WO2014199279A1 - Building insulation - Google Patents
Building insulation Download PDFInfo
- Publication number
- WO2014199279A1 WO2014199279A1 PCT/IB2014/062034 IB2014062034W WO2014199279A1 WO 2014199279 A1 WO2014199279 A1 WO 2014199279A1 IB 2014062034 W IB2014062034 W IB 2014062034W WO 2014199279 A1 WO2014199279 A1 WO 2014199279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- building
- building insulation
- insulation
- additive
- polymeric material
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 108
- 239000000463 material Substances 0.000 claims abstract description 108
- 239000000654 additive Substances 0.000 claims abstract description 101
- 239000000203 mixture Substances 0.000 claims abstract description 94
- 230000000996 additive effect Effects 0.000 claims abstract description 82
- 229920000642 polymer Polymers 0.000 claims abstract description 81
- 239000011159 matrix material Substances 0.000 claims abstract description 54
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 47
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 46
- -1 alkane diol Chemical class 0.000 claims description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 229920000728 polyester Polymers 0.000 claims description 27
- 239000011148 porous material Substances 0.000 claims description 24
- 229920000098 polyolefin Polymers 0.000 claims description 22
- 239000000155 melt Substances 0.000 claims description 20
- 239000003607 modifier Substances 0.000 claims description 20
- 229920000647 polyepoxide Polymers 0.000 claims description 20
- 230000009477 glass transition Effects 0.000 claims description 14
- 230000016507 interphase Effects 0.000 claims description 13
- 239000002253 acid Substances 0.000 claims description 12
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 11
- 239000005977 Ethylene Substances 0.000 claims description 10
- 239000004604 Blowing Agent Substances 0.000 claims description 7
- 239000002657 fibrous material Substances 0.000 claims description 6
- 230000002209 hydrophobic effect Effects 0.000 claims description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 4
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 3
- 229920003232 aliphatic polyester Polymers 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 229920001384 propylene homopolymer Polymers 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 76
- 239000000178 monomer Substances 0.000 description 39
- 238000012360 testing method Methods 0.000 description 32
- 230000035882 stress Effects 0.000 description 30
- 239000000306 component Substances 0.000 description 23
- 229920000747 poly(lactic acid) Polymers 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- 239000004626 polylactic acid Substances 0.000 description 19
- 239000010410 layer Substances 0.000 description 17
- 229920001577 copolymer Polymers 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 14
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 13
- 229920001155 polypropylene Polymers 0.000 description 13
- 239000004593 Epoxy Substances 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 239000004743 Polypropylene Substances 0.000 description 10
- 239000004927 clay Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 9
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 238000004626 scanning electron microscopy Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000010128 melt processing Methods 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 7
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 7
- 239000011800 void material Substances 0.000 description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 6
- 239000004594 Masterbatch (MB) Substances 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 6
- 239000012802 nanoclay Substances 0.000 description 6
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 125000003700 epoxy group Chemical group 0.000 description 5
- 238000011067 equilibration Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229930182843 D-Lactic acid Natural products 0.000 description 4
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 4
- 229920002266 Pluriol® Polymers 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229940022769 d- lactic acid Drugs 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920001748 polybutylene Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 229920000092 linear low density polyethylene Polymers 0.000 description 3
- 239000004707 linear low-density polyethylene Substances 0.000 description 3
- 239000012968 metallocene catalyst Substances 0.000 description 3
- 229910052901 montmorillonite Inorganic materials 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 102100024133 Coiled-coil domain-containing protein 50 Human genes 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 101000910772 Homo sapiens Coiled-coil domain-containing protein 50 Proteins 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000004775 Tyvek Substances 0.000 description 2
- 229920000690 Tyvek Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 239000011489 building insulation material Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012967 coordination catalyst Substances 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 230000003116 impacting effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- 150000002892 organic cations Chemical class 0.000 description 2
- 125000000466 oxiranyl group Chemical group 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000070 poly-3-hydroxybutyrate Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229920006249 styrenic copolymer Polymers 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- LBHPSYROQDMVBS-UHFFFAOYSA-N (1-methylcyclohexyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1(C)CCCCC1 LBHPSYROQDMVBS-UHFFFAOYSA-N 0.000 description 1
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- SFPNZPQIIAJXGL-UHFFFAOYSA-N 2-ethoxyethyl 2-methylprop-2-enoate Chemical compound CCOCCOC(=O)C(C)=C SFPNZPQIIAJXGL-UHFFFAOYSA-N 0.000 description 1
- JGRXEBOFWPLEAV-UHFFFAOYSA-N 2-ethylbutyl prop-2-enoate Chemical compound CCC(CC)COC(=O)C=C JGRXEBOFWPLEAV-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 1
- LPIQIQPLUVLISR-UHFFFAOYSA-N 2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical group CC(=C)C1=NCCO1 LPIQIQPLUVLISR-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- OCSXKMIYKAIBCF-UHFFFAOYSA-N 2-undecyl-4,5-dihydro-1,3-oxazole Chemical compound CCCCCCCCCCCC1=NCCO1 OCSXKMIYKAIBCF-UHFFFAOYSA-N 0.000 description 1
- PKXHXOTZMFCXSH-UHFFFAOYSA-N 3,3-dimethylbut-1-ene Chemical compound CC(C)(C)C=C PKXHXOTZMFCXSH-UHFFFAOYSA-N 0.000 description 1
- AGULWIQIYWWFBJ-UHFFFAOYSA-N 3,4-dichlorofuran-2,5-dione Chemical compound ClC1=C(Cl)C(=O)OC1=O AGULWIQIYWWFBJ-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 1
- NSBZPLSMZORBHY-UHFFFAOYSA-L 5-methylcyclopenta-1,3-diene;titanium(4+);dichloride Chemical compound [Cl-].[Cl-].[Ti+4].C[C-]1C=CC=C1.C[C-]1C=CC=C1 NSBZPLSMZORBHY-UHFFFAOYSA-L 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920003314 Elvaloy® Polymers 0.000 description 1
- UAUDZVJPLUQNMU-UHFFFAOYSA-N Erucasaeureamid Natural products CCCCCCCCC=CCCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229920001474 Flashspun fabric Polymers 0.000 description 1
- 229920003317 Fusabond® Polymers 0.000 description 1
- 241001574335 Microsca Species 0.000 description 1
- 101100365516 Mus musculus Psat1 gene Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000276425 Xiphophorus maculatus Species 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- PMBIISBSEVMEPG-UHFFFAOYSA-N benzene-1,3-dicarboxylic acid;hexanedioic acid Chemical compound OC(=O)CCCCC(O)=O.OC(=O)C1=CC=CC(C(O)=O)=C1 PMBIISBSEVMEPG-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- VXTQKJXIZHSXBY-UHFFFAOYSA-N butan-2-yl 2-methylprop-2-enoate Chemical compound CCC(C)OC(=O)C(C)=C VXTQKJXIZHSXBY-UHFFFAOYSA-N 0.000 description 1
- NIHJEJFQQFQLTK-UHFFFAOYSA-N butanedioic acid;hexanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCCCC(O)=O NIHJEJFQQFQLTK-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000000490 cinnamyl group Chemical group C(C=CC1=CC=CC=C1)* 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- ILZSSCVGGYJLOG-UHFFFAOYSA-N cobaltocene Chemical compound [Co+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 ILZSSCVGGYJLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- VYZZYIJFEPWENJ-UHFFFAOYSA-N cyclopenta-1,3-diene niobium(2+) Chemical compound [Nb++].c1cc[cH-]c1.c1cc[cH-]c1 VYZZYIJFEPWENJ-UHFFFAOYSA-N 0.000 description 1
- MKNXBRLZBFVUPV-UHFFFAOYSA-L cyclopenta-1,3-diene;dichlorotitanium Chemical compound Cl[Ti]Cl.C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 MKNXBRLZBFVUPV-UHFFFAOYSA-L 0.000 description 1
- CSEGCHWAMVIXSA-UHFFFAOYSA-L cyclopenta-1,3-diene;hafnium(4+);dichloride Chemical compound [Cl-].[Cl-].[Hf+4].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 CSEGCHWAMVIXSA-UHFFFAOYSA-L 0.000 description 1
- KZPXREABEBSAQM-UHFFFAOYSA-N cyclopenta-1,3-diene;nickel(2+) Chemical compound [Ni+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KZPXREABEBSAQM-UHFFFAOYSA-N 0.000 description 1
- QOXHZZQZTIGPEV-UHFFFAOYSA-K cyclopenta-1,3-diene;titanium(4+);trichloride Chemical compound Cl[Ti+](Cl)Cl.C=1C=C[CH-]C=1 QOXHZZQZTIGPEV-UHFFFAOYSA-K 0.000 description 1
- IDASTKMEQGPVRR-UHFFFAOYSA-N cyclopenta-1,3-diene;zirconium(2+) Chemical compound [Zr+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 IDASTKMEQGPVRR-UHFFFAOYSA-N 0.000 description 1
- WRAABIJFUKKEJQ-UHFFFAOYSA-N cyclopentyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCC1 WRAABIJFUKKEJQ-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- LOKCKYUBKHNUCV-UHFFFAOYSA-L dichlorozirconium;methylcyclopentane Chemical compound Cl[Zr]Cl.C[C]1[CH][CH][CH][CH]1.C[C]1[CH][CH][CH][CH]1 LOKCKYUBKHNUCV-UHFFFAOYSA-L 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical class C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical class C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 229920006228 ethylene acrylate copolymer Polymers 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000004751 flashspun nonwoven Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- LQJBNNIYVWPHFW-QXMHVHEDSA-N gadoleic acid Chemical compound CCCCCCCCCC\C=C/CCCCCCCC(O)=O LQJBNNIYVWPHFW-QXMHVHEDSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000006178 methyl benzyl group Chemical group 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- ONLRKTIYOMZEJM-UHFFFAOYSA-N n-methylmethanamine oxide Chemical compound C[NH+](C)[O-] ONLRKTIYOMZEJM-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- CWEFIMQKSZFZNY-UHFFFAOYSA-N pentyl 2-[4-[[4-[4-[[4-[[4-(pentoxycarbonylamino)phenyl]methyl]phenyl]carbamoyloxy]butoxycarbonylamino]phenyl]methyl]phenyl]acetate Chemical compound C1=CC(CC(=O)OCCCCC)=CC=C1CC(C=C1)=CC=C1NC(=O)OCCCCOC(=O)NC(C=C1)=CC=C1CC1=CC=C(NC(=O)OCCCCC)C=C1 CWEFIMQKSZFZNY-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- FZHCFNGSGGGXEH-UHFFFAOYSA-N ruthenocene Chemical compound [Ru+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 FZHCFNGSGGGXEH-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- DVMZCYSFPFUKKE-UHFFFAOYSA-K scandium chloride Chemical compound Cl[Sc](Cl)Cl DVMZCYSFPFUKKE-UHFFFAOYSA-K 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- QMBQEXOLIRBNPN-UHFFFAOYSA-L zirconocene dichloride Chemical compound [Cl-].[Cl-].[Zr+4].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 QMBQEXOLIRBNPN-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
- E04C2/284—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/625—Sheets or foils allowing passage of water vapor but impervious to liquid water; house wraps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/044—Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/048—Bimodal pore distribution, e.g. micropores and nanopores coexisting in the same foam
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/12—Applications used for fibers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B2001/742—Use of special materials; Materials having special structures or shape
Definitions
- Insulation is employed in building structures for a wide variety of purposes, such as for protection against heat transfer, moisture, noise, vibration, etc.
- One type of building insulation for instance, is a water-impermeable housewrap used in the construction of wall and roof assemblies, In addition to preventing the entrance of water into the building, such housewraps are also typically breathable to the extent they are permeable to gases and can allow water vapor to escape from the insulation rather than becoming trapped on a building surface.
- a conventional breathable housewrap material is a flash spun polyolefin material available from DuPont under the designation
- Tyvek® While providing good water barrier properties, Tyvek ⁇ housewraps do not generally provide a good thermal barrier. To this end, polymeric foams are often employed for the purpose of thermal insulation. However, such materials do not necessarily function well as a breathable wafer barrier. Furthermore, the gaseous blowing agents used to form the foams can leach out of the insulation over time, causing an environmental concern.
- building insulation for use in a residential or commercial building structure includes a porous polymeric material that is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer.
- the polymeric material exhibits a water vapor transmission rate of about 300 g/m 2 -24 hours or more, thermal conductivity of about 0.40 watts per meter- kelvin or less, and/or hydrohead value of about 50 centimeters or more.
- building insulation for use in a residential or commercial building structure is disclosed.
- the building insulation includes a porous polymeric material that is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer.
- a microindusion additive and nanoinciusion additive are dispersed within the continuous phase in the form of discrete domains, wherein a porous network is defined in the material that includes a plurality of nanopores having an average cross-sectional dimension of about 800 nanometers or less.
- a building structure comprising a building envelope that defines an interior.
- the building structure further comprises building insulation, such as described herein, which is positioned adjacent to a surface of the building envelope, the interior, or a combination thereof.
- the building insulation may be positioned adjacent to a surface of the building envelope, such as adjacent to an exterior wall, roof, or a combination thereof.
- the building insulation may also be positioned adjacent to an exterior covering (e.g., siding).
- the building insulation may also be positioned adjacent to a surface of the interior, such as adjacent to an interior wall, floor, ceiling, door, or a combination thereof.
- Fig. 1 shows a partial representative view of a building foundation wall fabricated with a building panel that may be formed in accordance with the invention
- Fig. 2 is an average cross-sectional dimension of the building pane! of Fig. 1 along a line 2-2;
- Fig. 3 is a perspective view of one embodiment of a building structure in which the building insulation of the present invention is positioned adjacent to an exterior wail;
- Fig. 4 is a perspective view of one embodiment of a building structure in which the building insulation of the present invention is positioned adjacent to an interior wall;
- Figs. 5-6 are SEM rnicrophotographs of the unstretched film of Example 7 (film was cut parallel to machine direction orientation);
- Figs. 7-8 are SEM rnicrophotographs of the stretched film of Example 7 (film was cut parallel to machine direction orientation);
- Figs. 9-10 are SEM rnicrophotographs of the unstretched film of Example 8, where the film was cut perpendicular to the machine direction in Fig. 9 and parallel to the machine direction in Fig. 10;
- Figs. 11-12 are SEM rnicrophotographs of the stretched film of Example 8 (film was cut parallel to machine direction orientation);
- Fig. 13 is an SEM photomicrograph (1 ,00 ⁇ ) of the fiber of Example 9 (polypropylene, polylactic acid, and polyepoxide) after freeze fracturing in liquid nitrogen;
- Fig. 14 is an SEM photomicrograph (5,00QX) of the fiber of Example 9 (polypropylene, polylactic acid, and polyepoxide) after freeze fracturing in liquid nitrogen: and
- Fig. 15 is an SEM photomicrograph (10.000X) of the fiber surface of Example 9 (polypropylene, polylactic acid, and polyepoxide).
- the present invention is directed to building insulation that contains a porous polymeric material (e.g., film, fibrous material, etc.).
- building insulation refers broadly to any object in a building used as insulation for any purpose, such as for thermal insulation, acoustic insulation, impact insulation (e.g., for vibrations), fire insulation, moisture insulation, etc., as well as combinations thereof.
- the building insulation may be positioned in a residential or commercial building structure so that it is adjacent to a surface of the building envelope, which is the physical separator between the interior and the exterior environments of a building and may include, for instance, the foundation, roof, exterior walls, exterior doors, windows, skylights, etc.
- the building insulation may also be positioned adjacent to an interior surface of the building, such as an interior wall, interior door, flooring, ceilings, etc.
- the porous polymeric material of the present invention may serve multiple insulative functions within the building, and in some cases, even eliminating the need for certain types of conventional insulation.
- the polymeric material is porous and defines a porous network which, for instance, may constitute from about 15% to about 80% per cm 3 , in some embodiments from about 20% to about 70%, and in some embodiments, from about 30% to about 80% per cubic centimeter of the material.
- the presence of such a high pore volume can allow the polymeric material to be generally permeable to water vapors, thereby allowing such vapors to escape from a building surface during use and limit the likelihood of water damage over time.
- the permeability of the material to water vapor may characterized by its relatively high water vapor transmission rate ("WVTR”), which is the rate at which water vapor permeates through a material as measured in units of grams per meter squared per 24 hours (g/m 2 /24 hrs).
- WVTR water vapor transmission rate
- the poiymeric material may exhibit a WVTR of about 300 g/m 2 ⁇ 24 hours or more, in some embodiments about 500 g/m 2 ⁇ 24 hours or more, in some embodiments about 1 ,000 g/m 2 ⁇ 24 hours or more, and in some embodiments, from about 3,000 to about 15,000 g/m 2 -24 hours, such as determined in accordance with ASTM E96/96M-12, Procedure B or INDA Test Procedure IST-70.4 (01 ).
- the relatively high pore volume of the material can also significantly lower the density of the material, which can allow the use of lighter, more flexible materials that stiii achieve good insulative properties.
- the composition may have a relatively low density, such as about 1.2 grams per cubic centimeter ("g/cm ”) or less, in some embodiments about 1.0 g/cm J or less, in some embodiments from about 0.2 g/cm 3 to about 0.8 g/cm 3 , and in some embodiments, from about 0.1 g/cm 3 to about 0.5 g/cm 3 . Due to its low density, lighter materials may be formed that still achieve good thermal resistance.
- g/cm grams per cubic centimeter
- the porous network may be considered a "closed-cell" network such that a tortuous pathway is not defined between a substantial portion of the pores.
- a tortuous pathway is not defined between a substantial portion of the pores.
- the polymeric material may have a relatively high hydrohead value of about 50 centimeters ("cm") or more, in some embodiments about 100 cm or more, in some embodiments, about 150 cm or more, and in some embodiments, from about 200 cm to about 1000 cm, as determined in accordance with ATTCC 127-2008.
- pores in the polymeric material may also be of a "nano-scale" size (“nanopores”), such as those having an average cross-sectional dimension of about 800 nanometers or less, in some embodiments from about 1 to about 500 nanometers, in some embodiments from about 5 to about 450 nanometers, in some embodiments from about 5 to about 400 nanometers, and in some embodiments, from about 10 to about 100 nanometers.
- cross- sectional dimension generally refers to a characteristic dimension (e.g., width or diameter) of a pore, which is substantially orthogonal to its major axis (e.g., length) and also typically substantially orthogonal to the direction of the stress applied during drawing.
- Such nanopores may, for example, constitute about 15 vol.% or more, in some embodiments about 20 vol.% or more, in some embodiments from about 30 vol.% to 100 vol.%, and in some embodiments, from about 40 vol.% to about 90 vol.% of the total pore volume in the polymeric material.
- the presence of such a high degree of nanopores can substantially decrease thermal conductivity as fewer va! molecules are available within each pore to collide and transfer heat.
- the polymeric material may also serve as thermal insulation to help limit the degree of heat transfer through the building structure.
- the polymeric material may exhibit a relatively low thermal conductivity, such as about 0,40 watts per meter-kelvin ("W/m-K") or less, in some embodiments about 0.20 W/m-K or less, in some embodiments about 0,15 W/m-K or less, in some embodiments from about 0.01 to about 0.12 W/m-K, and in some embodiments, from about 0.02 to about 0.10 W/m-K.
- W/m-K watts per meter-kelvin
- the material is capable of achieving such low thermal conductivity values at relatively low thicknesses, which can allow the material to possess a greater degree of flexibility and conformability, as well as reduce the space it occupies in a building. For this reason, the polymeric material may also exhibit a relatively low "thermal
- the material may exhibit a thermal admittance of about 1000 W/m 2 K or less, in some embodiments from about 10 to about 800 W/m 2 K, in some
- the actual thickness of the polymeric materiai may depend on its particular form, but typically ranges from about 5 micrometers to about 100 millimeters, in some embodiments from about 10 micrometers to about 50 millimeters, in some embodiments from about 200 micrometers to about 25 millimeters, and in some embodiments, from about 50 micrometers to about 5 millimeters.
- the porous material of the present invention can be formed without the use of gaseous blowing agents. This is due in part to the unique nature of the components of the material, as well as the matter in which the materiai is formed. More particularly, the porous materiai may be formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer, microinclusion additive, and nanoinclusion additive. The additives may be selected so that they have a different elastic modulus than the matrix polymer. In this manner, the microinclusion and nanoinclusion additives can become dispersed within the continuous phase as discrete micro-scale and nano-scaie phase domains, respectively.
- micro-sca!e and nano-scale phase domains are able to interact in a unique manner when subjected to a deformation and elongational strain (e.g., drawing) to create a network of pores, a substantial portion of which are of a nano-scale size.
- elongational strain can initiate intensive localized shear zones and/or stress intensity zones (e.g., normal stresses) near the micro-scale discrete phase domains as a result of stress concentrations that arise from the incompatibility of the materials.
- stress intensity zones e.g., normal stresses
- localized shear and/or stress intensity zones may also be created near the nano-scale discrete phase domains that overlap with the micro- scale zones.
- Such overlapping shear and/or stress intensity zones cause even further debonding to occur in the polymer matrix, thereby creating a substantial number of nanopores adjacent to the nano-scale domains and/or micro-scafe domains.
- thermoplastic composition may contain a
- continuous phase that contains one or more matrix polymers, which typically constitute from about 60 wt.% to about 99 wt.%, in some embodiments from about 75 wt.% to about 98 wt.%, and in some embodiments, from about 80 wt.% to about 95 wt.% of the thermoplastic composition.
- matrix polymers typically constitute from about 60 wt.% to about 99 wt.%, in some embodiments from about 75 wt.% to about 98 wt.%, and in some embodiments, from about 80 wt.% to about 95 wt.% of the thermoplastic composition.
- the nature of the matrix polymer(s) used to form the continuous phase is not critical and any suitable polymer may generally be employed, such as polyesters, polyolefins, styrenic polymers,
- polyesters may be employed in the composition to form the polymer matrix. Any of a variety of polyesters may generally be employed, such as aliphatic polyesters, such as polycaproiactone, polyesteramides, polylactic acid (PLA) and its copolymers, poiyglycolic acid, polyalkylene carbonates (e.g.
- polyethylene carbonate poly-3- hydroxybutyrate (PHB), poiy-3-hydroxyvalerate (PHV), poiy-3-hydroxybutyrate-co- 4-hydroybutyrate, poly-3-hydroxybutyrate-co-3-hydroxyvaierate copolymers (PHBV), poly-S-hydroxybutyrate-co-S-hydroxyhexanoate, poly-3-hydroxybutyrate- co-3-hydroxyoctanoate, poly-3-hydroxybutyrate-co-3-hydroxydecanoate, poly-3 ⁇ hydroxybutyrate-co-3-hydroxyoctadecanoate, and succinate-based aliphatic polymers (e.g., poiybutyfene succinate, polybutyiene succinate adipate,
- polyethylene succinate etc.
- aliphatic-aromatic copoiyesters e.g., poiybutyfene adipate terephthaiate, polyethylene adipate terephthalate, polyethylene adipate isophthalate, poiybutyfene adipate isophthalate, etc.
- aromatic polyesters e.g., polyethylene terephthalate, poiybutyfene terephthafate, etc.
- the thermoplastic composition may contain at least one polyester that is rigid in nature and thus has a reSatively high glass transition temperature.
- the glass transition temperature (“T g ”) may be about 0°C or more, in some embodiments from about 5°C to about 100°C, in some embodiments from about 30°C to about 80°C, and in some embodiments, from about 50°C to about 75°C.
- the polyester may also have a melting temperature of from about 140°C to about 30G°C, in some embodiments from about 150°C to about 250°C, and in some embodiments, from about 160°C to about 220°C.
- the mefting temperature may be determined using differential scanning calorimetry ("DSC") in accordance with ASTM D-3417.
- the glass transition temperature may be determined by dynamic mechanical analysis in accordance with ASTM E1640- 09.
- One particularly suitable rigid polyester is po!ylactic acid, which may generally be derived from monomer units of any isomer of lactic acid, such as levorotory-Sactic acid (“L-lactic acid”), dextrorotatory-lactic acid (“D-lactic acid”), meso-Sactic acid, or mixtures thereof. Monomer units may also be formed from anhydrides of any isomer of iactic acid, including L-lactide, D-lactide, meso-Sactide, or mixtures thereof. Cyclic dimers of such iactic acids and/or lactides may also be employed. Any known polymerization method, such as polycondensation or ring- opening polymerization, may be used to polymerize lactic acid. A small amount of a chain-extending agent (e.g., a diisocyanate compound, an epoxy compound or an acid anhydride) may also be employed.
- the polylactic acid may be a
- the rate of content of one of the monomer unit derived from L-lactic acid and the monomer unit derived from D-lactic acid is preferably about 85 moie% or more, in some embodiments about 90 mole% or more, and in some embodiments, about 95 moie% or more.
- Multiple polylactic acids, each having a different ratio between the monomer unit derived from L-lactic acid and the monomer unit derived from D-lactic acid, may be blended at an arbitrary percentage.
- polylactic acid may also be blended with other types of polymers (e.g., polyo!efins, polyesters, etc.).
- the polylactic acid has the following general structure:
- a suitable polylactic acid polymer that may be used in the present invention is commerciaily available from Biomer, Inc. of Kraiiling, Germany) under the name B!GMERTM L9000, Other suitable polylactic acid polymers are commercially available from Natureworks LLC of Minnetonka, Minnesota (NATUREWORKS®) or Mitsui Chemical (LACEATM). Still other suitable polylactic acids may be described in U.S. Patent Nos. 4,797,488; 5,470,944;
- the polylactic acid typically has a number average molecular weight (“M n ”) ranging from about 40,000 to about 180,000 grams per mole, in some
- the polymer also typically has a weight average molecular weight (“M w ”) ranging from about 80,000 to about 250,000 grams per mole, in some embodiments from about 100,000 to about 200,000 grams per mo!e, and in some embodiments, from about 110,000 to about 160,000 grams per mole.
- M w weight average molecular weight
- the ratio of the weight average molecular weight to the number average molecular weight ("M w /M n "), i.e., the "polydispersity index" is also relatively low.
- the poiydispersity index typically ranges from about 1.0 to about 3.0, in some embodiments from about 1.1 to about 2.0, and in some embodiments, from about 1.2 to about 1.8.
- the weight and number average molecular weights may be determined by methods known to those skilled in the art.
- the polylactic acid may also have an apparent viscosity of from about 50 to about 600 Pascal seconds (Pa-s), in some embodiments from about 100 to about 500 Pa-s, and in some embodiments, from about 200 to about 400 Pa s, as determined at a temperature of 190°C and a shear rate of 1000 sec "'1 .
- the meit flow rate of the polylactic acid (on a dry basis) may also range from about 0,1 to about 40 grams per 10 minutes, in some embodiments from about 0.5 to about 20 grams per 10 minutes, and in some embodiments, from about 5 to about 15 grams per 10 minutes, determined at a load of 2160 grams and at 90°C.
- Some types of neat polyesters can absorb water from the ambient environment such that it has a moisture content of about 500 to 800 parts per million (“ppm"), or even greater, based on the dry weight of the starting polylactic acid.
- Moisture content may be determined in a variety of ways as is known in the art, such as in accordance with ASTM D 7 91-05, such as described below. Because the presence of water during melt processing can hydrolyticaily degrade the polyester and reduce its molecular weight, it is sometimes desired to dry the polyester prior to blending.
- the polyester have a moisture content of about 300 parts per million (“ppm") or less, in some embodiments about 200 ppm or less, in some embodiments from about 1 to about 100 ppm prior to blending with the microinclusion and
- Drying of the polyester may occur, for instance, at a temperature of from about 50°C to about 00°C, and in some embodiments, from about 70°C to about 80°C.
- microinclusion and/or nanoinclusion additives may be dispersed within the continuous phase of the thermoplastic composition.
- the term "microinclusion additive” generally refers to any amorphous, crystalline, or semi- crystalline material that is capable of being dispersed within the polymer matrix in the form of discrete domains of a micro-scale size.
- the domains may have an average cross-sectional dimension of from about 0.05 prn to about 30 pm, in some embodiments from about 0.1 pm to about 25 pm, in some embodiments from about 0.5 pm to about 20 pm, and in some embodiments from about 1 pm to about 10 pm.
- the term "cross-sectional dimension” generally refers to a characteristic dimension (e.g., width or diameter) of a domain, which is substantially orthogonal to its major axis (e.g., length) and also typically
- micro-scale domains may also be formed from a combination of the microinclusion and nanoinciusion additives and/or other components of the composition.
- the microinclusion additive is generally polymeric in nature and possesses a relatively high molecular weight to help improve the melt strength and stability of the thermoplastic composition.
- the microinclusion polymer may be generally immiscible with the matrix polymer.
- the additive can better become dispersed as discrete phase domains within a continuous phase of the matrix polymer.
- the discrete domains are capable of absorbing energy that arises from an external force, which increases the overall toughness and strength of the resulting material
- the domains may have a variety of different shapes, such as elliptical, spherical, cylindrical, plate-like, tubular, etc. In one embodiment, for example, the domains have a substantially elliptical shape.
- the physical dimension of an individual domain is typically small enough to minimize the propagation of cracks through the polymeric material upon the application of an external stress, but large enough to initiate microscopic plastic deformation and allow for shear and/or stress intensity zones at and around particle inclusions.
- the microinclusion additive may nevertheless be selected to have a solubility parameter that is relatively similar to that of the matrix polymer. This can improve the interfacial compatibility and physical interaction of the boundaries of the discrete and continuous phases, and thus reduces the likelihood that the composition will fracture.
- the ratio of the solubility parameter for the matrix polymer to that of the additive is typically from about 0.5 to about 1.5, and in some embodiments, from about 0.8 to about 1.2.
- the microinclusion additive may have a solubility parameter of from about 15 to about 30 Mjouies /2 /m 3 2 , and in some
- polylactic acid may have a solubility parameter of about 20.5 MJouies 2 /m 3 ' '2 .
- solubility parameter refers to the "Hiidebrand Solubility Parameter", which is the square root of the cohesive energy density and calculated according to the following equation:
- the microinclusion additive may also have a certain melt flow rate (or viscosity) to ensure that the discrete domains and resulting pores can be adequately maintained. For example, if the melt flow rate of the additive is too high, it tends to flow and disperse uncontrollably through the continuous phase. This results in lamellar, plate-like domains or co-continuous phase structures that are difficult to maintain and also likely to prematurely fracture. Conversely, if the melt flow rate of the additive is too low, it tends to clump together and form very large elliptical domains, which are difficult to disperse during blending. This may cause uneven distribution of the additive through the entirety of the continuous phase.
- the ratio of the melt flow rate of the microinclusion additive to the melt flow rate of the matrix polymer is typically from about 0.2 to about 8, in some embodiments from about 0.5 to about 6, and in some embodiments, from about 1 to about 5.
- microinclusion additive may, for example, have a melt flow rate of from about 0.1 to about 250 grams per 10 minutes, in some embodiments from about 0.5 to about 200 grams per 10 minutes, and in some embodiments, from about 5 to about 150 grams per 10 minutes, determined at a load of 2160 grams and at 190°C,
- the mechanical characteristics of the microinclusion additive may also be selected to achieve the desired increase in toughness.
- stress concentrations e.g., including normal or shear stresses
- shear and/or plastic yielding zones may be initiated at and around the discrete phase domains as a result of stress concentrations that arise from a difference in the elastic modulus of the additive and matrix polymer. Larger stress concentrations promote more intensive localized plastic flow at the domains, which allows them to become significantly elongated when stresses are imparted.
- the microinclusion additive may be selected to have a relatively low Young's modulus of elasticity in comparison to the matrix polymer.
- the ratio of the modulus of elasticity of the matrix polymer to that of the additive is typically from about 1 to about 250, in some embodiments from about 2 to about 100, and in some embodiments, from about 2 to about 50.
- the modulus of elasticity of the microinclusion additive may, for instance, range from about 2 to about 1000 Megapascals (MPa), in some embodiments from about 5 to about 500 MPa, and in some embodiments, from about 10 to about 200 MPa.
- the modulus of elasticity of polylactic acid for example, is typically from about 800 MPa to about 3000 MPa.
- microinclusion additives may include synthetic polymers, such as polyolefins (e.g., polyethylene, polypropylene, polybutylene, etc.); styrenic copolymers ⁇ e.g., styrene-butadiene- styrene, styrene-isoprene-styrene, styrene-ethylene-propylene-sfyrene, styrene- ethylene-butadiene-sfyrene, etc.); polytetrafluoroethylenes; polyesters (e.g., recycled polyester, polyethylene terephthaiate, etc.); polyvinyl acetates (e.g., poly(ethylene viny!
- synthetic polymers such as polyolefins (e.g., polyethylene, polypropylene, polybutylene, etc.); styrenic copolymers ⁇ e.g., styrene-
- polyvinyl chloride acetate e.g., polyvinyl chloride acetate, etc.
- polyvinyl alcohols e.g., polyvinyl alcohol, poly(ethylene vinyl alcohol), etc.
- polyvinyl butyrals e.g., acrylic resins (e.g.. polyacrylate, poiymethylacrylate, polymethylmethacrylate, etc.);
- polyamides e.g., nylon
- polyvinyl chlorides polyvinylidene chlorides
- polystyrenes polyurethanes; etc.
- Suitable polyolefins may, for instance, include ethylene polymers (e.g., low density polyethylene (“LDPE”), high density polyethylene (“HDPE”), linear low density polyethylene (“LLDPE”), etc.), propylene homopoiymers (e.g., syndiotactic, atactic, isotactic, etc.), propylene copolymers, and so forth.
- LDPE low density polyethylene
- HDPE high density polyethylene
- LLDPE linear low density polyethylene
- propylene homopoiymers e.g., syndiotactic, atactic, isotactic, etc.
- the polymer is a propylene polymer, such as homopoiypropylene or a copolymer of propylene.
- the propylene polymer may, for instance, be formed from a substantially isotactic polypropylene homopolymer or a copolymer containing equal to or less than about 10 wt.% of other monomer, i.e., at least about 90% by weight propylene.
- Such homopoiymers may have a melting point of from about 180°C to about 170°C.
- the polyolefin may be a copolymer of ethylene or propylene with another a-oiefin, such as a C3-C20 a-olefin or C3-C12 a-olefin.
- Suitable a-olefins include 1-butene; 3-methyl ⁇ 1 ⁇ butene; 3,3- dimethyl-1-butene; 1-pentene; 1-pentene with one or more methyl, ethyl or propyl substituents; 1-hexene with one or more methyl, ethyl or propyl substituents; 1- heptene with one or more methyl, ethyl or propyl substituents; 1-octene with one or more methyl, ethyl or propyl substituents; -nonene with one or more methyl, ethyl or propyl substituents; ethyl, methyl or dimethyl-substituted 1-decene; 1-dodecene; and styrene.
- Particularly desired ⁇ -olefin comonomers are 1 ⁇ butene, 1-hexene and 1-octene.
- the ethylene or propylene content of such copolymers may be from about 60 mole% to about 99 mo!e%, in some embodiments from about 80 mole% to about 98.5 mole%, and in some embodiments, from about 87 moie% to about 97.5 mole%.
- the ⁇ -olefin content may likewise range from about 1 mole% to about 40 moie%, in some embodiments from about 1.5 mole% to about 15 mo!e%, and in some embodiments, from about 2.5 mole% to about 13 mole%.
- Exemplary olefin copolymers for use in the present invention include ethylene-based copolymers available under the designation EXACTTM from
- DOWLEXTM LLDPE
- ATTANETM ULDPE
- ethylene polymers are described in U.S. Patent Nos. 4,937,299 to Ewen et at ⁇ 5,218,071 to Tsutsui et at; 5,272,236 to Las, et al; and 5,278,272 to Lai, et al.
- Suitable propylene copolymers are also commercially available under the designations VISTAMAXXTM from ExxonMobil Chemical Co.
- Suitable polypropylene hornopolymers may likewise include Exxon Mobil 3155 polypropylene, Exxon Mobil AchieveTM resins, and Total M3661 PP resin.
- suitable propylene polymers are described in U.S. Patent Nos. 6,500.563 to Datta, et al.; 5,539,058 to Yang, et al.; and 5,598.052 to Resconi, et al.
- olefin copolymers may be formed using a free radical or a coordination catalyst (e.g., Ziegler-Natta).
- a coordination catalyst e.g., Ziegler-Natta
- the olefin polymer is formed from a single-site coordination catalyst, such as a metallocene catalyst.
- a metallocene catalyst Such a catalyst system produces ethylene copolymers in which the comonomer is randomly distributed within a molecular chain and uniformly distributed across the different molecular weight fractions.
- Metaliocene-catalyzed polyolefins are described, for instance, in U.S. Patent Nos.
- metallocene catalysts include bis(n- butylcyclopentadienyi)titanium dichloride, bis(n-butyicyclopeniadienyl)zirconium dichloride, bis(cyciopentadienyl)scandium chloride, b!s(indenyl)zirconium
- the relative percentage of the microinclusion additive in the thermoplastic composition is selected to achieve the desired properties without significantly impacting the base properties of the composition.
- the microinclusion additive is typically employed in an amount of from about 1 wt.% to about 30 wt.%, in some embodiments from about 2 wt.% to about 25 wt.%, and in some embodiments, from about 5 wt.% to about 20 wt.% of the thermoplastic composition, based on the weight of the continuous phase (matrix polymer(s)).
- the concentration of the microinclusion additive in the entire thermop!astic composition may likewise constitute from about 0.1 wt.% to about 30 wt.%, in some embodiments from about 0.5 wt.% to about 25 wt.%, and in some embodiments, from about 1 wt.% to about 20 wt.%.
- nanoinclusion additive generally refers to any amorphous, crystalline, or semi-crystalline material that is capable of being dispersed within the polymer matrix in the form of discrete domains of a nano- scale size.
- the domains may have an average cross-sectional dimension of from about 1 to about 500 nanometers, in some embodiments from about 2 to about 400 nanometers, and in some embodiments, from about 5 to about 300 nanometers.
- the nano-scaie domains may also be formed from a combination of the microinclusion and nanoinclusion additives and/or other components of the composition.
- the nanoinclusion additive is typically employed in an amount of from about 0.05 wt.% to about 20 wt.%, in some embodiments from about 0.1 wt.% to about 10 wt.%, and in some embodiments, from about 0.5 wt.% to about 5 wt.% of the
- thermoplastic composition based on the weight of the continuous phase (matrix poiymer(s)).
- concentration of the nanoinclusion additive in the entire thermoplastic composition may likewise be from about 0.01 wt.% to about 15 wt.%, in some embodiments from about 0.05 wt.% to about 10 wt.%, and in some embodiments, from about 0.3 wt.% to about 6 wt.% of the thermoplastic
- the nanoinclusion additive may be polymeric in nature and possess a relatively high molecular weight to help improve the melt strength and stability of the thermoplastic composition.
- the nanoinclusion additive may a!so be selected from materials that are generally compatible with the matrix polymer and the
- microinclusion additive This may be particularly useful when the matrix polymer or the microinclusion additive possesses a polar moiety, such as a polyester.
- a nanoinclusion additive is a functionalized polyolefin.
- the polar component may, for example, be provided by one or more functional groups and the non-polar component may be provided by an olefin.
- the olefin component of the nanoinclusion additive may generally be formed from any linear or branched a- olefin monomer, oligomer, or polymer (including copolymers) derived from an olefin monomer, such as described above.
- the functional group of the nanoinclusion additive may be any group, molecular segment and/or block that provides a polar component to the molecule and is not compatible with the matrix polymer.
- Examples of molecular segment and/or blocks not compatible with polyolefin may include acrylates, styrenics, polyesters, polyamides, etc.
- the functional group can have an ionic nature and comprise charged metal ions.
- Particularly suitable functional groups are maieic anhydride, maieic acid, fumaric acid, maieimide, maieic acid hydrazide, a reaction product of maieic anhydride and diamine, methylnadic anhydride, dichloromaleic anhydride, maieic acid amide, etc.
- Maieic anhydride modified polyolefins are particularly suitable for use in the present invention. Such modified polyolefins are typically formed by grafting maieic anhydride onto a polymeric backbone material.
- Such maleated polyolefins are available from E. I. du Pont de Nemours and Company under the designation Fusabond®, such as the P Series (chemically modified polypropylene), E Series (chemically modified polyethylene), C Series (chemically modified ethylene vinyl acetate), A Series (chemically modified ethylene acrylate copolymers or terpolymers), or N Series (chemically modified ethylene-propylene, ethylene-propylene diene monomer (“EPDM”) or ethylene- octene).
- maleated polyolefins are also available from Chemtura Corp. under the designation Polybond® and Eastman Chemical Company under the designation Eastman G series.
- the nanoinclusion additive may also be reactive.
- a reactive nanoinclusion additive is a polyepoxide that contains, on average, at least two oxirane rings per molecule. Without intending to be limited by theory, it is believed that such polyepoxide molecules can induce reaction of the matrix polymer (e.g., polyester) under certain conditions, thereby improving its melt strength without significantly reducing glass transition
- the reaction may involve chain extension, side chain branching, grafting, copolymer formation, etc.
- Chain extension may occur through a variety of different reaction pathways.
- the modifier may enable a nucieophiiic ring-opening reaction via a carboxyi terminal group of a polyester (esterification) or via a hydroxy! group (etherification).
- Oxazo!ine side reactions may likewise occur to form esteramide moieties.
- the moiecuiar weight of the matrix polymer may be increased to counteract the degradation often observed during melt processing.
- the epoxy equivalent weight reflects the amount of resin that contains one molecule of an epoxy group, and it may be calculated by dividing the number average molecular weight of the modifier by the number of epoxy groups in the molecule.
- the polyepoxide of the present invention typically has a number average molecular weight from about 7,500 to about 250,000 grams per mole, in some embodiments from about 15,000 to about 150.000 grams per mole, and in some embodiments, from about 20,000 to
- the polyepoxide may contain less than 50, in some embodiments from 5 to 45, and in some embodiments, from 15 to 40 epoxy groups.
- the epoxy equivalent weight may be less than about 15,000 grams per mole, in some embodiments from about 200 to about 10,000 grams per mole, and in some embodiments, from about 500 to about 7.000 grams per mole.
- the polyepoxide may be a linear or branched, homopolymer or copolymer (e.g., random, graft, block, etc.) containing terminal epoxy groups, skeletal oxirane units, and/or pendent epoxy groups.
- the monomers employed to form such poiyepoxides may vary. In one particular embodiment, for example, the
- polyepoxide contains at least one epoxy-functional (meth)acryiic monomeric component.
- (meth)acrylic includes acrylic and methacry!ic monomers, as e!i as salts or esters thereof, such as acrylate and methacrylate monomers.
- suitable epoxy-functionai (meth)acrylic monomers may include, but are not limited to, those containing 1 ,2-epoxy groups, such as giycidyi acrylate and giycidyl methacrylate.
- Other suitable epoxy- functional monomers include allyl giycidyl ether, giycidyi ethacryiate, and giycidyl itoconate.
- the polyepoxide typically has a relatively high molecular weight, as indicated above, so that it may not only result in chain extension, but also help to achieve the desired blend morphology.
- the resulting melt flow rate of the polymer is thus typically within a range of from about 10 to about 200 grams per 10 minutes, in some embodiments from about 40 to about 150 grams per 10 minutes, and in some embodiments, from about 60 to about 120 grams per 10 minutes, determined at a load of 2160 grams and at a temperature of 190°C.
- additional monomers may also be employed in the polyepoxide to help achieve the desired molecular weight.
- Such monomers may vary and include, for example, ester monomers, (meth)acrylic monomers, olefin monomers, amide monomers, etc.
- ester monomers for example, ester-acrylic monomers, olefin monomers, amide monomers, etc.
- polyepoxide includes at least one linear or branched a-olefin monomer, such as those having from 2 to 20 carbon atoms and preferably from 2 to 8 carbon atoms.
- a-olefin monomer such as those having from 2 to 20 carbon atoms and preferably from 2 to 8 carbon atoms.
- Specific examples include ethylene, propylene, 1-butene; 3-methyl-1-butene; 3,3- dimethyi-1-butene; 1-pentene; -pentene with one or more methyi, ethyl or propyl substituents; 1-hexene with one or more methyl, ethyl or propyl substituents; 1- heptene with one or more methyi, ethyl or propyl substituents; 1-octene with one or more methyl, ethyl or propyl substituents; 1-nonene with one or more methyl, ethyl or propyl substitu
- Another suitable monomer may include a (meth)acrylic monomer that is not epoxy-functional.
- (meth)acrylic monomers may include methyl acryiate, ethyl acrylate, n-propyS acrylate, i ⁇ propyS acrylate, n-butyl acrylate, s-butyj acrylate, i-butyl acrylate, t-butyl acrylate, n-amyl acrylate, i-amyl acrylate, isobornyi acrylate, n-hexy!
- methacrylate s-butyl-methacrylate, t-butyl methacryiate, 2-ethyibutyf methacrylate, methylcyclohexyl methacrylate, cinnamyl methacryiate, crotyi methacrylate, cyciohexyi methacryiate, cyclopentyl methacrylate, 2 ⁇ ethoxyethyl methacrylate, isobornyl methacryiate, etc., as well as combinations thereof.
- the poiyepoxide is a terpoiymer formed from an epoxy-functional (meth)acry!ic monomeric component, a-olefin monomeric component, and non-epoxy functional (meth)acrylic monomeric component.
- the poiyepoxide may be poly ⁇ ethylene-co-methylacrylate-co-glycidyi methacrylate), which has the following structure:
- the epoxy functional monomer may be formed into a polymer using a variety of known techniques.
- a monomer containing polar functional groups may be grafted onto a polymer backbone to form a graft copolymer.
- Such grafting techniques are well known in the art and described, for instance, in U.S. Patent No. 5,179,184.
- a monomer containing epoxy functional groups may be copolymerized with a monomer to form a block or random copolymer using known free radical polymerization techniques, such as high pressure reactions, Ziegler-Natta catalyst reaction systems, single site catalyst (e.g.. metallocene) reaction systems, etc.
- the relative portion of the monomeric component(s) may be selected to achieve a balance between epoxy-reacfivity and melt flow rate. More particularly, high epoxy monomer contents can result in good reactivity with the matrix polymer, but too high of a content may reduce the melt flow rate to such an extent that the poiyepoxide adversely impacts the melt strength of the poiymer blend.
- the epoxy-functional (rneth)acrylic monomer(s) constitute from about 1 wt.% to about 25 wt.%, in some embodiments from about 2 wt.% to about 20 wt.%, and in some embodiments, from about 4 wt.% to about 15 wt.% of the copolymer.
- the a-olefin monomer(s) may likewise constitute from about 55 wt.% to about 95 wt.%, in some embodiments from about 80 wt.% to about 90 wt.%, and in some embodiments, from about 85 wt.% to about 85 wt.% of the copolymer.
- other monomeric components e.g., non-epoxy functional (meth)acrylic monomers
- LOTADER® AX8950 has a melt flow rate of 70 to 100 g/10 min and has a glycidyl methacrylate monomer content of 7 wt.% to 11 wt.%, a methyl acryiate monomer content of 13 wt.% to 17 wt.%, and an ethylene monomer content of 72 wt.% to 80 wt.%.
- ELVALOY ⁇ PTW Another suitable polyepoxide is commercially available from DuPont under the name ELVALOY ⁇ PTW, which is a terpo!ymer of ethylene, butyl acryiate, and glycidyl methacrylate and has a melt flow rate of 12 g/10 min.
- the overall weight percentage may also be controlled to achieve the desired benefits. For example, if the modification level is too low, the desired increase in melt strength and mechanical properties may not be achieved. The present inventors have also discovered, however, that if the modification level is too high, processing may be restricted due to strong molecular interactions (e.g., crosslinking) and physical network formation by the epoxy functional groups.
- the polyepoxide is typically employed in an amount of from about 0.05 wt.% to about 10 wt.%, in some embodiments from about 0.1 wt.% to about 8 wt.%, in some embodiments from about 0.5 wt.% to about 5 wt.%, and in some
- the polyepoxide may also constitute from about 0.05 wt.% to about 10 wt.%, in some embodiments from about 0.05 wt.% to about 8 wt.%, in some embodiments from about 0.1 wt.% to about 5 wt.%, and in some embodiments, from about 0.5 wt.% to about 3 wt.%, based on the total weight of the composition.
- reactive nanoinclusion additives may also be employed in the present invention, such as oxazoline-functionalized polymers, cyanide-functionalized polymers, etc. When employed, such reactive nanoinclusion additives may be employed within the concentrations noted above for the polyepoxide.
- an oxazoline-grafted poiyolefin may be employed that is a polyolefin grafted with an oxazoline ring-containing monomer.
- the oxazoline may include a 2-oxazoline.
- 2-vinyi-2-oxazoline e.g., 2-isopropenyi-2 ⁇ oxazofine
- 2-fatty-alkyl-2-oxazoline e.g., obtainable from the ethano!amide of oleic acid, linoleic acid, palmitoleic acid, gadoleic acid, erucic acid and/or arachidonic acid
- the oxazoline may be selected from ricinoloxazoline maleinate, undecyl-2-oxazoline, soya-2- oxazoline, ricinus-2-oxazoline and combinations thereof, for example.
- the oxazoline is selected from 2-isopropenyl-2-oxazoline, 2- isopropenyi-4,4 ⁇ dimethyS-2-oxazoline and combinations thereof.
- Nanofillers may also be employed, such as carbon black, carbon
- Nanotubes generally refers to nanoparticles of a clay material (a naturally occurring mineral, an organically modified mineral, or a synthetic nanomaterial), which typically have a platelet structure.
- a clay material a naturally occurring mineral, an organically modified mineral, or a synthetic nanomaterial
- nanoclays examples include, for instance, montmorillonite (2:1 layered smectite clay structure), bentonite (aluminium phyllosilicate formed primarily of montmorillonite), kaolinite (1 :1 aluminosiiicate having a platy structure and empirical formula of AbS Qs OH ⁇ ), halloysite (1 :1 aluminosiiicate having a tubular structure and empirical formula of A SiaOsCQH ), etc.
- An example of a suitable nanoclay is Cioisite®, which is a montmorillonite nanoclay and
- synthethic nanoclays include but are not limited to a mixed-metal hydroxide nanoclay, layered double hydroxide nanoclay (e.g., sepiocite), laponite, hectorite, saponite, indonite, etc.
- the nanoclay may contain a surface treatment to help improve compatibility with the matrix polymer (e.g., polyester).
- the surface treatment may be organic or inorganic, in one embodiment, an organic surface treatment is employed that is obtained by reacting an organic cation with the clay. Suitable organic cations may include, for instance, organoquaternary ammonium
- organic nanoclays may include, for instance, Dellite® 43B (Laviosa Chimica of Livorno, Italy), which is a montmoriilonife clay modified with dimethyl benzyihydrogenated tallow ammonium salt.
- Other examples include Cloisite® 25A and Cloisite® 30B (Southern Clay Products) and Nanofil 919 (Sud Chemie).
- the nanofiller can be blended with a carrier resin to form a masterbatch that enhances the compatibility of the additive with the other polymers in the composition.
- Particularly suitable carrier resins include, for instance, polyesters (e.g., polylactic acid, polyethylene terephthalate, etc.); polyolefins (e.g., ethylene polymers, propylene polymers, etc.); and so forth, as described in more detail above.
- polyesters e.g., polylactic acid, polyethylene terephthalate, etc.
- polyolefins e.g., ethylene polymers, propylene polymers, etc.
- a first nanoinclusion additive e.g., polyepoxide
- a second nanoinclusion additive e.g., nanofiller
- a second nanoinclusion additive may also be dispersed in the form of domains that are smaller than the first nanoinclusive additive, such as those having an average cross-sectional dimension of from about 1 to about 50 nanometers, in some embodiments from about 2 to about 45 nanometers, and in some embodiments from about 5 to about 40 nanometers.
- the first and/or second nanoinclusion additives typically constitute from about 0.05 wt.% to about 20 wt.%, in some embodiments from about 0.1 wt.% to about 10 wt.%, and in some embodiments, from about 0.5 wt.% to about 5 wt.% of the thermoplastic
- the concentration of the first and/or second nanonclusion additives in the entire thermoplastic composition may likewise be from about 0.01 wt,% to about 15 wt.%, in some embodiments from about 0.05 wt.% to about 10 wt.%, and in some embodiments, from about 0.1 wt.% to about 8 wt.% of the thermoplastic
- an interphase modifier may be employed in the thermoplastic composition to heip reduce the degree of friction and connectivity between the microinclusion additive and matrix polymer, and thus enhance the degree and uniformity of debonding. In this manner, the pores can become distributed in a more homogeneous fashion throughout the composition.
- the modifier may be in a liquid or semi-solid form at room temperature (e.g., 25°C) so that it possesses a relatively low viscosity, allowing it to be more readily incorporated info the thermoplastic composition and to easily migrate to the po!ymer surfaces.
- the kinematic viscosity of the interphase modifier is typically from about 0,7 to about 200 centistokes ("cs"), in some embodiments from about 1 to about 100 cs, and in some embodiments, from about 1.5 to about 80 cs, determined at 40°C.
- the interphase modifier is also typically hydrophobic so that it has an affinity for the microinclusion additive, for example, resulting in a change in the interfacial tension between the matrix polymer and the additive. By reducing physical forces at the interfaces between the matrix polymer and the microinclusion additive, it is believed that the low viscosity, hydrophobic nature of the modifier can help facilitate debonding.
- hydrophobic typically refers to a material having a contact angle of water in air of about 40° or more, and in some cases, about 60° or more.
- hydrophilic typically refers to a material having a contact angle of water in air of less than about 40°.
- Suitable hydrophobic, low viscosity interphase modifiers may include, for instance, silicones, silicone-polyether copolymers, aliphatic polyesters, aromatic polyesters, alkylene glycols (e.g., ethylene glycol, diethylene glycol, triethylene glycol, tetraethyiene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, polybutylene glycol, etc.), alkane diols (e.g., 1 ,3-propanedioi, 2,2-dimethyi- 1 ,3-propanediol, 1,3-butanediol, 1 ,4-butanediol, 1 ,5-pentanedioi, 1 ,6-hexanediol, 2,2,4-trimethyi-1 ,6 hexanediol, 1,3-cyciohexanedimethanol, 1 ,4-
- octy!dimethylamine oxide fatty acid esters, fatty acid amides (e.g., oieamide, erucamide, stearamide, ethylene bis(stearamide), , etc.), mineral, and vegetable oils, and so forth.
- fatty acid amides e.g., oieamide, erucamide, stearamide, ethylene bis(stearamide), , etc.
- mineral e.g., oieamide, erucamide, stearamide, ethylene bis(stearamide), , etc.
- mineral e.g., oieamide, erucamide, stearamide, ethylene bis(stearamide), , etc.
- mineral e.g., oieamide, erucamide, stearamide, ethylene bis(stearamide), , etc.
- mineral e.g., oieamide, erucamide, stearamide, ethylene bis(stearamide),
- the interphase modifier may constitute from about 0.1 wt.% to about 20 wt.%, in some embodiments from about 0.5 wt.% to about 15 wt.%, and in some embodiments, from about 1 wt.% to about 10 wt.% of the thermoplastic composition, based on the weight of the continuous phase (matrix poiymer(s)).
- thermoplastic composition may likewise constitute from about 0.05 wt.% to about 20 wt.%, in some embodiments from about 0.1 wt.% to about 15 wt.%, and in some embodiments, from about 0.5 wt.% to about 10 wt.%.
- the interphase modifier has a character that enables it to readily migrate to the interfacial surface of the polymers and facilitate debonding without disrupting the overall melt properties of the thermoplastic composition.
- the interphase modifier does not typically have a plasticizing effect on the polymer by reducing its glass transition
- the glass transition temperature of the thermoplastic composition may be substantially the same as the initial matrix polymer.
- the ratio of the giass temperature of the composition to that of the matrix polymer is typically from about 0.7 to about 1.3, in some embodiments from about 0.8 to about 1.2, and in some embodiments, from about 0.9 to about 1.1.
- the thermoplastic composition may, for example, have a glass transition temperature of from about 35°C to about 80°C, in some embodiments from about 40°C to about 80°C, and in some embodiments, from about 50°C to about 85°C.
- thermoplastic composition may also be similar to that of the matrix polymer.
- the melt flow rate of the composition (on a dry basis) may be from about 0.1 to about 70 grams per 10 minutes, in some embodiments from about 0.5 to about 50 grams per 10 minutes, and in some embodiments, from about 5 to about 25 grams per 10 minutes, determined at a load of 2180 grams and at a
- Compatibilizers may also be employed that improve interfaciaS adhesion and reduce the interfacial tension between the domain and the matrix, thus allowing the formation of smaller domains during mixing.
- suitable compatibilizers may include, for instance, copolymers functionalized with epoxy or maleic anhydride chemical moieties.
- compatibilizer is polypropyiene-grafted-maieic anhydride, which is commercially available from Arkema under the trade names OrevacTM 18750 and OrevacTM CA 100.
- compatibilizers may constitute from about 0.05 wt.% to about 10 wt.%, in some embodiments from about 0.1 wt.% to about 8 wt.%, and in some embodiments, from about 0.5 wt.% to about 5 wt.% of the thermoplastic composition, based on the weight of the continuous phase matrix.
- thermoplastic composition suitable materials that may also be used in the thermoplastic composition, such as catalysts, antioxidants, stabilizers, surfactants, waxes, solid solvents, fillers, nucleating agents (e.g., calcium carbonate, etc.), particulates, and other materials added to enhance the processability and mechanical properties of the thermoplastic composition.
- catalysts antioxidants, stabilizers, surfactants, waxes, solid solvents, fillers, nucleating agents (e.g., calcium carbonate, etc.), particulates, and other materials added to enhance the processability and mechanical properties of the thermoplastic composition.
- thermoplastic composition may be generally free of blowing agents and/or plasticizers.
- blowing agents and/or plasticizers may be present in an amount of no more than about 1 wt.%, in some embodiments no more than about 0.5 wt.%, and in some embodiments, from about 0.001 wt.% to about 0.2 wt.% of the thermoplastic composition.
- the resulting composition may achieve an opaque color (e.g., white) without the need for conventional pigments, such as titanium dioxide.
- pigments may be present in an amount of no more than about 1 wt.%, in some embodiments no more than about 0.5 wt.%, and in some embodiments, from about 0.001 wt.% to about 0.2 wt.% of the thermoplastic composition.
- the polymeric material .of the present invention may be formed by drawing the thermoplastic composition, which may include the matrix polymer,
- the components are typically blended together using any of a variety of known techniques.
- the components may be supplied separately or in combination.
- the components may first be dry mixed together to form an essentially homogeneous dry mixture, and they may likewise be supplied either simultaneously or in sequence to a melt processing device that dispersiveiy blends the materials.
- Batch and/or continuous melt processing techniques may be employed.
- a mixer/kneader, Banbury mixer, Parrel continuous mixer, single-screw extruder, twin-screw extruder, roll mill, etc. may be utilized to blend and melt process the materials.
- Particularly suitable melt processing devices may be a co-rotating, twin-screw extruder (e.g., ZSK-30 extruder available from Werner & Pfleiderer Corporation of Ramsey, New Jersey or a Thermo
- Such extruders may include feeding and venting ports and provide high intensity distributive and dispersive mixing.
- the components may be fed to the same or different feeding ports of the twin-screw extruder and melt blended to form a substantially homogeneous melted mixture, if desired, other additives may also be injected into the polymer melt and/or separately fed into the extruder at a different point along its length.
- the resulting melt blended composition may contain micro-scale domains of the microinclusion additive and nano-scale domains of the nanoinclusion additive as described above.
- the degree of shear/pressure and heat may be controlled to ensure sufficient dispersion, but not so high as to adversely reduce the size of the domains so that they are incapable of achieving the desired properties.
- blending typically occurs at a temperature of from about 180°C to about 300X, in some embodiments from about 185°C to about 250°C, and in some embodiments, from about 190°C to about 240°C.
- the apparent shear rate during melt processing may range from about 10 seconds “1 to about 3000 seconds “1 , in some embodiments from about 50 seconds “1 to about 2000 seconds “ 1 , and in some embodiments, from about 100 seconds “1 to about 1200 seconds “1 ,
- the apparent shear rate may be equai to Q/nR 3 , where Q is the volumetric flow rate ("m 3 /s") of the poiymer melt and R is the radius ("m") of the capillary (e.g., extruder die) through which the melted polymer flows.
- Q is the volumetric flow rate ("m 3 /s") of the poiymer melt
- R is the radius ("m" of the capillary (e.g., extruder die) through which the melted polymer flows.
- other variables such as the residence time during melt processing, which is inversely proportional to throughput rate, may also be controlled to achieve the desired degree of homogeneity.
- the speed of the extruder screw(s) may be selected with a certain range.
- an increase in product temperature is observed with increasing screw speed due to the additional mechanical energy input into the system.
- the screw speed may range from about 50 to about 600 revolutions per minute ("rpm"), in some embodiments from about 70 to about 500 rpm, and in some embodiments, from about 100 to about 300 rpm. This may result in a temperature that is sufficiently high to disperse the microinciusion additive without adversely impacting the size of the resulting domains.
- the melt shear rate, and in turn the degree to which the additives are dispersed, may also be increased through the use of one or more distributive and/or dispersive mixing elements within the mixing section of the extruder.
- Suitable distributive mixers for single screw extruders may include, for instance, Saxon, Dulmage, Cavity Transfer mixers, etc.
- suitable dispersive mixers may include Blister ring,
- the mixing may be further improved by using pins in the barrel that create a folding and reorientation of the poiymer melt such as those used in Buss Kneader extruders, Cavity
- the porous network structure may be introduced by drawing the composition in the longitudinal direction (e.g., machine direction), transverse direction (e.g., cross-machine direction), etc., as well as combinations thereof.
- the thermoplastic composition may be formed into a precursor shape, drawn, and thereafter converted into the desired material (e.g., film, fiber, etc.).
- the precursor shape may be a film having a thickness of from about 1 to about 5000 micrometers, in some embodiments from about 2 to about 4000 micrometers, in some embodiments from about 5 to about 2500 micrometers, and in some embodiments, from about 10 to about 500 micrometers.
- the thermoplastic composition may also be drawn in situ as it is being shaped into the desired form for the polymeric material, in one embodiment, for example, the thermoplastic composition may be drawn as it is being formed into a film or fiber.
- various drawing techniques may be employed, such as aspiration (e.g., fiber draw units), tensile frame drawing, biaxial drawing, multi-axial drawing, profile drawing, vacuum drawing, etc.
- the composition is drawn with a machine direction orienter ("MDO"), such as commercially available from Marshall and Willams, Co. of Buffalo, Rhode Island.
- MDO units typically have a plurality of drawing rolls (e.g., from 5 to 8) which progressively draw and thin the film in the machine direction.
- composition may be drawn in either single or multiple discrete drawing operations, it should be noted that some of the rolls in an MDO apparatus may not be operating at progressively higher speeds. To draw the composition in the manner described above, it is typically desired that the rolls of the MDO are not heated. Nevertheless, if desired, one or more rolls may be heated to a slight extent to facilitate the drawing process so long as the temperature of the composition remains below the ranges noted above.
- the degree of drawing depends in part of the nature of the material being drawn (e.g., fiber or film), but is generally selected to ensure that the desired porous network is achieved.
- the composition is typically drawn ⁇ e.g., in the machine direction) to a draw ratio of from about 1.1 to about 3.5, in some embodiments from about 1 .2 to about 3.0, and in some embodiments, from about 1 .3 to about 2.5.
- the draw ratio may be determined by dividing the length of the drawn material by its length before drawing.
- the draw rate may also vary to help achieve the desired properties, such as within the range of from about 5% to about 1500% per minute of deformation, in some embodiments from about 20% to about 1000% per minute of deformation, and in some embodiments, from about 25% to about 850% per minute of deformation.
- the composition is generally kept at a temperature below the glass temperature of the matrix polymer and
- the composition may be drawn at a temperature that is at least about 10 o C, in some embodiments at least about 20°C, and in some embodiments, at least about 30°C below the glass transition temperature of the matrix polymer.
- the composition may be drawn at a temperature of from about 0°C to about 5G°C, in some embodiments from about 15°C to about 40°C, and in some embodiments, from about 20°C to about 30°C.
- the composition is typically drawn without the application of external heat (e.g., heated rolls), such heat might be optionally employed to improve processability, reduce draw force, increase draw rates, and improve fiber uniformity.
- nanopores may have an average cross-sectional dimension of about 800 nanometers or less, in some embodiments from about 1 to about 500 nanometers, in some
- Micropores may also be formed at and around the micro- scale domains during drawing that have an average cross-sectional dimension of from about 0.5 to about 30 micrometers, in some embodiments from about 1 to about 20 micrometers, and in some embodiments, from about 2 micrometers to about 15 micrometers.
- the micropores and/or nanopores may have any regular or irregular shape, such as spherical, elongated, etc.
- the axial dimension of the micropores and/or nanopores may be larger than the cross- sectional dimension so that the aspect ratio ⁇ the ratio of the axial dimension to the cross-sectiona! dimension) is from about 1 to about 30, in some embodiments from about 1.1 to about 15, and in some embodiments, from about 1 .2 to about 5.
- the "axial dimension” is the dimension in the direction of the major axis (e.g., length), which is typically in the direction of drawing.
- micropores, nanopores, or both can be distributed in a substantially homogeneous fashion throughout the material.
- the pores may be distributed in columns that are oriented in a direction generally perpendicular to the direction in which a stress is applied. These columns may be generally parallel to each other across the width of the material.
- good mechanical properties e.g., energy dissipation under load and impact strength
- the formation of the porous network by the process described above does not necessarily result in a substantial change in the cross-sectional size (e.g., width) of the material.
- the material is not substantially necked, which may allow the material to retain a greater degree of strength properties.
- drawing can also significantly increase the axial dimension of the micro-scale domains so that they have a generally linear, elongated shape.
- the elongated micro-scale domains may have an average axial dimension that is about 10% or more, in some embodiments from about 20% to about 500%, and in some embodiments, from about 50% to about 250% greater than the axial dimension of the domains prior to drawing.
- the axial dimension after drawing may, for instance, range from about 0.5 to about 250 micrometers, in some embodiments from about 1 to about 100 micrometers, in some embodiments from about 2 to about 50 micrometers, and in some embodiments, from about 5 to about 25 micrometers.
- the micro-scale domains may also be relatively thin and thus have a small cross-sectional dimension, such as from about 0.05 to about 50 micrometers, in some
- the ratio of the axial dimension to the cross-sectional dimension may result in an aspect ratio for the first domains (the ratio of the axial dimension to the cross-sectional dimension) of from about 2 to about 150, in some embodiments from about 3 to about 100, and in some embodiments, from about 4 to about 50.
- the present inventors have discovered that the resulting polymeric material can expand uniformly in volume when drawn in longitudinal direction, which is reflected by a low "Poisson coefficient", as determined according to the following equation:
- the Poisson coefficient of the material can be approximately 0 or even negative.
- the Poisson coefficient may be about 0.1 or less, in some embodiments about 0.08 or less, and in some embodiments, from about -0,1 to about 0.04.
- the Poisson coefficient is zero, there is no contraction in transverse direction when the material is expanded in the longitudinal direction.
- the Poisson coefficient is negative, the transverse or lateral dimensions of the material are also expanding when the material is drawn in the longitudinal direction. Materials having a negative Poisson coefficient can thus exhibit an increase in width when drawn in the longitudinal direction, which can result in increased energy absorption in the cross direction.
- the polymeric material of the present invention may generally have a variety of different forms depending on the particular application, such as films, fibrous materials, molded articles, profiles, etc.. as well as composites and laminates thereof, for use in building insulation.
- the polymeric material is in the form of a film or layer of a film.
- Multilayer films may contain from two (2) to fifteen (15) layers, and in some embodiments, from three (3) to twelve (12) layers. Such multilayer films normally contain at least one base layer and at least one additional layer (e.g., skin layer), but may contain any number of layers desired.
- the multilayer film may be formed from a base layer and one or more skin layers, wherein the base layer and/or skin !ayer(s) are formed from the polymeric material of the present invention. It should be understood, however, that other polymer materials may also be employed in the base layer and/or skin layer(s), such as polyolefin polymers.
- the thickness of the film may be relatively small to increase flexibility.
- the film may have a thickness of from about 1 to about 200 micrometers, in some embodiments from about 2 to about 150 micrometers, in some
- the film may nevertheless be able to retain good mechanical properties during use.
- the film may be relatively ductile.
- One parameter that is indicative of the ductility of the film is the percent elongation of the film at its break point, as determined by the stress strain curve, such as obtained in accordance with ASTM Standard D838-10 at 23°G,
- the percent elongation at break of the film in the machine direction (“ D") may be about 10% or more, in some embodiments about 50% or more, in some embodiments about 80% or more, and in some embodiments, from about 100% to about 600%.
- the percent elongation at break of the film in the cross-machine direction may be about 15% or more, in some embodiments about 40% or more, in some embodiments about 70% or more, and in some embodiments, from about 100% to about 400%.
- Another parameter that is indicative of ductility is the tensile modulus of the film, which is equal to the ratio of the tensile stress to the tensile strain and is determined from the slope of a stress-strain curve.
- the film typically exhibits a MD and/or CD tensile modulus of about 2500 egapascals ("MPa") or less, in some embodiments about 2200 MPa or less, in some embodiments from about 50 MPa to about 2000 MPa, and in some embodiments, from about 100 MPa to about 1000 MPa.
- the tensile modulus may be determined in accordance with ASTM D638-10 at 23°C.
- the film is ductile, it can still be relatively strong.
- One parameter that is indicative of the relative strength of the film is the ultimate tensile strength, which is equal to the peak stress obtained in a stress-strain curve, such as obtained in accordance with ASTM Standard D638-10.
- the film may exhibit an MD and/or CD peak stress of from about 5 to about 85 MPa, in some embodiments from about 10 MPa to about 80 MPa, and in some embodiments, from about 20 MPa to about 55 MPa.
- the film may also exhibit an MD and/or CD break stress of from about 5 MPa to about 60 MPa, in some embodiments from about 10 MPa to about 50 MPa, and in some embodiments, from about 20 MPa to about 45 MPa.
- the peak stress and break stress may be determined in accordance with ASTM D638-10 at 23°C.
- the polymeric material may also be in the form of a fibrous material or a layer or component of a fibrous material, which can include individual staple fibers or filaments (continuous fibers), as well as yarns, fabrics, etc. formed from such fibers.
- Yarns may include, for instance, multiple staple fibers that are twisted together ("spun yarn"), filaments laid together without twist ("zero-twist yarn”), filaments laid together with a degree of twist, single filament with or without twist (“monofilament”), eta.
- the yarn may or may not be texturized.
- Suitable fabrics may likewise include, for instance, woven fabrics, knit fabrics, nonwoven fabrics (e.g., spunbond webs, meltbiown webs, bonded carded webs, wet-laid webs, airlaid webs, coform webs, hydraulically entangled webs, etc.), and so forth.
- nonwoven fabrics e.g., spunbond webs, meltbiown webs, bonded carded webs, wet-laid webs, airlaid webs, coform webs, hydraulically entangled webs, etc.
- Fibers formed from the thermoplastic composition may generaiiy have any desired configuration, including monocomponent and multicomponent (e.g., sheath-core configuration, side ⁇ by-side configuration, segmented pie configuration, island-in-the-sea configuration, and so forth), !n some embodiments, the fibers may contain one or more additional polymers as a component (e.g., bicomponent) or constituent (e.g., biconstituent) to further enhance strength and other
- the thermoplastic composition may form a sheath component of a sheath/core bicomponent fiber, while an additional polymer may form the core component, or vice versa.
- the additional polymer may be a thermoplastic polymer such as polyesters, e.g., polylactic acid, polyethylene terephthaiate, polybutylene terephthaiate, and so forth; polyolefins, e.g.,
- polyamides e.g., nylon; polyvinyl chloride; polyvinylidene chloride; polystyrene; polyvinyl alcohol; and polyurethanes.
- the fibers When employed, the fibers can deform upon the application of strain, rather than fracture. The fibers may thus continue to function as a load bearing member even after the fiber has exhibited substantia! elongation.
- the fibers of the present invention are capable of exhibiting improved "peak elongation properties, i.e., the percent elongation of the fiber at its peak load.
- the fibers of the present invention may exhibit a peak elongation of about 50% or more, in some embodiments about 100% or more, in some embodiments from about 200% to about 1500%, and in some embodiments, from about 400% to about 800%, such as determined in accordance with ASTM D638-10 at 23°C.
- Such elongations may be achieved for fibers having a wide variety of average diameters, such as those ranging from about 0.1 to about 50 micrometers, in some embodiments from about 1 to about 40 micrometers, in some embodiments from about 2 to about 25 micrometers, and in some embodiments, from about 5 to about 15 micrometers.
- the fibers of the present invention can also remain relatively strong.
- the fibers may exhibit a peak tensile stress of from about 25 to about 500 I legapascals ("MPa"), in some embodiments from about 50 to about 300 MPa, and in some embodiments, from about 60 to about 200 MPa, such as determined in accordance with ASTM D638- 10 at 23°C.
- MPa I legapascals
- Another parameter that is indicative of the relative strength of the fibers of the present invention is "tenacity", which indicates the tensile strength of a fiber expressed as force per unit linear density.
- the fibers of the present invention may have a tenacity of from about 0.75 to about 6.0 grams-force ("g f ”) per denier, in some embodiments from about 1.0 to about 4.5 g, per denier, and in some embodiments, from about 1.5 to about 4,0 g f per denier.
- the denier of the fibers may vary depending on the desired application.
- the fibers are formed to have a denier per filament (i.e., the unit of linear density equal to the mass in grams per 9000 meters of fiber) of less than about 8, in some
- the polymeric materia! of the present invention may be subjected to one or more additional processing steps, before and/or after being drawn.
- the polymeric material may also be annealed to help ensure that it retains the desired shape. Annealing typically occurs at or above the glass transition temperature of the polymer matrix, such as at from about 40°to about 120°C, in some embodiments from about 50°C to about 100°C, and in some embodiments, from about 70°C to about 90°C.
- the polymeric material may also be surface treated using any of a variety of known techniques to improve its properties.
- high energy beams e.g., plasma, x-rays, e- beam, etc.
- plasma x-rays, e- beam, etc.
- e- beam e.g., x-rays, e- beam, etc.
- surface treatment may be used before and/or drawing of the thermoplastic composition.
- the building insulation of the present invention can be used for a wide variety of purposes, such as for thermal insulation, acoustic insulation, impact insulation ⁇ e.g., for vibrations), fire insulation, moisture
- building insulation may be employed in a structure that is formed entirely from the polymeric material of the present invention.
- the building insulation may include the polymeric material as one layer and one or more additional Iayers of material for a variety of purposes, such as for additional insulation, barrier properties, or as a covering.
- the additional layer(s) may include other conventional types of materials, such as polymeric foams, films or sheets, nonwoven webs, fiberglass materials, cellulosic materials, scrims, foils, etc.
- the building insulation may be positioned in a residential or commercial building structure so that it is adjacent to a surface of the building envelope and/or adjacent to an interior surface of the building.
- Building panels may be formed from the polymeric material of the present invention and employed without limitation in the construction of foundation walls, frost wails (e.g., in buildings that have no basement),
- a building panel ⁇ e.g., foundation wall panel
- a building contains interior and exterior foundation walls 10 that collectively define a foundation 12.
- Each foundation wall 10 is in turn defined by one or more foundation wall panels 14.
- each foundation wall panel 14 includes a bottom plate 16, an upstanding wail section 18, and a top plate 20.
- Each upstanding wall section 18 includes a main-run wall section 22 and uprightly-oriented reinforcing studs 23 affixed to, or integral with, the main-run wall section, regularly spaced along the length of the wall section, and extending inwardly of the inner surface of the main run wall section.
- anchoring wedge-shaped brackets 24 are mounted to the studs at the tops and bottoms of the wall section to assist in anchoring the bottom plate and the top plate, and/or any other attachment, to the main run portion of the upstanding wail section.
- conventional beams 26 e.g., steel l-bearns
- beams 26 are mounted to the wail sections, as needed, to support spans of overlying floors.
- Such beams can be supported as needed by posts 28 and/or pads 30. Additional support posts can also be employed at or adjacent the ends of the beams to satisfy specific, individual load-bearing requirements of the building design.
- Solid reinforcing studs 23 can be used to attach the beams to respective panels of the foundation wall. As shown in Fig. 2, a main run wall section 22 is generally defined between the inner surface and the outer surface of the wall pane! 14.
- the wall section 22 may include the polymeric material of the present invention as building insulation 32, which provides a thermal barrier between the inwardly-facing surface of the wall and the outwardly-facing surface of the wall.
- Bottom plate 16 and top plate 20 can be secured to the main run section 22 with the support of wedge-shaped brackets 24 or other supporting bracket structure.
- the bottom plate 16 may support the foundation wall and overlying building superstructure from an underlying fabricated base, such as a concrete footer 55.
- the building insulation of the present invention may be employed as a "housewrap" material that acts as an external sheathing for the building and is located adjacent to an external surface (e.g., wall, roof, etc.) of the building.
- an external surface e.g., wall, roof, etc.
- such materials may be applied to the external surface and/or to an exterior covering (e.g., siding, brick, stone, masonry, stucco, concrete veneers, etc.) prior to its installation and located adjacent thereto.
- an exterior covering e.g., siding, brick, stone, masonry, stucco, concrete veneers, etc.
- Fig. 3 one embodiment is shown in which the building insulation is applied to the exterior wall.
- the building insulation is employed after the walls have been constructed and all sheathing and flashing details have been installed.
- the building insulation is preferably applied before doors and windows have been set inside framed openings and prior to the installation of the primary wall covering, in the illustrated embodiment, a first building insulation 100 is applied to the wail assembly 140. As shown, a roll of the insulation material may be unrolied. The building insulation 100 is secured to the exterior wall assembly 40 with fasteners, such as staples or cap nails. The building insulation may be trimmed around each framed opening with additional appropriate detailing applied as per window/door manufacturer and/or code standards. Once installed, an exterior covering may be applied/installed over the building insulation if so desired.
- the building insulation may also be employed within the interior of a building.
- the building insulation is typically positioned so that it is adjacent to an interior surface of the building, such as the ceiling, floor, stud wall, interior door, etc.
- Fig. 4 is intended to illustrate a cross-sectional view of an insulated wall cavity.
- the surface 250 includes a wail that is attached to a pair of studs 252 and 254. Between the pair of studs 252 and 254 is a layer of the building insulation material 258 of the present invention, which is applied to the surface 250.
- the building insulation 256 is positioned directly adjacent to the surface 250. It should be understood, however, that in other embodiments, an additional type of insulation may be positioned in between the surface 250 and the building insulation 258.
- the hydrostatic pressure test is a measure of the resistance of a materia! to penetration by liquid water under a static pressure and is performed in accordance with AATCC Test Method 127-2008. The results for each specimen may be averaged and recorded in centimeters (cm). A higher value indicates greater resistance to water penetration.
- WVTR Water Vapor Transmission Rate
- the test used to determine the WVTR of a material may vary based on the nature of the material.
- One technique for measuring the WVTR value is ASTM E98/98M-12, Procedure B.
- Another method involves the use of INDA Test Procedure SST-70.4 (01 ).
- the INDA test procedure is summarized as follows. A dry chamber is separated from a wet chamber of known temperature and humidity by a permanent guard film and the sample material to be tested. The purpose of the guard film is to define a definite air gap and to quiet or still the air in the air gap while the air gap is characterized. The dry chamber, guard film, and the wet chamber make up a diffusion eel! in which the test film is sealed.
- the sample holder is known as the Permatran-W Mode!
- a first test is made of the WVTR of the guard film and the air gap between an evaporator assembly that generates 100% relative humidity. Water vapor diffuses through the air gap and the guard film and then mixes with a dry gas flow that is proportional to water vapor concentration.
- the electrical signal is routed to a computer for processing. The computer calculates the transmission rate of the air gap and the guard film and stores the value for further use.
- the transmission rate of the guard film and air gap is stored in the computer as CalC.
- the sample material is then sealed in the test ceil. Again, water vapor diffuses through the air gap to the guard film and the test material and then mixes with a dry gas flow that sweeps the test material. Also, again, this mixture is carried to the vapor sensor.
- the computer then calculates the transmission rate of the combination of the air gap, the guard film, and the test material. This information is then used to calculate the transmission rate at which moisture is transmitted through the test material according to the equation:
- WVTR water vapor transmission rate
- A the cross sectional area of the cell
- Thermal conductivity (W/mK) and thermal resistance (m 2 K W) may be determined in accordance with ASTM E-1530-11 ("Resistance to Thermal Transmission of Materials by the Guarded Heat Flow Meter Technique") using an Anter Unitherm Mode! 2022 tester.
- the target test temperature may be 25°C and the applied load may be 0.17 MPa.
- the samples Prior to testing, the samples may be conditioned for 40+ hours at a temperature of 23°C (+2°C) and relative humidity of 50% (+10%).
- Thermal admittance (W/m 2 K) may also be calculated by dividing 1 by the thermal resistance.
- MFR me!t flow rate
- the glass transition temperature (T g ) may be determined by dynamic mechanical analysis (DMA) in accordance with ASTM E 840-09.
- DMA dynamic mechanical analysis
- ASTM E 840-09 A Q800 instrument from TA Instruments may be used.
- the experimental runs may be executed in tension/tension geometry, in a temperature sweep mode in the range from -120°C to 150°C with a heating rate of 3°G/min.
- the melting temperature may be determined by differential scanning calorimetry (DSC).
- DSC differential scanning calorimetry
- the differential scanning calorimeter may be a DSC Q100
- Differential Scanning Calorimeter which may be outfitted with a liquid nitrogen cooling accessory and with a UNIVERSAL ANALYSIS 2000 (version 4.6.6) analysis software program, both of which are available from T.A. Instruments Inc. of New Castle, Delaware.
- tweezers or other tools may be used.
- the samples may be placed into an aluminum pan and weighed to an accuracy of 0.01 milligram on an analytical balance.
- a lid may be crimped over the material sample onto the pan.
- the resin pellets may be placed directly in the weighing pan.
- the differential scanning calorimeter may be calibrated using an indium metal standard and a baseline correction may be performed, as described in the operating manual for the differential scanning calorimeter.
- a material sample may be placed into the test chamber of the differential scanning calorimeter for testing, and an empty pan may be used as a reference.
- Ail testing may be run with a 55- cubic centimeter per minute nitrogen (industrial grade) purge on the test chamber.
- the heating and cooling program is a 2-cycle test that began with an equilibration of the chamber to -30°C, followed by a first heating period at a heating rate of 10°C per minute to a temperature of 200°C, followed by equilibration of the sample at 200°C for 3 minutes, followed by a first cooling period at a cooling rate of 10°C per minute to a temperature of -3G°C, followed by equilibration of the sample at -30°C for 3 minutes, and then a second heating period at a heating rate of 10 Q C per minute to a temperature of 200°C.
- the heating and cooling program may be a 1 -cycle test that begins with an equilibration of the chamber to -25 0 C, followed by a heating period at a heating rate of 10°C per minute to a temperature of 2G0°C, followed by equilibration of the sample at 200°C for 3 minutes, and then a cooling period at a cooling rate of 10°C per minute to a temperature of -30°C. All testing may be run with a 55-cubic centimeter per minute nitrogen (industrial grade) purge on the test chamber.
- the results may be evaluated using the UNIVERSAL ANALYSIS 2000 analysis software program, which identifies and quantifies the glass transition temperature (T g ) of inflection, the endothermic and exothermic peaks, and the areas under the peaks on the DSC plots.
- T g glass transition temperature
- the glass transition temperature may be identified as the region on the plot-Sine where a distinct change in slope occurred, and the melting temperature may be determined using an automatic inflection calculation.
- Films may be tested for tensile properties (peak stress, modulus, strain at break, and energy per volume at break) on a MTS Synergie 200 tensile frame.
- the test may be performed in accordance with AST D838-10 (at about 23°C).
- Film samples may be cut into dog bone shapes with a center width of 3.0 mm before testing.
- the dog-bone film samples may be held in place using grips on the MTS Synergie 200 device with a gauge length of 18.0 mm.
- the film samples may be stretched at a crosshead speed of 5.0 in/min until breakage occurred.
- TestWorks 4 Five samples may be tested for each film in both the machine direction (MD) and the cross direction (CD), A computer program (e.g., TestWorks 4) may be used to collect data during testing and to generate a stress versus strain curve from which a number of properties may be determined, including modulus, peak stress, elongation, and energy to break.
- Fiber tensile properties may be determined in accordance with ASTM 838- 10 at 23°C. For instance, individual fiber specimens may initially be shortened (e.g., cut with scissors) to 38 millimeters in length, and placed separately on a black velvet cloth. 10 to 15 fiber specimens may be collected in this manner. The fiber specimens may then be mounted in a substantially straight condition on a rectangular paper frame having external dimension of 51 millimeters x 51 millimeters and internal dimension of 25 millimeters x 25 millimeters. The ends of each fiber specimen may be operatively attached to the frame by carefully securing the fiber ends to the sides of the frame with adhesive tape.
- Each fiber specimen may be measured for its external, relatively shorter, cross-fiber dimension employing a conventional laboratory microscope, which may be properly calibrated and set at 40X magnification. This cross-fiber dimension may be recorded as the diameter of the individual fiber specimen.
- the frame helps to mount the ends of the sample fiber specimens in the upper and lower grips of a constant rate of extension type tensile tester in a manner that avoids excessive damage to the fiber specimens.
- a constant rate of extension type of tensile tester and an appropriate load cell may be employed for the testing.
- the load cell may be chosen (e.g., 10N) so that the test value fails within 10-90% of the full scale load.
- the tensile tester i.e., MTS SYNERGY 200
- load cell may be obtained from MTS Systems
- the fiber specimens in the frame assembly may then be mounted between the grips of the tensile tester such that the ends of the fibers may be operatively held by the grips of the tensile tester. Then, the sides of the paper frame that extend parallel to the fiber length may be cut or otherwise separated so that the tensile tester applies the test force only to the fibers.
- the fibers may be subjected to a poti test at a pull rate and grip speed of 12 inches per minute. The resulting data may be analyzed using a TESTWORKS 4
- the tenacity valu es may be express* 3d in terms of gram-fc irce per denier.
- Peak elongation (% strain at break) and peak stress may also be measured.
- the width (Wi) and thickness (Ti) of the specimen may be initially measured prior to drawing.
- the length ( ) before drawing may also be determined by measuring the distance between two markings on a surface of the specimen. Thereafter, the specimen may be drawn to initiate voiding.
- the width (W f ), thickness (T f ). and length (L) of the specimen may then be measured to the nearest 0.01 mm utilizing Digimatic Caliper (Mitutoyo Corporation).
- Moisture Content
- Moisture content may be determined using an Arizona Instruments
- Computrac Vapor Pro moisture analyzer (Model No. 3100) in substantial accordance with ASTM D 7191-05, which is incorporated herein in its entirety by reference thereto for all purposes.
- the test temperature ( ⁇ X2.1 .2) may be 13Q°C
- the sample size ( ⁇ X2.1.1) may be 2 to 4 grams
- the vial purge time ( ⁇ X2.1.4) may be 30 seconds.
- the ending criteria ( ⁇ X2.1.3) may be defined as a "prediction" mode, which means that the test is ended when the built-in
- microinclusion additive was VistamaxxTM 2120 (ExxonMobil), which is a polyolefin copolymer/elastomer with a melt flow rate of 29 g/10 min (190X, 2160 g) and a density of 0.866 g/cm 3 .
- the nanoinclusion additive was pofy(ethylene-co-methyl acryiate-co-giycidyl methacrySate) (Lotader® AX8900, Arkema) having a melt flow rate of 5-6 g/ 0 min (190°C/2160 g), a glycidyl methacrylate content of 7 to 1 wt.%, methyl acrylate content of 13 to 17 wt.%, and ethylene content of 72 to 80 wt.%, the internal interfacia! modifier was PLURIOL®WI 285 Lubricant from BASF which is a Poiyalkylene Glycol Functional Fluids.
- the polymers were fed into a co- rotating, twin-screw extruder (ZSK-30, diameter of 30 mm, length of 1328 millimeters) for compounding that was manufactured by Werner and Pfleiderer Corporation of Ramsey, New Jersey.
- the extruder possessed 14 zones, numbered consecutively 1-1 from the feed hopper to the die.
- the first barrel zone #1 received the resins via gravimetric feeder at a total throughput of 15 pounds per hour.
- the PLURIOL® WI285 was added via injector pump info barrel zone #2.
- the die used to extrude the resin had 3 die openings (6 millimeters in diameter) that were separated by 4 millimeters.
- the extruded resin Upon formation, the extruded resin was cooled on a fan ⁇ cooied conveyor belt and formed into pellets by a Conair pelletizer. The extruder screw speed was 200 revolutions per minute ("rpm"). The pellets were then flood fed into a signal screw extruder heated to a temperature of 212°C where the molten blend exited through 4.5 inch width slit die and drawn to a film thickness ranging from 0.54 to 0.58 mm.
- Example 3 The sheet produced in Example 1 was cut to a 6" length and then drawn to 100% elongation using a MTS 820 hydraulic tensile frame in tensile mode at 50 mm/min.
- EXAMPLE 3 The sheet produced in Example 1 was cut to a 6" length and then drawn to 100% elongation using a MTS 820 hydraulic tensile frame in tensile mode at 50 mm/min.
- Example 1 The sheet produced in Example 1 was cut to a 8" length and then drawn to 150% elongation using a MTS 820 hydraulic tensile frame in tensile mode at 50 mm/min,
- Example 1 The sheet produced in Example 1 was cut to a 8" length and then drawn to 200% elongation using a MTS 820 hydraulic tensile frame in tensile mode at 50 mm/min.
- Pellets were formed as described in Example 1 and then flood fed into a Rheomix 252 single screw extruder with a L/D ratio of 25:1 and heated to a temperature of 212°C where the molten blend exited through a Haake 6 inch width s cast film die and drawn to a film thickness ranging from 39.4 ⁇ to 50.8 ⁇ via Haake take-up roll.
- the film was drawn in the machine direction to a longitudinal deformation of 160% at a pull rate of 50 mm/min (deformation rate of 67%/min) via MTS Synergie 200 tensile frame with grips at a gage length of 75 mm.
- Films were formed as described in Example 5, except that the film was also stretched in the cross-machine direction to a deformation of 100% at a pull rate of 50 mm/min (deformation rate of 1 0%/min) with grips at a gage length of 50 mm.
- Pellets were formed as described in Example 1 and then flood fed into a signal screw extruder heated to a temperature of 212°C, where the molten blend exited through 4.5 inch width slit die and drawn to a film thickness ranging from 36 ⁇ to 54 ⁇
- the films were stretched in the machine direction to about 100% to initiate cavitation and void formation.
- the morphology of the films was analyzed by scanning electron microscopy (SEM) before and after stretching. The results are shown in Figs. 5-8. As shown in Figs.
- the microindusion additive was initially dispersed in domains having an axial size (in machine direction) of from about 2 to about 30 micrometers and a transverse dimension (in cross-machine direction) of from about 1 to about 3 micrometers, while the nanoinclusion additive was initially dispersed as spherical or spheroidal domains having an axial size of from about 100 to about 300 nanometers.
- Figs. 7-8 show the film after stretching.
- the micropores formed around the microindusion additive generally had an elongated or slit-like shape with a broad size distribution ranging from about 2 to about 20 micrometers in the axial direction.
- the nanopores associated with the nanoinclusion additive generally had a size of from about 50 to about 500 nanometers.
- Example 7 The compounded pellets of Example 7 were dry blended with another nanoinclusion additive, which was a haiioisite clay masterbatch ( acroComp
- NH-731-36, MacroM containing 22 wt.% of a styrenic copolymer modified nanociay and 78 wt.% polypropylene (Exxon Mobil 3155).
- the mixing ratio was 90 wt.% of the pellets and 10 wt.% of the clay masterbatch, which provided a total clay content of 2.2%.
- the dry blend was then flood fed into a signal screw extruder heated to a temperature of 212°C, where the molten blend exited through 4.5 inch width slit die and drawn to a film thickness ranging from 51 to 58 Mm. The films were stretched in the machine direction to about 100% to initiate cavitation and void formation.
- Figs. 9-12 The morphology of the films was analyzed by scanning electron microscopy (SE ) before and after stretching. The results are shown in Figs. 9-12. As shown in Figs. 9-10, some of the nanociay particles (visible as brighter regions) became dispersed in the form of very small domains - i.e., axial dimension ranging from about 50 to about 300 nanometers. The masterbatch itself also formed domains of a micro-scale size (axial dimension of from about 1 to about 5 micrometers).
- the microinclusion additive (VistamaxxTM) formed elongated domains
- the nanoinclusion additives (Lotader®, visible as ultrafine dark dots and nanociay masterbatch, visible as bright platelets) formed spheroidal domains.
- the stretched film is shown in Figs. 11-12.
- the voided structure is more open and demonstrates a broad variety of pore sizes.
- the nanociay In addition to highly elongated micropores formed by the microinclusions (VistamaxxTM), the nanociay
- masterbatch inclusions formed more open spheroidal micropores with an axial size of about 10 microns or less and a transverse size of about 2 microns.
- Spherical nanopores are also formed by the nanoinclusion additives (Lotader® and nanociay particles).
- the addition of the nanoclay filler resulted in a slight increase in break stress and a significant increase in elongation at break.
- a precursor blend was formed from 91.8 wt.% isotactic propylene homopolymer (M3661 , melt flow rate of 14 g/10 at 210°C and melting temperature of 150°C, Total Petrochemicals), 7.4 wt.% poiylactic acid (PLA 6252, melt flow rate of 70 to 85 g/10 min at 210°C, Natureworks®), and 0.7 wt.% of a poiyepoxide.
- the poiyepoxide was poly(ethyiene ⁇ co ⁇ methyi acrylate-co-glycidyl methacrylate) (LOTADER® AX8900, Arkema) having a melt flow rate of 6 g/10 min (190°C/2160 g), a glycidyl methacrylate content of 8 wt.%, methyl acryiate content of 24 wt.%. and ethylene content of 68 wt.%.
- the components were compounded in a co- rotating twin-screw extruder (Werner and Pfleiderer ZSK-30 with a diameter of 30 mm and a L/D ⁇ 44). The extruder had seven heating zones.
- the temperature in the extruder ranged from 180°C to 220°C.
- the polymer was fed gravimetrically to the extruder at the hoper at 15 pounds per hour and the liquid was injected into the barrel using a peristaltic pump.
- the extruder was operated at 200 revolutions per minute (RPM).
- RPM revolutions per minute
- a 3 ⁇ hole die of 6 mm in diameter was used to form the extrudate.
- the extrudate was air-cooled in a conveyor belt and pelletized using a Conair Pelletizer.
- Fiber was then produced from the precursor blend using a Davis-Standard fiber spinning line equipped with a 0.75 ⁇ inch single screw extruder and 18 hole spinneret with a diameter of 0.6 mm.
- the fibers were collected at different draw down ratios.
- the take up speed ranged from 1 to 1000 m/min.
- the temperature of the extruder ranged from 175 C C to 220°C.
- the fibers were stretched in a tensile tester machine at 300 mm/min up to 400% elongation at 25°C.
- the fibers were freeze fractured in liquid nitrogen and analyzed via Scanning Electron Microscope Jeoi 6490LV at high vacuum. The results are shown in Fig. 13-15.
- nanopores 50 nanometers in width, -500 nanometers in length
- micropores -0.5 micrometers in width, ⁇ 4 micrometers in length
- Pel lets were f ormed as des cribed in Example " and then flood fed into a single screw extruder at 240°C, m e!ted, and passed t irough a melt pi jmp at a rate of 0.40 grams per he >le per minute through a 0.6 mm ⁇ diameter spinneret. Fibers were coile cted in fre ⁇ 3 fail (gravity only as draw force) and then tested for mechanic al propertie is at a pull rat e of 50 millimeters
- Fibers were formed as described in Example 10, except that they were collected at a collection roll speed of 100 meters per minute resulting in a drawn down ratio of 77, Fibers were then tested for mechanical properties at a pull rate of 50 millimeters per minute. Fibers were then cold dravm at 23°C in a MTS Synergie Tensile frame at a rate of 50 mm/min. Fibers were drawn to pre-defined strains of 50%, 100%, 150%, 200% and 250%, After drawing, the expansion ratio, void volume and density were calculated for various strain rates as shown in the tables below.
- Fibers were formed as described in Example 10, except that the blend was composed of 83.7 wt.% polyiactic acid (PLA 6201 D, Natureworks®), 9.3 wt.% of VistamaxxTM 2120, 1 .4 wt.% Lotader® AX8900, 3.7% wt.% PLUR!OL® Wl 285, and 1.9% hydrophific surfactant (Masil SF-19).
- the PLURIOL® WI285 and Masil SF-19 were premixed at a 2:1 (WI-285:SF-19) ratio and added via injector pump into barrel zone #2. Fibers were collected at 240°C, 0.40 ghm and under free fail
- Fibers were formed as described in Example 12, except that they were collected at a collection roil speed of 100 meters per minute resulting in a drawn down ratio of 77. Fibers were then tested for mechanical properties at a pull rate of 50 millimeters per minute. Fibers were then cold drawn at 23°C in a fvTTS
- Fibers from Example 12 were stretched in a MTS Synergie Tensile frame at a rate of 50 millimeters per minute to 250% strain, This opened up the void structure and turned the fiber white. A one inch sample was then cut from the stressed, white area of the fiber. The new fiber was then tested as described above. The density was estimated to be 0.75 grams per cubic centimeters and the pull rate for the tensile test was 305 mm/min.
- Fibers from Example 11 were heated in an oven at 50°C for 30 minutes to anneal the fiber.
- Fibers from Example 11 were heated in an oven at 90°C for 5 minutes to anneal the fiber and induce crystallization.
- the fibers of Examples 10-18 were then tested for mechanical properties at 90°C for 5 minutes to anneal the fiber and induce crystallization.
- the fibers of Examples 10-18 were then tested for mechanical properties at 90°C for 5 minutes to anneal the fiber and induce crystallization.
- the fibers of Examples 10-18 were then tested for mechanical properties at
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Acoustics & Sound (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Building Environments (AREA)
- Laminated Bodies (AREA)
- Artificial Filaments (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2015017042A MX2015017042A (en) | 2013-06-12 | 2014-06-06 | Building insulation. |
AU2014279706A AU2014279706B2 (en) | 2013-06-12 | 2014-06-06 | Building insulation |
EP14810882.2A EP3008260A4 (en) | 2013-06-12 | 2014-06-06 | Building insulation |
KR1020167000591A KR102202850B1 (en) | 2013-06-12 | 2014-06-06 | Building insulation |
CN201480031343.2A CN105264152B (en) | 2013-06-12 | 2014-06-06 | Build isolated material |
RU2016100017A RU2621112C1 (en) | 2013-06-12 | 2014-06-06 | Construction insulation material |
BR112015030934-8A BR112015030934B1 (en) | 2013-06-12 | 2014-06-06 | CONSTRUCTION INSULATION |
JP2016518614A JP2016530409A (en) | 2013-06-12 | 2014-06-06 | Building insulation |
US14/895,547 US20160130799A1 (en) | 2013-06-12 | 2014-06-06 | Building Insulation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361834038P | 2013-06-12 | 2013-06-12 | |
US61/834,038 | 2013-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014199279A1 true WO2014199279A1 (en) | 2014-12-18 |
Family
ID=52021722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2014/062034 WO2014199279A1 (en) | 2013-06-12 | 2014-06-06 | Building insulation |
Country Status (10)
Country | Link |
---|---|
US (1) | US20160130799A1 (en) |
EP (1) | EP3008260A4 (en) |
JP (1) | JP2016530409A (en) |
KR (1) | KR102202850B1 (en) |
CN (1) | CN105264152B (en) |
AU (1) | AU2014279706B2 (en) |
BR (1) | BR112015030934B1 (en) |
MX (1) | MX2015017042A (en) |
RU (1) | RU2621112C1 (en) |
WO (1) | WO2014199279A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10240260B2 (en) | 2013-06-12 | 2019-03-26 | Kimberly-Clark Worldwide, Inc. | Absorbent article containing a nonwoven web formed from a porous polyolefin fibers |
US10286593B2 (en) | 2014-06-06 | 2019-05-14 | Kimberly-Clark Worldwide, Inc. | Thermoformed article formed from a porous polymeric sheet |
US10752745B2 (en) | 2013-06-12 | 2020-08-25 | Kimberly-Clark Worldwide, Inc. | Polyolefin film for use in packaging |
US10849800B2 (en) | 2015-01-30 | 2020-12-01 | Kimberly-Clark Worldwide, Inc. | Film with reduced noise for use in an absorbent article |
US10857705B2 (en) | 2013-06-12 | 2020-12-08 | Kimberly-Clark Worldwide, Inc. | Pore initiation technique |
US10869790B2 (en) | 2015-01-30 | 2020-12-22 | Kimberly-Clark Worldwide, Inc. | Absorbent article package with reduced noise |
US10889501B2 (en) | 2016-02-24 | 2021-01-12 | Massachusetts Institute Of Technology | Solar thermal aerogel receiver and materials therefor |
US11084916B2 (en) | 2013-06-12 | 2021-08-10 | Kimberly-Clark Worldwide, Inc. | Polymeric material with a multimodal pore size distribution |
US11170750B2 (en) | 2018-04-25 | 2021-11-09 | Massachusetts Institute Of Technology | Energy efficient soundproofing window retrofits |
US11186927B2 (en) | 2014-06-06 | 2021-11-30 | Kimberly Clark Worldwide, Inc. | Hollow porous fibers |
US11286362B2 (en) | 2013-06-12 | 2022-03-29 | Kimberly-Clark Worldwide, Inc. | Polymeric material for use in thermal insulation |
US11965083B2 (en) | 2013-06-12 | 2024-04-23 | Kimberly-Clark Worldwide, Inc. | Polyolefin material having a low density |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11011147B2 (en) * | 2015-02-13 | 2021-05-18 | Acoustic Space Pty Ltd | Sheet material with a cellular structure and/or a process for producing same |
WO2017127134A1 (en) * | 2016-01-21 | 2017-07-27 | Carlisle Intangible Company | Fire-rated roofing system |
KR102556244B1 (en) * | 2017-01-31 | 2023-07-18 | 킴벌리-클라크 월드와이드, 인크. | polymeric substances |
CN107033554B (en) * | 2017-05-03 | 2019-01-29 | 苏州轩朗塑料制品有限公司 | The preparation method and applications of high-strength environment-friendly construction material |
CN107011636B (en) * | 2017-05-03 | 2019-02-22 | 苏州轩朗塑料制品有限公司 | A kind of preparation method and applications of modified Nano heat-insulating construction material |
CN107189363B (en) * | 2017-06-06 | 2019-02-22 | 苏州轩朗塑料制品有限公司 | A kind of construction material preparation method and applications added with neoprene |
RU182546U1 (en) * | 2018-02-05 | 2018-08-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный университет путей сообщения" (СамГУПС) | Heat insulating wall |
US11408126B2 (en) * | 2019-08-15 | 2022-08-09 | The Procter & Gamble Company | Fast-wetting coform fibrous structures |
CN113174656B (en) * | 2021-06-10 | 2022-09-16 | 宁波马菲羊纺织科技有限公司 | Biodegradable fiber and preparation method thereof |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4797468A (en) | 1986-12-19 | 1989-01-10 | Akzo N.V. | Preparation of polylactic acid and copolymers of lactic acids |
US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
US5218071A (en) | 1988-12-26 | 1993-06-08 | Mitsui Petrochemical Industries, Ltd. | Ethylene random copolymers |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
US5322728A (en) | 1992-11-24 | 1994-06-21 | Exxon Chemical Patents, Inc. | Fibers of polyolefin polymers |
US5470944A (en) | 1992-02-13 | 1995-11-28 | Arch Development Corporation | Production of high molecular weight polylactic acid |
US5472775A (en) | 1993-08-17 | 1995-12-05 | The Dow Chemical Company | Elastic materials and articles therefrom |
US5539056A (en) | 1995-01-31 | 1996-07-23 | Exxon Chemical Patents Inc. | Thermoplastic elastomers |
US5571619A (en) | 1994-05-24 | 1996-11-05 | Exxon Chemical Patents, Inc. | Fibers and oriented films of polypropylene higher α-olefin copolymers |
US5596052A (en) | 1992-12-30 | 1997-01-21 | Montell Technology Company Bv | Atactic polypropylene |
US5770682A (en) | 1995-07-25 | 1998-06-23 | Shimadzu Corporation | Method for producing polylactic acid |
US5821327A (en) | 1996-03-22 | 1998-10-13 | Shimadzu Corporation | Process for preparing polylactic acid |
US5880254A (en) | 1995-07-25 | 1999-03-09 | Shimadzu Corporation | Method for producing polylactic acid and apparatus used therefor |
US6037033A (en) * | 1996-07-08 | 2000-03-14 | Hunter; Rick Cole | Insulation panel |
US6090325A (en) | 1997-09-24 | 2000-07-18 | Fina Technology, Inc. | Biaxially-oriented metallocene-based polypropylene films |
US6326458B1 (en) | 1992-01-24 | 2001-12-04 | Cargill, Inc. | Continuous process for the manufacture of lactide and lactide polymers |
US6500563B1 (en) | 1999-05-13 | 2002-12-31 | Exxonmobil Chemical Patents Inc. | Elastic films including crystalline polymer and crystallizable polymers of propylene |
US20100313507A1 (en) * | 2008-01-23 | 2010-12-16 | Carlos Castro | Building structures containing external vapor permeable foam insulation |
US7984591B2 (en) * | 2007-08-10 | 2011-07-26 | Fiberweb, Inc. | Impact resistant sheet material |
US20110252739A1 (en) * | 2004-06-29 | 2011-10-20 | Aspen Aerogels, Inc. | Insulated building materials |
US20120114895A1 (en) * | 2009-07-29 | 2012-05-10 | Vo Van-Chau | Thermal insulating panel composite |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05239435A (en) * | 1992-02-28 | 1993-09-17 | Osaka Organic Chem Ind Ltd | Water resistance modifier |
US5288555A (en) * | 1992-03-05 | 1994-02-22 | Exxon Research Engineering Company | Composites with interphases and methods of making the same |
US5549868A (en) * | 1995-04-21 | 1996-08-27 | Kimberly-Clark Corporation | Method of sterilizing an article |
US5975082A (en) * | 1997-03-10 | 1999-11-02 | Kimberly-Clark Worldwide, Inc. | Tear-away surgical drape |
US5800758A (en) * | 1997-09-16 | 1998-09-01 | Kimberly-Clark Worldwide, Inc. | Process for making microporous films with improved properties |
TW390805B (en) * | 1998-01-26 | 2000-05-21 | Kimberly Clark Co | Surgical drape with attachable fluid collection pouch |
US6673982B1 (en) * | 1998-10-02 | 2004-01-06 | Kimberly-Clark Worldwide, Inc. | Absorbent article with center fill performance |
JP2000249289A (en) * | 1999-02-26 | 2000-09-12 | Matsushita Refrig Co Ltd | Foaming heat insulation material, manufacture thereof, and heat insulation box body |
US6492574B1 (en) * | 1999-10-01 | 2002-12-10 | Kimberly-Clark Worldwide, Inc. | Center-fill absorbent article with a wicking barrier and central rising member |
US6613955B1 (en) * | 1999-10-01 | 2003-09-02 | Kimberly-Clark Worldwide, Inc. | Absorbent articles with wicking barrier cuffs |
US6660903B1 (en) * | 1999-10-01 | 2003-12-09 | Kimberly-Clark Worldwide, Inc. | Center-fill absorbent article with a central rising member |
US6764477B1 (en) * | 1999-10-01 | 2004-07-20 | Kimberly-Clark Worldwide, Inc. | Center-fill absorbent article with reusable frame member |
US6617490B1 (en) * | 1999-10-14 | 2003-09-09 | Kimberly-Clark Worldwide, Inc. | Absorbent articles with molded cellulosic webs |
US6692603B1 (en) * | 1999-10-14 | 2004-02-17 | Kimberly-Clark Worldwide, Inc. | Method of making molded cellulosic webs for use in absorbent articles |
RU28129U1 (en) * | 2002-08-05 | 2003-03-10 | Томских Светлана Сергеевна | WATERPROOFING PROTECTOR |
GB0423523D0 (en) * | 2004-10-22 | 2004-11-24 | Hunt Tech Ltd | Multi-layer vapour permeable thermal insulation system |
WO2008027046A1 (en) * | 2006-08-31 | 2008-03-06 | Kimberly-Clark Worldwide, Inc. | Highly breathable biodegradable films |
US20100056656A1 (en) * | 2006-12-22 | 2010-03-04 | Fumio Matsuoka | Biodegradable polyester resin composition, and molded body, foamed body and molded container obtained from the biodegradable polyester resin composition |
US20080220679A1 (en) * | 2007-03-05 | 2008-09-11 | Clarke Berdan | Narrow cavity batt with flange |
US20080302049A1 (en) * | 2007-06-08 | 2008-12-11 | Kathleen Antoinette Stoneburner | Insulated fabric pocket panels |
KR20090004329A (en) * | 2007-06-28 | 2009-01-12 | 삼성전자주식회사 | Polymer foam composite comprising hollow particles and preparation process thereof |
WO2009158479A1 (en) * | 2008-06-27 | 2009-12-30 | Lion Apparel, Inc. | Protective garment with thermal liner having varying moisture attraction |
US20120164905A1 (en) * | 2010-08-13 | 2012-06-28 | Kimberly-Clark Worldwide, Inc. | Modified Polylactic Acid Fibers |
US8936740B2 (en) * | 2010-08-13 | 2015-01-20 | Kimberly-Clark Worldwide, Inc. | Modified polylactic acid fibers |
JP5674585B2 (en) * | 2011-07-29 | 2015-02-25 | 積水化成品工業株式会社 | Breathable waterproof filter |
-
2014
- 2014-06-06 BR BR112015030934-8A patent/BR112015030934B1/en not_active IP Right Cessation
- 2014-06-06 MX MX2015017042A patent/MX2015017042A/en unknown
- 2014-06-06 JP JP2016518614A patent/JP2016530409A/en not_active Withdrawn
- 2014-06-06 CN CN201480031343.2A patent/CN105264152B/en not_active Expired - Fee Related
- 2014-06-06 US US14/895,547 patent/US20160130799A1/en not_active Abandoned
- 2014-06-06 KR KR1020167000591A patent/KR102202850B1/en active IP Right Grant
- 2014-06-06 RU RU2016100017A patent/RU2621112C1/en not_active IP Right Cessation
- 2014-06-06 WO PCT/IB2014/062034 patent/WO2014199279A1/en active Application Filing
- 2014-06-06 EP EP14810882.2A patent/EP3008260A4/en not_active Withdrawn
- 2014-06-06 AU AU2014279706A patent/AU2014279706B2/en not_active Ceased
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
US4797468A (en) | 1986-12-19 | 1989-01-10 | Akzo N.V. | Preparation of polylactic acid and copolymers of lactic acids |
US5218071A (en) | 1988-12-26 | 1993-06-08 | Mitsui Petrochemical Industries, Ltd. | Ethylene random copolymers |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
US6326458B1 (en) | 1992-01-24 | 2001-12-04 | Cargill, Inc. | Continuous process for the manufacture of lactide and lactide polymers |
US5470944A (en) | 1992-02-13 | 1995-11-28 | Arch Development Corporation | Production of high molecular weight polylactic acid |
US5322728A (en) | 1992-11-24 | 1994-06-21 | Exxon Chemical Patents, Inc. | Fibers of polyolefin polymers |
US5596052A (en) | 1992-12-30 | 1997-01-21 | Montell Technology Company Bv | Atactic polypropylene |
US5472775A (en) | 1993-08-17 | 1995-12-05 | The Dow Chemical Company | Elastic materials and articles therefrom |
US5571619A (en) | 1994-05-24 | 1996-11-05 | Exxon Chemical Patents, Inc. | Fibers and oriented films of polypropylene higher α-olefin copolymers |
US5539056A (en) | 1995-01-31 | 1996-07-23 | Exxon Chemical Patents Inc. | Thermoplastic elastomers |
US5770682A (en) | 1995-07-25 | 1998-06-23 | Shimadzu Corporation | Method for producing polylactic acid |
US5880254A (en) | 1995-07-25 | 1999-03-09 | Shimadzu Corporation | Method for producing polylactic acid and apparatus used therefor |
US5821327A (en) | 1996-03-22 | 1998-10-13 | Shimadzu Corporation | Process for preparing polylactic acid |
US6037033A (en) * | 1996-07-08 | 2000-03-14 | Hunter; Rick Cole | Insulation panel |
US6090325A (en) | 1997-09-24 | 2000-07-18 | Fina Technology, Inc. | Biaxially-oriented metallocene-based polypropylene films |
US6500563B1 (en) | 1999-05-13 | 2002-12-31 | Exxonmobil Chemical Patents Inc. | Elastic films including crystalline polymer and crystallizable polymers of propylene |
US20110252739A1 (en) * | 2004-06-29 | 2011-10-20 | Aspen Aerogels, Inc. | Insulated building materials |
US7984591B2 (en) * | 2007-08-10 | 2011-07-26 | Fiberweb, Inc. | Impact resistant sheet material |
US20100313507A1 (en) * | 2008-01-23 | 2010-12-16 | Carlos Castro | Building structures containing external vapor permeable foam insulation |
US20120114895A1 (en) * | 2009-07-29 | 2012-05-10 | Vo Van-Chau | Thermal insulating panel composite |
Non-Patent Citations (1)
Title |
---|
See also references of EP3008260A4 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11028246B2 (en) | 2013-06-12 | 2021-06-08 | Kimberly-Clark, Inc. | Absorbent article containing a porous polyolefin film |
US11286362B2 (en) | 2013-06-12 | 2022-03-29 | Kimberly-Clark Worldwide, Inc. | Polymeric material for use in thermal insulation |
US11084916B2 (en) | 2013-06-12 | 2021-08-10 | Kimberly-Clark Worldwide, Inc. | Polymeric material with a multimodal pore size distribution |
US11155688B2 (en) | 2013-06-12 | 2021-10-26 | Kimberly-Clark Worldwide, Inc. | Polyolefin material having a low density |
US10857705B2 (en) | 2013-06-12 | 2020-12-08 | Kimberly-Clark Worldwide, Inc. | Pore initiation technique |
US10240260B2 (en) | 2013-06-12 | 2019-03-26 | Kimberly-Clark Worldwide, Inc. | Absorbent article containing a nonwoven web formed from a porous polyolefin fibers |
US11767615B2 (en) | 2013-06-12 | 2023-09-26 | Kimberly-Clark Worldwide, Inc. | Hollow porous fibers |
US11001944B2 (en) | 2013-06-12 | 2021-05-11 | Kimberly-Clark Worldwide, Inc. | Porous polyolefin fibers |
US11965083B2 (en) | 2013-06-12 | 2024-04-23 | Kimberly-Clark Worldwide, Inc. | Polyolefin material having a low density |
US10752745B2 (en) | 2013-06-12 | 2020-08-25 | Kimberly-Clark Worldwide, Inc. | Polyolefin film for use in packaging |
US11186927B2 (en) | 2014-06-06 | 2021-11-30 | Kimberly Clark Worldwide, Inc. | Hollow porous fibers |
US10286593B2 (en) | 2014-06-06 | 2019-05-14 | Kimberly-Clark Worldwide, Inc. | Thermoformed article formed from a porous polymeric sheet |
US10849800B2 (en) | 2015-01-30 | 2020-12-01 | Kimberly-Clark Worldwide, Inc. | Film with reduced noise for use in an absorbent article |
US10869790B2 (en) | 2015-01-30 | 2020-12-22 | Kimberly-Clark Worldwide, Inc. | Absorbent article package with reduced noise |
US10889501B2 (en) | 2016-02-24 | 2021-01-12 | Massachusetts Institute Of Technology | Solar thermal aerogel receiver and materials therefor |
US11851334B2 (en) | 2016-02-24 | 2023-12-26 | Massachusetts Institute Of Technology | Solar thermal aerogel receiver and materials therefor |
US11170750B2 (en) | 2018-04-25 | 2021-11-09 | Massachusetts Institute Of Technology | Energy efficient soundproofing window retrofits |
US11749247B2 (en) | 2018-04-25 | 2023-09-05 | Massachusetts Institute Of Technology | Energy efficient soundproofing window retrofits |
Also Published As
Publication number | Publication date |
---|---|
MX2015017042A (en) | 2016-04-21 |
US20160130799A1 (en) | 2016-05-12 |
CN105264152B (en) | 2018-09-25 |
CN105264152A (en) | 2016-01-20 |
AU2014279706B2 (en) | 2017-08-03 |
KR20160019929A (en) | 2016-02-22 |
KR102202850B1 (en) | 2021-01-14 |
RU2621112C1 (en) | 2017-05-31 |
EP3008260A4 (en) | 2017-03-15 |
AU2014279706A1 (en) | 2016-01-21 |
JP2016530409A (en) | 2016-09-29 |
BR112015030934B1 (en) | 2021-12-21 |
EP3008260A1 (en) | 2016-04-20 |
BR112015030934A2 (en) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2014279706B2 (en) | Building insulation | |
US11286362B2 (en) | Polymeric material for use in thermal insulation | |
US10752745B2 (en) | Polyolefin film for use in packaging | |
AU2014279701B2 (en) | Multi-functional fabric | |
US11084916B2 (en) | Polymeric material with a multimodal pore size distribution | |
US20160120247A1 (en) | Garment Containing a Porous Polymer Material | |
US10857705B2 (en) | Pore initiation technique | |
US11434340B2 (en) | Flexible polymeric material with shape retention properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480031343.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14810882 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14895547 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2016518614 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/017042 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015030934 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167000591 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016100017 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014810882 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014279706 Country of ref document: AU Date of ref document: 20140606 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112015030934 Country of ref document: BR Kind code of ref document: A2 Effective date: 20151210 |