WO2014185410A1 - Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element - Google Patents
Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element Download PDFInfo
- Publication number
- WO2014185410A1 WO2014185410A1 PCT/JP2014/062716 JP2014062716W WO2014185410A1 WO 2014185410 A1 WO2014185410 A1 WO 2014185410A1 JP 2014062716 W JP2014062716 W JP 2014062716W WO 2014185410 A1 WO2014185410 A1 WO 2014185410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- ring
- liquid crystal
- carbon atoms
- side chain
- Prior art date
Links
- 0 CC(**)c1ccc(*C(C)c2ccc(C=CC(O3)=O)c3c2)cc1 Chemical compound CC(**)c1ccc(*C(C)c2ccc(C=CC(O3)=O)c3c2)cc1 0.000 description 2
- KAGIRXVDTGQWKF-UHFFFAOYSA-N CC(C(OCCCCCCOc(cc1)ccc1C(O)=O)=O)=C Chemical compound CC(C(OCCCCCCOc(cc1)ccc1C(O)=O)=O)=C KAGIRXVDTGQWKF-UHFFFAOYSA-N 0.000 description 1
- JHOMRDSMJKYMIV-FMIVXFBMSA-N CC(C(OCCCCCCOc1ccc(/C=C/C(O)=O)cc1)=O)=C Chemical compound CC(C(OCCCCCCOc1ccc(/C=C/C(O)=O)cc1)=O)=C JHOMRDSMJKYMIV-FMIVXFBMSA-N 0.000 description 1
- HCRNPRNIOKMFEE-UHFFFAOYSA-N C[NH+](C(OC)=O)[N-]N=C Chemical compound C[NH+](C(OC)=O)[N-]N=C HCRNPRNIOKMFEE-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F20/30—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F120/30—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/062—Non-steroidal liquid crystal compounds containing one non-condensed benzene ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/20—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
- C09K19/2007—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
- C09K19/2014—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups containing additionally a linking group other than -COO- or -OCO-, e.g. -CH2-CH2-, -CH=CH-, -C=C-; containing at least one additional carbon atom in the chain containing -COO- or -OCO- groups, e.g. -(CH2)m-COO-(CH2)n-
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/32—Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
- C09K19/322—Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133788—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K2019/0444—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
- C09K2019/0448—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/12—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
- C09K2019/121—Compounds containing phenylene-1,4-diyl (-Ph-)
- C09K2019/122—Ph-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/20—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
- C09K19/2007—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
- C09K2019/2035—Ph-COO-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/20—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
- C09K19/2007—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
- C09K2019/2042—Ph-Ph-COO-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3402—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
- C09K2019/3422—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3402—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
- C09K2019/3422—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
- C09K2019/3425—Six-membered ring with oxygen(s) in fused, bridged or spiro ring systems
Definitions
- the present invention relates to a method for manufacturing a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element. More specifically, the present invention relates to a novel method for manufacturing a liquid crystal display device having excellent image sticking characteristics.
- the liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years.
- the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
- an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
- the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
- the liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
- alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
- the rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction).
- This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
- an organic film used for the liquid crystal alignment film a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
- Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
- a decomposition type photo-alignment method is known as a main photo-alignment method.
- the polyimide film is irradiated with polarized ultraviolet rays, and anisotropic decomposition is caused by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure. Then, the liquid crystal is aligned by the polyimide remaining without being decomposed (see, for example, Patent Document 1).
- photocrosslinking type and photoisomerization type photo-alignment methods are also known.
- polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction perpendicular to the polarization direction (see, for example, Non-Patent Document 1).
- the liquid crystal alignment film alignment treatment method by the photo alignment method does not require rubbing, and there is no fear of generation of dust or static electricity.
- An alignment process can be performed even on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.
- the photo-alignment method eliminates the rubbing process itself as compared with the rubbing method that has been used industrially as an alignment treatment method for liquid crystal display elements, and thus has a great advantage. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light.
- the photo-alignment method in order to achieve the same degree of alignment control ability as in the rubbing method, a large amount of polarized light irradiation may be required or stable liquid crystal alignment may not be realized. .
- the present invention provides a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate.
- the object of the present invention is to improve the film density of the liquid crystal alignment film so that impurities existing in the liquid crystal alignment film do not move to the liquid crystal side and have an improved voltage holding ratio.
- An object is to provide an electric field driven liquid crystal element and a liquid crystal alignment film for the element.
- the object of the present invention is to improve the interaction between the liquid crystal alignment film and the sealing agent, thereby improving the lateral electric field drive type liquid crystal element having improved adhesion and the
- the object is to provide a liquid crystal alignment film for an element.
- ⁇ 1> (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range; (B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A crosslinkable compound having two or more kinds of substituents in one molecule, and (C) a polymer composition containing an organic solvent.
- the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
- the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (1) to (6).
- A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
- S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
- T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
- Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
- R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
- R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
- Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
- the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
- R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
- X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
- X may be the same or different;
- Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
- P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
- the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
- l1 is 0 or 1;
- l2 is an integer from 0 to 2; when l1 and l2 are both 0,
- A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
- H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
- the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
- the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
- A, X, l, m, m1 and R have the same definition as above.
- the component (A) may have a photosensitive side chain represented by the following formula (14) or (15).
- A, Y 1 , l, m1 and m2 have the same definition as above.
- the component (A) preferably has a photosensitive side chain represented by the following formula (16) or (17).
- A, X, l and m have the same definition as above.
- the component (A) preferably has a photosensitive side chain represented by the following formula (18) or (19).
- A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
- R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
- the component (A) preferably has a photosensitive side chain represented by the following formula (20).
- A, Y 1 , X, l and m have the same definition as above.
- the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31): Good.
- A, B, q1 and q2 have the same definition as above;
- Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
- each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
- R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1
- ⁇ 14> a step of preparing the substrate (first substrate) of ⁇ 12>above; [I ′] on a second substrate (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range; (B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A step of coating a polymer composition containing a crosslinkable compound having two or more kinds of substituents in one molecule and (C) an organic solvent to form a coating film; [II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′]; Obtaining a liquid crystal alignment film having alignment
- a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range
- B At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A crosslinkable compound having two or more kinds of substituents in one molecule
- C a polymer composition containing an organic solvent is applied on a substrate having a conductive film for driving a lateral electric field to form a coating film.
- the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
- the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (1) to (6).
- A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
- S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
- T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
- Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
- R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
- R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
- Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
- the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
- R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
- X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
- Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently a single bond, a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof.
- I is a group selected from However, when X is —CH ⁇ CH—CO—O— or —O—CO—CH ⁇ CH—, P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring; H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
- the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
- the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
- A, X, l, m and R have the same definition as above.
- the component (A) may have a photosensitive side chain represented by the following formula (14) or (15).
- A, Y 1 , X, 1, m1, and m2 have the same definition as above.
- the component (A) may have a photosensitive side chain represented by the following formula (16) or (17).
- A, X, l and m have the same definition as above.
- the component (A) may have a photosensitive side chain represented by the following formula (18) or (19).
- A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
- R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
- the component (A) preferably has a photosensitive side chain represented by the following formula (20).
- A, Y 1 , X, l and m have the same definition as above.
- the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31). Good.
- A, B, q1 and q2 have the same definition as above;
- Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
- each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
- R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in the formulas (25) to (26), the sum of all m is 2 or more, and the formulas (27) to (28 ), The sum of all m
- ⁇ P11> A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device manufactured by any of the above ⁇ P1> to ⁇ P10>.
- ⁇ P12> A lateral electric field drive type liquid crystal display device having the substrate of ⁇ P11> above.
- ⁇ P13> Step of preparing a substrate (first substrate) of ⁇ P11>above; [I ′] on a second substrate (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range; (B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A step of coating a polymer composition containing a crosslinkable compound having two or more kinds of substituents in one molecule and (C) an organic solvent to form a coating film; [II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′]; Obtaining a liquid crystal alignment film impart
- ⁇ P14> A lateral electric field drive type liquid crystal display device manufactured according to the above ⁇ P13>.
- ⁇ P15> (A) Photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, (B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group
- a composition for producing a liquid crystal alignment film for a lateral electric field driving type liquid crystal display device comprising a crosslinkable compound having two or more kinds of substituents in one molecule, and (C) an organic solvent.
- a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics
- a horizontal electric field drive type liquid crystal display element having the substrate can do. Since the lateral electric field drive type liquid crystal display device manufactured by the method of the present invention is provided with the alignment control ability with high efficiency, the display characteristics are not impaired even when continuously driven for a long time. Further, according to the present invention, in addition to the above effects, the lateral electric field driving has an improved voltage holding ratio without increasing the film density of the liquid crystal alignment film and moving impurities present in the liquid crystal alignment film to the liquid crystal side. Type liquid crystal element and a liquid crystal alignment film for the element can be provided.
- the interaction between the liquid crystal alignment film and the sealing agent is enhanced, thereby improving the lateral electric field drive type liquid crystal element having improved adhesion and the element.
- a liquid crystal alignment film can be provided.
- the polymer composition used in the production method of the present invention has a photosensitive side chain polymer that can exhibit liquid crystallinity (hereinafter, also simply referred to as a side chain polymer), and the polymer composition
- the coating film obtained by using the product is a film having a photosensitive side chain polymer that can exhibit liquid crystallinity.
- This coating film is subjected to orientation treatment by irradiation with polarized light without being rubbed. And after polarized light irradiation, it will become the coating film (henceforth a liquid crystal aligning film) to which the orientation control ability was provided through the process of heating the side chain type polymer film.
- the method for producing a substrate having the liquid crystal alignment film of the present invention is [I] (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range; (B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A crosslinkable compound having two or more kinds of substituents in one molecule, and (C) a polymer composition containing an organic solvent is applied on a substrate having a conductive film for driving a lateral electric field to form a coating film.
- a lateral electric field drive type liquid crystal display element can be obtained.
- the second substrate instead of using a substrate having no lateral electric field driving conductive film instead of a substrate having a lateral electric field driving conductive film, the above steps [I] to [III] (for lateral electric field driving) Since a substrate having no conductive film is used, for the sake of convenience, in this application, the steps [I ′] to [III ′] may be abbreviated as steps), thereby providing a first liquid crystal alignment film having alignment controllability. Two substrates can be obtained.
- the manufacturing method of the horizontal electric field drive type liquid crystal display element is [IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween; Have Thereby, a horizontal electric field drive type liquid crystal display element can be obtained.
- step [I] a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, a hydroxy group, a hydroxyalkyl group, an alkoxy group, an alkoxyalkyl on a substrate having a conductive film for driving a lateral electric field.
- Crosslinkability having two or more substituents in one molecule selected from a group, an oxirane group, an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a trialkoxysilyl group, and a polymerizable unsaturated bond group
- a polymer composition containing a compound and an organic solvent is applied to form a coating film.
- ⁇ Board> Although it does not specifically limit about a board
- the substrate has a conductive film for driving a lateral electric field.
- the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
- examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
- a method for forming a conductive film on a substrate a conventionally known method can be used.
- a polymer composition is applied on a substrate having a conductive film for driving a lateral electric field, particularly on the conductive film.
- the polymer composition used in the production method of the present invention comprises: (A) a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range; (B) a hydroxy group, a hydroxyalkyl group, and an alkoxy group.
- C an organic solvent
- the component (A) is a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range.
- the (A) side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C. to 300 ° C.
- the (A) side chain polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 nm to 400 nm.
- the (A) side chain polymer preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 100 ° C to 300 ° C.
- the side chain type polymer has a photosensitive side chain bonded to the main chain, and can cause a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement in response to light.
- the structure of the side chain having photosensitivity is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time.
- the structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film.
- the polymer structure has, for example, a main chain and a side chain bonded to the main chain, and the side chain includes a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip.
- a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip.
- the structure of the photosensitive side chain type polymer film capable of exhibiting liquid crystallinity include hydrocarbon, acrylate, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, A main chain composed of at least one selected from the group consisting of radically polymerizable groups such as styrene, vinyl, maleimide, norbornene and siloxane, and a side chain composed of at least one of the following formulas (1) to (6) It is preferable that the structure has
- A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
- S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
- T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
- Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
- R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
- R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
- Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
- the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
- R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
- X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
- X may be the same or different;
- Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
- P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
- the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
- l1 is 0 or 1;
- l2 is an integer from 0 to 2; when l1 and l2 are both 0,
- A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
- H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
- the side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
- the side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
- A, X, l, m, m1 and R have the same definition as above.
- the side chain may be a photosensitive side chain represented by the following formula (14) or (15).
- A, Y 1 , l, m1 and m2 have the same definition as above.
- the side chain may be a photosensitive side chain represented by the following formula (16) or (17).
- A, X, l and m have the same definition as above.
- the side chain is preferably a photosensitive side chain represented by the following formula (18) or (19).
- A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
- R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
- the side chain is preferably a photosensitive side chain represented by the following formula (20).
- A, Y 1 , X, l and m have the same definition as above.
- the (A) side chain polymer preferably has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
- A, B, q1 and q2 have the same definition as above;
- Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
- each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
- R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1
- the photosensitive side chain polymer capable of exhibiting the above liquid crystallinity can be obtained by polymerizing the photoreactive side chain monomer having the above photosensitive side chain and the liquid crystalline side chain monomer.
- the photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at the side chain portion of the polymer when the polymer is formed.
- the photoreactive group possessed by the side chain the following structures and derivatives thereof are preferred.
- photoreactive side chain monomer examples include radical polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, etc.
- a polymerizable side group composed of at least one selected from the group consisting of siloxane and a photosensitive side chain consisting of at least one of the above formulas (1) to (6), preferably, for example, the above formula (7 ) To (10), a photosensitive side chain comprising at least one of the above formulas (11) to (13), and a photosensitivity represented by the above formula (14) or (15).
- a photosensitive side chain a photosensitive side chain represented by the above formula (16) or (17), a photosensitive side chain represented by the above formula (18) or (19), and a photosensitivity represented by the above formula (20).
- Sex side chain It is preferable that it has a structure.
- R represents a hydrogen atom or a methyl group
- S represents an alkylene group having 2 to 10 carbon atoms
- R 10 represents Br or CN
- S represents an alkylene group having 2 to 10 carbon atoms
- u represents Represents 0 or 1
- Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group.
- V represents 1 or 2.
- the liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at a side chain site.
- a mesogenic group having a side chain even if it is a group having a mesogen structure alone such as biphenyl or phenylbenzoate, or a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid Good.
- the mesogenic group possessed by the side chain the following structure is preferable.
- liquid crystalline side chain monomers include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, radical polymerizable groups such as styrene, vinyl, maleimide and norbornene.
- a structure having a polymerizable group composed of at least one selected from the group consisting of and a side chain composed of at least one of the above formulas (21) to (31) is preferable.
- the side chain polymer can be obtained by the polymerization reaction of the above-described photoreactive side chain monomer that exhibits liquid crystallinity. Further, it can be obtained by copolymerization of a photoreactive side chain monomer that does not exhibit liquid crystallinity and a liquid crystalline side chain monomer, or by copolymerization of a photoreactive side chain monomer that exhibits liquid crystallinity and a liquid crystalline side chain monomer. it can. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
- Examples of other monomers include industrially available monomers capable of radical polymerization reaction. Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
- the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
- the acrylic ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl.
- methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl.
- (Meth) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, and (3-ethyl-3-oxetanyl) methyl (meth) acrylate are also used. be able to.
- Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
- Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
- Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
- the production method of the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or photoreactive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
- RAFT reversible addition-cleavage chain transfer
- a radical thermal polymerization initiator is a compound that generates radicals when heated to a decomposition temperature or higher.
- radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxidation).
- the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
- examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (
- the radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.
- the organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the generated polymer is soluble. Specific examples are given below.
- organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer
- the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 ° C. to 150 ° C., but is preferably in the range of 50 ° C. to 100 ° C.
- the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
- the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
- the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is
- the content is preferably 0.1 mol% to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.
- the polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
- impurities in the polymer can be reduced.
- the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
- the molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film.
- the weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
- the polymer composition used in the present invention is preferably prepared as a coating solution so as to be suitable for forming a liquid crystal alignment film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
- the resin component is a resin component containing a photosensitive side chain polymer capable of exhibiting the liquid crystallinity already described.
- the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
- the resin component described above may be a photosensitive side chain polymer that can all exhibit the above-described liquid crystallinity, but does not impair the liquid crystal developing ability and the photosensitive performance.
- Other polymers may be mixed within the range.
- the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
- examples of such other polymers include polymers that are made of poly (meth) acrylate, polyamic acid, polyimide, and the like and are not a photosensitive side chain polymer that can exhibit liquid crystallinity.
- the polymer composition used in the present invention has a crosslinkable compound having two or more specific groups per molecule.
- the compound may be any one of the following effects i) to iv), 2, 3, 3 or all when the polymer composition used in the present invention forms a liquid crystal alignment film.
- the amount of the compound having two or more specific groups per molecule is not particularly limited as long as the above effect is obtained, but is 0 with respect to 100 parts by mass of the polymer component of the polymer composition used in the present invention. 1 to 150 parts by mass, preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass.
- a “specific group” of a compound having two or more specific groups per molecule includes a hydroxy group, a hydroxyalkyl group, an alkoxy group, an alkoxyalkyl group, an oxirane group, an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, It may be selected from the group consisting of trialkoxysilyl groups and polymerizable unsaturated bond groups such as vinyl groups, (meth) acryloyl groups, and (meth) acryloyloxy groups. Two or more groups are selected from the above group and may be the same or different.
- a crosslinkable compound having two or more specific groups per molecule will be described as an example, the present invention is not limited thereto. Moreover, this compound may contain 1 type in a composition, or may contain it in combination of 2 or more types.
- crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, and tetraglycidyl.
- the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
- crosslinkable compounds represented by the following formulas [4a] to [4k].
- crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include amino resins having a hydroxyl group or an alkoxyl group, such as melamine resin, urea resin, guanamine resin, glycoluril-formaldehyde. Resins, succinylamide-formaldehyde resins, ethyleneurea-formaldehyde resins and the like.
- crosslinkable compound for example, a melamine derivative, a benzoguanamine derivative or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used.
- the melamine derivative and benzoguanamine derivative may exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
- Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
- Eight-substituted MW-30 (from Sanwa Chemical Co., Ltd.), methoxymethylated melamines such as Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, and 254, butoxymethylated melamine such as Cymel 506 and 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated be
- benzene or phenolic compounds having a hydroxyl group or an alkoxyl group examples include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis (sec -Butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
- crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group, tetraalkoxysilane and the like can also be used.
- the compound having two or more trialkoxysilyl groups include 1,4-bis (trimethoxysilyl) benzene, 1,4-bis (triethoxysilyl) benzene, and 4,4′-bis (trimethoxysilyl).
- crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate,
- a 1 is an n-valent group selected from a cyclohexyl ring, a bicyclohexyl ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring, or a phenanthrene ring
- a 2 is a group selected from the following formula [5a] or [5b]
- n is an integer of 1 to 4.
- the organic solvent used for the polymer composition used in the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone,
- the polymer composition used in the present invention may contain components other than the above components (A), (B) and (C). Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
- the present invention is not limited to this.
- solvent poor solvent which improves the uniformity of film thickness and surface smoothness.
- solvents may be used alone or in combination.
- it is preferably 5% by mass to 80% by mass of the total solvent, more preferably so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. Is 20% by mass to 60% by mass.
- Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) It is done.
- the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the polymer composition
- the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
- phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed
- An agent may be contained in the polymer composition. Specific phenoplast additives are shown below, but are not limited to this structure.
- Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl- , 4'-diaminodip
- the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
- a photosensitizer can also be used as an additive. Colorless and triplet sensitizers are preferred.
- photosensitizers aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted Aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl- ⁇ -naphthothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-b
- Aromatic 2-hydroxy ketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
- a dielectric, a conductive substance, or the like for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, as long as the effects of the present invention are not impaired.
- a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.
- the method for applying the polymer composition described above onto a substrate having a conductive film for driving a lateral electric field is not particularly limited.
- the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like.
- Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
- the polymer composition After the polymer composition is applied on a substrate having a conductive film for driving a horizontal electric field, it is 50 to 200 ° C., preferably 50 to 200 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven.
- the solvent can be evaporated at 150 ° C. to obtain a coating film.
- the drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer. If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered.
- it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is. In addition, it is also possible to provide the process of cooling the board
- step [II] the coating film obtained in step [I] is irradiated with polarized ultraviolet rays.
- the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
- ultraviolet rays to be used ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used.
- the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used.
- ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
- the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
- the irradiation amount of polarized ultraviolet rays depends on the coating film used.
- the amount of irradiation is polarized ultraviolet light that realizes the maximum value of ⁇ A (hereinafter also referred to as ⁇ Amax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light.
- the amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
- step [III] the ultraviolet-irradiated coating film polarized in step [II] is heated.
- An orientation control ability can be imparted to the coating film by heating.
- a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
- the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
- the heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
- the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when a photosensitive side chain polymer that can exhibit liquid crystallinity is observed in bulk.
- the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the temperature range of the liquid crystal expression temperature of the side chain polymer used, and 10 ° C.
- the liquid crystal expression temperature is not less than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). It means a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
- the thickness of the coating film formed after heating is preferably 5 nm to 300 nm, more preferably 50 nm to 150 nm, for the same reason described in the step [I].
- the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board
- the step [IV] is performed in the same manner as in the above [I ′] to [III ′], similarly to the substrate (first substrate) obtained in [III] and having the liquid crystal alignment film on the conductive film for lateral electric field driving.
- the obtained liquid crystal alignment film-attached substrate (second substrate) having no conductive film is placed oppositely so that both liquid crystal alignment films face each other through liquid crystal, and a liquid crystal cell is formed by a known method.
- This is a step of manufacturing a lateral electric field drive type liquid crystal display element.
- a substrate having no lateral electric field driving conductive film was used in place of the substrate having the lateral electric field driving conductive film in the step [I].
- steps [I] to [III] It can be carried out in the same manner as in steps [I] to [III]. Since the difference between the steps [I] to [III] and the steps [I ′] to [III ′] is only the presence or absence of the conductive film, the description of the steps [I ′] to [III ′] is omitted. To do.
- the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
- the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
- Etc. can be illustrated.
- the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
- substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply
- the coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. .
- an embodiment using a side chain type polymer having a structure having a photocrosslinkable group as a photoreactive group is the first embodiment, a structure having a photofleece rearrangement group or a group causing isomerization as a photoreactive group
- An embodiment using the side chain type polymer will be referred to as a second embodiment.
- FIG. 1 schematically shows an anisotropic introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to.
- FIG. 1 (a) is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
- FIG. 1 (b) is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light
- FIG. 1 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention.
- 1 is a schematic diagram when the ultraviolet ray irradiation amount in the step [II] is within a range of 1% to 15% of the ultraviolet ray irradiation amount that maximizes ⁇ A.
- FIG. 2 is a schematic illustration of anisotropy introduction treatment in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to.
- FIG. 2A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
- FIG. 2B is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light.
- FIG. 2 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is large, that is, the first aspect of the present invention.
- 1 is a schematic diagram when the ultraviolet ray irradiation amount in the step [II] is within a range of 15% to 70% of the ultraviolet ray irradiation amount that maximizes ⁇ A.
- FIG. 3 shows a second embodiment of the present invention in which a side-chain polymer having a structure having a photo-isomerizable group as a photoreactive group or a photo-Fries rearrangement group represented by the above formula (18) is used. It is the figure of one example which illustrates typically the introduction process of the anisotropy in the manufacturing method of the liquid crystal aligning film.
- FIG. 3A is a diagram schematically showing the state of the side chain polymer film before polarized light irradiation
- FIG. 3B is a schematic diagram of the state of the side chain polymer film after polarized light irradiation.
- FIG. 3A is a diagram schematically showing the state of the side chain polymer film before polarized light irradiation
- FIG. 3B is a schematic diagram of the state of the side chain polymer film after polarized light irradiation.
- 3 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention.
- 2 is a schematic diagram when the ultraviolet irradiation amount in the step [II] is within a range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
- FIG. 4 shows the production of a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19) as a photoreactive group in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction processing of anisotropy in a method.
- FIG. 4A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
- FIG. 4B is a schematic diagram of the state of the side chain polymer film after irradiation with polarized light.
- FIG. 4 (c) is a diagram schematically showing the state of the side-chain polymer film after heating.
- 2 is a schematic diagram when the ultraviolet irradiation amount in the step [II] is within a range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
- the ultraviolet irradiation amount in the step [II] is in the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ⁇ A.
- the coating film 1 is formed on the substrate.
- Fig.1 (a) in the coating film 1 formed on the board
- the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
- the coating film 3 is formed on the substrate. As shown in FIG. 2A, the coating film 3 formed on the substrate has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chains 4 of the coating film 3, the mesogenic components and the photosensitive groups of the side chains 4 are also randomly oriented, and the coating film 2 is isotropic.
- the side chain type structure having a structure having a photo-isomerizing group or a photo-Fleece rearrangement group represented by the above formula (18) in the treatment for introducing anisotropy into the coating film.
- a liquid crystal alignment film using molecules when the ultraviolet ray irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet ray irradiation amount that maximizes ⁇ A, first, on the substrate.
- a coating film 5 is formed.
- the coating film 5 formed on the substrate has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6 of the coating film 5, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain type polymer film 5 is isotropic.
- liquid crystal alignment using a side chain type polymer having a structure having a light Fleece rearrangement group represented by the above formula (19) in the treatment for introducing anisotropy into the coating film In the case of using a film, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, first, the coating film 7 is formed on the substrate. . As shown in FIG. 4A, the coating film 7 formed on the substrate has a structure in which the side chains 8 are arranged at random. According to the random arrangement of the side chains 8 of the coating film 7, the mesogenic components and the photosensitive groups of the side chains 8 are also randomly oriented, and the coating film 7 is isotropic.
- the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ⁇ A
- polarized ultraviolet rays are irradiated.
- the photosensitive group of the side chain 2a having the photosensitive group among the side chains 2 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like.
- Dimerization reaction or the like causes a photoreaction.
- the density of the side chain 2a that has undergone photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet light, and as a result, very small anisotropy is imparted to the coating film 1.
- the ultraviolet irradiation amount in the step [II] is within the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
- polarized ultraviolet rays are irradiated.
- the photosensitive group of the side chain 4a having the photosensitive group among the side chains 4 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like.
- the density of the side chain 4a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, a small anisotropy is imparted to the coating film 3.
- a liquid crystal alignment film using a side chain type polymer having a structure having a photo-fleece rearrangement group represented by the photoisomerization group or the above formula (18) is used.
- the ultraviolet ray irradiation amount in the step is within the range of 1% to 70% of the ultraviolet ray irradiation amount that maximizes ⁇ A
- the isotropic coating film 5 is irradiated with polarized ultraviolet rays.
- the photosensitive group of the side chain 6a having the photosensitive group among the side chains 6 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like.
- the density of the side chain 6a subjected to photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, very small anisotropy is imparted to the coating film 5.
- the amount of ultraviolet irradiation in the step [II] is obtained using a coating film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19). Is within the range of 1% to 70% of the amount of UV irradiation that maximizes ⁇ A, the isotropic coating film 7 is irradiated with polarized UV light. Then, as shown in FIG. 4 (b), the photosensitive group of the side chain 8a having the photosensitive group among the side chains 8 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 8a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, small anisotropy is imparted to the coating film 7.
- the coating film 1 after the polarized light irradiation 1 Is heated to a liquid crystal state. Then, as shown in FIG.1 (c), in the coating film 1, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer.
- the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light.
- the very small anisotropy of the coating film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 1.
- the coating film after polarized light irradiation 3 is heated to a liquid crystal state.
- the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light.
- the small anisotropy of the coating film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 3.
- a coating film using a side chain type polymer having a structure having a photoisomerization group or a photofleece rearrangement group represented by the above formula (18) is used.
- [II] When the ultraviolet irradiation amount in the step is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, the coated film 5 after the polarized irradiation is heated to a liquid crystal state. Then, as shown in FIG.3 (c), in the coating film 5, the quantity of the produced
- the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it is self-organized in the direction perpendicular to the polarization direction of the irradiated ultraviolet light.
- the side chain 6 containing the mesogenic component is reoriented.
- the very small anisotropy of the coating film 5 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 5.
- a coating film using a side chain type polymer having a structure having a photofleece rearrangement group represented by the above formula (19) is used.
- the ultraviolet irradiation amount is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
- the coated film 7 after polarized irradiation is heated to a liquid crystal state.
- the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. .
- the anchoring force of the optical fleece rearrangement 8 (a) is stronger than that of the side chain 8 before the rearrangement, when a certain amount or more of the optical fleece rearrangement occurs, it is self-assembled in a direction parallel to the polarization direction of the irradiated ultraviolet light.
- the side chain 8 containing the mesogenic component is reoriented.
- the small anisotropy of the coating film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 7.
- the coating film used in the method of the present invention is a liquid crystal alignment film having anisotropy introduced with high efficiency and excellent alignment control ability by sequentially performing irradiation of polarized ultraviolet rays on the coating film and heat treatment. can do.
- the irradiation amount of polarized ultraviolet rays to the coating film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the coating film with high efficiency can be realized.
- the optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is such that the photosensitive group undergoes photocrosslinking reaction, photoisomerization reaction, or photofries rearrangement reaction in the coating film.
- the photo-crosslinking reaction, photoisomerization reaction, or photo-fleece rearrangement reaction has few photosensitive groups in the side chain, the amount of photoreaction will not be sufficient. . In that case, sufficient self-organization does not proceed even after heating.
- the crosslinking reaction between the side chains is caused when the photosensitive group of the side chain undergoing the crosslinking reaction becomes excessive. Too much progress. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating.
- the coating film used in the present invention is irradiated with polarized ultraviolet rays to the structure having the light Fleece rearrangement group, if the photosensitive group of the side chain that undergoes the light Fleece rearrangement reaction becomes excessive, the liquid crystallinity of the coating film Will drop too much.
- the liquid crystallinity of the obtained film is also lowered, which may hinder the progress of self-assembly by subsequent heating. Furthermore, when irradiating polarized ultraviolet light to a structure having a photo-fleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side-chain polymer is photodegraded, preventing the subsequent self-organization by heating. It may become.
- the optimum amount of the photopolymerization reaction, photoisomerization reaction, or photofleece rearrangement reaction of the side chain photosensitive group by irradiation with polarized ultraviolet rays is the side chain polymer film. It is preferably 0.1 to 40 mol%, more preferably 0.1 to 20 mol% of the photosensitive group possessed by.
- the coating film used in the method of the present invention by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of photosensitive groups or photofleece rearrangement reaction in the side chain of the side chain polymer film Optimize the amount of. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
- the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet ray and the ultraviolet absorption in the vertical direction after the irradiation with the polarized ultraviolet ray are measured.
- ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays.
- the maximum value of ⁇ A ( ⁇ Amax) realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained.
- a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ⁇ Amax.
- the amount of irradiation of polarized ultraviolet rays onto the coating film used in the present invention is preferably in the range of 1% to 70% of the amount of polarized ultraviolet rays that realizes ⁇ Amax. More preferably, it is within the range of 50%.
- the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ⁇ Amax is 0. 0% of the entire photosensitive group of the side chain polymer film. 1 mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
- a suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is good to decide. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 ° C. to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 ° C. to 190 ° C. By doing so, greater anisotropy is imparted to the coating film used in the present invention.
- the liquid crystal display element provided by the present invention exhibits high reliability against external stresses such as light and heat.
- the lateral electric field drive type liquid crystal display element substrate manufactured by the method of the present invention or the lateral electric field drive type liquid crystal display element having the substrate has excellent reliability, large screen and high definition. It can be suitably used for LCD TVs.
- MA1 and MA2 used in the examples are shown below.
- MA1 and M2 were synthesized as follows. That is, MA1 was synthesized by a synthesis method described in a patent document (WO2011-084546).
- MA2 was synthesized by the synthesis method described in the patent document (Japanese Patent Laid-Open No. 9-118717).
- T1 to T14 were synthesized by the following method.
- T1 Diethoxy (3-glycidyloxypropyl) methylsilane (manufactured by Tokyo Chemical Industry).
- T2 tetraethoxysilane (manufactured by Tokyo Chemical Industry).
- T3 N, N, N ′, N′-TETRAGLYCIDYL-4,4′-DIAMINODIPHENYLMETHANE (manufactured by Aldrich).
- T4 Butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone.
- T5 Triglycidyl isocyanurate (manufactured by Tokyo Chemical Industry).
- T6 Known product.
- T7 3,4-epoxycyclohexyl 3,4-epoxycyclohexanecarboxylate (manufactured by Aldrich).
- T8 Known compound.
- T9 Dipentaerythritol hexaacrylate (Daicel Cytec Co., Ltd.).
- T10 2,4,6-tris [bis (methoxymethyl) amino] -1,3,5-triazine (manufactured by Tokyo Chemical Industry).
- T11 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane (Asahi Organic Materials Co., Ltd.).
- T12 Tris (4- (vinyloxy) butyl) trimellitate (manufactured by Aldrich).
- T13 1,3-bis (4,5-dihydro-2-oxazolyl) benzene (manufactured by Tokyo Chemical Industry).
- T14 VestanatB (manufactured by evonik).
- NMP 29.3 g was added to the obtained methacrylate polymer powder (A1) (6.0 g), and the mixture was dissolved by stirring at room temperature for 5 hours. NMP (24.7 g) and BC (40.0 g) were added to this solution and stirred to obtain a methacrylic polymer solution M1.
- Example 1 0.015 g of T1 was added to 5.0 g of the methacrylic polymer solution M1 obtained in Synthesis Example 1, and the mixture was stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent A1.
- a liquid crystal aligning agent A1 Using this liquid crystal aligning agent A1, a liquid crystal cell was produced according to the following procedure.
- the substrate used was a glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged.
- the pixel electrode had a comb-like shape formed by arranging a plurality of dog-shaped electrode elements having a bent central portion.
- the width of each electrode element in the short direction was 10 ⁇ m, and the distance between the electrode elements was 20 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
- Each pixel was divided vertically with a central bent portion as a boundary, and had a first region on the upper side of the bent portion and a second region on the lower side.
- the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the alignment processing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel.
- the electrode elements of the pixel electrode were formed so as to form an angle of ⁇ 15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It was configured to be in the opposite direction.
- the liquid crystal aligning agent A1 obtained in Example 1 was spin-coated on the prepared substrate with electrodes. Subsequently, it dried for 90 second with a 70 degreeC hotplate, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the coating film surface was irradiated with 20 mJ / cm 2 of 313 nm ultraviolet rays via a polarizing plate and then heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
- a sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was thermally cured to produce an empty cell.
- a liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element was prepared by injecting liquid crystal MLC-2041 (manufactured by Merck Co., Ltd.) into the empty cell by a reduced pressure injection method, sealing the injection port. Obtained.
- VHR voltage holding ratio
- a sample for evaluation of adhesion was prepared as follows.
- a liquid crystal aligning agent was spin-coated on a 30 mm ⁇ 40 mm ITO substrate and dried on a hot plate at 70 ° C. for 90 seconds.
- the coated surface was irradiated with 20 mJ / cm 2 of 313 nm ultraviolet rays via a deflecting plate and then heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film having a thickness of 100 nm.
- Examples 2 to 18 Liquid crystal aligning agents A2 to A18 of Examples 2 to 18 were obtained in the same manner as in Example 1, except that the compositions shown in Table 1 were used, and liquid crystal cells and samples for evaluating adhesion were prepared using these. Further, the voltage holding ratio (VHR) and adhesion were measured by the same method as in Example 1. The results are also shown in Table 1.
- Controls 1 and 2 The liquid crystal aligning agents of Controls 1 and 2 had no additive and used methacrylic polymer solutions M1 and M2, respectively.
- a liquid crystal cell and an adhesive evaluation sample were prepared by the same method as in Example 1 except that the acryl polymer solutions M1 and M2 were used as the liquid crystal aligning agent. Further, the voltage holding ratio (VHR) and adhesion were measured by the same method as in Example 1. The results are also shown in Table 1.
- the IPS mode liquid crystal cell prepared in Example 1 is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the backlight is turned on in the state where no voltage is applied.
- the arrangement angle of the liquid crystal cell was adjusted so as to be the smallest.
- the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial orientation azimuth.
- an alternating voltage of 16 V PP was applied in a 60 ° C. oven at a frequency of 30 Hz for 168 hours.
- the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for 1 hour.
- the orientation azimuth was measured in the same manner, and the difference in orientation azimuth before and after AC driving was calculated as an angle ⁇ (deg.).
- the angle ⁇ was 0.1 or less.
- the long-chain polymer film that exhibits liquid crystallinity is irradiated with ultraviolet rays and then heated in the liquid crystal expression temperature range, so that the liquid crystal alignment ability is imparted to the entire polymer by self-organization. Even after AC driving, the alignment azimuth was hardly observed.
- FIG. 1 Side chain polymer membrane 2, 2a Side chain Fig. 2 3 Side chain polymer membrane 4, 4a Side chain Fig. 3 5 Side chain polymer membrane 6, 6a Side chain Fig. 4 7 Side chain polymer membrane 8, 8a Side chain
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Nonlinear Science (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Liquid Crystal (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Liquid Crystal Substances (AREA)
Abstract
Description
また、本発明の目的は、上記目的に加えて、液晶配向膜の膜密度を向上させて該液晶配向膜中に存在する不純物を液晶側に移動させることなく、向上した電圧保持率を有する横電界駆動型液晶素子及び該素子のための液晶配向膜を提供することにある。
さらに、本発明の目的は、上記目的の他に、又は上記目的に加えて、液晶配向膜とシール剤との相互作用を高めることにより、向上した密着性を有する横電界駆動型液晶素子及び該素子のための液晶配向膜を提供することにある。 The present invention provides a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate. With the goal.
In addition to the above-described object, the object of the present invention is to improve the film density of the liquid crystal alignment film so that impurities existing in the liquid crystal alignment film do not move to the liquid crystal side and have an improved voltage holding ratio. An object is to provide an electric field driven liquid crystal element and a liquid crystal alignment film for the element.
Furthermore, in addition to the above object or in addition to the above object, the object of the present invention is to improve the interaction between the liquid crystal alignment film and the sealing agent, thereby improving the lateral electric field drive type liquid crystal element having improved adhesion and the The object is to provide a liquid crystal alignment film for an element.
<1> (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び
(C)有機溶媒
を含有する重合体組成物。 As a result of intensive studies to achieve the above problems, the present inventors have found the following invention.
<1> (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range;
(B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A crosslinkable compound having two or more kinds of substituents in one molecule, and (C) a polymer composition containing an organic solvent.
<3> 上記<1>又は<2>において、(A)成分が、下記式(1)~(6)からなる群から選ばれるいずれか1種の感光性側鎖を有するのがよい。 <2> In the above item <1>, the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
<3> In the above item <1> or <2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (1) to (6).
Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Y1は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Y2は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はY1と同じ定義を表す;
Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
q3は0または1である;
P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
l1は0または1である;
l2は0~2の整数である;
l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
l1が1であるときは、Tが単結合であるときはBも単結合を表す;
H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。 In the formula, A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—. Represents O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
when l1 and l2 are both 0, A represents a single bond when T is a single bond;
when l1 is 1, B represents a single bond when T is a single bond;
H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
式中、A、B、D、Y1、X、Y2、及びRは、上記と同じ定義を有する;
lは1~12の整数を表す;
mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
nは0~12の整数(ただしn=0のときBは単結合である)を表す。 <4> In the above item <1> or <2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
In which A, B, D, Y 1 , X, Y 2 and R have the same definition as above;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (however, when n = 0, B is a single bond).
式中、A、X、l、m、m1及びRは、上記と同じ定義を有する。 <5> In the above item <1> or <2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
In the formula, A, X, l, m, m1 and R have the same definition as above.
式中、A、Y1、l、m1及びm2は上記と同じ定義を有する。 <6> In the above <1> or <2>, the component (A) may have a photosensitive side chain represented by the following formula (14) or (15).
In the formula, A, Y 1 , l, m1 and m2 have the same definition as above.
式中、A、X、l及びmは、上記と同じ定義を有する。 <7> In the above <1> or <2>, the component (A) preferably has a photosensitive side chain represented by the following formula (16) or (17).
In the formula, A, X, l and m have the same definition as above.
式中、A、B、Y1、q1、q2、m1、及びm2は、上記と同じ定義を有する。
R1は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す。 <8> In the above <1> or <2>, the component (A) preferably has a photosensitive side chain represented by the following formula (18) or (19).
In the formula, A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
式中、A、Y1、X、l及びmは上記と同じ定義を有する。 <9> In the above <1> or <2>, the component (A) preferably has a photosensitive side chain represented by the following formula (20).
In the formula, A, Y 1 , X, l and m have the same definition as above.
式中、A、B、q1及びq2は上記と同じ定義を有する;
Y3は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
R3は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
lは1~12の整数を表し、mは0から2の整数を表し、但し、式(23)~(24)において、全てのmの合計は2以上であり、式(25)~(26)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
R2は、水素原子、-NO2、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
Z1、Z2は単結合、-CO-、-CH2O-、-CH=N-、-CF2-を表す。 <10> In any one of the above items <1> to <9>, the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31): Good.
In which A, B, q1 and q2 have the same definition as above;
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each represents a single bond, —CO—, —CH 2 O—, —CH═N—, —CF 2 —.
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
<12> 上記<11>の方法により製造された横電界駆動型液晶表示素子用液晶配向膜を有する基板。
<13> 上記<12>の基板を有する横電界駆動型液晶表示素子。 <11> [I] A step of applying the composition according to any one of the above <1> to <10> onto a substrate having a conductive film for driving a lateral electric field to form a coating film;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
The manufacturing method of the board | substrate which has the said liquid crystal aligning film which obtains the liquid crystal aligning film for horizontal electric field drive type liquid crystal display elements by which orientation control ability was provided by having.
<12> A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device produced by the method of <11>.
<13> A lateral electric field drive type liquid crystal display device having the substrate of <12> above.
[I’] 第2の基板上に
(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び
(C)有機溶媒
を含有する重合体組成物を、塗布して塗膜を形成する工程;
[II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III’] [II’]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する第2の基板を得る工程;及び
[IV] 液晶を介して前記第1及び第2の基板の液晶配向膜が相対するように、前記第1及び第2の基板を対向配置して液晶表示素子を得る工程;
を有することにより、横電界駆動型液晶表示素子を得る、該液晶表示素子の製造方法。
<15> 上記<14>の方法により製造された横電界駆動型液晶表示素子。 <14> a step of preparing the substrate (first substrate) of <12>above;
[I ′] on a second substrate (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range;
(B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A step of coating a polymer composition containing a crosslinkable compound having two or more kinds of substituents in one molecule and (C) an organic solvent to form a coating film;
[II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′];
Obtaining a liquid crystal alignment film having alignment control ability by providing a second substrate having the liquid crystal alignment film; and [IV] liquid crystal alignment of the first and second substrates via liquid crystal A step of obtaining a liquid crystal display element by arranging the first and second substrates to face each other so that the films face each other;
A method for producing a liquid crystal display element, comprising obtaining a lateral electric field drive type liquid crystal display element.
<15> A lateral electric field drive type liquid crystal display device manufactured by the method of <14> above.
<P1> [I] (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び
(C)有機溶媒
を含有する重合体組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。 Moreover, the following invention was found as another aspect.
<P1> [I] (A) A photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range;
(B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A crosslinkable compound having two or more kinds of substituents in one molecule, and (C) a polymer composition containing an organic solvent is applied on a substrate having a conductive film for driving a lateral electric field to form a coating film. Forming step;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
The manufacturing method of the board | substrate which has the said liquid crystal aligning film which obtains the liquid crystal aligning film for horizontal electric field drive type liquid crystal display elements by which orientation control ability was provided by having.
<P3> 上記<P1>又は<P2>において、(A)成分が、下記式(1)~(6)からなる群から選ばれるいずれか1種の感光性側鎖を有するのがよい。 <P2> In the above <P1>, the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
<P3> In the above <P1> or <P2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (1) to (6).
Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Y1は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Y2は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はY1と同じ定義を表す;
Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
q3は0または1である;
P及びQは、各々独立に、単結合、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である。ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環である;
H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。 In the formula, A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—. Represents O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. Represents CH-;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently a single bond, a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof. Is a group selected from However, when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring;
H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
式中、A、B、D、Y1、X、Y2、及びRは、上記と同じ定義を有する;
lは1~12の整数を表す;
mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
nは0~12の整数(ただしn=0のときBは単結合である)を表す。 <P4> In the above <P1> or <P2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
In which A, B, D, Y 1 , X, Y 2 and R have the same definition as above;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (however, when n = 0, B is a single bond).
式中、A、X、l、m及びRは、上記と同じ定義を有する。 <P5> In the above <P1> or <P2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
In the formula, A, X, l, m and R have the same definition as above.
式中、A、Y1、X、l、m1及びm2は上記と同じ定義を有する。 <P6> In the above <P1> or <P2>, the component (A) may have a photosensitive side chain represented by the following formula (14) or (15).
In the formula, A, Y 1 , X, 1, m1, and m2 have the same definition as above.
式中、A、X、l及びmは、上記と同じ定義を有する。 <P7> In the above <P1> or <P2>, the component (A) may have a photosensitive side chain represented by the following formula (16) or (17).
In the formula, A, X, l and m have the same definition as above.
式中、A、B、Y1、q1、q2、m1、及びm2は、上記と同じ定義を有する。
R1は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す。 <P8> In the above <P1> or <P2>, the component (A) may have a photosensitive side chain represented by the following formula (18) or (19).
In the formula, A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
式中、A、Y1、X、l及びmは上記と同じ定義を有する。 <P9> In any of the above <P1> or <P2>, the component (A) preferably has a photosensitive side chain represented by the following formula (20).
In the formula, A, Y 1 , X, l and m have the same definition as above.
式中、A、B、q1及びq2は上記と同じ定義を有する;
Y3は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
R3は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
lは1~12の整数を表し、mは0から2の整数を表し、但し、式(25)~(26)において、全てのmの合計は2以上であり、式(27)~(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
R2は、水素原子、-NO2、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
Z1、Z2は単結合、-CO-、-CH2O-、-CH=N-、-CF2-を表す。 <P10> In any one of the above items <P1> to <P9>, the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31). Good.
In which A, B, q1 and q2 have the same definition as above;
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in the formulas (25) to (26), the sum of all m is 2 or more, and the formulas (27) to (28 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each represents a single bond, —CO—, —CH 2 O—, —CH═N—, —CF 2 —.
<P12> 上記<P11>の基板を有する横電界駆動型液晶表示素子。 <P11> A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device manufactured by any of the above <P1> to <P10>.
<P12> A lateral electric field drive type liquid crystal display device having the substrate of <P11> above.
[I’] 第2の基板上に
(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び
(C)有機溶媒
を含有する重合体組成物を、塗布して塗膜を形成する工程;
[II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III’] [II’]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、該液晶配向膜を有する第2の基板を得る工程;及び
[IV] 液晶を介して第1及び第2の基板の液晶配向膜が相対するように、第1及び第2の基板を対向配置して液晶表示素子を得る工程;
を有することにより、横電界駆動型液晶表示素子を得る、該液晶表示素子の製造方法。 <P13> Step of preparing a substrate (first substrate) of <P11>above;
[I ′] on a second substrate (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range;
(B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A step of coating a polymer composition containing a crosslinkable compound having two or more kinds of substituents in one molecule and (C) an organic solvent to form a coating film;
[II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′];
Obtaining a liquid crystal alignment film imparted with alignment control ability by having a second substrate having the liquid crystal alignment film; and [IV] liquid crystal alignment films of the first and second substrates via liquid crystal The liquid crystal display element is obtained by disposing the first and second substrates so as to face each other;
A method for producing a liquid crystal display element, comprising obtaining a lateral electric field drive type liquid crystal display element.
<P15> (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び
(C)有機溶媒
を含有する、横電界駆動型液晶表示素子用液晶配向膜製造用組成物。 <P14> A lateral electric field drive type liquid crystal display device manufactured according to the above <P13>.
<P15> (A) Photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range,
(B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A composition for producing a liquid crystal alignment film for a lateral electric field driving type liquid crystal display device, comprising a crosslinkable compound having two or more kinds of substituents in one molecule, and (C) an organic solvent.
本発明の方法によって製造された横電界駆動型液晶表示素子は、高効率に配向制御能が付与されているため長時間連続駆動しても表示特性が損なわれることがない。
また、本発明により、上記効果に加えて、液晶配向膜の膜密度を向上させて該液晶配向膜中に存在する不純物を液晶側に移動させることなく、向上した電圧保持率を有する横電界駆動型液晶素子及び該素子のための液晶配向膜を提供することができる。
さらに、本発明により、上記効果の他に、又は上記効果に加えて、液晶配向膜とシール剤との相互作用を高めることにより、向上した密着性を有する横電界駆動型液晶素子及び該素子のための液晶配向膜を提供することができる。 According to the present invention, there are provided a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate. Can do.
Since the lateral electric field drive type liquid crystal display device manufactured by the method of the present invention is provided with the alignment control ability with high efficiency, the display characteristics are not impaired even when continuously driven for a long time.
Further, according to the present invention, in addition to the above effects, the lateral electric field driving has an improved voltage holding ratio without increasing the film density of the liquid crystal alignment film and moving impurities present in the liquid crystal alignment film to the liquid crystal side. Type liquid crystal element and a liquid crystal alignment film for the element can be provided.
Further, according to the present invention, in addition to the above effect or in addition to the above effect, the interaction between the liquid crystal alignment film and the sealing agent is enhanced, thereby improving the lateral electric field drive type liquid crystal element having improved adhesion and the element. A liquid crystal alignment film can be provided.
本発明の製造方法において用いられる重合体組成物は、液晶性を発現し得る感光性の側鎖型高分子(以下、単に側鎖型高分子とも呼ぶ)を有しており、前記重合体組成物を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖型高分子を有する膜である。この塗膜にはラビング処理を行うこと無く、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型高分子膜を加熱する工程を経て、配向制御能が付与された塗膜(以下、液晶配向膜とも称する)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性の側鎖型高分子自体が自己組織化により効率的に再配向する。その結果、液晶配向膜として高効率な配向処理が実現し、高い配向制御能が付与された液晶配向膜を得ることができる As a result of intensive studies, the inventor has obtained the following knowledge and completed the present invention.
The polymer composition used in the production method of the present invention has a photosensitive side chain polymer that can exhibit liquid crystallinity (hereinafter, also simply referred to as a side chain polymer), and the polymer composition The coating film obtained by using the product is a film having a photosensitive side chain polymer that can exhibit liquid crystallinity. This coating film is subjected to orientation treatment by irradiation with polarized light without being rubbed. And after polarized light irradiation, it will become the coating film (henceforth a liquid crystal aligning film) to which the orientation control ability was provided through the process of heating the side chain type polymer film. At this time, the slight anisotropy developed by the irradiation of polarized light becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization. As a result, a highly efficient alignment process can be realized as a liquid crystal alignment film, and a liquid crystal alignment film with high alignment control ability can be obtained.
<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
本発明の液晶配向膜を有する基板の製造方法は、
[I] (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び
(C)有機溶媒
を含有する重合体組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有する。
上記工程により、配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。 Hereinafter, embodiments of the present invention will be described in detail.
<Manufacturing method of substrate having liquid crystal alignment film> and <Manufacturing method of liquid crystal display element>
The method for producing a substrate having the liquid crystal alignment film of the present invention is
[I] (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range;
(B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A crosslinkable compound having two or more kinds of substituents in one molecule, and (C) a polymer composition containing an organic solvent is applied on a substrate having a conductive film for driving a lateral electric field to form a coating film. Forming step;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
Have
Through the above steps, a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element to which alignment control ability is imparted can be obtained, and a substrate having the liquid crystal alignment film can be obtained.
第2の基板は、横電界駆動用の導電膜を有する基板に代わって、横電界駆動用の導電膜を有しない基板を用いる以外、上記工程[I]~[III](横電界駆動用の導電膜を有しない基板を用いるため、便宜上、本願において、工程[I’]~[III’]と略記する場合がある)を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。 Further, by preparing a second substrate in addition to the obtained substrate (first substrate), a lateral electric field drive type liquid crystal display element can be obtained.
For the second substrate, instead of using a substrate having no lateral electric field driving conductive film instead of a substrate having a lateral electric field driving conductive film, the above steps [I] to [III] (for lateral electric field driving) Since a substrate having no conductive film is used, for the sake of convenience, in this application, the steps [I ′] to [III ′] may be abbreviated as steps), thereby providing a first liquid crystal alignment film having alignment controllability. Two substrates can be obtained.
[IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これにより横電界駆動型液晶表示素子を得ることができる。 The manufacturing method of the horizontal electric field drive type liquid crystal display element is
[IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween;
Have Thereby, a horizontal electric field drive type liquid crystal display element can be obtained.
<工程[I]>
工程[I]では、横電界駆動用の導電膜を有する基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び有機溶媒を含有する重合体組成物を塗布して塗膜を形成する。 The steps [I] to [III] and [IV] of the production method of the present invention will be described below.
<Process [I]>
In the step [I], a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, a hydroxy group, a hydroxyalkyl group, an alkoxy group, an alkoxyalkyl on a substrate having a conductive film for driving a lateral electric field. Crosslinkability having two or more substituents in one molecule selected from a group, an oxirane group, an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a trialkoxysilyl group, and a polymerizable unsaturated bond group A polymer composition containing a compound and an organic solvent is applied to form a coating film.
基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用できる。 <Board>
Although it does not specifically limit about a board | substrate, When the liquid crystal display element manufactured is a transmission type, it is preferable that a highly transparent board | substrate is used. In that case, there is no particular limitation, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
In consideration of application to a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can also be used.
基板は、横電界駆動用の導電膜を有する。
該導電膜として、液晶表示素子が透過型である場合、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などを挙げることができるが、これらに限定されない。
また、反射型の液晶表示素子の場合、導電膜として、アルミなどの光を反射する材料などを挙げることができるがこれらに限定されない。
基板に導電膜を形成する方法は、従来公知の手法を用いることができる。 <Conductive film for driving lateral electric field>
The substrate has a conductive film for driving a lateral electric field.
Examples of the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
In the case of a reflective liquid crystal display element, examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
As a method for forming a conductive film on a substrate, a conventionally known method can be used.
横電界駆動用の導電膜を有する基板上、特に導電膜上に、重合体組成物を塗布する。
本発明の製造方法に用いられる、該重合体組成物は、(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子;(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物;及び(C)有機溶媒;を含有する。 <Polymer composition>
A polymer composition is applied on a substrate having a conductive film for driving a lateral electric field, particularly on the conductive film.
The polymer composition used in the production method of the present invention comprises: (A) a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range; (B) a hydroxy group, a hydroxyalkyl group, and an alkoxy group. , At least one substituent selected from an alkoxyalkyl group, an oxirane group, an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a trialkoxysilyl group, and a polymerizable unsaturated bond group in one molecule And (C) an organic solvent.
(A)成分は、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子である。
(A)側鎖型高分子は、250nm~400nmの波長範囲の光で反応し、かつ100℃~300℃の温度範囲で液晶性を示すのがよい。
(A)側鎖型高分子は、250nm~400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。
(A)側鎖型高分子は、100℃~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。 << (A) Side chain polymer >>
The component (A) is a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range.
The (A) side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C. to 300 ° C.
The (A) side chain polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 nm to 400 nm.
The (A) side chain polymer preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 100 ° C to 300 ° C.
Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Y1は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Y2は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はY1と同じ定義を表す;
Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
q3は0または1である;
P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
l1は0または1である;
l2は0~2の整数である;
l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
l1が1であるときは、Tが単結合であるときはBも単結合を表す;
H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。 In the formula, A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—. Represents O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
when l1 and l2 are both 0, A represents a single bond when T is a single bond;
when l1 is 1, B represents a single bond when T is a single bond;
H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
式中、A、B、D、Y1、X、Y2、及びRは、上記と同じ定義を有する;
lは1~12の整数を表す;
mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
nは0~12の整数(ただしn=0のときBは単結合である)を表す。 The side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
In which A, B, D, Y 1 , X, Y 2 and R have the same definition as above;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (however, when n = 0, B is a single bond).
式中、A、X、l、m、m1及びRは、上記と同じ定義を有する。 The side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
In the formula, A, X, l, m, m1 and R have the same definition as above.
式中、A、Y1、l、m1及びm2は上記と同じ定義を有する。 The side chain may be a photosensitive side chain represented by the following formula (14) or (15).
In the formula, A, Y 1 , l, m1 and m2 have the same definition as above.
式中、A、X、l及びmは、上記と同じ定義を有する。 The side chain may be a photosensitive side chain represented by the following formula (16) or (17).
In the formula, A, X, l and m have the same definition as above.
式中、A、B、Y1、q1、q2、m1、及びm2は、上記と同じ定義を有する。
R1は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す。 The side chain is preferably a photosensitive side chain represented by the following formula (18) or (19).
In the formula, A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
式中、A、Y1、X、l及びmは上記と同じ定義を有する。 The side chain is preferably a photosensitive side chain represented by the following formula (20).
In the formula, A, Y 1 , X, l and m have the same definition as above.
式中、A、B、q1及びq2は上記と同じ定義を有する;
Y3は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
R3は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
lは1~12の整数を表し、mは0から2の整数を表し、但し、式(23)~(24)において、全てのmの合計は2以上であり、式(25)~(26)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
R2は、水素原子、-NO2、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
Z1、Z2は単結合、-CO-、-CH2O-、-CH=N-、-CF2-を表す。 The (A) side chain polymer preferably has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
In which A, B, q1 and q2 have the same definition as above;
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each represents a single bond, —CO—, —CH 2 O—, —CH═N—, —CF 2 —.
上記の液晶性を発現し得る感光性の側鎖型高分子は、上記の感光性側鎖を有する光反応性側鎖モノマーおよび液晶性側鎖モノマーを重合することによって得ることができる。 << Production Method of Photosensitive Side Chain Polymer >>
The photosensitive side chain polymer capable of exhibiting the above liquid crystallinity can be obtained by polymerizing the photoreactive side chain monomer having the above photosensitive side chain and the liquid crystalline side chain monomer.
光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に感光性側鎖を有する高分子を形成することができるモノマーのことである。
側鎖の有する光反応性基としては下記の構造およびその誘導体が好ましい。 [Photoreactive side chain monomer]
The photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at the side chain portion of the polymer when the polymer is formed.
As the photoreactive group possessed by the side chain, the following structures and derivatives thereof are preferred.
式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;R10はBrまたはCNを示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す;及びPyは2-ピリジル基、3-ピリジル基または4-ピリジル基を表す。また、vは1または2を表す。 The present application describes novel compounds (1) to (11) represented by the following formulas (1) to (11) as photoreactive and / or liquid crystalline side chain monomers; and the following formulas (12) to (17): (12) to (17) are provided.
In the formula, R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; R 10 represents Br or CN; S represents an alkylene group having 2 to 10 carbon atoms; u represents
液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
側鎖の有するメソゲン基として、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては下記の構造が好ましい。 [Liquid crystal side chain monomer]
The liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at a side chain site.
As a mesogenic group having a side chain, even if it is a group having a mesogen structure alone such as biphenyl or phenylbenzoate, or a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid Good. As the mesogenic group possessed by the side chain, the following structure is preferable.
その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。 Examples of other monomers include industrially available monomers capable of radical polymerization reaction.
Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、及び、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
Examples of the acrylic ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and , Etc. 8-ethyl-8-tricyclodecyl acrylate.
スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。
マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。 Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。 These organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer | macromolecule to produce | generate, you may mix and use the above-mentioned organic solvent in the range which the polymer | macromolecule produced | generated does not precipitate.
In radical polymerization, oxygen in the organic solvent becomes a cause of inhibiting the polymerization reaction. Therefore, it is preferable to use an organic solvent that has been deaerated to the extent possible.
上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 [Recovery of polymer]
When recovering the produced polymer from the reaction solution of the photosensitive side chain polymer capable of exhibiting liquid crystallinity obtained by the above reaction, the reaction solution is put into a poor solvent, The coalescence can be precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water. The polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
本発明に用いられる重合体組成物は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した液晶性を発現し得る感光性の側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3質量%~10質量%である。 [Preparation of polymer composition]
The polymer composition used in the present invention is preferably prepared as a coating solution so as to be suitable for forming a liquid crystal alignment film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the resin component is a resin component containing a photosensitive side chain polymer capable of exhibiting the liquid crystallinity already described. In that case, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等からなり、液晶性を発現し得る感光性の側鎖型高分子ではない重合体等が挙げられる。 In the polymer composition of the present embodiment, the resin component described above may be a photosensitive side chain polymer that can all exhibit the above-described liquid crystallinity, but does not impair the liquid crystal developing ability and the photosensitive performance. Other polymers may be mixed within the range. In that case, the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
Examples of such other polymers include polymers that are made of poly (meth) acrylate, polyamic acid, polyimide, and the like and are not a photosensitive side chain polymer that can exhibit liquid crystallinity.
本発明に用いられる重合体組成物は、特定の基を一分子あたり2個以上有する架橋性化合物を有する。
該化合物は、本発明に用いられる重合体組成物が液晶配向膜を形成した際、次の効果i)~iv)のいずれか1種、2種、3種、又は全てを奏するものであれば、特に限定されない。i)液晶配向膜の膜密度を向上させるか、ii)液晶配向膜中に存在する不純物を液晶側に移動させることがないか、iii)向上した電圧保持率を奏するか、及び/又はiv)液晶配向膜とシール剤との相互作用を高めることにより向上した密着性を奏する。
特定の基を一分子あたり2個以上有する化合物の量は、上記効果を奏するのであれば、特に限定されないが、本発明に用いられる重合体組成物の重合体成分100質量部に対して、0.1~150質量部、好ましくは0.1~100質量部、より好ましくは1~50質量部であるのがよい。 <Crosslinkable compound having two or more specific groups per molecule>
The polymer composition used in the present invention has a crosslinkable compound having two or more specific groups per molecule.
The compound may be any one of the following effects i) to iv), 2, 3, 3 or all when the polymer composition used in the present invention forms a liquid crystal alignment film. There is no particular limitation. i) Improve the film density of the liquid crystal alignment film, ii) Do not move impurities present in the liquid crystal alignment film to the liquid crystal side, iii) Provide improved voltage holding ratio, and / or iv) Improved adhesion is achieved by increasing the interaction between the liquid crystal alignment film and the sealant.
The amount of the compound having two or more specific groups per molecule is not particularly limited as long as the above effect is obtained, but is 0 with respect to 100 parts by mass of the polymer component of the polymer composition used in the present invention. 1 to 150 parts by mass, preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass.
2個以上の基は、上記の群から選ばれ、同じであっても異なってもよい。
以降、特定の基を一分子あたり2個以上有する架橋性化合物を例示説明するが、これらに限定されるものではない。また、該化合物は、組成物中に、1種類含有しても、2種類以上を組み合わせて含有してもよい。 A “specific group” of a compound having two or more specific groups per molecule includes a hydroxy group, a hydroxyalkyl group, an alkoxy group, an alkoxyalkyl group, an oxirane group, an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, It may be selected from the group consisting of trialkoxysilyl groups and polymerizable unsaturated bond groups such as vinyl groups, (meth) acryloyl groups, and (meth) acryloyloxy groups.
Two or more groups are selected from the above group and may be the same or different.
Hereinafter, although a crosslinkable compound having two or more specific groups per molecule will be described as an example, the present invention is not limited thereto. Moreover, this compound may contain 1 type in a composition, or may contain it in combination of 2 or more types.
本発明に用いられる重合体組成物に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。 <Organic solvent>
The organic solvent used for the polymer composition used in the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4 Methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, etc. Is mentioned. These may be used alone or in combination.
例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。 The following are mentioned as a specific example of the solvent (poor solvent) which improves the uniformity of film thickness and surface smoothness.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol mono n-butyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, Ethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene , Propyl ether, dihexyl ether, 1-hexanol N-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3 -Methyl methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy -2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether Ter-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n- And solvents having a low surface tension such as butyl ester and isoamyl lactate.
より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、重合体組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。 Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) It is done. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. Part by mass.
例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン等が挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Examples thereof include propyltrimethoxysilane and N-bis (oxyethylene) -3-aminopropyltriethoxysilane.
光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、およびアミノ置換された、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-もしくはジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル
-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン)、ベンゾチアゾール、ニトロアニリン(m-もしくはp-ニトロアニリン、2,4,6-トリニトロアニリン)またはニトロアセナフテン(5-ニトロアセナフテン)、(2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、および9-アントラセンカルボン酸)、ベンゾピラン、アゾインドリジン、メロクマリン等がある。
好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、およびアセトフェノンケタールである。 A photosensitizer can also be used as an additive. Colorless and triplet sensitizers are preferred.
As photosensitizers, aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted Aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl-β-naphthothiazoline, 2- (β-naphthoylmethylene) -3-methylbenzothiazoline, 2- (α-naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-biphenoylmethylene)- 3-methylbenzothia Phosphorus, 2- (β-naphthoylmethylene) -3-methyl-β-naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl-β-naphthothiazoline, 2- (p-fluorobenzoylmethylene)- 3-methyl-β-naphthothiazoline), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2- (α-naphthoylmethylene) ) -3-methylbenzoxazoline, 2- (4-biphenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-biphenoyl) Methylene) -3-methyl-β-naphthoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β- Ftoxazoline), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4,6-trinitroaniline) or nitroacenaphthene (5-nitroacenaphthene), (2-[(m-hydroxy-p -Methoxy) styryl] benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone), naphthalene, anthracene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, 9-anthracenemethanol And 9-anthracenecarboxylic acid), benzopyran, azoindolizine, melocoumarin and the like.
Aromatic 2-hydroxy ketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。 The method for applying the polymer composition described above onto a substrate having a conductive film for driving a lateral electric field is not particularly limited.
In general, the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~150nmである。
尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。 After the polymer composition is applied on a substrate having a conductive film for driving a horizontal electric field, it is 50 to 200 ° C., preferably 50 to 200 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven. The solvent can be evaporated at 150 ° C. to obtain a coating film. The drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer.
If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is.
In addition, it is also possible to provide the process of cooling the board | substrate with which the coating film was formed to room temperature after the [I] process and before the following [II] process.
工程[II]では、工程[I]で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。 <Process [II]>
In step [II], the coating film obtained in step [I] is irradiated with polarized ultraviolet rays. When irradiating the surface of the coating film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction. As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used. For example, ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。 <Step [III]>
In step [III], the ultraviolet-irradiated coating film polarized in step [II] is heated. An orientation control ability can be imparted to the coating film by heating.
For heating, a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used. The heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
なお、液晶発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。 The heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature). In the case of a thin film surface such as a coating film, the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when a photosensitive side chain polymer that can exhibit liquid crystallinity is observed in bulk. The Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the temperature range of the liquid crystal expression temperature of the side chain polymer used, and 10 ° C. lower than the upper limit of the liquid crystal temperature range. It is preferable that it is the temperature of the range which makes an upper limit. If the heating temperature is lower than the above temperature range, the anisotropic amplification effect due to heat in the coating film tends to be insufficient, and if the heating temperature is too higher than the above temperature range, the state of the coating film Tends to be close to an isotropic liquid state (isotropic phase), and in this case, self-organization may make it difficult to reorient in one direction.
The liquid crystal expression temperature is not less than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). It means a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
[IV]工程は、[III]で得られた、横電界駆動用の導電膜上に液晶配向膜を有する基板(第1の基板)と、同様に上記[I’]~[III’]で得られた、導電膜を有しない液晶配向膜付基板(第2の基板)とを、液晶を介して、双方の液晶配向膜が相対するように対向配置して、公知の方法で液晶セルを作製し、横電界駆動型液晶表示素子を作製する工程である。なお、工程[I’]~[III’]は、工程[I]において、横電界駆動用の導電膜を有する基板の代わりに、該横電界駆動用導電膜を有しない基板を用いた以外、工程[I]~[III]と同様に行うことができる。工程[I]~[III]と工程[I’]~[III’]との相違点は、上述した導電膜の有無だけであるため、工程[I’]~[III’]の説明を省略する。 <Process [IV]>
The step [IV] is performed in the same manner as in the above [I ′] to [III ′], similarly to the substrate (first substrate) obtained in [III] and having the liquid crystal alignment film on the conductive film for lateral electric field driving. The obtained liquid crystal alignment film-attached substrate (second substrate) having no conductive film is placed oppositely so that both liquid crystal alignment films face each other through liquid crystal, and a liquid crystal cell is formed by a known method. This is a step of manufacturing a lateral electric field drive type liquid crystal display element. In the steps [I ′] to [III ′], a substrate having no lateral electric field driving conductive film was used in place of the substrate having the lateral electric field driving conductive film in the step [I]. It can be carried out in the same manner as in steps [I] to [III]. Since the difference between the steps [I] to [III] and the steps [I ′] to [III ′] is only the presence or absence of the conductive film, the description of the steps [I ′] to [III ′] is omitted. To do.
本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。 The manufacturing method of the board | substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply | coating a polymer composition on a board | substrate and forming a coating film. Next, by heating, high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
The coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. . In the production method of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group in the side chain polymer, after forming a coating film on the substrate using the side chain polymer, polarized ultraviolet rays are formed. After irradiation and then heating, a liquid crystal display element is formed.
以下、実施例を用いて本発明を説明するが、本発明は、該実施例に限定されるものではない。 As described above, the lateral electric field drive type liquid crystal display element substrate manufactured by the method of the present invention or the lateral electric field drive type liquid crystal display element having the substrate has excellent reliability, large screen and high definition. It can be suitably used for LCD TVs.
EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited to this Example.
なお、MA1及びM2は、それぞれ、次のようにして合成した。即ち、MA1は特許文献(WO2011-084546)に記載の合成法にて合成した。MA2は特許文献(特開平9-118717)に記載の合成法にて合成した。 The methacrylic monomers MA1 and MA2 used in the examples are shown below.
MA1 and M2 were synthesized as follows. That is, MA1 was synthesized by a synthesis method described in a patent document (WO2011-084546). MA2 was synthesized by the synthesis method described in the patent document (Japanese Patent Laid-Open No. 9-118717).
なお、T1~T14は、次に示す方法によって合成した。
T1:ジエトキシ(3-グリシジルオキシプロピル)メチルシラン(東京化成製)。
T2:テトラエキトシシラン(東京化成製)。
T3:N,N,N',N'-TETRAGLYCIDYL-4,4'-DIAMINODIPHENYLMETHANE(Aldrich製)。
T4:ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル) 修飾ε-カプロラクトン。
T5:イソシアヌル酸トリグリシジル(東京化成製)。
T6:公知化号物。
T7:3,4-エポキシシクロヘキシル 3,4-エポキシシクロヘキサンカルボキシレート(Aldrich製)。
T8:公知化合物。
T9:ジペンタエリスリトールヘキサアクリレート(ダイセルサイテック株式会社)。
T10:2,4,6-トリス[ビス(メトキシメチル)アミノ]-1,3,5-トリアジン(東京化成製)。
T11:2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン(旭有機材工業株式会社製)。
T12:トリス(4-(ビニルオキシ)ブチル) トリメリテート(Aldrich製)。
T13:1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン(東京化成製)。
T14:VestanatB(evonik製)。 The crosslinking agents T1 to T14 used in the examples are shown below.
T1 to T14 were synthesized by the following method.
T1: Diethoxy (3-glycidyloxypropyl) methylsilane (manufactured by Tokyo Chemical Industry).
T2: tetraethoxysilane (manufactured by Tokyo Chemical Industry).
T3: N, N, N ′, N′-TETRAGLYCIDYL-4,4′-DIAMINODIPHENYLMETHANE (manufactured by Aldrich).
T4: Butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) modified ε-caprolactone.
T5: Triglycidyl isocyanurate (manufactured by Tokyo Chemical Industry).
T6: Known product.
T7: 3,4-
T8: Known compound.
T9: Dipentaerythritol hexaacrylate (Daicel Cytec Co., Ltd.).
T10: 2,4,6-tris [bis (methoxymethyl) amino] -1,3,5-triazine (manufactured by Tokyo Chemical Industry).
T11: 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane (Asahi Organic Materials Co., Ltd.).
T12: Tris (4- (vinyloxy) butyl) trimellitate (manufactured by Aldrich).
T13: 1,3-bis (4,5-dihydro-2-oxazolyl) benzene (manufactured by Tokyo Chemical Industry).
T14: VestanatB (manufactured by evonik).
(有機溶媒)
THF:テトラヒドロフラン。
NMP:N-メチル-2-ピロリドン。
BC:ブチルセロソルブ。
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル。 In addition, the abbreviations of the reagents used in this example are shown below.
(Organic solvent)
THF: tetrahydrofuran.
NMP: N-methyl-2-pyrrolidone.
BC: Butyl cellosolve.
(Polymerization initiator)
AIBN: 2,2′-azobisisobutyronitrile.
MA1(9.97g、30.0mmol)をTHF(92.0g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.246g、1.5mmol)を加え再び脱気を行った。この後、50℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をジエチルエーテル(1000ml)に滴下し、得られた沈殿物をろ過した沈殿物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(A1)を得た。
得られたメタクリレートポリマー粉末(A1)(6.0g)にNMP(29.3g)を加え、室温で5時間攪拌して溶解させた。この溶液にNMP(24.7g)、BC(40.0g)を加え攪拌することによりメタクリルポリマー溶液M1を得た。 <Synthesis Example 1>
MA1 (9.97 g, 30.0 mmol) was dissolved in THF (92.0 g) and degassed with a diaphragm pump, and then AIBN (0.246 g, 1.5 mmol) was added and degassed again. . Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was dropped into diethyl ether (1000 ml), and the precipitate obtained by filtering the resulting precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain a methacrylate polymer powder (A1).
NMP (29.3 g) was added to the obtained methacrylate polymer powder (A1) (6.0 g), and the mixture was dissolved by stirring at room temperature for 5 hours. NMP (24.7 g) and BC (40.0 g) were added to this solution and stirred to obtain a methacrylic polymer solution M1.
MA1(4.99g、15.0mmol)、MA2(4.60g、15.0mmol)をTHF(88.5g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.246g、1.5mmol)を加え再び脱気を行った。この後、50℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をジエチルエーテル(1000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(A2)を得た。
得られたメタクリレートポリマー粉末(A2)(6.0g)にNMP(54.0g)を加え、室温で5時間攪拌して溶解させた。この溶液に、BC(40.0g)を加え攪拌することによりメタクリルポリマー溶液M2を得た。 <Synthesis Example 2>
MA1 (4.99 g, 15.0 mmol) and MA2 (4.60 g, 15.0 mmol) were dissolved in THF (88.5 g), deaerated with a diaphragm pump, and then AIBN (0.246 g, 15.0 mmol). .5 mmol) was added and deaeration was performed again. Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to diethyl ether (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain a methacrylate polymer powder (A2).
NMP (54.0 g) was added to the resulting methacrylate polymer powder (A2) (6.0 g), and dissolved by stirring at room temperature for 5 hours. To this solution, BC (40.0 g) was added and stirred to obtain a methacrylic polymer solution M2.
合成例1で得られたメタクリルポリマー溶液M1 5.0gに、T1 0.015gを加え、室温で3時間攪拌し、液晶配向剤A1を得た。
この液晶配向剤A1を用いて下記に示すような手順で液晶セルの作製を行った。基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。 <Example 1>
0.015 g of T1 was added to 5.0 g of the methacrylic polymer solution M1 obtained in Synthesis Example 1, and the mixture was stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent A1.
Using this liquid crystal aligning agent A1, a liquid crystal cell was produced according to the following procedure. The substrate used was a glass substrate having a size of 30 mm × 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged.
各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有した。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっていた。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+15°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-15°の角度(時計回り)をなすように形成されていた。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されていた。 The pixel electrode had a comb-like shape formed by arranging a plurality of dog-shaped electrode elements having a bent central portion. The width of each electrode element in the short direction was 10 μm, and the distance between the electrode elements was 20 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
Each pixel was divided vertically with a central bent portion as a boundary, and had a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the alignment processing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel. The electrode elements of the pixel electrode were formed so as to form an angle of −15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It was configured to be in the opposite direction.
実施例1で得られた液晶配向剤A1を、準備された上記電極付き基板にスピンコートした。次いで、70℃のホットプレートで90秒間乾燥し、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を20mJ/cm2照射した後に150℃のホットプレートで10分間加熱し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。一方の基板の液晶配向膜上にシール剤(協立化学製XN-1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を熱硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク株式会社製)を注入し、注入口を封止して、IPS(In-Planes Switching)モード液晶表示素子の構成を備えた液晶セルを得た。 << Preparation of liquid crystal cell >>
The liquid crystal aligning agent A1 obtained in Example 1 was spin-coated on the prepared substrate with electrodes. Subsequently, it dried for 90 second with a 70 degreeC hotplate, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the coating film surface was irradiated with 20 mJ / cm 2 of 313 nm ultraviolet rays via a polarizing plate and then heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 μm on which no electrode was formed as a counter substrate, and an orientation treatment was performed. A sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was thermally cured to produce an empty cell. A liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element was prepared by injecting liquid crystal MLC-2041 (manufactured by Merck Co., Ltd.) into the empty cell by a reduced pressure injection method, sealing the injection port. Obtained.
上記で作製した液晶セルを用い、70℃の恒温環境下、周波数30Hzで16Vppの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。その得られたセルを70℃温度下で5Vの電圧を60μs間印加し、16.67ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHR)として計算した。なお、電圧保持率の測定には、東陽テクニカ社製の電圧保持率測定装置VHR-1を使用した。 <Evaluation of voltage holding ratio (VHR)>
Using the liquid crystal cell produced above, an AC voltage of 16 Vpp was applied for 168 hours at a frequency of 30 Hz in a constant temperature environment of 70 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for 1 hour. A voltage of 5 V was applied to the obtained cell at a temperature of 70 ° C. for 60 μs, a voltage after 16.67 ms was measured, and how much the voltage could be held was calculated as a voltage holding ratio (VHR). The voltage holding ratio was measured using a voltage holding ratio measuring device VHR-1 manufactured by Toyo Technica.
<<サンプル作製>>
密着性評価のサンプルは、以下のように作製した。30mm×40mmのITO基板に液晶配向剤をスピンコートし、70℃のホットプレートにて90秒間乾燥した。次いで、塗布面に偏向板を介して313nmの紫外線を20mJ/cm2照射した後に150℃のホットプレートで10分間加熱し、膜厚100nmの液晶配向膜付き基板を得た。
この基板に6μmビーズスペーサーを塗布した後、一方の基板の液晶配向膜上にシール剤(協立化学製XN-1500T)を滴下した。次いで、もう一方の基板を、シール剤の幅が1cmになるように、張り合わせを行い、クリップにて固定した後、150℃1時間熱硬化させて、密着性評価用のサンプルを作製した。
<<密着性の測定>>
その後、サンプル基板を島津製作所製の卓上形精密万能試験機AGS-X 500Nにて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。電圧保持率(VHR)の結果、及び密着性測定結果を、実施例1の液晶配向剤の組成と共に、表1に示す。 <Adhesion evaluation>
<< Sample preparation >>
A sample for evaluation of adhesion was prepared as follows. A liquid crystal aligning agent was spin-coated on a 30 mm × 40 mm ITO substrate and dried on a hot plate at 70 ° C. for 90 seconds. Next, the coated surface was irradiated with 20 mJ / cm 2 of 313 nm ultraviolet rays via a deflecting plate and then heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film having a thickness of 100 nm.
After applying a 6 μm bead spacer to this substrate, a sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was dropped onto the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the width of the sealing agent was 1 cm, fixed with a clip, and then thermally cured at 150 ° C. for 1 hour to prepare a sample for adhesion evaluation.
<< Measurement of adhesion >>
After fixing the edge of the upper and lower substrates with the tabletop precision universal testing machine AGS-X 500N manufactured by Shimadzu Corporation, the sample substrate was pushed in from the upper part of the center of the substrate, and the pressure (N ) Was measured. The results of the voltage holding ratio (VHR) and the adhesion measurement results are shown in Table 1 together with the composition of the liquid crystal aligning agent of Example 1.
表1に示す組成を用いた以外、実施例1と同様な方法により、実施例2~18の液晶配向剤A2~A18を得、これを用いて液晶セル及び密着性評価用サンプルを調製した。また、実施例1と同様な方法により、電圧保持率(VHR)及び密着性を測定した。その結果も表1に示す。 <Examples 2 to 18>
Liquid crystal aligning agents A2 to A18 of Examples 2 to 18 were obtained in the same manner as in Example 1, except that the compositions shown in Table 1 were used, and liquid crystal cells and samples for evaluating adhesion were prepared using these. Further, the voltage holding ratio (VHR) and adhesion were measured by the same method as in Example 1. The results are also shown in Table 1.
コントロール1及び2の液晶配向剤は、添加剤を有しておらず、それぞれメタクリルポリマー溶液M1及びM2を用いた。液晶配向剤としてタクリルポリマー溶液M1及びM2を用いた以外、実施例1と同様な方法により、液晶セル及び密着性評価用サンプルを調製した。また、実施例1と同様な方法により、電圧保持率(VHR)及び密着性を測定した。その結果も表1に示す。 <Controls 1 and 2>
The liquid crystal aligning agents of
また、実施例1~実施例5及び実施例7において、添加剤を用いることにより、添加剤を用いないコントロール1及び2と比較して、密着性が高いことがわかる。 From Table 1, it can be seen that in Examples 1 to 18, the use of an additive improves the voltage holding ratio (VHR) as compared to
In Examples 1 to 5 and Example 7, it can be seen that the use of an additive has higher adhesion than
実施例1で用意したIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を初期配向方位角として算出した。次いで、60℃のオーブン中で、周波数30Hzで16VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差を角度Δ(deg.)として算出した。その他の実施例でも同様に測定した。その結果、全ての実施例において、角度Δが0.1以下であった。液晶性を発現する側鎖型高分子膜に紫外線を照射後、液晶発現温度範囲で加熱することで、自己組織化によって高分子全体で高効率に液晶配向能が付与されているためか、長期のAC駆動後も配向方位のズレはほとんど観測されなかった。 <Afterimage evaluation>
The IPS mode liquid crystal cell prepared in Example 1 is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the backlight is turned on in the state where no voltage is applied. The arrangement angle of the liquid crystal cell was adjusted so as to be the smallest. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial orientation azimuth. Next, an alternating voltage of 16 V PP was applied in a 60 ° C. oven at a frequency of 30 Hz for 168 hours. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for 1 hour. After standing, the orientation azimuth was measured in the same manner, and the difference in orientation azimuth before and after AC driving was calculated as an angle Δ (deg.). The same measurement was performed in other examples. As a result, in all the examples, the angle Δ was 0.1 or less. The long-chain polymer film that exhibits liquid crystallinity is irradiated with ultraviolet rays and then heated in the liquid crystal expression temperature range, so that the liquid crystal alignment ability is imparted to the entire polymer by self-organization. Even after AC driving, the alignment azimuth was hardly observed.
1 側鎖型高分子膜
2、2a 側鎖
図2
3 側鎖型高分子膜
4、4a 側鎖
図3
5 側鎖型高分子膜
6、6a 側鎖
図4
7 側鎖型高分子膜
8、8a 側鎖 FIG.
1 Side
3 Side
5 Side
7 Side
Claims (15)
- (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び
(C)有機溶媒
を含有する重合体組成物。 (A) a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range;
(B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A crosslinkable compound having two or more kinds of substituents in one molecule, and (C) a polymer composition containing an organic solvent. - (A)成分が、光架橋、光異性化、または光フリース転移を起こす感光性側鎖を有する請求項1に記載の組成物。 The composition according to claim 1, wherein the component (A) has a photosensitive side chain that undergoes photocrosslinking, photoisomerization, or photofleece transition.
- (A)成分が、下記式(1)~(6)
(式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Y1は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Y2は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はY1と同じ定義を表す;
Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
q3は0または1である;
P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
l1は0または1である;
l2は0~2の整数である;
l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
l1が1であるときは、Tが単結合であるときはBも単結合を表す;
H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。)
からなる群から選ばれるいずれか1種の感光性側鎖を有する請求項1又は2に記載の組成物。
(Wherein A, B and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO Represents —O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
when l1 and l2 are both 0, A represents a single bond when T is a single bond;
when l1 is 1, B represents a single bond when T is a single bond;
H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof. )
The composition of Claim 1 or 2 which has any 1 type of photosensitive side chain chosen from the group which consists of.
- (A)成分が、下記式(7)~(10)
(式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
Y1は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
lは1~12の整数を表す;
mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
nは0~12の整数(ただしn=0のときBは単結合である)を表す;
Y2は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はY1と同じ定義を表す)
からなる群から選ばれるいずれか1種の感光性側鎖を有する請求項1又は2に記載の組成物。
(Wherein A, B and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO Represents —O— or —O—CO—CH═CH—;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (provided that when n = 0, B is a single bond);
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 )
The composition of Claim 1 or 2 which has any 1 type of photosensitive side chain chosen from the group which consists of.
- (A)成分が、下記式(11)~(13)
(式中、Aは、それぞれ独立に、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
lは、1~12の整数を表し、mは0~2の整数を表し、m1は1~3の整数を表す;
Rは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良いか、又はヒドロキシ基もしくは炭素数1~6のアルコキシ基を表す)
からなる群から選ばれるいずれか1種の感光性側鎖を有する請求項1又は2に記載の組成物。
(Wherein A is independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—) Or represents —O—CO—CH═CH—;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, and m1 represents an integer of 1 to 3;
R represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or a phase selected from those substituents. Each of the hydrogen atoms bonded to them is independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5). -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms (It may be substituted with an oxy group or represents a hydroxy group or an alkoxy group having 1 to 6 carbon atoms)
The composition of Claim 1 or 2 which has any 1 type of photosensitive side chain chosen from the group which consists of.
- (A)成分が、下記式(14)又は(15)
(式中、Aはそれぞれ独立に、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
Y1は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
lは1~12の整数を表し、m1、m2は1~3の整数を表す)
で表される感光性側鎖を有する請求項1又は2に記載の組成物。
(Wherein each A is independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, Or represents —O—CO—CH═CH—;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
l represents an integer of 1 to 12, and m1 and m2 represent an integer of 1 to 3)
The composition of Claim 1 or 2 which has the photosensitive side chain represented by these.
- (A)成分が、下記式(16)又は(17)
(式中、Aは単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
lは、1~12の整数を表し、mは0~2の整数を表す)
で表される感光性側鎖を有する請求項1又は2に記載の組成物。
Wherein A is a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, or —O—. Represents CO—CH═CH—;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
l represents an integer of 1 to 12, and m represents an integer of 0 to 2)
The composition of Claim 1 or 2 which has the photosensitive side chain represented by these.
- (A)成分が、下記式(18)又は(19)
(式中、A、Bはそれぞれ独立に、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
Y1は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
lは1~12の整数を表し、m1、m2は1~3の整数を表す;
R1は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す)からなる群から選ばれるいずれか1種の感光性側鎖を有する請求項1又は2に記載の組成物。
(Wherein A and B are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O) Represents — or —O—CO—CH═CH—;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
one of q1 and q2 is 1 and the other is 0;
l represents an integer of 1 to 12, and m1 and m2 represent an integer of 1 to 3;
R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. The composition according to claim 1 or 2, which has any one kind of photosensitive side chain selected from the group consisting of (which represents an oxy group).
- (A)成分が、下記式(20)(式中、Aは、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
Y1は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR0(式中、R0は水素原子又は炭素数1~5のアルキル基を表す)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
lは1~12の整数を表し、mは0~2の整数を表す)で表される感光性側鎖を有する請求項1又は2に記載の組成物。
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
The composition according to claim 1 or 2, wherein l represents an integer of 1 to 12, and m represents an integer of 0 to 2.
- (A)成分が、下記式(21)~(31)(式中、A及びBは上記と同じ定義を有する;
Y3は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO2、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
R3は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
q1とq2は、一方が1で他方が0である;
lは1~12の整数を表し、mは0から2の整数を表し、但し、式(23)~(24)において、全てのmの合計は2以上であり、式(25)~(26)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
R2は、水素原子、-NO2、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
Z1、Z2は単結合、-CO-、-CH2O-、-CH=N-、-CF2-を表す)からなる群から選ばれるいずれか1種の液晶性側鎖を有する請求項1~9のいずれか1項に記載の組成物。
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each have a liquid crystalline side chain selected from the group consisting of a single bond, —CO—, —CH 2 O—, —CH═N—, —CF 2 —. Item 10. The composition according to any one of Items 1 to 9.
- [I] 請求項1~10のいずれか1項に記載の組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。 [I] A step of applying the composition according to any one of claims 1 to 10 onto a substrate having a conductive film for driving a lateral electric field to form a coating film;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
The manufacturing method of the board | substrate which has the said liquid crystal aligning film which obtains the liquid crystal aligning film for horizontal electric field drive type liquid crystal display elements by which orientation control ability was provided by having. - 請求項11記載の方法により製造された横電界駆動型液晶表示素子用液晶配向膜を有する基板。 A substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element manufactured by the method according to claim 11.
- 請求項12記載の基板を有する横電界駆動型液晶表示素子。 A lateral electric field drive type liquid crystal display device comprising the substrate according to claim 12.
- 請求項12記載の基板(第1の基板)を準備する工程;
[I’] 第2の基板上に
(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アルコキシアルキル基、オキシラン基、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、トリアルコキシシリル基、及び重合性不飽和結合基から選ばれる少なくとも1種の置換基を1分子中に2個以上有する架橋性化合物、及び
(C)有機溶媒
を含有する重合体組成物を、塗布して塗膜を形成する工程;
[II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III’] [II’]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する第2の基板を得る工程;及び
[IV] 液晶を介して前記第1及び第2の基板の液晶配向膜が相対するように、前記第1及び第2の基板を対向配置して液晶表示素子を得る工程;
を有することにより、横電界駆動型液晶表示素子を得る、該液晶表示素子の製造方法。 Preparing a substrate (first substrate) according to claim 12;
[I ′] on a second substrate (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range;
(B) At least one selected from hydroxy group, hydroxyalkyl group, alkoxy group, alkoxyalkyl group, oxirane group, epoxy group, isocyanate group, oxetane group, cyclocarbonate group, trialkoxysilyl group, and polymerizable unsaturated bond group A step of coating a polymer composition containing a crosslinkable compound having two or more kinds of substituents in one molecule and (C) an organic solvent to form a coating film;
[II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′];
Obtaining a liquid crystal alignment film having alignment control ability by providing a second substrate having the liquid crystal alignment film; and [IV] liquid crystal alignment of the first and second substrates via liquid crystal A step of obtaining a liquid crystal display element by arranging the first and second substrates to face each other so that the films face each other;
A method for producing a liquid crystal display element, comprising obtaining a lateral electric field drive type liquid crystal display element. - 請求項14記載の方法により製造された横電界駆動型液晶表示素子。 A transverse electric field drive type liquid crystal display element manufactured by the method according to claim 14.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207031024A KR102261699B1 (en) | 2013-05-13 | 2014-05-13 | Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element |
CN201480040019.7A CN105378033B (en) | 2013-05-13 | 2014-05-13 | Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element |
JP2015517086A JPWO2014185410A1 (en) | 2013-05-13 | 2014-05-13 | Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element |
KR1020157035262A KR20160009044A (en) | 2013-05-13 | 2014-05-13 | Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013101754 | 2013-05-13 | ||
JP2013-101754 | 2013-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014185410A1 true WO2014185410A1 (en) | 2014-11-20 |
Family
ID=51898387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062716 WO2014185410A1 (en) | 2013-05-13 | 2014-05-13 | Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element |
Country Status (5)
Country | Link |
---|---|
JP (2) | JPWO2014185410A1 (en) |
KR (2) | KR20160009044A (en) |
CN (1) | CN105378033B (en) |
TW (1) | TWI626266B (en) |
WO (1) | WO2014185410A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015156314A1 (en) * | 2014-04-09 | 2015-10-15 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
JP2016108417A (en) * | 2014-12-04 | 2016-06-20 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element |
WO2017135130A1 (en) * | 2016-02-01 | 2017-08-10 | 日産化学工業株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
WO2017170483A1 (en) * | 2016-03-29 | 2017-10-05 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
WO2017199986A1 (en) * | 2016-05-18 | 2017-11-23 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
CN108369358A (en) * | 2015-10-07 | 2018-08-03 | 日产化学工业株式会社 | Liquid crystal orientation film manufacture composition indicates element and its manufacturing method using the liquid crystal orientation film of the composition and its manufacturing method and the liquid crystal with liquid crystal orientation film |
WO2020203628A1 (en) * | 2019-03-29 | 2020-10-08 | 日産化学株式会社 | Polymer composition and mono-layer phase difference material |
WO2021090832A1 (en) * | 2019-11-05 | 2021-05-14 | 日産化学株式会社 | Method for producing patterned single-layer retardation material |
WO2021221100A1 (en) * | 2020-04-30 | 2021-11-04 | 富士フイルム株式会社 | Composition, composition layer, optical multilayer body and image display device |
WO2023085390A1 (en) * | 2021-11-12 | 2023-05-19 | 日産化学株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170947A1 (en) * | 2016-03-31 | 2017-10-05 | 日産化学工業株式会社 | Polarization layer forming composition |
CN110546560B (en) * | 2017-02-27 | 2022-08-19 | 日产化学株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006091290A (en) * | 2004-09-22 | 2006-04-06 | Nitto Denko Corp | Manufacturing method for alignment film for aligning liquid crystal material, obtained alignment film, aligned liquid crystal film, optical film, and image display device |
JP2007304215A (en) * | 2006-05-09 | 2007-11-22 | Hayashi Telempu Co Ltd | Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film |
JP2009098619A (en) * | 2007-09-28 | 2009-05-07 | Fujifilm Corp | Composition for photo alignment film, composition for retardation film, photo alignment film, retardation film, liquid crystal cell and liquid crystal display device using the same, and method for producing photo alignment film or retardation film |
JP2009237017A (en) * | 2008-03-26 | 2009-10-15 | Jsr Corp | Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element |
WO2010026721A1 (en) * | 2008-09-03 | 2010-03-11 | シャープ株式会社 | Alignment film, alignment film material, liquid crystal display device comprising alignment film, and method for manufacturing same |
WO2010061490A1 (en) * | 2008-11-27 | 2010-06-03 | シャープ株式会社 | Liquid crystal display and method for producing the same |
WO2012002511A1 (en) * | 2010-06-30 | 2012-01-05 | 日産化学工業株式会社 | Liquid crystal-aligning agent, liquid crystal-aligning film, liquid crystal display element and method for producing liquid crystal display elements |
WO2012008814A2 (en) * | 2010-07-16 | 2012-01-19 | (주)Lg화학 | Liquid crystal film |
WO2012014898A1 (en) * | 2010-07-26 | 2012-02-02 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element |
WO2012014915A1 (en) * | 2010-07-28 | 2012-02-02 | 大阪有機化学工業株式会社 | Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04355426A (en) * | 1991-05-31 | 1992-12-09 | Nippon Seiki Co Ltd | Polymer-dispersion type liquid crystal display element |
JP3757514B2 (en) * | 1996-02-16 | 2006-03-22 | 日産化学工業株式会社 | Method for forming liquid crystal vertical alignment film |
JP3893659B2 (en) | 1996-03-05 | 2007-03-14 | 日産化学工業株式会社 | Liquid crystal alignment treatment method |
JP4553499B2 (en) * | 2001-02-28 | 2010-09-29 | 独立行政法人産業技術総合研究所 | Liquid crystal alignment agent |
CN101395527B (en) * | 2006-03-07 | 2012-05-30 | 日产化学工业株式会社 | Silicon-based liquid crystal aligning agent, liquid crystal alignment film, and methods for producing these |
JP5075483B2 (en) * | 2007-04-27 | 2012-11-21 | 林テレンプ株式会社 | Polymer film, method for producing molecular alignment element, and liquid crystal alignment film |
WO2010049044A1 (en) * | 2008-10-29 | 2010-05-06 | Merck Patent Gmbh | Liquid crystal display |
TWI510508B (en) * | 2010-03-31 | 2015-12-01 | Nissan Chemical Ind Ltd | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
WO2011155577A1 (en) * | 2010-06-10 | 2011-12-15 | 日産化学工業株式会社 | Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element |
KR20120008425A (en) * | 2010-07-16 | 2012-01-30 | 주식회사 엘지화학 | Optical film, preparation method of the same, and liquid crystal display comprising the same |
JP5699543B2 (en) * | 2010-11-02 | 2015-04-15 | Jsr株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
KR20120061427A (en) * | 2010-12-03 | 2012-06-13 | 재단법인대구경북과학기술원 | UV-Curable Composition for Liquid Crystal Display and Liquid Crystal Display using the same |
JP5784323B2 (en) * | 2011-02-23 | 2015-09-24 | 大阪有機化学工業株式会社 | Composition for retardation film |
CN103748506B (en) * | 2011-08-31 | 2016-07-06 | Jsr株式会社 | The manufacture method of liquid crystal display cells, aligning agent for liquid crystal and liquid crystal display cells |
WO2013035803A1 (en) * | 2011-09-08 | 2013-03-14 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element |
WO2013047693A1 (en) * | 2011-09-30 | 2013-04-04 | 日産化学工業株式会社 | Liquid crystal orientation treatment agent, liquid crystal orientation membrane, and liquid crystal display element |
JP6183212B2 (en) * | 2011-11-01 | 2017-08-23 | 日産化学工業株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
-
2014
- 2014-05-13 CN CN201480040019.7A patent/CN105378033B/en active Active
- 2014-05-13 JP JP2015517086A patent/JPWO2014185410A1/en active Pending
- 2014-05-13 KR KR1020157035262A patent/KR20160009044A/en active Application Filing
- 2014-05-13 KR KR1020207031024A patent/KR102261699B1/en active IP Right Grant
- 2014-05-13 TW TW103116942A patent/TWI626266B/en active
- 2014-05-13 WO PCT/JP2014/062716 patent/WO2014185410A1/en active Application Filing
-
2020
- 2020-04-10 JP JP2020070711A patent/JP2020122154A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006091290A (en) * | 2004-09-22 | 2006-04-06 | Nitto Denko Corp | Manufacturing method for alignment film for aligning liquid crystal material, obtained alignment film, aligned liquid crystal film, optical film, and image display device |
JP2007304215A (en) * | 2006-05-09 | 2007-11-22 | Hayashi Telempu Co Ltd | Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film |
JP2009098619A (en) * | 2007-09-28 | 2009-05-07 | Fujifilm Corp | Composition for photo alignment film, composition for retardation film, photo alignment film, retardation film, liquid crystal cell and liquid crystal display device using the same, and method for producing photo alignment film or retardation film |
JP2009237017A (en) * | 2008-03-26 | 2009-10-15 | Jsr Corp | Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element |
WO2010026721A1 (en) * | 2008-09-03 | 2010-03-11 | シャープ株式会社 | Alignment film, alignment film material, liquid crystal display device comprising alignment film, and method for manufacturing same |
WO2010061490A1 (en) * | 2008-11-27 | 2010-06-03 | シャープ株式会社 | Liquid crystal display and method for producing the same |
WO2012002511A1 (en) * | 2010-06-30 | 2012-01-05 | 日産化学工業株式会社 | Liquid crystal-aligning agent, liquid crystal-aligning film, liquid crystal display element and method for producing liquid crystal display elements |
WO2012008814A2 (en) * | 2010-07-16 | 2012-01-19 | (주)Lg화학 | Liquid crystal film |
WO2012014898A1 (en) * | 2010-07-26 | 2012-02-02 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element |
WO2012014915A1 (en) * | 2010-07-28 | 2012-02-02 | 大阪有機化学工業株式会社 | Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015156314A1 (en) * | 2014-04-09 | 2015-10-15 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
JP2016108417A (en) * | 2014-12-04 | 2016-06-20 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element |
CN108369358A (en) * | 2015-10-07 | 2018-08-03 | 日产化学工业株式会社 | Liquid crystal orientation film manufacture composition indicates element and its manufacturing method using the liquid crystal orientation film of the composition and its manufacturing method and the liquid crystal with liquid crystal orientation film |
CN108369358B (en) * | 2015-10-07 | 2022-02-25 | 日产化学工业株式会社 | Composition for producing liquid crystal alignment film, liquid crystal alignment film using same, method for producing same, liquid crystal display element having liquid crystal alignment film, and method for producing same |
WO2017135130A1 (en) * | 2016-02-01 | 2017-08-10 | 日産化学工業株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
JP7046310B2 (en) | 2016-02-01 | 2022-04-04 | 日産化学株式会社 | Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element |
CN108603036A (en) * | 2016-02-01 | 2018-09-28 | 日产化学株式会社 | Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element |
JPWO2017135130A1 (en) * | 2016-02-01 | 2018-12-20 | 日産化学株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
KR102350408B1 (en) | 2016-03-29 | 2022-01-11 | 닛산 가가쿠 가부시키가이샤 | A liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element |
WO2017170483A1 (en) * | 2016-03-29 | 2017-10-05 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
KR20180128442A (en) * | 2016-03-29 | 2018-12-03 | 닛산 가가쿠 가부시키가이샤 | A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element |
JP6992746B2 (en) | 2016-05-18 | 2022-01-13 | 日産化学株式会社 | Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element |
JPWO2017199986A1 (en) * | 2016-05-18 | 2019-03-14 | 日産化学株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
WO2017199986A1 (en) * | 2016-05-18 | 2017-11-23 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
WO2020203628A1 (en) * | 2019-03-29 | 2020-10-08 | 日産化学株式会社 | Polymer composition and mono-layer phase difference material |
JP7517326B2 (en) | 2019-03-29 | 2024-07-17 | 日産化学株式会社 | Polymer composition and single-layer retardation material |
WO2021090832A1 (en) * | 2019-11-05 | 2021-05-14 | 日産化学株式会社 | Method for producing patterned single-layer retardation material |
CN114616518A (en) * | 2019-11-05 | 2022-06-10 | 日产化学株式会社 | Method for manufacturing patterned single-layer phase difference material |
WO2021221100A1 (en) * | 2020-04-30 | 2021-11-04 | 富士フイルム株式会社 | Composition, composition layer, optical multilayer body and image display device |
JPWO2021221100A1 (en) * | 2020-04-30 | 2021-11-04 | ||
JP7355928B2 (en) | 2020-04-30 | 2023-10-03 | 富士フイルム株式会社 | Composition, composition layer, optical laminate, and image display device |
WO2023085390A1 (en) * | 2021-11-12 | 2023-05-19 | 日産化学株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
Also Published As
Publication number | Publication date |
---|---|
CN105378033B (en) | 2020-10-27 |
KR20200125757A (en) | 2020-11-04 |
TW201512271A (en) | 2015-04-01 |
TWI626266B (en) | 2018-06-11 |
JPWO2014185410A1 (en) | 2017-02-23 |
JP2020122154A (en) | 2020-08-13 |
KR20160009044A (en) | 2016-01-25 |
CN105378033A (en) | 2016-03-02 |
KR102261699B1 (en) | 2021-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014185410A1 (en) | Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element | |
JP7140336B2 (en) | Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element | |
JP6502006B2 (en) | Method of manufacturing substrate having liquid crystal alignment film for transverse electric field drive type liquid crystal display device | |
JP6523169B2 (en) | Polymer, polymer composition and liquid crystal alignment film for horizontal electric field drive type liquid crystal display device | |
JP2014206715A (en) | Method for manufacturing substrate having liquid crystal aligning film for in-plane switching liquid crystal display element | |
WO2017199986A1 (en) | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element | |
WO2014196590A1 (en) | Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements | |
WO2016113931A1 (en) | Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film | |
JP6510975B2 (en) | Method of manufacturing substrate having liquid crystal alignment film for transverse electric field drive type liquid crystal display device | |
JP6571524B2 (en) | Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element | |
WO2016113930A1 (en) | Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film | |
WO2014196589A1 (en) | Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements | |
WO2015016301A1 (en) | Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element | |
WO2016021570A1 (en) | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element | |
WO2017069133A1 (en) | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element | |
JP6601605B2 (en) | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element | |
WO2016186189A1 (en) | Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film | |
WO2014185413A1 (en) | Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element | |
WO2014192922A1 (en) | Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element | |
JP2018109788A (en) | Method for manufacturing substrate having liquid crystal orientation film for lateral electric field-driven liquid crystal display element | |
JP2017082140A (en) | Liquid crystal orientation agent, liquid crystal orientation film, and liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14797603 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015517086 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157035262 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14797603 Country of ref document: EP Kind code of ref document: A1 |