与する事によって、セル情報・時間差テーブルをGW1で構築する事が可能となる。
 5.7)第9実施例
 本発明の第9実施例によれば、セル情報・時間差テーブルをGW1のシステムパラメータとして構築する。
 上述した第1~第8実施例において、セル情報・時間差テーブルやHNB登録テーブルは、GW1が装置間メッセージの送受信や装置間同期機能から自ら構築するものであったが、第9実施例によれば、その情報を外部インターフェースを通して設定することもできる。たとえば手動で入力してもよし、他ノードが第2中継装置の情報を収集したり、第2中継装置を含むフィールドネットワーク情報を収集したりするような試験端末が存在すれば、その試験端末や他ノードから第1中継装置へ情報を送付するようにしてもよい。
 5.8)第10実施例
 本発明の第10実施例によれば、セル情報・時間差テーブルをGW1とGW2においてそれぞれ構築する。
 上述した第1~第9実施例において、セル情報・時間差テーブルは、GW1が保持するデータベース104として構築していたが、同様の仕組みをGW2に設けることもできる。
 上述した実施形態および実施例において、上述した基地局、中継装置の処理は、それぞれ目的に応じて作製された論理回路で行うようにしても良い。また、処理内容を手順として記述したプログラムを基地局や中継装置にてそれぞれ読取可能な記録媒体に記録し、この記録媒体に記録されたプログラムを基地局や中継装置にそれぞれ読み込ませ、実行するものであっても良い。基地局や中継装置にて読取可能な記録媒体とは、フロッピーディスク(登録商標)、光磁気ディスク、DVD、CDなどの移設可能な記録媒体の他、基地局や中継装置にそれぞれ内蔵されたROM、RAM等のメモリやHDD等を指す。この記録媒体に記録されたプログラムは基地局や中継装置内のCPU(不図示)にてそれぞれ読み込まれ、CPUの制御によって、上述したものと同様の処理が行われる。ここで、CPUは、プログラムが記録された記録媒体から読み込まれたプログラムを実行するコンピュータとして動作するものである。
 6.付記
 上述した実施形態の一部あるいは全部は、以下の付記のようにも記載されうるが、これらに限定されるものではない。
(付記1)
 通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムにおけるハンドオーバ制御方法であって、
 前記第1中継装置が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を取得し、
 無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記第1中継装置が、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する、
 ことを特徴とするハンドオーバ制御方法。
(付記2)
 前記セル情報は、前記配下の第2基地局のセルを識別する論理セル識別情報と物理セル識別情報と、を含むことを特徴とする付記1に記載のハンドオーバ制御方法。
(付記3)
 前記第1中継装置が、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする付記2に記載のハンドオーバ制御方法。
(付記4)
 前記セル情報は、さらに、前記第2基地局が制御するセルの隣接セルが使用する物理セル識別情報と、前記セルと前記隣接セルとの間の基準時刻の時間差情報と、を含むことを特徴とする付記2または3に記載のハンドオーバ制御方法。
(付記5)
 前記第1中継装置が、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と、当該ターゲットセルとソースセルとの間の基準時刻の時間差情報と、前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする付記4に記載のハンドオーバ制御方法。
(付記6)
 前記第1中継装置が前記セル情報を外部から入力することを特徴とする付記1-5のいずれか1項に記載のハンドオーバ制御方法。
(付記7)
 前記第2中継装置が、配下の第2基地局に関する情報を送信する基地局登録メッセージあるいは基地局更新メッセージを用いて前記セル情報を前記第1中継装置へ通知することを特徴とする付記6に記載のハンドオーバ制御方法。
(付記8)
 前記第2中継装置が、前記第2基地局から前記第1基地局へハンドオーバするハンドアウトフェーズのハンドオーバ要求メッセージを用いて、前記セル情報を前記第1中継装置へ通知することを特徴とする付記6に記載のハンドオーバ制御方法。
(付記9)
 前記ハンドアウトフェーズのハンドオーバ要求メッセージは、前記無線局の履歴情報に関する情報要素に当該ハンドオーバのソースセルの物理セル識別情報が設定され、前記第1中継装置から前記基地局制御装置へ送信されるハンドオーバ要求メッセージは、前記無線局の履歴情報に関する情報要素に通常の滞在時間情報が設定されることを特徴とする付記8に記載のハンドオーバ制御方法。
(付記10)
 前記第1中継装置が、その直下の基地局のセルおよび前記第2基地局のセルに関する論理セル識別情報と、前記直下の基地局、前記第2基地局および前記第2中継装置のアドレス情報とを対応づけた基地局登録テーブルを保持し、
 前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記基地局登録テーブルを検索し、前記ターゲットセルおよび前記ハンドオーバ要求メッセージの送信先アドレスを特定する、
 ことを特徴とする付記1-9のいずれか1項に記載のハンドオーバ制御方法。
(付記11)
 前記第1中継装置が、前記第1基地局のセルの論理セル識別情報と、前記少なくとも1つの第2基地局を含む少なくとも1つの仮想セルの論理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルの論理セル識別情報と、を対応づけたセル情報テーブルを保持し、
 前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記セル情報テーブルを検索し、前記ターゲットセルの候補を絞り込む、
 ことを特徴とする付記1-10のいずれか1項に記載のハンドオーバ制御方法。
(付記12)
 前記セル情報テーブルは、さらに、前記第2基地局のセルの隣接セルが使用する物理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルが使用する物理セル識別情報と、前記第2基地局のセルとその隣接セルとの間の基準時刻の時間差情報と、を含み、
 前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
 ことを特徴とする付記11に記載のハンドオーバ制御方法。
(付記13)
 前記セル情報テーブルは、さらに、前記第2基地局のセルおよび前記第1基地局のセルを除いた他のセルが使用する物理セル識別情報と、前記他のセルと前記第2基地局のセルとの間の基準時刻の時間差情報と、を含み、
 前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
 ことを特徴とする付記11または12に記載のハンドオーバ制御方法。
(付記14)
 前記第1中継装置および前記第2中継装置が、セル間の基準時刻の時間差情報を同一と判定するための幅を設定したことを特徴とする付記4、5、12および13のいずれか1項に記載のハンドオーバ制御方法。
(付記15)
 前記第1中継装置が、前記セル情報を用いて、前記ハンドオーバのターゲットセルまでの経路を特定することを特徴とする付記1-14のいずれか1項に記載のハンドオーバ制御方法。
(付記16)
 基地局制御装置が接続された通信ネットワークに接続され、配下に少なくとも下位中継装置が接続された中継装置であって、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記下位中継装置の配下に少なくとも1つの第2基地局が接続されており、
 前記下位中継装置の配下の第2基地局が制御するセルのセル情報を格納する格納手段と、
 無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する制御手段と、
 を有することを特徴とする中継装置。
(付記17)
 前記セル情報は、前記配下の第2基地局のセルを識別する論理セル識別情報と物理セル識別情報と、を含むことを特徴とする付記16に記載の中継装置。
(付記18)
 前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする付記17に記載の中継装置。
(付記19)
 前記セル情報は、さらに、前記第2基地局が制御するセルの隣接セルが使用する物理セル識別情報と、前記セルと前記隣接セルとの間の基準時刻の時間差情報と、を含むことを特徴とする付記17または18に記載の中継装置。
(付記20)
 前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と、当該ターゲットセルとソースセルとの間の基準時刻の時間差情報と、前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする付記19に記載の中継装置。
(付記21)
 前記制御手段は、前記セル情報を外部から入力することを特徴とする付記16-20のいずれか1項に記載の中継装置。
(付記22)
 前記制御手段は、前記下位中継装置から、その配下の第2基地局に関する情報を送信する基地局登録メッセージあるいは基地局更新メッセージを用いて前記セル情報を受信することを特徴とする付記21に記載の中継装置。
(付記23)
 前記制御手段は、前記下位中継装置から、前記第2基地局から前記第1基地局へハンドオーバするハンドアウトフェーズのハンドオーバ要求メッセージを用いて、前記セル情報を受信することを特徴とする付記21に記載の中継装置。
(付記24)
 前記ハンドアウトフェーズのハンドオーバ要求メッセージは、前記無線局の履歴情報に関する情報要素に当該ハンドオーバのソースセルの物理セル識別情報が設定されており、前記制御手段は、前記基地局制御装置へ送信するハンドオーバ要求メッセージの前記無線局の履歴情報に関する情報要素に通常の滞在時間情報を設定する、ことを特徴とする付記23に記載の中継装置。
(付記25)
 前記格納手段は、当該中継装置の直下の基地局のセルおよび前記第2基地局のセルに関する論理セル識別情報と、前記直下の基地局、前記第2基地局および前記下位中継装置のアドレス情報とを対応づけた基地局登録テーブルを保持し、
 前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記基地局登録テーブルを検索し、前記ターゲットセルおよび前記ハンドオーバ要求メッセージの送信先アドレスを特定する、
 ことを特徴とする付記16-24のいずれか1項に記載の中継装置。
(付記26)
前記格納手段は、前記第1基地局のセルの論理セル識別情報と、前記少なくとも1つの第2基地局を含む少なくとも1つの仮想セルの論理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルの論理セル識別情報と、を対応づけたセル情報テーブルを保持し、
 前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記セル情報テーブルを検索し、前記ターゲットセルの候補を絞り込む、
 ことを特徴とする付記16-25のいずれか1項に記載の中継装置。
(付記27)
 前記セル情報テーブルは、さらに、前記第2基地局のセルの隣接セルが使用する物理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルが使用する物理セル識別情報と、前記第2基地局のセルとその隣接セルとの間の基準時刻の時間差情報と、を含み、
 前記制御手段は、前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
 ことを特徴とする付記26に記載の中継装置。
(付記28)
 前記セル情報テーブルは、さらに、前記第2基地局のセルおよび前記第1基地局のセルを除いた他のセルが使用する物理セル識別情報と、前記他のセルと前記第2基地局のセルとの間の基準時刻の時間差情報と、を含み、
 前記制御手段は、前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
 ことを特徴とする付記26または27に記載の中継装置。
(付記29)
 前記制御手段はセル間の基準時刻の時間差情報を同一と判定するための幅を設定することを特徴とする付記19、20、27および28のいずれか1項に記載の中継装置。
(付記30)
 前記制御手段が、前記セル情報を用いて、前記ハンドオーバのターゲットセルまでの経路を特定することを特徴とする付記16-29のいずれか1項に記載の中継装置。
(付記31)
 通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムにおける前記第1中継装置におけるターゲットセル選択方法であって、
 格納手段が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を格納し、
 制御手段が、無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記セル情報を用いて前記ハンドオーバのターゲットセルを選択する、
 ことを特徴とするターゲットセル選択方法。
(付記32)
 前記セル情報は、前記配下の第2基地局のセルを識別する論理セル識別情報と物理セル識別情報と、を含むことを特徴とする付記31に記載のターゲットセル選択方法。
(付記33)
 前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする付記32に記載のターゲットセル選択方法。
(付記34)
 前記セル情報は、さらに、前記第2基地局が制御するセルの隣接セルが使用する物理セル識別情報と、前記セルと前記隣接セルとの間の基準時刻の時間差情報と、を含むことを特徴とする付記32または33に記載のターゲットセル選択方法。
(付記35)
 前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と、当該ターゲットセルとソースセルとの間の基準時刻の時間差情報と、前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする付記34に記載のターゲットセル選択方法。
(付記36)
 前記制御手段は、前記セル情報を外部から受信することを特徴とする付記31-35のいずれか1項に記載のターゲットセル選択方法。
(付記37)
 前記下位中継装置から、その配下の第2基地局に関する情報を送信する基地局登録メッセージあるいは基地局更新メッセージを用いて前記セル情報を受信することを特徴とする付記36に記載のターゲットセル選択方法。
(付記38)
 前記下位中継装置から、前記第2基地局から前記第1基地局へハンドオーバするハンドアウトフェーズのハンドオーバ要求メッセージを用いて、前記セル情報を受信することを特徴とする付記364に記載のターゲットセル選択方法。
(付記39)
 前記ハンドアウトフェーズのハンドオーバ要求メッセージは、前記無線局の履歴情報に関する情報要素に当該ハンドオーバのソースセルの物理セル識別情報が設定されており、前記制御手段は、前記基地局制御装置へ送信するハンドオーバ要求メッセージの前記無線局の履歴情報に関する情報要素に通常の滞在時間情報を設定する、ことを特徴とする付記38に記載のターゲットセル選択方法。
(付記40)
 前記格納手段は、当該中継装置の直下の基地局のセルおよび前記第2基地局のセルに関する論理セル識別情報と、前記直下の基地局、前記第2基地局および前記第2中継装置のアドレス情報とを対応づけた基地局登録テーブルを保持し、
 前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記基地局登録テーブルを検索し、前記ターゲットセルおよび前記ハンドオーバ要求メッセージの送信先アドレスを特定する、
 ことを特徴とする付記31-39のいずれか1項に記載のターゲットセル選択方法。
(付記41)
 前記格納手段は、前記第1基地局のセルの論理セル識別情報と、前記少なくとも1つの第2基地局を含む少なくとも1つの仮想セルの論理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルの論理セル識別情報と、を対応づけたセル情報テーブルを保持し、
 前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記セル情報テーブルを検索し、前記ターゲットセルの候補を絞り込む、
 ことを特徴とする付記31-40のいずれか1項に記載のターゲットセル選択方法。
(付記42)
 前記セル情報テーブルは、さらに、前記第2基地局のセルの隣接セルが使用する物理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルが使用する物理セル識別情報と、前記第2基地局のセルとその隣接セルとの間の基準時刻の時間差情報と、を含み、
 前記制御手段は、前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
 ことを特徴とする付記41に記載のターゲットセル選択方法。
(付記43)
 前記セル情報テーブルは、さらに、前記第2基地局のセルおよび前記第1基地局のセルを除いた他のセルが使用する物理セル識別情報と、前記他のセルと前記第2基地局のセルとの間の基準時刻の時間差情報と、を含み、
 前記制御手段は、前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
 ことを特徴とする付記41または42に記載のターゲットセル選択方法。
(付記44)
 前記制御手段はセル間の基準時刻の時間差情報を同一と判定するための幅を設定することを特徴とする付記34、35、42および43のいずれか1項に記載のターゲットセル選択方法。
(付記45)
 前記制御手段が、前記セル情報を用いて、前記ハンドオーバのターゲットセルまでの経路を特定することを特徴とする付記31-44のいずれか1項に記載の中継装置。
(付記46)
 通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムであって、
 前記第1中継装置が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を取得し、
 無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記第1中継装置が、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する、
 ことを特徴とする無線通信システム。
 本発明はセル構成を有する移動通信システムにおけるハンドオーバ制御に適用可能である。
1 第1中継装置(GW)
2 第2中継装置(GW)
3 仮想セル
4-6 基地局(HNB)
7-9 セル(フェムトセル)
10 基地局(HNB)
11 セル(フェムトセル)
12 基地局(NodeB)
13 セル(マクロセル)
14 基地局制御装置(RNC)
15 コアネットワーク
101 通信部
102 下位装置通信部
103 プロトコルメッセージ構築部
104 データベース
105 制御部
201 上位装置通信部
202 基地局通信部
203 プロトコルメッセージ構築部
204 配下基地局情報格納部
205 制御部

Claims (32)

  1.  通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムにおけるハンドオーバ制御方法であって、
     前記第1中継装置が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を取得し、
     無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記第1中継装置が、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する、
     ことを特徴とするハンドオーバ制御方法。
  2.  前記セル情報は、前記配下の第2基地局のセルを識別する論理セル識別情報と物理セル識別情報と、を含むことを特徴とする請求項1に記載のハンドオーバ制御方法。
  3.  前記第1中継装置が、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする請求項2に記載のハンドオーバ制御方法。
  4.  前記セル情報は、さらに、前記第2基地局が制御するセルの隣接セルが使用する物理セル識別情報と、前記セルと前記隣接セルとの間の基準時刻の時間差情報と、を含むことを特徴とする請求項2または3に記載のハンドオーバ制御方法。
  5.  前記第1中継装置が、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と、当該ターゲットセルとソースセルとの間の基準時刻の時間差情報と、前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする請求項4に記載のハンドオーバ制御方法。
  6.  前記第1中継装置が前記セル情報を外部から入力することを特徴とする請求項1-5のいずれか1項に記載のハンドオーバ制御方法。
  7.  前記第2中継装置が、配下の第2基地局に関する情報を送信する基地局登録メッセージあるいは基地局更新メッセージを用いて前記セル情報を前記第1中継装置へ通知することを特徴とする請求項6に記載のハンドオーバ制御方法。
  8.  前記第2中継装置が、前記第2基地局から前記第1基地局へハンドオーバするハンドアウトフェーズのハンドオーバ要求メッセージを用いて、前記セル情報を前記第1中継装置へ通知することを特徴とする請求項6に記載のハンドオーバ制御方法。
  9.  前記ハンドアウトフェーズのハンドオーバ要求メッセージは、前記無線局の履歴情報に関する情報要素に当該ハンドオーバのソースセルの物理セル識別情報が設定され、前記第1中継装置から前記基地局制御装置へ送信されるハンドオーバ要求メッセージは、前記無線局の履歴情報に関する情報要素に通常の滞在時間情報が設定されることを特徴とする請求項8に記載のハンドオーバ制御方法。
  10.  前記第1中継装置が、その直下の基地局のセルおよび前記第2基地局のセルに関する論理セル識別情報と、前記直下の基地局、前記第2基地局および前記第2中継装置のアドレス情報とを対応づけた基地局登録テーブルを保持し、
     前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記基地局登録テーブルを検索し、前記ターゲットセルおよび前記ハンドオーバ要求メッセージの送信先アドレスを特定する、
     ことを特徴とする請求項1-9のいずれか1項に記載のハンドオーバ制御方法。
  11.  前記第1中継装置が、前記第1基地局のセルの論理セル識別情報と、前記少なくとも1つの第2基地局を含む少なくとも1つの仮想セルの論理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルの論理セル識別情報と、を対応づけたセル情報テーブルを保持し、
     前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記セル情報テーブルを検索し、前記ターゲットセルの候補を絞り込む、
     ことを特徴とする請求項1-10のいずれか1項に記載のハンドオーバ制御方法。
  12.  前記セル情報テーブルは、さらに、前記第2基地局のセルの隣接セルが使用する物理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルが使用する物理セル識別情報と、前記第2基地局のセルとその隣接セルとの間の基準時刻の時間差情報と、を含み、
     前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
     ことを特徴とする請求項11に記載のハンドオーバ制御方法。
  13.  前記セル情報テーブルは、さらに、前記第2基地局のセルおよび前記第1基地局のセルを除いた他のセルが使用する物理セル識別情報と、前記他のセルと前記第2基地局のセルとの間の基準時刻の時間差情報と、を含み、
     前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
     ことを特徴とする請求項11または12に記載のハンドオーバ制御方法。
  14.  前記第1中継装置および前記第2中継装置が、セル間の基準時刻の時間差情報を同一と判定するための幅を設定したことを特徴とする請求項4、5、12および13のいずれか1項に記載のハンドオーバ制御方法。
  15.  前記第1中継装置が、前記セル情報を用いて、前記ハンドオーバのターゲットセルまでの経路を特定することを特徴とする請求項1-14のいずれか1項に記載のハンドオーバ制御方法。
  16.  基地局制御装置が接続された通信ネットワークに接続され、配下に少なくとも下位中継装置が接続された中継装置であって、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記下位中継装置の配下に少なくとも1つの第2基地局が接続されており、
     前記下位中継装置の配下の第2基地局が制御するセルのセル情報を格納する格納手段と、
     無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する制御手段と、
     を有することを特徴とする中継装置。
  17.  前記セル情報は、前記配下の第2基地局のセルを識別する論理セル識別情報と物理セル識別情報と、を含むことを特徴とする請求項16に記載の中継装置。
  18.  前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする請求項17に記載の中継装置。
  19.  前記セル情報は、さらに、前記第2基地局が制御するセルの隣接セルが使用する物理セル識別情報と、前記セルと前記隣接セルとの間の基準時刻の時間差情報と、を含むことを特徴とする請求項17または18に記載の中継装置。
  20.  前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージに含まれる前記ターゲットセルの物理セル識別情報と、当該ターゲットセルとソースセルとの間の基準時刻の時間差情報と、前記セル情報とを用いて、前記ターゲットセルを特定することを特徴とする請求項19に記載の中継装置。
  21.  前記制御手段は、前記セル情報を外部から入力することを特徴とする請求項16-20のいずれか1項に記載の中継装置。
  22.  前記制御手段は、前記下位中継装置から、その配下の第2基地局に関する情報を送信する基地局登録メッセージあるいは基地局更新メッセージを用いて前記セル情報を受信することを特徴とする請求項21に記載の中継装置。
  23.  前記制御手段は、前記下位中継装置から、前記第2基地局から前記第1基地局へハンドオーバするハンドアウトフェーズのハンドオーバ要求メッセージを用いて、前記セル情報を受信することを特徴とする請求項21に記載の中継装置。
  24.  前記ハンドアウトフェーズのハンドオーバ要求メッセージは、前記無線局の履歴情報に関する情報要素に当該ハンドオーバのソースセルの物理セル識別情報が設定されており、前記制御手段は、前記基地局制御装置へ送信するハンドオーバ要求メッセージの前記無線局の履歴情報に関する情報要素に通常の滞在時間情報を設定する、ことを特徴とする請求項23に記載の中継装置。
  25.  前記格納手段は、当該中継装置の直下の基地局のセルおよび前記第2基地局のセルに関する論理セル識別情報と、前記直下の基地局、前記第2基地局および前記下位中継装置のアドレス情報とを対応づけた基地局登録テーブルを保持し、
     前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記基地局登録テーブルを検索し、前記ターゲットセルおよび前記ハンドオーバ要求メッセージの送信先アドレスを特定する、
     ことを特徴とする請求項16-24のいずれか1項に記載の中継装置。
  26.  前記格納手段は、前記第1基地局のセルの論理セル識別情報と、前記少なくとも1つの第2基地局を含む少なくとも1つの仮想セルの論理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルの論理セル識別情報と、を対応づけたセル情報テーブルを保持し、
     前記制御手段は、前記基地局制御装置から受信したハンドオーバ要求メッセージのターゲットセルの論理セル識別情報を用いて前記セル情報テーブルを検索し、前記ターゲットセルの候補を絞り込む、
     ことを特徴とする請求項16-25のいずれか1項に記載の中継装置。
  27.  前記セル情報テーブルは、さらに、前記第2基地局のセルの隣接セルが使用する物理セル識別情報と、前記第1基地局のセルと隣接する第2基地局のセルが使用する物理セル識別情報と、前記第2基地局のセルとその隣接セルとの間の基準時刻の時間差情報と、を含み、
     前記制御手段は、前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
     ことを特徴とする請求項26に記載の中継装置。
  28.  前記セル情報テーブルは、さらに、前記第2基地局のセルおよび前記第1基地局のセルを除いた他のセルが使用する物理セル識別情報と、前記他のセルと前記第2基地局のセルとの間の基準時刻の時間差情報と、を含み、
     前記制御手段は、前記ハンドオーバ要求メッセージのターゲットセルの物理セル識別情報と、前記ターゲットセルとソースセルとの間の基準時刻の時間差情報とを用いて前記セル情報テーブルを検索することで、前記ターゲットセルの候補を更に絞り込む、
     ことを特徴とする請求項26または27に記載の中継装置。
  29.  前記制御手段はセル間の基準時刻の時間差情報を同一と判定するための幅を設定することを特徴とする請求項19、20、27および28のいずれか1項に記載の中継装置。
  30.  前記制御手段が、前記セル情報を用いて、前記ハンドオーバのターゲットセルまでの経路を特定することを特徴とする請求項16-29のいずれか1項に記載の中継装置。
  31.  通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムにおける前記第1中継装置におけるターゲットセル選択方法であって、
     格納手段が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を格納し、
     制御手段が、無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記セル情報を用いて前記ハンドオーバのターゲットセルを選択する、
     ことを特徴とするターゲットセル選択方法。
  32.  通信ネットワークに基地局制御装置および第1中継装置が接続され、前記基地局制御装置の配下に少なくとも1つの第1基地局が接続され、前記第1中継装置の配下に少なくとも第2中継装置が接続され、前記第2中継装置の配下に少なくとも1つの第2基地局が接続された無線通信システムであって、
     前記第1中継装置が、前記第2中継装置の配下の第2基地局が制御するセルのセル情報を取得し、
     無線局が無線接続中の前記第1基地局から前記第2基地局へハンドオーバするハンドインフェーズにおいて、前記第1中継装置が、前記セル情報を用いて、前記ハンドオーバのターゲットセルを特定する、
     ことを特徴とする無線通信システム。
PCT/JP2014/003058 2013-06-10 2014-06-09 無線通信システムにおけるハンドオーバ制御方法、中継装置およびターゲットセル選択方法 WO2014199621A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14811167.7A EP3010282B1 (en) 2013-06-10 2014-06-09 Wireless communications system handover control method, relay device, and target cell selection method
JP2015522537A JP6090612B2 (ja) 2013-06-10 2014-06-09 無線通信システムにおけるハンドオーバ制御方法、中継装置およびターゲットセル選択方法
US14/897,166 US10743223B2 (en) 2013-06-10 2014-06-09 Method of handover control, relay apparatus, and method for selecting target cell in radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-121564 2013-06-10
JP2013121564 2013-06-10

Publications (1)

Publication Number Publication Date
WO2014199621A1 true WO2014199621A1 (ja) 2014-12-18

Family

ID=52021935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003058 WO2014199621A1 (ja) 2013-06-10 2014-06-09 無線通信システムにおけるハンドオーバ制御方法、中継装置およびターゲットセル選択方法

Country Status (4)

Country Link
US (1) US10743223B2 (ja)
EP (1) EP3010282B1 (ja)
JP (4) JP6090612B2 (ja)
WO (1) WO2014199621A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11032299B2 (en) * 2015-03-03 2021-06-08 Nec Corporation Log analysis system, analysis device, analysis method, and storage medium on which analysis program is stored
JP2017028620A (ja) * 2015-07-27 2017-02-02 京セラ株式会社 中継装置および無線中継方法
US11665597B2 (en) * 2016-03-18 2023-05-30 Parallel Wireless, Inc. UE mobility across super-cells
CN118158758A (zh) * 2019-01-09 2024-06-07 三菱电机株式会社 用户装置、基站及通信系统
US11812509B2 (en) * 2019-08-27 2023-11-07 Lg Electronics Inc. Communication related to configuration update

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075328A1 (en) * 2010-12-01 2012-06-07 Qualcomm Incorporated Apparatus and methods for hand-in to a femto node
WO2012081501A1 (ja) * 2010-12-16 2012-06-21 株式会社 エヌ・ティ・ティ・ドコモ 無線アクセス装置及びハンドオーバ方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009055827A1 (en) * 2007-10-25 2009-04-30 Starent Networks, Corp. Interworking gateway for mobile nodes
EP2237583A1 (en) 2009-03-30 2010-10-06 BRITISH TELECOMMUNICATIONS public limited company Cellular mobile communications system
JP5392359B2 (ja) * 2010-01-29 2014-01-22 日本電気株式会社 サービス配信プラットフォーム、サービス配信システム、並びにサービス配信方法及びプログラム
CN102281587B (zh) * 2010-06-13 2018-07-17 中兴通讯股份有限公司 接入网节点间实现直接接口的方法及系统
JP2013051561A (ja) * 2011-08-31 2013-03-14 Sharp Corp 基地局、ハンドオーバ制御方法、およびプログラム
US20130225182A1 (en) * 2012-02-24 2013-08-29 Qualcomm Incorporated Method and system for joint parameter optimization for macro and femto cells
US20140302853A1 (en) * 2012-11-30 2014-10-09 Telefonaktiebolaget L M Ericsson (Publ) Network node, user equipment, methods therein, computer programs and computer-readable storage mediums to expand or shrink a coverage area of a cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075328A1 (en) * 2010-12-01 2012-06-07 Qualcomm Incorporated Apparatus and methods for hand-in to a femto node
WO2012081501A1 (ja) * 2010-12-16 2012-06-21 株式会社 エヌ・ティ・ティ・ドコモ 無線アクセス装置及びハンドオーバ方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TR 37.803 V11.1.0, December 2012 (2012-12-01)
3GPP TS 25.467 V11.1.0, December 2012 (2012-12-01)

Also Published As

Publication number Publication date
JP6354875B2 (ja) 2018-07-11
JP2017077033A (ja) 2017-04-20
JP6508395B2 (ja) 2019-05-08
US10743223B2 (en) 2020-08-11
JP6090612B2 (ja) 2017-03-08
JP6669297B2 (ja) 2020-03-18
EP3010282B1 (en) 2019-11-06
JP2019126089A (ja) 2019-07-25
JPWO2014199621A1 (ja) 2017-02-23
JP2018170774A (ja) 2018-11-01
EP3010282A4 (en) 2017-02-15
EP3010282A1 (en) 2016-04-20
US20160142952A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6669297B2 (ja) 無線通信システムおよび中継装置
KR101245427B1 (ko) 무선 통신 시스템에서의 측정 보고를 위한 장치 및 방법
TWI461074B (zh) 在通信網路系統中的通信網路節點及方法
JP5340397B2 (ja) ホームノードbゲートウェイアドレスを検索するためのセルidおよびマスクの使用
KR101488264B1 (ko) 펨토 기지국으로의 핸드 오버를 위한 무선 통신 시스템 및 이를 위한 방법
JP5123274B2 (ja) 移動通信方法及び無線基地局
JP5158254B2 (ja) フェムトセルシステム及びフェムトセルシステムにおけるマクロセル/マイクロセルとのモビリティ実現方法
KR101446011B1 (ko) 기지국 장치가 중계 장치의 식별 정보를 브로드캐스트하는 무선 통신 시스템
JPWO2011004599A1 (ja) 移動通信システム、端末装置および基地局装置
CN101998579A (zh) 一种向用户设备提供家庭基站小区信息的方法及系统
US9001790B2 (en) Processing apparatus, mobile communication system, base station apparatus, method for switching connection of mobile station, and non-transitory computer readable medium storing program
JP5108856B2 (ja) 移動通信方法、無線基地局、交換局、移動局
CN101841874B (zh) 移动通信系统中支持切换的方法
EP2800448B1 (en) Method and device for achieving multi-cell service on base station equipment
CN102769877A (zh) 小区切换方法及基站
JP5247794B2 (ja) 移動通信システムにおける基地局及び情報取得方法
JP5030862B2 (ja) 移動端末についてハンドオーバを実行する必要があるか否かを判断する方法及び装置、コンピュータプログラム、並びに移動端末によって転送されるメッセージ
KR20140000054A (ko) 이동통신시스템의 핸드오버 방법 및 이를 위한 기지국
WO2012163752A1 (en) Reporting of neighbour femtocell information using automatic neighbour relation reports
KR20130022812A (ko) 소형셀로의 핸드오버 정확성 및 성능 향상을 위한 방법 및 장치
EP2716100A1 (en) Reporting of neighbour femtocell information using automatic neighbour relation reports

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522537

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897166

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014811167

Country of ref document: EP